

รายงานฉบับสมบูรณ์

โครงการวิจัย: ปฏิกริยาทรายส์อเลตเทอริฟิกชัน การวิเคราะห์ และการทำนายความหนืดของ
ไบโอดีเซล

โดย รศ.ดร. คณิต กุழณังกุร และคณะ

กรกฎาคม พ.ศ. 2554

โครงการวิจัย ปฏิกริยาtranส์อสเตอโรฟิเกชัน การวิเคราะห์ และการทำนายค่าความหนืด

ของใบโอดีเซล

คณะวิจัย

1. รศ.ดร. คณิต กฤตยัณกุร	สาขาวิชาเทคโนโลยีชีวเคมี คณะทรัพยากรชีวภาพและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
2. ผศ.ดร. กรณ์กนก อายุสุข	สาขาวิชาเทคโนโลยีชีวเคมี คณะทรัพยากรชีวภาพและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
3. ผศ.ดร. สุกัตรา ลิลิตชาญ	ภาควิชาโภชนาวิทยา คณะสารารัณสุขศาสตร์ มหาวิทยาลัยมหิดล
4. ดร.คณิศา กิตติรัตน์ไพบูลย์	ภาควิชาเคมี คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสวนสุนันทา
5. ดร.ภัทราชรรณ์ แก้วกุล	ภาควิชเกณฑ์และสิ่งแวดล้อม คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสุรินทร์
6. นส.ชนิดา แสนสะอาด	สาขาวิชาเทคโนโลยีชีวเคมี คณะทรัพยากรชีวภาพและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

สังกัด

สารบัญ

	หน้า
Abstract	๘
บทคัดย่อ	๙
Executive summary	๙
สัญญาลักษณ์และอักษรย่อ	๙
๑. บทนำ	๑
๑.๑ การผลิตไบโอดีเซล	๓
อุณหภูมิ (T)	๔
ปริมาณ catalyst	๔
อัตราส่วนไนโตรเจนและออกซิเจน	๕
ความเร็วของไบโอดีเซล	๕
๑.๒ การวิเคราะห์สาร	๖
๑.๓ ความหนืดของไบโอดีเซล	๗
๒. ผลการศึกษาจากการศึกษานี้	๘
๒.๑ การพัฒนาวิธีการวิเคราะห์ไบโอดีเซล	๘
๒.๒ ทรานเซสเตอเรฟิเกชัน	๑๒
๒.๒.๑ Micro-reactor	๑๒
๒.๒.๒ ปฏิกิริยาสำหรับการผลิตไบโอดีเซลที่อุณหภูมิห้องแบบต่อเนื่องขนาดประมาณ ๗๐ ลิตรต่อวัน	๑๔
๒.๒.๓ Transacetylation/transesterification Reaction	๑๕
๒.๓ คุณสมบัติของไบโอดีเซล	๑๗
๒.๓.๑ การหาค่าความหนืดของไบโอดีเซลผ่านน้ำมันดีเซล	๑๗
๒.๓.๒ การหาค่าความหนืดของไบโอดีเซลที่อุณหภูมิและความดันต่างๆ	๒๓
๓. ปัญหาและอุปสรรค	๒๙
๔. ผลที่ได้รับ	๓๐
๕. References	๓๑

รายการรูป

หน้า

รูปที่ 1 Number of publications (July 19, 2010)	2
รูปที่ 2 High temp gas chromatography of biodiesel products with Flame Ionization Detector	9
รูปที่ 3 Separation of lipids into their classes with Phenogel column (100 Å) Eluted with, A:THF, B:Toluene	11
รูปที่ 4 High performance size exclusion chromatography of biodiesel products	11
รูปที่ 5 Transmethylation of oil in different co-solvents Products were analyzed on Phenogel 100 Å, eluted with 0.25% acetic acid in toluene.	13
รูปที่ 6 Transesterification of soy bean oil with different alcohols. See Fig. 5 for products analysis	13
รูปที่ 7 Transesterification of soy bean oil with secondary octanols. See Fig.5 for products analysis.	14
รูปที่ 8 Biodiesel derived from a non-thermal continuous reactor (33 °C) at the molar ratio of alcohol to oil, 20:1 with 2.0% NaOH in alcohol and retention time was 30 min. Products were 94.5% fatty acid methyl ester and 5.5% free fatty acid.	15
รูปที่ 9 Gas chromatogram of fatty alcohols (C ₁₂ –C ₁₈) ที่ 100–200 °C, 5 °C/min on a Rtx 2330: (A) acetates and (B) free alcohols	16
รูปที่ 10 Gas chromatogram of transesterification/acetylation castor oil with ethyl acetate. GC conditions: 160–220 °C, 5 °C/min on a Rtx 2330. (A), acetates and (B), free alcohols.	17

รายการตาราง

	หน้า
ตารางที่ 1 ความหนืดเชิงจลนศาสตร์ของไบโอดีเซลผสมที่คำนวณได้ ตัวเลขในวงเล็บคือความ คลาดเคลื่อนในการทำนายคิดเป็นร้อยละจากค่าที่รายงาน โดย Knoth and Steidly (1) The AAD is 1.64%.	21
ตารางที่ 2 ความหนืดเชิงจลนศาสตร์ของเมทิล โอลีออยล์ผสมกับดีเซลที่คำนวณได้ ตัวเลขในวงเล็บ คือความคลาดเคลื่อนในการทำนายคิดเป็นร้อยละจากค่าที่รายงาน โดย Knoth and Steidly (1). The AAD is 1.64%.	21
ตารางที่ 3 ความหนืดเชิงจลนศาสตร์ของไบโอดีเซลผสมที่คำนวณได้ ตัวเลขในวงเล็บคือความ คลาดเคลื่อนในการทำนายคิดเป็นร้อยละจากค่าที่รายงาน โดย (2)	22
ตารางที่ 4 ความหนืดของ diisopropyl ether ความคลาดเคลื่อนจากค่าที่รายงาน โดย Meng และ คณ (3)	26
ตารางที่ 5 ความหนืดของ diibutyl ether ความคลาดเคลื่อนจากค่าที่รายงาน โดย Meng และคณ (3)	27
ตารางที่ 6 ความหนืดของไบโอดีเซล ความคลาดเคลื่อนจากค่าที่รายงาน โดย Robertson and Schaschke (4)	28

Transesterification, analysis and rheological property of biodiesel

Abstract

Biodiesel is the short chain alkyl ester of fatty acid. Commercially, it is prepared by alkaline catalyzed transesterification of vegetable oil or animal fat with short chain alcohol. Alkaline catalyzed transesterification is very efficient and can be completed in a short time. With maximum concentration of NaOH and molar ratio of methanol to oil 200:1 with a co-solvent, transesterification can be completed within 1 min. The transesterification can be extended to transacetylation of long chain alcohol, but the transacetylation rate is about 10 times slower. Passing a solution of long chain alcohols (including policosanol) in ethyl acetate, acetylation of the alcohols is completed in 8 min. All the reaction products can be separated into individual lipid class with a single size exclusion column (Phenogel 100 Å). Thus, monitoring of products from biodiesel reactor is facilitated and quantification is very much simplified.

In this study, it is shown that the molar free energy of viscous flow of a biodiesel (ΔG_{vis}^o) at different pressures (p) is the sum of the free energy of viscous flow in vacuum ($\Delta G_{vis(o)}$) and the increment in free energy of viscous flow per unit pressure (δG_{vis}). Expansion of this simple relationship according to basic thermodynamics leads to Eq.(1), which can be used for prediction of a biodiesel viscosity (η_p) at different temperatures (T) and pressures.

$$\ln \eta_p = a + bp + \frac{c}{T} + d \frac{p}{T} \quad (1)$$

where a, b, c and d are thermodynamic constants.

Similarly, viscosity of a biodiesel blend can be predicted from Eq.(2)

$$\ln \eta_{blend} = a + bn_1 + \frac{c}{T} + d \frac{n_1}{T} \quad (2)$$

where n_1 is the mole fraction of biodiesel in the blend and a, b, c and d are thermodynamic constants.

The predicted viscosities from both equations are in good agreement with the experimental values.

ปฏิกริยาทรานเอสเทอโรฟิเกชัน การวิเคราะห์ และการทำนายความหนืดของไบโอดีเซล

บทคัดย่อ

ไบโอดีเซลเป็นเอสเทอโรแอลกออลส์สายสัมภับกรดไบมัน ในการการค้าเตรียมโดยปฏิกริยาทราน เอสเทอโรฟิเกชันน้ำมันพืชหรือไบสัต์ร์ด้วยแอลกออลส์สายสัมภับ เมนเมทิล หรืออโซทิลแอลกออลส์โดยมีโซเดียมไฮดรอกไซด์เป็นตัวเร่งปฏิกริยา ปฏิกริยาทรานเอสเทอโรฟิเกชันที่มีค่าเป็นตัวเร่งนั้นมีประสิทธิภาพสูงเกิดได้สมบูรณ์ในเวลาสั้น หากความเข้มของค่าอยู่ที่จุดสูงสุด และอัตราส่วน โมลของแอลกออลต่อน้ำมันที่ 200:1 พร้อมกับมีตัวทำละลายร่วม ปฏิกริยาทรานเอสเทอโรฟิเกชันจะเกิดได้สมบูรณ์ภายใน 1 นาที ปฏิกริยาทรานเอสเทอโรฟิเกชันนี้สามารถขยายไปใช้กับปฏิกริยาทรานอะเซทิเลชันของแอลกออลส์สายยาว ทว่าปฏิกริยาทรานอะเซทิเลชันจะช้ากว่าประมาณ 10 เท่า การอะเซทิเลตแอลกออลส์สายยาว รวมถึงสารโพลิโคชานอลในอีกอัตราที่เกิดจากการผ่านสารเหล่านี้ที่ละลายในอีกอัตราที่เกิดตั้งไปในปฏิกริยาจะสมบูรณ์ในเวลาประมาณ 8 นาที ผลิตภัณฑ์ในปฏิกริยาทั้งหมดสามารถแยกออกจากกันตามประเภทสารคั่วคอลัมน์แบบแยกตามขนาดโมเลกุล (Phenogel 100 องศาเซลเซียส) เพียงอันเดียว ดังนั้น การติดตามปฏิกริยา และการวิเคราะห์ปริมาณสารทำได้สะดวกและรวดเร็ว

การศึกษานี้ยังได้ชี้ให้เห็นถึงผลลัพธ์ของการไอลของไบโอดีเซล (ΔG_{vis}^o) ที่ความดันต่างๆ นั้นเกิดจากผลรวมของผลลัพธ์ของการไอลที่สูญญากาศกับผลลัพธ์ของการไอลที่เปลี่ยนแปลงไปต่อ 1 หน่วยความดัน เมื่อทำการขยายอุณหภูมิ ได้สมการทำนายความหนืด (η_p) ของไบโอดีเซลที่อุณหภูมิและความดันต่างๆ ดังสมการ 1

$$\ln \eta_p = a + bp + \frac{c}{T} + d \frac{p}{T} \quad (1)$$

โดย a, b, c และ d เป็นค่าคงตัวทางอุณหพลศาสตร์

ในทำนองเดียวกัน ความหนืดของไบโอดีเซลผ่านสมการทำนายได้ด้วยสมการ 2

$$\ln \eta_{hend} = a + bn_1 + \frac{c}{T} + d \frac{n_1}{T} \quad (2)$$

โดย n_1 เป็นสัดส่วนโดยโมลของไบโอดีเซลผ่านสมการ 2 และ a, b, c และ d เป็นค่าคงตัวทางอุณหพลศาสตร์ทั้งสมการ 1 และสมการ 2 สามารถทำนายความหนืดของไบโอดีเซลและไบโอดีเซลผ่านสมการได้ใกล้เคียงกับค่าที่ได้จากการทดลอง

Executive summary

Biodiesel is the esters of low molecular weight alcohols and fatty acids. Commercially, it has been derived mainly from vegetable oil and methanol by alkaline catalyzed transmethylation. The methyl esters of fatty acid are the most volatile and they are used preferentially for fatty acid identification and quantification by gas chromatographic method.

In order to improve maximum yield of biodiesel, in the shortest time and/or the most economic viable, the chemistry of alkaline catalyzed transesterification has been subjected to intensive investigation. It was found that maximum or quantitative yield of methyl ester could be obtained in a very short time. By passing the mixture of vegetable oil (2 mg) in THF (1 mL) through a micro-column packed with 0.5g of powder NaOH, quantitative conversion of the oil to fatty acid methyl ester can be accomplished within 1 min. Furthermore, the transesterification can be extended to long chain alcohols and low molecular weight acid esters, such as methyl or ethyl acetate. Hence, fatty alcohols as well as policosanol are easily converted into acetate. By dissolving long chain alcohol in ethyl acetate and passing to the NaOH reactor, complete conversion of the alcohol to acetates derivative are observed in about 8 min (as shown in Fig.1). The reaction rate is about 10 times slower than transmethylation. This reaction is expected to be used in place of the acetylation of alcohol by the noxious acetyl chloride or acetic anhydride.

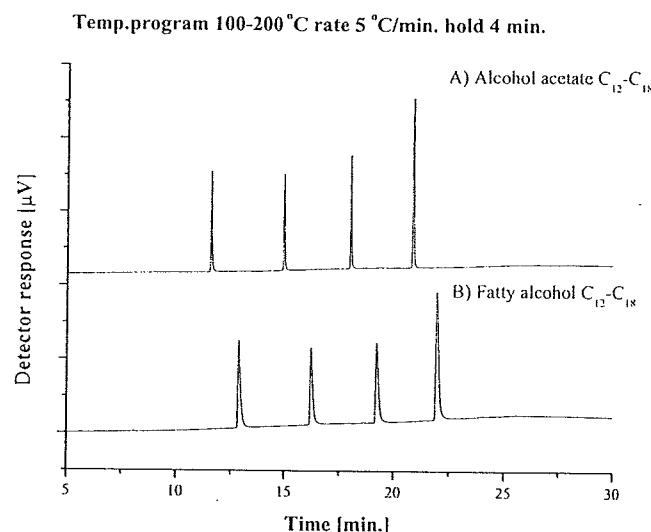


Fig.1 Gas chromatogram of fatty alcohols ($C_{12}-C_{18}$) at 100–200 °C, 5 °C/min. on a Rtx 2330 (30m X 0.25 mm ID) column: (A) acetates and (B) free alcohols.

Although there were methods available for quantification of biodiesel yield in the reactor, most of them are time consuming and difficult in interpretation of the chromatographic peak. Hence a high performance size exclusion liquid chromatography (HPSEC) was developed (Fig.2). The good points of the invented HPSEC method are:

1. Lipids are separated into their class by one column.
2. Interpretation, peak identification and quantification are simplified
3. Separation time is short.

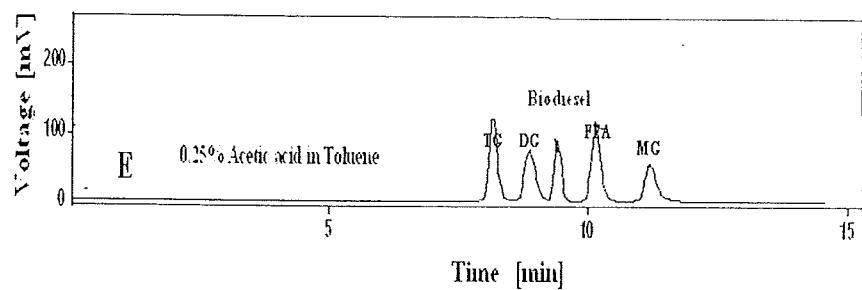


Fig.2 High performance size exclusion chromatography of biodiesel products.

Viscosity of biodiesel plays an important role in determining the atomization characteristic, which in turn affects the combustion of the fuel. Biodiesel, in most countries, is marketed mostly as the blends (with petroleum diesel) for uses in diesel engines. Therefore, method for estimation of the viscosity of biodiesel blends of different degree of blending is important. An empirical equation for estimation of viscosity of biodiesel blend was proposed (Eq.(1)).

$$\ln \eta_{blend} = a + b n_1 + \frac{c}{T} + \frac{d n_1}{T} \quad (1)$$

where a, b, c and d are constants. T is absolute temperature.

The predicted viscosities of biodiesel blends at different degree of blending and at different temperatures are in good agreement with those reported in literatures. The highest deviation is $\pm 5.4\%$ and the average absolute deviation (AAD) is less than 2.86%. Similarly, when pressure (p) is incorporated as a variable of the free energy of viscous flow, Eq.(2) is derived and can be used to predict viscosity of a biodiesel at different pressures.

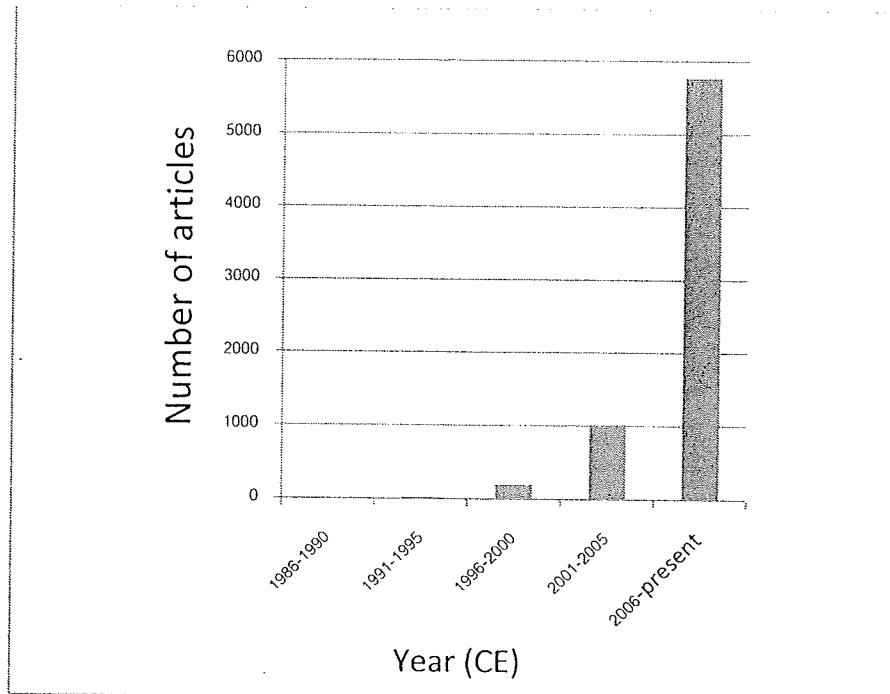
$$\ln \eta_p = a + b p + \frac{c}{T} + d \frac{p}{T} \quad (2)$$

Thus, Eq.(2) would help o rough estimation of the usable pressure for a specific biodiesel.

ສັນຍຸລັກຄະແລະອັກມະຍົວ

ΔE_{act}	Activation energy
ΔG_{vis}	Free energy of activation for viscous flow
$\Delta G_{vis(0)}$	Free energy of activation for viscous flow in vacuum
δG_{vis}	Change in free energy of viscous flow per unit p
ΔH_{vis}	Enthalpy of activation for viscous flow
$\Delta H_{vis(0)}$	Enthalpy of activation for viscous flow in vacuum
δH_{vis}	Change in enthalpy of viscous flow per unit p
ΔS_{vis}	Entropy of activation for viscous flow
$\Delta S_{vis(0)}$	Entropy of activation for viscous flow in vacuum
δS_{vis}	Change in entropy of viscous flow per unit p
d	density
DG	Diglyceride
ELSD	Evaporative light scattering detector
FFA	Free fatty acid
FID	Flame ionization detector
GC	Gas chromatography
h	Plank's constant
HPLC	High performance liquid chromatography
HPSEC	High performance size exclusion chromatography
MG	Monoglyceride
MW	Molecular weight
n	Mole fraction
N_A	Avogadro's number
η	Viscosity (kinematic or dynamic)
p	Pressure
R	Universal gas constant
R_η	ເປົ້າທີ່ຮັນຄວາມໄຟ່ສຳເນົາແລະຄວາມເປົ້າຍັນເບັນຂອງ ໂມເຄຸດຈາກທຽກຄລມ
T	Absolute temperature

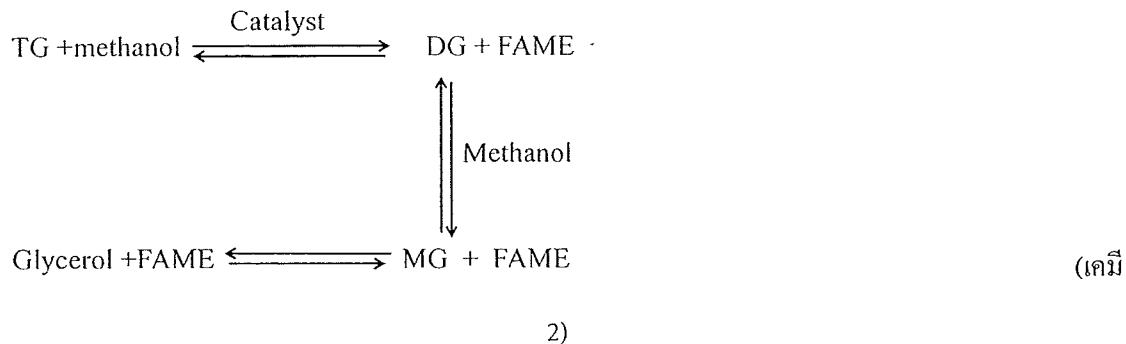
TG	Triglyceride
TLC	Thin-layer chromatography
\bar{V}	Volume fraction
z	Number of carbon atom


1. บทนำ

คำว่าดีเซล (diesel) นั้นได้มาจากการชื่อของนักประดิษฐ์ชาวเยอรมัน รูดอลฟ์ คิวสตีเยน คาร์ล ดีเซล ผู้ประดิษฐ์เครื่องยนต์จุดระเบิดด้วยแรงอัดในปี ค.ศ. 1983 ซึ่งรู้จักกันทั่วไปว่าเครื่องยนต์ดีเซล เครื่องดันเบน มีลูกสูบเดียวแสดงในเมืองอ็อกซ์บีร์ก ในปี 1900 รูดอลฟ์ ดีเซล ได้นำเครื่องยนต์ดีเซลที่ผลิตตามคำร้องขอของรัฐบาลฝรั่งเศษ (The French Otto Company) ออกในงานแสดงสินค้า เครื่องยนต์นี้ใช้น้ำมันถั่วถั่วสังเป็นเชื้อเพลิงในการขับเคลื่อน เครื่องยนต์ที่นำออกแสดงนี้เดินเรียบจนไม่มีสิ่งสกุดติดไปจากเครื่องยนต์ที่ใช้เชื้อเพลิงดีเซล รูดอลฟ์ ดีเซลบังได้ร้ายงานในเวลาต่อมาอีกว่า การทดลองใช้น้ำมันละหุ่ง และไขมันสัตว์ก็ให้ผลลัพธ์เช่นกัน นอกจากนี้ยังกล่าวว่าน้ำมันพืชและไขสัตว์เหล่านี้ยังมีคุณสมบัติเป็นน้ำมันหล่อลื่นได้ด้วยดังนั้น แม้น้ำมันนี้จะมีบทบาทน้อยนิดในขณะนั้น แต่นั้นจะเป็นทางออกของการพัฒนาอย่างในอนาคตอย่างไรก็ตาม น้ำมันพืชและไขสัตว์ที่รูดอลฟ์ ดีเซล ได้กล่าวว่าเป็นมิตรของ humanity ประเทศในยุคหนึ่ง เช่น ในสหราชอาณาจักร ประเทศอังกฤษ ประเทศเยอรมนี ประเทศฝรั่งเศส ประเทศอิตาลี ประเทศอังกฤษ ประเทศอิสราเอล ประเทศอินเดีย ต่างหันมาให้ความสนใจน้ำมันพืช โดยเฉพาะอย่างยิ่งในประเทศอังกฤษ ที่มีการผลิตน้ำมันพืชเพื่อการวิจัยและพัฒนาต่อเป็นเชื้อเพลิงดีเซล แต่โครงการเหล่านี้ต้องถูกยกเลิกเมื่อสหราชอาณาจักร น้ำมันพืช เพื่อมาทดแทนน้ำมันปิโตรดีเซล ทว่า เครื่องยนต์ดีเซลนั้นได้มีการพัฒนาอย่างต่อเนื่อง การจะนำน้ำมันพืชมาใช้กับเครื่องยนต์รุ่นใหม่โดยตรงนั้น มีรายงานปัญหาต่างๆ กับเครื่องยนต์ เช่น การอุดตันของหัวฉีด การสะสมของน้ำมันพืช จึงควรลดความหนืดของน้ำมันลง เช่น ทำให้อยู่ในรูปไมโครอิมลชัน (micro-emulsion) การแตกสลายด้วยอุณหภูมิ (pyrolysis) การผสมกับน้ำมันดีเซล หรือการเปลี่ยนให้อยู่ในรูปโอลีฟ เทอร์ของแอลกอฮอล์ที่มีขนาดเล็กลง ซึ่งต่อมาเรียกว่าใบโอดีเซล (ดังสมการเคมี 1)

