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strip globally. However, such a path can rarely be found in practice due to
the complexity of the resulting vector field. An algorithm to find a suboptimal
solution of this problem is presented in [20]. The authors introduce an “initial”
tool path which has the largest average machining strip. Next, the entire tool
path is constructed by propagating the initial path inside the region until it
substantially deviates from the streamlines.

A few papers explore other “iso” methods such as the iso-distance and the
iso-curvature methods (see, for instance, [47]). In [63] an additional tool path
segments are appended to the basic tool path in order to achieve constant
cutting forces and to avoid chatter vibrations in the entire machining area.
Furthermore, the necessity to create geometric patterns suitable for the so-
called pocket milling leaded to a series of methods designed for parts with
one or more complex shaped “islands” inside. The methods are also needed to
machined the so-called trimmed surfaces when the boundaries of the surface
are defined by intersections with other surfaces.

In 1998, Choi and Jerard [21] introduced a term regional milling referring
to situations when the machining operation, occurs in a region specified by
boundary curves. According to [96] the regional milling can be performed using
the same types of tool path topologies, namely, the contour-based offset type
and the direction-parallel type. The direction-parallel type has been analyzed
in [45, 46, 49], whereas the direction-parallel type in [21, 48, 51, 94].

One of the most important problems in the contour-based machining is
linking the contours in such a way that the number of tool retractions is
minimized. Held et al. [51] presents an algorithm designed for this type of
machining based on the proximity maps and the Voronoi diagrams. The au-
thor suggests a linking procedure requiring a spanning tree of the planar graph
of the monotonic pouches. Park and Chung [95] propose a contour linking al-
gorithm accommodating minimization of slotting, tool-retractions and drilling
holes.

Park et al. [96] presented a tool path linking algorithm, which guaran-
tees a “zero” number of tool-retractions. The algorithm employs the concept
of tool path element net providing information on the parent/child relation-
ships. Jeong and Kim [57] present an algorithm designed to offset the bound-
ary curves in the complex shaped region using the Voronoi diagram. Each
curve segment is offset within the corresponding Voronoi polygon to avoid the
degeneracy problem. Jeong and Kim [58] introduce a distance map algorithm
which effectively finds the characteristic points and self intersection points of
the offset curve segments and as the result eliminates such topological prob-
lems as loops, ridges and cusps. A forward locus tracing method is introduced
in [68]. The algorithm searches for all intervals split by intersections of the
planar curves and maps the 2D transversal intersections onto a 1D interval.

Suppose that the part is partitioned into a grid of cells each of them
being a curvilinear triangle or a curvilinear rectangle. The optimization can
then be considered as constructing a path which visits each cell, does not
have intersections, requires minimal number of tool retractions and satisfies
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some error related criteria. Pocket machining using staircase or window frame
patterns were proposed in [97]. Hansen and Arbab [46] developed a scan line
algorithm for generating NC tool paths for arbitrarily shaped flat bottom
pockets with islands. Flat pocket machining based on grids was suggested by
Bao and Yim [11].

Treating the tool path generation as a navigation problem on grids leaded
to approaches exploiting the shortest path optimization and related tech-
niques. Suh and Shin [110] developed a neural network model to obtain the
tool path in rough pocket machining as a solution to the traveling salesman
problem. A good mathematical analysis of such strategies is given in [9]. The
problem is formulated as follows: given a region in the parametric plane and
the shape of a cutter find a shortest tour/path for the cutter such that every
point within the region is covered by the cutter at some position along the
tour (tool path). Additionally the cutter could be constrained to stay within a
certain region. Narayanaswami and Choi [91] present a grid-based 3D naviga-
tion approach for generating NC tool path data for both linear interpolation
and a combination of linear and circular interpolation for three-axis milling.
The approach can be extended to the five-axis case.

The space-filling curves (SFC), having been applied in computer graphics,
image processing, information systems, can be also seen as a suitable naviga-
tion pattern for generation of five-axis paths. The first application of the SFC
to NC tool path generation was reported in [23, 44]. Griffiths [44] proposed
the use of the Hilbert’s curve as a tool path, while Cox et al. [23] used various
forms of space-filling curves such as Moore’s curve. Fractal based techniques
were suggested by Chen et al. [18].

However, neither SFCs nor fractals have never been very popular in the
five-axis machining community due to a large number of sharp turns produced
by the conventional SFCs. A concept of an adaptive space-filling curve for tool
path planning for five-axis NC machining was proposed in [8]. The space-filling
curves, adapted to the local optimal cutting direction, produce shorter tool
paths. Besides, the tool path correction stage suggested in [8] makes it possible
to eliminate the effect of sharp angular turns which characterize the standard
SFC patterns. These techniques will be presented in Chap. 4 of this book.

Finally, the entire tool path can be considered in the framework of the
grid generation technologies. The concept was first introduced by Makhanov
[82] and developed in [15, 83]. The grid generation techniques are surprisingly
well-adapted to tool path optimizations. As a matter of fact, the concept of
a grid refinement contains almost all the main ingredients for tool path plan-
ning, such as grid adaptation to the regions of large milling errors, possibility
to easily construct curvilinear versions of the conventional zigzag and spiral
patterns and adaptation to constraints related to the tool diameter and the
scallop height. Moreover, in contrast to the standard techniques characterized
by a local error estimate, grid generation deals with a global spatial error and
consequently adapts all the CL points simultaneously. These ideas were de-
veloped further in [84], specifically for five-axis machining whereas Bieterman
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and Sandstrom [12] suggested a similar approach, independently. Finally, Sun
et al. [111] presented a spiral version of the grid generation algorithm applied
to tool path generation. The advanced grid generation techniques for five-axis
machining will be considered in Chap. 5 of this book.

Tool posture and gouging avoidance

This section deals with techniques providing an optimal position and orien-
tation of the tool in a particular neighborhood of the machined surface. The
emphasis is on the orientations prescribed independently with regard to a
certain criteria such as the local gouging avoidance, machining strip, scallop
height, avoiding global gouging constraints, etc. The most important appli-
cation of these techniques is cutting the part surface by the flat-end or fillet
mill.

In 1987, Marciniak [86] showed that in five-axis machining the maximum
width of machined strip on the surface could be obtained if the tool moved on
the surface approximately along the minimum curvature line. The maximum
width of the strip depends on the difference of the surface main curvatures
at the contact point. Some of the early research papers exploiting this idea
are [37, 67, 74]. Furthermore, Kruth and Klewais [67] introduced an optimal
milling direction parallel to the principal direction of the surface with the
minimum curvature.

Gani et al. [37] notice that “One of the critical problems in five-axis milling
is the positioning of the cutter in relation to the surfaces in order to machine
without having overcut (gouging) or undercut. Because of this problem, ball-
end cutters are preferred. Undercutting does not cause a big problem when
using ball-end cutters. The calculation of the NC tool path for ball-end cutters
is mainly a problem of surface offset. An important drawback of ball-end
cutters is the varying cutting speed along the tool radius. The maximal cutting
speed is reached on the tool diameter, and at the tool tip it is zero. This leads
to cutting edge chipping as well as poor surface roughness”.

Recall that as long as the five-axis machines are considered, the tool has
five degrees of freedom relative to the surface. The three spatial degrees are
used to locate the tool at the cutter location points point. The extra two ro-
tational degrees are used to establish the orientation of the tool represented
by the inclination angle and the tilt angle (see, for instance, [103]) or the tilt
angle and the yaw angle [60]. The angles are evaluated in a local coordinate
system usually defined by the feed direction, the surface normal and the cor-
responding cross product vector. In the case of the flat-end mill the boundary
of the base of the tool, which is the part of the tool cylinder is called the
cutting circle of the tool. The effective cutting shape (also referred to as the
tool swept section) is defined as a projection of the base of the tool onto the
plane normal to the feed direction. Actually, in the case of flat-end mill the
projected bottom edge becomes an ellipse called the effective cutting ellipse.
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The parameters of the ellipse depend on the tool orientation. The local goug-
ing (or the curvature interference) is usually defined as the excess material
removal in the vicinity of the cutter contact point due to the mismatch in
curvatures between the tool cutting edge and the desired surface. Detecting
and avoidance of the local gouging includes comparing the curvature of the
effective cutting shape (also referred to as effective cutting curvature) and
the normal curvature of the surface evaluated in the same plane where the
effective cutting shape is defined.

If the effective cutting curvature is greater than the normal curvature of
the surface then the local gouging will not occur. The mathematical descrip-
tion of the effective cutting shape for a flat-end cutter is given in [129] and
for a fillet end mill in [71]. The gouging is then avoided by determining the
smallest inclination angle that ensures the largest material removal, that is,
the largest machining strip. Of course, gouging is still possible because the
curvatures are compared only in one section. In order to eliminate this source
of errors, Lee and Ji [72] suggested to compare the curvature of the effective
cutting shape evaluated in two planes: along the tool path and normal to
the tool path. These effective cutting curvatures are compared to the normal
curvatures of the surface in the respective planes and the inclination angle is
computed as the maximum from the two minimal inclinations. Unfortunately,
the method is not applicable to the non-convex surfaces when the radius of
the curvature of the part surface is negative in the both directions but the
maximum principle curvature is positive. In these cases, the method produces
a zero inclination. This “bug” often leads to local gouging. Lo [78] solves this
problem by continuously checking for gouging in all directions. Some improve-
ments and modifications of these techniques are given in [8].

Li and Chen [75] write “Not only the parameters of the part of cutter
body that pierces into the stock, but also the parameters of the area on the
designed surface that may have relations to the cutter is yet to be studied.
But the cutter location point, just as its name, is only the common point
both on the cutter and the designed surface, any methods only based on
the geometric properties of it will not obtain the best cutter positions.” In
other words, the accuracy of the above single point gouging model may be
insufficient. In this case multipoint strategies [123, 124, 130] could be applied
to further enhance the accuracy of the tool positioning. Furthermore, Rao and
Sarma [103] present a closed form, coordinate free method for the detection
and elimination of local gouging, at a CC point, in five-axis machining of
sculptured surfaces using flat-end tools. The method is based on finding the
curvatures of the tool swept surface at CC points along the tool path. Local
gouging can then be detected and eliminated by sampling a finite set of points
on the tool path, while comparing curvatures of the tool swept surface and the
designed surface. Pottmann et al. [100] proposed a local millability criterion
that guarantees global millability (i.e., rear-gouge and collision free milling)
for three-axis machining using ball-end tools. The local millability criterion is
based on curvature matching, using Dupin indicatrices in the tangent plane
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at the CC point, between the designed surface and the tool swept surface. A
five-axis version of these method is presented in [131].

The above curvature matching methods require iterative gouge checking
and correction strategies. To eliminate the need for iterative gouge checking
and correction algorithms, some five-axis tool positioning strategies attempt
to match the tool’s cutting geometry to the surface geometry such as the
principal axis method [104] developed for three-axis ball nose cutter and the
five-axis arc intersection methods [42] based on the fact that the widest ma-
chined strip width is cut when the tool is tilted along the feed direction. Then
for a given feed direction, a tool position is computed for each CC point along
the tool path. The tool vector is restricted to lie in the tilting plane. The tilt
angles are measured around the cross vector. The idea is to find the minimum
tilt angle of the tool axis about the cross vector at which the tool contacts an-
other point on the surface and maintain its contact with the CC point without
gouging the surface.

Gray et al. [43] propose a modification of the five-axis arc intersection
method for the so-called 31/21/2-axis machining. This type of machining is
characterized by three linear axes and two temporary locked rotary axes. The
rotary axis are locked during the entire cut (resulting in a fixed tool orienta-
tion) or during a certain fraction of the cut. The rotary axis, represented by
a high precision indexing device, constitute an interesting inexpensive alter-
native to the five-axis machining.

It should be noted that the above methods are based on the properties of
a single or several contact points and therefore the errors still are unavoid-
able during, for instance, the wide strip precision machining. Besides, there
is always a possibility of the so-called rear gouging when the back side of the
tool gouges the surface with an attempt to obtain a wider machining strip.
When the gouge is detected the tool must be inclined further and checked
for gouging again until it clears the part. This secondary check and gouge
elimination can be performed using the rolling ball method suggested in [41].
The basic idea is to roll a varying radius ball along the tool path and position
the tool inside the ball.

An interesting approach has been developed by Li and Chen [75]. An
envelop surface created by the cutter movement is discretized into infinite
characteristic curves. Each of these curves will exactly copy themselves on
to the stock. Then an analysis of the characteristic curves is performed to
solve the problem of cutter positioning. The authors use the concept of the
instantaneous cutter position error employing the virtual cutting edge of the
tool. The effective bandwidth of cutting strip is calculated and used in the
optimization algorithm.

Finally, regardless of the tool orientation there always exists the possibility
of a global interference of the workpiece with the tool holder, fixture or other
parts of the machine. There also exists a possibility that given any orientation,
the tool still flank-mills an unwanted part of the surface. It means that this
portion of the surface is not accessible. Elber and Cohen [28] write “The
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problem of accessibly, or the ability to verify and possibly correct gouging
into the machined surface or even into other surfaces, is apparently the most
fundamental hindering factor in the broad use of five-axis machining”.

Solid modeling systems offer the possibility of doing both simulation and
verification of tool paths off-line. However, the solid modeling approach is com-
putationally expensive. The cost of simulation using the so-called constructive
solid geometry is proportional to the fourth power of the number of the tool
movements O(N4) [16]. On the other hand, the solid model can detect both
the local and the global interference, including collisions with the clamping
device and the machine parts. A typical program for surface machining could
contain more than 10,000 tool movements, therefore, current solid modeling
research focuses on efficient and fast algorithms to compute the swept volume
of the tool and perform Boolean operations to subtract the intersection from
the stock. Bohez et al. [16] presents a short introduction to solid modeling
schemes such as the extended Z-buffer algorithm [52], line graphic simulation
approaches [59] and others.

The partition into elements and the corresponding data structures are
the most important components of these procedures. The Z-buffer structure
[7, 113], ray representation [56], Octree method [93, 106], K-D trees [50], BSP-
trees [92], Brep-indices [65, 117], tetrahedral meshes [93] and regular grids [38]
are examples of such spatial decomposition techniques. Each solid modeling
algorithm has advantages and disadvantages in terms of accuracy, robustness,
data structure and computation time. However, it seems that the simplicity
of the data structure required for the Z-buffer scheme and the possibility to
generate and update the part model very fast made many commercial CAM
program to use the Z-buffer algorithm or its ramifications for the NC code
verification and optimization [107].

The recent research papers include many improvements of the Z-buffer
techniques such as the enhanced Z-buffer model [107], the stencil buffer [16],
the adaptive depth buffer [105], the undo facilities for the Z-buffer scheme
[13], etc. However, the above methods are not designed specifically for global
interference detection. As a matter of fact, the solid model visualizes a general
cut which may or may not include the global interferences. It may take hours
of simulation and possibly an operator to visually detect possible collisions.

Therefore, methods based on the closed form mathematical solutions or
their approximation are still valuable. The problem of the global gouging is
treated mathematically using the concept of accessibility. The accessibility
of a point in a given direction is defined as follows: a point belonging to a
geometric entity is accessible in a given direction if a ray can be drawn from
it in the given direction without intersecting with interior of the geometric
entity.

The problem of accessibility in three-axis machining can be solved by a
method of hidden surface removal of the same scene from a direction collinear
with the tool axis [26, 53]. The fact that the tool has a finite thickness can be
compensated for, by offsetting all the check surfaces by the radius of the tool.
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The use of Z-buffer based hidden surface removal techniques to verify and
correct the three-axis tool path, is a common practice in many contemporary
computer-aided manufacturing schemes. For three-axis machining under cer-
tain conditions the absence of the local gouging implies the complete absence
of collisions [99].

For five-axis machining it has been also shown that if all axis positions
pass through a fixed point and if all points of the workpiece surface can be
seen from this point then the local millability implies global millability [99].
Wallner and Pottmann [120] presented a global millability theorem for general
workpieces. They analyzed several possible configuration manifolds of tool
positions relative to a workpiece under different aspects; the degree of freedom
of the motion of the tool, the correspondence between the contact point and
the tool position, and the presence or absence of unwanted collisions between
tool and workpiece.

Takeuchi et al. [114] proposed a method for computing the collision-free
CL data using a trial and error approach. Morishige et al. [89] used the so-
called C-space techniques to generate a smooth, continuously varying tool
path. The C-space is a general concept of robotics where the configuration
of a mechanism is specified by a sequence of values. A rigid body, for exam-
ple, can be located in space by specifying six parameters related to all six of
its degrees of freedom. The configuration space (C-space) of a mechanism is
the space of these parameters, and a point in the C-space specifies a partic-
ular configuration. Obstacles can be mapped to the C-space as well, and the
required collision-free access can theoretically be inferred by navigating the
point in the C-space around the obstacles. Unfortunately, though intuitive and
intellectually appealing, the C-space approach could lead to computationally
intractable tasks.

