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Fig. 5.7. Tool path generation with adaptation to a weight function and the bound-
ary

Table 5.1 illustrates the convergence of the iterations and reveals that
Ap = 0.9,v = 0.25 in this particular case lead to the best convergence rate.
The symbol # indicates a situation when the iterations do not have a limit
and either fluctuate or reach the computer infinity. Such situation is called
divergence.

Table 5.1. Convergence of the method A, versus 6

Xp\0 0.10 0.25 0.50 0.75
0.01 836 900 1001 1200
0.10 301 320 380 402
0.25 115 54 331 380
0.50 201 56 256 371
0.90 90 52 210 330
1.00 82 58 201 301
1.25 78 63 180 270
150 # # # 265
175 # # # #

Ezxample 5.3. A spiral tool path embedded into a zigzag tool path
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This example demonstrates how to produce a tool path composed from
patches corresponding to different types of motion. The generated tool path
in Fig. 5.8 has been adapted to the curvilinear boundaries and to three zones
of large milling errors located inside the circular region and at the left part of
the domain. The surface curvature and the scallop height have been set up as
in Example 5.2, artificially, that is, without employing an actual surface.
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Fig. 5.8. Grids obtained by constraint minimization (a) and unconstrained mini-
mization (b)

The grid in Fig. 5.8(a) is constructed by an unconstrained minimization.
Clearly, the grid is unacceptable since it has many bad points, where the
constraints are not satisfied. The maximum scallop height is about 50 times
more than the prescribed value. Furthermore, in order to prevent a too small
distance between grid points located in the irrelevant regions it is often useful
to impose a lower bound by adding a second constraint given by

d—w >0,if e < e,

where €1 is a small positive constant. This helps to avoid degenerated grids.

The composed tool path generated with ¢; = 1075, w = 1.6,w’ = 0.6
shown in Fig. 5.8(b) is adapted subject to the both prescribed constraints
with p(D) = [min(D, 0)]%,6\ = 1, \, = 10, A, = 0.25.
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Ezxample 5.4. A Bezier surface

The constraint minimization techniques could produce a grid which actu-
ally does not decrease € (even increase it). This is because our model implies
that the accuracy is determined by the pair (e, h) rather than solely by e.
Consequently, if the minimization does not decrease of the error, the user
should either increase the number of the tool tracks or apply a trial-and-error
compromise between € and h. The following example illustrates the trial-and-
error procedure. We consider a Bezier surface (Fig. 5.9) characterized by the
following control points.

0000 ~16 -8 —6 0
12121212 or ., | -8 -60 -2
Be=\ogo40404 | Bv=Be:B=1 5 o 9 ¢
36 36 36 36 0 —20 0

e
2o

Fig. 5.10. The machined Bezier surface
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Figure 5.10 displays an actual machining. A conventional tool path is
shown in Fig. 5.11(a). The bad points are indicated by circles sized pro-
portionally to the distance from the constraints, whereas points with large
e-values are indicated by boxes with the size proportional to €. The resulting
e = 0.08.
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Fig. 5.11. (a) a conventional tool path, (b) unconstrained minimization, (c) con-
strained minimization, (d) constraint minimization on a grid 35x35

A grid generated by the unconstrained minimization (Fig. 5.11(b)) yields
e = 0.04. Finally, the constrained minimization Fig. 5.11(c) produces e =
0.085. In order to construct an appropriate tool path, either the maximum
allowed scallop height or the number of the grid points has to be increased.

We analyze the both proposed options. Increasing h from 0.01 to 0.04
yields an adapted tool path satisfying the prescribed scallop constraints e =
0.041. On the other hand, an adapted tool path having 35x35 CL points (Fig.
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5.11(d)) yields e = 0.021, whereas a conventional 35x35 tool path still does
not satisfy the scallop constraints. Observe the possibility to adapt a tool path
if only a cross-feed adjustment is required. A suitable adaptation could then
be solely performed by penalty functions, i.e. by a discrete functional given
by I + Ap1,. Alternatively the scallop constraints may be included into F,, or
even into the harmonic functional (5.12). The last possibility will be discussed
in the next section. The orthogonality measure could also be included into the
algorithm to ensure against degenerate grids and divergence.

A series of test surfaces has been tested by means of the proposed algo-
rithm. Table 5.2, demonstrates an average accuracy increase ranging between
32 and 43%.

Table 5.2. Accuracy of the machined surface

Grid size Scallop (mm) improvement % of conventional

10x10 3.60 34 / 0.2600
20x20 1.80 41 / 0.0930
30x30 1.20 34 / 0.0580
40x40 0.90 36 / 0.0410
60x60 0.60 32 / 0.0260
80x80 0.45 40 / 0.0180

It is plain that the constraints related to scallops may substantially affect
the solution. Besides, the solution to the minimization problem is not unique
or may not exist. In practice, the initial grid typically does not satisfy the
constraints and there is no prior knowledge whether such a grid exists. Con-
sequently, the convergence is analyzed by means of numerical experiments.
Note, that the adaptive approach allows nor a closed form estimate of the
number of required tracks neither an estimate of the number of the CL points
belonging to one track. Therefore, we developed a realistic rule applicable to
the majority of practical situations. If a number of the CL points not satisfy-
ing the scallop constrains is more than 2/3 of the total number of points than
the adaptation is not possible or requires a very large number of iterations.
In other words, the computational efficiency of the algorithm depends on the
number of points admissible for re-distribution. If this number is small than,
first of all, the error can not be substantially reduced, secondly, the optimal
grid may not exist at all. Even if such a grid exists, the iterations may fail
to converge. Table 5.3 illustrates computational complexity of the algorithm
for a 40x40 zigzag tool path constructed for the Bezier surface. The accuracy
increase characterized by the ratio eg = 100¢/ec, where ec is the error on
the rectangular pattern, 7¢ the computational time on a PC (Pentium 4),
I’ the number of the required iterations, N the number of the bad points,
where the constraint h = 0.01 is violated, from the initial rectangular grid, #
indicates divergence. Observe that h = 0.015 mm leads to a substantial accu-
racy increase of about 40 % with regard to the rectangular tool path, whereas
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h = 0.013 mm yields only a 22% increase. h = 0.001 mm and h = 0.012 mm
actually increase the error. It should be noted that h = 0.015 mm seems to
be the most suitable since the scallop height and the error are approximately
in the same magnitude. The calculations reveal that h and € varying in the
same magnitude often lead to the minimum number of iterations. It means
that appropriate scallop heights could be taken as fractions of € corresponding
to the conventional tool path.

Table 5.3. Convergence of the algorithm h versus e

Scallop Computational Iterations Error Error relative to Number of

h (mm) time 7¢ (min) r e conventional er bad points Np
0.0001 # i 7 Z 1132
0.0010 32 1710 0.094 200 500
0.0012 11 550  0.047 105 92
0.0130 9 421 0.032 78 61
0.0150 4 250 0.024 59 25
0.0170 3 200  0.020 55 0

The grid generation algorithms applied to tool path generation offer a num-
ber of benefits such as the global two-dimensional adaptation to the regions
of large milling errors. As opposed to many tool path generation methods
(see Introduction) the grid searches for a global minimum adapting all the CL
points simultaneously. Of course such an adaptation leads to certain disad-
vantages such as possible divergence, large computational time, etc. However,
solutions obtained by the grid generation technologies can hardly be obtained
by the local methods which may require astronomical times to reach the same
optimum. Furthermore, the grid generation provides a straightforward control
of the constraints related to a scallop height and capabilities to generate a tool
path for workpieces with complex shaped boundaries for trimmed surfaces

Finally, the grid generation technologies are particularly suitable to be
integrated with the conventional CAD/CAM software in so far that the algo-
rithms deal with a curvilinear versions of standard zigzag or spiral patterns.
Therefore, such modifications require only an additional mapping obtained by
means of the grid generation procedures.

5.4 Application of Harmonic Functional to Tool Path
Generation

Recall that S = S(u,v) = (z(u,v), y(u,v), z(u, v) denotes the required surface
given in the workpiece coordinates, where u and v are parametric variables.
Consider a set of CC points, {(u,v),},1 < n < N, being a discrete analogy of
a mapping from the computational region on the plane (£,7n) into the physical
region defined in the parametric coordinate system (u,v) (see Fig. 5.4).
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A more general case is a regular or structured grid which consists of curvi-
linear quadrilaterals such as the grid shown in Fig. 5.12 or a block-structured
grid in Fig. 5.13. In both cases, the grid is not topologically equivalent to a
rectangular Cartesian grid. These two cases invoke mapping of the unit square
in the plane (£, ) onto each quadrilateral in the (u,v) plane individually. The
block-structured grids can also be used to construct the SFC whereas the use
of a general irregular grid to construct an appropriate SFC lies out of the
scope of this book.
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Fig. 5.12. Example of regular grid
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The problem of grid generation can be treated as a discrete analog of
the problem of finding functions u(¢,7n) and v(£,7n). It can be shown that
if a smooth mapping of one domain onto another with one-to-one mapping
between boundaries possesses a positive Jacobian, then such a mapping will be
one-to-one [1]. Hence, the curvilinear coordinate system constructed in (u,v)
domain will be non-degenerate if the Jacobian of the mapping u(&,n), v(§,n)
is positive, i.e.,

J = ugvy, — uyve > 0. (5.13)

A number of techniques for grid generation have been developed [47]. In
general, the methods of grid generation for structured grid can be classi-
fied into three basic groups, namely, the algebraic methods, the differential
methods and the variational methods. In the algebraic approach the interior
points of the grid are computed through various forms of interpolation or
special functions. Differential methods generate grid points based on the so-
lution of elliptic and parabolic equations. In variational methods, the grid is
generated by optimization of grid quality properties such as non-degeneracy,
smoothness, uniformity, near-orthogonality, or adaptivity (see, for examples,
[15, 19, 37, 38]).
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Fig. 5.13. Examples of block-structured grids

This section presents the grid generation technique based on variational
grid generation method of Ivanenko [39]. The grid is considered as a dis-
crete version of a mapping {u(&,n),v(&,n)}, where the pair {u, v} minimizes
a Dirichlet functional [39] (5.12).

The discrete version of the solution is the so called adaptive-harmonic grid
characterized by small cells in the regions of large gradients of the control
function f(u,v) (see, for example, Fig. 5.14). The grid can be also interpreted
as such a mapping from the unit square onto the parametric domain that the
corresponding mapping of the surface f(u,v) onto the parametric domain is
harmonic. Further theoretical details can be found in [39].

Let us introduce the following data structure suitable for either regular
or block-structured grids. Co(N, k) defines correspondence between the local
and the global node numbers.
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Fig. 5.14a. Example of adaptive-harmonic grid

Co(N,k)=n n=1,...,N, N=1,...,N. k=1,234,  (5.14)

where n is a global node number, N, is a total number of grid nodes, N is
an element number, N, is a number of elements, k is a local node number
in the element. The cell vertices are numbered from 1 to 4 in the clockwise
direction. Each vertex is associated with a triangle: vertex 1 with A4qs, vertex
2 with Aja3, vertex 3 with Asgy, and vertex 4 with Asy;. It can be easily
demonstrated that 245_1 g x+1 = Jr [39], where A denotes the area of the
corresponding triangle and Ji, k = 1,2,3,4 is the Jacobian of the mapping
given by

Tk = (ug—1 — ug) (Vg1 — V) — (Uk+1 — wk) (V=1 — Vk), (5.15)
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Fig. 5.14b. Control function

where Kk —1=4ifk=1and k+1=11if £k = 4. An example of such data
structure is shown in Fig. 5.15.