แม้การศึกษาเกี่ยวกับการเปลี่ยนน้ำมันพืชให้อยู่ในรูปของเมทิล หรือเอทิลเอเทอร์จะมีการศึกษา กันมาช้านาน เช่น สิทธิบัตรที่ 422877 ออกโดยรัฐบาลเบลเยี่ยมให้กับ G. Chavanne ในปี คศ 1937 นั้นน่าจะเป็นจุดเริ่มของการใช้อสเทอร์ที่เราเรียกวันในปัจจุบันว่าใบโอดีเซล แต่ในขณะนั้นไม่มีการใช้สัพท์นี้ เมื่อคืนคำ

ว่าในโอดีเซลจะพบว่าการใช้ครั้งแรกโดยนักวิจัยจีนในปี 1987 และต่อมาในปี 1988- 1991 หลังจากนั้น
บทความวิจัยด้านนี้ในโอดีเซลก็เพิ่มอย่างรวดเร็วดังรูปที่ 1


รูปที่ 1 Number of publications (July 19, 2010)

นั้นคือ การศึกษาวิจัยเกี่ยวกับในโอดีเซลที่เพิ่มมากขึ้นอย่างหมาดซึ่ง นักวิจัยได้มองปัญหาในโอดีเซลด้านต่างๆ ในมุมลึกและกว้างมากขึ้น

ส่วนการวิจัยในโครงการนี้ได้เสนอเรื่อง “ในโอดีเซลน้ำมันเมล็ดยางพาราและในโอดีเซลน้ำมัน พสม” โดยมีจุดมุ่งหมายที่จะสร้างสมการการคำนวณค่าดัชนีชีเทนนิ่นใหม่แทนที่สมการเดิม (5) และนำ ทฤษฎีที่ได้ไปใช้ในการคำนวณค่าดัชนีชีเทน ของน้ำมันพสมซึ่งสามารถจะขยายขอบข่ายไปยังน้ำมันจากพืช อื่นๆ เช่น เมล็ดมะลออก และรำข้าว ท่ามกลางการศึกษาต้องประสบปัญหา โดยเฉพาะการหาค่าชีเทนที่ถูกต้อง ตามวิธีของ ASTM D613 ดังนั้น การศึกษาจึงได้ปรับเปลี่ยนไปจากเป้าหมายเดิม

1.1 การผลิตในโอดีเซล

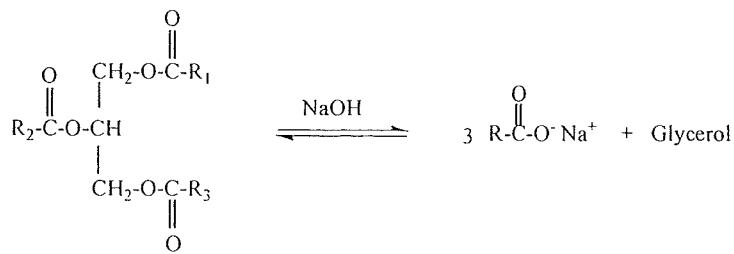
ดังที่ได้กล่าวมาข้างต้น ใบโอดีเซลเป็นอีกหนึ่งแหล่งพลังงานทดแทนที่มีศักยภาพ แต่ในทางการค้าที่นิยมใช้กันอย่างแพร่หลาย จึงเป็นมาตรฐานที่ต้องการที่ต้องการลดต้นทุนและเพิ่มประสิทธิภาพ ดังนั้นการค้นคว้าและพัฒนาเทคโนโลยีที่สามารถลดต้นทุนและเพิ่มประสิทธิภาพของใบโอดีเซลเป็นเรื่องที่สำคัญมาก ที่สำคัญที่สุดคือการค้นหาวิธีการที่สามารถลดต้นทุนและเพิ่มประสิทธิภาพของใบโอดีเซลได้โดยไม่สacrifice คุณภาพของเชื้อเพลิง

ตัว catalyst ที่ใช้นั้นอาจจะเป็นกรด ด่าง หรืออีนไซด์ หรืออาจจะไม่ต้องใช้ก็ได้ แต่จะต้องใช้อุณหภูมิและความดันสูงมากเข้าช่วย การใช้กรดเป็นตัวเร่งปฏิกิริยาจะมีข้อดีคือ แม้ตัวน้ำมันจะมีน้ำหรือกรดในมันอิสระปนเปื้อน ปฏิกิริยาบังคงดำเนินต่อไปได้ด้วยดี ทว่าอัตราเร็วของปฏิกิริยาจะขึ้นกับส่วนของการใช้ด่างเป็นตัวเร่งอย่างมาก Formo (6) รายงานว่าอัตราเร็วจะขึ้นกว่าด่างถึง 4000 เท่า การใช้อีนไซด์เป็นตัวเร่งนั้นมีข้อดีทางด้านสิ่งแวดล้อม และประหยัดพลังงาน แต่ยังเป็นข้อดีของการวิจัยและพัฒนา และยังมีข้อเสียคือ ต้นทุนการผลิตจะสูงมาก การใช้ด่าง NaOH, KOH, NaOCH₃ หรือ KOCH₃ เป็นตัวเร่งปฏิกิริยาจึงเป็นกระบวนการผลิตที่ใช้กันอยู่ในปัจจุบัน แม้การใช้ด่างเป็นตัวเร่งปฏิกิริยาจะมีข้อเสียอยู่ข้าง เนื่องจากปฏิกิริยาจะไวต่อน้ำและกรดในมันอิสระ เมื่อมีการระเหยระหว่างในข้อเสียนี้การผลิตใบโอดีเซลในทางการค้าจึงให้ผลเป็นที่น่าพอใจ บังจุบันได้มีการค้นคว้าตัว catalyst ใหม่ๆ โดยเฉพาะ heterogeneous catalyst ซึ่งในเชิงทฤษฎีนี้ มีข้อดีอยู่มาก เนื่องจากปฏิกิริยาจะมีประสิทธิภาพและลดต้นทุนลง แต่ในทางการค้นคว้าตัว catalyst ที่ไม่ได้ต้องเสียเวลาและสารเคมีในการแยกตัว catalyst ออก อย่างไรก็ตาม การศึกษานี้ให้ความสนใจกับกระบวนการผลิตที่กำลังใช้กันแพร่หลายในขณะนี้ ดังนั้น literature ส่วนใหญ่จึงเกี่ยวข้องกับการใช้ด่างเป็นตัวเร่งปฏิกิริยา แม้จะมีข้อเสียอยู่ในด้านหนึ่ง ท่านจะเห็นว่ากระบวนการผลิตด้วยด่างเป็นตัวเร่งปฏิกิริยานี้ ได้ตอกย้ำและสนับสนุนให้มีน้ำสนิทในการวิจัยมาก แต่ยังคงเป็นสิ่งที่น่าท้าทายและน่าจะหมายความกับประเทศไทย

หากพิจารณาสมการ (เคนี 2) จะเห็นว่า ปฏิกิริยานี้มีตัวแปรด้วยกันหลายตัว เช่น อุณหภูมิ ปริมาณ แอกอชอล์ ปริมาณ catalyst นอกจากนี้แล้ว น้ำมันและเมทานอลนั้นไม่รวมตัวเป็นเนื้อเดียวกัน การกวนให้เข้ากันจึงเป็นอีกหนึ่งตัวแปร

อุณหภูมิ (T)

อัทธิผลของอุณหภูมิคืออัตราเร็วของปฏิกิริยาเคนีทั่วไปนั้นเป็นไปตามสมการของ Arrhenius คือ


$$k = A e^{-\Delta E_{act}/RT} \quad (1)$$

อัตราเร็วของปฏิกิริยา (k) แปรตาม $1/T$ นั่นคืออุณหภูมิ (K) ยิ่งสูงอัตราเร็วที่ยิ่งสูงเช่นกัน (7, 8) นี่คือก้าดของปฏิกิริยาข้างต้นอยู่ที่จุดเดือดของเมทานอล อย่างไรก็ตาม สมการของ Arrhenius นี้ใช้ได้กับระบบความร้อนแบบทั่วไป (conventional heat) การใช้รังสีไมโครเวฟซึ่งใช้ประสิทธิภาพในการอุ่นอาหารสูงนักลับพบว่า ปฏิกิริยาเกิดได้รวดเร็วกว่าความร้อนทั่วไป โดยที่อุณหภูมิในปฏิกิริยานี้ไม่สูงมาก นั่นคือการใช้สมการของ Arrhenius อาจจะไม่ได้ผล

รังสีไมโครเวฟนั้นสามารถผ่านทะลุเข้าสู่ไมโครเวฟของเมทานอลโดยตรง ส่วนประสิทธิภาพการดูดกลืนรังสีไมโครเวฟของน้ำมันนั้นต่ำมาก ดังนั้น เดาว่าไม่เกิดข้อด้อยของเมทานอลนั้นจะร้อนมาก การเข้าทำปฏิกิริยานี้รวดเร็ว พลังงานส่วนที่เหลือจะถูกดูดซึมในรูปความร้อนกับไมโครเวฟข้าง เรายังคงรับรังสีไมโครเวฟในการเตรียมเมทิลเอสเทอโรหั้งในลักษณะเพื่อการวิเคราะห์ (9) และเพื่อการผลิตใบໂอดีเซลแบบต่อเนื่อง (10) ซึ่งปฏิกิริยาเกิดได้รวดเร็วกว่าการใช้ความร้อนทั่วไปมาก

ปริมาณ catalyst

แม่ตัว catalyst จะเข้าทำปฏิกิริยา แต่ไม่เกิดการเปลี่ยนแปลงของตัว catalyst ดังนั้น หลายๆ บทความที่เน้นเฉพาะตัวปฏิกิริยาจึงไม่มีความเข้มข้นอยู่ในสมการจลนศาสตร์ บทบาทของ catalyst นั้นไปคลุกค่า พลังงานกระตุ้น (activation energy) ปริมาณ catalyst ยิ่งสูงจึงน่าจะลดพลังงานกระตุ้นยิ่งมาก ทว่าอย่างไรก็ตาม ให้เห็นรายงานนี้คือก้าดสูงสุดของ catalyst ที่จะใช้ร่วมปฏิกิริยา ในส่วนของใบໂอดีเซลนั้น ผลของปริมาณ catalyst ต่ออัตราเร็วของปฏิกิริยามีการรายงานกันมาก (7, 11) อย่างไรก็ตาม การใช้ปริมาณ NaOH หรือ KOH สูง แม้ปฏิกิริยาจะเกิดได้เร็ว แต่มีข้อเสียเช่นกัน สมการเคนี 2 นั้นมองแค่ปฏิกิริยาท่านเอสเทอโรฟิเกชันเท่านั้น ในทางปฏิบัตินั้น ยังมีปฏิกิริยาข้างเคียงอีกหลายปฏิกิริยา เช่น ปฏิกิริยาไฮโดรไลซิส (สมการ เคณี 3)

(เคมี 3)

นั่นคือ ปริมาณ NaOH ที่มากย่อมทำให้ปฏิกิริยาสังปอนนิฟิเกชันเกิดได้มาก เมื่อ conversion yield จะสูง แต่ยิ่ง
ของในโอดีเซลจะลดลง นอกเหนือจากนี้แล้ว NaOH ยังมีความซึ่งอยู่ลึกน้อย หากใช้ปริมาณ NaOH มาก
ปฏิกิริยาสังปอนนิฟิเกชันจะเกิดขึ้นได้เร็วตัวย

นอกเหนือจากปฏิกริยาที่กล่าวมาข้างต้นแล้ว ในน้ำมันของอาจจะมีสารปนเปื้อน เช่นกรดอินทรีย์ หรือกรดไขมันอิสระ สารเหล่านี้สามารถจะเข้าทำปฏิกริยากับด่างได้โดยตรง ทำให้ปริมาณ catalyst ลดลง กว่าที่เป็นจริง

อัตราส่วนโมลแอลกอฮอล์ต่อหนึ่มัน

ปริมาณแอลกอฮอล์นั้นเป็นปัจจภาคโดยตรงกับอัตราเร็วของปฏิกริยาทرانเอกสาริฟิกัน (ปฏิกริยาลำดับที่ 1) ดังนั้น อัตราส่วนโดยโนลของแอลกอฮอล์ต่อน้ำมันยิ่งสูง อัตราเร็วของปฏิกริยาจะเร็วตามด้วย การใช้ปริมาณมากเกินไป ไม่มีผลต่อปฏิกริยา เพียงแต่ต้นทุนการผลิตจะสูงขึ้น อัตราส่วนโดยโนลที่ใช้กันทั่วไปเป็น 6:1 (7)

ความเร็วรองในการกวน

เนื่องจากแอลกอ Holt และน้ำมันน้ำมันไม่รวมตัวเป็นเนื้อเดียวกัน การจะช่วยให้น้ำและน้ำมันทำปฏิกิริยา กันได้ขึ้นนั้นจำเป็นต้องกวนให้สารทั้งสองเข้ากัน อัตราเร็วในการกวนจะเป็นอีกปัจจัยหนึ่งที่จะช่วยให้ปฏิกิริยาเกิดได้เร็วขึ้น นักวิจัยมักพูดถึงแผลความเร็วของในการกวนท่านั้น ในขณะที่ชนิดของไก่กวนน่าจะมีผลต่อการผสมของแอลกอ Holt กับน้ำมันกลับไม่มีรายงาน Ma และคณะ (12) ได้รายงานผลของอัตราเร็วของ การกวนสูงถึง 1100 รอบต่อนาที

การทำให้น้ำมันพรมกับแอกอคลล์ไดค์อาจจะไม่จำเป็นต้องใช้การกรุนอย่างเดียว คลื่นเสียงอุ่นตัวช่วยให้สารทั้งสองพรมกันได้ดี ปฏิกิริยาเกิดได้รวดเร็ว Stavarache และคณะ (13) กล่าวว่าคลื่นเสียงที่ความถี่ 28 และ 40 kHz สามารถลดเวลาของการเตรียม ใบโอดีเซลลงได้ที่ 40 kHz นั้นเร่งปฏิกิริยาได้เร็วกว่า แต่ที่

20 kHz นั้นกลับให้สัญญาณในโอดิเชลที่สูงกว่า การใช้ตัวทำละลายร่วมกับเป็นอีกวิธีหนึ่งที่จะช่วยให้น้ำมันและแอลกอฮอล์รวมเป็นเนื้อเดียวกัน ปฏิกริยานั้นเกิดได้เร็วขึ้นมาก (8, 14)

1.2 การวิเคราะห์สาร

การวิเคราะห์สารนั้นเป็นสิ่งจำเป็นอย่างยิ่ง ในกระบวนการผลิต และการควบคุมคุณภาพของผลิตภัณฑ์ที่ได้ในการติดตามกระบวนการผลิต การวิเคราะห์จะต้องทำได้รวดเร็ว และในขั้นตอนการควบคุมคุณภาพนั้น ความไว (sensitivity) เพื่อตรวจวัดปริมาณสารปนเปื้อนได้ต่ำ มาตรฐานในโอดิเชลของไทยซึ่งตัดแปลงจากยุโรปได้กำหนดสารต่างๆ เช่น เนื้อในโอดิเชลต้องไม่ต่ำกว่าร้อยละ 96.5 การปนเปื้อนของกรดไขมันอิสระ ในโกลีเชอไรด์ ไดกีเชอไรด์ กลีเชอรอลทั้งหมด เป็นต้น กำหนดให้ได้ไม่เกินกว่าที่กำหนดพร้อมทั้งวิธีการหาค่าต่างๆเหล่านี้ไว้ วิธีการที่กำหนดนั้นหมายต่อการควบคุมคุณภาพผลิตภัณฑ์เชิงการค้าแต่อาจจะไม่เหมาะสมสำหรับการวิจัย หรือการตรวจวัดปริมาณในปฏิกริยานั่นซึ่งต้องทำได้รวดเร็วและไม่ยุ่งยาก การใช้ TLC (Thin layer Chromatography) และมีเครื่องตรวจวัดแบบ FID (flame ionization detector) (15) การใช้ HPLC เป็นวิธีการที่สะดวกรวดเร็ว หากเลือกใช้เครื่องตรวจวัดที่เหมาะสมก็ไม่จำเป็นต้องเตรียมอนุพันธ์ การแยกสารลิปิดอุตสาหกรรมตามประเภทด้วย normal phase and reversed phase HPLC ได้มีรายงานไว้ (16-19) การแยกด้วย HPSEC ที่มีรายงานมากพอกว่า (8, 20-23) ข้อเดียวกันของ HPSEC ที่รายงานนั้นต้องใช้คอลัมน์มากกว่า 1 อัน เพื่อที่จะแยกสารกลุ่มลิปิดในปฏิกริยานี้ออกจากกันอีกส่วนฐานได้ ยกเว้นคอลัมน์ Ultra-Styragel ที่รายงานโดย Krisnangkura and Simamahannop (8) แต่คอลัมน์นั้นไม่มีให้ใช้อีกแล้ว ด้วยเหตุนี้เราจึงต้องพัฒนาวิธีการวิเคราะห์ใหม่ที่เหมาะสมกับสถานการณ์ปัจจุบัน

การปนเปื้อนของกรดไขมันอิสระ ในโกลีเชอไรด์ ไดกีเชอไรด์ และกลีเชอรอลนั้นมีผลต่อเครื่องยนต์ในระยะสั้น ระยะยาว รวมทั้งยังให้ผลเชิงลบต่อสุขภาพและสิ่งแวดล้อม อีกทั้งยังทำให้ความหนืดของในโอดิเชลเปลี่ยนแปลงไป คุณสมบัติ การเผาไหม้ในเครื่องยนต์เปลี่ยนแปลงไปด้วย

1.3 ความหนืดของในโอดิเชล

ความหนืดของของเหลวที่นักวิเคราะห์ต่างๆ ไม่สามารถตีความได้ เช่น ไม่สามารถตีความได้ แต่ยังน้ำที่สูงมากจนกระน้ำไม่สามารถเคลื่อนที่ออกจากกัน สารนั้นเรียกว่าของแข็ง เมื่อให้พลังงานจากภายนอกแก่สารนั้น เช่น อุณหภูมิจันสารนั้นเริ่มเคลื่อนที่ออกจากกัน อุณหภูมิคงคล่องเรียกว่า ดูดหลอมเหลว เริ่มเมื่อเพิ่มอุณหภูมิต่อไปเรื่อยๆ การเคลื่อนไหวของของเหลวที่น้ำจะเร็วขึ้น หรือความหนืด

ของของเหลวในลดลง ด้วยเหตุผลนั้น Eyring (24) จึงได้เสนอสมการทำนายความหนืดสารดังสมการที่ 2 ซึ่งมีลักษณะคล้ายกับสมการ 1 คือ

$$k = A e^{-\Delta G_{vis}/RT} \quad (2)$$

โดย ΔG_{vis} คือพลังงานอิสระของการไหล

ในค้านปฏิบัตินั้น การวัดหาค่าความหนืดที่ความดัน 1 บรรยากาศนั้นทำได้ไม่ยุ่งยาก แต่หากต้องหาค่าที่ความดันอื่นๆ อุปกรณ์ที่ใช้ค่อนข้างยุ่งยาก แต่สำหรับการสร้างสมการในการทำนายได้ จะช่วยให้การหาค่าทำได้สะดวกและรวดเร็ว อีกทั้งยังจะช่วยให้การพัฒนาเป็นไปอย่างมีประสิทธิภาพที่แน่ชัด Allen และคณะ (25) ได้เสนอสมการในการทำนายความหนืด (η) ของกรดไขมันอิมตัวที่ 40°C ดังสมการ 3 และ 4 คือ

$$\eta = 1.05 \times 10^4 MW^2 - 0.024 MW + 2.15 \quad (3)$$

$$\ln \eta = \sum_{i=1}^n n_i \eta_i \quad (4)$$

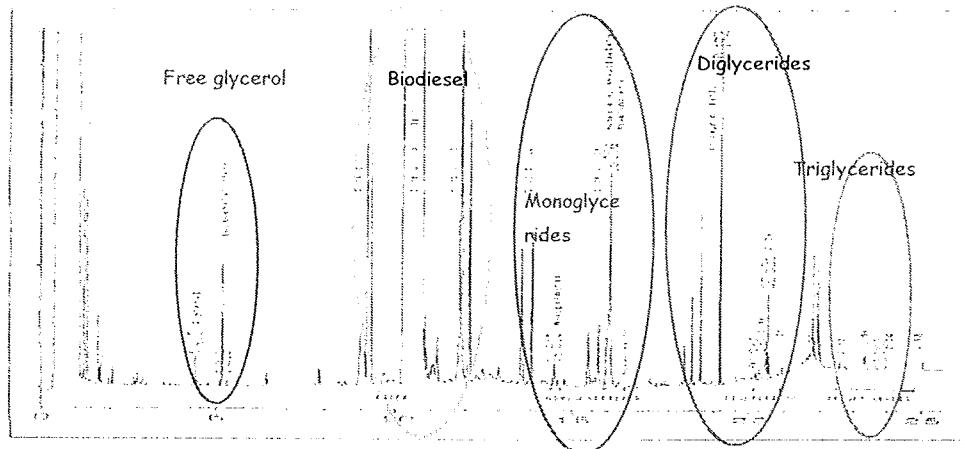
โดย n คือสัดส่วนโดยมวล ตัวห้อย i หมายถึงลำดับกรดไขมันแต่ละชนิด และ MW คือมวลโมเลกุล

เนื่องจากธรรมชาติของของเหลวมีมากแบบ บางชนิดการเปลี่ยนแปลงค่า $\ln \eta$ กับ $1/T$ นั้นเป็นเส้นตรง ในช่วงแคน Makhija and Stairs (26) จึงมีการปรับปรุงสมการให้คลอบคลุมอุณหภูมิให้กว้างขึ้น สมการในการทำนายความหนืดของของเหลว รวมทั้งไขมันอิมตัวที่ 40°C ทำให้สามารถทำนายผลของอุณหภูมิก็จะทำนายได้ที่ละตัว (ตามสมการ 2) หรือต้องการทำนายผลของขนาดโมเลกุลก็จะทำนายเพียงอุณหภูมิเดียว (ตามสมการ 3) ในปี 2006 (27) ทางเราระดับนำอุณหภูมิและชนิดกรดไขมันอิมตัวเข้ามาร่วมไว้ในสมการเดียวกัน (สมการ 5) ทำให้สามารถทำนายความหนืดของกรดไขมันแมทิลิเอสเทอเรทสมหรือไขมันอิมต์อุณหภูมิต่างๆ ได้ดี ทำให้สามารถมองเห็นอิทธิพลของกรดไขมันที่มีต่อความหนืด

$$\ln \eta = a + bz + \frac{c}{T} + z \frac{d}{T} \quad (5)$$

โดย z เป็นจำนวนครึ่งอนในโมเลกุลของกรดไขมัน

ทว่าปริมาณไขมันอิมต์ผลิตได้นั้นยังห่างไกลกับความต้องการของตลาด ดังนั้น เรื่องเพลิงดีเซลที่มีข้าห่น่าง จึงต้องผสมกับปิโตรดีเซล การทำนายความหนืดของไขมันอิมต์สมจึงมีความจำเป็น สมการ 4 จึงถูกนำมาประยุกต์ใช้กับไขมันอิมต์สม โดย y เป็นสัดส่วนโดยมวล และ ตัวห้อย i จะลดลงเหลือเพียง 2 ตัว คือดีเซล