The problem of accessibility can be approximated by a simpler requirement
called visibility. A point on an object is visible from a point at infinity if
there exists a straight line segment connecting the two points which does not
intersect with the object. Visibility is a useful precursor for the accessibility
computation because, for a certain class of tools and probes, visibility is a
necessary condition for accessibility. Seminal theoretical results in the area
were obtained by Elber and Cohen [27], Elber and Zussman [29], Woo [127].
Later research was focused on generating the so-called product visibility cones
(see [62, 116]).

Lauwers et al. [70] describe a multi-axis tool path generation software
where the tool orientation is optimized to avoid machine collisions and at the
same time to maximize the material removal rate along the tool track. To per-
form efficient collision avoidance, the tool path generation module, the post
processing and machine simulation has been integrated into one system. Xu
et al. [128] combine the machine limits, collisions, and gouging to generate fea-
sible gouge free tool orientations. Gian et al. [39] developed open regions and
vector fields techniques to find rapidly the cutter paths and tool orientations
for parts with cavity areas. In 2003, Balasubramaniam et al. [10] developed
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methods for five-axis tool positioning that account for accessibility of the tool
using visibility maps of the triangulated data. Using this visibility data for
finish machining the authors show how it can be used to generate globally
collision-free five-axis finishing tool paths while considering machine limits,
tool tilt, cusp height limits and the tool pitch limits.

Young et al. [132] presented a new parametric method with an approximate
constant cutting depth for the rough machining of an impeller. The initial tool
spindle axis is considered as the initial orientation to determine the cutting
tool posture for which the variation of rotational axes of the five-axis ma-
chine tool will be reduced. Hsueh et al. [54] propose to prevent the collisions
using the two stages: the first stage is to obtain the tilting and collision-free
angle range in the plane that is normal to the tool path obtained. Next, a
checking cone generated from this collision-free tool axis range is used for the
second collision check. The collision region is formed by the intersection of the
neighboring surfaces.

Analyzing a proper sculptured surface orientation on the worktable of
multi-axis CNC machine, Radzevich and Goodman [102] proposed the so-
called spherical indicatrix of the sculptured surface machinability. This char-
acteristic curve indicates whether the sculptured surface is machinable under
a known scenario. The theory is developed in connection with a sculptured
surface orientation on the worktable of a multi-axis CNC machine.

Radzevich [101] presents an approach that enables us to detect regions of a
sculptured surface which are not accessible for a cutting tool of a given design,
Furthermore, if any not-machinable regions exist, the developed approach
enables us to subdivide the sculptured surface into the cutter-accessible and
the cutter-not-accessible regions.

We have presented a survey on three selected topics in five-axis machining,
namely, tool path interpolators, adaptable geometric patterns and methods for
tool posture and gouging avoidance. We believe that the above procedures are
the most important for constructing efficient numerical methods for five-axis
machining

It should be noted that complete software systems designed for tool
path generation and verification are now very important. The commercial
CAD/CAM systems such as Unigraphics, PowerMill, Catia, MasterCam, each
of them to a certain degree, include five-axis capabilities. In Chap. 2 we will
demonstrate how the solid modeling features of Unigraphics can be used for
the tool path simulation and verification.

Finally, we apologize to those authors whose works have not been cited.
The exclusion of any such papers is due to our not being aware of their work.
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2

Introduction to Five-Axis NC Machining

2.1 Five-Axis NC Machining Concepts

Numerical control or numerically controlled (NC) machines are automatically
operated by commands received by their processing units. The NC machines
were first developed soon after World War II and made it possible for a precise
and efficient production of large quantities of the desired components in a re-
liable repetitive manner. Early NC machines were often fed with instructions
which were punched onto paper tape or punch cards. In the 1960s, NC ma-
chines largely gave way to computer numerical control (CNC) machines which
refers specifically to a computer controller that reads G-code instructions (see
Sect. 2.2) and drives the machine tool.

Five-axis milling machines are NC machines which characterized by three
translational and two rotary axes. A five-axis milling machine with two rotary
axes on the table is depicted in Fig. 2.1. A block of a raw material called the
workpiece is fixed to the machine table by means of clamps (clumping device)
(see Fig. 2.1b). The material is then removed from the workpiece by a rotating
cutter attached to the spindle through the tool holder. The process of material
removal with the goal to produce a required industrial part is called milling,
machining or cutting.

The NC machines are programmed by means of a special code called the
NC program or the part program composed of commands represented by let-
ters, numbers and special symbols. The part program consists of instructions
to control the machine movements following a certain manufacturing technol-
ogy and methodology. For example, the program tells the machine what is
the required shape and size of the tool, at what speed and feedrate and at
what orientation relative to the workpiece this tool should be used. The part
program also prescribes a set of cutter location1 (CL) points assigned to cut
the desired part.

1 A cutter location refers to the position at which an NC milling machine has been
instructed to hold the milling cutter.
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Fig. 2.1a. MAHO 600E milling machine

Fig. 2.1b. Workpiece, clumping device, and rotary tables of MAHO 600E
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Fig. 2.1c. HERMLE UWF902H milling machine

The design of the part program takes into account the specific part geom-
etry, the cutting process, the machine parameters and the cutting tools used.
The program is fed to the machine controller that drives servomotors of the
machine to move the table or the spindle by specified amounts in X, Y or
Z and to tilt the cutter relative to the workpiece in one or two rotary axes.
The part is machined by moving the cutter along a pre-computed path in
space called the tool path. Generation of a part program to cut a specific part
typically involves the following steps:

• Generation of the tool path in the workpiece coordinate system. Usually
this step requires that a successive set of coordinates W = (xw, yw, zw)
called cutter contact2 (CC) points and the tool orientations I = (Ix, Iy, Iz)
in the workpiece coordinate system are distributed along a set of curves
following a specified pattern such as the zigzag or the spiral curves (Fig.
2.2).

• The CL data are then computed from the set of CC points. The method for
CC-CL data conversion must include the geometry of the cutting tool and
the orientation of the tool relative to the workpiece. Various optimization
techniques could be used at this step to generate optimal cutter location
data (see, for instance, [2]).

• Each CL point is then transformed into the machine axial command
Π = (M,R) ∈ R

5, carrying three Cartesian coordinates M = (xm, ym, zm)
of the tool tip in the machine coordinate system and two rotation angles
R = (a, b). Converting coordinates of the CL points from the workpiece

2 A cutter contact point refers to the coordinates where the tool cutting edge makes
contact with the surface.
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coordinate system to the machine coordinate system is called postprocess-
ing. The postprocessor requires knowledge of the machine kinematics and
the machine configuration.

• The axial commands are then converted into an NC part program following
the format understood by the machine controller.

Fig. 2.2. Zigzag (a) and spiral (b) tool paths

The above sequence may or may not include an optimization and veri-
fication steps. The optimization step involves a cost function representing a
certain type of error or a combination of several types of errors. The tool path
is then modified or reconstructed entirely in such a way that the cost function
is minimized or at least decreased.

The verification stage includes an actual machining or computer modeling
of the material removal which produces the output as a solid model. The solid
model can then be compared with the desired part and the efficiency of the
optimization strategies can be evaluated.

2.2 NC Part Programming

The NC part program is a detailed plan (program) of manufacturing con-
sisting of instructions called the NC blocks. The syntax of each instruction
follows a specified format standardized by the ISO. This standard is main-
tained by many machine control units (MCU) manufacturers with some minor
variations. When the machine is operated, the NC program is executed se-
quentially, one command or NC block at a time. An NC block is made up of
words which consist of characters and digits. Each word begins with an address
code which is a single letter character (A-Z) that defines what the computer
should do with the numerical data that follows. This command structure is
called the word address code. For example, the block

N20 G01 X100 Y-150 Z10.5 A30 B-10 F100 M03 S600
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consists of 10 words: N20, G01, X100, Y-150, Z10.5, A30, B-10, F100, M03,
and S600. The block N20 instructs the machine to move the tool from its
current position to position (xm, ym, zm) = (100,−150, 10.5) linearly (G01)
and to rotate the A-axis by 30 degrees and the B-axis by -10 degrees with a
feedrate of 100 mm/min (F100) and with the spindle rotating clockwise (M03)
at 600 rpm (S600).

The NC part program is usually written in a high level language such as
APT (Automatic Programmed Tools) [7], UNIAPT3, etc. It is then converted
into the word address codes. Some commercial CAD/CAM systems such as
Unigraphics, Pro Engineer, etc. include functions that can generate the word
address codes directly from the tool paths.

A complete NC part program starts with a percent sign (%) followed by
NC blocks represented in the ISO word address format. Each NC block starts
with the block number indicated by an N word address. The block can contain
one word address or a sequence of word addresses. The standardization of the
English alphabet used to code the word addresses is given in Table 2.1.

Each letter other than G and M has a unique function and is followed by
a parameter which is either an integer or a floating point number. The format
of the ISO word address block is as follows:

N5 G2 X±53 Y±53 Z±53 U..V..W..I..J..K.. F5 S4 T4 M2 *

All word addresses except N are optional and the block format is order-
sensitive. The numerical value after each word address indicates the maxi-
mum number of digits allowed for that particular word address. A single digit
indicates an integer value and two digits indicate a real value. The first and
the second digit indicate the maximum number of digits before and after the
decimal point, respectively. For example, N5 means the block sequence num-
ber starts with the letter N followed by at most 5 digits (N0-N99999). X±53
means that the primary X motion dimension starts with the letter X followed
by plus or minus sign and a real value written with at most 5 digits before the
decimal point and at most 3 digits after the decimal point. The block ends
with the symbol “*” or “;” or “carriage return” or “line feed”. The usage of
the word addresses for performing machine operation is given below.

Preparatory Functions

A pre-set function which assigns a type of the tool movement is indicated
by a G word address followed by a two digit integer ranging from 00 to 99.
Examples of machine tool action instructed by the G-codes are:

• Rapid move.
• Controlled feed move in straight line or arc.

3 UNIAPT is a minicomputer-based version of an Automatic Programmed Tool
(APT) developed by a software company called United Computing to compute
tool paths.
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Table 2.1. List of word address codes

Character Address for

A Angular dimension around X axis
B Angular dimension around Y axis
C Angular dimension around Z axis
D Angular dimension around special axis or third feed function*
E Angular dimension around special axis or second feed function*
F Feed function
G Preparatory function
H Unassigned
I Distance to arc center or thread lead parallel to X
J Distance to arc center or thread lead parallel to Y
K Distance to arc center or thread lead parallel to Z
L Unassigned
M Miscellaneous function
N Sequence number
O Reference rewind stop
P Third rapid traverse or tertiary motion dimension parallel to X*
Q Third rapid traverse or tertiary motion dimension parallel to Y*
R Third rapid traverse or tertiary motion dimension parallel to Z*
S Spindle speed function
T Tool function
U Secondary motion dimension parallel to X*
V Secondary motion dimension parallel to Y*
W Secondary motion dimension parallel to Z*
X Primary X motion dimension
Y Primary Y motion dimension
Z Primary Z motion dimension

* The letter may be used for other operations

• Series of controlled feed moves that would result in a hole being bored,
a workpiece cut (routed) to a specific dimension, or a decorative profile
shape added to the edge of a workpiece.

• Set tool information such as offset.

The ISO standardized G-codes are given in Table 2.2.

Coordinate Functions

The coordinate of the tool tip are specified using a word address such as X,
Y, Z, U, V, W, I, J, K, etc. These word addresses are normally signed real
values.

Feed Functions

The feedrate is specified by an F word address. The feedrate units are set by
using an appropriate G-code (G94 or G95). The feed function is modal which
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Table 2.2. List of G-code functions

Code Function

G00 Point-to-point positioning, rapid traverse
G01 Line interpolation
G02 Circular interpolation, clockwise (WC)
G03 Circular interpolation, anti-clockwise (CCW)
G04 Dwell
G05 Hold/Delay
G06 Parabolic interpolation
G07 Unassigned
G08 Acceleration of feedrate
G09 Deceleration of feedrate
G10 Linear interpolation for “long dimensions” (10 inches-100 inches)
G11 Linear interpolation for “short dimensions” (up to 10 inches)
G12 Unassigned

G13-G16 Axis designation
G17 XY plane designation
G18 ZX plane designation
G19 YZ plane designation
G20 Circular interpolation, CW for “long dimensions”
G21 Circular interpolation, CW for “short dimensions”

G22-G29 Unassigned
G30 Circular interpolation, CCW for “long dimensions”
G31 Circular interpolation, CCW for “short dimensions”
G32 Unassigned
G33 Thread cutting, constant lead
G34 Thread cutting, linearly increasing lead
G35 Thread cutting, linearly decreasing lead

G36-G39 Unassigned
G40 Cutter compensation-cancels to zero
G41 Cutter radius compensation-offset left
G42 Cutter radius compensation-offset right
G43 Cutter compensation-positive
G44 Cutter compensation-negative

G45-G52 Unassigned
G53 Deletion of zero offset

G54-G59 Datum point/zero shift
G60 Target value, positioning tolerance 1
G61 Target value, positioning tolerance 2 or loop cycle
G62 Rapid traverse positioning
G63 Tapping cycle
G64 Change in feedrate or speed

G65-G69 Unassigned
G70 Dimensioning in inch units
G71 Dimensioning in metric units

G72-G79 Unassigned
G80 Canned cycle cancelled

G81-G89 Canned drilling and boring cycles
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Table 2.2. List of G-code functions (cont.)

Code Function

G90 Specifies absolute input dimensions
G91 Specifies incremental input dimensions
G92 Programmed reference point shift
G93 Unassigned
G94 feedrate/min (inch units when combined with G70)
G95 feedrate/rev (metric units when combined with G71)
G96 Spindle feedrate for constant surface feed
G97 Spindle speed in revolution per minute

G98-G99 Unassigned

means that once the feedrate is set it affects all the subsequent blocks until it
is replaced by another F value.

Speed Function

The spindle speed is assigned by an S word address given in revolutions per
minute (rpm) when used with the preparatory code G97. For a constant sur-
face speed (G96) the spindle speed is given in meters per minute or feet per
minute.

Tool Function

For the NC machines equipped with tool magazines and automatic tool chang-
ers, the tool selection is performed by a T word address followed by a number
indicating the position of the tool in the magazine. For example T19 mean
the tool stored in position 19 in the magazine is to be used. If the tool change
is to be done manually, the T word address would signal the machine to stop.

Miscellaneous Function

Control of the clumping device, spindle, coolant and some other global oper-
ations is performed by an M word address. The standard M-codes are given
in Table 2.3.

It must be noted that M80-M99 are unassigned which means that the MCU
manufacturers can use those remaining for other purposes such as to accom-
modate new CNC programming capabilities, for example, real-time surface
interpolation [6] or Pythagorean-hodograph curves [3–5].

Example of a simple NC milling program

We conclude this section with a simple NC program to cut a small rectangle
2 cm × 4 cm.
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Table 2.3. List of M-code functions

Code Function

M00 Program stop, spindle and coolant off
M01 Optional programmable stop
M02 End of program-often interchangeable with M30
M03 Spindle on, CW
M04 Spindle on, CCW
M05 Spindle stop
M06 Tool change
M07 Coolant supply No. 1 on
M08 Coolant supply No. 2 on
M09 Coolant off
M10 Clamp
M11 Unclamp
M12 Unassigned
M13 Spindle on, CW + coolant on
M14 Spindle on, CCW + coolant on
M15 Rapid traverse in + direction
M16 Rapid traverse in - direction

M17-M18 Unassigned
M19 Spindle stop at specified angular position

M20-M29 Unassigned
M30 Program stop at end of tape + tape rewind
M31 Interlock by-pass

M32-M35 Constant cutting velocity
M36-M39 Unassigned
M40-M45 Gear changes; otherwise unassigned
M46-M49 Unassigned

M50 Coolant supply No. 3 on
M51 Coolant supply No. 4 on

M52-M54 Unassigned
M55 Linear cutter offset No. 1 shift
M56 Linear cutter offset No. 2 shift

M57-M59 Unassigned
M60 Piece part change
M61 Linear piece part shift, location 1
M62 Linear piece part shift, location 2

M63-M67 Unassigned
M68 Clamp piece part
M69 Unclamp piece part
M70 Unassigned
M71 Angular piece part shift, location 1
M72 Angular piece part shift, location 2

M73-M77 Unassigned
M78 Clamp non-activated machine bed-ways
M79 Unclamp non-activated machine bed-ways

M80-M99 Unassigned



34 2 Introduction to Five-Axis NC Machining

N1 X0 Y0 T01

N2 X0 Y40

N3 X20 Y40

N4 X20 Y0

N5 X0 Y0

N6 M00

Line 1 (N1) tells the machine to traverse to grid point (X,Y ) = (0, 0) and to
use tool #1.
Line 2 tells the machine to traverse to grid point (X,Y ) = (0, 40).
Line 3 tells the machine to travel to grid point (X,Y ) = (20, 40).
Line 4 tells the machine to travel to grid point (X,Y ) = (20, 0).
Line 5 returns the machine to origin (X,Y ) = (0, 0).
Line 6 stops the machine.