The function N’(n,d) defines the correspondence between the grid node
n, and its neighbors in the d direction, d € {left,right,up,down}. Functional
(5.12) is approximated by a discrete functional as follows

4
I~1"= Zi[Fk}N. (5.16)

where

Dy [1 + (fu)i] + Dy [1 + (fv)i] + 2D3(fu)k(fv)k
e [1+ (fu)i + (fo)i]

b

[ME

Dy = - 2 _ 2
1= (ur—1 Uk)2 + (uk+1 Ukl , (5.17)
Dy = (vg—1 — v)* + (Vg1 — k)%,
(ug—1 — ug) (V=1 — vg) + (Up+1 — uk) (Ve+1 — Vk),
(

Ug—1 — Ug) (V1 — Vk) — (Upg1 — U ) (V-1 — Vk)-

Jk
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Fig. 5.15. Correspondence of node numbers for a mapping of the unit square in
the (&,7n) plane on to the quadrilateral cell 1 of the grid in the (u,v) plane

Here (fu)r and (f,)r are the derivatives of the control function in the v and
v direction, respectively, computed in the node number k& of the cell number
N. The convexity of the grid cells requires that the Jacobian be positive [37],
ie.,

[Jeln >0 k=1,2,3,4 N=1,...,N, (5.18)

The discrete functional (5.16) is minimized numerically using an initial
grid as the first iteration. The minimization is arranged in such a way that
the minimum is attained on a grid composed of convex quadrilaterals. This
property improves the stability of the grid generation procedure. Moreover, it
can be shown that if the set of convex grids corresponding to the mapping is
not empty, the system of algebraic equations
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Ih
Ru - 27 - 0,
ot (5.19)
R’U - % = 07

has at least one solution which is a convex grid.
Suppose the grid at the [*! step of the iteration is determined, the grid at
the (I+1)*" step is computed using the quasi-Newtonian procedure as follows:

OR OR,\ (OR, OR, OR,OR,\ '
+1 _ 1 o v U U v v U
Un =t =T <Ru Ovy, Ry Ovy, ) <0un v,  Ou, Ovy, ) ’

OR., am) <8Ru OR, OR,OR, ) -t

(5.20)

Y Ouy, — R ou, ou,, Ov, - ou, Ov,

ol =0l — 7 (R
where 7 is the iteration parameter, which is chosen so that the grid remains
convex. At each step, condition (5.18) is verified. If (5.18) is not satisfied,
then 7 is reduced by half and the grid at the (I + 1) step is re-computed.
The derivation of the computational formulas for (5.20) suitable for computer
programming is given in the Appendix.

In the case of the tool path generation, the gradient of the control function
f corresponds to the machining error (scallop) between the tool tracks. Since
the tool path is a discrete set of points the derivatives of the control func-
tion fy,(u,v) and f,(u,v) for a given surface can not be explicitly evaluated.
Therefore, these derivatives are generated “artificially” as follows. Initially,
(fu)n and (fy)n, are set to 0. Next,

(f )l+1 _ (fu)iz + >‘+ if Su(n) > Oa
wn (fu)l, — A_ otherwise, 5 o1
( )l+1 _ (fv)iz + >‘+ if Sv(n) > Oa ( . )
Fo = (o)L, — A_ otherwise,

where Ay and A_ are the prescribed increment and decrement, respectively,
and s,(n) and s,(n) are the scallop estimates evaluated at the node n as
follows:

ul(n) = D(n,N'(n,d)) — T(n,N'(n,d
)= iy POV O TN D,
sp(n)= max [D(n,N'(n,d)) — T(n,N'(n,d))]. '
de{up,down}
where D(n,m) is the distance between nodes n and m given by
D(n,m) = |S(tn,vn) — S(Um, vm)|. (5.23)

T'(n,m) is an estimate of the machining strip width calculated at the midpoint
S(u" + Uy, Up +vm)
2 ’ 2 '
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The grid generation algorithm consists of the following steps:

1. Generate the initial convex grid. The grid is generated manually or by
interpolating. Note that interpolation may generate a grid with the nodes
outside the boundary of the region. In that case, several iterations can be
performed by the classic Brackbill’s and Saltzman’s method [15] which will
move the nodes back inside the region. The initial grid should not satisfy the
scallop constraints. If the grid satisfies the constraints for every node then the
adaptation is not necessary. On the other hand, it means that the number of
nodes has been overestimated and should be reduced. The initial grid size (I,
rows and /. columns) can be estimated as follows

Wy
lr_[Qr-"

Wy
lc—’VQT-‘7

where W,, and W,, are the surface dimensions in the u and v directions, re-
spectively and r is the radius of the cutting tool.

2. Adapt the grid by minimizing the Dirichlet functional until a prescribed
number of iterations has been performed.

3. Refine the grid by insering additional nodes. If the grid does not satisfy
the scallop height constraint, more grid points are needed. For a structured
grid having [, rows and [. columns, the numbers of rows and columns at the
next step are estimated as follows

(5.24)

Maxi <;<i, (Z?‘;—f [D (nij,nij+1) — T (ni, m,j+1)])
l?ew — lr +
2r
e _ maxi<;<i, (Z'li;_ll [D (nij,mi41,5) — T(ni,jynm,j)])
new — ¢ +
¢ 2r ’

(5.25)

where n; ; is the grid node on row 4 and column j. For block-structured grid,
the grid is first partitioned into smaller blocks of structured grids and the
refinement is performed for each block. For column insertion, the grid is par-
titioned vertically as shown in Fig. 5.16(b) whereas for row insertion, the
grid is partitioned horizontally as shown in Fig. 5.16(c) (see also Fig. 5.23 in
Example 5.6).

4. Adapt the grid by minimizing the Dirichlet functional until all the grid
points satisfy the scallop constraint or until a prescribed number of iterations
has been performed.

5. If the scallop constraint has not been satisfied for some points, goto the
refinement step 3.

The algorithm converges faster and exhibits more stability if the third term
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Fig. 5.16. Partitioning of block-structured grid for refinement

in the nominator of functional (5.12) is neglected. In order to interpret this
term geometrically for each Fy in (5.16), consider two vectors from local node
k to local nodes k — 1 and k + 1 given by

Vik—1 = [Uk — Uk—1,Vk — Vg—1],

(5.26)
Vie k1 = [Uk — Ukt1, Uk — Vkt1)-

Clearly, Vi p—1 - Vigt1 = (up — up—1)(ur — upg1) + (Ve — Ve—1)(Vk — Viy1)
= D3 = |V k—1||VE k+1] cos ¥, where 9 is the angle between the two vectors.
Therefore

D D
= (14 (f)F] + =2 [1+ (F)2] + 20k fo)k cos
Fk; =-C Jk £ 1 ’ (527)
? [1 + (fu)% + (f'u)i]é
where ¢ = |vg k—1||Vkk+1|- Therefore, omitting the last term leads to an

adaptation with less impact on the angles between coordinate lines. Finally,
recall that convexity of the cells is provided by an appropriate 7 in (6).

5.5 Space-Filling Curve Generation on Block Structured
Grid

Space-filling curve tool paths on block-structured grids can be generated by
imposing one extra requirement on the grid generation algorithm presented
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in the previous section. At each refinement stage, the size of any sub-block of
the grid partitioned vertically or horizontally must be even. This is a sufficient
condition for the existing of Hamiltonian path, i.e., the space-filling curve on
the block structured grid. The proof of this claim is quite straightforward
since all nodes in the blocks of the even size can all be covered by small
rectangular circuits. The merging stage of the space-filling curve generation
algorithm then merges all small circuits into one bigger circuit. Figure 5.17
illustrates the space-filling curve generation on block structured grid. First,
a vertex is placed at the center of each grid cell (Fig. 5.17(b)). Each vertex
is then connected to the vertices of the neighbor cells (Fig. 5.17(c)). Finally,
small circuits are created by constructing small rectangular cyclic paths over
every 4 adjacent vertices, i.e, by connecting the vertices on even rows and
columns with the vertices on odd rows and columns, respectively, as shown
in Fig. 5.18. Merging of small circuits to create the space-filling curve is then
performed (see Sect. 4.3.2).

The combination of space-filling curve and the grid generation techniques
allows construction of tool paths on surfaces with complex irregular bound-
aries, cuts off, pockets, islands, etc. Examples are given in the next section.

5.6 Examples and Discussion

This section presents a variety of examples that demonstrate the efficiency
and advantages of the use of curvilinear grid in tool path generation.

Ezxample 5.5. This example demonstrates the use of variational grid gener-
ation technique to overcome the inefficiency of tool path generation by the
conventional isoparametric method. Consider a unimodal surface with an ex-
ponential peak along a line in the parametric domain (u,v). The surface is
given by (see Fig. 5.19)

z = 100u — 50,
y = 1000 — 50, (5.28)
z = 10exp(—40(2u — 0.5 — ’U)Q) — 15.

A curvilinear grid constructed for a flat-end tool with radius 3 mm and the
surface tolerance of 0.1 mm is shown in Fig. 5.20. The comparison of the
zigzag and SFC tool paths generated by traditional isoparametric method
and curvilinear grid method is presented in Table 5.4. The zigzag tool path
based on the adaptive grid is shown in Fig. 5.21(c). The length of the tool
path is 2558.28 mm. The SFC tool path requires a basic (isoparametric) grid
with a small spatial step. Consequently it leads to a SFC of about 3066.87
mm (Fig. 5.21(b)). Finally, the curvilinear grid adapted to the zones where
the small distance between the tracks is required leads to a shorter path of
about 2519.88 mm (Fig. 5.21(d)). The length of the zigzag and SFC tool paths
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Fig. 5.17. Undirected graph construction for SFC tool path generation
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Fig. 5.18. Covering of grid in Fig. 5.17 by small circuits

based on the adaptive grid are shorter by 45.76% and 17.84%, respectively,
when compared with the zigzag and SFC based on isoparametric tool path
method (Fig. 5.21).

z 10

“
TSOCS
SOCSOSS
“‘ <SS ‘-
‘l SSS
40

Fig. 5.19. Unimodal surface with exponential peak along a line

The SFC tool path is better than the standard zigzag path since it turns in
the optimal direction, that is, in the direction which maximizes the machining
strip. Furthermore, a step between two adjusted tracks on the rectangular grid
is set to the minimal step ensuring the required scallop along the two tracks.
The curvilinear grid makes it possible to vary the distance between the tracks
making the step small only where necessary. Therefore, the SFC constructed
within a new basic grid leads to better results.
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Fig. 5.20. Curvilinear grid adapted to the unimodal surface with exponential peak
along a line in (u,v) domain (a) and workpiece coordinate system (b)
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Fig. 5.21. (a) isoparametric tool path, (b) SFC tool path from two isoparametric
tool paths, (c) zigzag tool path from adaptive grid, (d) SFC tool path from adaptive
grid
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Table 5.4. Comparison of tool paths based on variational grid generation techniques
versus the isoparametric tool path scheme

Total path length (mm)

Method used for constructing grid Vertical zigzag SFC
Overlaying of two isoparametric tool paths 4716.91 3066.87
Curvilinear grid generation 2557.74 2508.25

The plots of convergence rates are shown in Fig. 5.22. Note that the con-
vergence rate of the algorithm increases a little when the third term of the nu-
merator in Direchlet functional (5.12) is dropped. Although, the improvement
in convergence rate is not evidently large, the complexity of the algorithm is
reduced by eliminating this third term. Consequently, the grid requires less
amount of time to compute.