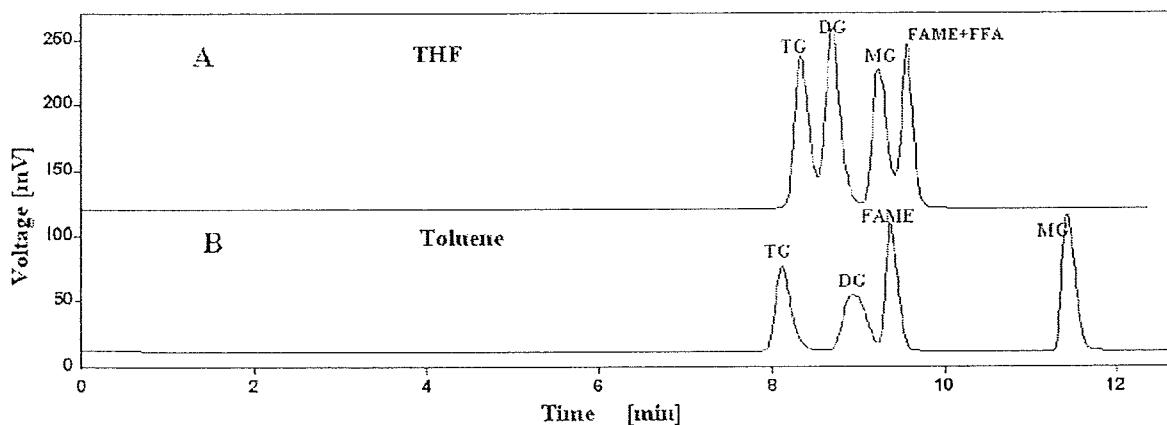

กับ ไบโอดีเซล หากต้องการหาค่าความหนืดที่อุณหภูมิต่างๆ กัน ก็ต้องนำสมการ 2 มาใช้ร่วมกัน (25) ส่วนความหนืดของไบโอดีเซลที่ความดันต่างๆ นอกเหนือจากความดันบรรยายศักน์มีการรายงานน้อยมาก เท่าที่พบมีเพียง 1 บทความของ Robertson and Schaschk(4) เท่านั้น แต่ความหนืดของเหลวอื่นมีการศึกษาบ้าง และมีสมการคำนวณค่าความหนืดที่ซับซ้อนมาก

ดังนั้น การศึกษานี้จึงพยายามที่จะนำเอกสารด้วยการบวกของผลลัพธ์ของอิสระ มาใช้เกิดประโยชน์โดยเนพะการสร้างสมการคำนวณค่าความหนืดในสภาวะต่างๆ

2. ผลการศึกษาการศึกษานี้

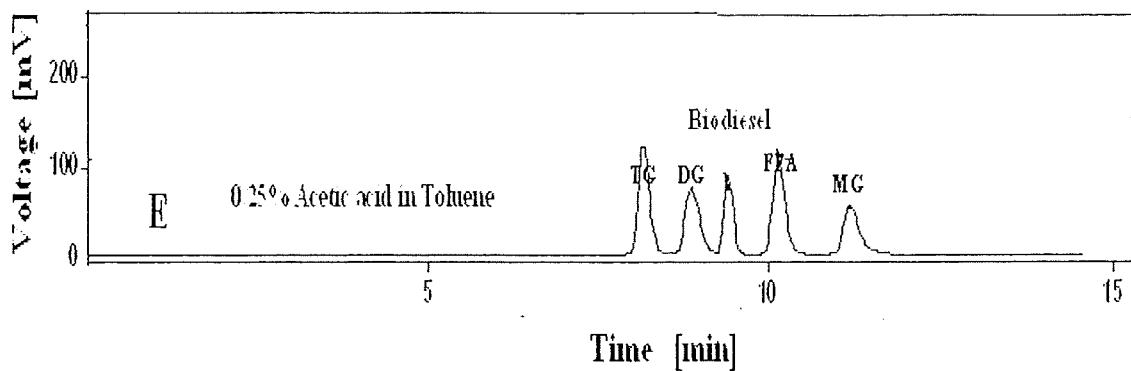
2.1 การพัฒนาวิธีการวิเคราะห์ไบโอดีเซล

ไบโอดีเซลได้จากการทำปฏิกิริยาของไตรกลีเซอไรด์ (น้ำมันพืชหรือไขสัตว์) กับแอลกอฮอล์สายสั้น เช่น เมทิลแอลกอฮอล์หรือเอทิลแอลกอฮอล์ผ่านปฏิกิริยาทรายเอสเทอเรติกชัน โดยมีดังเป็นตัวร่วงปฏิกิริยา ปฏิกิริยาแบ่งเป็น 3 ขั้นตอน (ดังสมการเคมี 1) มีไตรกลีเซอไรด์ และ โนโนกลีเซอไรด์ เป็นสารตัวกลาง ถ้าปฏิกิริยาเกิดไม่สมบูรณ์จะพบไตรกลีเซอไรด์ ไตรกลีเซอไรด์ และ โนโนกลีเซอไรด์หรือเรียกร่วมว่า bound glycerols ในผลิตภัณฑ์สุดท้าย รวมทั้งกรดไขมันอิสระที่มาจากการตัดดิน หรือเกิดจากการไฮโดรเจน化 สารปนเปื้อนดังกล่าวอาจก่อให้เกิดปัญหาด้านเครื่องยนต์ เช่น การสึกกร่อนของเครื่องยนต์ เนื่องจากกรดไขมันอิสระ หรือเกิดการปลดปล่อยสารพิษ และปัญหาด้านสุขภาพและสิ่งแวดล้อม เช่น acrolein หลายๆ ประเทศจึงได้มีการกำหนดปริมาณสูงสุดของ bound glycerols และกรดไขมันอิสระ ที่จะพึงมีได้ในไบโอดีเซลไว้ในมาตรฐาน คณะกรรมการมาตรฐานการทดสอบอเมริกา (American Standard Test Method Committee) และคณะกรรมการมาตรฐานยุโรป (European standard committee) ได้กำหนดให้ใช้แก๊สโตรามาตอกราฟีแบบอุณหภูมิสูง (High Temperature Gas Chromatography) เพื่อวิเคราะห์เอกลักษณ์และปริมาณขององค์ประกอบในไบโอดีเซล ได้แก่ bound glycerols และกรดไขมันเมทิลเอสเทอร์ วิธีนี้จะต้องเปลี่ยนสารตัวอ่อนย่างให้อุ่นในรูปอนุพันธุ์ผ่านปฏิกิริยา silylation ก่อนนีดสารเข้าเครื่อง High Temperature GC ($> 300^{\circ}\text{C}$) นอกจากวิธีการยุ่งยากแล้วการแปลงยุ่งยากอีกด้วย ดังรูปที่ 2 ส่วนการนำปริมาณของกรดไขมันอิสระจะใช้วิธีการไฮเตอร์ ทำให้เวลาที่ใช้ในการวิเคราะห์นานมาก ไม่น่าจะเหมาะสมในการใช้ตรวจวัดสารในเชิงวิจัย ซึ่งควรจะรวดเร็วและไม่ยุ่งยาก อันจะทำให้การวิจัยเดินหน้าได้รวดเร็ว



รูปที่ 2 High temp gas chromatography of biodiesel products with Flame Ionization Detector

ดังนั้น วิธีการวิเคราะห์ที่รวดเร็วให้ความน่าเชื่อถือ ความถูกต้องที่จะตรวจวิเคราะห์กรดไขมันอิสระ โนโน่กลีเชอไรค์ ไดลีเชอไรค์ ไตรกลีเชอไรค์ และปริมาณไบโอดีเซลจึงเป็นสิ่งจำเป็น Plank และ Lorbeer (28) ได้ใช้ TLC (Thin-layer chromatography) ที่มี FID (Flame ionization detector) ในการวิเคราะห์ HPLC เป็นวิธีการที่น่าสนใจในการตรวจวิเคราะห์ผลผลิตไบโอดีเซล เนื่องจากการวิเคราะห์สามารถทำได้โดยตรงโดยไม่จำเป็นต้องเตรียมอนุพันธ์ Reversed phase HPLC และได้รายงานสภาวะการแยกและวิเคราะห์ไขมันโดย Marcato และ Cecchin (16) Holcapek และคณะ (17) สภาวะการวิเคราะห์เนามะที่จะแยกไขมันตามประเภท การประยุกต์ใช้ตรวจวัดสารในปฏิกรณ์ไบโอดีเซลจะมีความยุ่งยาก Foglia และคณะ (18) ได้รายงานวิธีการวิเคราะห์ปริมาณไบโอดีเซลในน้ำมันพืชสมดีเซลที่รวดเร็ว ไบโอดีเซล ไตรกลีเชอไรค์และบิโตรดีเซลสามารถแยกออกจากกันด้วยคอลัมน์ชิลิกา แต่โนโน่ ลำดับกลีเชอาร์ดไม่สามารถแยกออกจากกัน (19) การเปรียบเทียบ UV กับ ELSD (evaporative light scattering detector) ในการตรวจวิเคราะห์สารไบโอดีเซล Flogia (18) กล่าวว่า ELSD นั้นได้เปรียบกว่า คือเครื่องตรวจวัดตอบสนองเป็นเชิงเส้นกับมวล การวิเคราะห์ปริมาณทำได้ยากกว่า แต่ ELSD จะมีข้อเสียคือกรดไขมันแทลเลอสเทอร์จะสูญหายไปบางส่วนด้วยอุณหภูมิของ detector สูงกว่า 40°C และอาจสูญหายหมดได้หากอุณหภูมิ detector สูงกว่านี้ (29) Size exclusion HPLC (HPSEC) นั้นแยกสารตามขนาด โนโน่เลกุลและมีการนำมาใช้แยกสารในปฏิกรณ์ไบโอดีเซล (8, 20-22, 30) ข้อด้อยของ HPSEC คือสามารถแยกสารในปฏิกรณ์ทั้งหมดด้วยคอลัมน์เดียว โดยเฉพาะ โนโน่กลีเชอไรค์ กรดไขมันอิสระ และกรดไขมันแทลเลอสเทอร์ที่มีมวล โนโน่เลกุลใกล้เคียงกัน การแยกมักต้องใช้คอลัมน์ 2-3 อันที่มีความพรุนต่างกันต่อเป็นอนุกรม (30)


จากการวิจัยที่ได้นำมาในห้องปฏิบัติการของเราง (8) นั้น ไขมันสามารถแยกออกจากเป็นกลุ่มตัวคอลัมน์ Styragel เพียงอันเดียวแต่จะต้องมีชิลิกาเป็นการคดเพื่อช่วยดูดซับสารมีขี้และแยกออกจากสารที่มีขี้ต่ำกว่า แต่คอลัมน์ตัวก้านนั้นหมดสภาพ และได้มีการใช้คอลัมน์ Phenogel 100 Å ในห้องปฏิบัติการนี้ ดังนั้น ในงานวิจัยนี้เป็นการนำเสนอบริษัท HPSEC ที่ใช้คอลัมน์ Phenogel 100 Å (300 mm x 7.8 mm ID, 5μm) เพียง

คอลัมน์เดียวในการแยกกลิปิดออกตามกุ่ม เมื่อทดสอบแยกสารในกุ่ม ไขมันจะได้กราฟดังรูปที่ 3 การแยกสารทำได้ไม่สมบูรณ์ การจะด้วยโกลูอินนั้นแยกได้ค่อนข้างดี แต่กรดไขมันอิสระนั้นไม่ถูกชะออกจากคอลัมน์ เมื่อพิจารณาให้ละเอียดขึ้นจะเห็นว่าเวลาคงค้าง (retention time) ของสารที่มีหมู่ไขดรอคซีนนั้นเปลี่ยนแปลงมาก (โนนิ ไอกลีเซอไรด์ และกรดไขมันอิสระ) ส่วนไตรกลีเซอไรด์และกรดไขมันเมทิลเอสเทอร์นั้นเกือบจำมีการเปลี่ยนแปลง ด้วยข้อสังเกตดังกล่าวทำให้เข้าใจว่าการแยกสารในคอลัมน์ Phenogel นี้น่าจะต้องมีแรงดูดซับ (adsorption) ผสมอยู่ด้วย ด้วยเหตุจึงเห็นว่าความสำเร็จในการแยกสารน่าจะสูง

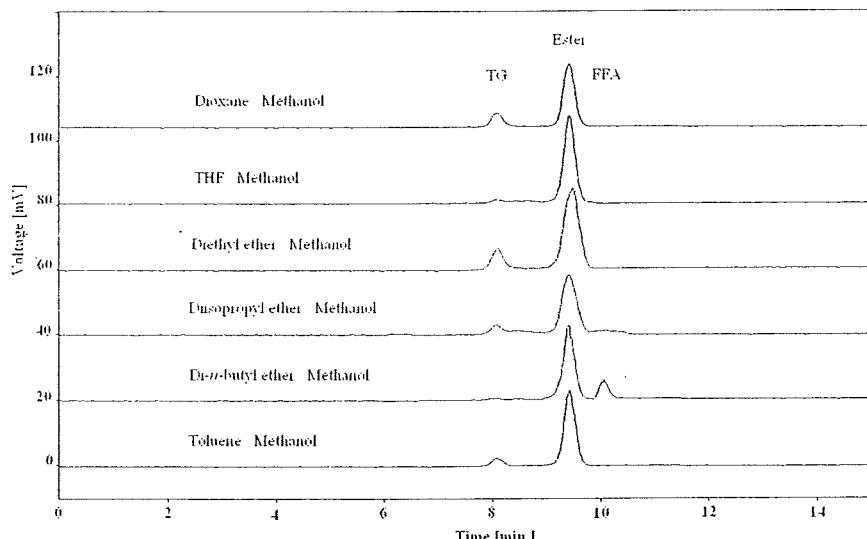
รูปที่ 3 การแยกสารกุ่ม ไขมันด้วยคอลัมน์ Phenogel 100 Å A: ชดด้วย THF, B: ชดด้วยโกลูอิน

ดังนั้น การศึกษานี้จึงเป็นการนำเสนอวิธี HPSEC ที่ใช้คอลัมน์ Phenogel 100 Å (300 mm x 7.8 mm ID, 5 μm) เพียงคอลัมน์เดียว และมีวัสดุภาคเคลื่อนที่ชนิดต่างๆ ทั้งที่เป็นสารละลายน้ำเชิงเดี่ยวคือเตردตระไฮโดรฟูเคน (THF) และโกลูอิน และสารละลายน้ำที่มีส่วนประกอบของตัวที่ละลายน้ำทรีบูนนิดเดียว ได้แก่ THF ไดคลอโรเมเทน เอทิลอะซิเตรด อะซิโตน และกรดอะซิติก จากการทดลองพบว่าสารละลายน้ำ 0.25% THF ในโกลูอิน เป็นวัสดุภาคเคลื่อนที่ดี โดยสามารถแยกสารประกอบในไขมันได้ดี เช่น ได้จากแอลกอฮอล์จากน้ำมันรำข้าว คือโนโนกลีเซอไรด์ ไดกลีเซอไรด์ ไตรกลีเซอไรด์ กรดไขมันเอทิลเอสเทอร์ และกรดไขมันอิสระ ได้ถึงเส้นฐาน แต่พีกของสารที่มีหมู่ไขดรอคซีไดบีนพารากรดไขมันอิสระจะเกิด tailing ดังนั้น จึงใช้กรดอะซิติกแทน THF การแยกสารทำได้สมบูรณ์และพีกของสารต่างๆ มีความสมมาตรดี ดังรูปที่ 4

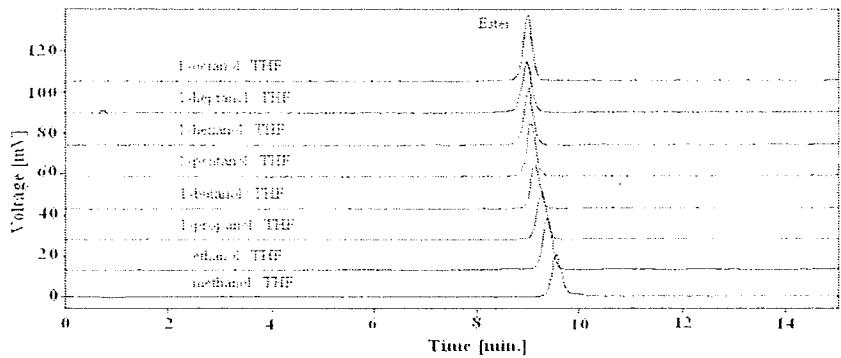
รูปที่ 4 High performance size exclusion chromatography of biodiesel products.

การศึกษาในหัวข้อนี้ได้ลงตัวพิมพ์ในวารสาร European Journal Lipid Science and Technology ชื่อเรื่อง Separation of acylglycerols, FAME and FFA in biodiesel by size exclusion chromatography vol. 110 p. 427-422(2008).

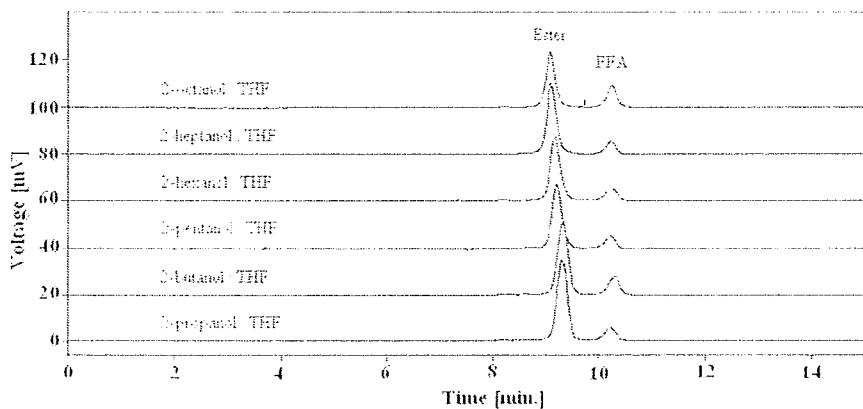
2.2 กระบวนการอสเทอเรติฟิเกชัน (Transesterification)


2.2.1 Micro-reactor

แนวคิดของการศึกษานี้ มองไปที่ตัวปฏิกิริยาเคมีของการเกิดเมทิลหรือเอทิลเอเทอร์เพื่อใช้ในการผลิตไบโอดีเซล (สมการเคมี 1) ปฏิกิริยานี้เป็นปฏิกิริยาผันกลับ และเกิดได้มากที่อุณหภูมิห้องเมื่อไม่มีตัวเร่งปฏิกิริยา ในทางปฏิบัติจะใช้กรดหรือเบสเป็นตัวเร่งปฏิกิริยาในรูป Homogeneous จากตัวปฏิกิริยาของสมการ จะเห็นว่า 1.ปริมาณของแอลกอฮอล์ 2.ปริมาณคงตะลิสต์ 3.อุณหภูมิ และ 4.ความเป็นเนื้อเดียวกันของแอลกอฮอล์กับน้ำมัน มีผลให้ปฏิกิริยาเกิดได้เร็วขึ้น (8)

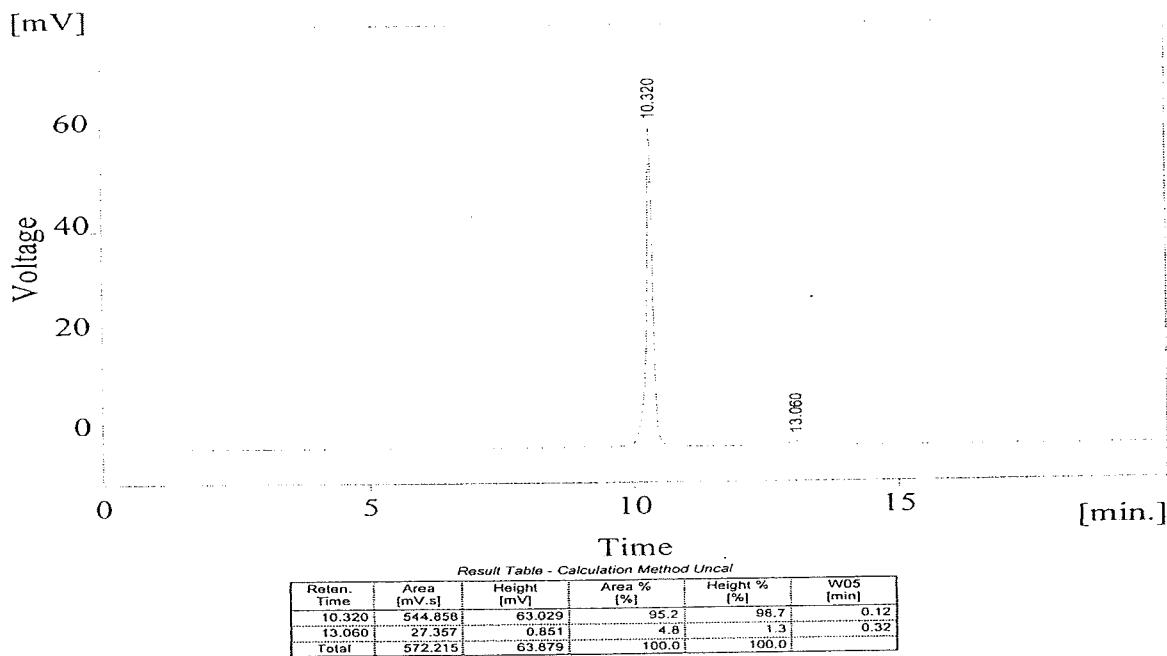

การศึกษานี้จึงมุ่งเน้นไปที่จะทำให้ปฏิกิริยาเสร็จสิ้นสมบูรณ์ (อุณหภูมิห้อง) ในระยะเวลาสั้นที่สุด เอสเทอเรต์ที่ได้จะต้องใช้ในการวิเคราะห์ปริมาณไขมันได้ ปฏิกิริยานาโนเด็ก (micro-reactor) ทำจากแก้วหรือพลาสติกที่มีลักษณะทรงกระบอกบรรจุ NaOH เมื่อผ่านสารผสมที่จะทำปฏิกิริยาลงไป ความเข้มข้นของ NaOH น่าจะอยู่ที่อัตราส่วนตัวหรือใกล้อัตราส่วนตัว นั่นคือ ความเข้มข้นของจะตั้งตระหง่านที่สูงสุด อัตราส่วนโดยโน้มของแอลกอฮอล์ต่อน้ำมันพืชสูงกว่า 200:1 เป็นอัตราส่วนที่สูงอัตราเร็วในปฏิกิริยาอสเทอเรติฟิเกชันเกิดได้เกือบสูงสุด การใช้อัตราส่วนมากกว่านี้มีผลต่ออัตราเร็วน้อยมาก ความเป็นเนื้อเดียวกันระหว่างแอลกอฮอล์ (เมทานอล) กับน้ำมันนั้นเลือกใช้ตัวทำละลาย ซึ่งเป็นตัวแปรหลักของการศึกษานี้ ส่วนอุณหภูมนั้นแม้ว่าอุณหภูมิสูงปฏิกิริยาจะเกิดได้รวดเร็วที่สุด เพื่อแลกกับความสะดวกกับการไม่ต้องใช้ความร้อน จึง

กำหนดให้เป็นอุณหภูมิห้อง (ประมาณ 25 °C) ด้วยข้อกำหนดต่างๆ ข้างต้น พบว่าปฏิกิริยา transesterification ของน้ำมันพืชสามารถเกิดได้รวดเร็วและสมบูรณ์ภายใน 1 นาที วิธีนี้เหมาะสมสำหรับการใช้เตรียมเมทิลเอสเทอร์หรือเอสเทอร์อื่นๆ เพื่อใช้ในการวิเคราะห์สาร


วิธีการคือ นำ NaOH ที่บดละเอียด (0.5 กรัม) บรรจุลงในระบบอกรนีดยาพลาสติกขนาด 3 มล โดยอุดปลายทางออกด้วยสำลี จากนั้นกีเทนน้ำมันผสมกับเอลกออลที่ละลายในตัวที่ละลายที่ช่วยให้เอลกออลกับน้ำมันรวมตัวกันเป็นเนื้อเดียวกัน (1 มล) เทลงในระบบอกรนีดยา ปล่อยให้ไหล เมื่อหมดกึ่งล่าง reactor ด้วยตัวที่ละลาย 1 มล หยุดปฏิกิริยาในภาชนะรองรับด้วย glacial acetic acid 0.1 มล ล้างปฏิกิริยาที่ได้ด้วยน้ำ น้ำมันสารละลายอินทรีย์ไปทำให้เข้มข้นและนำไปวิเคราะห์ด้วย GC หรือ HPLC ต่อไป ตัวที่ละลายที่ใช้น้ำจะเป็น Toluene, Tetrahydrofuran (THF), dioxane หรือ ethers อื่นๆ ตัวที่ละลายที่ได้สุดน้ำจะแก่ THF แต่ THF มีข้อเสียคือมักมีน้ำปนอยู่เล็กน้อย ดังแสดงในรูปที่ 5 นอกจากเมทานอลแล้วเอลกออลอื่น ที่มีจำนวนการรับอน 2-8 ที่สามารถเกิดปฏิกิริยาได้รวดเร็ว (รูปที่ 6) รวมทั้ง secondary alcohol (รูปที่ 7)

รูปที่ 5 Transmethylation of oil in different co-solvents Products were analyzed on Phenogel 100 Å, eluted with 0.25% acetic acid in toluene

รูปที่ 6 ปฏิกิริยา Transesterification ระหว่างน้ำมันถั่วเหลืองกับแอลกอฮอล์ที่มีความยาวcarbonต่างๆ การแยกผลิตภัณฑ์ของปฏิกิริยาดูรูปที่ 5.