2.3 Classification of Five-Axis Machines

A typical five-axis machine has three translational axes and two rotary axes.
The five degrees of freedom is the minimum needed for establishing an ar-
bitrary position and orientation of the cutting tool relative to the workpiece
[1].

Five-axis machines can be classified into four groups based on the number
of translational and rotary axes: (i) three translational axes and two rotary
axes; (ii) two translational axes and three rotary axes; (iii) one translational
axes and four rotary axes and (iv) five rotary axes. However, the majority
of existing five-axis machine tools falls in the first group and all methods
presented in this book are developed for this type of five-axis machines.

The machine axes can be assigned to the tool and to the machine tables
using a variety of combinations. The kinematics chain diagram of the machine
gives an idea of how this assignment has been done. For example, the kine-
matics chain diagram in Fig. 2.3 corresponds to the five-axis machine in Fig.
2.1a. The diagram tells us that the table (actually, the table is composed of
two smaller connected tables) is carried by four axes including the both rotary
axes and the tool is carried by only one axis.

Another useful classification of five-axis machines is based on the number
of table and tool carrying axes. Finally, the machines can be also classified by
the location of the rotary axes (on the tool or the table).

The above classifications of the five-axis machines are given below:

Classification of five-axis machines based on the number of

workpiece and tool carrying axes

1. 5/0 machine. All axes carry the table and the tool is fixed in space. Since
the tool is fixed, it is best used when the size of the workpiece is small.
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Y−AXIS

X−AXIS

B−AXIS

A−AXIS

FIXED MACHINE FRAME

WORKPIECE

FIXED MACHINE FRAME

Z−AXISTOOL

Fig. 2.3. Kinematic chain diagram of machine in Fig. 2.1a

2. 4/1 machine. There are four table carrying axes and one tool carrying
axis (Fig. 2.4).

3. 3/2 machine. There are three table carrying axes and two tool carrying
axes (Fig. 2.5).

4. 2/3 machine. There are two table carrying axes and three tool carrying
axes (Fig. 2.6). This configuration allows machining of large workpieces.

5. 1/4 machine. There are one table carrying axis and four tool carrying
axes.

6. 0/5 machine. All axes carry the tool and the table is fixed in space. The
configuration was designed to handle very heavy workpieces. However, a
large number of links in the tool carrying kinematics chain could result in
a considerable error due to elastic deformations in the axis slides.

Classification of five-axis machines based on the location of the

two rotary axes

1. 2-0 machine. The two rotary axes carry the table (Fig. 2.4).
2. 1-1 machine. One rotary axis carries the table and one carries the tool

(Fig. 2.5).
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3. 0-2 machine. The two rotary axes carry the tool (Fig. 2.6).

(a)

(b)

Fig. 2.4. (a) example of 2-0 machine and (b) the reference coordinate systems

Selection of a five-axis machine for a certain application is not an easy
task. It can be done by analyzing characteristics of the workpiece such as the
weight and the size. For example, a very heavy workpiece requires a machine
with a horizontal table which makes it more convenient to fix and to handle
the workpiece. Also, the machine should have a short workpiece kinematics
chain since a heavy workpiece could result in an elastic deformations in the
axis slides that carry the table [1]. The suitability of the machine can be also
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(a)

(b)

Fig. 2.5. (a) example of 1-1 machine and (b) the reference coordinate systems

analyzed in the framework of the kinematics error theory. The theoretical
background for such analysis is given in Chap. 7 of this book.

2.4 Five-Axis Machine Kinematics

Five-axis machines offer five degrees of freedom which allow the cutting tool to
incline or to tilt with regard to the workpiece while traveling from one point to
another. Consequently, the tool tip affected by the machine kinematics travels
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(a)

(b)

Fig. 2.6. (a) example of 0-2 machine and (b) the reference coordinate systems

in the workpiece coordinate system along a nonlinear trajectory. While this
nonlinearity of the machine tools allows for complex surface parts to be milled
it can also result in undercuts or overcuts or even in collisions between the
cutting device and other parts of the machine.

The generation of NC part program that specifies the traveling path of the
cutting device usually starts with the distribution of CC points on the surface.
In five-axis machining, each CC point is also associated with a tool vector
positioned in a right-handed, rectangular coordinate system. CC points are
then converted into CL points which specify the coordinates of the tool tip in
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the workpiece coordinate systems. Finally, the CL points are transformed into
the machine coordinates (or G-Codes) to control the motions of the machine
and finally into the NC program.

The conversion from a CC point to a CL point depends on the tool geom-
etry and inclination (see an example given in Chap. 3). The transformation of
the CL points from the workpiece coordinate system to the machine coordi-
nate system for a particular five-axis machine requires information regarding
the kinematics of that machine.

The kinematics K ≡ K(R,M) of a machine is a transformation from a point
M = (xm, ym, zm) in the machine coordinates to a point W = (xw, yw, xw) in
the workpiece coordinates where R = (a, b) is a pair of rotation angles. For
simplicity, the transformation will be denoted K(M) when possible. Also, let
I = (Ix, Iy, Iz) denote the tool vector orientation specified in the workpiece
coordinate system.

To derive an equation of the machine kinematics, the following coordinate
systems are introduced: the workpiece coordinate system O1, the coordinate
system of the first rotary part O2, the coordinate system of the second rotary
part O3, and the coordinate system of the spindle O4 (see Figs. 2.4-2.6). The
first rotary axis is called the A-axis, whereas the second rotary axis is called
the B-axis. When an NC machine is powered up, the machine’s measuring
system is initialized by traveling the tool of the machine to the reference
point in the machine coordinate system so that the machine control knows
the absolute position of each slide.

Consider a five-axis machine displayed in Fig. 2.1a. The machine is of the
2-0 type. The two rotary axes A and B carry the table. The motions of the
machine slides from reference position in machine coordinate system are as
follows (the onlooker standing in front of the machine looking in the positive
Z machine direction):

• xm plus: the table moves to the right
• ym plus: the table moves downwards
• zm plus: the tool moves away from the viewer
• a plus: the table carrying workpiece rotates clockwise around the A-axis
• b plus: the table swings from right to left around the B-axis

The positive direction of each Cartesian axis slide is selected such that
the cutting device appears to move away from the workpiece in the positive
direction of the corresponding axis in the spindle coordinate system O4 (see
Fig. 2.4). In other words, the positive direction of an axis slide that carries the
table is in the opposite direction of the positive direction of the corresponding
axis in O4 and the positive direction of an axis slide that carries the tool is in
the same direction of the positive direction of the corresponding axis in O4.
For example, the slides X and Y of the 2-0 machine in Fig. 2.4 which carry
the table have positive directions that are in opposite direction of positive X4

and Y4, respectively, while slide Z which carries the tool has positive direction
that is in the same direction of positive Z4.
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The transformation from the workpiece to the machine coordinates con-
sists of three types of transformations: coordinate transformation to another
reference system without motions and transformation corresponding to ac-
tual machine rotations, and actual translations. The 2-0 machine (Fig. 2.4)
kinematics equations are derived as follows:

Step 1: Coordinate transformation O1 → O2

Point W in O1 is transformed into point P2 in O2.

P2 = W + T12,

where T12 is the coordinate of the center of O1 in O2.
Step 2: Rotation around A-axis in O2 by a

Point P2 is rotated around A-axis in O2 by a to a new location P2A.

P2A = A[a]P2 = A[a](W + T12),

where A[a] =

⎡
⎣ cos a sin a 0
− sin a cos a 0

0 0 1

⎤
⎦ is the rotation matrix around A-axis.

Step 3: Coordinate transformation O2 → O3

Point P2A in O2 is transformed into point P3 in O3.

P3 = P2A + T23 = A[a](W + T12) + T23,

where T23 is the coordinate of the center of O2 in O3.
Step 4: Rotation around B-axis in O3 by b

Point P3 is rotated around B-axis in O3 by b to a new location P3B.

P3B = B[b]P3 = B[b](A[a](W + T12) + T23),

where B[b] =

⎡
⎣ cos b 0 − sin b

0 1 0
sin b 0 cos b

⎤
⎦ is the rotation matrix around B-axis.

Step 5: Coordinate rotation (axis alignment) O3 → O′3
We now perform axis alignment for O3 (the last reference coordinate sys-
tem on the table) to O4 (the first reference coordinate system on the tool).

P ′3 = GP3B = GB[b](A[a](W + T12) + T23),

where G =

⎡
⎣0 0 −1

0 1 0
1 0 0

⎤
⎦ is the axis alignment matrix.

Point P ′3 is now given in the coordinate system O′3 where each direction
of the three Cartesian coodinate axes lies in the same direction of the
corresponding Cartesian coordinate axis of O4

Step 6: Coordinate transformation O′3 → O4 with machine slide translation
M
Point P ′3 in O′3 is transformed to point P4 in O4. Recall that the workpiece
attached to the table will appear to move away from the spindle in the
negative directions in O4 for positive value of machine slide translation M .
Thus for machines slide translation M , the center of O′3 will be at location
T34 −M in O4 where T34 is the coordinate of O′3 in O4 with respect to
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the machine zero point M = (0, 0, 0). Finally, the transformation of the
point P ′3 in O′3 to point P4 in O4 is given as follows:

P4 = P ′3 + T34 −M = GB[b](A[a](W + T12) + T23) + T34 −M .

Let T4 = (0, 0,−L) denote the coordinate of the tool tip in coordinate system
O4 where L is the tool lenght. Equating P4 and T4 yields

T4 = P4 = GB[b] (A[a] (W + T12) + T23) + T34 −M. (2.1)

After rearrangement,

M = GB[b] (A[a] (W + T12) + T23) + T34 − T4,

W = A−1[a]
(
B−1[b]G−1 (M − T34 + T4)− T23

)
− T12,

(2.2)

The equation relating the two rotation angles a and b and the tool vector
orientation I = (Ix, Iy, Iz) can be derived as follows. Let T ′1 be the coordinate
of T ′4 = (0, 0,−L + 1) in O1 and is given by

T ′1 = A−1[a]
(
B−1[b]G−1 (M − T34 + T ′4)− T23

)
− T12. (2.3)

The unit vector T ′4 − T4 = (0, 0, 1) is equivalent to the tool vector orientation
and is expressed in O1 coordinate system as follows:

I = T ′1 −W = A−1[a]B−1[b]G−1 (T ′4 − T4) =

⎡
⎣ cos(a) cos(b)

sin(a) cos(b)
− sin(b)

⎤
⎦ . (2.4)

Inverting with regard to a and b yields

a =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tan−1

(
Iy

Ix

)
if Ix > 0 and Iy ≥ 0,

tan−1

(
Iy

Ix

)
+ π if Ix < 0,

tan−1

(
Iy

Ix

)
+ 2π otherwise,

b = − sin Iz,

(2.5)

Derivations of machine kinematics equations for arbitrary configurations of
five-axis machines can be done in a similar fashion. For the 1-1 machine shown
in Fig. 2.5, the coordinate of the tool tip in O4 is given by

T4 = B[b] (GA[a] (W + T12) + T23 −M) + T34. (2.6)

Clearly,
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M = GA[a] (W + T12) + T23 + B−1[b] (T34 − T4) ,

W = A−1[a]G−1
(
M − T23 −B−1[b] (T34 − T4)

)
− T12,

I = T ′1 −W = A−1[a]G−1B−1[b] (T ′4 − T4) =

⎡
⎣ cos(a) sin(b)
− sin(a) sin(b)

cos(b)

⎤
⎦ ,

a =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− tan−1

(
Iy

Ix

)
if Ix > 0 and Iy ≤ 0,

− tan−1

(
Iy

Ix

)
+ π if Ix < 0,

− tan−1

(
Iy

Ix

)
+ 2π otherwise,

b = cos−1 Iz,

(2.7)

where

A[a] =

⎡
⎣ cos a − sin a 0

sin a cos a 0
0 0 1

⎤
⎦ ,

B[b] =

⎡
⎣ cos b 0 − sin b

0 1 0
sin b 0 cos b

⎤
⎦ ,

G =

⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦ ,

T4 = (0, 0, L).

(2.8)

For the 0-2 machine shown in Fig. 2.6, the coordinate of the tool tip T4 in
O4 is given by

T4 = B[b] (A[a] (GW + T12 −M) + T23) + T34. (2.9)

Clearly,

M = GW + T12 + A−1[a]
(
T23 + B−1[b] (T34 − T4)

)
,

W = G−1
(
M − T12 −A−1[a]

(
T23 + B−1[b] (T34 − T4)

))
,

I = T ′1 −W = G−1A−1[a]B−1[b] (T ′4 − T4) =

⎡
⎣ cos(b)

sin(a) sin(b)
− cos(a) sin(b)

⎤
⎦ ,

a =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− tan−1

(
Iy

Iz

)
if Iy ≤ 0 and Iz > 0,

− tan−1

(
Iy

Iz

)
+ π if Iz < 0,

− tan−1

(
Iy

Iz

)
+ 2π otherwise,

b = − cos−1 Ix,

(2.10)
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where

A[a] =

⎡
⎣ cos a − sin a 0

sin a cos a 0
0 0 1

⎤
⎦ ,

B[b] =

⎡
⎣1 0 0

0 cos b − sin b
0 sin b cos b

⎤
⎦ ,

G =

⎡
⎣ 0 −1 0

0 0 1
−1 0 0

⎤
⎦ ,

T4 = (0, 0, L).

(2.11)

2.5 Five-Axis Machining Example

Creating objects such as industrial molds and dies by five-axis machines re-
quires a computer program that instructs the machine to move the cutting
device through a block of a raw material in such a way that it removes all the
excess material, leaving behind the desired shape. The path of the tool tip is
called the tool path and the process of creating the tool path is called the tool
path generation.

Consider a surface S(u, v) = (x(u, v), y(u, v), z(u, v)) described by a set of
parametric equations given by

x = 100u− 50,

y = 100v − 50,

z = 10((u + 0.5)2 + v2)− 50,

(2.12)

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. The surface plot is shown in Fig. 2.7.
A simple way to generate the tool path for five-axis machining of this

surface is the zigzag pattern shown in Fig. 2.2a. There are 10 tool tracks
equally spaced in the v-direction. In turn, each track contains 10 CC points
equally spaced in the u-direction Each CC point is associated with a tool
vector aligned with the surface normal vector. The method of calculating the
surface normal vector can be found in Sect. 3.1. The plot of the CC points
along with the tool vector orientations is shown in Fig. 2.8. Since the tool
vector orientation is aligned with the surface normal vector, the cutter contact
point is assumed to coincide with the tool tip. Thus, the CL points are set to
have the same location as the CC points.

Next, CL points are converted into the machine commands or the G-codes.
For MAHO machine shown in Fig. 2.1a, (2.2) and (2.5) are used to compute
the machine coordinates M and the two rotation angles, a and b. The machine
parameters are given below:
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Fig. 2.8. Zigzag tool path for surface (2.12) (Fig. 2.7)

T12 = (0.0, 0.0, 213.58),

T23 = (0.08, 0.0,−250.314),

T34 = (0.0, 0.0,−350.0),

L = 177.651.

The coordinates of the CL points in the workpiece and the machine co-
ordinate systems are partially listed in Table 2.4. The G-codes are straight-
forwardly derived from the machine coordinates. xm, ym and zm are prefixed
with the address words X, Y and Z, respectively. Likewise, the two rotation
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angles are prefixed with the address words A and B. Each CL point consti-
tutes one block of the G-code. The G-code begins with the word address N
followed by the block number. The G-codes are given in Table 2.5.