Example 5.6. This example demonstrates the use of curvilinear grid and SFC
to construct tool paths to machine surfaces with complex irregular boundaries,
cuts off, and islands. Consider a two-bell surface given by (4.8) in Example
4.3. The surface is to be machined only in the area within the boundaries
shown in Fig. 5.24(a) in (u,v) domain. The initial grid and the first refined
grid are depicted in Fig. 5.23. The final grid and SFC tool path are shown in
Figs. 5.24 and 5.25, respectively. The simulaton of the cutting in Unigraphics
18 for a flat-end tool with radius 3 mm and the surface tolerance of 0.05 mm
is shown in Fig. 5.26. The plots of convergence rates are shown in Fig. 5.27.
The convergence rate of the algorithm also increases a little when the third
term of the numerator in Direchlet functional (5.12) is dropped.

Ezample 5.7. Consider a single blade of an impeller depicted in Fig. 5.28(a).
This single blade is described by parametric equations. When the blade is
broken (see Fig. 5.28(b)), it is sometimes possible to fill the broken blade
with a new material and mill only the filled part. Since this part of the blade
contains irregular boundaries in (u,v) domain, the traditional isoparametric
method cannot be used to construct the tool path. Applying the grid gener-
ation method on this parametric surface with complex irregular boundaries,
the final curvilinear grid adapted to the shape of the broken blade is shown in
Fig. 5.29 (parametric domain) and Fig. 5.30 (workpiece coordinates). The grid
is adapted to the surface that is to be milled using ball-end tool of radius 5
mm and machined surface tolerance of 0.05 mm. The calculation of machining
strip width for ball-end mill is given in Sect. 3.2. The SFC tool path is shown
in Fig. 5.31 (parametric domain) and Fig. 5.32 (workpiece coordinates). The
virtual cutting with the SFC tool path is shown in Fig. 5.33.
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Fig. 5.23. Grid refinement: (a) initial grid, (b) grid after first refinement
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Fig. 5.24a. Curvilinear grid adapted to the surface in Example 5.6 in (u,v) domain

Appendix: Derivation of Computational Formulas for
Adaptive-Harmonic Grid Generation

The minimization of the discrete functional (5.16) requires computation of Fj,
and its derivatives. Each computation of F} involves three grid nodes on the
triangle Ag_1 % x+1. For conciseness, node k — 1, k and k + 1 are denoted by
a, b and c, respectively. F} is denoted by F' and is now expressed as

F=— 2
= (529)

where
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Fig. 5.24b. Curvilinear grid adapted to the surface in Example 5.6 in workpiece
coordinate system

X — D, [1 + (fu)ﬂ + Dy [1 + (fv)i] +2D3(fu)k(fv)

k
1+ (fu)2 + (2 ’
Y = (ug — up)(ve — 0p) — (e — up) (va — p), (5.30)
Dy = (uq — ub)2 + (ue — Ub)27

Dy = (vy — vp)? + (ve — vp)?,
)

D3 = (ug — up)(vg — vp) + (ue — up)(ve — vp).

The formulas for the derivatives of F' can then be expressed as the derivatives
of two functions X and Y and are given below
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Fig. 5.25a. SFC tool path for the surface in Example 5.6 in (u,v) domain

F,

F,

Fuu:

Fvv:

Fuv:

(5.31)

)

)

XY - XY, X, -FY,
Y2 N Y ’
XY - XY, X,—-FY,
Y2 Yy
(Xuw — FuY, — FY,,)Y — (X, — FY,)Y,
Y2
Xuw — 2F,Y, — FYy,
Y )
(Xpw — FY, — FY,,)Y — (X, — FY,)Y,
Y2
_ Xm; - 2E1Yv - FY’UU
= % ,
(Xuw — FuYy — FY,,)Y — (X, — FY,)Y,
Y2

7Xuv_Fqu_FuYU_FYuv

Y
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Fig. 5.25b. SFC tool path for the surface in Example 5.6 in workpiece coordinate
system

The derivatives at node a are obtained by substituting u by u, and v by v,
and are given by

Y, =v. — Uy, Y, =up — cs Yiu = 0, Yoo = 07 Yo = 0,
X = [ ( ) ](ua_ub)+( )k(fv)k(va_vb)
[+ (fu)i + (F)7)
x, — L1 (FE] (v = v0) + (Fu(F)ea — )
L4 (fu)? + (f)3)? (5.32)
Xus =2 1+ (fu)7 X =2 1+ (fo)3 .
[+ (fu)i + (f0)])? [+ (fu)i + (f0)i]?
oy — 2 Udelfe
[+ (fu)f + (f)7]?

The derivatives at node b are obtained by substituting v by u; and v by v
and are given by



5.6 Examples and Discussion 137

Fig. 5.26. Simulation result of five-axis machining with SFC tool path in Unigraph-
ics 18 for the surface in Example 5.6

Yy =vg — Ve, Yy, = ue — Uq Yuu = 0, Yoo = 0, Yuo = 0,
[1 + (fu)%] (2Ub — Ug — uc) + (fu)k(fv)k:(2vb — Vg — ’Uc)
1+ (fu)i + (fo)R]?

[1 + (f'v)i] (21}1) — Vg — 'Uc) + (fu)k(fv)k(zub — Uqg — uc)

X, =2

)

X, =2 1 |
[+ (Fu)} + (f)7)? (539
Xyu =4 1+(fu)% X, =4 1+(fv)z )
L+ L2+ () L+ (G + (R
Xy =4 (fu)k(fo)r

L+ ()2 + (F)2]7

Finally, the derivatives at node ¢ are obtained by substituting v by u. and v
by v. and are given by
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@ (b)

Fig. 5.28. (a) a full single blade of an impeller, (b) part of a single blade

Yy =y — Va, Yy = g — Up, Yiu = 0 Yoo = 0; Yo = 0,

Xu:2[1+(fu> ](uc_ub) (fu)(fo)r(ve — vp)
( v

[+ (f)2 + ()] ’
[14 (£)2] (ve —w) + (fu)i(
i

[1+ (fu)i + (fo)

f
]

)i (ue — up)

9y

<

X, =2

NJ=

(5.34)

qu:2 1+(fu)k - XM,ZQ 1+(fv)% -,
[+ (fu)i + (f0)])? [+ (fu)i + (F0)7)?

X, g Guelide

1+ (fu2+ (FR]F

For the cell number N, N € {1,..., N, } and triangle number k, k € {1,2, 3,4},
the values of F' and its derivatives on u, and v, are computed with the use
of (5.31) and (5.32). The computed values are then added to the appropriate
array elements

Irlxlew I old + F
[Ru]n,new = [ u]n,old + Fu7
[ v]mnew = [Rv]n,old + Fv7

5.35
[Ruu n,new — [Ruu]n,old + Fuuv ( )

]
[va]n,new = [va]n,old + Fvva

[Ruv]n,new = [Ruv]n,old + Fuva
where n = Co(N, k —1).
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Fig. 5.30. Curvilinear grid adapted to part of a surface of the blade in workpiece

coordinate system
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Fig. 5.32. SFC tool path for milling of the broken blade in workpiece coordinate
system
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Fig. 5.33. Virtual cutting of the blade in Unigraphics 18

Similarly for node b, the correspondence between local and global node
number is given by n = Co(N, k) and the values of F' and its derivatives
on up and v, are computed with the use of (5.31) and (5.33). Finally, for
node ¢, the correspondence between local and global node number is given by
n = Co(N,k + 1) and the values of F' and its derivatives on u. and v, are
computed with the use of (5.31) and (5.34).
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6

Optimization of Rotations

6.1 Introduction

Given the general optimization context given in the preceding chapters, we
will now analyze a particular but important problem of sequencing the ma-
chine rotations. There exists a variety of research focused on the orientation
of the cutting tool. The survey of which is given in Chap. 1. However, the
accuracy is also affected by the way the orientations are being achieved. In
other words, the kinematics error depends not only on the characteristics of
the surface versus the tool orientation but on the previous rotations as well.
The “history” of rotations becomes in particular important in the vicinity of
the stationary points of the desired surface where the tool could make abrupt
changes in the orientation. However, such analysis is not provided by commer-
cial CAD/CAM systems such as Unigraphics, EdgeCam, Vericut, etc. Besides,
only a few recent research papers deal with the subject.

Recall that a stationary point on a surface is either a maximum or a
minimum point or a saddle point. Mathematically, it means that if (us,vs) is
the stationary point then

a8
ou

0

== = 0. (6.1)

(ustS)

(“sv")S)

Jung et al. [4] analyze the sequence of rotations to minimize the number
of the phase reverse steps at discontinuities of the first derivative of the sur-
face (corners, etc.). A method of avoiding singularities has been presented by
Affouard et al. [1]. An algorithm based on global optimization with regard to
feasible rotations of the machine was proposed in [11] and developed in [9].

The optimization is based on the idea that there exist several combina-
tions of rotation angles to establish the required orientation. Therefore, one
can formulate a problem of finding a set of the rotation angles sequenced in
such a way that a certain cost function (for instance the kinematics error) is
reduced. The problem can be solved by the shortest path optimization with
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regard to the feasible rotations found from the kinematics equations. The cost
function can be represented in terms of either the kinematics error or the an-
gle variation. Such optimization increases the accuracy of machining and is
the most appropriate in the case of a rough cut.

The shortest path procedure applies to either the entire set of trajectories
or to only the most inappropriate overcuts inside the workpiece. In the latest
case the algorithm generates an interesting family of solutions characterized
by smaller overcuts obtained at the expense of increased undercuts.

Note that a fine cut of a smooth surface employing small spatial and
angular steps may not demonstrate the detrimental effects near the stationary
points. However, a rough cut characterized by large gradients could produce
considerable errors.

The large gradients lead to sharp angular jumps and it is because of the
sharp angular jumps that the machine produces the loop-like trajectories of
the tool. Moving along such trajectories could destroy the workpiece and even
lead to collisions with the machine parts.

10—

Stationary point

) : \

-40

-20

20

40

Fig. 6.1. An experimental part surface S (P is the machined area)
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Our introductory example presents a cut performed for a part surface S;
(Fig. 6.1) on HERMLE UWF902H. Figure 6.2 shows a large loop in the case of
machining a curve belonging to the surface located close to a stationary point.
Clearly, linearization of the tool path is not always applicable. It could be even
unsafe to assume the linear trajectories, since moving the tool along the actual
loop-like trajectories could destroy the workpiece and lead to collisions with
the machine parts.

Figure 6.3 shows that changing the sequence of the rotations leads to a
much lesser loop and consequently to a significant reduction of the kinematics
error. Our second example demonstrates a similar trajectory when machining
a single curve belonging to surface Sy (Fig. 6.4) on MAHO 600E.

:

=

jr‘_‘lr““l—W

(b)

Fig. 6.2. (a) conventional tool path simulated by the virtual machine, (b) surface
machined by HERMLE UWF902H
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atninln

(b)

Fig. 6.3. (a) optimized tool path simulated by the virtual milling machine, (b)
optimized surface machined by HERMLE UWF902H

Figure 6.5 shows that as opposed to a linearized version of the tool path,
the real machining produces a loop-like trajectory induced by the large angu-
lar steps. Such trajectories could be repaired (see Fig. 6.6) by adjusting the
rotation angles in such a way that the kinematics error is minimized.

In this chapter, we will also introduce a point inserting algorithm which
can be interpreted as an angular interpolation scheme in the areas of large
kinematics errors. The additional positions are created by finding numerically
a grid of points uniformly distributed in the angular space.

The procedures are in particular beneficial for high speed milling charac-
terized by small spatial steps. In this case a further decrease of the step size
leads to a substantial increase in the machining time due to delays in the
servo-update rate.
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0

40

Fig. 6.4. Nonlinearity of the tool path due to rotations in the workpiece coordinates
(C1), the experimental cut (C-)

Finally, there is always a limit of the angular speed of specific machine
parts. As a result, a shorter tool path with many turns may require more time
than a longer tool path with fewer turns [2, 3]. If the maximum angular speed
is exceeded, the controller detects this event and reduces the angular speed
increasing the machining time. The angle correction algorithms minimize the
total angle variation, thus, reducing the probability of such an event.