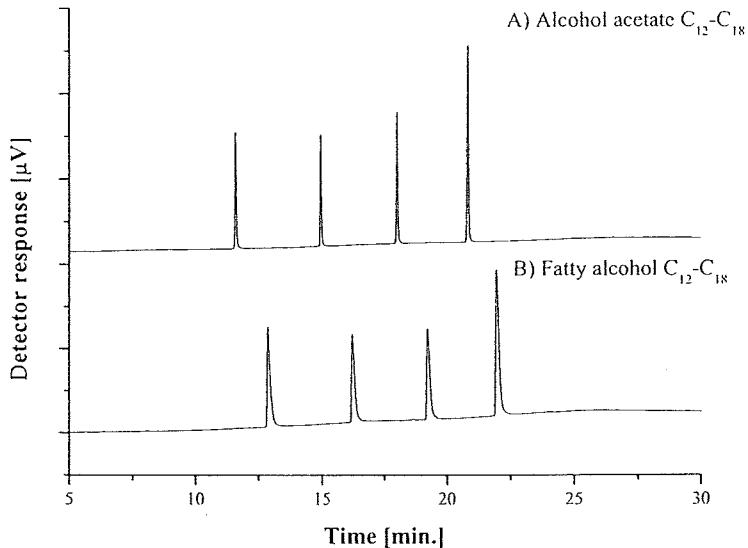

รูปที่ 7 Transesterification of soy bean oil with secondary octanols. See Fig.5 for products analysis.

การศึกษาเกี่ยวกับ micro-reactor นี้ได้สร้างสมบูรณ์และตีพิมพ์ในวารสาร European J. Lipid Sci. Technol. (Eur. J. Lipid Sci. Technol. 2009, 111, 474–480).

2.2.2 ปฏิกิริยาสำหรับการผลิตไบโอดีเซลที่อุณหภูมิห้องแบบต่อเนื่องขนาดประมาณ 70 ลิตรต่อวัน

จากการศึกษา micro-reactor for transesterification นี้ ทำให้เกิดแนวคิดในการพัฒนาการผลิตไบโอดีเซลแบบต่อเนื่องในขนาดที่ใหญ่ขึ้น โดยสร้าง continuous reactor ขนาด 1.8 ลิตร วัตถุประสงค์ของ การศึกษาเพื่อการผลิตไบโอดีเซลต้องคำนึงถึงต้นทุนการผลิตด้วย ชั้งต่างจากการณ์ของการพัฒนาเพื่อการ วิเคราะห์ซึ่งเน้นที่ความสะดวกและรวดเร็ว ส่วนปัจจัยเศรษฐศาสตร์นั้นเป็นรอง การศึกษานี้ได้ดำเนินไป ตัววนหนึ่งและได้ข้อมูลที่เป็นไปได้ คือสามารถผลิตได้ที่อุณหภูมิห้อง ในเวลา 1 วันสามารถผลิตได้

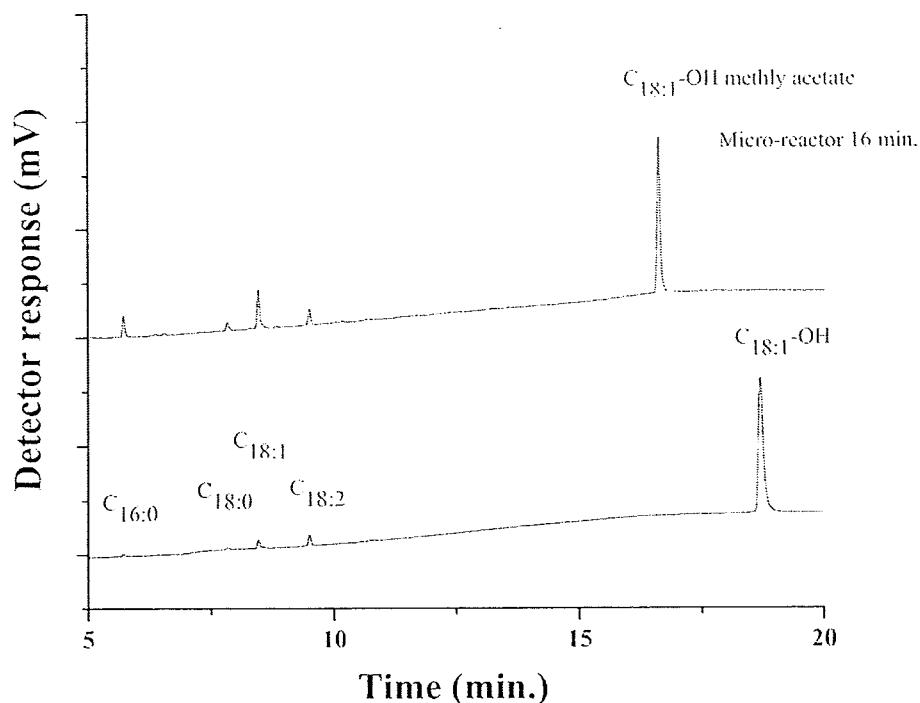
ประมาณ 70 ลิตร เมื่อทำการสั่นจะเหลือแต่ใบโอดีเซลที่บริสุทธิ์ดังแสดงในรูปที่ 8 ซึ่งมีกรดไขมันอิสระปนเปื้อนเล็กน้อย (ร้อยละ 5.5) ไม่มีไตรกลีเซอไรด์เหลืออยู่เลย เกี่ยวกับ non-thermal continuous reactor นี้ ยังไม่ได้เขียนเป็นบทความเนื่องจากมีผลเชิงพาณิชย์ค่อนข้างสูง


รูปที่ 8 Biodiesel derived from a non-thermal continuous reactor (33 °C) at the molar ratio of alcohol to oil, 20:1 with 2.0% NaOH in alcohol and retention time was 30 min. Products were 94.5% fatty acid methyl ester and 5.5% free fatty acid.

2.2.3 Transacetylation/transesterification Reaction

จากผลการศึกษาเกี่ยวกับ transesterification ของ triglyceride กับ methanol หรือ ethanol นั้นเกิดข้อสังสัยว่า ปฏิกิริยานี้สามารถที่จะนำมาใช้ในเชิงกลับกันได้หรือไม่ กล่าวคือ แอลกออลอัลที่เข้าทำปฏิกิริยานั้นมีขนาดไม่เล็กไปกว่า fatty alcohol (C_{12} - C_{30}) ส่วนกรดไขมันในอสเทอร์นั้นมีไม่เล็กขนาดเล็ก เช่น acetic acid ester เมื่อสำรวจ literature พบร่วมีรายงานเกี่ยวกับ transesterification ของ alcohol กับ ethyl vinylacetate (31), ethyl acetoacetate(32), ethyl acetate (33) ดังนั้น การศึกษานี้จึงทำการ transacetylation long chain alcohol with ethyl or methyl acetate ปฏิกิริยาเกิดได้รวดเร็ว หมายเหตุที่ใช้เตรียม derivative ของ long chain alcohol เพื่อการวิเคราะห์สารด้วย GC ซึ่งจะลด tailing ของพีคแอลกออลได้

ปฏิกิริยาที่ทำแบบง่ายๆ คือละลาย fatty alcohol ใน ethyl acetate และผ่านเข้า micro-reactor ที่ใช้ใน transesterification (34) โดยมี retention time ยาวนานกว่า transesterification เมื่อออกจากอัตราเร็วของปฏิกิริยา ต่างกัน acetylation ของ long chain alcohol ใช้เวลาประมาณ 8 นาที ผลที่ได้แสดงในรูปที่ 9


Temp.program 100-200 °C rate 5 °C/min. hold 4 min.

รูปที่ 9 Gas chromatogram of fatty alcohols ($C_{12}-C_{18}$) ที่ 100–200 °C, 5 °C/min on a Rtx 2330: (A) acetates and (B) free alcohols

หากใช้น้ำมันและหุ่งแทน fatty alcohol ปฏิกิริยา interesterification (transesterification/acylation) จะเกิดพร้อมกันให้ผลผลิตดังรูปที่ 10

Temp.program 160-220 °C hold 4 min. rate 5 °C/min.

รูปที่ 10 Gas chromatogram of transesterification/acetylation castor oil with ethyl acetate. GC conditions: 160–220 °C, 5 °C/min on a Rtx 2330. (A), acetates and (B), free alcohols.

ผลการศึกษานี้ได้ตีพิมพ์ในสาร Chemistry and Physics of Lipids 163 (2010) 685-688.

2.3 คุณสมบัติของไบโอดีเซล

2.3.1 การหาค่าความหนืดของไบโอดีเซลผลสมน้ำมันดีเซล

เป็นที่รู้กันทั่วไปว่าความหนืดของของเหลวันมีผลต่อการฉีดพ่นให้เป็นละอองของเหลวที่มีความหนืดสูงจะให้ละอองที่หยาบหรือใหญ่กว่าการพ่นของเหลวที่มีความหนืดต่ำกว่า ขนาดละอองนี้จะส่งผลต่อการทำปฏิกิริยาของอ็อกซิเจนในอากาศกับเชื้อเพลิง (การเผาไหม้) อย่างมาก หากเชื้อเพลิงมีขนาดเล็กพืนที่พิเศษ การเผาไหม้ก็จะมีความสมบูรณ์ ดังนั้นมาตรฐานเชื้อเพลิง รวมทั้งไบโอดีเซลจึงมีค่าความหนืดรวมอยู่ด้วย ความหนืดของของเหลวัน หาค่าได้ไม่ยากนัก แต่หากมีสมการ อยงความสัมพันธ์ระหว่างความหนืดกับโครงสร้างสาร หรือคุณสมบัติภายในอีก ทั้งยังช่วยให้การพัฒนาเชื้อเพลิงทำได้อย่างเป็นระบบ สมการ อยงสัมพันธ์ระหว่างความหนืดกับอุณหภูมินั้น

มีการพัฒนามาหลายทศวรรษ และมีสมการสำหรับของเหลวต่างๆ กัน ในส่วนของไบโอดีเซลนั้นก็มีการเขียนโดยระหว่างค่าความหนืดกับจำนวนการบอนของกรดไขมัน และในปี 2006 ทางห้องปฏิบัติการของเราได้ไอยค่าความหนืดกับอุณหภูมิและจำนวนการบอนของกรดไขมันเมทิลเอสเทอร์ไว้ในสมการเดียวกัน ทำให้การประมาณค่าความหนืดของไบโอดีเซลที่อุณหภูมิต่างๆ ทำได้สะดวกและรวดเร็ว

ทว่าในด้านการใช้งานจริงนั้น ไบโอดีเซลนั้นจะถูกผสมกับน้ำมันดีเซล เนื่องจากปริมาณไบโอดีเซลที่ผลิตได้นั้นต่ำกว่าความต้องการใช้ย่างมาก ดังนั้น ความหนืดของไบโอดีเซลผสมจึงเป็นสิ่งจำเป็น ทว่าซึ่งไม่มีประเทคโนโลยีที่กำหนดมาตรฐานไบโอดีเซลผสมไว้ ด้านการวิจัยมีการนำสมการของปีโตรเลียมมาประยุกต์ใช้ การประมาณค่าจะทำได้ในแต่ละอุณหภูมิเท่านั้น ด้วยหลักการเดียวกับความหนืดของไบโอดีเซลเรื่องได้พัฒนาสมการความหนืดเท่ากับปริมาณร้อยละของไบโอดีเซลและอุณหภูมิเข้าด้วยกัน โดยเริ่มจากสมการของ Eyring (24)

$$\eta = N_A h / \bar{V} e^{-\Delta G_{vis}/RT} \quad (10)$$

โดย N_A , \bar{V} , h and R คือ Avogadro's number, molecular volume, Plank's and gas constants, ตามลำดับ.

ΔG_{vis} คือ free energy of viscous flow.

$$\eta_{blend} = A e^{-(\Delta G_1 + \Delta G_2)/RT} \quad (11)$$

$A = N_A h / \bar{V}$; R , universal gas constant; T , absolute temperature. ตัวห้อย 1 และ 2 หมายถึง ไบโอดีเซล และปีโตรดีเซล ตามลำดับ

ถ้า \bar{V} ของหมายถึง ไบโอดีเซลและปีโตรดีเซลต่างกัน ไม่นานก็จะได้สมการ 12.

$$\ln \eta_{blend} = \ln A - (n_1 \Delta \mu_1 + n_2 \Delta \mu_2) / RT \quad (12)$$

โดย μ คือ chemical potential; n , mole fraction.

สมการ 12 สามารถดูรูปเป็น สมการ 13

$$\ln \eta_{blend} = n_1 \ln \eta_1 + n_2 \ln \eta_2 \quad (13)$$

$$\text{หรือ } \ln \eta_{blend} = n_1(\ln \eta_1 - \ln \eta_2) + -\ln \eta_2 + \ln \eta_2 \quad (13a)$$

ในทางปฏิบัตินั้น มีการใช้ค่า mass และ volume fractions แทน mole fraction การแปลงค่านี้สามารถใช้ประโยชน์จากสมการ 14 และ 15 คือ.

$$\text{สำหรับ mass fraction, } \ln \eta_{blend} = \frac{m_1 \times MW_{blend}}{MW_1} (\ln \eta_1 - \ln \eta_2) + \ln \eta_2 \quad (14)$$

$$\text{สำหรับ volume fraction, } \ln \eta_{blend} = \frac{d_1 \times V_1 \times MW_{blend}}{d_{blend} \times MW_1} (\ln \eta_1 - \ln \eta_2) + \ln \eta_2 \quad (15)$$

โดย d คือความหนาแน่น MW มวลโมเลกุล

จากพื้นฐานอุณหพลศาสตร์ สมการ 12 สามารถขยายออกเป็นสมการ 16

$$\begin{aligned} \ln \eta_{blend} &= \ln A - \frac{n_1(\Delta H_1 - T\Delta S_1)}{RT} - \frac{n_2(\Delta H_2 - T\Delta S_2)}{RT} \quad (16) \\ \ln \eta_{blend} &= \ln A - \frac{n_1\Delta H_1}{RT} + \frac{n_1\Delta S_1}{R} - \frac{(1-n_1)\Delta H_2}{RT} + \frac{(1-n_1)\Delta S_2}{R} \end{aligned}$$

(16a)

จัดเรียงสมการใหม่

$$\ln \eta_{blend} = \ln A + \frac{\Delta S_2}{R} + \frac{n_1\Delta S_1}{R} - \frac{n_1\Delta S_2}{R} - \frac{\Delta H_2}{RT} - \frac{n_1\Delta H_1}{RT} + \frac{n_1\Delta H_2}{RT} \quad (16b)$$

$$\ln \eta_{blend} = a + bn_1 + \frac{c}{T} + \frac{dn_1}{T}$$

(17)

$$\text{โดย } a = \ln A + \frac{\Delta S_2}{R}$$

(17a)

$$b = \frac{\Delta S_1 - \Delta S_2}{R}$$

(17b)

$$c = -\frac{\Delta H_2}{R}$$

(17c)

$$d = -\frac{\Delta H_1 - \Delta H_2}{R}$$

(17d)

ΔH และ ΔS คือ molar enthalpy and entropy of viscous flow ตามลำดับ ผลการศึกษาพบว่าสมการที่ได้^๕นี้สามารถใช้ในการคำนวณหนึ่งดูของไบโอดีเซลผสมกับน้ำมันดีเซลที่อุณหภูมิและอัตราส่วนต่างๆ ได้แม่นยำ ดังแสดงในตารางที่ 1

งในโอลีออดพสมที่คำนวณได้ ตัวเลขในวงเล็บคือความคลาดเคลื่อนในการทำนายคิดเป็นร้อยละจากค่าที่รายงาน 1.64%.

30	25	20	15	10	5	0
3.71 (0.93)	4.20 (-1.28)	4.79 (-2.33)	5.48 (-2.07)	6.30 (-1.17)	7.28 (2.48)	8.46 (1.92)
3.83 (-0.35)	4.35 (-1.11)	4.95 (-2.12)	5.67 (-2.30)	6.52 (-1.17)	7.53 (1.71)	8.75 (1.07)
3.97 (-0.66)	4.50 (-2.45)	5.12 (-4.11)	5.86 (-2.98)	6.74 (-1.90)	7.78 (-0.01)	9.04 (1.24)
4.10 (-1.32)	4.65 (-2.93)	5.30 (-4.28)	6.06 (-3.04)	6.96 (-2.09)	8.04 (-0.40)	9.34 (1.30)
4.25 (-0.60)	4.81 (-1.10)	5.48 (-4.55)	6.26 (-2.53)	7.20 (-2.82)	8.31 (0.23)	9.65 (0.23)
4.39 (1.07)	4.98 (-0.77)	5.67 (-3.20)	6.48 (-1.85)	7.44 (-1.23)	8.59 (1.27)	9.97 (1.69)
4.54 (0.56)	5.15 (-1.16)	5.86 (-3.52)	6.70 (-1.94)	7.69 (-0.28)	8.88 (1.03)	10.30 (2.28)
4.70 (0.39)	5.33 (-1.07)	6.06 (-2.71)	6.92 (-1.24)	7.95 (0.61)	9.17 (1.87)	10.64 (3.60)
4.86 (0.52)	5.51 (-0.54)	6.27 (-2.57)	7.16 (-0.42)	8.22 (-0.61)	9.48 (4.89)	11.00 (1.46)

งเมทิลโอลีออดพสมกับดีเซลที่คำนวณได้ ตัวเลขในวงเล็บคือความคลาดเคลื่อนในการทำนายคิดเป็นร้อยละจากค่าที่ AAD is 1.64%.

30	25	20	15	10	5	0
3.73 (-0.13)	2.92 (1.62)	3.30 (1.88)	3.73 (-0.13)	6.43 (0.96)	7.45 (2.20)	8.69 (0.83)
3.91 (-0.43)	3.05 (0.94)	3.45 (1.56)	3.91 (-0.43)	6.75 (-0.29)	7.83 (2.19)	9.14 (-0.03)
4.09 (-1.15)	3.19 (0.75)	3.60 (0.53)	4.09 (-1.15)	7.09 (-1.12)	8.24 (1.95)	9.62 (-1.18)
4.27 (-1.29)	3.33 (1.29)	3.76 (0.97)	4.27 (-1.29)	7.44 (0.62)	8.66 (-0.67)	10.13 (-1.57)
4.47 (0.42)	3.47 (0.47)	3.93 (1.18)	4.47 (0.42)	7.82 (0.68)	9.10 (-0.46)	10.66 (-1.98)
4.68 (-1.02)	3.63 (1.18)	4.11 (0.96)	4.68 (-1.02)	8.21 (-0.23)	9.57 (1.25)	11.22 (4.46)
4.89 (0.16)	3.79 (1.12)	4.30 (1.25)	4.89 (0.16)	8.62 (-0.47)	10.06 (1.19)	11.80 (4.11)
5.12 (-0.54)	3.95 (1.63)	4.49 (1.56)	5.12 (-0.54)	9.05 (-0.47)	10.57 (0.52)	12.42 (3.99)
5.35 (0.13)	4.13 (2.16)	4.69 (2.06)	5.35 (0.13)	9.51 (0.46)	11.12 (1.45)	13.07 (5.12)

ตารางที่ 3 ความหนืดเชิงกลศาสตร์ของของไบโอดีเซลผสมที่คำนวณได้ ตัวเลขในวงเล็บคือความคลาดเคลื่อนในการทำนายคิดเป็นร้อยละจากค่าที่รายงานโดย (2)

Biodiesels [‡]	n ₁	20	40	60	80	100
$\ln \eta_{blend} = -4.81 + 0.367n_1 + \frac{1838.47}{T} + \frac{3.80n_1}{T}$						
SMEA25	0.25	2.03	-2.13	-3.35	-0.18	1.97
SMEA50	0.5	3.62	-2.40	-1.82	-0.26	3.05
SMEA75	0.75	4.11	-1.56	-1.78	-0.12	3.15
SMEA100	1.00	2.24	-2.95	-3.31	-0.82	2.44
$\ln \eta_{blend} = -4.77 + 0.176n_1 + \frac{1828.60}{T} + \frac{90.90n_1}{T}$						
SMEB25	0.25	0.20	-5.61	-5.79	-2.81	1.15
SMEB50	0.5	5.09	-2.18	-2.32	0.13	3.75
SMEB75	0.75	4.31	-1.56	-2.25	-0.07	3.66
SMEB100	1.00	0.20	-5.31	-5.39	-3.55	1.52
$\ln \eta_{blend} = -4.72 + 0.0710n_1 + \frac{1798.53}{T} + \frac{162.76n_1}{T}$						
GMSME25	0.25	2.69	-3.33	-3.61	-0.75	2.36
GMSME 50	0.5	4.57	-1.79	-1.89	0.14	3.47
GMSME 75	0.75	2.63	-3.32	-3.77	-0.75	2.96
GMSME 100	1.00	3.45	-2.81	-3.23	-0.53	2.72
$\ln \eta_{blend} = -4.77 - 0.139n_1 + \frac{1823.91}{T} + \frac{229.11n_1}{T}$						
YGME25	0.25	3.38	-3.05	-3.61	-0.93	3.29
YGME 50	0.5	3.15	-3.77	-3.58	-1.31	2.28
YGME 75	0.75	4.75	-1.51	-2.12	1.14	4.37
YGME 100	1.00	2.64	-3.42	-4.24	-2.09	2.73

[‡]SMEA, SMEB, GMSME and YGME stand for soybean methyl ester (obtained from Growmax Inc., natural soybean methyl ester, genetically modified soybean methyl ester and yellow grease methyl ester, respectively).