Table 2.4. List of CL points for tool path in Fig. 2.8

Point Number xw yw zw Ix Iy Iz

1 -50.000 -50.000 -47.500 -0.100 0.000 0.995
2 -50.000 -38.889 -47.377 -0.099 -0.022 0.995
3 -50.000 -27.778 -47.006 -0.099 -0.044 0.994
4 -50.000 -16.667 -46.389 -0.099 -0.066 0.993
5 -50.000 -5.556 -45.525 -0.099 -0.088 0.991
6 -50.000 5.556 -44.414 -0.099 -0.110 0.989
7 -50.000 16.667 -43.056 -0.099 -0.132 0.986
8 -50.000 27.778 -41.451 -0.098 -0.153 0.983
9 -50.000 38.889 -39.599 -0.098 -0.174 0.980
10 -50.000 50.000 -37.500 -0.098 -0.195 0.976
11 -38.889 50.000 -36.265 -0.119 -0.195 0.974
12 -38.889 38.889 -38.364 -0.119 -0.174 0.978
13 -38.889 27.778 -40.216 -0.120 -0.153 0.981
14 -38.889 16.667 -41.821 -0.120 -0.131 0.984
15 -38.889 5.556 -43.179 -0.121 -0.110 0.987
16 -38.889 -5.556 -44.290 -0.121 -0.088 0.989
17 -38.889 -16.667 -45.154 -0.121 -0.066 0.990
18 -38.889 -27.778 -45.772 -0.121 -0.044 0.992
19 -38.889 -38.889 -46.142 -0.121 -0.022 0.992
20 -38.889 -50.000 -46.265 -0.121 0.000 0.993

...
91 50.000 50.000 -17.500 -0.282 -0.188 0.941
92 50.000 38.889 -19.599 -0.283 -0.168 0.944
93 50.000 27.778 -21.451 -0.284 -0.147 0.947
94 50.000 16.667 -23.056 -0.285 -0.127 0.950
95 50.000 5.556 -24.414 -0.286 -0.106 0.952
96 50.000 -5.556 -25.525 -0.286 -0.085 0.954
97 50.000 -16.667 -26.389 -0.287 -0.064 0.956
98 50.000 -27.778 -27.006 -0.287 -0.043 0.957
99 50.000 -38.889 -27.377 -0.287 -0.021 0.958
100 50.000 -50.000 -27.500 -0.287 0.000 0.958

Figure 2.9 shows the result of cutting surface (2.12) (Fig. 2.7) using the
10×10 tool path. The simulation is done with Unigraphics 18. Clearly, the
tool path contains insufficient number of CL points and left a great amount
of an excess material.

Figure 2.10 displays the result of cutting using a 20×20 zigzag tool path.
The tool now removes most of the excess material and produces a reasonable
model of the desired surface.
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Fig. 2.9. Cutting simulation of surface (2.12) (Fig. 2.7) with 10×10 tool path

Fig. 2.10. Cutting simulation of surface (2.12) (Fig. 2.7) with 20×20 tool path
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Table 2.5. G-codes for tool path in Fig. 2.8

Point Number G-Code

1 N10 G01 X58.213 Y50.000 Z-251.183 A180.000 B-84.289 F100
2 N11 G01 X65.599 Y27.116 Z-250.181 A192.529 B-84.151 F100
3 N12 G01 X65.823 Y5.077 Z-249.387 A203.962 B-83.755 F100
4 N13 G01 X60.483 Y-13.868 Z-248.802 A213.690 B-83.147 F100
5 N14 G01 X51.687 Y-29.066 Z-248.426 A221.634 B-82.379 F100
6 N15 G01 X41.073 Y-40.881 Z-248.259 A228.013 B-81.498 F100
7 N16 G01 X29.636 Y-50.000 Z-248.301 A233.130 B-80.538 F100
8 N17 G01 X17.907 Y-57.080 Z-248.549 A237.265 B-79.523 F100
9 N18 G01 X6.142 Y-62.644 Z-249.002 A240.642 B-78.471 F100
10 N19 G01 X-5.544 Y-67.082 Z-249.657 A243.435 B-77.396 F100
11 N20 G01 X-5.058 Y-59.256 Z-248.513 A238.570 B-76.809 F100
12 N21 G01 X6.126 Y-54.078 Z-247.854 A235.491 B-77.826 F100
13 N22 G01 X17.155 Y-47.741 Z-247.398 A231.843 B-78.810 F100
14 N23 G01 X27.830 Y-39.929 Z-247.146 A227.490 B-79.747 F100
15 N24 G01 X37.806 Y-30.270 Z-247.101 A222.274 B-80.621 F100
16 N25 G01 X46.515 Y-18.380 Z-247.264 A216.027 B-81.406 F100
17 N26 G01 X53.090 Y-3.990 Z-247.637 A208.610 B-82.074 F100
18 N27 G01 X56.376 Y12.815 Z-248.219 A199.983 B-82.590 F100
19 N28 G01 X55.170 Y31.305 Z-249.010 A190.305 B-82.919 F100
20 N29 G01 X48.751 Y50.000 Z-250.009 A180.000 B-83.032 F100

...
91 N100 G01 X-46.756 Y-13.868 Z-246.860 A213.690 B-70.173 F100
92 N101 G01 X-40.711 Y-7.966 Z-246.207 A210.651 B-70.775 F100
93 N102 G01 X-35.461 Y-1.644 Z-245.751 A207.408 B-71.328 F100
94 N103 G01 X-31.117 Y5.077 Z-245.495 A203.962 B-71.825 F100
95 N104 G01 X-27.787 Y12.156 Z-245.440 A200.323 B-72.260 F100
96 N105 G01 X-25.578 Y19.531 Z-245.588 A196.504 B-72.626 F100
97 N106 G01 X-24.580 Y27.116 Z-245.940 A192.529 B-72.917 F100
98 N107 G01 X-24.860 Y34.805 Z-246.496 A188.427 B-73.129 F100
99 N108 G01 X-26.453 Y42.476 Z-247.256 A184.236 B-73.258 F100
100 N109 G01 X-29.357 Y50.000 Z-248.219 A180.000 B-73.301 F100

The above method for tool path generation works fine for simple surfaces.
However, for complex surfaces such as the one shown in Fig. 2.11, the method
could produce, overcuts, undercuts at the CC points as well as nonlinear
trajectory loops between the points which could destroy the workpiece or
even damage the machine itself (see Figs. 2.12 and 2.13).

Furthermore, for the concave surfaces, the cutting tool needs to be inclined
to avoid curvature interference. Besides, the distance between the tool tracks
is fixed. Therefore, if the distance is too large, the tool leaves behind ridges of
unremoved material which called cusps or scallops. On the other hand, a too
small distance results in a redundant path when the tool makes unnecessary
cuts in the same areas between the tracks.
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3

Fundamental Issues in Tool Path Planning

There are a number of issues involved in tool path planning for five-axis NC
machining. Four fundamental issues are discussed in this chapter, namely,
surface representation, machining strip width estimation, optimal tool orien-
tation and forward step (kinematics) error.

3.1 Surface Representation

Five-axis NC machines are widely used to machine dies, molds, turbine blades,
aerospace and automotive parts, etc. These parts usually have complex geom-
etry and are represented by parametric surfaces. Representation of surface by
parametric equations allows the simple evaluation of differential properties
of the surface. Many tool path generation techniques require calculation of
certain surface properties such as the surface normal vector and the normal
curvature. The close-form formula for commonly used surface properties are
given below.

Let S ≡ S(u, v) be the required parametric surface, the unit normal vector ,
n, is computed from the relation

n =
Su × Sv

|Su × Sv|
. (3.1)

The first fundamental form (or line element), I, is defined by

I = dS · dS,

= (Sudu + Svdv) · (Sudu + Svdv),

= Su · Sudu2 + 2Su · Svdudv + Sv · Svdv2,

= Edu2 + 2Fdudv + Gdv2,

(3.2)

where
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E = Su · Su, (3.3)

F = Su · Sv, (3.4)

G = Sv · Sv. (3.5)

The second fundamental form, II, is defined by

II = −dn · dS,

= −(nudu + nvdv) · (Sudu + Svdv),

= −nu · Sudu2 − (nu · Sv + nv · Su)dudv − nv · Svdv2,

= n · Suudu2 + (n · Svu + n · Suv)dudv + n · Svvdv2,

= n · Suudu2 + 2n · Suvdudv + n · Svvdv2,

= edu2 + 2fdudv + gdv2,

(3.6)

where

e = n · Suu, (3.7)

f = n · Suv, (3.8)

g = n · Svv. (3.9)

The normal curvature of S in the direction v = aSu + bSv, is given by

k(v) =
ea2 + 2fab + gb2

Ea2 + 2Fab + Gb2
. (3.10)

The principal curvatures, which are the maximum and minimum of the normal
curvature, are given by

kmax = H +
√

H2 −K, (3.11)

kmin = H −
√

H2 −K, (3.12)

where K and H are the Gaussian curvature and the mean curvature, respec-
tively. They are given by

K =
eg − f2

EG− F 2
= kminkmax, (3.13)

H =
eG− 2fF + gE

2(EG− F 2)
=

1

2
(kmin + kmax). (3.14)

The direction v = aSu + bSv associated with a principal curvature, k, is
computed using the relations

(e− kE)a + (f − kF )b = 0, (3.15)

(f − kF )a + (g − kG)b = 0. (3.16)

The surface points are classified into six different types, depending on the
values of K and H as follows.
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Concave elliptic point If K > 0 and H > 0, the surface lies entirely on the
surface normal side (n) of the tangent plane in its neighborhood. Both
the principal curvatures are positive.

Convex elliptic point If K > 0 and H < 0, the surface lies entirely on the
opposite side (−n) of the tangent plane in its neighborhood. Both the
principal curvatures are negative.

Hyperbolic point If K < 0, the surface lies entirely on both sides of the tan-
gent plane in its neighborhood. The principal curvatures have different
signs.

Concave parabolic point If K = 0 and H > 0, the surface lies entirely on the
surface normal side (n) of the tangent plane in its neighborhood. One of
the principal curvatures is positive and one is zero.

Convex parabolic point If K = 0 and H < 0, the surface lies entirely on the
opposite side (−n) of the tangent plane in its neighborhood. One of the
principal curvatures is negative and one is zero.

Planar umbilic point If K = 0 and H = 0, the surface lies entirely in the
tangent plane in the neighborhood of the umbilic point.

3.2 Machining Strip Width Estimation

In five-axis NC machining, several types of cutters can be used to mill the
surface. The bottom of the cutter may be flat or rounded, as shown in Fig.
3.1. A ball-end cutter has rounded bottom where the filleted portion is the
same size as the cutter radius. A rounded tool with a slight corner radius is
called a toroidal cutter. A flat-end cutter has flat bottom. It can be used to
remove the material much more effectively than the ball-end cutter but is more
difficult to position relative to a sculptured surface. No matter which type of
the milling tools is used, only a few shapes of surface can be cut exactly. This
is because the shape of the tool almost never matches the shape of the surface.
Irregular scallops between finishing tool passes are inevitably generated on the
machined surface. The term scallop refers to ridges, cusps and other surface
protrusions left between adjacent overlapping tool passes that extend above
the design surface profile. In five-axis NC machining, controlling scallop height
is a significant factor since a small scallop height significantly reduces the
manual surface grinding and smoothing. Given the maximum scallop height
h, the next adjacent tool path offset is found by computing the machining
strip width at the current cutter contact point. Calculation of the machining
strip width for various type of machining tools can be found in the literature
(see, for instance, [2, 11, 12]). A simple but efficient algorithm for estimating
the machining strip width of a flat-end cutter is presented here.

Machining strip width estimation for flat-end cutter

Let us first introduce a local coordinate system (Ol, xl, yl, zl) at the cutter
contact point Ol as shown in Fig. 3.2. xl denotes the normalized projection of
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(a) (b) (c)

Fig. 3.1. Examples of cutting tools: (a) a ball-end cutter, (b) a toroidal cutter, (c)
a flat-end cutter

the tool cutting direction1 onto the tangent plane, zl denotes the unit normal
vector of the surface, and yl = zl × xl. In order to avoid gouging, the tool
is first rotated by an inclination angle λ about the yl axis vector, then by a
tilt angle ω about the zl axis vector. The projected bottom edge of a flat-end
cutter with radius r onto the yl-zl plane becomes an ellipse, which is called
the effective cutting shape.

A point P on the bottom edge of a flat-end cutter with radius r is repre-
sented in the cutter coordinate system (Oc, xc, yc, zc) by (see Fig. 3.2)

Pc =

⎡
⎣ r sin θ
−r sin θ

0

⎤
⎦ , (3.17)

where θ denotes the angle from the negative yc axis vector to the point P on
the cutter’s bottom edge (see Fig. 3.2).

For the flat-end tool, the center of the cutter coordinate system, Oc, is the
coordinate of the cutter location point. Calculation of the CL point from CC
data for flat-end cutter is straightforward. Initially, the CL point is represented
in the local coordinate system as

CL =

⎡
⎣−r

0
0

⎤
⎦ . (3.18)

Then the tool is inclined by λ around the yl-axis. The CL point is now ex-
pressed as

1 The tool cutting direction is the direction from the current CC point to the next
CC point.
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CL =

⎡
⎣ cos λ 0 sin λ

0 1 0
− sin λ 0 cos λ

⎤
⎦
⎡
⎣−r

0
0

⎤
⎦ =

⎡
⎣−r cos λ

0
r sin λ

⎤
⎦ . (3.19)

Finally, tilting the tool by ω around zl yields

CL =

⎡
⎣ cos ω sin ω 0
− sin ω cos ω 0

0 0 1

⎤
⎦
⎡
⎣−r cos λ

0
r sin λ

⎤
⎦ =

⎡
⎣−r cos λ cos ω

r cos λ sin ω
r sin λ

⎤
⎦ . (3.20)

CL point is then expressed in workpiece coordinate system as

CL = CC + (−r cos λ cos ω)xl + (r cos λ sin ω)yl + (r sin λ)zl. (3.21)

Similarly, point P on the bottom edge of a flat-end cutter is represented
in the local coordinate system (Ol, xl, yl, zl) by

P =

⎡
⎣xl

yl

zl

⎤
⎦

=

⎡
⎣ cos ω sin ω 0
− sin ω cos ω 0

0 0 1

⎤
⎦
⎡
⎣ cos λ 0 sin λ

0 1 0
− sin λ 0 cos λ

⎤
⎦ (Oc + Pc) ,

=

⎡
⎣ cos ω sin ω 0
− sin ω cos ω 0

0 0 1

⎤
⎦
⎡
⎣ cos λ 0 sin λ

0 1 0
− sin λ 0 cos λ

⎤
⎦
⎛
⎝
⎡
⎣−r

0
0

⎤
⎦+

⎡
⎣ r sin θ
−r sin θ

0

⎤
⎦
⎞
⎠ ,

=

⎡
⎣−r(cos λ cos ω(1− sin θ) + sin ω cos θ)

r(cos λ sin ω(1− sin θ)− cos ω cos θ)
r sin λ(1− sin θ)

⎤
⎦ . (3.22)

To evaluate the machining strip width, the surface cross-section perpen-
dicular to the tool cutting direction xl is approximated by a circular arc, for
which the radius Ry is equal to the radius of normal curvature2 of the surface
in the yl direction as shown in Fig. 3.3. Given the maximum scallop height h,
the maximum machined surface error is represented by a virtual circular arc
of radius Ry − h concentric with the first circular arc as shown in Fig. 3.3.
The machining strip width is then obtained by locating the intersections of
the effective cutting shape with this virtual circular arc.

The equation of the effective cutting shape is found by projecting (3.22)
onto the yl-zl plane, i.e., by setting xl component of point P to zero. The
equation of the virtual circular arc with radius Ry − h as shown in Fig. 3.3 is
given by

y2
l + (zl −Ry)2 = (Ry − h)2. (3.23)

2 The radius of normal curvature is positive for concave surface and negative for
convex surface.
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Substituting (3.22) into (3.23) yields

c1 sin2 θ + c2 sin θ + c3 sin 2θ − 2c3 cos θ + c4 = 0, (3.24)

where
c1 = r2(cos2λ sin2 ω + sin2 λ− cos2 ω),

c2 = −2r2(cos2λ sin2 ω + sin2 λ) + 2rRy sin λ,

c3 =
r2 cos λ sin 2ω

2
,

c4 = r2 sin2 λ cos2 ω − 2rRy sin λ + r2 + 2hRy − h2.

The values of θl and θr corresponding to the left and right intersection points
Pl and Pr (see Fig. 3.3) are found by solving (3.24).

When ω = 0, (3.24) has a closed form solution given by

θl = sin−1

(
−c2 −

√
c2
2 − 4c1c4

2c1

)
, 0 ≤ θl ≤

π

2
,

θr = π − θl.

(3.25)

We are interested in the solutions θl and θr close to the CC point, i.e., the
intersection points on the lower edge of an ellipse. When the inclination angle
λ is small or the maximum scallop height h is large, (3.24) and (3.25) might
exhibit no solutions or the intersection points lie on the upper edge of an
ellipse. In such case, θl and θr are set to θPl

and θPr
corresponding to the

left-most point and the right-most point on the effective cutting shape, re-
spectively. The left-most and right-most points on the effective cutting shape
are found by solving dyl(θ)/dθ = 0. Differentiating yl in (3.22) yields

r cos λ sin ω cos θ − r cos ω sin θ = 0. (3.26)

Therefore,
θPl

= tan−1(cos λ tan ω),
θPr

= tan−1(cos λ tan ω) + π.
(3.27)

The left and the right machining strip widths wl and wr at the current
CC point Ol are then expressed as

wl = |r(cos ω cos θl − cos λ sin ω(1− sin θl))|,
wr = |r(cos ω cos θr − cos λ sin ω(1− sin θr))|.