6.2 Kinematics Error and Angle Variation

Let WP, .1 (t) € S(u,v) be a curve between W, and W11 extracted from the
surface in such a way that it represents a desired tool trajectory between I,
and IT, 11 (see also Sect. 3.4). We define the total error as a sum of deviations

of WP ., (t) from the actual trajectories W), ,11(t). The total error is given
by
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Fig. 6.5. (a) a loop-like trajectory induced by large gradients of the rotation angles
damages the workpiece, (b) the trajectory simulated by the virtual milling machine
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(b)

Fig. 6.6. (a) the “repaired” trajectory, (b) the repaired trajectory simulated by the
virtual milling machine
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1
2

€= Z [/01 (W1 () = Wp,p+1(t)|2 dt} ;

1
2 2
N Z [/0 [(wgzﬂrl(t) - xp,erl(t)) + (y£p+1(t) - yp’p+1(t)> (62)
P
D 2 2
+ (Zppi1(t) = zppra (1)) ] dt
The total error above is approximated as follows:
L
1 d 2 2
=X 5 (B i)+ (s, ~ e,
Pt L= (6.3)

1
2 2
D
+ (Zp,p-s-l,lp - ZPJ)HJP) ” )

where L, is a number of the sampling points between W, and Wy ;.

Remark 6.1. The definitions above can be simplified by replacing the desired
trajectories WP || by linear trajectories given by Wk, | (t) = tWpi1 + (1 —
t)W,, although care should be taken when using this option. As opposed to the
machine coordinates M, the trajectories in the workpiece coordinates W are
not linear. However, we may use the linear trajectories as a reference, noting
that e = |[WP —W| < [|[WP — WL + |[WE — W||, where L is a piecewise
linear approximation of S. Hence, when the points are close enough, the error
is approximately € ~ e;, = [|[WL — W||. Note that if the orientation of the
tool is fixed through the entire cut, then €7, = 0. In other words, the three-
axis mode leads to e, = 0 since all the trajectories become linear. Therefore,
minimization with regard to e€; must be subjected to constraints specifying
the orientations of the tool. Finally, the linearization is the simplest option
which can be used even when the actual surface is not known, for instance,
for a given G-code. Actually, the desired trajectory WP can be extracted
from the surface by a variety of ways, for example, using interpolation in the
parametric space, the geodesic curves, etc. However, the results presented in
this chapter are valid irrespectively of the method to obtain WP. Finally,

the error induced by linear approximation depends on the maximum distance
2117 D

h between the CC points as k”W”ChQ’ where k is a constant (see, for
instance, [10]).

Let us now introduce the total angle variation. Consider two positions W,
and Wy41. The corresponding kinematics error between the two positions is
then defined by

1 3
2
€pp+1 = [/0 [sz,)erl(t) - Wp’p+1(t)] dt| . (6.4)
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Clearly, €ppr1 = €(Aapprr, Abppr1, Alppy1) where Al = WP —
W, p+1| £ is the spatial step in the workpiece coordinate system. Furthermore,
Adappi1 = appr1(Alppr1) = apy1 — ap and Abypir = by py1(Alypia) =
bp+1 — bp are the angular steps. Machining experiments show that the angular
steps are often more important than the spatial step. In particular, during a
rough cut, decreasing the angular steps leads to a larger decrease in the error
than a decrease in the spatial step. The angle variation between positions W,
and Wy is given by:

' 8app+1)2 <abpp+1>2
c = —— | 4+ | —=—| dt 6.5
p,p+1 /O \/< at (91] ( )

Assuming that a,,1 and b, ,y1 are changing linearly, yields c,py1 =
V/(Aappi1)? + (Aby pi1)?. The total angle variation across the entire tool
path is then simply given by

€= Z Cpp+1 = Z \/(Aap,p+1)2 + (Abppt1)?. (6.6)
P P

Note that there often exists a neighborhood of the CL point where
one of the angles changes faster than another one. In this case €p,41 ~
O ((Aappt1)™) or €y pr1 ~ O ((Aby pt1)™?), where my and mgy depend on
the surface. In this case, minimization of the total angle variation produces
excellent results.

Finally, the case of a rough cut often requires to differentiate between the
overcut and undercut error. When too much material is removed from the
part, it is said to be gouged or overcut. The undercut is a situation when
not enough material is removed. For simplicity, we define the undercut and
overcut error as follows

1 D 2 D
_ (Wp,p+1 - WP,LDJrl) if Zp,p+1(t) < Zp,erl(t)
U= Xp:/o {O otherwise dt, (6.7)

! D 2D
= (Wope1 = Wop1)™ i 25511 (8) > 2pp41(2)
- ;/0 {0 otherwise . (6.8)

The corresponding undercut and overcut angle variation are then defined by

cy = ZCU7p7p+1, (69)
p

o= Coppt1; (6.10)
P

where

— 2 2AU
CUp,p+1 = \/(Aap7p+1) + Abp,p+1) Ap7p+1’
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CO,pp+1 = \/(Aap,p+1)2 + Abp,p+1)2A;?,p+1a
1 .
AU _ Lif Z£p+1(t) < ZP’PJrl(t) dt
pptl o | 0otherwise ’

o /1 { Lif Z£p+1(t) > Zpp+1(t) dt

A = .
pptl 0 otherwise

Clearly, € = €p + €y and ¢ = co + ¢y Since overcut is not repairable, reducing
the overcut error is often more important than reducing the undercut or even
the total error.

6.3 Optimization Problem
Let us formulate the following minimization problem:
mAin(erU + woeo), (6.11)

where A is a set of possible rotations and wy, wo the weighting coefficients
representing the importance of the undercut and overcut, respectively. For
instance, if wy = wo = 1, then the total kinematics error will be minimized.
If wy =0, wo = 1, only kinematics errors along the overcut will be minimized.
If wy = 0.1, wo = 1.0, then the kinematics error is minimized with regard
to both the undercut and overcut, but the importance of the overcut is 10
times larger than that of the undercut. The weights may also depend on the
kinematics error itself. For example, one may establish the following rule “if
€ < € then wp = 1, wy = 0 else wp = wy = 17, where € is a prescribed
threshold. In other words, if the total kinematics error is not too large, we
minimize only the overcut, however if the kinematics error is more than a
prescribed € then the minimization applies to the total kinematics error.

How to evaluate set A? Without loss of generality, consider the configura-
tion depicted in Fig. 2.4. Recall that the machine movements prescribed by a
sequence of the machine commands are executed simultaneously allowing for
five degrees of freedom of the tool. The goal of the simultaneous movements
is transporting the tool tip to location W = (x4, Yw, 2w) in the workpiece
coordinate system or M = (&, Ym, 2m) in the machine coordinate systems
and establishing orientation & = (a,b). In accordance with the reference co-
ordinate system in Fig. 2.4(b), the angle a is between the X;-axis and the
projection of the orientation vector onto the X;-Y; plane and the positive di-
rection of the X;-axis. The angle b is between the projection of the orientation
vector onto the X1-Z; plane and the positive direction of the X;-axis.

The above makes it possible to represent R in terms of the components of
the orientation vector I = (I, I,,I)). First of all, note that the tool orienta-
tion vector in Oy is (0,0, 1). In other words, the rotations must be performed



6.3 Optimization Problem 161

in such a way that the tool orientation vector becomes collinear with the Z4-
axis. Observe that the resulting coordinate transformation depends on the
zero position R = (0,0) which can assigned by a special machine command.
It is not hard to see clearly that at this configuration only b = 0 is important.
Therefore, without loss of generality, we assign /8 = (0,0) to the rightmost
position of the tilt table shown in Fig. 2.4(a).

From (2.4), the equation relating the two rotation angles R = (a,b) and
the tool orientation vector I is given by

I, = cos(a) cos(d),

I, = sin(a) cos(b), (6.12)
I, = —sin(b).

Consider a solution of the above system given by

tan—! % if I, >0 and I, >0,

Gbase = & tan™! % 4+ if I, <0, (6.13)
tan—! % + 27 otherwise,

bhase = —sin I,

Given apase and bpagse, it is not hard to construct a full set of four solutions
given by (see the four solutions in Fig. 6.7)

A= {(abas'37 bbase)7 (abase - 271—7 bbase)a
(abase -, _bbase - 7T)7 (abase + , _bbase — 71')} (614)

Similar solutions can be established for other types of the machine kine-
matics such as, the 1-1 machine and the 0-2 machine (see Chap. 2).

Note that the number of solutions depends on the number of the rotational
degrees of freedom d as O(2%). For example, for a six-axis machine we will
have eight solutions, however, some solutions might not be achievable due to
the machine limits.

Furthermore, it is clear that the problem can be solved by shortest path
optimization. The corresponding graph is constructed in such a way that each
position II, is characterized by 4 graph nodes A,, where the edge between
the nodes represents the kinematics error or the angle variation (see Fig. 6.8).
Therefore, such minimization could be performed by a conventional so-called
greedy discrete algorithm.

The above shortest path scheme is visualized in Fig. 6.9 and Fig. 6.10,
where [ denotes a coordinate along the tool path. The 4 options are represented
by 4 trajectories in the angular space (a, b). It is plain that the trajectories are
close when b is near —m /2. In this case it is possible to change the trajectory
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Fig. 6.7. The set of feasible rotations

by considering the shortest path producing minimal error. Figure 6.10 shows
that the optimization may only be required near the stationary points, namely,
when b is close to —7/2 and a is “jumping” from 0 to 7 or from 7/2 to 37/2,
etc. Consequently, the computational load could be substantially reduced by
introducing an “optimization windows” in the neighborhood of the stationary
points. This idea discussed in details in [8].

6.4 Optimization of Rotations: Examples and Practical
Machining

FEzample 6.1. A trajectory passing through a stationary point - across
or around the hill

Consider two successive points IT; = (W71,R;) and I, = (Wa,Ra). Let
the average space step s = |[W; — Wh| be 1 mm. Consider a fixed Ry =
(a1,b1) = (0,—85°) and a varying Ry € [120,180] x [—60, —80]. :; and Rq
represent a possible combination of the rotation angles in the neighborhood
of a stationary point (see Fig. 6.11).

Consider a linear trajectory T and the actual trajectories Tucross, Laround
corresponding to Ry = (ag,b2) = (—10°,-95°) and M2 pase = (A2 bases
babase) = (170,—85), respectively. Note that as = a2 pase — 180°, by =
—b2 base — 180°. Let the distance between the midpoint of the linear trajec-
tory and the center of the a-rotation (A-axis) r, be 10 mm. Let us compute
the corresponding trajectory and the kinematics error. We have €,cp0ss = 1.49



6.4 Optimization of Rotations: Examples and Practical Machining 163

bbase.3 /
\, /
a4
— O3 =7\
abase.l \_th} =T |
b N

base,|

\
\—Qu&ﬁ I //‘/,

K

/ 2ﬂ-_q2 3 \“!

B,

\ bbase. 3

\

Fig. 6.8. A graph corresponding to the set of the feasible rotations
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Fig. 6.9. Trajectories corresponding to (1) bhase and (2) m — bnase and the optimized

trajectory composed from (1) and (2) (bold line), [ is the coordinate along the tool
path
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Fig. 6.10. Trajectories corresponding to (1) abase (2) abase — ™ (3) abase + 7 (4)
Gbase — 21 and the optimized trajectory (bold line) composed from the trajectories

(1) (2) and (4)

mm, €xround = 8.89 mm. In words, moving “across the hill” by Ty oss 1S better
than T),.ouna - “around the hill”.