ผลการศึกษานี้ได้ตีพิมพ์ในวารสาร Fuel Vol 89 (2010), 2775-2780.

2.3.2 การหาค่าความหนืดของไนโอดีเซลที่อุณหภูมิและความดันต่างๆ

ของเหลวเมื่ออุณหภูมิลดลงย่อมจะเปลี่ยนสถานะเป็นของแข็ง ความหนืดจะสูงขึ้นเมื่ออุณหภูมิลดลง ในทำนองเดียวกัน ของเหลวเมื่ออุ่นอัดภายในได้ความดันสูงๆ ก็จะเปลี่ยนสถานะเป็นของแข็ง ได้เช่นกัน สภาพเช่นนี้เรียกว่า pressure freeze ปัจจุบันหัวนีดของเครื่องยนต์ดีเซล โดยเฉพาะ common rail จะนิยมใช้เพลิงภายในได้ความดันสูงมาก นั่นคือความหนืดของเชื้อเพลิงหรือไนโอดีเซลจะเปลี่ยนแปลงไปอย่างมาก และมีผลต่อการฉีดพ่นให้เป็นละอองของเหลว สมการ 18 แสดงว่าความหนืดกับอุณหภูมนั้นมีการพัฒนาตามที่วิเคราะห์และมีสมการสำหรับของเหลวต่างๆ คือ แต่ความหนืดสามารถหาได้ความดันนี้มีจำกัด Comباس และคณาจารย์ et al (35) ได้เสนอสมการ 18 ในการคำนวณความหนืดของของเหลวที่ความดันต่างๆ

$$\eta = A_\eta e^{\left(\frac{B}{T-C_\eta}\right)} e^D \left(\frac{p-E}{p_0-E}\right) \quad (18)$$

โดย A_η , B_η , และ C_η เป็นค่าคงตัว, $p_0 = 0.1$ MPa, D และ E เป็นพิมพ์ชันของอุณหภูมิที่ค่อนข้างซับซ้อน จากการศึกษาความหนืดของ di-isopropyl ether และ dibutyl ether ที่ความดันต่างๆ Assael และคณาจารย์ (36, 37) สรุปว่าความหนืดของสารทั้งสองเป็นไปตามสมการที่ 19

$$\eta^* = 6.035 \times 10^8 \left[\frac{1}{MRT} \right]^{1/2} \eta \frac{v^{2/3}}{R_\eta} \quad (19)$$

โดย η เป็นความหนืด; M คือมวลโมเลกุล; T คืออุณหภูมิสัมบูรณ์; v คือปริมาตรโมเลกุล; และ R คือ gas constant.

ตัวประกอบสัดส่วน R_η , เป็นค่าที่รวมความไม่สม่ำเสมอและความเบี่ยงเบนของโมเลกุลจากทรงกลมไม่ขึ้นกับอุณหภูมิและความดัน ความดันนี้ แสดงในสมการโดยอ้อมกับความหนืดผ่านทาง v

ในทางกลับกัน

$$\eta = e^{(a+bp+cp^2+dp^3+(e+fp+gp^2+hp^3)/(T-T_0))} \quad (20)$$

โดย a, b, c, d, e, f, g และ h เป็นค่าคงตัว

อย่างไรก็ตาม ค่า natural logarithm ความหนืดของ 2-ethylhexyl benzoate นั้นเป็นไปตามสมการที่ 21 โดยมีค่า $R^2 = 0.99991$. ในทำนองเดียวกัน ของเกลว์ลายนิดพบว่าสามารถทำนายความหนืดได้ด้วยสมการที่ 21 (3, 4, 38-41).

$$\ln \eta = a' + b' p \quad (21)$$

สมการ 21 นี้มีความคล้ายคลึงกับสมการทำนายความหนืดของกรด ไขมันเมทิลเอสเทอร์ที่มีสำนักวิจัยน้ำมันและกําลังพล ต่างๆ (42) ดังนั้น ความหนืดสารที่ความดันและอุณหภูมิต่างๆ น่าจะเริ่มต้นจากสมการของ Eyring (24) กับกฎการบวกของพลังงานอิสระของ Martin(43) นั้นคือ

$$\Delta G_{vis}^o = \Delta G_{vis(o)} + p\delta G_{vis} \quad (22)$$

ที่ $p = 0$, $\Delta G_{vis}^o = \Delta G_{vis(o)}$ นั้นคือ $\Delta G_{vis(o)}$ คือ ΔG_{vis}^o ต้องหาจาก และถ้า differentiate สมการ 22 with respect to p จะได้ $\delta G_{vis} = \delta \Delta G_{vis}^o / \delta p$ นั้นคือ δG_{vis} เป็นพลังงานอิสระที่เปลี่ยนแปลงต่อ 1 หน่วยความดัน เมื่อแทนค่าสมการ 22 ลงในสมการ 10 จะได้สมการ 23

$$\eta_p = A e^{-(\Delta G_{vis}(0) + p\delta G_{vis})/RT} \quad (23)$$

เมื่อกระจายตัวตามวิธีการในข้อ 4 จะได้สมการ 24

$$\ln \eta_p = a + bp + \frac{c}{T} + d \frac{p}{T} \quad (24)$$

$$\text{โดย } a = \ln A + \frac{\Delta S_o}{R} \quad (24a)$$

$$b = \frac{\delta S}{R} \quad (24b)$$

$$c = -\frac{\Delta H_0}{R} \quad (24c)$$

$$d = -\frac{\delta H}{R} \quad (24d)$$

ค่าคงตัวทั้ง 4 ของสมการ 23 สามารถหาได้ตามวิธีการของ Krisnangkura และตัณตะ (27) สำหรับ diiso-propyl ether มีค่าตามสมการ 25, dibutyl ether มีค่าตามสมการ 26 และ ไบโอดีเซลมีค่าตามสมการที่ 27

$$\ln \eta = -4.297 + 0.021p + \frac{932.400}{T} - p \frac{2.947}{T} \quad (25)$$

$$\ln \eta = -4.418 + 0.011p + \frac{1192.430}{T} - p \frac{0.127}{T} \quad (26)$$

$$\ln \eta = -6.608 - 0.126p + \frac{2335.98}{T} + p \frac{40.80}{T} \quad (27)$$

ความหนืดที่คำนวณได้จากสมการ 25, 26 และ 27 ได้รับรวมไว้ในตารางที่ 4-6 ตามลำดับ

ตารางที่ 4 ความหนืดของ diisopropyl ether ความคลาดเคลื่อนจากค่าที่รายงานโดย Meng และคณะ (3)

T/K	p/MPa	η /mPa-s	% Δ^1	Δ^2	T/K	p/MPa	η /mPa-s	% Δ	Δ
243.15	0.10	0.630	-1.83	-0.011	313.15	0.10	0.268	1.00	0.003
	4.66	0.656	-1.40	-0.009		4.84	0.282	1.59	0.005
	10.07	0.687	-0.62	-0.004		10.14	0.300	1.33	0.004
	15.37	0.719	-0.16	-0.001		15.55	0.319	0.82	0.003
	20.86	0.754	-0.09	-0.001		21.49	0.341	0.18	0.001
253.15	0.10	0.542	-1.41	-0.008	323.15	0.10	0.244	1.11	0.003
	4.72	0.565	-0.88	-0.005		4.76	0.258	1.49	0.004
	9.99	0.593	-0.49	-0.003		10.37	0.275	0.97	0.003
	15.40	0.623	-0.62	-0.004		15.48	0.292	0.99	0.003
	20.74	0.653	-0.53	-0.003		20.78	0.310	0.26	0.001
263.15	0.10	0.471	-0.51	-0.002	333.15	0.10	0.224	0.70	0.002
	4.47	0.491	-0.31	-0.002		4.75	0.237	1.00	0.002
	9.49	0.515	-0.20	-0.001		10.36	0.253	1.02	0.003
	14.49	0.540	-0.26	-0.001		15.67	0.269	0.87	0.002
	19.64	0.567	-0.63	-0.004		20.89	0.286	-0.58	-0.002
273.15	0.1	0.414	0.09	0.000	343.15	0.13	0.206	0.02	0.000
	4.69	0.433	0.30	0.001		4.39	0.217	0.46	0.001
	10.01	0.457	0.29	0.001		9.53	0.231	0.95	0.002
	15.29	0.481	0.08	0.000		14.74	0.246	0.30	0.001
	20.42	0.506	-0.41	-0.002		21.23	0.267	-0.61	-0.002
283.15	0.10	0.367	0.56	0.002	353.15	0.20	0.191	-1.25	-0.002
	4.70	0.385	0.79	0.003		4.83	0.203	0.23	0.000
	10.10	0.407	0.53	0.002		10.32	0.217	0.39	0.001
	15.46	0.430	0.20	0.001		15.76	0.232	0.24	0.001
	21.36	0.457	-0.15	-0.001		21.10	0.248	-0.43	-0.001
293.15	0.10	0.328	0.98	0.003	363.15	0.23	0.178	-2.49	-0.004
	4.47	0.343	1.12	0.004		4.73	0.188	-0.64	-0.001
	9.59	0.363	1.18	0.004		10.17	0.202	-0.13	0.000
	14.75	0.383	0.58	0.002		15.83	0.217	-0.63	-0.001
	20.45	0.407	0.15	0.001		20.86	0.231	-0.58	-0.001
303.15	0.10	0.295	1.27	0.004	373.15	0.31	0.166	-3.79	-0.006
	4.44	0.310	0.88	0.003		4.73	0.176	-2.24	-0.004
	9.50	0.327	1.10	0.004		9.63	0.187	-1.06	-0.002
	14.65	0.346	0.91	0.003		15.60	0.202	-0.73	-0.001
	19.65	0.366	0.22	0.001		21.68	0.219	-1.60	-0.003

¹ $\% \Delta = 100 \times \frac{n_{lit} - n_{cal}}{n_{lit}}$; ² $\Delta = n_{lit} - n_{cal}$.

ตารางที่ 5 ความหนืดของ diibutyl ether ความคลาดเคลื่อนจากค่าที่รายงานโดย Meng และคณะ (3)

T/K	p/MPa	η	% Δ	Δ	T/K	p/MPa	η	% Δ	Δ
253.15	0.1	1.341	2.72	0.038	323.15	0.10	0.483	-0.61	-0.003
	4.55	1.405	2.95	0.043		4.51	0.507	-0.11	-0.001
	9.65	1.483	3.68	0.057		9.57	0.535	-0.77	-0.004
	14.76	1.565	3.62	0.059		14.63	0.564	-0.62	-0.003
	19.76	1.650	3.87	0.066		19.60	0.595	-0.83	-0.005
263.15	0.10	1.121	0.38	0.004	333.15	0.10	0.433	-0.03	0.000
	4.65	1.176	0.54	0.006		4.49	0.453	0.41	0.002
	10.00	1.245	0.90	0.011		9.58	0.479	0.39	0.002
	15.29	1.316	1.19	0.016		14.63	0.505	0.18	0.001
	20.52	1.391	0.91	0.013		19.62	0.533	-0.20	-0.001
273.15	0.10	0.950	-0.84	-0.008	343.15	0.10	0.389	0.49	0.002
	4.81	0.998	-0.71	-0.007		4.64	0.409	0.78	0.003
	10.2	1.057	-0.73	-0.008		9.64	0.431	0.92	0.004
	15.57	1.119	-0.86	-0.010		14.73	0.455	0.62	0.003
	20.87	1.183	-1.06	-0.012		19.73	0.480	0.42	0.002
283.15	0.1	0.814	-1.37	-0.011	353.15	0.10	0.353	0.13	0.000
	4.78	0.856	-1.40	-0.012		4.51	0.370	0.92	0.003
	10.15	0.906	-1.77	-0.016		9.57	0.391	0.91	0.004
	15.58	0.959	-1.79	-0.017		14.64	0.413	0.95	0.004
	20.83	1.014	-2.21	-0.022		19.63	0.435	0.47	0.002
293.15	0.10	0.705	-2.12	-0.015	363.15	0.10	0.322	0.50	0.002
	4.75	0.741	-2.00	-0.015		4.51	0.337	1.11	0.004
	10.18	0.785	-2.13	-0.016		9.72	0.357	1.49	0.005
	15.47	0.830	-2.22	-0.018		15.3	0.379	1.24	0.005
	20.76	0.878	-2.72	-0.023		21.1	0.403	1.00	0.004
303.15	0.10	0.617	-1.43	-0.009	373.15	0.10	0.295	0.19	0.001
	4.50	0.646	-1.18	-0.008		4.90	0.310	1.31	0.004
	9.57	0.682	-1.24	-0.008		10.17	0.328	1.60	0.005
	14.53	0.719	-1.50	-0.011		15.63	0.348	1.55	0.005
	19.67	0.759	-2.08	-0.015		20.59	0.367	1.67	0.006
313.15	0.10	0.544	-0.94	-0.005					
	4.51	0.570	-0.92	-0.005					
	9.60	0.602	-0.85	-0.005					
	14.65	0.635	-1.06	-0.007					
	19.64	0.669	-1.87	-0.012					

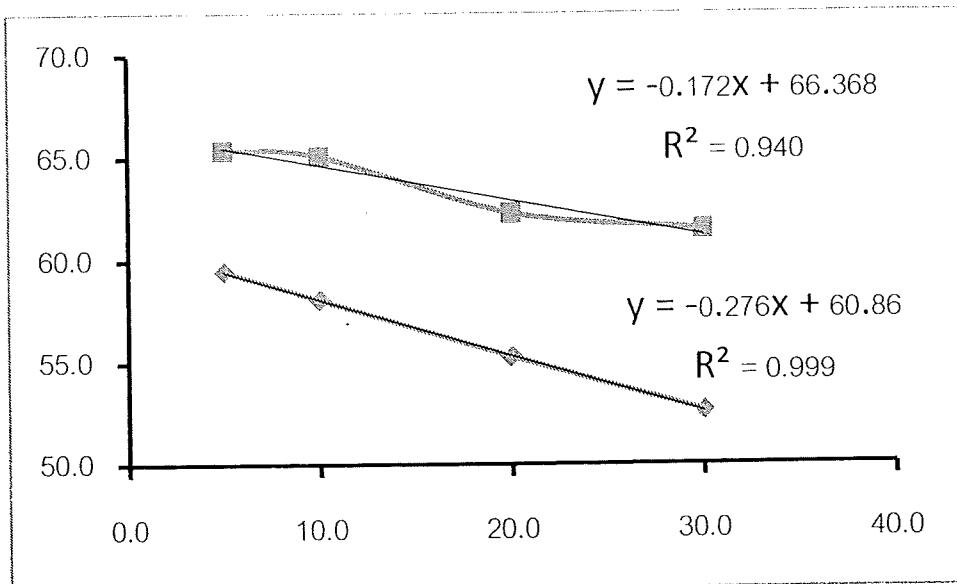
ความคลาดเคลื่อนจากค่าที่รายงานโดย Robertson and Schaschke (4)

p (MPa)		1.0	10	20	30	40	50
7.189(4.13)	8.890(5.66)		11.257(7.34)		14.254(8.99)	18.049(10.61)	22.855(12.20)
6.147(3.15)	7.420(1.02)		9.146(-1.41)		11.274(-3.89)	13.897(-6.43)	17.131(-9.03)
285(-14.23)	6.233(-13.64)		7.486(-12.99)		8.991(-12.34)	10.800(-1.69)	12.972(-11.05)
4.568(0.43)	5.267(-0.49)		6.170(-1.53)		7.227(-2.57)	8.466(-3.62)	9.918(-4.69)
3.860(5.32)	4.336(6.23)		4.935(7.22)		5.616(8.21)	6.391(9.19)	7.274(10.15)

ผลงานนี้ได้สรุปและเขียนเป็นทความสั่งไปยังวารสาร Fuel.

3. ปัญหาและอุปสรรค

1. เกี่ยวกับเมล็ดยางพารา เช่น ไม่มีจำหน่าย ต้องซื้อตามกฎหมาย ราคาสูง คุณภาพต่ำ (มีกรดไขมันอิสระสูงมาก สูงกว่าร้อยละ 30) ทำให้กระบวนการผลิตมีปัญหาอย่างมากขึ้น
2. เมื่อเกิดปัญหาด้านวัตถุดิน เราจึงต้องแก้ไขเพื่อให้งานวิจัยด้านการทำนายค่าซีเทนดำเนินต่อไป จึงใช้น้ำมันลินซีดามาทดแทน หลังจากเปลี่ยนเป็นเมทิลเอสเตอร์ จึงผสมกับน้ำมันปาล์มทำเมทิลเอสเตอร์และส่งตัวอย่างเพื่อข้างวิเคราะห์หาค่าซีเทนด้วยวิธีเครื่องยนต์ตาม ASTM D613 ที่การปีโตรเลียมแห่งประเทศไทย ผลที่ได้นั้นสูงเกินจริงอย่างมาก ดังตารางที่ ป1 ผู้วิจัยจึงสรุปว่าค่าที่ได้นั้นไม่น่าเชื่อถือ หรือแสดงเป็นกราฟ จะเห็นความสัมพันธ์ได้ชัดเจนขึ้น (รูปที่ ป1)


ในรูปที่ ป1 นั้นกราฟที่ได้ค่อนข้างจะเป็นเชิงเส้น (ตามที่คาดคะเน) และให้สมการ

$$CN = 66.37 - 0.172x \quad (\text{ป1})$$

โดย x คือปริมาณร้อยละของลินซีด ที่ $x = 0$ ปาล์มไบโอดีเซลจะมีค่าซีเทนเท่ากับ 66.37 และที่ $x = 100$ ไบโอดีเซลลินซีดจะมีค่าซีเทนเท่ากับ 49.3 ค่าซีเทนของไบโอดีเซลจากลินซีดนั้นมีค่าเท่ากับ 38.2 (44) และไบโอดีเซลจากปาล์มเท่ากับ 62 (45) และเท่ากับ 60.7-63.3 (5) นั่นคือ ทางเราไม่มีโอกาสที่จะทราบได้ว่าค่าที่ทาง ปตท วิเคราะห์มาให้นั้นจะเชื่อถือได้มากน้อยเพียงใด ประกอบกับการสร้างสมการควรจะต้องเป็นข้อมูลที่ถูกต้อง ดังนั้น เราจึงแก้ไขปัญหาโดยเปลี่ยนเป็นการศึกษาคุณสมบัติและการวิเคราะห์ไบโอดีเซล

ตารางที่ ป1. เปรียบเทียบค่าซีเทนไบโอดีเซลผสมระหว่างน้ำมันปาล์มและลินซีด

ไบโอดีเซลผสม (ร้อยละของลินซีด)	ค่าซีเทน					
	0	5	10	20	30	100
ปตท	66.4	65.5	64.0	62.9	61.2	49.3
คำนวณ	60.86	59.5	58.1	55.3	52.6	33.3

รูปที่ ป1 ความสัมพันธ์ระหว่างค่าซีเทนของไบโอดีเซลผลสมรรถว่างปาล์มกับลินซีดกับอัตราเรือยละเอของไบโอดีเซลจากกลอนซีด

4. ผลที่ได้รับ

1. Kanisa Kittirattanapiboon and Kanit Krisnangkura, Separation of acylglycerols, FAME and FFA in biodiesel by size exclusion chromatography .Eur J. Lipid Sci. Technol. 110 (2008) 422-427.
2. Phattaraporn Kaewkool, Kanisa Kittirattanapiboon, Kornkanok Aryusuk and Kanit Krisnangkura, Micro-reactor for transesterification of plant seed oils. Eur. J. Lipid Sci. Technol. 111 (2009) 474–480.
3. Kanit Krisnangkura, Chanida Sansa-ard, Kornkanok Aryusuk, Supathra Lilitchan and Kanisa Kittirattanapiboon, An empirical approach for predicting viscosities of biodiesel blends. Fuel. 89 (2010) 2775–2780.
4. Phattaraporn Kaewkool and Kanit Krisnangkura. Transesterification/acetylation of long chain alcohols with alkyl acetate. Chemistry and Physics of Lipids 163 (2010) 685–688.
5. Kanit Krisnangkura and Kornkanok Aryusuk. An empirical approach for predicting viscosities of biodiesel at different temperatures and pressures. *submitted to Fuel Process Technology*.

References

1. Knothe, G.; Steidley, K. R., Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures. *Fuel* **2007**, *86*, (16), 2560-2567.
2. Yuan, W.; Hansen, A.; Zhang, Q.; Tan, Z., Temperature-dependent kinematic viscosity of selected biodiesel fuels and blends with diesel fuel. *J. Am. Oil Chem. Soc.* **2005**, *82*, (3), 195-199.
3. Meng, X.; Wu, J.; Liu, Z., Viscosity and density measurements of diisopropyl ether and dibutyl ether at different temperatures and pressures. *J. Chem. Eng. Data* **2009**, *54*, (9), 2353-2358.
4. Robertson, L. X.; Schaschke, C. J., Combined High Pressure and Low Temperature Viscosity Measurement of Biodiesel. *Energy & Fuels* **2010**, *24*, (2), 1293-1297.
5. Krisnangkura, K., A Simple Method for estimation of cetane index of vegetable oil methyl ester. *J. Am. Oil Chem. Soc.* **1986**, *63*, 552-553.
6. Formo, M. W., Ester reactions of fatty materials. *J. Am. Oil Chem. Soc.* **1954**, *31*, (11), 548-559.
7. Freedman, B.; Butterfield, R. O.; Pryde, E. H., Transesterification kinetics of soybean oil. *J. Am. Oil Chem. Soc.* **1986**, *63*, 1375-1380.
8. Krisnangkura, K.; Simamaharnnop, R., Continuous Transesterification of Palm Oil in an Organic Solvent. *J. Am. Oil Chem. Soc.* **1992**, *69*, 166-169.
9. Jeyashoke, N.; Krisnangkura, K.; Chen, S.-T., Microwave induced rapid transmethylation of fatty acids for analysis of food oil. *J. Chromatogr. A* **1998**, *818*, (1), 133-137.
10. Lertsathapornsuk, V.; Pairintra, R.; Aryusuk, K.; Krisnangkura, K., Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. *Fuel Process. Technol.* **2008**, *89*, (12), 1330-1336.
11. Tomasevic, A. V.; Siler-Marinkovic, S. S., Methanolysis of used frying oil. *Fuel Proc. Tech.* **2003**, *81*, (1), 1-6.
12. Ma, F.; Clements, L. D.; Hanna, M. A., The effect of mixing on transesterification of beef tallow. *Bioresour. Technol.* **1999**, *69*, (3), 289-293.

13. Dorado, M. P.; Ballesteros, E.; Mittelbach, M.; Lopez, F. J., Kinetic parameters affecting the alkali-catalyzed transesterification process of used olive oil. *Energy and Fuels* **2004**, 18, (5), 1457-1462.

14. Zeng, J.; Wang, X.; Zhao, B.; Xia, Y.; Wang, Y., Evaluation of Diether Used in Transesterification. *Energy & Fuels* **2008**, 22, (4), 2707-2712.

15. Plank, C.; Lorbeer, E., Quality control of vegetable oil methyl esters used as diesel fuel substitutes: Quantitative determination of mono-, di, and triglycerides by capillary GC. *J. High Resolut. Chromatogr.* **1992**, 16, 609 - 612.

16. Marcato, B.; Cecchin, G., Analysis of mixtures containing free fatty acids and mono-, di- and triglycerides by high-performance liquid chromatography coupled with evaporative light-scattering detection. *J. Chromatogr. A* **1996**, 730, 83-90.

17. Holcapek, M.; Jandera, P.; Fischer, J.; Prokes, B., Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. *J. Chromatogr. A* **1999**, 858, (1), 13-31.

18. Foglia, T. A.; Jones, K. C.; Phillips, J. G., Determination of Biodiesel and Triacylglycerols in Diesel Fuel by LC. *Chromatographia* **2005**, 62, 115 - 119.

