

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาがら聞くการทำงานและโครงสร้างของเอนไซม์ที่ใช้ฟลาวินในปฏิกิริยา

โดย รองศาสตราจารย์ ดร. พิมพ์ใจ ใจเย็นและคณะ

30 เมษายน 2554

ສັບໜູາເລີກທີ່ BRG5180002

ໂຄຣກາຣ ກາຣີກໍາຊາກລໄກກາຣທຳການແລະໂຄຣກສ້າງຂອງເອັນໄໝ໌ທີ່ໃຊ້ຝລາວິນໃນປັດທະນາ

ຄະນະຜູ້ວິຈັຍ	ສັກດັບ
1. ຮອງຄາສດຣາຈາຣີ ດຣ. ພິມພິຈີ ໄຈຍັນ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
2. ຜູ້ຂ່າຍຄາສດຣາຈາຣີ ດຣ. ທພ.ຈີຣສີ ສຸຈະວິດກຸລ ກາຄວິຊາຊົວເຄີມີຄະນະທັນແພທຍຄາສົດຮົມຈຸພາລັງການ	ມທະວິທະຍາລັຍ
3. ນາຍກິດຕິສັກດີ ທະພຣ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
4. ນາຍຄຣາຍຸນ ນິຈິວກາກຸລ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
5. ນາງສາວເມືອນ ໂປ່ງຈິຕົງ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
6. ນາຍຮນວັດນິ້ນ ພົງໝໍສັກດີ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
7. ນາຍກິດຕິພັນນີ້ ໂສກິດທະຮົມຄຸນ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
8. ນາຍສມ່າຕີ ແມ່ນປິນ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
9. ນາຍກິຣມຍີ ເຊນປະໂຄນ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
10. ນາງສາວນັນທຶດພຣ ເຮືອງໝາຍ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
11. ນາງສາວ ຂໍ້ມູນພຣ ວົງຕົ້ນເຕຣ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
12. ນາງສາວ ຜະການຕົ້ນ ຖອນສຸຂ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ
13. ນາງສາວ ວິນທຣາ ພິສວງ	ກາຄວິຊາຊົວເຄີມີຄະນະວິທະຍາຄາສົດຮົມທະວິທະຍາລັຍມທິດລ

Acknowledgement

This research project is impossible without the financial support from The Thailand research Fund, Faculty of Science and Mahidol University. I am deeply indebt to my students and research colleagues for their hard work and dedication on pursuing high quality and difficult experiments to understand molecular logics of our enzymatic systems. I also thank all collaborators for their expertise and contributions to the project achievement. I am grateful to the Department and Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University for providing excellent research facilities.