However, it is not always the case. A small r, may entail another choice.
For instance, r,= 0.5 mm produces €around = 0.71 mm, €xcr0ss = 1.59 mm.
Therefore, when the cutter location point is close to the center of the a-
rotations, the tool should move “around the hill”.

Given an average space step, one could evaluate the kinematics error for
varying r,. Such evaluation makes it possible to pre-compute the movements
of the tool and to reduce the computational load spent on evaluating the error.
Figure 6.12 shows the kinematics error corresponding to Tacross and Taround
as functions of as and by for 7, = 0.1 mm, 5 mm and 20 mm, respectively.
Clearly, 7, = 0.1 mm requires Tayoung for any angle, r, = 20 mm entails Tycross
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Across the hill

N

\ R

Around the hill

Fig. 6.11. Around or across the hill?

whereas r, = 5 mm requires a further evaluation of the kinematics error for
each particular pair (a,b).

Such pre-computing performed for a set of prescribed spatial steps could
constitute an optimization strategy for a practical five-axis machining. For
instance, minimization of the kinematics error of the milling machine MAHO
600E for s = 1 mm requires Tyround if 7o € [0,5] mm and Tyeross if 74 > 10
mm. However, when r, € (5,10) mm, the decision can not be pre-computed
and shall be made by evaluating ekirematic - explicitly.

Ezample 6.2. Optimization with regard to the kinematics error

We have shown that loops due to large variations in the rotation angles
can be almost entirely eliminated for a trajectory having a single stationary
point. Table 6.1 shows the performance of the method for an entire surface
Sy (Fig. 6.1) machined on MAHO 600E.

The optimization was performed without discriminating between ey and
€o. Consider Table 6.1. Clearly, minimizing the total angle variation leads
to minimizing the total kinematics error. On the contrary, an increase of the
number of the CL points does not necessarily lead to a decrease of the error
(see the lines 40x20 and 100x20) since the grids are not nested (the points
of the coarse grid do not necessarily belong to the fine grid).
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Fig. 6.12. The kinematic error as a function of a2 and b2 for rotation radius r, =
0.1 mm (a), 5 mm (b) and 20 mm (c)
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Ezample 6.3. Optimization of the tool path with regard to overcut
and undercut

A very useful optimization can be performed when the undercuts and
overcuts are differentiated. In order to detect them numerically every trajec-
tory Wp pt1(t) is subdivided by a certain number of points t;. At every point
Wy i1k = (Xppt+1,ks Yp.pt1.ks Zpp+1,k) We find the corresponding parametric
coordinates (uy,vy) by solving numerically the system

Tppt1k = Ts(u,v)

(6.15)
Ypp+1,k = Ys(u,v)

Note that for explicit surfaces the above equations are linear and, therefore,
a numerical solution is not required. Now, given the solution (ug,vy), we
calculate zg (uy, vy) for every k. Next, we calculate the angle variations cy p pt1
and co p p+1 for every p and for every graph node. Finally, we use the weights
wo and wy and apply the Dijkstra’s shortest path algorithm (see, for instance,
12)).

Consider machining surface S; on HERMLE UWF902H. Let wo = 1,
wy = 0 that is, the minimization is performed only with regard to the over-
cuts. Figure 6.13a displays the conventional tool path with overcuts (the thick
curves). Figure 6.13b shows how minimization of the total error eliminates the
loops located at the right side of the workpiece. However, minimization of only
the overcut error produces an entirely different path. The overcut loops at the
boundary of the workpiece have been replaced by large but harmless under-
cuts (see Fig. 6.13c). Table 6.2 shows the behavior of the undercut and overcut
error along with the angle variation as the number of points in the cutting
direction increases. The decrease in the overcut error has been achieved at the
expense of the increase of the undercuts and the length of the path.

Let us now demonstrate the techniques by optimizing the overcuts on
MAHO 600E. The configuration of this machine will create an entirely differ-
ent set of trajectories. The conventional tool path and the tool path optimized
by means wo = 1, wy = 1 are displayed in Figs. 6.14(a-b), whereas a tool
path optimized with wo = 1, wy = 0 in Fig. 6.14c. The corresponding ma-
chined surfaces are displayed in Figs. 6.15(a-c). Clearly, optimization with
regard to only the overcuts makes it possible to cut a rough but reasonable
surface which could be further refined whereas cutting without the overcut
optimization may destroy the workpiece. The behavior of the kinematics error
versus the number of points and the maximum angle variation is displayed
in Table 6.3. Comparing HERMLE UWF902H and MAHO 600E (Tables 6.2
and 6.3) shows that the accuracy of the two cuts without optimization is com-
parable, whereas the optimized cut on MAHO 600E outperforms HERMLE
UWF902H.



169

6.4 Optimization of Rotations: Examples and Practical Machining

0G°9S08 / 059608  ¢L'08ST / ¢L'088T ¥€'89/00% 60°€/000 F£89/00% 60€/000 0TX0LT
TL'TE08 / €0°GG08  GE'6T6T / 8GFT6T LT68 / €T'L  00F% /000 €806/ 07L 00% /000 0TX00T
9€'€66L / S6'G€08  6S°991C / 6T°LTIT 00T / ¥T'€T L8T'FT / 09°'T SO'FOT /188 8G6ET / IF'S  0TXO0F
ST61T0T / TO'STO8  G9'SGPSE / 9L°€GTT LE'TLE / S 1C 9L'GY / OF'C LS IVT / %291 €T6%T / 8C9 0TX0E
VO LLFTT / GO°CL6L  LS'TT0S / LO'9SFT ¥8F9E / €6°09 €8°¢C / IF¥F 10°09T / 1202 L1'SS/ .08  0TX0T
GG'TETOT / €6°'T86L  99°G86E / ©G'9L9Z ¥R F9E / €6'09 92728 / 296 €129T / 8¢'6T 962¢ / ¥S'6  0TXCI
GeL1e6 / L8°€9LL 65 T1H9E / T0'626C TT'9SE / 9T°9S 06°60T / €€°€T 96'691 / 0F'€T 8L'6ET / T1'61  0ZX0T

1dQ/1do-uoN 1dp/1do-uoN MoIepu) INDISA(Q) moIepuU) IMOISA() 9ZIS PLIN)

(8op) uorjerrea rem3uy (wuw) YSus yred uoneziuiydQ uoryeziuiydo oN

(8op) Tea o[3ue xe]y / (WUI) 10110 XN

HZ06AMN ATINYAH uo &g 9oejans ‘uorjyeziwuijdo 10116 MoIoAQ) *Z'9 e,



9°0808 / 9270908
Z¥'9£08 / 0£°6508
GF'88LL / 61°0%08
GT'8¥8L / ¥2°2208
IF'SP1L / 88°9L6L
96°6£€L / 81°926.
09°2982 / €0°89LL

6%°9.81 / 67°9.8T 1¥'89 / 00% 60°€ /000 ¢¥S89/00F% 60°€ /000 0Zx0ET
LUTT6T / TT°9T6T 0268 /0T 00¥% /000 0606/ 0V.L 00F /000 02X00T
IT°020Z / 2€°690C 9¢°88 /889 ¥9°6 /000 TIFOT / 1L'8 S96ET / 6€°C¢ 0TX0F
02'280z / €9°€81¢ 61°68 / 91°L LS¢1 /000 ¥6'1%1 / G291 1€°6¥1 / G2'9 0TX0€
VI'TOTE / L9°29€T L€'28 / 99 86°9C / 96°0 €8°09T / €2°0T ¢F'6ST / 8L'9 0TX0T
0€°LTPE / 0£700ST ST°6ST / T6°TE LV0V / 86T 02°29T / 06T LSF9T / €&°L 0TXGI
11°GL8€ / L9°G28T ¥6°LST / 9%'8€ 92'8¢ / #8'T €0°0LT / 98°€ 99°69T / IF'S 0TX01T

1d/1do-uoN

1dQ/1do-uoN InoIOPUN MOIOAQ) moIepUN) JNOIOA(Q)  OZIS PLIY)

(8op) woryerrea remsuy (wur) YISusl YIeJ uorjyezruryd () uorjeziuaiydo oN

(Sop) Tea o[Sue xe]y / (wur) I0IId XN

H009 OHVIN U0 &g 9dejms ‘uolyeziur}do I01Id JNIIBAQ) *€°9 9[qe],

0LT

suoryejoy jo uorpezrundo 9



6.5 Uniform Angular Grids 171

Large
overcuts

P — - —

Fig. 6.13a. Conventional tool path for So on HERMLE UWF902H showing large
overcuts (thick curves)

6.5 Uniform Angular Grids

This section introduces uniform angular grids inserted locally in such a way
that the resulting total angle variation is minimized or at least reduced. Many
algorithms to calculate the so-called feedrate (the step between the consecutive
CL points) have been proposed. The simplest approach is to linearize the
surface along the tool path, calculate the error and insert additional points
until the error is within the required tolerance (see [5]). Another approach is
to interpolate the desired trajectory by a spline or a NURBS and establish the
required feedrate using properties of the curve. The feedrate may depend on
the space coordinates of the curve as well as on the angular changes (see, for
example, [13]). A combination of the actual kinematics of the machine with
an interpolating method is made by Lo [6].

A general framework for applying grid generation to tool path optimiza-
tion proposed in [7] and in [8] is given in Chap. 5. In particular, grid generation
based on the Dirichlet functional, invoked in an iterative loop with a suitable
preprocessing, may substantially decrease the kinematics error. The grid gen-
eration is applicable if € — 0 as the area of the grid cell A tends to zero. If it
is the case, a functional representing the so-called equi-distribution principle
[8] and subjected to the machine constraints can be introduced.
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Still many overcuts

Fig. 6.13b. The tool path optimized with regard to the total error. There are still
many trajectories with large overcuts

Now we will consider a different situation characterized by a rough cut,
when the tool rotations angles jump as described above. In this case the
adaptive grid may require very small spatial cells. As a result the algorithm
may create twisted and degenerated cells which may not converge or display
a very slow convergence.

Suppose we have constructed a “basic” tool path represented by a rectan-
gular or a curvilinear grid described in Chap. 5. Suppose we are allowed to
“inject” a certain number of additional points to decrease the error. Where
and how should these points be inserted? Let us employ local grids with equal
angular increments around points characterized by large angle variations. We
shall call such grids the uniform angular grids.

Recall that near the stationary points there often exists a neighborhood
such that one of the rotations is not performed or one of the angles changes
faster than another angle. In this case it is sufficient to construct a grid uniform
only with regard to the “fast” angle.

The algorithm consists of the following steps. First of all, it detects points
characterized by sharp angular variation. Next, for each point the algorithm
determines the positions between which the uniform angular grid should be
constructed. Usually the interval includes a few tool positions right before and
after the singularity which creates the kinematics loop. The space between
every pair of the selected points W), and W11 must be subdivided in such a
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Only few overcuts are
left

Fig. 6.13c. The tool path optimized with regard to the overcut error. The large
overcuts have been replaced by large but harmless undercuts

Many large overcuts

Fig. 6.14a. Conventional tool path for S; on MAHO 600E
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Still some overcuts
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S e

———w—————— Overcuts are gone

Fig. 6.14c. Optimization with regard to the overcut error, S on MAHO 600E
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Many large overcuts

Fig. 6.15a. Without optimization, S2 on MAHO 600E (corresponds to Fig. 6.14a)

Still some
overcuts

Fig. 6.15b. Optimization with regard to the total error, S2 on MAHO 600E (cor-
responds to Fig. 6.14b)

way that Aap p41,i,i+1 = const or Aby, py14i+1 ~ const for every subinterval
[i,9 4+ 1].