19. Moreau, R. A., The Analysis of Lipids via HPLC with a Charged Aerosol Detector. *Lipids* **2006**, 41, (7), 727 - 734.

20. Filliôres, R.; Benjelloum-Mlayan, B.; Delmas, M., Ethanolysis of rapeseed oil: Quantitation of ethyl esters, mono-, di-, and triglycerides and glycerol by high-performance size-exclusion chromatography. *J. Am. Oil Chem. Soc.* **1995**, 72, 427-432.

21. Lang, X.; Dalai, A. K.; Bakhshi, N. N.; Reaney, M. J.; Hertz, P. B., Preparation and characterization of bio-diesels from various bio-oils. *Biores. Technol.* **2001**, 80, 53 - 62.

22. Schoenfelder, W., Determination of monoglycerides, diglycerides, triglycerides and glycerol in fats by means of gel permeation chromatography. *Eur. J. Lipid Sci. Technol.* **2003**, 105, 45 - 48.

23. Arzamendi, G.; Arguinarena, E.; Campo, I.; Zabala, S.; Gandoña, L. M., Alkaline and alkaline-earth metals compounds as catalysts for the methanolysis of sunflower oil. *Catalysis Today* **2008**, 133-135, 305-313.

24. Eyring, H., Viscosity, plasticity, and diffusion as examples of absolute reaction rates. *J. Chem. Phys.* **1936**, 4, (4), 283-291.

25. Allen, C. A. W.; Watts, K. C.; Ackman, R. G.; Pegg, M. J., Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. *Fuel* **1999**, 78, (11), 1319-1326.

26. Makhija, R. C.; Stairs, R. A., Viscosity of associated liquids. *Can. J. Chem. Eng.* **1970**, 48, 1214 - 1218.

27. Krisnangkura, K.; Yimsuwan, T.; Pairintra, R., An empirical approach in predicting biodiesel viscosity at various temperatures. *Fuel* **2006**, 85, (1), 107-113.

28. Plank, C.; Lorbeer, E., Simultaneous determination of glycerol, and mono-, di- and triglycerides in vegetable oil methyl esters by capillary gas chromatography. *J. Chromatogr. A* **1995**, 697, 461-468.

29. Moretti, P.; Vezzani, S.; Castello, G., Prediction of theoretical plate number in isothermal gas chromatographic analysis on capillary columns. *Journal of Chromatography A* **2006**, 1133, (1-2), 305-314.

30. Arzamendi, G.; Arguiñarena, E.; Campo, I.; Gandoa, L. M., Monitoring of biodiesel production: Simultaneous analysis of the transesterification products using size-exclusion chromatography. *Chemical Engineering Journal* **2006**, 122, (1-2), 31-40.

31. Shirae, Y.; Mino, T.; Hasegawa, T.; Sakamoto, M.; Fujita, T., Transesterification of various alcohols with vinyl acetate under mild conditions catalyzed by diethylzinc using N-substituted diethanolamine as a ligand. *Tetrahedron Lett.* **2005**, 46, (35), 5877-5879.

32. Koval, L. I.; Dzyuba, V. I.; Ilnitska, O. L.; Pekhnyo, V. I., Efficient transesterification of ethyl acetoacetate with higher alcohols without catalysts. *Tetrahedron Lett.* **2008**, 49, (10), 1645-1647.

33. Stapp, P. R.; Rabjohn, N., Lithium aluminum alkoxide catalyzed transesterification of primary alcohols with ethyl acetate. *J. Org. Chem.* **1959**, 24, 1798-1800

34. Kaewkool, P.; Kittiratanapiboon, K.; Aryusuk, K.; Krisnangkura, K., Micro-reactor for transesterification of plant seed oils. *Euro. J. Lipid Sci. Technol.* **2009**, 111, 474 - 480.

35. Comuñas, M. J. P.; Baylaucq, A.; Boned, C.; Fernández, J., High-Pressure Measurements of the Viscosity and Density of Two Polyethers and Two Dialkyl Carbonates. *Int. J. Thermophys.* **2001**, 22, (3), 749-768.

36. Assael, M. J.; Dymond, J. H.; Papadaki, M.; Patterson, P. M., Correlation and prediction of dense fluid transport coefficients. I. n-alkanes. *Int. J. Thermophys.* **1992**, 13, (2), 269-281.

37. Assael, M. J.; Avelino, H. M. T.; Dalaouti, N. K.; Fareleira, J. M. N. A.; Harris, K. R., Reference Correlation for the Viscosity of Liquid Toluene from 213 to 373 K at Pressures to 250 MPa. *Int. J. Thermophys.* **2001**, 22, (3), 789-799.

38. Meng, X.; Zheng, P.; Wu, J.; Liu, Z., Density and viscosity measurements of diethyl adipate from (303 to 373) K and up to 20 MPa. *J. Chem. Eng. Data* **2008**, 53, (7), 1474-1478.

39. Caudwell, D. R.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A., Viscosity and density of five hydrocarbon liquids at pressures up to 200 MPa and temperatures up to 473 K. *J. Chem. Eng. Data* **2009**, 54, (2), 359-366.

40. Al Motari, M. M.; Kandil, M. E.; Marsh, K. N.; Goodwin, A. R. H., Density and viscosity of diisodecyl phthalate C₆H₄(COOC₁₀H₂₁)₂, with nominal viscosity at T = 298 K and p = 0.1 MPa of 87 mPa·s, at temperatures from (298.15 to 423.15) K and pressures up to 70 MPa. *Journal of Chemical and Engineering Data* **2007**, 52, (4), 1233-1239.

41. Lugo, L.; Canet, X.; Comusqnas, M. J. P.; Pensado, A. S.; Fernández, J., Dynamic Viscosity under Pressure for Mixtures of Pentaerythritol Ester Lubricants with 32 Viscosity Grade: Measurements and Modeling. *Ind. Eng. Chem. Res.* **2007**, 46, (6), 1826-1835.

42. Krisnangkura, K.; Pongtonkulpanich, V., Prediction of gas chromatographic peak width in capillary columns at different temperatures, carrier gas flows, column lengths, inside diameters and carbon numbers. *J. Sep. Sci.* **2006**, 29, (1), 81-89.

43. Martin, A. J. P., Some theoretical aspect of partition chromatography *Biochem. Soc. Sym. (Partition Chromatography)* **1950**, 3, 4-20.

44. Bouriazos, A.; Mouratidis, K.; Psaroudakis, N.; Papadogianakis, G., Catalytic Conversions in Aqueous Media. Part 2. A Novel and Highly Efficient Biphasic Hydrogenation of Renewable Methyl Esters of Linseed and Sunflower Oils to High Quality Biodiesel Employing Rh/TPPTS Complexes. *Catalysis Letters* **2008**, 121, (1), 158-164.

45. Pischinger, G. H.; Siekmann, R. W.; Falcon, A. M.; Fernandes, F. R., *Vegetable Oils as Fuels*. American Society of Agricultural Engineers: Fargo, ND, , 1982; p pp. 198.

ภาคผนวก

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

1.1 ผลงานวิจัยที่ตีพิมพ์แล้ว

1.2 ผลงานวิจัยที่กำลังอยู่ในช่วงดำเนินการ

1. ผลงานตีพิมพ์ในการสารวิชาการนานาชาติ

1.1 ผลงานวิจัยที่ตีพิมพ์แล้ว

1.1.1 ชื่อผู้แต่ง : Kanisa Kittiratrtanapiboon and Kanit Krisnangkura
ชื่อเรื่อง : Separation of acylglycerols, FAME and FFA in biodiesel by size exclusion chromatography
ชื่อวารสาร : European Journal of Lipid Science and Technology, 110, pp. 422-427.
ปีที่ตีพิมพ์ : 2008
Impact Factor: 1.831

1.1.2 ชื่อผู้แต่ง : Phattaraporn Kaewkool, Kanisa Kittiratrtanapiboon, Kornkanok Aryusuk and Kanit Krisnangkura
ชื่อเรื่อง : Micro-reactor for transesterification of plant seed oils
ชื่อวารสาร : European Journal of Lipid Science and Technology, 111, pp. 474-480.
ปีที่ตีพิมพ์ : 2009
Impact Factor: 1.831

1.1.3 ชื่อผู้แต่ง : Kanit Krisnangkura, Chanida Sansa-ard, Kornkanok Aryusuk, Supathra Lilitchan and Kanisa Kittiratrtanapiboon
ชื่อเรื่อง : An empirical approach for predicting kinematic viscosities of biodiesel blends
ชื่อวารสาร : Fuel, 89, pp. 2775-2780.
ปีที่ตีพิมพ์ : 2010
Impact Factor: 3.179

1.1.4 ชื่อผู้แต่ง : Phattaraporn Kaewkool and Kanit Krisnangkura
ชื่อเรื่อง : Transesterification/ Acetylation of long chain alcohols with alkyl acetate
ชื่อวารสาร : Chemistry and Physics of Lipids, 163, pp. 685-688.
ปีที่ตีพิมพ์ : 2010
Impact Factor: 2.145

Research Paper

Separation of acylglycerols, FAME and FFA in biodiesel by size exclusion chromatography

Kanisa Kittirattanapiboon and Kanit Krisnangkura

Biochemical Technology Division, School of Bioresources and Technology,
King Mongkut's University of Technology Thonburi, Bangkok, Thailand

Size-exclusion chromatography separates solutes according to their molecular sizes. Free fatty acids (FFA), fatty acid methyl esters (FAME) and monoacylglycerols (MG) of vegetable oils or animal fats have very close molecular sizes and they cannot be baseline-separated on a single Phenogel column (100 Å, 300 mm × 7.8 mm ID, 5 µm) by using tetrahydrofuran (THF) as the mobile phase. When toluene is used as the mobile phase, triacylglycerols (TG), diacylglycerols (DG), MG and FAME are well separated but there is no baseline resolution between DG and FAME. In addition, the elution order of MG and FAME is reversed. However, baseline separation of all the above lipid classes can be achieved by using toluene containing THF, acetone, dichloromethane, ethyl acetate or acetic acid as the solvent modifier. Acetic acid (0.25%) as the solvent modifier gives the best resolution and all the reference peaks are symmetrical. The detection limit of each class of lipids is 0.1 µg. The correlation coefficient values (between 1 and 100 µg) of all the lipid classes are better than 0.99. Thus, the determination of biodiesel products in the biodiesel reactor is very much simplified.

Keywords: Acylglycerols / Biodiesel / Free fatty acid / Fatty acid methyl ester / Size-exclusion chromatography

Received: June 18, 2007; accepted: January 3, 2008

DOI 10.1002/ejlt.200700164

1 Introduction

As the world petroleum reserves have been diminishing, attempts were made to develop alternative fuels for diesel engines. Fatty acid methyl esters (FAME) or alkyl esters of lower alcohols (known as biodiesel) have been produced and their production increased rapidly from 0 in 1991 to 1.8 million tons in 2003 [1]. Biodiesel has been widely accepted as petrodiesel substitute because some of its physicochemical properties, such as cetane number, heat content, viscosity, cloud point and pour point, are very similar to those of diesel No2 [2]. Furthermore, it is renewable, biodegradable and non-toxic [3]. Thailand will start on a B2 (2% biodiesel in petrodiesel) as a regular diesel fuel on April 2008.

Biodiesel is produced by transesterification of triacylglycerols (TG; vegetable oils or animal fats) with a short-chain alcohol in the presence of an alkaline or acid catalyst. Typically, this fuel contains minor amounts of acylglycerols, which include unreacted TG, diacylglycerols (DG) and monoacylglycerols (MG) together with free fatty acids (FFA). FFA may derive from the oil or arise from hydrolysis of the oil. FFA and total glycerol (free and acylglycerols) can initiate engine corrosion and affect human or animal health by emission of hazardous acrolein into the environment [4]. Accordingly, maximum allowable amounts of FFA and acylglycerol are included in the biodiesel specification of most countries. Thus, a simple and reliable method is necessary for monitoring FFA, acylglycerol and total contents of biodiesel. TLC with a flame ionization detector (FID) was initially proposed [5]. HPLC was reported as an alternative method for separation and quantification of FFA, acylglycerol and other biodiesel components. With a proper detector, derivatization is not required. Reversed-phase HPLC has been used for the separation of FFA and acylglycerol, both in the isocratic and gradient elution modes [6, 7]. Generally, conditions were tailored for separation of all lipid classes present in the biodiesel

Correspondence: Kanit Krisnangkura, Biochemical Technology Division, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 83 Moo 8, Tientalay 25 Rd. Takham, Bangkhunthien, Bangkok 10150, Thailand.

E-mail: kanit.kri@kmutt.ac.th

Fax: + 662 4523479

reactor. Thus, quantification of each lipid class is complicated. Recently, Foglia *et al.* [8] were very successful in separation of TG, biodiesel and petroleum diesel in a very short time. Separation of the soy FAME and TG from petrodiesel was accomplished on a silica column using an isocratic solvent system of hexane (90%) and MTBE (10%) at a flow rate of 1 mL/min by normal-phase HPLC, but MG and DG were not reported. Methyl oleate, oleic acid and trioleyl glycerol were also separated by Moreau [9] on a LiChrosorb 7 μ m diol column with a step gradient system. After a comparison between evaporative light scattering detector (ELSD) and UV spectrophotometric methods, the ELSD was preferred because its response was directly related to the mass (weight) of the oil injected [8]. On the other hand, FAME were partially evaporated at a detector temperature of 40 °C and completely evaporated at higher temperatures with an ELSD [9].

High-performance size-exclusion chromatography (HPSEC), which separates solutes according to their molecular sizes, was demonstrated for biodiesel product separation [10–14]. The disadvantage of the available HPSEC method is incomplete separation of all the biodiesel products on a single column, especially MG, FFA and FAME, which have very close molecular sizes. Three serially connected Styragel columns of difference pore sizes (100 and 500 Å) were required for better separation of FFA, bound and free glycerols [13]. MG and FAME were baseline-separated, but TG and DG were not. On the other hand, the great advantage of HPSEC is that biodiesel products are separated into each lipid class. Thus, identification and quantification are very much simplified. High-temperature GC has been recommended by the ASTM and European standard committee for determination of acylglycerols and FAME. FFA are determined by simple titration. Biodiesel samples must be silylated prior to injection into a high-temperature GC and they must not take a long analysis time. In addition, due to its high separation power, FAME and acylglycerols are separated into isomers. Thus, identification of peaks is more difficult [15–19].

As pointed out above, HPSEC had the major advantage of separating biodiesel products into lipid groups and of facilitating quantification, while the complete separation required two or more columns connected in series. In this study, we report the baseline separation of TG, DG, MG, FAME and FFA on a single HPSEC Phenogel column (100 Å, 300 mm \times 7.8 mm ID, 5 μ m) with mixed solvents as the mobile phases.

2 Experimental

2.1 Materials

Used palm oil (FFA, 6.0%) was a gift of KFC International (Thailand) Co. Ltd. (Bangkok, Thailand). Tripalmitoyl glycerol, 1,2-dipalmitoyl glycerol, 1(3)-monopalmitoyl glycerol and palmitic acid were purchased from Sigma Chemical

Company (St. Louis, MO, USA). Palm oil methyl esters were prepared according to Jeyashoke *et al.* [20]. Solvents (HPLC grade) were purchased from Labscan Ltd. (Bangkok, Thailand).

2.2 Transmethylation

Transmethylation of used palm oil was carried out at room temperature as described in the IUPAC report [21] with a slight modification. Of used palm oil, 32 μ L was added into 3 mL of toluene in a 10-mL screw-capped tube. To the above mixture, 0.1 mL 1% methanolic NaOH was added. The tube was vortexed for 2 min. Transesterification was stopped by adding 0.1 mL glacial acetic acid, and the product was left at room temperature for 2 min. The separated organic phase was washed with 1.0 mL of 4% Na_2CO_3 and three times with 1.0 mL distilled water, dried over anhydrous Na_2SO_4 and analyzed by HPSEC.

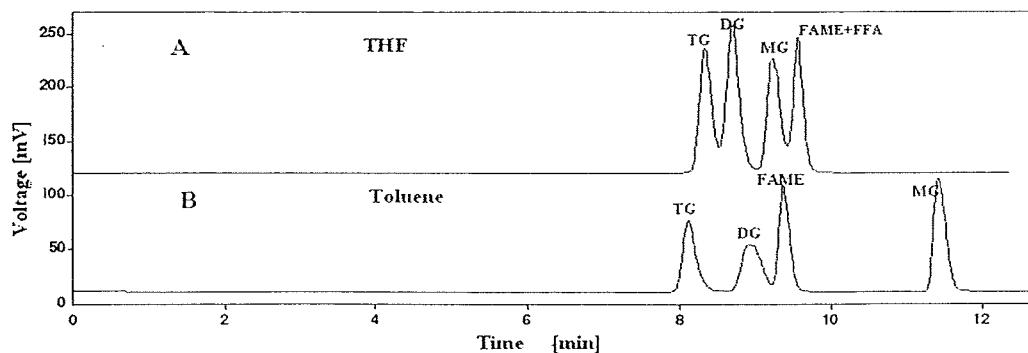
2.3 High-performance size-exclusion chromatography

HPSEC was carried out on a 100 Å Phenogel column (300 mm \times 7.8 mm ID, 5 μ m) (Phenomenex, Torrance, CA, USA). The column was protected with a Bondapak C18 Guard Pak (Millipore Co., Milford, MA, USA). Because there is a very small amount of C18 silica in the Guard Pak, the retention times of all the lipid classes were not shifted when the Guard Pak was removed. The HPSEC system consisted of a pump model 510 (Waters Associates, Milford, MA, USA), a Rheodyne 7125 valve injector, a 20- μ L loop, and a Sedex 55 ELSD (Sedere, Alfortville, France). The detector temperature was set at 30 °C and N_2 gas was set at 2 bar. Data were collected and processed by CSW32 HPLC software (DataApex Ltd., Prague, Czech Republic). The flow rate of the mobile phases was 1.0 mL/min and their compositions were reported in the text. The concentrations of the samples were 0.5 mg/mL, each prepared in toluene.

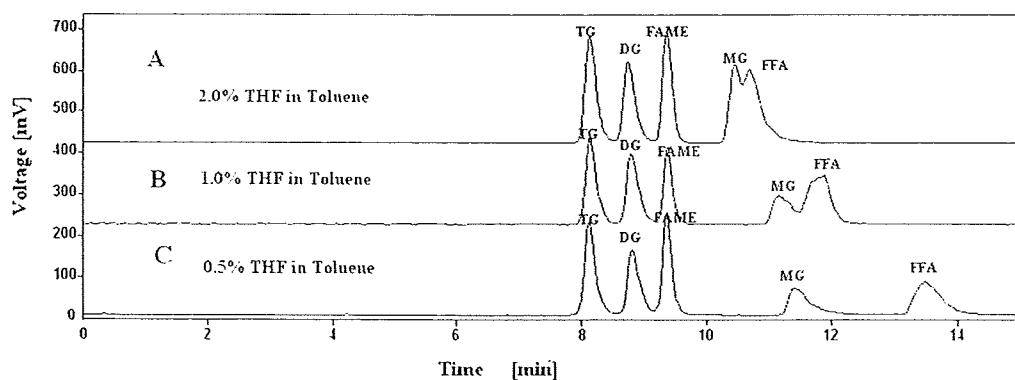
3 Results and discussion

3.1 THF and toluene as the mobile phases

THF and toluene have good swelling properties for cross-link vinyl-divinyl benzene copolymer beads which are used for size-exclusion chromatography. Thus, they are widely used as mobile phases in HPSEC. However, only THF was reported for the separation of acylglycerols and methanol in biodiesel [13, 14]. Arzamendi *et al.* [13] showed that when a single HR0.5 (Styragel 300 \times 7.8 mm, 100 Å) column was used, TG and DG were co-eluted. Partial separation between TG and DG was observed when an HR2 column (Styragel 300 \times 7.8 mm, 500 Å) was serially connected to the HR0.5 column. A satisfactory separation between TG and DG


required two HR2 and one HR0.5 columns connected serially. The retention volumes of the solutes were approximately double or triple. Although a single Stryagel column was reported by Krisnangkura and Simamharnnop [22], an old and obsolete guard column (Water Associate Inc.) packed with silica gel to retard the polar solutes was required. Thus, a proper amount and type (activity and particle size) of silica are important for optimization. Schoenfelder [12] reported that separation of TG, DG, MG and free glycerol required three 100-Å (300 × 7.5 mm) columns connected in series and the analysis time was about 50 min. Figure 1A shows that standard TG and DG, and MG and FAME (0.5 mg/mL each) are not well separated on a 100-Å Phenogel column eluted with 100% THF at a flow rate of 1 mL/min, and FFA are co-eluted with FAME. In the separation of bound and free glycerols with 3 × 100 Å Plgel columns, Schoenfelder [12] noted that FFA were co-eluted with MG and quantification was limited to samples of less than 1% FFA.

Although Phenogel and HR0.5 both have the same pore size of 100 Å, separations of TG and DG on these two columns are very different. Resolution between TG and DG is about 0.7 with the Phenomenex 100-Å column, but they were co-eluted from the Stryagel HR0.5. According to the manufacturer's information, toluene is as good as THF in swelling the polyvinyl-divinyl benzene Phenogel. When 100% toluene was used as the mobile phase (with the same flow rate), the elution times of TG and FAME were unchanged, but the retention times of DG and MG were prolonged. Baseline separations between TG and DG and MG and FAME were achieved, but the DG peak was shifted too close to the FAME peak. However, the partial resolution of DG and FAME in Fig. 1B was acceptable. The separations are almost comparable to that reported by Arzamendi *et al.* [13] for three serially connected Stryagel columns of different pore sizes, eluted with THF. However, FFA is co-eluted with FAME in Fig. 1A, but it cannot be eluted in the analysis time and cannot be found in the chromatogram (Fig. 1B). A detailed consideration of the molecular structures of all the


solutes indicates that the shift in retention times of DG and MG may be directly related to the hydroxyl group(s). DG and MG have one and two free hydroxyl groups in the molecules, respectively, whereas TG and FAME have no free hydroxyl group and the latter two solutes are eluted approximately at the same retention times in both mobile phases (THF and toluene), suggesting that the retardation of DG and MG may arise from an interaction between the hydroxyl group(s) and the gel matrix. The interaction force should be stronger in toluene than in THF. In addition, MG which has two hydroxyl groups shows a larger shift in retention time than DG which has only one hydroxyl group. FFA which has a polar carboxylic group strongly interacts with the gel matrix and it is not eluted from the column in the analysis time. Normally, the Phenogel matrix is more aromatic and it is not expected to interact strongly with hydroxyl or carboxylic groups. However, this peculiar observation may arise from a small amount of impurity in the Phenogel (*e.g.* initiator or activator for polymerization). If the speculation is correct, it would be possible to separate all these biodiesel products on a single column by mobile phase engineering. To verify the above speculation, mixtures of toluene and THF of different ratios were tested.