(3.28)

The entire machining strip width is then defined by

w = wl + wr. (3.29)

The machining strip width estimation method presented above is similar to
the method used by Lee and Ji [11] but with two modifications. First, the local
surface cross-section at the CC point is approximated by a circular arc instead
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of the quadratic equation (see Fig. 3.4(a)) for consistency with the subsequent
calculation for optimal tool orientation and gouging avoidance presented in
Sect. 3.3. Second, by approximating the surface cross-section by circular arc,
the offset curve corresponding to the maximum allowable machined surface
error h, can be easily computed by using a virtual circular arc of radius R−h
as shown in Fig. 3.3. In contrast, the machined surface error or scallop height,
h, is underestimated when using the method of Lee and Ji where the offset
curve is computed by shifting the approximated local surface cross-section in
the normal direction zl by h as shown in Fig. 3.4(a). The difference Δh = h−ĥ
is, however, negligible for small values of h (see Fig. 3.4(b)).

Machining strip width estimation for ball-end cutter

The calculation of the machining strip width of a ball-end cutter can be con-
sidered as a special case of the method presented above when λ = π/2 and
ω = 0. In this case (3.24) becomes

(−2r2 + 2rRy) sin θ + (2r2 − 2rRy) + 2hRy − h2 = 0, (3.30)

sin θ = 1−
2hRy − h2

2rRy − 2r2
. (3.31)

Using the trigonometric identity cos2 α + sin2 α = 1, the machine strip width
of (3.28) becomes

wl = wr = r cos θ,

= r
√

1− sin2 θ.
(3.32)

The entire machining strip width is then given by

w = wl + wr = 2r

√
2hRy − h2

rRy − r2
−

(
2hRy − h2

2rRy − 2r2

)2

. (3.33)

Since in practice |Ry| � h, the terms consisting of h2, h3, and h4 in (3.33)
can be disregarded. The maching strip width is then approximated by

w =

√
8hrRy

Ry − r
, (3.34)

which is the same approximation presented in [12]. Equation (3.34) is also
used in [13] to calculate the machining strip width for a flat-end tool where
the tool radius r is replaced by the effective cutter radius re (see Sect. 3.3).

The machining strip width calculation of the toroidal cutter can be found
in [2].
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3.3 Optimal Tool Orientation and Gouging Avoidance

In five-axis machining, the effective cutting shape is determined by the tool
orientation (λ, ω). The effective cutter radius re of a flat-end cutter is given
by [13]

re = ra2

(
1 + b2

a2 + b2

)3/2

, (3.35)

where
a = sin λ cos ω,

b = tanλ sin ω,

which is simplified to

re =
r cos2 ω

sin λ
. (3.36)

To optimize the machining strip width, λ and ω are usually set so that re

is best matched to the radius of curvature at the CC point. For convex or
planar surfaces (see Sect. 3.1), the tool inclination angle λ is normally set to
a small default angle or zero and the tilt angle ω is set to zero. If the surface
is non-convex, a non-zero tool inclination angle λ is needed to avoid gouging.

Lee and Ji [11] presents a simple and fast algorithm suitable for being
incorporated into the tool path generation strategies. The algorithm finds a
minimum inclination angle to eliminate overcutting in both the xl-zl and yl-zl

planes, as follows:

λmin = max(λx, λy),

λx = sin−1

(
r

Rx

)
, if (r ≤ Rx) and (Rx > 0),

λy = sin−1

(
r

Ry

)
, if (r ≤ Ry) and (Ry > 0),

(3.37)

where Rx and Ry are the radius of normal curvature in the xl and yl directions,
respectively.

Unfortunately, the method is not applicable to the non-convex surfaces
when Rx and Ry are both negative but the maximum principle curvature is
positive. Clearly, in this case, the method outputs λmin = 0. This “bug” often
leads to local gouging. Lo [13] solves this problem by continuously checking
for gouging in all directions. Furthermore, a modification of these techniques
is presented in this book.

Consider a flat-end cutter as shown in Fig. 3.2. Gouging occurs when any
point on the circle touches or goes inside the surface. Let G be a gouging
point, which is another point on the circle that touches the surface (as shown
in Fig. 3.5(a)). The line connecting the two points, Ol and G, forms a chord
on the circle and has an angle of φ with respect to OlOc (see Fig. 3.5(a)).
Let λφ be the tool inclination angle that corresponds to a specific value of φ
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Fig. 3.5. Tool gouging

for a gouging point G, the minimum tool inclination angle to avoid gouging
is formulated as the following optimization problem:

λmin = max
−π/2≤φ≤π/2

λφ. (3.38)

Lo [13] solved this problem numerically by utilizing the gradient method.
However, it can be shown that the solution of (3.38) for a non-convex surface
can be expressed in a closed-form formula.

Consider a gouging point G, the chord OlG has a length of d and an angle
of φ with respect to OlOc (see Fig. 3.5(a)). Since OlGH is a right-angled
triangle having the angle OlGH right, the length d can be calculated by

d = 2r cos φ. (3.39)

Let wφ be a unit vector in the direction of OlG and w∗φ be a unit vector
tangent to the surface which is obtained by projecting wφ onto the xl-yl

plane as shown in Fig. 3.5(a). Since Ol and G are both located on the surface,
they can be connected by a circular arc whose radius Rφ is equal to the radius
of curvature in the w∗φ direction (see Fig. 3.5(b)). Let λφ be the inclination
angle of the tool that corresponds to a specific value of φ for a gouging point
G, wφ can be obtained by rotating the unit vector [−1, 0, 0] by φ around the
zl-axis and then by λφ around the yl-axis. Thus, we have

wφ =

⎡
⎣ cos λφ 0 sin λφ

0 1 0
− sin λφ 0 cos λφ

⎤
⎦
⎡
⎣ cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎤
⎦
⎡
⎣−1

0
0

⎤
⎦ ,

=

⎡
⎣− cos φ cos λφ

sin φ
cos φ sin λφ

⎤
⎦ . (3.40)

w∗φ is expressed as
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w∗φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

− cos φ cos λφ√
cos2 φ cos2 λφ + sin2 φ

sin φ√
cos2 φ cos2 λφ + sin2 φ

0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.41)

Let λ∗φ be the angle by which OlG is inclined with respect to the xl-yl plane
as shown in Fig. 3.5(b). From (3.40) and (3.41), we have

cos λ∗φ = wφ ·w
∗
φ =

√
cos2 φ cos2 λφ + sin2 φ. (3.42)

Since COl is perpendicular to the xl-yl plane and OlBC is a right-angled
triangle having the angle OlBC right, the angle OlCB is, therefore, equal to
λ∗φ. The length of OlG is then given by

d = 2Rφ sin λ∗φ,

= 2Rφ

√
1− cos2 λ∗φ, (3.43)

where the value of sinλ∗φ is obtained using the trigonometric identity sin2 α+

cos2 α = 1. Subsitituting (3.42) into (3.43) yields

d = 2Rφ

√
1− sin2 φ− cos2 φ cos2 λφ,

= 2Rφ

√
cos2 φ− cos2 φ cos2 λφ,

= 2Rφ cos φ
√

1− cos2 λφ,

= 2Rφ cos φ sin λφ. (3.44)

Equating (3.39) to (3.44), we have

λφ = sin−1(r/Rφ) = sin−1(rkφ). (3.45)

The minimum inclination angle λ for gouging avoidance is then expressed as

λmin = max
−π/2≤φ≤π/2

λφ = max
−π/2≤φ≤π/2

sin−1(rkφ) = sin−1(rkmax), (3.46)

where kmax is the maximum surface curvature at the CC point.
In the case when gouging can not be eliminated by inclining the tool alone

or the inclination angle λ exceeds the limit of the machine, searching for the
tilt angle ω is needed or a smaller tool size must be used [7]. An algorithm for
setting the tilt angle ω can be found in [11].

Remark 3.1. The surface cross-section is approximated by a circular arc in the
yl-zl plane corresponding to an osculating circle having the radius Ry. The
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osculating circle represents the best approximating curve having the constant
curvature. The approach has been used in many practical applications (see,
for instance, [12, 13]). However, the approximation is accurate only in the
vicinity of the CC point. Therefore, the estimate of the machining strip is
accurate when the machining strip itself is sufficiently small. The applicability
of the approximation can be verified by comparing the approximating arcs
with the actual curves on the surface in an appropriate norm. If the accuracy
is insufficient then a high order approximation must be used.

Remark 3.2. The accuracy of the above model based on a single contact point
may be insufficient. In this case multipoint strategies [20–22] could also be
applied to further enhance the accuracy of the tool positioning.

3.4 Kinematics Error

Besides controlling the size of the scallop left between two successive tool
paths, the forward step (kinematics) error due to nonlinearity of the machine
kinematics needs to be minimized as well. The kinematics error between two
CC points is defined as the difference between the desired and the actual
trajectory of the tool tip. The mathematical representation of the tool tip
trajectory can be derived as follows:

Let K be the transformation such that ∀W,M,R, K−1(K(R,M)) = M and
K(K−1(R,W )) = W . Let Πp ≡ (Mp,Rp), Πp+1 ≡ (Mp+1,Rp+1) be two suc-
cessive coordinates of the tool path in R

5. Mp and Wp denote spatial positions
of the tool tip in machine and workpiece coordinate systems, respectively, and
Rp the corresponding pair of rotation angles.

Let us invoke the inverse kinematics to transform workpiece coordinates
Wp into machine coordinates Mp ≡ (xp, yp, zp) as follows: Mp ≡ K−1(Rp,Wp).
The rotation angles R ≡ R(t) = (a(t), b(t)) and the machine coordinates of
the tool tip M ≡M(t) are assumed to change linearly between the prescribed
points, namely, M(t) = tMp+1 +(1− t)Mp, R(t) = tRp+1 +(1− t)Rp, where t
is a fictitious time coordinate (0 ≤ t ≤ 1). Transforming machine coordinates
M back to workpiece coordinates W for every t yields

Wp,p+1(t) = K(R(t),M(t)),

= K(tRp+1 + (1− t)Rp, tMp+1 + (1− t)Mp). (3.47)

Now the machine coordinates Mp and Mp+1 must be eliminated so that the
resulting trajectory depends only on the workpiece coordinates and orientation
of the tool. Mp, Mp+1 are eliminated by using the inverse transformation
Mp = K−1(Rp,Wp). Substituting Mp, Mp+1 into (3.47) yields

Wp,p+1(t) = K(tRp+1 + (1− t)Rp,

tK−1(Rp+1,Wp+1) + (1− t)K−1(Rp,Wp)). (3.48)
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Let WD
p,p+1(t) ≡ (xD

p,p+1(t), y
D
p,p+1(t), z

D
p,p+1(t)) ∈ S(u, v) be a curve be-

tween Wp and Wp+1 extracted from the surface in such a way that it represents
the desired tool trajectory. The kinematics error is represented as a maximum
deviation between WD

p,p+1(t) and Wp,p+1(t) ≡ (xp,p+1(t), yp,p+1(t), zp,p+1(t))
(see Fig. 3.6), namely,

εp,p+1 = max
0≤t≤1

|WD
p,p+1(t)−Wp,p+1(t)|,

= max
0≤t≤1

[(
xD

p,p+1(t)− xp,p+1(t)
)2

+
(
yD

p,p+1(t)− yp,p+1(t)
)2

+
(
zD
p,p+1(t)− zp,p+1(t)

)2] 1

2

.

(3.49)

Desired Tool Trajectory WD
p,p+1(t)

Wp Wp+1

Actual Tool Trajectory Wp,p+1(t)

max |WD
p,p+1(t)−Wp,p+1(t)|

Fig. 3.6. Kinematics error between two cutter contact points Wp and Wp+1

The kinematics error depends not only on the characteristics of the surface
versus the tool orientation but on the previous rotations as well [15]. Consider
the machine kinematics given in (2.2) and (2.5) for the 2-0 machine. If the size
of angular jump of rotation angle a between any two points is larger than π,
then the subsequence value of a should be adjusted in order to minimize the
difference eliminating unexpected motion and collision due to sharp variations
of the rotation angle a. As an example, angle adjustment for the 2-0 machine
can be performed without effecting the desired tool orientation by using one
of the following rules (see Fig. 3.7 and [15]).

(1) anew = aold ± π,

bnew = −π − bold,

(2) anew = aold ± 2π,

bnew = bold,

(3.50)
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Fig. 3.7. Angle adjustment for the 2-0 machine
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The above rules can be interpreted as follows. For the 2-0 machine, the
tool orientation relative to the workpiece can be described by two angles,
a and b. The tool which is initially aligned with the x-axis is first rotated
around y-axis by b and then around z-axis by a (see Fig. 3.7(a)). The same
tool orientation can also be achieved by first rotating the tool around y-axis
by −π − b and then around z-axis by a + π (see Fig. 3.7(b)). Likewise, the
same tool orientation can also be achieved by first rotating the tool around
y-axis by −π − b and then around z-axis by a− π (see Fig. 3.7(c)).

Figure 3.8 demonstrates the minimization of kinematics error by the angle
adjustment rules. Consider two CC points, W1 and W2, and the associated
tool orientations I1 and I2 given by

W1 = [−50.0,−50.0,−40.0],

I1 = [0,−0.625, 0.781],

W2 = [−50.0, 10.0,−20.8],

I2 = [0, 0.158, 0.987].

(3.51)

The machine rotation angles are calculated using (2.5).

(a1, b1) = (4.7122,−0.896),

(a2, b2) = (1.571,−1.412).
(3.52)

The tool trajectory is shown in Fig. 3.8(a). To reduce the error, a2 and b2 are
adjusted as follows:

anew
2 = a2 + π = 4.7126,

bnew
2 = −π − b2 = −1.7296.

(3.53)

The tool trajectory after angle adjustment is shown in Fig. 3.8(b). Angle
adjustment can be simultaneously applied to a set of successive points on the
tool path (see Chap. 6). However, if the kinematics error between the two
points still exceeds a prescribed tolerance, a new point is inserted between
the two (see Chap. 6).

3.5 Tool Path Generation

Sections 3.1 to 3.4 provide necessary information needed for tool path gen-
eration. There exists a large number of tool path generation techniques pre-
sented in the literature (see surveys by Dragomatz and Mann [3] and Sarma
[17]). Tool path generation techniques can be classified into two main groups:
isoparametric tool path (see, for examples, [1, 4, 19]) and non-isoparametric
tool paths (see, for examples, [5, 6, 10, 12, 14]).

The isoparametric method is popular for tool path generation due to ease
of computation. However, the machining efficiency and surface smoothness
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Fig. 3.8. Kinematics error reduction by angle adjustment
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can be quite poor due to the redundant machining and an unpredictable scal-
lop height, especially when the parametric increment is too small or large.
Isoparametric tool paths are generated by calculating the smallest tool path
interval and using it as a constant offset to the next tool path. The tool path
interval depends on the local surface shape, cutter shape and size, and the
allowable scallop height (see Sect. 3.2). Besides, the machining strip widths of
the two adjacent cutter paths (Fig. 3.9) have to overlap to ensure that the ma-
chined surface error (scallop height) is within the tolerance. The incremental
values Δu and Δv in the parametric domain corresponding to the machining
strip width w can be found by solving the following equation.

ΔuSu + ΔvSv = wyl. (3.54)

Example of isoparametric tool path is shown in Fig. 3.10.

h

Part
surface
S(u,v)

Cutter’s
bottom edge

L
Ci,j Ci+1,j

wi
wl,i wr,i

Fig. 3.9. Overlapping of machining strips on adjacent tool paths

Optimization of the tool path of a five-axis NC machine presents a con-
siderable challenge. Recent papers have displayed a number of sophisticated
methods to optimize the conventional isoparametric tool path. Besides, a vari-
ety of methods is available to generate unconventional patterns, for instance:
the neural network approach [18], the Voronoi diagram technique [8], the
monotone chain method [16], the distance map method [9], etc. The next two
chapters present two techniques for tool path generation and optimization,
namely, the adaptive space-filling curves and the grid generation method.
Each technique can be used to optimize the conventional isoparametric tool
path. Furthermore, when combining the two techniques together, an efficient
tool path can be generated for surfaces with complicated boundaries, cuts off,
pockets, islands, etc.
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4

Space-Filling Curve Tool Paths

4.1 A Brief History of Space-Filling Curves and Their
Applications

An N -dimensional space-filling curve (SFC) is a continuous, surjective1 (onto)
function from the unit interval [0, 1] to the N -dimensional unit hypercube
[0, 1]N . In particular, a 2-dimensional space-filling curve is a continuous curve
that passes through every point of the unit square [0, 1]2.