We have already noted that the stationary point is cut by either chang-
ing sharply the first or the second rotation angle. Irrespectively whether the
singular point is a CC point or not, the tool will follow a path “across or
around the hill” depending on the choice of the rotation angles. Consequently,
the algorithm selects the appropriate angle (say, angle a) and subdivides
the angular interval Aa, p41 into equal subintervals Aayp p41,i:+1 such that
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Overcuts
are gone

Fig. 6.15c. Optimization with regard to the overcut error, So on MAHO 600E
(corresponds to Fig. 6.14c)

Gppt1,i = Ap + Ap pr1t, where Ap 11 is the corresponding step. The corre-
sponding spatial positions s; are found from the surface equation as follows.
First of all, we specify a parametric spatial trajectory T' = T'(s) on the sur-
face through the stationary point. Next, for each ¢ we solve numerically the
equation a(T(s)) = ap p+1, where a(T'(s)) denotes the rotation angle on T'(s)
calculated from the surface normal.

6.6 Uniform Angular Grids: Numerical and Machining
Experiments

Consider machining surface So by MAHO 600E. We are allowed to “inject”
additional points in order to decrease the error. First of all, consider the surface
machined using the isoparametric tool path represented by a local uniform
grid (see Fig. 6.14a). The large error loops appearing due to sharp angle
variations can be eliminated by inserting the additional points in these areas
using a uniform angular distribution of the points shown in Fig. 6.16b. The
substantial reduction of the error (50 times!) has been achieved by inserting
only 8 points inside each loop characterized by large error.

It may seem that inserting an equi-spaced set of points may lead to the
same or similar result. However, it is not the case. The uniform spatial distri-
bution of the points does not have a significant impact on the error. The error
has been reduced only by 4 times by inserting the 8 additional points. Table
6.4 displays the kinematics errors and the rotation angles before and after ap-
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plying the proposed point insertion. Clearly, the uniform angular grid allows
to substantially decrease the error, whereas the conventional is not efficient.

Loops

ALY

Fig. 6.16a. Tool path and tool orientations, S2 on MAHO 600E, before insertion

Still some loops
vigible in the
zoomed window

Fig. 6.16b. Tool path and tool orientations, Sz on MAHO 600E, conventional point
insertion

However, when a large number of the additional points have been inserted,
the error decrease is approximately the same for the space or angular inserting.
Therefore, the method applies to rough cuts characterized by sharp variations
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The loops have
been eliminated

Fig. 6.16c. Tool path and tool orientations, S2 on MAHO 600E, angular grid
insertion

Table 6.4. Error versus number of inserted points, the basic grid size 15x20

Number of Max error (mm) Angular variation (deg)
inserted points Conventional / Angular grid Conventional / Uniform angular grid
0 19.300 / 19.300 162.202 / 162.202
8 4.241 / 0.416 68.660 / 20.631
16 1.707 / 0.138 43.016 / 10.629
32 0.490 / 0.092 20.647 / 5.352
64 0.158 / 0.089 10.955 / 2.680
128 0.099 / 0.089 5.378 / 1.340

of the rotation angles. Figures 6.16(b-c) explain advantages of the angular
grids. Clearly, the conventional uniform grid does not remove the kinematics
loops although the amplitude has been decreased. As opposed to that, the an-
gular grid changes the behavior of the trajectories by entirely eliminating the
loops. Figures 6.17(a-b) show the difference between the workpieces machined
using the conventional and the angular grid technologies.

The cutting experiments have been performed with the flat-end cutter
selected due to its popularity for fast, rough milling when the sharp angular
variations are the most expected. However, the angular grids are applicable
to the ball nose cutter being often used for finish machining. As a matter of
fact, the algorithms apply to a general APT cutter (Automatic Programmed
Tool) without major modifications. The equations of the APT cutter include
the most popular shapes such as the flat-end shaped cutter, toroidal cutter,
the ball nose cutter (see the Appendix).

Combination of the two proposed methods might lead to even better opti-
mizations. However usually, the angular grid should be constructed before the
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shortest path procedure or in an iterative loop presented below. Even when
the angular grid is applicable after the shortest path routine, the implemen-
tation is not as straightforward as it may seem since constructing the angular
grid after the shortest path optimization requires to keep track of changes
associated with every point. Furthermore, applying the angular grid after the
optimal sequencing is often not possible because inserting even one point may
create an entirely different graph for the shortest path optimization.

Let us illustrate this case by an example. Consider surface Ss with the
tool path obtained after the optimal sequencing (see Fig. 6.18). The largest
loop between point 141 and 142, which can not be treated by the optimal
sequencing, is on the right side of the surface. The angles before applying
the algorithm are aiq1 = 3190, b141 = —790, a142 = 2240, 5142 = —80°. The
shortest path optimization produces a141 = 319°, bis1 = —79°, G142 new =
a142 + 180° = 40407 b142,new = 71)142 —180° = —100°. Inserting a point in the
middle of the loop yields amijq = 267°, bniq = —82°.

Taking into account the “history”, we modify the pair of angles as follows
Amid = Gmid + 180° = 447°, by = —bmia — 180° = —98° which leads to a
larger loop depicted in Fig. 6.19. Note that amia ¢ [a141,@142] anymore. In
other words, the additional point has destroyed the particular shortest path.
Since the remaining part of the shortest path depends on these angles, the
entire path has been destroyed and the optimization should be performed
again.

The following procedure works very well when combining the two methods.
First, we apply the optimal sequencing. Second, we select the largest loops
appearing after applying the optimal sequencing. Next, we go back to the
original angles and insert angular grids into the selected loops. Finally, we
apply the optimal sequencing again to the modified tool path.

If the required tolerance has not been achieved, or even some new loops
have appeared, we select the largest loops again and go back to inserting
points into the original tool path.

Finally, apart from the machine kinematics, the accuracy of machining
is often affected by the tool accelerations and decelerations due to frequent
changes of the tool path directions. Since the phenomenon often occurs in the
areas of sharp variations of the rotation angles, let us discuss the proposed
method with the reference to the acceleration errors.

In order to reduce the acceleration error the entire tool path is usually
treated as an interpolating curve parameterized with regard to the chord
length between two consecutive reference points. Generating the tool positions
by incrementing the chord length leads to the feedrate instabilities due to
the difference between the chord and the arc length. The instabilities induce
undesirable accelerations and jerk fluctuations (see our literature survey on
interpolators in Chap. 1).

Our procedures apply to the regions where the angular variations are the
most source of errors. However, the procedures do not treat the accelerations
explicitly. Therefore, when such accelerations lead to large inaccuracies, the
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proposed algorithms should be combined with the above mentioned spline
interpolating methods. However, observe that reducing the angular variation
leads to equal increments in the angular space. Therefore, it reduces angular
accelerations appearing in the five-axis mode due to sharp variations of the
tool orientations.

Ideally, in five-axis machining the tool path must be regarded as a curve in
the five dimensional space and parameterized with regard to its arc length in
5D. Such parameterizations should be associated with several sources of error
such as the kinematics error, errors due to accelerations, etc. Unfortunately,
such parameterizations still constitute an open problem.

Still some loops

Fig. 6.17a. Spatial grid for S2 on MAHO 600E (corresponds to Fig. 6.16b)

Appendix: The APT cutter

The cutter surface is composed of the truncated cone, torus and lower cone:
llg =Mlpc U Iy UIl e,

where
(Ry + ttan (o) sin~y
Ilre = | (R +ttan ) cosy |,
t+ h — Ry sin By
v € [0,27], t € [h — Ry sin B, L],
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The loops
are gone

Fig. 6.17b. Angular grid insertion for Sz on MAHO 600E (corresponds to Fig.
6.16¢)

The largest loop

141

142

i e o

Fig. 6.18. Tool path for surface Sz on MAHO 600E after the optimal sequencing
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The largest
loop has

141

Fig. 6.19. Tool path for surface S; on MAHO 600E after the optimal sequencing
and inserting one point into the largest loop

Ye

Fig. 6.20. APT cutter geometry
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h = Ry cos 31 + Ry cos 81 tan 81 + Ry tan 3, — Ro tan 3 cos (s,

Ze (e + Ry sin ) sinvy
Iy =< y. p = | (e+ Rasiny)cosy |,
Ze h — Rs cos x
™
X € (B, 5" B2], € = Ry — Ra cos B2,
Te t cot By siny
re =< yo p = | tcot Brcosy |,
Ze t

t € [0,h — Rg cos (1].
In the case of specific fillet-end cutter, 81 = B2 = 0. The flat-end cutter is a
particular case of the fillet-end cutter when Ry = 0.
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7

Theory of Optimal Setup for Five-Axis NC
Machining

7.1 Introduction

In five-axis machining, the forward step (kinematics) error due to nonlinearity
of the machine kinematics can significantly affect the quality of the machined
surfaces. In a simple approach, kinematics error between two CC points can be
reduced to within a prescribed tolerance by inserting enough points. However,
this method is often inefficient, especially for high speed milling where a tool
path containing a large number of points can slow down the milling process
and is, therefore, undesirable. A technique of angle variation presented in
Chap. 6 can also be used to minimize the kinematics error without inserting
additional points. The error after minimization using this angle adjustment
method can still, however, exceed the prescribed tolerance and more points
or another minimization techniques are required.

In can be shown that an initial workpiece setup as well as parameters
related to the machine configuration such as the position of each center of
rotation and the tool length can affect the machining error due to the kine-
matics of the machine. Analysis of an initial setup is not currently provided
by commercial CAD/CAM software tools such as Unigraphics, EdgeCam, and
Vericut. However, in the academic literature, a few researchers have addressed
the subject. Jung et al. [3] propose a general five-axis postprocessor, but the
possibility of optimization has not been raised. Sijie et al. [6] optimize the
position and orientation of the stock relative to the CAD modeling surface
but machine related parameters were not optimized. Surveys and analysis of
five-axis configuration are given in [2, 7, 8]. However, optimizing machining
setups for specific surfaces has apparently been overlooked.

This chapter presents a new optimization model designed to minimize
kinematics error introduced by the initial setup of a five-axis milling machine.
An initial setup consists of the position and orientation of the workpiece with
respect to the mounting table and, optionally, the machine’s initial configu-
ration. Depending on the type of the machine (see machine classification in
Sect. 2.3), some parameters have no effect on the kinematics of the machine.
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These parameters are termed invariant parameters (see Sect. 7.2.1). Further-
more, for each type of machine, there exists variables that are dependent and
only one of these need to be optimized (see Sect. 7.3.2). After identifying the
sets of invariant and dependent variables, a corresponding system of nonlinear
equations is constructed and solved numerically.

For demonstration propose, the accuracy achieved through use of the pro-
posed optimization of the initial setup is compared with the accuracy achieved
through use of a “standard” positioning of the workpiece where a blank part
is placed so that the bottom of the machined part is at a certain distance
above the mounting table to ensure against collision avoidance. The center of
the base is positioned at the center of the mounting table, and the z-axis in
workpiece coordinates is perpendicular to the mounting table.