3.2 Modified mobile phases

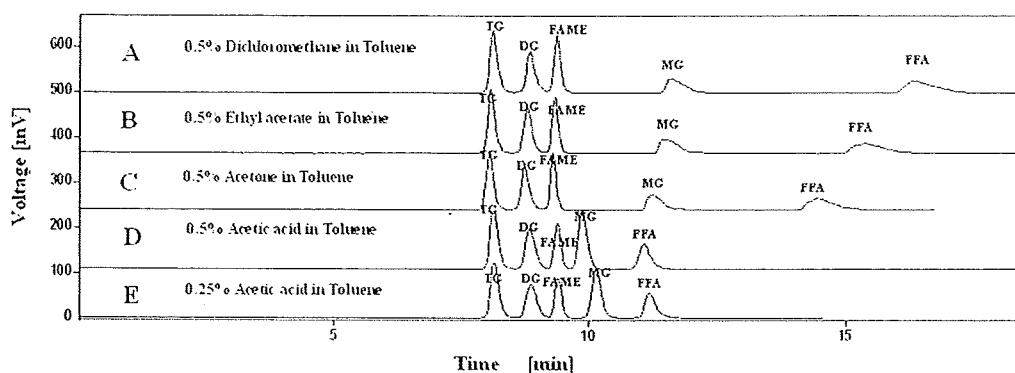
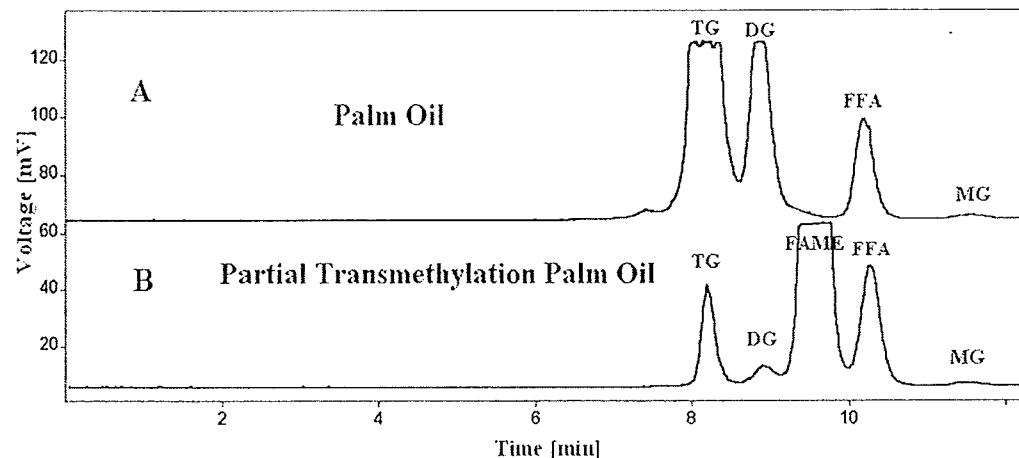

Toluene containing THF higher than 2% (v/v) was effective in separating acylglycerols and FAME. However, FFA, if present in the sample, cannot be separated from MG as shown in Fig. 2A. FFA cannot be eluted (in an appropriate time) with 100% toluene but they are co-eluted with FAME in 100% THF (Fig. 1), suggesting that FFA retention is very sensitive to the amount of THF in toluene. A simple reason is that the elution strength of THF (100%) may be too high and FFA are co-eluted with FAME while the elution strength of toluene is too low to elute FFA from the column in a shorter time. One percent of THF in toluene (v/v) is a good mobile phase (Fig. 2B), but half a percent is even better (Fig. 2C).

Figure 1. Chromatograms of a standard mixture of TG, DG, MG, FAME and FFA (0.5 mg/mL each in toluene) with ELSD detection. (A) 100% THF as the mobile phase; (B) 100% toluene as the mobile phase. TG: triacylglycerols (vegetable oil), DG: diacylglycerols, MG: monoacylglycerols, FAME: fatty acid methyl esters (biodiesel), FFA: free fatty acids.

Figure 2. Chromatograms of a standard mixture of TG, DG, MG, FAME and FFA (0.5 mg/mL each in toluene) with toluene containing: (A) 2.0% THF, (B) 1.0% THF, and (C) 0.5% THF as the mobile phases. For abbreviations, see Fig. 1.

Figure 3. Chromatograms of a standard mixture of TG, DG, MG, FAME and FFA (0.5 mg/mL each in toluene) with toluene and 0.5% dichloromethane (A), 0.5% ethyl acetate (B), 0.5% acetone (C), 0.5% acetic acid (D) and 0.25% acetic acid (E) as the mobile phases. For abbreviations, see Fig. 1.

3.3 Effect of other solvents on the elution of acylglycerol, FAME and FFA


The effects of solvents on the retentions of alkanes and aromatics with similar molecular volume in HPSEC have been reported by Bergmann and Duffy [23]. The effects were an association between the aromatic and the polystyrene/divinyl benzene gel. The effects of THF on the elution of DG, MG and FFA are of interest, because these solutes are not aromatic. THF seemed to affect polar solutes having at least a free hydroxyl or a free carboxylic acid group. Three other solvent modifiers, dichloromethane, ethyl acetate, and acetone, were tested. They have approximately the same polarity indices (3.1, 4.4 and 5.1, respectively) as THF (4.0) [24]. Figure 3A–C shows that the overall elution times of DG, MG and FFA are decreased as the modifiers' polarity indices increased. On the contrary, THF has a polarity index of 4.0, which is lower than those of acetone (5.1) and ethyl acetate (4.4), but it can elute FFA from the column in a shorter time.

Therefore, the elution mechanism of solutes in Phenogel is not entirely based on molecular sieving and the polarity index of the mobile phase. There is an interaction between the polymer matrix and the polar group of the solutes, especially the hydroxyl and the carboxylic groups. These may include hydrogen bonding. THF is a weak Lewis base. It can accept acidic protons from other molecules (FFA or alcohol). Therefore, the interaction between acid or alcohol with the Phenogel matrix is decreased, resulting in a faster elution of these solutes. The carbonyl oxygen of other solvents, such as ethyl acetate and acetone, can also form hydrogen bonds with the solutes, but their hydrogen atoms at the α -carbon are acidic. Thus, the tendency to accept acidic protons from other molecules is decreased. According to the chromatograms in Fig. 3A–C, it may be concluded that all the tested solvents (dichloromethane, ethyl acetate, acetone and THF) can be used as modifiers of toluene for the separation of biodiesel into lipid classes. However, tailing of the FFA peaks is observed in all these modifiers. Thus, all the above modifiers cannot

Table 1. Quantification of five lipid classes generally found in biodiesel products by area normalization (five injections).

Lipid classes	[wt-%]					Average	Δ^{\ddagger}
	1	2	3	4	5		
TG	19.75	19.46	19.87	19.89	19.54	19.70	0.30
DG	19.84	20.61	19.96	20.18	20.39	20.20	-0.20
FAME	20.86	19.88	21.11	21.12	21.46	20.89	-0.89
FFA	19.50	19.59	19.46	19.27	19.52	19.47	0.53
MG	20.05	20.45	19.60	19.53	19.08	19.74	0.26

$\ddagger \Delta^{\ddagger}$ is the deviation of the percent area from 20.

Figure 4. Chromatograms of used palm oil (about 9.0 mg/mL in toluene) (A) and partial transmethylation of used palm oil (about 9.0 mg/mL in toluene) (B) with toluene containing 0.25% acetic acid. For abbreviations, see Fig. 1.

totally prevent the interaction of the free carboxylic group with the Phenogel matrix. When 0.5% acetic acid was used as a modifier (Fig. 3D), the FFA tail disappeared and their retention times were drastically shortened. FFA were eluted slightly after FAME but the elution order between MG and FFA was reversed. With an acetic acid concentration of 0.25% (Fig. 3E), a better separation between FAME and FFA was achieved and good for monitoring the biodiesel reaction which usually had very large amounts of FAME. In addition, the analysis time of the whole chromatogram takes about 12 min, at a flow rate of 1.0 mL/min.

3.4 Quantification of transmethylation products of used palm oil at room temperature

Table 1 shows the percent areas of five lipid classes (generally found in biodiesel products) separated by Phenogel HPSEC. The averages of five injections for TG, DG, FAME, FFA and MG are 19.70, 20.20, 20.89, 19.47 and 19.74. The

errors are 0.30, -0.20, -0.89, 0.53 and 0.26, respectively. The detection limit for each class of lipid is 0.10 µg and the linearity (correlation coefficient) for all of the above lipids is better than 0.99.

Transmethylation was carried out as described in the Experimental section. Nevertheless, the purpose of this experiment was to set up an incomplete transmethylation such that all the acylglycerols and FAME can be found in the reactor. FFA was about 6.0% in the used palm oil (Fig. 4A). The conversion of TG to methyl ester (biodiesel) was 70% in 1 min. Figure 4 is the HPSEC chromatogram of the products in the partial transmethylation of used palm oil, using toluene/acetic acid (99.75 : 0.25) as the mobile phase. Transmethylation was completed in 5 min. DG and MG were detected in the incomplete transesterification, as shown in Fig. 4B. The amount of DG intermediate was higher than for MG, suggesting that the conversion of TG to DG was the rate-limiting step. This is consistent with the report of Arzamendi *et al.* [13].

4 Conclusion

Acylglycerol, FAME and FFA in biodiesel can be baseline-separated by a single Phenogel 100-Å column (100 Å, 300 mm × 7.8 mm ID, 5 µm) eluted with toluene containing 0.25% acetic acid. With an ELSD, all these classes of lipids can be rapidly separated and quantitated.

The mechanism of separation in Phenogel HPSEC, with toluene as the mobile phase, is not purely molecular sieving. Adsorption of hydroxyl and carboxyl groups by the gel matrix is observed. The interaction between these polar solutes and the gel matrix is weakened by adding a small amount of polar solvents. Among the modifiers investigated, 0.25% acetic acid is optimal for the separation of these lipid classes.

Acknowledgment

This work was supported by Thailand Research Fund.

Conflict of interest statement

The authors have declared no conflict of interest.

References

- [1] K. Bozbas: Biodiesel as an alternative motor fuel: Production and policies in the European Union. *Renewable Sustainable Energy Rev.* 2008, in press.
- [2] D. Darnoko, M. Cheryan: Continuous production of palm methyl esters. *J Am Oil Chem Soc.* 2000, 77, 1263–1267.
- [3] U. R. Krawczyk: Biodiesel-alternative fuel makes inroads but hurdles remain. *Inform.* 1996, 7, 801–829.
- [4] M. S. Graboski, R. L. McCormick: Combustion of fat and vegetable oil derived fuels in diesel engines. *Prog Energy Comb Sci.* 1998, 24, 125–164.
- [5] C. Plank, E. Lorbeer: Simultaneous determination of glycerol, and mono-, di- and triglycerides in vegetable oil methyl esters by capillary gas chromatography. *J Chromatogr A.* 1995, 697, 461–468.
- [6] B. Marcato, G. Cecchin: Analysis of mixtures containing free fatty acids and mono-, di- and triglycerides by high-performance liquid chromatography coupled with evaporative light-scattering detection. *J Chromatogr A.* 1996, 730, 83–90.
- [7] M. Holcapek, P. Jandera, J. Fischer, B. Prokes: Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. *J Chromatogr A* 1999, 858, 13–31.
- [8] T. A. Foglia, K. C. Jones, J. G. Phillips: Determination of biodiesel and triacylglycerols in diesel fuel by LC. *Chromatographia.* 2005, 62, 115–119.
- [9] R. A. Moreau: The analysis of lipids via HPLC with a charged aerosol detector. *Lipids.* 2006, 41, 727–734.
- [10] R. Fillires, B. Benjelloum-Milayan, M. Delmas: Ethanolysis of rapeseed oil: Quantitation of ethyl esters, mono-, di-, and tri-glycerides and glycerol by high-performance size-exclusion chromatography. *J Am Oil Chem Soc.* 1995, 72, 427–432.
- [11] X. Lang, A. K. Dalai, N. N. Bakhshi, M. J. Reaney, P. B. Hertz: Preparation and characterization of bio-diesels from various bio-oils. *Bioresour Technol.* 2001, 80, 53–62.
- [12] W. Schoenfelder: Determination of monoglycerides, diglycerides, triglycerides and glycerol in fats by means of gel permeation chromatography. *Eur J Lipid Sci Technol.* 2003, 105, 45–48.
- [13] G. Arzamendi, E. Arguinarena, I. Campo, L. M. Gandia: Monitoring of biodiesel production: Simultaneous analysis of the transesterification products using size exclusion chromatography. *Chem Eng J.* 2006, 122, 31–40.
- [14] K. Krisnangkura, R. Simamaharnnop: Continuous transmethylation of palm oil in an organic solvent. *J Am Oil Chem Soc.* 1992, 69, 166–169.
- [15] T. A. Foglia, K. C. Jones, A. Nunez, J. G. Phillips, M. Mittelbach: Comparison of chromatographic methods for the determination of bound glycerol in biodiesel. *Chromatographia.* 2004, 60, 305–311.
- [16] C. Plank, E. Lorbeer: Quality control of vegetable oil methyl esters used as diesel fuel substitutes: Quantitative determination of mono-, di-, and triglycerides by capillary GC. *J High Resolut Chromatogr.* 1992, 16, 609–612.
- [17] G. Vicente, M. Martinez, J. Aracil: Optimization of *Brassica carinata* oil methanolysis for biodiesel production. *J Am Oil Chem Soc.* 2005, 82, 899–904.
- [18] C. Mariani, P. Bondioli, S. Venturini, E. Fedeli: Vegetable oil derivatives as diesel fuel: Analytical aspects. Note 1: Determination of methyl esters, mono-, di-, and triglycerides. *Riv Ital Sostanze Grasse.* 1991, 68, 549.
- [19] K. T. Lee, T. A. Foglia, K. S. Chang: Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. *J Am Oil Chem Soc.* 2002, 79, 191–195.
- [20] N. Jeyashoke, K. Krisnangkura, S.-T. Chen: Microwave induced rapid transmethylation of fatty acids for analysis of food oil. *J Chromatogr A.* 1998, 818, 133–137.
- [21] IUPAC: *IUPAC Standard Methods for Analysis of Oils, Fats and Derivatives.* 7th Edn. Blackwell Scientific Publications, Oxford (UK) 1987, IUPAC Method 2.301, Report of IUPAC Working Group WG 2/87.
- [22] K. Krisnangkura, R. Simamaharnnop: Continuous transesterification of palm oil in an organic solvent. *J Am Oil Chem Soc.* 1992, 69, 166–169.
- [23] J. G. Bergman, L. J. Duffy: Solvent effects in gel permeation chromatography. *Anal Chem.* 1971, 43, 131–133.
- [24] <http://www.chemical-ecology.net/java/solvents.htm>, 2007.

Research Paper

Micro-reactor for transesterification of plant seed oils

Phattaraporn Kaewkool¹, Kanisa Kittiratanapiboon², Kornkanok Aryusuk¹
and Kanit Krisnangkura¹

¹ Biochemical Technology Division, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

² Department of Chemistry, Faculty of Science, Suan Sunandha Rajabhat University, Bangkok, Thailand

The fatty acid compositions of vegetable or other plant seed oils are generally determined by gas chromatography (GC). Methyl esters (the most volatile derivatives) are the preferred derivatives for GC analysis. Esters of higher alcohols are good for the separation of volatile and positional isomers. All the esters of the C₁–C₈ alcohols of vegetable oils were similarly prepared by passing the reaction mixture containing the desired alcohol, oil and tetrahydrofuran through the micro-reactor (a 3-mL disposable syringe packed with 0.5 g of NaOH powder). The reaction products were acidified with acetic acid and the mixture was analyzed by high-performance size exclusion chromatography and GC. Transesterification was quantitative for primary alcohols, but an appreciable amount of free fatty acids was formed for secondary alcohols. Coriander seed oil was quantitatively esterified with 2-ethyl 1-hexanol with the micro-reactor in less than 1 min. Oleic and petroselinic acid 2-ethyl 1-hexyl esters are baseline separated on an Rtx-2330 capillary column (30 m × 0.25 mm, 0.25 µm film thickness).

Keywords: Coriander seed oil / Micro-reactor / Transesterification / Vegetable oil

Received: July 19, 2008; accepted: November 5, 2008

DOI 10.1002/ejlt.200800182

1 Introduction

Esterification of carboxylic acids and transesterification of esters have a wide academic interest and many industrial applications. Biodiesel is a good example of an industrial application. In academic laboratories, fatty acids in living tissues are preferentially converted to their methyl esters and analyzed for their compositions by gas chromatography (GC) [1–4]. Methods for the preparation of fatty acid methyl esters (FAME) have been reviewed by Liu [5]. In general, for the esterification or transesterification of carboxylic acids or esters with alcohols, homogeneous catalysts such as mineral acids, alkali metal hydroxides and alkoxides are usually used [6–8]. Acid catalysts are less sensitive to water, and both free fatty acids (FFA) and their esters can be esterified and transesterified simultaneously [3]. Thus, they were good for *in situ*

transesterification of plant seed oils for GC analysis [9]. Transesterification of fatty acids with anhydrous and aqueous HCl/MeOH was introduced in 1959 [10] and 1982 [11], respectively. Both H₂SO₄/MeOH and HCl/MeOH were officially recognized by the Association of Official Analytical Chemists [12]. Complete transformation of triacylglycerols to methyl esters took about 2 h at reflux temperature. Esterification of FFA with boron trifluoride in methanol is rapid. Quantitative yield of the corresponding ester could be obtained within 2 min [13], but transesterification of tri-palmitin required approximately 25 min, in 25% boron trifluoride-methanol, 20% benzene, and 55% methanol [14].

Alkali-catalyzed transesterification is very much faster than acid catalysis [15], but the reaction is very sensitive to trace amounts of water or moisture. Moreover, an alkali catalyst cannot convert FFA to esters. Among the alkali catalysts, sodium methoxide in anhydrous methanol has been one of the most popular catalysts. Industrially, NaOH and KOH in methanol are preferred catalysts for biodiesel production, due to their wide availability and low cost. Nonetheless, when NaOH or KOH is used as the catalyst, alkoxide is generated, which is the actual catalyst [16]. Reaction temperatures varied from ambient to refluxing, and the reaction times were from a

Correspondence: Kanit Krisnangkura, Biochemical Technology Division, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 83 Moo 8, Tientalay 25 Rd. Takhian, Bangkok 10150, Thailand.

E-mail: kanit.kri@kmutt.ac.th

Fax: +66 2 4523479

few seconds to 1 h [5]. Arzamendi *et al.* [17] reported that all alkali metal (Li, Na, K, Rb, Cs) hydroxides were active catalysts and little differences were found among them. Lithium hydroxide seemed to have an induction period, but the conversion yield was close to the other alkali hydroxides after 90 min. The effects of alcohol-to-oil molar ratios on the conversion yield have been reported [6, 8]. Recently, solid catalysts have been extensively investigated for use in transesterification. Generally, reactions require drastic conditions and longer time [18]. Beside the catalysts, temperature is another important factor which accelerates the rate of transesterification and other chemical reactions. Microwave radiation has been reported to be an efficient heating tool which accelerated and shortened the time for transesterification [19–21].

From the above-cited literature, alkali metal methoxides and hydroxides are the most effective catalysts. Transesterification can be performed under mild conditions and completed in a shorter time. Thus, in this study, a micro-reactor packed with alkali metal hydroxide is invented for the transesterification of plant seed oil at room temperature in a very short time. Many esters can be produced in less than 1 min, and they are suitable for GC analysis.

2 Experimental

2.1 Materials

Refined soybean oil (SBO) was purchased from a local supermarket (Bangkok, Thailand). Coriander seed was obtained from a local Thai medicinal shop (Bangkok, Thailand). C₁–C₃ alcohols and solvents were of reagent grade and obtained from Lab Scan Co. (Bangkok, Thailand). Higher alcohols were from Aldrich-Sigma Chemicals Co. (St. Louis, MO, USA). NaOH, KOH and sodium methoxide were of reagent grade and purchased from Fluka (Buchs, Switzerland).

2.2 Transesterification micro-reactor

The micro-reactor was prepared by plugging a small piece of cotton wool at the bottom outlet of a disposable syringe (3 mL) and 0.5 g of ground NaOH was packed on top of the cotton wool. The micro-reactor was used for transesterification.

2.3 Extraction of coriander seed oil

Coriander seed was dehulled and ground in a mortar. Of the ground kernel, 0.1 g was added into 1 mL toluene. The mixture was vortexed for 1 min and the solid was allowed to settle. One tenth of the clear solution was pipetted into a 15 × 45 mm, 4-mL vial, dried in a stream of N₂ and dissolved with 1 mL tetrahydrofuran (THF)/2-ethyl hexanol 1:1 (vol/vol) mixture. The mixture was ready for transesterification.

2.4 Transesterification

Transesterification was carried out by dissolving 2 µL SBO in 1 mL of an organic solvent containing the desired alcohol. The organic solvent was used to lower the polarity of methanol and other alcohols and used as a co-solvent for alcohol and oil. The concentration of alcohol was 4 M in organic solvent. Transesterification was started by passing the solution through the micro-reactor gravitationally. The elution rate depended very much on the fineness of the ground NaOH. It was adjusted manually by the plunger provided. The suitable elution time was about 30–45 s. Another 1 mL of the solvent/alcohol mixture (no oil) was added to wash the micro-reactor. The wash time was about 20 s. The combined eluent was acidified with 0.1 mL glacial acetic acid and the mixture was ready for analysis by high-performance size exclusion chromatography (HPSEC). The addition of acetic acid was necessary. If the mixture were not acidified, the ester product would be continuously hydrolyzed to FFA by the dissolved NaOH.

2.5 High-performance size exclusion chromatography

HPSEC was carried out according to Kittiratanapiboon and Krisnangkura [22]. The HPSEC system consisted of a pump model 510 (Waters Associates, Milford, MA, USA), a Rheodyne 7125 valve injector, a 20-µL loop and a Sedex 55 evaporative light scattering detector (ELSD; Sedex, Alfortville, France). The detector temperature was set at 30 °C and the N₂ gas pressure was 2 bar. Data were collected and processed by CSW32 HPLC software (DataApex Ltd., Prague, Czech Republic). The reaction mixture was analyzed on a 100 Å Phenogel column (300 mm × 7.8 mm i.d., 5 µm) (Phenomenex, Torrance, CA, USA) protected with a Bøndapak C18 Guard Pak (Millipore Co., Milford, MA, USA). Toluene containing 0.25% acetic acid was used as the mobile phases at a flow rate of 1.0 mL/min.

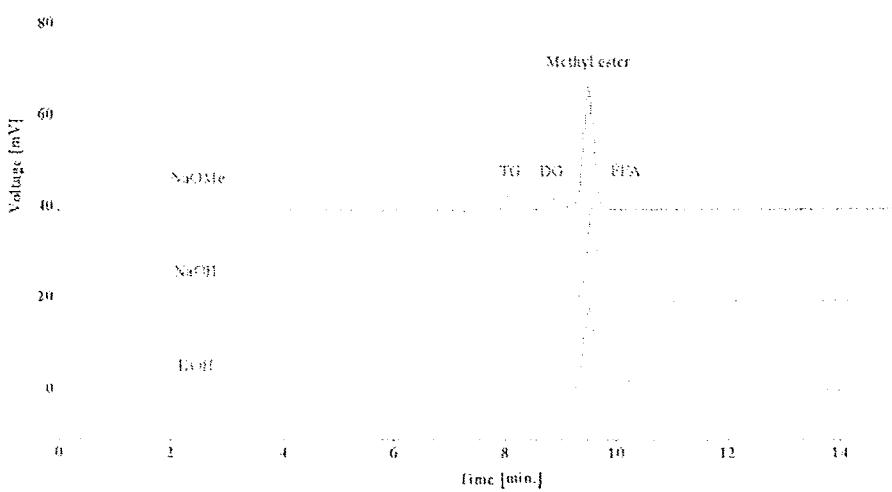
2.6 Gas chromatography

GC analysis was carried out on a Shimadzu gas chromatograph model 2010 (Shimadzu Inc.) equipped with an FID and a split-splitless injector. An Rtx-2330 (90% bis(2,5-dimethyl-3-hexyl)cyclotriphosphazene, 10% cyanopropylphenyl polysiloxane) capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness) was obtained from Restek International (Bellefonte, PA, USA). The chromatographic conditions were as follows: helium carrier gas flow, 2 mL/min; nitrogen makeup gas flow, 30 mL/min; detector/injector temperature, 230 °C; split ratio, about 50 : 1.