Abstract

โครงการวิจัยการศึกษากลไกการทำงานของเอนไซม์ที่ใช้สารประกอบวิตามินบีส่อง ที่ได้รับทุนสนับสนุนการวิจัยจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ในช่วง พ.ศ. 2551-2554 นั้นประสบความสำเร็จเป็นอย่างสูง มีผลงานวิจัยดีพิมพ์ในวารสารวิชาการระดับนานาชาติชั้นนำเป็นจำนวน 15 ฉบับ ผลของงานวิจัยเหล่านี้ก่อให้เกิดความเข้าใจในด้านโครงสร้างและกลไกการเร่งปฏิกิริยาของเอนไซม์พาราไฮดรอกซีฟีนิโลอะซิเตทไฮดรอกซีเลส (*p*-hydroxyphenylacetate hydroxylase: HPA) และไฟโรโนส 2-ออกซิดase (pyranose 2-oxidase: P2O) เป็นอย่างสูง สำหรับเอนไซม์พาราไฮดรอกซีฟีนิโลอะซิเตทไฮดรอกซีเลสซึ่งได้จากแบคทีเรีย *Acinetobacter baumannii* เร่งปฏิกิริยาไฮดรอกซีเลสซึ่งโดยการเติมหมู่ไฮดรอกซิลที่ตำแหน่ง *ortho* ของสารตั้งต้นพาราไฮดรอกซีฟีนิโลอะซิเตท (*p*-hydroxyphenylacetate: HPA) ทำให้ได้ 3,4-ไดไฮดรอกซีฟีนิโลอะซิเตทเป็นสารผลิตภัณฑ์ จากการศึกษาด้วยวิธี fluorescence up-conversion นั้นพบว่ากลไกการลดลงของแสงฟลูออเรสเซนซ์ในส่วนเอนไซม์รีดักเตส (C_1) เป็นแบบผสมระหว่างการลดลงแบบช้าและแบบเร็ว นอกจากนั้นการศึกษาแบบจำลองการเคลื่อนไหวของโมเลกุล (molecular dynamics simulation) ควบคู่กับการเปลี่ยนแปลงหมู่แขนงข้างของกรดอะมิโนบางตำแหน่งในเอนไซม์ (site-directed mutagenesis) และการศึกษาจลนพลศาสตร์ในช่วงเวลาที่ปฏิกิริยาเกิดก่อนถึงสภาพสมดุล (transient kinetics) พบว่าหมู่แขนงข้างของกรดอะมิโนฟีนิโลอะลานีนที่ตำแหน่ง 266 นั้นทำหน้าที่ควบคุมการผ่านของโมเลกุลออกซิเจนเข้าสู่บริเวณเร่งของเอนไซม์ออกซิเจนส์ (C_2) การศึกษากลไกการเร่งปฏิกิริยาของส่วนเอนไซม์ออกซิเจนส์ในปฏิกิริยา C_2 -FMNH⁻ กับโมเลกุลออกซิเจนที่ pH ต่างๆพบว่าในปฏิกิริยาที่ปราศจากการตั้งต้นพาราไฮดรอกซีฟีนิโลอะซิเตทนั้นค่าคงที่ของอัตราการเกิดสารตัวกลาง C4a-hydroperoxy-FMN มีค่า $\sim 1.1 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ และคงที่ตลอดช่วง pH 6.2-9.9 ขณะที่ค่าคงที่ของอัตราการเกิดไฮดรเจนเปอร์ออกไซด์จากการสลายตัวของสารตัวกลางในขั้นตอนต่อมาของปฏิกิริยาจะมีค่าเพิ่มขึ้นเมื่อ pH สูงขึ้น และมีค่า pK_a มากกว่า 9.4 สำหรับปฏิกิริยาที่มีสารตั้งต้นพาราไฮดรอกซีฟีนิโลอะซิเตทร่วมอยู่ด้วยนั้น ค่าคงที่ของอัตราการเกิดสารตัวกลาง C4a-hydroperoxy-FMN มีค่า $\sim 4.8 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ และค่าคงที่ของอัตราการเกิดปฏิกิริยาไฮดรอกซีเลสซึ่งเป็นขั้นตอนถัดมา มีค่า $15-17 \text{ s}^{-1}$ และคงที่ในช่วง pH 6.0-10.0 สำหรับเอนไซม์ไฟโรโนส 2-ออกซิดaseนั้นจะเร่งปฏิกิริยาออกซิเดชันของน้ำตาล D-glucose หรือน้ำตาลตัวอื่นๆในกลุ่มไฟโรโนสที่ตำแหน่งคาร์บอนที่ 2 ได้ 2-keto sugar เป็นสารผลิตภัณฑ์ปฏิกิริยาจากการเร่งด้วยเอนไซม์ไฟโรโนส 2-ออกซิดaseถือได้ว่าเป็นปฏิกิริยาที่มีประโยชน์ ในด้านการสังเคราะห์สารประกอบในกลุ่มคาร์บอไฮเดรท เนื่องจากสารผลิตภัณฑ์ 2-keto sugar สามารถนำไปใช้ในการสังเคราะห์สารในกลุ่มคาร์บอไฮเดรทที่มีประโยชน์ตัวอื่นได้ต่อไป จากการศึกษากลไกการทำงานของเอนไซม์ไฟโรโนส 2-ออกซิดase เราได้ค้นพบสารตัวกลาง C4a-hydroperoxyflavin ซึ่งเป็นการรายงานการเกิดสารตัวกลางของเอนไซม์ในกลุ่ม flavoprotein oxidase