Mounting Table

Mounting Table

(a) (b)

Fig. 7.1. Changing an initial workpiece setup by rotating around the z;-axis and
the yi-axis

The following introductory example shows that optimization can be sur-
prisingly effective. Let W37 and W5 be two successive spatial positions of the
tool tip (CC points) in workpiece coordinates and let I; and I» be the cor-
responding tool orientations. The actual tool trajectory between W; and Wy
is generally nonlinear due to nonlinearity of the machine’s kinematics; it also
depends on the initial workpiece position and orientation with respect to the
mounting table. Figure 7.1 shows two different initial workpiece setups. The
workpiece orientation in Fig. 7.1(b) is obtained by first rotating the workpiece
in Fig. 7.1(a) around the z;-axis by r, and then rotating it around the y;-axis
by 7p. Finally, it is shifted by T7,.
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The new workpiece setup changes the cutter contact points and the orien-
tations of the tool as follows:

W; = Rb [’I"b]Ra [TQ]WP + 1—‘127

I = Ry[re] Rara] I, (7.1)

where R, and R} are the rotation matrices corresponding to r, and r}. Figure
7.2 illustrates the effect of workpiece setup on the tool’s actual trajectory.
Astonishingly, with the setup shown in Fig. 7.2(c), the error between the
desired tool trajectory Wi3(t) and the actual tool trajectory Wiz (t) has been
reduced by a factor of one thousand! (the error in the optimal setup is 0.03
mm). This error reduction cannot be achieved by using the method of angle
adjustment alone (see Sect. 3.4 and Fig. 3.8 on Pages 63-67).
In general, the optimization parameters 9t are (see Figs. 2.4-2.6):

1. The workpiece setup Mg = {T12,74,7}, Where Tho = (Th2,0, Ti2,y, T12,2)
is the position of the origin of the workpiece coordinates with respect to
O (the coordinate system of the first rotary part) and r, and 7, are the
angles of rotation corresponding to the initial orientation of the workpiece.

2. The machine design SJIT = {T23, T34, T4}, where T23 = (T23’m, ng’w T23,z)
denotes the position of the origin of the first rotary part in the coordinate
system of the second rotary part, Tsq = (T34,2,154,y, T34,.) denotes the
position of the second rotary part in the spindle coordinate system, and T}
is a vector describing the tool length. Note that the tool length L is being
treated as a translation T which is either (0,0, L) or (0,0, —L) depending
on the position of the tool tip in the spindle coordinate system.

Consider the following optimization problem:

min €, (7.2)

where € is the kinematics error defined as the difference between the desired
and the actual trajectory of the tool tip. 9 = {Mg, M} consists of the
twelve parameters introduced above. It will be proven that only six parameters
from the twelve need to be considered, since the remaining six parameters do
not have any effect on the kinematics error. The actual identities of the six
parameters to be ignored depend on the type of five-axis milling machine
being used (see Sect. 2.3). The six parameters are selected as follows. First,
for each type of machine, some of the setup parameters have no effect on
the tool trajectory at all. These parameters can be immediately excluded
from the optimization. Next, for each type of machine, an additional set of
dependent parameters is found. Although each of these parameters does affect
the tool trajectory when manipulated independently, each can be replaced by
a linear combination of the other parameters, so these linearly dependent
parameters can also be eliminated. Finally, the elimination of invariant and
linearly dependent variables leads to a nonlinear system of equations that can
be solved numerically by a Newton-Raphson procedure.
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60 60

40 40
Zl Zl

20 20

110 110

Fig. 7.2. The desired tool trajectory (a) and the actual tool trajectory before
optimization (b). The desired tool trajectory (c) and the actual tool trajectory for
the new (optimal) setup (d) (the workpiece is rotated by 99.23° around z;-axis and
—41.28° around the y;-axis and shifted by [21.47 49.33 33.67] mm). The desired
and actual tool trajectories almost coincide in the optimal setup. The error has
been reduced by 99.9%

The solution of this system establishes, for a particular machine and de-
sired surface, not only the optimal position and orientation of the workpiece
with respect to the mounting table, but also the optimal initial configuration
of the five-axis machine. As previously mentioned, the method has proven ex-
tremely effective in many cases. Moreover, it requires nothing of the operator
except changing the initial setup, which is a very simple, nearly zero-cost,
operation.
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7.2 Tool Trajectory Analysis

This section presents a theoretical analysis of the tool tip trajectory for each
of the three types of five-axis machines. First, parameters that do not affect
the tool trajectory are identified. These parameters will be excluded from the
optimization procedure. Next, the effect of initial workpiece setup on tool
trajectory is described.

7.2.1 Invariant Parameters

Five-axis machines are characterized by nonlinear kinematics due to the two
additional degrees of freedom that control tool orientation. In general, the
trajectory of the tool tip is nonlinear. The closed-form representation of the
tool tip trajectory for general machine kinematics is given in (3.48). In each of
the three types of five-axis machines (see Sect. 2.3), there are some parameters
that have no effect on the tool trajectory. These parameters are identified by
the following theorems.

Theorem 7.1. The kinematics of the 2-0 machine implies that the tool tra-
Jjectory between two arbitrary points is invariant with respect to T3, and T3 .

Proof. Denote Ala(t)] by A, B[b(t)] by B, Ala,] by A,, B[by] by B,. Represent
A7YW) by &1 (W) = GBR L (W) +T53,, where &1 (W) = A(W +Tia) +Tos
(see (2.5)). The tool tip trajectory (3.47) is then given by

Wppi1(t) = REGBp 1R L + T4, + (1 — ) GBy R, + (1 —)T5,),  (7.3)

where &1 denotes & 1(M, R,,, W,,). Clearly, from (2.5), W = &(M) =
A~Y(B 1GY (M —Ty,) — Tas) — T1o. Consider W = &(M) = R(S) = A~1(S—
Ty3) — Tia where S = B™1G=Y(M — T3,). Rewriting (7.3) in terms of &(S)
yields

Wopt1 (t) = ﬁ(B_lG_l(tGBp-&-lﬁ;il + 115,
+ (1= t)GB, R, + (1 — )T3, — T3,)), (7.4)
= R(tB™ "By R} + (1 —t)BT' B,/ 1),
Since neither & nor &' depends on Ty, W, p+1(t) does not depend on Ty
either. Therefore, the tool trajectory is invariant with respect to T4y.

Let us now prove the invariance with regard to 753 ,. Substituting
R7YW) = A(W + Tia) + Tz and R(S) = A7Y(S —Taz) — T12 into (7.4) yields
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Wp,p-&-l(t) = ﬁ‘(tB_pr-Hﬁ +1 + (1 - t) _1Bp~é';l)a
= R(tB™ " Bpy1(Aps1(Wpi1 + Tia) + Tas)
+ (1 =) B By (A, (W, + Ti2) + Th3)),
B~ Bp+1(Ap+1(Wp+1 + T12) + T23)
+ (1 =t)B™ " Bp(Ap(Wy, + Tia) + Tag) — Taz) — Tho,
“'tB7'B 1 Apr1 (W1 + Th2)
+ (1 —t)B™'B,A, (W, + T12)
+tB7 By 1Tosz + (1 — t) B~ B, Taz — Tz) — Tio.

(7.5)

The terms involving Th3 in (7.5) can be written (tB7!'Bpi1Tos + (1 —
t)B~1B,Tos — Tas). Since B~!, B, and B, are rotations around the y-axis,
they do not change the y-component of Th3. Consequently, (tB~1 B, 1T3 +
(1—t)B~'B, T3 — To3), = 0. Therefore, the tool trajectory does not depend
on T3, . This completes the proof of the Theorem.

Theorem 7.2. The kinematics of the 1-1 machine implies that the tool tra-
jectory is invariant with respect to Tia ., Tos and T34 .

The proof of Theorem 7.2 is analogous to that of Theorem 7.1.

Theorem 7.3. The kinematics of the 0-2 machine implies that the tool tra-
Jectory is invariant with respect to Tia and Ths .

The proof of Theorem 7.3 is analogous to that of Theorem 7.1.

7.2.2 Workpiece Setup and the Tool Trajectory

Changing the workpiece setup Mg = {T12,74,7s} changes the coordinates
of the cutter contact points, the orientations of the tool, and, consequently,
the tool trajectory. Suppose the workpiece has been rotated clockwise by 7,
around the zj-axis and by r, around the yjp-axis (Figure 7.1). The follow-
ing theorems develop a closed-form representation of the tool trajectory for
arbitrary r,, rp for the three basic types of the five-axis machines.

Theorem 7.4. Let v, and 7, be the rotation angles defining the orientation
of the workpiece, and let R, and Ry be the corresponding rotation matrices.
The kinematics of the 2-0 machine is given by

M = GBIV (Ala] (W' + Tia) + Taz) + T3y, (7.6)
where

W' = Ry [’l"b]Ra [T‘a]W

cos(rp) cos(rq)x + cos(ry) sin(r, )y — sin(ry) 2
= —sin(rq)x 4 cos(rq)y ,
sin(rp) cos(rq)z + sin(ry) sin(ry )y + cos(ry)z
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cos(a — rq) cos(b) cos(ry) + sin(b) sin(ry)
I'= sin(a — r4) cos(b)
cos(a — rq) cos(b) sin(ry) — sin(b) cos(ry)
Proof. The relationships between the tool orientation I = (I, I, I.) and the
two rotary angles a and b are given by (see Sect. 2.4)
I, = cos(a) cos(b),
I, = sin(a) cos(b), (7.7)
I, = —sin(b).
After the rotations, the tool orientation becomes
I' = Ry[ro)Ralry)I. (7.8)
After some algebraic manipulation, (7.8) becomes
cos(a — rq) cos(b) cos(ry) + sin(b) sin(ry)

I'= sin(a — r4) cos(b) (7.9)
cos(a — r4) cos(b) sin(ry) — sin(b) cos(ryp)

Theorem 7.5. Let r, and 7, be the rotation angles defining the orientation
of the workpiece, and let R, and Ry be the corresponding rotation matrices.
The kinematics of the 1-1 machine is given by

M = GA[d'] (W + Ti) + Taz + B [V|T,, (7.10)

where
cos(a + rq) sin(b) cos(ry) — cos(b) sin(ry)
I'= —sin(b)sin(a + r,)
cos(a + rq)sin(b)sin(ry) + cos(b) cos(rp)
The proof is analogous to that of Theorem 7.4.

Theorem 7.6. Let v, and 7, be the rotation angles defining the orientation
of the workpiece, and let R, and Ry be the corresponding rotation matrices.
The kinematics of the 0-2 machine is given by

M = GW' + Tyy + A d'|(Tos + B~V Tyy) (7.11)
where

(cos(b) cos(r,) — sin(a) sin(b) sin(r,)) cos(ry) — cos(a) sin(b) sin(rp)
I'= — cos(b) sin(r,) — sin(a) sin(b) cos(ry)
(cos(b) cos(rq) — sin(a) sin(b) sin(r,)) sin(ry) + cos(a) sin(b) cos(ry)

The proof is analogous to that of Theorem 7.4.
Finally, substituting the new rotation angles 2R}, = (aj,, b,) obtained from
I’ and the new coordinates W' into (3.48) yields

i1 () = RO R, + (1 - )R,
ERTH (O, Ry, W) + (1= R (M, R, W),
where R corresponds to either (2.2) or (2.7) or (2.10).

(7.12)
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7.3 Least-Squares Optimization and Dependent
Variables

This section introduces a definition of the kinematics error in the least-squares
sense. The optimal setup is defined as a set of optimization parameters min-
imizing the kinematics error. A system of non-linear equations to minimize
the error is deduced and analyzed. The dependent optimization parameters
are excluded from the minimization procedure. Finally, the minimal set of
optimization parameters is presented for each machine type.

7.3.1 Least-Squares Optimization

Recall that WP . (t) = (x),1(8), 42 ,1(t), 20,11(t)) € S(u,v) is defined
as a curve between W, and W,y ; extracted from the surface in such a
way that it represents the desired tool trajectory between II, and Il,4;.
The error is represented as a deviation between Wlf?p 11(t) and Wy, 11 (t) =

(Zpp+1(t), Ypp+1(t), 2pp+1(t)), namely,
1
2
€= Z/O |ij?p+1(t) - Wp,erl(t)’ dtv
p

= Z/O [($£p+1(t) - iUp,erl(t))Q + (y£p+1(t) . yp,p+1(t))2 (7-13)

2
+ (ZPD,erl(t) - Zp,p+1(t)) } dt,
where
Wy pt1(t) = R;l[ra]Rb_l[rb]ﬁ(Qﬁ, tm;—&-l +(1— t)%;n
tR71(9m, m;ﬂ»l? Ry[ro] Ra[ra]Wp+1)
+ (1= )R (M, R, Ry[ry] Ralra]Wp)).