The history of space-filling curves started in 1878 when George Cantor
(1845–1918) demonstrated that any two smooth manifolds of arbitrarily finite
dimensions have the same cardinality. Cantor’s finding implies that the unit
line segment [0, 1] can be mapped bijectively2 onto the unit square [0, 1]2. In
1879, Eugen Netto (1848–1919), however, demonstrated that such mapping
is necessary discontinuous and cannot be called a curve. If the condition of
bijectivity were dropped, Giuseppe Peano (1858–1932) found a continuous
map from the interval onto the square in 1890. This was the first example of
a space-filling curve (see Fig. 4.1). Furthers examples were introduced by D.
Hilbert (in 1891, see Fig. 4.2), E.H. Moore (in 1900), H. Lebesgue (in 1904),
W. Sierpiński (in 1912), G. Pólya (in 1913), etc [23].

SFCs are encountered in different fields of computer science, especially
where it is important to linearize multidimensional data. Examples of multi-
dimensional data are matrices, images, tables and computational grids result-
ing from the discretization of partial differential equations (PDEs). Typical
applications of SFCs are data indexing [14, 20], data storing and retrieving
[25], image processing [26, 28], image scanning and coding [5, 7, 27], mesh
partitioning and reordering [24], etc.

1 A function f from a domain X to a codomain Y is said to be surjective if its
values span its whole codomain; that is, for every y in Y , there is at least one x

in X such that f(x) = y.
2 A function f from a domain X to a codomain Y is said to be bijective if for every

y in Y there is exactly one x in X such that f(x) = y.
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Fig. 4.1. 3 iterations of the Peano’s space-filling curve

Fig. 4.2. 6 iterations of the Hilbert’s space-filling curve

With the variety of space-filling curves and the wide spread of multi-
dimensional applications, the selection of the appropriate space-filling curve
for a certain application is not a trivial task. According to the classification
in [1], space-filling curves are classified into two categories: recursive and non-
recursive space-filling curves. Examples of recursive SFCs are the Peano’s
curve (Fig. 4.1) and the Hilbert’s curve (Fig. 4.2). Most existing applications
of SFCs employ recursive SFCs. The recursive behavior of SFCs allows for the
linearization of recursive hierarchical data structures.

One of the most favorable properties of SFCs is their locality and the fact
that the linearization is easily computable. Locality means that an SFC never
leaves a region at any level of refinement before traversing all points of that
region. Thus neighboring data in a multidimensional space remain neighboring
after linearization.
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In this chapter, we present the use of space-filling curves as tool paths.
Given a set of CC data distributed on the surface, a space-filling curve tool
path can be thought of as a curve that visits each CC point on the surface
once and only once. We also consider the use of non-recursive SFC to allow
the curve to travel in the optimal cutting directions.

4.2 Tool Path Optimization

Programming a five-axis NC machine requires consideration of a number of
important issues, such as optimizing tool paths, avoiding interferences, and
improving the cutting efficiency. Tool path optimization could be performed
with regard to the cutting time, scallop heights, length of the tool path, width
of the machining strip, volume of the removed material, etc. A complete op-
timization scheme involves specifying 1) a model of cutting operations, 2)
topologies of the prescribed tool path patterns, 3) a set of constraints, and 4)
an optimization procedure (see, for instance, [18]).

Let S ≡ S(u, v) be the required surface, M be a set of parameters related to
the workpiece setup and the machine configuration, and T be the parameters
of the tool such as the tool length, diameter, shape. A model of the cutting
operations, taking as input S, T, M and Π produces a machining result,
the output surface T ≡ T (u, v). The general optimization problem is then
formulated by

min
Π,T,M

ε, (4.1)

where ε = ‖S − T‖ represents the error in an appropriate norm. The opti-
mization is performed with respect to the following constraints:

1. Scallop height: the scallop between the successive tool tracks must not
exceed a prescribed tolerance [16, 18].

2. Local accessibility: excess material must not be removed when the tool
comes in contact with the desired surface. The excess removal commonly
occurs due to curvature interference and surface interference [10, 11, 21].

3. Global accessibility: the tool must not come into contact with either ma-
chine parts or unwanted parts of the desired surface [13]. This means
collision detection must be incorporated into the optimization procedure.

The set of independent variables comprises the tool spatial positions and
orientations, rotations of the machine parts, the shape and the size of the tool.
Usually, the tool visits the prescribed positions following the zigzag or spiral
patterns. However, the optimization could also utilize complicated patterns
adapted in such a way that a certain criteria is minimized or at least decreased.

We present the use of space-filling curves as tool paths for five-axis NC
machining of sculptured surfaces. Application of the SFC to NC tool path
generation has been first reported in [8] and [6]. Griffiths [8] proposed the use
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of the Hilbert curve as a tool path while Cox et al. [6] used various forms
of space-filling curves such as the Moore curve. Both tool path generation
methods have been developed for three-axis NC machining with the ball-end
cutter. However, the space-filling curves have not been particularly popular
in the five-axis machining community due to large inaccuracies produced by
sharp angular turns which characterize the standard SFC patterns.

Nonetheless, tool path generation based on the SFC has a number of at-
tractive features such as the possibility to locally adapt the curve (without
changing the global structure) in such a way that the cutting device travels
along the optimal direction. In addition, the entire surface is cut in one path
eliminating the need of tool retractions.

The use of adaptive SFC as tool paths is presented in this book to over-
come the above mentioned drawbacks while keeping the above mentioned
advantages. The adaptive SFC is a better candidate for creating tool path
than the Hilbert’s curve. First, the Hilbert’s curve is only applicable to a grid
2n by 2n while the adaptive SFC can be used for any rectangular grid as well
as block structured grid (the generation of SFC tool paths on block struc-
tured grid is presented in Chap. 5). Second, as opposed to the Hilbert’s curve
having the ratio of three-quarters turn per point [12], the adaptive SFC turns
only when necessary, in other words, only when the optimal cutting direction
changes. Since the sharp turns usually produce large kinematics errors [19],
it is anticipated that the adaptive SFC performs better than a conventional
SFC (see also the forthcoming discussion in Sect. 4.3).

The SFC tool path generation method requires three steps: (1) the grid
construction, (2) the generation of the adaptive space-filling curve, and (3)
the tool path correction. The simplest rectangular grid can be constructed by
overlaying two zigzag tool paths generated by the traditional isoparametric
scheme. The grid is then filled by an SFC generated by the Hamiltonian path
algorithm. Finally, the tool path and the orientation of the tool are adjusted
at the turns to eliminate sharp variations in the orientation of the cutting
device which result in large kinematics errors.

Consider the following optimization with regard to the length of the tool
path,

min
Π

L, subject to h < hmax, ε < εmax, (4.2)

where Π is the tool path represented by a structured set of the positions and
orientations (the so-called CL data, see Sect. 2.1), h is the scallop height and
hmax is the maximum allowed scallop height. If the machining strips do not
overlap, the remaining areas are considered as scallops as well. Therefore, the
first constraint controls the scallops and provides that the machining strips
cover the entire surface. The second constraint requires that the difference ε
between the actual and the desired trajectory does not exceed a prescribed
tolerance εmax. The above two conditions are nothing else than an approxima-
tion of a more general requirement that the machined surface does not deviate
from the actual surface by more than (hmax, εmax). The minimization of L
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is performed in such a way that Π maximizes the machining strip width. In
turn, increasing the machining strip width combined with the SFC strategies
makes it possible to cut the surface by traveling along a shorter path.

The scallop height constraint is satisfied by constructing two overlaying
isoparametric zigzag patterns. The patterns satisfy the scallop height con-
straints given the surface curvature, a shape and a size of the cutter. The
second constraint is satisfied by removing sharp angular turns producing large
error and adding additional cutter-contact points, if necessary.

4.3 Tool Path Generation using Adaptive Space-filling
Curves

The most popular SFC is the recursive Hilbert’s curve [12] considered for nu-
merous applications including the tool path planning [8]. Hilbert’s curve is
particularly appealing in tool path planning as its refinement property can
be used to adaptively increase the density of the path. However, each refine-
ment of the tool path based on the Hilbert’s curve increases the tool path
density in the refined region by a factor of 2 resulting in lower machining effi-
ciency due to the increased total path length. Besides, the Hilbert’s curve has
an undesirable property that it leads to a path where the tool is constantly
changing directions which slows down the machining process and produces
large kinematics errors.

To overcome these drawbacks, adaptive SFC is used for tool path gen-
eration. It is characterized by the following useful features. First of all the
adaptive SFC always follows the local optimal direction. Second, as opposed
to the conventional SFC, the adaptive SFC turns only when necessary, in
other words, only when the optimal direction changes. Third, the adaptive
SFC eliminates the large kinematics errors and the overcuts appearing due
to the sharp angular turns. Finally, local refinement of the adaptive SFC is
accomplished in exactly the same fashion that the conventional SFC is refined.

A problem of adaptive SFC generation is formulated in terms of a Hamil-
tonian path on a grid-like graph consisting of the CC points in the (u, v)
plane. The algorithm comprises three steps: (1) the grid construction, (2) the
space-filling curve generation, and (3) the tool path correction.

4.3.1 Grid Construction

Consider a grid m by n obtained by overlaying two isoparametric tool paths as
shown in Fig. 4.3(a-c). The isoparametric paths are generated by calculating
the smallest tool path interval and using it as a constant offset to the next
tool path (see Sect. 3.5). The tool path interval depends on the local surface
shape, cutter shape and size, and the allowable scallop height. Besides, the
machining strip widths of the two adjacent cutter paths (see Fig. 3.9) have to
overlap to ensure that the machined surface error (scallop height) is within
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the tolerance. Techniques for calculating the machining strip width are given
in Sect. 3.2.

(a)

+

(b)

=

(c)

→

(d)

Fig. 4.3. (a) isoparametric tool path in the v-direction, (b) isoparametric tool path
in the u-direction, (c) overlaying of two isoparametric tool paths, (d) the resulting
grid

Furthermore, the grid is regarded as an undirected graph G where each
two adjacent vertices are connected by an edge as shown in Fig. 4.3(d). The
vertices of the graph correspond to initial set of CC points on the required
surface whereas the distance between two connected vertices is the distance
between the corresponding CC points in R

3. Note that a cut along the path
between any two connected vertices satisfies the scallop height constraint. This
feature allows for the tool path optimization by means of the SFC. The SFC
tool path generation algorithm is presented next.

4.3.2 Space-Filling Curve Generation

The tool path generation on the grid-like graph constructed in Sect. 4.3.1 is
formulated as the Hamiltonian path problem [22]. Finding a path with the
minimal length is nothing else than the traveling salesman problem. Since the
problem is NP-hard [9], the algorithms for finding the optimal solution are
slow and inefficient.

In this book, a simple and computationally efficient Hamiltonian path
algorithm is presented. The algorithm is based on the cover and merge algo-
rithm developed by Dafner et al. [7] for 2-dimensional image scanning. The
algorithm is extended to an arbitrary rectangular grid. In addition, a correc-
tion scheme designed for the SFC tool path generation is presented (see Sect.
4.3.3).

First, all vertices are covered by small disjoint circuits. The circuits are
then merged into a single Hamiltonian circuit. The initial circuits are created
by constructing small rectangular cyclic paths over every 4 adjacent vertices,
i.e., by connecting the vertices on even rows and columns with the vertices
on odd rows and columns, respectively, as shown in Fig. 4.4(a). Besides, if m
or n is odd, the virtual circuits are constructed to cover the vertices along
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Fig. 4.4. (a) undirected graph G covered by initial small circuits, (b) dual graph
G′

the boundaries as shown by the dashed lines in Fig. 4.4(a). Any two adjacent
circuits can be merged into one bigger circuit. The cost of merging is defined
by

Cost(A,B) = |s|+ |t| − |e| − |f |, (4.3)

where |e| denotes the distance in R
3 between two vertices connected by an

edge e.
The cost of merging two virtual circuits is set to −∞, i.e., all the virtual

circuits are initially merged. This is to ensure that there is no discontinuity
of the tool path after removing the virtual edges from the Hamiltonian path.
Furthermore, a non-virtual circuit A can be merged with a virtual circuit D
only if A is merged with a non-virtual circuit C located on the opposite side.
To enforce this merging dependency, the cost of merging A and D is set equal
to that of merging A and C. The merging dependency is used to eliminate a
possibility of an inappropriate narrow zigzag tool path with a large number
of turns along the boundaries (see Fig. 4.11).

To merge all small circuits, a dual graph G′ is first constructed. Each small
circuit in G defines a vertex in G′ and two edges s and t connecting two small
circuits A and B in G define an edge v′ in G′ as shown in Fig. 4.4(b). Then a
minimum spanning tree is constructed by iteratively merging circuits accord-
ing to the cost defined by (4.3). Figure 4.5 illustrates the merging algorithm
along with the construction of the corresponding minimum spanning tree. Af-
ter all the circuits are merged into a Hamiltonian circuit, the tool path is
generated by removing all the virtual edges, if any (see Fig. 4.5(c)). Let T be
a set of edges of the minimum spanning tree. The merging algorithm is then
given below.
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1. Set T = ∅. Order the edges of G′ in the increasing order with regard to the
merging cost. In case of a tie, order the edges connecting two non-virtual
vertices first.

2. Consider the first non-visited edge. Include the edge in T if and only if it
does not form a circuit (in the dual graph G′) with other edges from T
and if and only if it does not violate the merging dependency.

3. If the edge is added to T , merge the two circuits in G corresponding to
the two vertices in G′ connected by the recently added edge and go to
step 4, otherwise goto step 2.

4. If T includes n − 1 edges (where n is the number of vertices of G′), stop
and output the resulting Hamiltonian circuit, otherwise go to step 2.

4.3.3 Tool Path Correction

The tool path generated by the previous step requires two further modifica-
tions. First, the tool path trajectory should be modified to eliminate undercut
areas. Second, the tool orientation needs to be carefully set when the tool is
changing the direction.

The tool path adjustment is needed since the SFC tool path contains turns
that cause the tool to miss some areas of the surface when the tool is changing
the direction. At each turn, the machining strips of the two adjacent tool paths
traveling in different directions might not overlap leaving an undercut or the
overlap is insufficient and produces a large scallop height (see Fig. 4.6).

To eliminate this machined surface error, the tool path at the turn is
modified so that the machining strip overlaps with the machining strip of the
adjacent tool path. Figure 4.7 displays the two types of tool path alterations
at the corner (left and right), and at the U turns. At these turns, the tool
path is extended so that it overlaps with the machining strip of the adjacent
tool path. The minimal extension length is

Lext = L− w, (4.4)

where L and w denote the tool path interval and the side machining strip
width (left or right), respectively, as shown in Fig. 4.6.

The second modification is applied to the tool orientation. The tool orien-
tation is usually set by rotating the tool about yl axis toward the xl axis (see
the definition in Sect. 3.2) by an inclination angle λ. At sharp turns, the tool
orientation changes abruptly creating large kinematics error. This kinematics
error could not be reduced by merely inserting more points as usually done for
tool path segmentation [2, 17]. Additionally, the tool orientation of the newly
inserted CC point needs to be adjusted by interpolating the tool orientations
at the two adjacent CC points. Care must be taken of when adjusting the
tool orientation since changing the tool orientation could reduce the machin-
ing strip width leaving some areas undercut. Consider the sharp turn O-P-Q
shown in Fig. 4.7. To make a correct turn, the xl axis at the turning point
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Fig. 4.5. (a) Hamiltonian circuit construction by merging of small circuits, (b) the
corresponding minimum spanning tree construction, (c) the generated tool path
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Fig. 4.6. Machining strips (dashed lines) on adjacent tool paths generated by using
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Fig. 4.7. Tool path trajectory alteration at corner turn (left or right) (a) and U
turn (b)

P is redefined to be a unit surface tangent vector lying in the tool cutting
direction at the previous CC point O. To reduce the kinematics error when
going from point P to point Q, a new point P′ is inserted and the xl axis at
P′ is interpolated using the two adjacent CC points, P and Q, i.e.,

x∗l,P′ = xl,P′ + xl,Q′ (4.5)

The xl axis at point P′ is then found by computing the unit vector of the
projection of x∗l,P′ on the surface tangent plane. This process is repeated
until the kinematics error between any two adjacent CC points is within the
tolerance.



4.4 Examples and Discussion 83

Figure 4.8 shows the trajectories of the effective cutting edge of the tool
projected onto the x-y plane before and after applying the tool path correc-
tion.