เป็นครั้งแรก และจากการศึกษาปฏิกิริยาฟลาวินรีดักชั่นด้วยสารตั้งต้น D-glucose และ D-galactose ของเอนไซม์ที่มีการเปลี่ยนแปลงหมู่แข็งที่กรดอะมิโนที่ residue 169 (T169) เปรียบเทียบ กับปฏิกิริยาของเอนไซม์ปกติ พบว่าเอนไซม์ที่มีการเปลี่ยนแปลงหมู่แข็งที่กรดอะมิโนที่ residue 169 เป็นกรดอะมิโนเซอร์ิน (T169S) นั้น พบว่าอันตรกิริยาระหว่าง N5 ของฟลาวินกับหมู่แข็งข้างของกรดอะมิโนเซอร์ินที่ตำแหน่ง 169 ซึ่งมีความสำคัญต่อปฏิกิริยาฟลาวินรีดักชั่นและออกซิเดชั่น

Our research supported by TRF during 2008-2011 has focused on studying *p*-hydroxyphenylacetate (HPA) hydroxylase (HPAH) and pyranose oxidase (P2O). Overall, the project was very successful. We have obtained 15 publications in leading international journals. These research output have contributed significantly to the understanding of in-depth mechanistic and structural aspects controlling catalysis in *p*-hydroxyphenylacetate hydroxylase (HPAH) and pyranose 2-oxidase (P2O). *p*-Hydroxyphenylacetate hydroxylase (HPAH) from *Acinetobacter baumannii* catalyzes the hydroxylation of *p*-hydroxyphenylacetate (HPA) at the ortho-position to yield 3,4-dihydroxyphenylacetate. Based on the fluorescence up-conversion method, kinetics of fluorescence decay of the reductase component is a mixture of fast and slow decays. We have used molecular dynamics simulations, site-directed mutagenesis and transient kinetics to demonstrate that the residue F266 is a gating residue controlling oxygen diffusion to the active site. The reaction kinetics of C₂:FMNH⁻ with oxygen at various pHs indicates that in the absence of HPA, the rate constant for the formation of C4a-hydroperoxy-FMN ($\sim 1.1 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$) is unaffected at pH 6.2 - 9.9 while the rate constant for the following H₂O₂ elimination step increases with higher pH, which is consistent with a pKa >9.4. In the presence of HPA, the rate constants for the formation of C4a-hydroperoxy-FMN ($\sim 4.8 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$) and the ensuing hydroxylation step ($15-17 \text{ s}^{-1}$) are not significantly affected by pH. The enzyme efficiently catalyzes hydroxylation without generating significant amounts of wasteful H₂O₂ at pH 6.2-9.9. P2O catalyzes oxidation of D-glucose or other pyranoses at the C2 position, resulting in the corresponding 2-keto sugars as products. The reaction catalyzed by P2O is regarded as one of the most useful types for carbohydrate syntheses because 2-keto-sugars can be used in chiral syntheses of valuable compounds. One of our major findings of this project is the detection, for the first time, of a C4a-hydroperoxy flavin intermediate in the reaction of flavoprotein oxidase. The reduction of the enzyme-bound FAD of T169 mutants by D-glucose and D-galactose was investigated and compared with the wild-type enzyme. The results have shown the interaction of flavin N5 with the side chain of T169S is important for reductive and oxidative half-reactions.

Keywords: Flavin, Flavoprotein, hydroxylase, monooxygenase, reductase, hydroxyphenylacetate, pre-steady state kinetics, enzyme mechanism, enzyme kinetics.