Consider now the least-squares minimization problem described by (7.2).
Differentiating with regard to the optimization parameters yields

e YD OWp,pr1(t)
o zp:/o W21 (t) = Wy pra (1) Tdt =0, (7.14)
where v = (v1,...,1,) is a vector comprising the optimization parameters.

The number of parameters n is at most six, but if the optimization is only
performed with respect to the machine setup, the number of the parameters
will vary with the type of machine.
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7.3.2 Dependent Variables

Let us now analyze dependent variables. As an example, consider the 2-0
machine. Observe that T34 — T4 has been replaced by one variable T4, (see
Sect. 2.4). Consequently, if T3, = T3, , is a component of the solution of the
transformed optimization problem then any T34 and Ty that satisfy T34 —T, =
T3, , are components of the solutions of the original optimization problem. In
terms of the cost function, the dependence is expressed as follows: vy and v are
dependent if €(v1,v9,v3,...,v,) = é(c1v1 + calo, Vs, ..., Uy ), where ¢; and ¢y
are constants. In this case A 0 and - 0 produce the same equations.

81;1 81}2
Therefore, c11; + covs can be replaced by one variable. When the optimal

solution to the transformed problem is found, either v; or vy is considered a
free variable.

The definition of dependence can be easily generalized to the case of n
dependent variables. It will now be established that (7.13) for the kinematics
in (2.2) has an additional, less obvious, pair of dependent variables.

Theorem 7.7. T3, and Tb3 . are linearly dependent for the 2-0 machine.

Proof. Consider a tool trajectory given by . .

Wypt1(t) = REB By Ry + (1 — ) B B,K, 1), where 8,1 = A,(W, +
Ti2) + T (see (7.4)). Since A, and A,y are rotations around the z-axis,
they do not change the z-component of Th,. Therefore, (A,T12 + To3), =
(App1T12+To3), = T1a . +To3 .. Hence, (ApT12 +T53). and (Apy1T12 +T03)-
can be replaced by one variable. Furthermore, since &(S) = A~(S — Ths) —
T2, (A7 T3 + Th2), = Tos,. + Tha,. can be replaced by the same variable.
Consequently, T2 . and 753 , are dependent.

Remark 7.1. The dependency of Thy . and Ths . is illustrated by Fig. 7.3 (see
also Fig. 2.4 for comparison). In words, since T12 ,+T53 . = ¢ (c is the distance
between the center of the workpiece coordinate system O; and the center of
the coordinate system of the second rotary part Os), the optimal workpiece
position relative to the second rotary part is fixed. However, the height of
the mounting table can be reduced or increased along the zs-axis (the Oq
coordinate system).

Consider now the 1-1 and the 0-2 machines.

Theorem 7.8. T34 and Ty are linearly dependent for the 1-1 machine.
The proof is analogous to that of Theorem 7.7.

Theorem 7.9. Ty3 , and T34, are linearly dependent for the 0-2 machine.

The proof is analogous to that of Theorem 7.7.
The results presented in this section are summarized in Table 7.1.
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Fig. 7.3. Dependent parameters Th2 . + T3, = ¢ of the 2-0 machine

Table 7.1. Minimal sets of optimization parameters

Optimization parameters

Machine type Workpiece setup ~ Tool length Machine settings
The 2-0 machine rq, 7y, Th2,2, T12,y, T12,- none 153,
The 1-1 machine TayTb, 112,2, T12,y Ty, T34,
The 0-2 machine TayTh Ty, 153,20, 153,y, T34,y

7.4 Examples and Discussion

7.4.1 Numerical Method

This section describes a numerical solution of system (7.14) by a standard
Newton-Raphson procedure. Consider a system F'(v) = 0, where F' is a vector
function deduced from (7.14). A number of numerical methods can be used
to solve this system of nonlinear equations [1]. Among the simplest is the
standard Newton method given by

pnew Vold _ J—le(l/old)7 (715)

where J is the Jacobi matrix. It is well known that the performance of New-
ton’s method depends on the initial approximation. The process may not
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converge, and the global optimum may not be obtained in the case of multi-
ple optima. To counter these limitations, Newton’s method is executed several
times with a different initial approximation in each run. Starting points are
arranged in a regular grid pattern or sampled from a uniform distribution over
feasible parameter space. The required derivatives of the objective function
with respect to the rotation angles are obtained with the chain rule, as follows:

Oe(rq,m)  Oe Oe aa; Oe (r“)b; Oe 8a;+1 de Ob]

p+1
=% oy g€ T 1
dro  Ory daldry o, or, dal., drp < ob., org MY

where L = a or L = b. @’ and V' are machine rotation angles which are
function of r, and 7, (see Theorems 7.4-7.6). The next section demonstrates
the performance of this simple approach with several experiments.

7.4.2 Examples

To demonstrate the performance of the proposed procedure, the optimization
is applied to two test surfaces, a sweep surface [4, 5] (Figure 7.4(a)) and a
two-bell surface (Figure 7.4(b)). The sweep surface is given by

x = 100u — 50,
y = 100v — 50, (7.17)
z = —40(v — 0.8) — 50 sin(3u — 0.3) sin(u — 0.5) sin(u — 0.8) — 5.

The two-bell surface is given by

z = 100u — 50,
y = 1000 — 50, (7.18)
z = 400v(1 — v)(3.55u — 14.8u? + 21.15u3 — 9.9u?) — 28.

where 0 < u,v < 1.

Let W, = S(up,vp) and Wpi1 = S(upy1,vpt1) be two successive CC
points. The desired curve between the two CC points is extracted from the
surface as follows:

W2 () = S((1 = t)up + tupr1, (1 — ), + tvpy1), (7.19)

where ¢ is a fictitious time coordinate along the curve (0 <t < 1). The mean
error is an approximation of (7.13), given by

1
€= Nipt Z Z ‘W£p+1(t) = Wppt1(t) ’
D t

: (7.20)

where N, is the total number of sampled points.
The performance of the optimization is presented by Table 7.2 (the sweep
surface) and Table 7.3 (the two-bell surface).
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—40
(b)

Fig. 7.4. Test surfaces: (a) sweep surface, (b) two-bell surface
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The desired and actual tool trajectory obtained for the sweep surface is de-
picted in Figs. 7.5-7.7 along with the corresponding error. The tool trajectories
are depicted in the original workpiece coordinates, i.e., each tool trajectory,
beginning from the optimal setup, is transformed back to workpiece coordi-
nates for comparison. The proposed optimization is compared with the results
obtained by traditional positioning of the workpiece, in which the origin of the
workpiece coordinates is aligned with the center of the mounting table, and
the z-axis is perpendicular to the mounting table. The results reveal that the
error can be reduced by as much as 97%. Table 7.3 shows a similar accuracy
increase achieved for the geometrically complex two-bell surface.

The sweep surface produced by MAHOG00E (a 2-0 machine, Fig. 2.1) with
and without optimization is shown in Fig. 7.8. The surface in Fig. 7.8(d) was
produced with a setup optimized with regard to r, and r,. The optimization
leads to an error reduction of about 81.45%. Note that in order to better
visualize the errors, a very small number of CC points was used (102 points).

Another measure to evaluate the performance of optimization is the num-
ber of CC points required to maintain the kinematics error within a prescribed
tolerance. This estimate is in particular important for high speed milling when
an increase in the number of the points leads to a substantial increase in the
machining time.

Table 4 displays the number of CC points required to cut the workpiece to
within a prescribed maximum machining error. The optimal setup applied to
both surfaces, reduces the number of CC points by 68% and 30%, respectively.
Note that although the reduction achieved for the two-bell surface is not
particularly large, the optimization is still appropriate since it requires nothing
of the operator but changing the initial setup. This is, a simple, nearly zero
cost, operation.

Table 7.4. Performance of the optimization measured by the required number of
CC points

Number of CC points / reduction

Surface Before optimization Optimization wrt. r, and 7
Sweep surface 3900 1233 / 68.4%
Two-bell surface 7925 5544 / 30.0%

2-0 machine. The maximum allowed machining error = 0.01 mm.
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accessibility, 14

address code, see word address code

angle adjustment, 64

angle variation, 158

angular jump, 64

angular speed, 155

APT, see Automatic Programmed
Tools

Automatic Programmed Tools, 29, 178,
180

CNC, see machines, CNC
cover and merge algorithm, 78, 88
curvature interference, see gouging
curvilinear grid, see grid
cutter, 25
ball-end, 53
flat-end, 53
toroidal, 53
cutter contact, 27, 53
cutter location, 25, 54
cutting direction, 54

discrete functional, 120

effective cutter radius, 60
effective cutting shape, 10, 54

finish machining, 1
five-axis machines, 25
classifications, 34-37
kinematics, 37-43
forward step error, see kinematics error

G-code, 29-30

global interference, 12

gouging, 7, 11, 60

grid, 97
block-structured, 117
convex, 100
degenerate, 99
generation, see grid generation
refinement, 100
regular, see grid, structured
structured, 99, 117
unstructured, 100

grid divergence, 111

grid generation, 9, 99
algebraic methods, 117
computational region, 103
differential methods, 117
parametric region, 103
variational methods, 102, 117

harmonic functional, 98, 110, 115
approximation, 110

inclination angle, 10, 54
minimum, 60

kinematics error, 63, 151, 185
minimization, 66, 160
total, 155

M-code, 32

machine coordinate system, 39
reference point, 39

machines
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CNC, 4, 25
five-axis, see five-axis machines
NC, 25
machining strip, 53-58
machining time, 88

NC
block, 29
machines, see machines, NC
program, 25, 28-34
nonlinear trajectory, 38, 47

overcut, 10, 60, 159

parametric surface, 51
curvature
Gaussian, 52
mean, 52
normal, 52
principal, 52
normal vector, 51
point classification, 52
stationary point, 151
part program, see NC, program, 27
point insertion, 66
uniform angular grid, 171
postprocessing, 28

rear gouging, 12

regional milling, 8

rotary axis, 25

rotation angle, 27, 64
angular jump, see angular jump
degree of freedom, 161

rough cutting, 1

setup
machine configuration, 185
workpiece, 185, 190
solid modeling, 13
space-filling curves, 73
adaptive, 76, 77
Hilbert’s curve, 73
non-recursive, 74
Peano’s curve, 73

recursive, 74
tool path, see tool path, space-filling
curve

tilt angle, 10, 54
tool orientation, 27, 39, 66
optimal, 60-63
vector, 160
tool path, 27
correction, 76, 80, 84
generation, 66-68
iso-planar, 7
iso-scallop, 7
isoparametric, 7, 66
length, 88
optimization, 28, 75
space-filling curve, 9, 77
generation, 77-83
spiral, 7, 27
zigzag, 7, 27, 43
tool trajectory, 63, 158, 186
dependent parameters, 186, 193
invariant parameters, 186, 189
trimmed surface, 97

undercut, 10, 159
uniform angular grid, see point
insertion, uniform angular grid

variational methods, 99
visibility, 14

Winslow functional, 98, 105, 110
word address code, 28
coordinate functions, 30
feed functions, 30
format, 29
miscellaneous functions, see M-code
preparatory functions, see G-code
speed functions, 32
tool functions, 32
workpiece, 25
workpiece coordinate system, 39

yaw angle, 10