Undercut
(a) (b)

Fig. 4.8. Trajectories of the cutter’s effective cutting edge (projected onto the x-y
plane) before (a) and after (b) the tool path correction

Remark 4.1. The SFC tool path generation techniques are applicable to the
generalized tool geometry (the so-called APT tool [3, 4]). In this case calcu-
lation of the effective cutting profile requires a numerical procedure. Once a
relationship between the tool inclination and the effective cutting profile is
established, the minimum tool inclination providing gouging free tool path
can be computed for the generalized tool. Next, given the tool inclination,
the isoparametric tool paths and hence the grid are computed. The proposed
SFC generation algorithm is then executed without modifications.

4.4 Examples and Discussion

This section demonstrates the efficiency of the proposed tool path generation
algorithm by examples and practical machining. In all examples, a flat-end
cutter with radius r = 3 mm is used and the machined surface tolerance h is
set to 0.01 mm.

Example 4.1. Consider a cubic Bezier surface (Fig. 4.9) consisting of both
convex and concave regions. The surface is characterized by
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Px =

⎡
⎢⎢⎣
−50 −50 −50 −50
−15 −15 −15 −15
15 15 15 15
50 50 50 50

⎤
⎥⎥⎦ ,

Py =

⎡
⎢⎢⎣
−50 −15 15 50
−50 −15 15 50
−50 −15 15 50
−50 −15 15 50

⎤
⎥⎥⎦ ,

Pz =

⎡
⎢⎢⎣
−20 −10 −10 0
0 −10 −10 −20
0 −10 −10 −20
−20 −10 −10 0

⎤
⎥⎥⎦ ,

(4.6)

where Px, Py and Pz are the x, y and z coordinates of the 16 control points.
The grid constructed by overlaying two isoparametric tool paths is depicted
in Fig. 4.9. The resulting tool paths are depicted in Figs. 4.10 and 4.11. The
practical machining, before and after applying tool path correction, is shown
in Figs. 4.12 and 4.13, respectively. Clearly, the proposed method makes it pos-
sible to eliminate the areas where the material has not been removed while
maintaining the required quality of the surface. Performance of the SFC gen-
eration method versus the isoparametric method is compared in Table 4.1.

Table 4.1. Performance of the SFC tool paths versus the isoparametric tool paths
in terms of tool path length

Total path length (mm)
Tool path Example 4.1 Example 4.2 Example 4.3

Isoparametric in the v direction 3917.31 9397.97 7831.70
Isoparametric in the u direction 2648.12 9397.97 9036.17
SFC tool path 2637.54 7955.58 6780.84

Example 4.2. The example demonstrates the SFC being adapted to high con-
vexity of the surface at a stationary point. Consider a symmetric bell shaped
parametric surface given by

x = −50 + 105u− 15u2 + 10u3,
y = −50 + 105v − 15v2 + 10v3,
z = −100 + 900(uv − u2v − uv2 + u2v2).

(4.7)

The grid constructed by overlaying two isoparametric tool paths is depicted
in Fig. 4.14. The resulting tool path is shown in Fig. 4.15. Apparently, cutting
across the top of the bell requires the longest distance and yields the narrowest
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Fig. 4.9. Overlaying of two isoparametric tool paths for the surface in Example 4.1
in (u, v) domain (a) and in workpiece coordinate system (b)
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Fig. 4.10. SFC tool path for the surface in Example 4.1 in (u, v) domain (a) and
in workpiece coordinate system (b)
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Fig. 4.11. SFC tool paths in Example 4.1 generated with (a) and without (b)
merging dependency

Fig. 4.12. Practical machining using the SFC tool path without correction

machining strip width due to the high convexity of the surface at the top of
the bell [15]. The generated SFC tool path shown in Fig. 4.15 is adapted to
the optimal direction and avoids traversing across the top of the bell.

Example 4.3. The last example demonstrates the case when the proposed tech-
nique performs extremely well compared to the traditional isoparametric tool
path method. Consider a double bell surface described by the following equa-
tions:
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Fig. 4.13. Practical machining using the SFC tool path with correction

x = 100u− 50,
y = 100v − 50,
z = 400v(1− v)(3.55u− 14.8u2 + 21.15u3 − 9.9u4)− 28.

(4.8)

The grid constructed by overlaying two isoparametric tool paths is depicted
in Fig. 4.16. The resulting tool path is shown in Fig. 4.17. The tool path
verification is performed using Unigraphics 18 and the result of the simulation
is shown in Fig. 4.18.

The comparison of the tool path generation method with the traditional
isoparametric method in terms of the total path length is given in Table 4.1.
As seen from the results, a substantial improvement of the SFC tool path
as compared with the isoparametric tool paths (Examples 4.2 and 4.3) is
achieved when the required surfaces contain comparable areas characterized
by different optimal cutting directions (see Figs. 4.14 and 4.16). However, the
SFC tool path constructed by the proposed cover and merge algorithm does
not perform well when most of the optimal cutting is in a single direction
(Example 4.1, see Fig. 4.9).

Remark 4.2. The SFC tool path optimization presented above focuses on min-
imization of the total tool path length. However, the tool path can also be
optimized with regard to some other parameters such as the time required to
machine the required surface, etc. Given the spatial and angular increments,
Δxm, Δym, Δzm, Δa, Δb, between two CL points and the feedrate F , the
machining time tm is calculated as follows

tm = max{t0, tx, ty, tz, ta, tb}, (4.9)
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Fig. 4.14. Overlaying of two isoparametric tool paths for the surface in Example
4.2 in (u, v) domain (a) and in workpiece coordinate system (b)
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Fig. 4.15. SFC tool path for the surface in Example 4.2 in (u, v) (a) domain and
in workpiece coordinate system (b)
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Fig. 4.16. Overlaying of two isoparametric tool paths for the surface in Example
4.3 in (u, v) domain (a) and in workpiece coordinate system (b)
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Fig. 4.17. SFC tool path for the surface in Example 4.3 in (u, v) domain (a) and
in workpiece coordinate system (b)
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Fig. 4.18. Simulation result of five-axis machining with SFC tool path in Unigraph-
ics 18

where t0 =
ΔL

F
, ΔL =

√
(Δxm)2 + (Δym)2 + (Δzm)2, tx =

Δxm

vx,max
, ty =

Δym

vy,max
, tz =

Δzm

vz,max
, ta =

Δa

va,max
, tb =

Δb

vb,max
, and vmax denotes maximum

velocitiy in the corresponding axis. In case of MAHO 600E, the maximum
spatial and angular velocities are given by vx,max = vy,max = vz,max = 4000
mm/min., va,max = 235◦/sec., vb,max = 162◦/sec.

The estimated machining time for each of the tool path in Table 4.1 is
given in Table 4.2. Note that a shorter tool path with many turns may take
longer time than a longer tool path with fewer turns. For example, machining
a simple surface such as the surface in Example 4.1 does not require many
turns with sharp angle variations. Consequently, the corresponding SFC tool
path outperforms the conventional isoparametric tool path in terms of the tool
path length as well as in terms of the machining time. However, for a complex
shaped surface such as the surface in Example 4.3, sharp turns may slow down
the machining process when the angular velocity constraints are violated. For
such surfaces the SFC strategy works better on the milling machines with
high-speed rotational axes.
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Table 4.2. Performance of the SFC tool paths versus the isoparametric tool paths
in terms of estimated machining time

Estimated machining time (seconds)
Tool path Example 4.1 Example 4.2 Example 4.3

Isoparametric in the v direction 4541 12342 10622
Isoparametric in the u direction 4013 12342 16744
SFC tool path 3790 11750 16414
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5

Tool Paths in Adaptive Curvilinear
Coordinates

5.1 Introduction

Space-filling curves tool path generation technique presented in Chap. 4 has
been designed for surfaces represented in such a way that the parametric coor-
dinates are changing within a rectangular region. Once a minimal machining
strip is evaluated, constructing a basic grid for the SFC generation in the
rectangular region is trivial (see Sect. 4.3.1). However, such a grid is often
inefficient since a small step between the tracks could be required only in
certain areas. The rectangular grid is also inefficient in the case of a complex
boundary of the so-called trimmed surfaces. These surfaces are characterized
by the boundaries created by intersections with other surfaces. The complex
boundaries also occur in the case of pocket milling when the parametric region
includes internal boundaries around one or several pockets. From the view-
point of computational mathematics the above are classic situations when a
numerically generated adaptive curvilinear grid should be introduced. The
grid may be easily converted to the zigzag tool path or replace the basic grid
required at the first step of the SFC tool path generation method.

In this chapter we introduce and analyze the both possibilities. The first
approach is a modification of a classic grid generation based on the Euler-
Lagrange equations for a functional which represents desired properties of the
grid such as smoothness, adaptivity to the boundaries and to a certain weight
(control) function [15, 81]. Therefore, Sect. 5.3 presents a concatenation of the
grid generation approach and the tool path optimization. In this framework,
proposed in [49, 51], the weight function is represented by the kinematics
error. The minimization is subjected to constrains relevant to the heights of
scallops between the successive tool tracks.

However, the above techniques have a number of drawbacks. In particular,
they may converge slowly for complicated constraints. Besides, the approach
requires equal number of the cutter contact points on each track of the tool.
Therefore, if the kinematics error changes sharply from track to track, the
method may require an excessive number of points.
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Section 5.4 introduces another modification of the grid refinement which
fits better to the framework of tool path optimization. The method does not
require equal number of points on each track. It automatically evaluates the
number of the required grid lines. As opposed to the first approach, where
the weight function represents either the kinematics error or an estimate of
the kinematics error (such as the surface curvature or the rotation angles),
the proposed algorithm iteratively constructs an adaptive control function
designed to represent the scallop height constraints. This important modifi-
cation makes it possible to consider an arbitrary number of points along the
tool tracks. Consequently, the kinematics error is reduced by means of in-
serting additional points along the resulting curvilinear coordinates1. In other
words, this approach replaces the scallop constraints by a weight function
and then treats the kinematics error independently. Additionally, instead of
the Winslow functional the new optimization is based on the harmonic func-
tional derived from the theory of harmonic maps [25, 36]. The functional not
only provides the smoothness and the adaptivity but under certain conditions
guarantees the numerical convergence as well. Finally, this approach merges
with the SFC techniques. In this case, the grid is not converted to the tool
path directly. Instead, it becomes the basic grid required for SFC generation
which replaces the rectangular grid (see Chap. 4). With this modification, the
SFC tool path can be constructed to machine surfaces with complex irregular
boundaries, cuts off, pockets, islands, etc. Besides, the adaptive grid allows
to efficiently treat complex spatial variability of the constraints in such a way
that the SFC is being created on a grid having the small cells only where
necessary.

5.2 A Historical Note on Grid Generation

Grid generation has been developed as a sub-discipline of computational fluid
dynamics (CFD), heat and mass transfer and structural analysis. Nowadays,
grid generation is employed in many other areas including CAD/CAM, me-
chanical engineering and manufacturing.

Structured grid generation has its roots in the US in the works of Winslow
with Lawerence Livermore National Lab in the late 1960s [81]. About the

1 Curvilinear coordinates are a coordinate system based on some transformation
of the standard coordinate system. For example, consider the 2D case, instead of
Cartesian coordinates x and y one can use e.g. p and q where p = p(x, y) and
q = q(x, y). The level curves of p and q in the (x, y) plane, as well as those of x and
y in the (p, q) plane are in general curved. It is required that the transformation
is locally invertible at each point. This means that a point can be converted in
one coordinate system to its curvilinear coordinates and back. Depending on the
application, a curvilinear coordinate system may be simpler than the Cartesian
coordinate system. This also has consequences that the concepts in vector calculus
can be expressed in Cartesian coordinates and also in curvilinear coordinates [1].
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same time the structured grid generation was proposed in Russia by Godunov
and Prokopov with Keldysh Institute of Applied Mathematics in Moscow and
Computing Center of the Siberian Branch of the USSR Academy of Sciences
[32]. Some ideas, foreshadowed the modern grid generation, were presented
by Tikhonov and Gorbunov [75], Sidorov [67] and Bahvalov [6].

The unifying idea of grid generation is based on an estimate of a certain
weight (cost) function combined with the equi-distribution principle which
imposes such a distribution of the nodes that a product of the grid spacing
and the weight function remains constant through the entire region. Some
pioneering papers introducing this idea are [17, 22, 35, 58, 62, 72].

A variety of weight functions suitable for solutions of problems occurring
in CFD has been proposed in [2, 3, 5, 13–15, 21, 23, 24, 27, 28, 52, 53, 55, 74,
79, 80].

A general viewpoint on the problem is represented by the concept of the
so-called informative-computational space [2, 40, 54, 72]. The grid is charac-
terized by the so-called elliptic property interpreted as intercommunication
of observers. A motion of an observer to a suitable position implies that his
neighbors follow him. The term elliptic originates from the fact that such
intercommunication can be simulated by elliptic partial derivative equations
such as the Laplace equation. A number of semi-heuristic methods employ-
ing various interpretations of the informative computational space have been
proposed by Baker [7], Berger and Oliger [8], Blacker and R.J. [10], Blacker
and Stephenson [11], Dannenhoffer [20], Frey and Field [30], Jiang and Carey
[43], Kennon and Anderson [44], Kennon and Dulikravich [45], Pardhanani
and Carey [56], Rank and Babushka [60], Samareh-Abolhassani and Stewart
[65], Soni [68], Vabistchevitch [78].

Furthermore, the term structured means that the curvilinear grid is topo-
logically equivalent to a rectangular grid. In other words, the curvilinear grid
can be obtained by applying certain kind of deformations to the rectangular
one. Eventually this idea evolved into the idea of constructing a grid which
represents a discrete version of a one-to-one mapping of the so-called physical
region, where the curvilinear grid is defined, onto a parametric square (or cube
in 3D) defined in the so-called computational region, where the image of the
grid becomes rectangular [32, 33, 73].

It turned out that construction of such grids can be performed by means
of variational methods which employ Euler equations to optimize a weighted
average of the grid quality measures. The grid quality measures include a
number of criteria such as smoothness of the grid, orthogonality, adaptation
to a certain weight function in accordance with the equi distribution principle,
the total length of the grid lines, cell aspect ratio and many others [64].

Considerable effort has been spent on elimination of self-intersected and
twisted cells and nodes located outside the prescribed region when the map-
ping becomes unacceptable [37]. Such grid is called the degenerate grid. An
efficient approach to construct non-degenerate grids is based on the concept
of orthogonal grid proposed and analyzed in [4, 14, 15, 59, 66, 70]. An orthog-
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onal grid generator involves a measure of orthogonality represented by a dot
product between the vectors tangential to the grid lines [13, 15, 63].

Another approach to construct a grid without degenerate cells is based on
multi-block grid strategies employing a decomposition of the complex-shaped
regions into blocks [32, 73, 76]. However, the discontinuities at the boundary
between blocks is the chief drawback of the method [18, 69].

The concept of convex grid has been proposed by Ivanenko [38]. The grid
which consists of convex quadrilaterals ensures a non-degenerate grid at the
continuous as well as at the discreet level [36, 61]. Furthermore, the concept
of non-degenerate grids can be represented in the framework of the harmonic
maps [26]. The use of the harmonic maps as a suitable grid generation strategy
was proposed by Dvinsky [25] and Ivanenko [36]. The map constructed on the
surface of the graph of the weight function provides the required adaptation
of the grid in accordance with the equi distribution principle. The advan-
tage that the theory features over other grid generation strategies is that
in 2D it guarantees (under some conditions) the existence and the unique-
ness of the map. Besides, harmonic grid generation has been shown to be
parameterization-independent [46], namely, that the resulting grid in phys-
ical space is independent of the choice of parameterization for the physical
domain.

As far as the tool path generation is concerned, construction of the tool
paths of industrial milling machines in the framework of grid generation tech-
nologies was first introduced in [49] and developed in [50]. The grid genera-
tion techniques are surprisingly well-adapted to tool path optimizations. As a
matter of fact, the concept of a grid refinement contains almost all the main
ingredients for tool path planning, such as: grid adaptation to the regions
of large milling errors, possibility to easily construct curvilinear versions of
the conventional zigzag and spiral patterns and adaptation to constraints re-
lated to the tool diameter and the scallop height. Moreover, in contrast to the
standard techniques characterized by a local error estimate, grid generation
deals with a global spatial error and consequently adapts all the CL points
simultaneously.

The ideas were further developed in [51], specifically for five-axis machin-
ing and in the framework of the harmonic maps. Bieterman and Sandstrom
[9] suggested a similar approach based on the Laplacian grid generator inde-
pendently.

It should be noted that application of grid generation for tool path op-
timization has not been fully exploited. For example, unstructured grids are
generally far more flexible and robust when applied to complicated regions
[12, 31, 34, 57]. However, application of such grids for tool path generation is
an open problem.