Executive summary for *p*-Hydroxyphenylacetate hydroxylase (HPAH) project

Background and Introduction

Two-component monooxygenases are flavin-dependent enzymes that have been identified mostly during the past decade. These enzymes have emerged as common enzymes in nature that are involved in many important reactions in various microorganisms including oxygenation and halogenation of organic compounds. *p*-Hydroxyphenylacetate hydroxylase (HPAH) from *Acinetobacter baumannii* catalyzes the hydroxylation of *p*-hydroxyphenylacetate (HPA) at the ortho-position to yield 3,4-dihydroxyphenylacetate. The enzyme is by far the most studied two-component flavin-dependent monooxygenase. It consists of a smaller reductase component (C₁), which contains FMN as a cofactor, and a larger oxygenase component (C₂), which has no cofactor bound and employs reduced FMN (FMNH-) as a substrate for the hydroxylation of HPA. The transfer of the reduced flavin from the reductase to the oxygenase occurs efficiently via a simple diffusion. Based on the X-ray structure of C₂, the active site of C₂ contains a few catalytic residues, which comprise dissociable protons. These residues are in the proper vicinity to participate in the hydroxylation reaction.

Materials & Methods

Insights into the reaction mechanism of HPAH were investigated by pH-dependent studies and site-directed mutagenesis. Transient kinetics of the reductase and oxygenase were investigated using stopped-flow and rapid quench flow techniques.

Results & Discussion

The reaction kinetics of C₂:FMNH- with oxygen at various pHs indicates that in the absence of HPA, the rate constant for the formation of C4a-hydroperoxy-FMN ($\sim 1.1 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$) was unaffected at pH 6.2 - 9.9, which indicated that the pKa of the enzyme-bound reduced FMN is less than 6.2. The rate constant for the following H₂O₂ elimination step increased with higher pH, which is consistent with a pKa > 9.4. In the presence of HPA, the rate constants for the formation of C4a-hydroperoxy-FMN ($\sim 4.8 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$) and the ensuing hydroxylation step ($15-17 \text{ s}^{-1}$) were not significantly affected by pH. In contrast, the following steps of C4a-hydroxy-FMN dehydration to form oxidized FMN occurred through two pathways that were dependent on the pH of the reaction. One pathway, dominant at low pH, allowed the detection of a C4a-hydroxy-FMN intermediate, whereas the pathway dominant at high pH values produced oxidized FMN without the apparent accumulation of the intermediate. However, both pathways efficiently catalyzed hydroxylation without generating significant amounts of wasteful H₂O₂ at pH 6.2-9.9.

Based on the crystal structures of the oxygenase component (C₂), His120 and Ser146 were speculated to be the residues important for binding of a substrate, HPA, since both residues are in vicinity to interact with the hydroxyl group of HPA via H-bonding. Therefore, His120 was mutated into Asn (H120N) and Asp (H120D) and S146 was mutated into Ala (S146A) and Cys (S146C) to investigate the role of both residues in the substrate binding. For the mutants H120N and H120D, results from stopped-flow and single-turnover product analysis experiments indicate that HPA can bind to the enzymes but these mutants cannot catalyze hydroxylation of HPA at pH 6-10, probably due to the lack of proper H-bonding between His120 and HPA. For the reaction of S146A, the enzyme catalyzes 70% hydroxylation at pH 6.2-9.3. These results are different from those of C2 wild type where the yield of the hydroxylated product is ~90%.

Executive summary for Pyranose 2-Oxidase project

Background and Introduction

Pyranose 2-oxidase (P2O; pyranose:oxygen 2-oxidoreductase; EC 1.13.10) from *Trametes multicolor* is a member of the GMC oxidoreductase and catalyzes oxidation of several aldopyranoses by molecular oxygen at the C2 position to yield the corresponding 2-keto-aldoses and hydrogen peroxide. The enzyme is useful for its applications in sugar syntheses. P2O is a homotetrameric enzyme with a native molecular mass of 270 kDa. Each subunit contains one flavin adenine dinucleotide (FAD) covalently attached to N3 of His167.