Note that our references are related to selected pioneering papers intro-
ducing basic concepts of structured grid generation and harmonic maps. As
far as the entire scope of modern grid generation methods is concerned, the
interested reader should refer to excellent texts of Carey [16], Farrashkhalvat
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and Miles [29], Liseikin [46, 47], Steinberg [71], Thompson et al. [73], Tucker
[77].

Finally, in spite of success of grid generation in many areas, the process
is still not made easy enough and automatic. The generation of grids could
become the most time consuming part of calculations requiring hours and
even days of calculations.

5.3 Variational Grid Generation for Tool Path
Optimization

5.3.1 Preliminary Examples

A preliminary example is a surface having sharp variations along a sinus
shaped curve Fig. 5.1. The corresponding curvilinear grid is depicted in Fig.
5.2. The tool will move along one family of the coordinate curves. It is plain
that such curves are more appropriate for cutting and require the same data
structures as those employed for rectangular grids.

Fig. 5.1. Surface with a curvilinear zone of large gradients
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Fig. 5.2. Curvilinear grid which can be converted into a tool path to machine the
surface in Fig. 5.1

Furthermore, the grid generation techniques are applicable to generate a
tool path in the case of complex boundaries such as the case of a complex
shaped domain in Fig. 5.3. Jeong and Kim [41] address this domain as an
example of complex pocket milling which may not be solved by means of
a regular zigzag pattern. However, the generated grid shows that the tech-
niques enable us to simultaneously generate appropriate curvilinear zigzags
and curvilinear spirals. The grid is well adapted to the internal and external
boundaries. Besides, the flexibility of the grid generation approach allows for
further adaptation to the regions requiring more accurate machining.

5.3.2 Variational Method and Functionals

In this section we present basic principles of variational grid generation meth-
ods and show how these techniques can be applied to tool path optimization.
As far as the grid generation techniques are concerned, we follow the classical
variational approach of Winslow [81] and Brackbill and Saltzman [15]. The
tool path optimization based of adaptive grids follows [49, 51].

Recall that S ≡ S(u, v) ≡ (x(u, v), y(u, v), z(u, v)) denotes a surface to
be machined. As usual u and v are the parametric variables. Consider a set
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Fig. 5.3. A grid which can be converted into a tool path for a complex shaped
region

of cutter location points {uij , vij}, 0 ≤ i ≤ Nξ, 0 ≤ j ≤ Nη arranged as a
curvilinear grid. Mathematically, it means that {uij , vij} is a discrete analogy
of a mapping from the computational region Δ = {0 ≤ ξ ≤ Nξ, 0 ≤ η ≤ Nη}
onto a parametric region defined in the parametric coordinates u, v. In other
words there exists a pair of functions u(ξ, η), v(ξ, η) such that a rectangular
grid {i, j} being fed to u(ξ, η), v(ξ, η) becomes {uij , vij} (Fig. 5.4).

Recall that the general tool path optimization problem is given by

min
S,Π,T,M

C,

where C denotes a criteria vector. The vector may include the kinematics er-
ror, the length of the path, the negative of the machining strip, the machining
time, etc. Furthermore, Π is the tool path, M is a set of the parameters re-
lated to the setup and configuration of the machine, and T is the parameters
of the tool. Usually, the optimization is subjected to constraints which may
include the scallop height, gouging avoidance constrains, etc.

Note that optimization criteria and constraints may be interchangeable
depending on the machining problem. For example, the minimization can be
performed with regard to the kinematics error subject to the scallop height
constraint. Alternatively, the scallops can be minimized subject to a prescribed
maximum error. A weighted sum of the scallops and the tool tip errors can
be also considered as a single criteria.
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Fig. 5.4. Tool path as a mapping from the computational to the parametric (phys-
ical) domain

In this section we consider the criteria vector C, consisting of a single
element given by C = ||ε||, where ε = |S(ξ, η) − T (ξ, η)| and T (ξ, η) is a
machined surface. An approximation of T can be obtained using a variety
of techniques including solid modeling, the sweep volume methods, etc (see
Introduction).

As an example of a simple approximation consider T (ξ, η) composed from
subsurfaces (patches) Ti+1/2,j+1/2(ξ, η) spanned onto a grid-cell {(u, v)i,j ,
(u, v)i+1,j , (u, v)i,j+1, (u, v)i+1,j+1}, where Ti+1/2,j+1/2(ξ, η) is obtained by
linear interpolation between the tool trajectories (Fig. 5.5).

Since the tool path Π is now represented by the grid of points {uij , vij},
we arrive at the following optimization.

min
uij ,vij

||ε||. (5.1)

Furthermore, keeping (5.1) in mind, let us introduce grid generation tech-
niques based on variational principles. Following [15, 81], the required grid is
a discretized solution of a minimization problem given by

min (Fs + λvFv + λoFo), (5.2)

where
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Fig. 5.5. Constructing surface T (ξ, η) from patches

Fs ≡

∫∫
Δ

[(Δξ)2 + (Δη)2] dudv, (5.3)

Fv ≡

∫∫
Δ

Jε dudv, (5.4)

Fo ≡

∫∫
Δ

Δξ ·Δη dudv. (5.5)

Δ ≡ (
∂

∂u
,

∂

∂v
), J denotes the Jacobian of the mapping given by J =

∂u

∂ξ

∂v

∂η
−

∂v

∂ξ

∂v

∂η
, λv, λo are the calibration parameters. Furthermore, Fs is the Winslow

functional which measures the smoothness of the mapping. A mapping that
minimizes the functional produces a grid which does not have discontinuities
or sharp corners and fits to the boundary of the physical region.

Fo is the so-called orthogonality functional. Its minimum Fo = 0 is reached
when all the conjugate lines of the grid are orthogonal. The functional can
be used as an additional measure which improves the quality of the grid i.e.
eliminates twisted and degenerate cells. However, in the context of tool path
generation Fo does not represent an important machining criteria.

Finally, Fv is the measure of the equi distribution with regard to weight
function ε. The product of the area of the grid cell (which is nothing else than
the discretized Jacobian J) and the weight function ε should be constant
through the entire grid.
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This is where the problem of the error minimization meets the grid gener-
ation. Since the error tends to zero as the area of the grid cell tends to zero,
the grid generator adapts the cells in such a way that the error is reduced or
even minimized while keeping the basic grid structure. However, Fv can not
be minimized individually because the solution is not unique or may not exist.
For example, J = ∞ minimizes Fv, however, this mapping is singular and,
therefore, does not produce a curvilinear grid. Let us omit the orthogonality
functional and consider F = Fs +λvFv. (Further analysis of the orthogonality
functional can be found in [15, 42]).

Changing variables in Fs and Fv yields

Fs =

∫∫
Δ

J−1

[(
∂u

∂ξ

)2

+

(
∂u

∂η

)2

+

(
∂v

∂ξ

)2

+

(
∂v

∂η

)2
]

dξdη, (5.6)

Fv =

∫∫
Δ

J2ε dξdη. (5.7)

There is a variety of ways to proceed from that point. One of them is
employing the Euler equations to minimize the weighted sum of the functionals
Fs + λFv. The Euler equations are given by

∂F

∂x
−

∂

∂ξ

∂F

∂xξ
−

∂

∂η

∂F

∂xη
= 0,

∂F

∂y
−

∂

∂ξ

∂F

∂yξ
−

∂

∂η

∂F

∂yη
= 0.

Next, the partial derivatives should be replaced by the finite differences and
the system of the finite difference equations should be solved numerically.

Alternatively, functionals Fs and Fv are approximated by quadratures Is

and Iv . The resulting discrete functional I = Is + λvIv should be minimized
using the conditions

∂I

∂uij
= 0,

∂I

∂vij
= 0.

The both methods produce the same system of finite difference equations
when the standard second order approximations are being used for the first

method (
∂2u

∂ξ2
≈ ui+1,j − 2ui,j + ui−1,j ,

∂u

∂η
≈

ui+1,j − ui−1,j

2
, etc.) and when

the standard trapezoidal rule with Δξ = Δη = 1 is applied to discretize Fs

and Fv for the second method.
It is not hard to demonstrate that the system of finite difference equations

is given by

R̃u ≡ a1uξξ + a2uξη + a3uηη + c1vξξ + c2vξη + c3vηη + J2εv,

R̃v ≡ b1uξξ + b2uξη + b3uηη + a1vξξ + a2vξη + a3vηη + J2εu,
(5.8)
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where the subscripts ξ, η, u and v correspond to the finite differences at (ξi, ηj)
and (uij , vij), respectively.

The coefficients at the derivatives of the second order are given by

ak = as,k + λvav,k, bk = bs,k + λvbv,k, ck = cs,k + λvcv,k, k = 1, 2, 3,

as,1 = −Aα, bs,1 = Bα, cs,1 = Cα,

as,2 = 2Aβ, bs,2 = −2Aβ, cs,2 = −2Cβ,

as,3 = −Aγ, bs,3 = Bγ, cs,3 = Cγ,

A = uξvξ + uηvη, B = v2
ξ + v2

η, C = u2
ξ + u2

η,

av,1 = −uηvη, bv,1 = v2
ξ , cv,1 = u2

η,

av,2 = uξvη + uηvξ, bv,2 = −2vξvη, cv,2 = −2uξuη,

av,3 = −uξvη, bv,3 = v2
ξ , cv,3 = u2

ξ ,

Let us now evaluate the machining strip in the midpoint between two
consecutive tracks of the tool ηj and ηj+1. Consider the flat-end cutter and
for simplicity suppose that the tool is aligned with the normal to the surface.
Consider a vertical plane through points S(ξi, ηj) and S(ξi, ηj+1). In this plane
we approximate the corresponding section of the surface by a circle with the
radius R, where R is the radius of the curvature in that direction. A simple
geometric reasoning (Fig. 5.6) yields

w = 2|R|

√
2|R|h + h2

|R|+ h
(5.9)

Additionally the tool radius r must satisfy r ≥ 2
√

2|R|h + h2. Note that, if
the tool must be inclined, (5.9) must be replaced by a formula which includes
the effective cutting radius of the tool re given by (3.36) (see Sect. 3.3). For
instance, for h 
 re, h 
 R, Lo [48] suggested a formula similar to (3.34)
given by

w =

√
8hreR

R− re
.

In order to construct a tool path simultaneously adapted to the milling
errors ε and to the constraints related to the prescribed scallop height, we
introduce the following conditions:

Di,j+1/2 ≥ 0, (5.10)

where Di,j+1/2 = w2
i,j+1/2 − d2

i,j+1/2 and d denotes the distance between the

points on the adjusted curves ηj and ηj+1 on the surface S(u, v) given by

di,j+1/2 =
√

(xi,j+1 − xi,j)2 + (yi,j+1 − yi,j)2 + (zi,j+1 − zi,j)2 (5.11)
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Fig. 5.6. The scallop height evaluation for convex surfaces

and w is evaluated by (5.9).
Thus, we arrived at the following problem: solve equations (5.8) subject

to constrains (5.10) to find a minimizer of functional I. In order to solve the
constraint minimization, we introduce a penalty function p(D). It is a convex
decreasing function such that, p(D) = 0 if D ≥ 0 and p(D) → ∞ when
D → −∞.

Next, we define a discrete penalty functional given by

Ip = λp

∑
i,j

λijp(Di,j+1/2),

where {λij} are the penalty coefficients and λp is the weight coefficient.
p(D), D ∈ (−∞, 0), is a convex decreasing function, p(D) →∞ if D → −∞.

Next, the derivatives of λpIp with regard to uij , vij are added to the left
hand side of the above finite difference equations, namely,

Ru = R̃u + λp
∂Ip

∂uij
= 0, Rv = R̃v + λp

∂Ip

∂vij
= 0.

Example 5.1. Suppose that S(u, v) ≡ (x, y, z) = (u, v, u2 + v2). Consider a
penalty function given by p(D) = [min(0, D)]2. Then for D < 0 we have

p(Di,j+1/2) = D2
i,j+1/2,

= [w2 −
(
(ui,j+1 − ui,j)

2 + (vi,j+1 − vi,j)
2

+ (u2
i,j+1 + v2

i,j+1 − u2
i,j − v2

i,j)
2
)
]2.
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Differentiation with regard to ui,j yields a penalty term given by

∂Ip

∂ui,j
=2Di,j+1/2

[
2(ui,j+1 − ui,j)

+ 4(u2
i,j+1 + v2

i,j+1 − u2
i,j − v2

i,j)ui,j

]
λi,j+1/2

− 2Di,j−1/2

[
2(ui,j − ui,j−1)

+ 4(u2
i,j + v2

i,j − u2
i,j−1 − v2

i,j−1)ui,j

]
λi,j−1/2.

Note that p(D) is not differentiable at D = 0. Therefore, one has to perform
an appropriate regularization near D = 0. For instance,

preg(D) =

⎧⎨
⎩

p(D), if D ≥ ε,
H(D), if 0 < D < ε,
0, otherwise,

where H(D) is a Hermite polynomial satisfying H(ε) = p(ε),
dH(ε)

dD
=

dp(ε)

dD
,

H(0) = 0.
The corresponding system can be solved by quasi Newtonian iterations

given by

un+1
i,j = un

i,j −

[
τ

(
Ru

∂Rv

∂v
−Rv

∂Ru

∂v

)(
∂Ru

∂u

∂Rv

∂v
−

∂Rv

∂u

∂Ru

∂v

)−1
]

i,j

,

vn+1
i,j = vn

i,j −

[
τ

(
Rv

∂Ru

∂u
−Ru

∂Rv

∂u

)(
∂Ru

∂u

∂Rv

∂v
−

∂Rv

∂u

∂Ru

∂v

)−1
]

i,j

,

where n is the iteration index and τ is the iteration parameter. The penalty
coefficients are updated by the iterative procedure

λl+1
i,j+1/2 =

{
λl

i,j + δλl
i,j , if Di,j+1/2 < 0,

λl
i,j , otherwise,

where l is the index of the penalty iterations and δλl
i,j denotes the correspond-

ing increment. In order to improve the stability of the algorithm, we use the
following linear relaxation

(un+1
i,j )new = un+1

i,j (1− θ) + un
i,jθ,

(vn+1
i,j )new = un+1

i,j (1− θ) + un
i,jθ,

where 0 ≤ θ ≤ 1.

5.3.3 The Harmonic Functional

The sum of two functionals Fs and Fv in (5.2) can be replaced by a single
functional given by
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I =

∫
(u2

ξ + u2
η)(1 + f2

u) + (v2
ξ + v2

η)(1 + f2
v ) + 2fufv(uξvξ + uηvη)

(uξvη − uηvξ)
√

1 + f2
u + f2

v

dξdη.

(5.12)
(5.12) is called the harmonic functional and is a generalization of Winslow
functional to the case of error surfaces described explicitly by f(u, v). The
subscripts u, v, ξ, η denote partial derivatives and f is the weight function.

The harmonic functional can be derived from the theory of harmonic maps
[25, 36]. It has been proven that the functional minimizes an energy of mapping
(see details [42]) and produces a grid adapted to the regions of large gradients
of f . Note that if fu ≡ fv ≡ 0, then the harmonic functional (5.12) becomes
the Winslow functional (5.3). It is important though to understand that I
adapts the grid to the gradients of f rather than to f itself. Therefore, it
works differently as compared with Fv. Besides, minimization of (5.12) could
be 10 times more computationally expensive that minimization of (5.2) [19].
However, (5.12) has some points in its favor. In particular, it is possible to
construct a computational procedure which (under certain conditions) always
converges to a non degenerate grid [42]. The constraint minimization of (5.12)
subject to the scallop height conditions can be performed by the penalty type
techniques similar to those presented in the preceding section. The required
modifications and the approximation of the harmonic functional are given in
Sect. 5.4.

5.3.4 Examples of the Tool Path Optimization

This section illustrates the performance of the proposed procedures by edu-
cational examples.

Example 5.2. Adaptation to a curvilinear zone

The example illustrates convergence of the tool path generation method
for a workpiece having curvilinear boundaries and a sin-shaped zone of large
milling errors depicted in Fig. 5.7.

For simplicity let us specify constraints (5.9)-(5.10) without defining the
actual surface. Suppose we cut the surface by a flat-end cutter and suppose
that the minimum radius of the curvature of the surface R = 45. We will
require that the maximum scallops do not exceed h = 0.1 mm. Substituting
R = 45, h = 0.1 into (5.9) yields d < 1.25. We will impose this constraint
for the entire region, although at many points the minimal distance will be
underestimated. Furthermore, the error is emulated by (see Fig. 5.7)

ε = exp

(
−

∣∣∣∣y − 0.5 (Ly − 6) sin

(
πx

Lx − 0.5

)
+ 0.5

∣∣∣∣
)

.

Figure 5.7 displays generation of the curvilinear tool path satisfying the pre-
scribed constraints generated by p(D) = [min(D, 0)]2, δλ = 1, λv = 10, λp =
0.9.