Materials & Methods

Insights into the reaction mechanism of P2O were investigated by pH-dependent studies and site-directed mutagenesis. Transient kinetics of P2O was investigated using stopped-flow kinetic isotope effects techniques.

Results & Discussion

A catalytic reaction of P2O can be divided into a reductive half-reaction in which two electrons as a hydride equivalent are transferred from a sugar substrate to generate the reduced FAD and 2-keto-sugar (Prongjit et al., 2009; Sucharitakul et al., 2008), and an oxidative half-reaction in which two electrons are transferred from the reduced flavin to oxygen to form hydrogen peroxide (Sucharitakul et al., 2008; Prongjit et al., 2009). P2O is the first flavoprotein oxidase in which formation of C(4a)-hydroperoxy-flavin was observed during the oxidative half-reaction (Sucharitakul et al., 2008). The intermediate was detected in other flavoprotein oxidases only under specific conditions such as in the crystalline form of choline oxidase and the mutant form, C42S, of NADH oxidase. In addition, the reductive half-reaction of P2O has shown a few interesting features not found in other flavoprotein oxidases, such as the absorbance increase at 395 nm and the inverse kinetic isotope effect

at the D-glucose binding step (Prongjit et al., 2009, Warintra et al., 2010). Our recent investigations on solvent and primary kinetic isotope effects on P2O indicate that the deprotonation of the C2-OH of D-glucose is decoupled with the hydride transfer step (Sucharitakul et al., 2010) and the reaction is involved with formation of D-glucose alkoxide intermediate. His548 was proposed to act as a base abstracting a proton from D-glucose and also proposed to be a residue enabling FAD covalent linkage formation (Tan et al., 2010).

Output

In summary, we have obtained 15 papers.

(The PI is a corresponding author for 11 papers)

- 1 Sucharitakul J, Prongjit M, Haltrich D, **Chaiyen P***. Detection of a C4a-Hydroperoxyflavin Intermediate in the Reaction of a Flavoprotein Oxidase. *Biochemistry* 2008;47(33):8485–90.
- 2 Spadiut O, Pisanelli I, Maischberger T, Peterbauer C, Gorton L, **Chaiyen P**, Haltrich D. Engineering of pyranose 2-oxidase: improvement for biofuel cell and food applications through semi-rational protein design. *Journal of Biotechnology* 2009; 139(3):250-7.
- 3 Prongjit M, Sucharitakul J, Wongnate T, Haltrich D, **Chaiyen P***. Kinetic mechanism of pyranose 2-oxidase from *Trametes multicolor*. *Biochemistry* 2009;48(19):4170-80.
- 4 Chosrowjan H, Taniguchi S, Mataga N, Phongsak T, Sucharitakul J, **Chaiyen P***, Tanaka F. Ultrafast Solvation Dynamics of flavin mononucleotide in the reductase component of *p*-Hydroxyphenylacetate Hydroxylase. *Journal of Physical Chemistry B* 2009;113(25):8439-42.

- 5 Baron R, Riley C, Chenprakhon P, Thotsaporn K, Winter RT, Alfieri A, Forneris F, van Berkel WJH, **Chaiyen P**, Fraaije MW, Mattevi A, McCammon JA. Multiple pathways guide oxygen diffusion into flavoenzyme active sites. *Proceedings of the National Academy of Sciences of the United States of America* 2009;106(25):10603-8.
- 6 Sopithammakhun K, Maenpuen S, Yuthavong Y, Leartsakulpanich U, **Chaiyen P***. Serine hydroxymethyltransferase from *Plasmodium vivax* is different in substrate specificity from its homologues. *FEBS Journal* 2009;276(15):4023-36.
- 7 Maenpuen S, Sopithammakhun K, Yuthavong Y, **Chaiyen P***, Leartsakulpanich U. Characterization of *Plasmodium falciparum* serine hydroxymethyltransferase—A potential antimalarial target. *Molecular and Biochemical Parasitology* 2009;168(1):63-73.
- 8 **Chaiyen P***. Flavoenzymes catalyzing oxidative aromatic ring-cleavage reactions. *Arch Biochem Biophys*. 2010;493(1):62-70. (Review)
- 9 Pitsawong W, Sucharitakul J, Prongkit M, Tan TC, Spadiut O, Haltrich D, Divne C, **Chaiyen P***. A conserved active-site threonine is important for both sugar and flavin oxidations of pyranose 2-oxidase. *Journal of Biological Chemistry* 2010;285(13):9697-705.
- 10 Sucharitakul J, Wongnate T, **Chaiyen P***. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism. *Biochemistry* 2010;49(17):3753-65.
- 11 Chenprakhon P, Sucharitakul J, Panijpan B, **Chaiyen P***. Measuring binding affinity of protein. Ligand interaction using spectrophotometry: binding of neutral red to riboflavin-binding protein. *Journal Chemical Education* 2010;87(8):829-31.
- 12 Rujkorakarn R, Nunthaboot N, Tanaka F, **Chaiyen P**, Chosrowjan H, Taniguchi S, Mataga N. Time-resolved Stokes shift in proteins with continuum model: Slow

dynamics in proteins. *Journal of Photochemistry and Photobiology A: Chemistry* 2010;215(1):38-45.

- 13 Tan TC, Pitsawong W, Wongnate T, Spadiut O, Haltrich D, **Chaiyen P**, Divne C. H-bonding and Positive Charge at the N(5)/O(4) Locus are Critical for Covalent Flavin Attachment in *Trametes* Pyranose 2-Oxidase. *Journal of Molecular Biology* 2010;402(3):578-94
- 14 Nijvipakul S, Ballou SP, **Chaiyen P***. Reduction Kinetics of a Flavin Oxidoreductase LuxG from *Photobacterium leiognathi* (TH1):Half Sites Reactivity. *Biochemistry* 2010;49(43):9241–8
- 15 Ruangchan N, Tongsook C, Sucharitakul J, **Chaiyen P***. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase. *Journal of Biological Chemistry* 2010, Jan 7;286(1):223-33.

Honors, awards and recognition received during the funding period

Honors and awards

- 2008 Affiliate Fellow of TWAS (The Academy of Sciences for the Developing World)
- 2009 BMB Award from Section of Biochemistry and Molecular Biology, The Science Society of Thailand under the Patronage of His Majesty the King.
- 2009 Faculty of Science Outstanding Lecturer Award (First-Middle Level)
- 2010 Exemplary Lecturer Award from Mahidol University Faculty Senate
- 2010 Taguchi Prize for Outstanding Research Achievement in Biotechnology
- 2010 TRF-CHE-Scopus Researcher Award 2010

Recognitions

Ad Hoc Journal Reviewer:

Biochemistry

Archives of Biochemistry and Biophysics

Bioresource Technology

Acta Crystallographica Section F

Applied Microbiology and Biotechnology

Journal of Chemical Education

Journal of Agricultural and Food Chemistry

Invited Lectures and Seminars (International Level):

1. Invited Symposium Lecture

"How the reductase and oxygenase work together in a two-component flavoenzyme, *p*-hydroxyphenylacetate". 16th International Symposium on Flavins and Flavoproteins, Jaca, Spain , Jun 10, 2008.

2. Invited Speaker

Gordon Research Conference 2010: Enzymes, Co-enzymes & Metabolic Pathways
"What is necessary for C4a-hydroperoxy-FAD formation in pyranose 2-oxidase reacion?" July 19-23, 2010 at Waterville Valley Resort, New Hampshire, USA.

3. Invited seminar lecture

"Exploring the Reaction Mechanism of Pyranose 2-Oxidase Through Transient Kinetics and Site-Directed Mutagenesis" at Wake Forest University, July 27, 2010, Winston-Salem, North Carolina, USA.