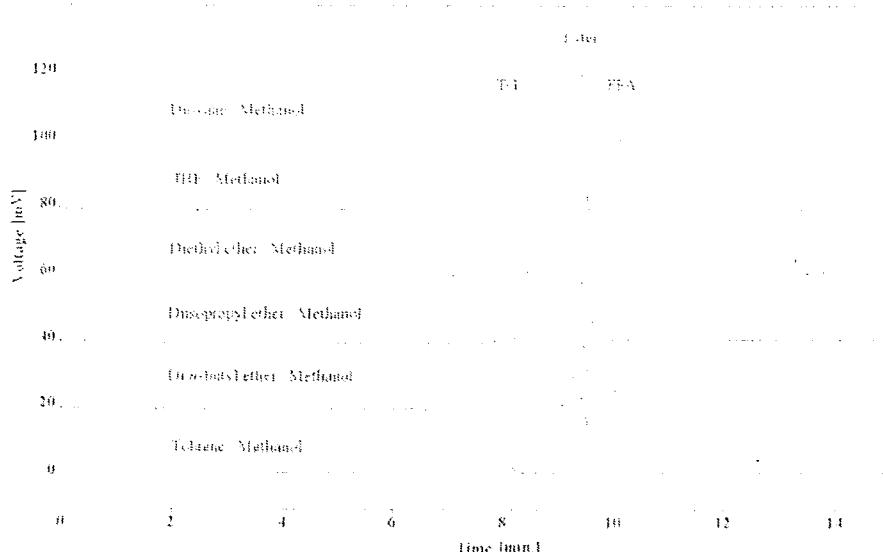
3 Results and discussion

3.1 Type of catalyst

As it was pointed out in the above section that, among the alkali catalysts, sodium methoxide in anhydrous methanol is one of the most popular catalysts for the preparation of FAME. The results in Fig. 1 show that the micro-reactor packed with NaOH is the most promising for rapid preparation of FAME from SBO. Quantitative yield of FAME was obtained when SBO (2 µL) was dissolved in 1 mL of THF/methanol (10 : 2 vol/vol). No FFA were observed in the HPLC chromatogram. Conversion of SBO was also complete by the KOH micro-reactor, but a large amount of FFA (about 8.0%) was formed as the by-product. The formation of FFA in the KOH micro-reactor might be ascribed to the higher hygroscopicity of KOH than that of NaOH. KOH tends to rapidly adsorb the atmospheric moisture during grinding, especially in the hot and humid surroundings in Bangkok city. The amount of FFA formed depended upon humidity and time spent for the grinding (data not shown). Protection from moisture adsorption by KOH is not easy.


When sodium methoxide was used as the catalyst in the micro-reactor, the conversion of SBO to FAME was not complete. Both di- (1.8%) and triacylglycerols (14%) were found in the reaction mixture. Also trace amounts of FFA were observed (Fig. 1). The results in this study are in good agreement with those reported by Vincente *et al.* [23], *i.e.* that among the three catalysts (NaOH, KOH and NaOCH₃) NaOH was the fastest. Therefore, NaOH was chosen as the catalyst for the subsequent transesterification studies.

3.2 Effects of co-solvents on transmethylation


The transmethylation rate of vegetable oils depended on the catalyst concentration [24, 25], alcohol-to-oil molar ratio [6, 8], temperature, and on how well the reactants and catalyst were mixed [26]. The transmethylation rate was greatly enhanced in the presence of an organic co-solvent [8, 27]. Thus, transmethylation at saturating concentrations of catalyst and at a higher molar ratio of alcohol to oil in the presence of an organic co-solvent would be expected to proceed rapidly at room temperature. Although the molar ratio of alcohol to oil was set at 2000 : 1, lower molar ratios of methanol to oil were tested and the ester yields were not satisfactory (results not reported). With the methanol-to-oil molar ratio of 2000 : 1, the transmethylation of SBO in different co-solvents is shown in Fig. 2. The two most effective solvents, which yield over 99% conversion of triacylglycerols, are THF and di-*n*-butyl ether. However, THF yields only FAME as the reaction product, whereas di-*n*-butyl ether shows a large amount of FFA (about 18%) beside FAME. Toluene is the third most effective co-solvent (92% conversion), followed by di-isopropyl ether (90% conversion), dioxane and diethyl ether (about 80% conversion). With all the solvents tested, except for di-*n*-butyl ether, there were no FFA, monoacylglycerols and diacylglycerols detected in the reaction products. Thus, THF turned out to be the best co-solvent for the transmethylation for SBO.

3.3 Transesterification of SBO with other alcohols

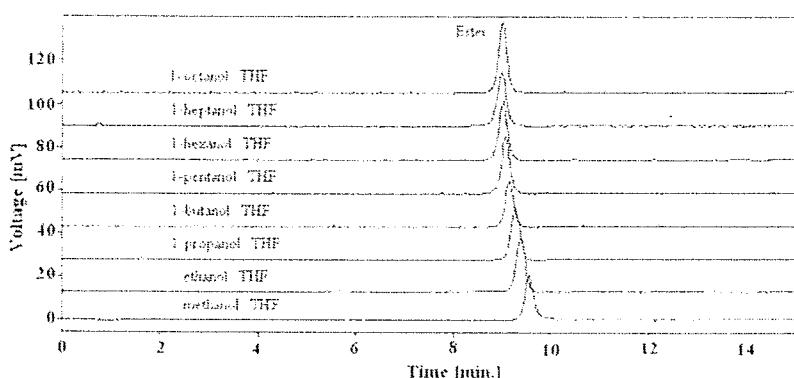

Figure 3 shows the transesterification of SBO with C₂–C₈ *n*-alcohols in THF. Each alcohol concentration is approximately 4 M in THF. SBO was effectively and rapidly transesterified

Figure 1. Chromatogram of transmethylation of SBO with the micro-reactor packed with NaOCH₃, NaOH and KOH. HPSEC conditions: Phenomenex 100 Å, 7.8 × 300 mm, eluted with 0.25% acetic acid in toluene at a flow rate of 1 mL/min.

Figure 2. Chromatogram of transmethylation products of SBO with the micro-reactor in different co-solvents. HPSEC conditions: see Fig. 1.

Figure 3. Chromatogram of transesterification products of SBO with different *n*-alcohols (C₁–C₈) in the presence of THF. HPSEC conditions: see Fig. 1.

with all the tested alcohols in the micro-reactor packed with NaOH. Transesterification was complete and there were no monoacylglycerols, diacylglycerols, triacylglycerols and FFA detected in the reaction products. The retention times of the esters gradually decreased as the alcohol chain length increased. This is normally expected in size exclusion chromatography. The results in Fig. 3 suggested that the micro-reactor packed with NaOH is also suitable for the preparation of fatty acid esters of higher alcohols for GC analysis.

3.4 Transesterification of SBO with *iso*-alcohols

Iso-alcohols have a methyl and another alkyl group on both sides of the alcoholic group. They are relatively hindered compared to their primary isomers. It is expected that the *iso*-alcohols would react more slowly with SBO than the primary alcohols. The results in Fig. 4 show that all the *iso*-alcohols can react rapidly with SBO in THF (no triacylglycerols left in the

reaction), but both fatty acid esters and FFA are formed as the reaction products. FFA formed in the reaction were between 14 and 17% for 2-propanol, 2-pentanol, 2-hexanol and 2-heptanol, while 2-butanol and 2-octanol gave 20 and 25% FFA, respectively. The formation of FFA from the transesterification of SBO with *iso*-alcohols was unexpected. FFA are usually derived from water in the reactor [28]. However, the results in Figs. 2 and 3 show that the THF transesterification systems are relatively anhydrous and no detectable amounts of FFA are found in the reaction product. Therefore, there should be another pathway for FFA formation. According to Sridharan and Mathai [16], alkoxide was formed when NaOH or KOH was mixed with alcohol, and it was the actual catalyst. Dossin *et al.* [29] proposed the catalytic role of the metal ion in polarizing the ester, such that the alkoxide could attack the positive carbonyl carbon at a faster rate as shown in Fig. 5. The formation of the methoxide from the hydroxide ion is feasible because the p*K*_a values of methanol and water are approximately the same (~16) [30].

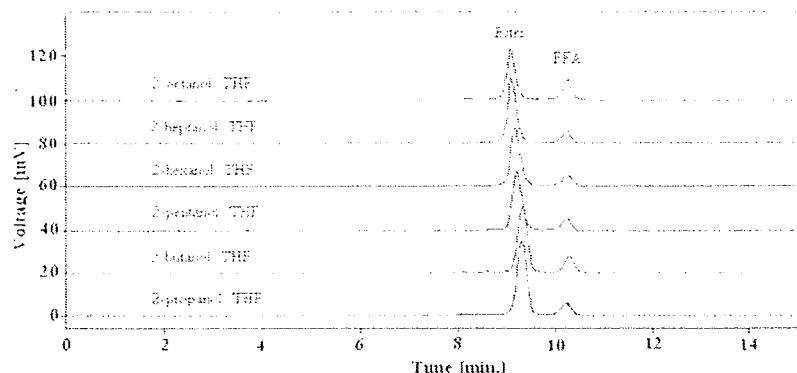


Figure 4. Chromatogram of transesterification products of SBO with different *iso*-alcohols (C_3 – C_8) in the presence of THF. HPSEC conditions: see Fig. 1.

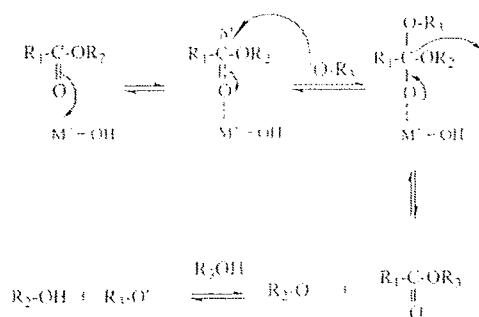


Figure 5. Catalytic role of metal ion in transesterification [29].

Thus, it is expected that the methoxide ion would be more active and a very high yield of methyl ester in the transmethylation of vegetable oil is obtained. On the other hand, if the reaction time is prolonged, the hydroxide ion will react slowly with the oil or the esters (reaction products) and sodium soap (the dead-end product) is formed. More and more FFA accumulates in the reaction product. Therefore, increasing the reaction time would not always be the best for the preparation of ester in high yields. Azcan and Danisman [31] reported that the yield of FAME was optimum at 30 min and decreased as the reaction time was increased. For secondary alcohols, the pK_a values are about 18; hence, at equilibrium, the hydroxide ion concentration would be much greater than the alkoxide ion. In addition, the bulky alkyl groups would slow down the rate of transesterification. This would open a chance for the hydroxide ion to react with the oil and the ester to form FFA.

3.5 Transesterification of SBO with 3- and 4-octanols

As pointed out in the above section, *iso*-alcohols tend to transesterify SBO at a slower rate and the lower reaction rate is partly due to steric effects of the two alkyl groups close to the hydroxyl group. It is expected that 3- and 4-octanols would be more sterically hindered than 1- and 2-octanols; therefore, transesterification would be very slow. The results in Fig. 6 are

a good support that transesterification of SBO with 3- and 4-octanols is slow and leads to incomplete conversion of SBO to the corresponding esters. About 68 and 54% conversion were observed in the transesterification of these two secondary alcohols, respectively. In addition, appreciable amounts of FFA (~33%) were formed. The intermediate di- and monoacylglycerols were also present in the reaction products. The formation of FFA can be ascribed to the slow reaction rate of the hindered alkoxides on the triacylglycerol, thus opening the chance for the hydroxide ion as discussed in the above section.

3.6 2-Ethylhexyl ester of coriander seed oil

According to Isbell *et al.* [32], methyl oleate and petroselinate could not be separated by GC but 2-ethylhexyl petroselinate and oleate could be baseline separated on a SP-2380 capillary column (0.25 mm i.d. \times 30 m \times 0.25 μ m film thickness). 2-Ethyl hexanol is a primary alcohol of eight carbon atoms. Thus, transesterification of seed oil with this alcohol should be similar to that of 1-octanol. Figure 6 shows that transesterification of coriander oil, which contains both oleic and petroselinic acids, with 2-ethyl hexanol in the micro-reactor is complete, with no FFA formed in the reaction product. The two esters and 2-ethylhexyl vaccenate are well separated on an Rtx 2330 capillary column (0.25 mm i.d. \times 30 m \times 0.25 μ m film thickness) (Fig. 7). However, the methyl esters of these three isomers co-elute in the same column (Fig. 7).

Acknowledgement

This work was supported by Thailand Research Fund.

Conflict of interest statement

The authors have declared no conflict of interest.

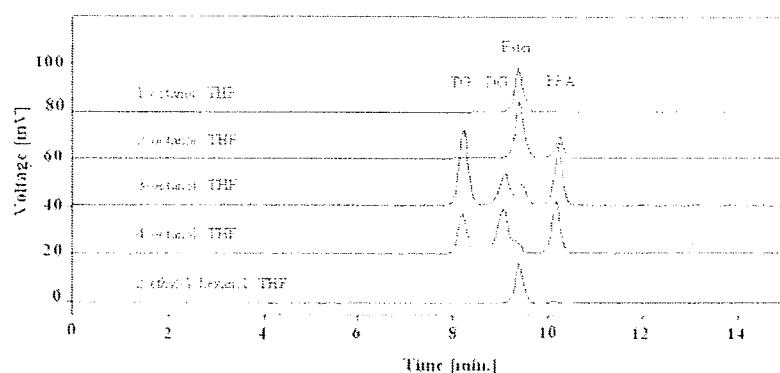


Figure 6. Chromatogram of transesterification products of coriander seed oil with octanols in the presence of THF. HPSEC conditions: see Fig. 1.

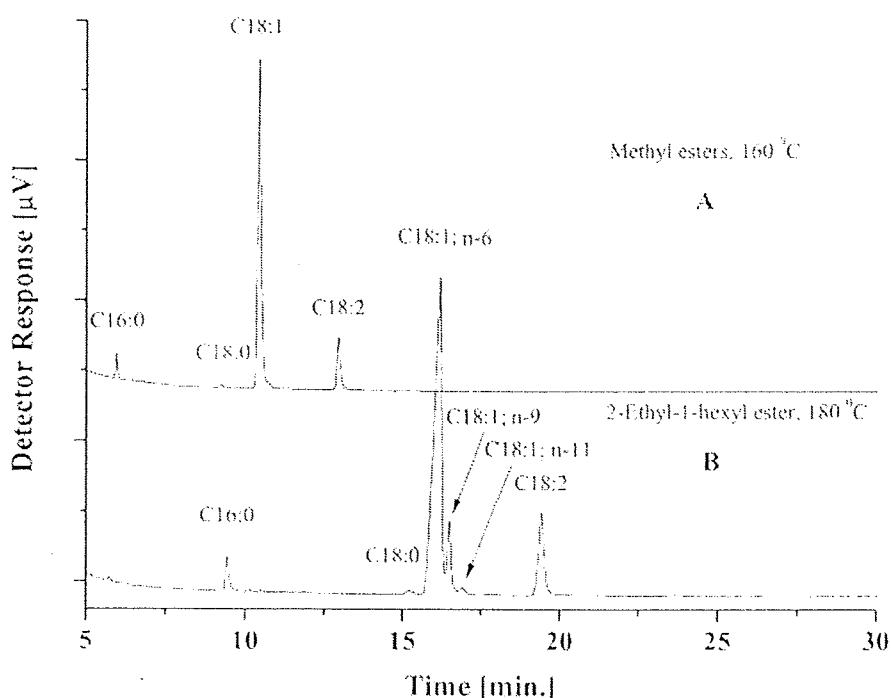


Figure 7. Gas chromatogram of fatty acid esters of coriander seed oil on an Rtx-2330 capillary column (30 m × 0.25 mm i.d., 0.25 μm film thickness). (A) Methyl esters (160 °C), (B) 2-ethylhexyl esters (180 °C).

References

- [1] G. Lepage, C. C. Roy: Direct transesterification of all classes of lipids in a one-step reaction. *J Lipid Res.* 1986, 27, 114–120.
- [2] P. Kalayasiri, N. Jeyashoke, K. Krisnangkura: Survey of seed oils for use as diesel fuels. *J Am Oil Chem Soc.* 1996, 73, 471–474.
- [3] K. J. Harrington, C. D'Arcy-Evans: Transesterification *in situ* of sunflower seed oil. *Ind Eng Chem Prod Res Dev.* 1985, 24, 314–318.
- [4] E. Indarti, M. I. A. Majid, R. Hashim, A. Chong: Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. *J Food Compost Anal.* 2005, 18, 161–170.
- [5] K. S. Liu: Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. *J Am Oil Chem Soc.* 1994, 71, 1179–1187.

- [6] B. H. Freedman, E. H. Pryde, T. L. Mounts: Variables affecting the yields of fatty esters from transesterified vegetable oils. *J Am Oil Chem Soc.* 1984, 61, 1638–1643.
- [7] J. D. Craske, C. D. Bannon, L. M. Norman: Limitations of ambient temperature methods for the methanolysis of triacylglycerols in the analysis of fatty acid methyl esters with high accuracy and reliability. *J Am Oil Chem Soc.* 1988, 65, 262–266.
- [8] K. Krisnangkura, R. Simamaharnnop: Continuous transesterification of palm oil in an organic solvent. *J Am Oil Chem Soc.* 1992, 69, 166–169.
- [9] K. J. Harrington, C. D'Arcy-Evans: Comparison of conventional and *in situ* methods of transesterification of seed oil from a series of sunflower cultivars. *J Am Oil Chem Soc.* 1985, 62, 1009–1013.

[10] W. Stoffel, R. Chu, J. E. H. Ahrens: Analysis of long-chain fatty acids by gas-liquid chromatography: Micromethod for preparation of methyl esters. *Anal Chem.* 1959, 31, 307–308.

[11] G. N. Jham, E. E. F. Teles, L. G. Campos: Use of aqueous HCl/MeOH as esterification reagent for analysis of fatty acids derived from soybean lipids. *J Am Oil Chem Soc.* 1982, 69, 132–133.

[12] AOAC: *Official Methods of Analysis of the Association of Analytical Chemists*. 10th Edn. AOAC, Washington, D.C. (USA) 1965, Section 26.052.

[13] L. D. Metcalfe, A. A. Schmitz: The rapid preparation of fatty acid esters for gas chromatographic analysis. *Anal Chem.* 1961, 33, 363–364.

[14] W. R. Morrison, L. M. Smith: Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. *J Lipid Res.* 1964, 5, 600–608.

[15] M. W. Formo: Ester reactions of fatty materials. *J Am Oil Chem Soc.* 1954, 31, 548–559.

[16] R. Sridharan, I. M. Mathai: Transesterification reactions. *J Sci Ind Res.* 1974, 33, 178–187.

[17] G. Arzamendi, E. Arguinarena, I. Campo, S. Zabala, L. M. Ganda: Alkaline and alkaline-earth metals compounds as catalysts for the methanolysis of sunflower oil. *Catal Today* 2008, 133–135, 305–313.

[18] E. Li, V. Rudolph: Transesterification of vegetable oil to biodiesel over MgO-functionalized mesoporous catalysts. *Energy Fuels.* 2008, 22, 145–149.

[19] N. Jeyashoke, K. Krishnangkura, S.-T. Chen: Microwave induced rapid transmethylation of fatty acids for analysis of food oil. *J Chromatogr A* 1998, 818, 133–137.

[20] F. O. Silva, V. Ferraz: Double use of microwaves in fatty acid preparation for elaidic acid determination as phenacyl ester using high-performance liquid chromatography in Brazilian fat products. *Talanta* 2006, 68, 643–645.

[21] J. M. Armstrong, A. H. Metherel, K. D. Stark: Direct microwave transesterification of fingertip prick blood samples for fatty acid determinations. *Lipids* 2007, 43, 187–196.

[22] K. Kittirattanapiboon, K. Krishnangkura: Separation of acylglycerols, FAME and FFA in biodiesel by size exclusion chromatography. *Eur J Lipid Sci Technol.* 2008, 110, 422–427.

[23] G. Vicente, M. Martinez, J. Aracil: Integrated biodiesel production: A comparison of different homogeneous catalysts systems. *Bioresour Technol.* 2004, 92, 297–305.

[24] M. P. Dorado, E. Ballesteros, M. Mittelbach, E. J. Lopez: Kinetic parameters affecting the alkali-catalyzed transesterification process of used olive oil. *Energy Fuels.* 2004, 18, 1457–1462.

[25] B. Freedman, R. O. Butterfield, E. H. Pryde: Transesterification kinetics of soybean oil. *J Am Oil Chem Soc.* 1986, 63, 1375–1380.

[26] O. S. Stamenkovic, M. L. Lazić, Z. B. Todorović, V. B. Veljković, D. U. Skala: The effect of agitation intensity on alkali-catalyzed methanolysis of sunflower oil. *Bioresour Technol.* 2007, 98, 2688–2699.

[27] D. G. B. Boocock, S. K. Konar, V. Mao, C. Lee, S. Buligan: Fast formation of high-purity methyl esters from vegetable oils. *J Am Oil Chem Soc.* 1998, 75, 1167–1172.

[28] L. C. Meher, D. Vidya Sagar, S. N. Naik: Technical aspects of biodiesel production by transesterification – a review. *Renew Sustain Energy Rev.* 2006, 10, 248–268.

[29] T. E. Dossin, M. F. Reyniers, G. B. Marin: Kinetics of heterogeneously MgO-catalyzed transesterification. *Appl Catal B Environ.* 2006, 62, 35–45.

[30] J. March: *Advanced Organic Chemistry: Reactions, Mechanisms, and Structure*. McGraw-Hill Book Co., New York, NY (USA) 1968.

[31] N. Azcan, A. Danisman: Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. *Fuel.* 2007, 86, 2639–2644.

[32] T. A. Isbell, L. A. Green, S. S. DeKeyser, L. K. Manthey, J. A. Kenar, S. C. Cermak: Improvement in the gas chromatographic resolution of petroselinate from oleate. *J Am Oil Chem Soc.* 2006, 83, 429–434.

An empirical approach for predicting kinematic viscosities of biodiesel blends

Kanit Krisnangkura ^{a,*}, Chanida Sansa-ard ^a, Kornkanok Aryusuk ^a, Supathra Lilitchan ^b, Kanisa Kittiratanapiboon ^c

^a Biochemical Technology Division, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 83 Moo 8, Tientalay 25 Rd. Takham, Bangkok 10150, Thailand

^b Department of Nutrition, Faculty of Public Health, Mahidol University, Ratchathewi, Bangkok 10400, Thailand

^c Faculty of Science and Technology, Suan Sunanta Rajabhat University, Dusit, Bangkok 10300, Thailand

ARTICLE INFO

Article history:

Received 23 November 2009

Received in revised form 29 April 2010

Accepted 30 April 2010

Available online 14 May 2010

Keywords:

Biodiesel

Enthalpy

Fatty acid methyl ester

Free energy

Viscosity

ABSTRACT

Kinematic viscosity (η) is an important property of diesel fuels, including biodiesels, which are marketed mostly as the blends in many countries around the world. In this study, the free energy of viscous flow (ΔG_{vis}) for a non-associated liquid mixture is assumed to be the summed of ΔG_{vis} of individual components. Hence, the Eyring's equation, $\eta = Ae(-\Delta G_{vis}/RT)$, is transformed to $\ln \eta_{blend} = a + bn_1 + c/T + dn_1/T$ (where, a , b , c and d , T and n_1 are thermodynamically related constants, absolute temperature and mole fraction of biodiesel, respectively). The transformed equation is used to predict kinematic viscosity of biodiesel blends (η_{blend}) of different degree of blending at any temperatures from pour point to 100 °C. The predicted kinematic viscosities are in good agreement with those reported in literatures at all temperatures. The highest deviation is $\pm 5.4\%$ and the average absolute deviation (AAD) is less than 2.86%. The transformed equation can also be used to predict kinematic viscosities of pure fatty acid methyl esters in diesel fuel. Methyl ricinoleate is an exception. The AAD is 4.50% and the deviation is as high as 12.80%. The high deviation suggests that molecular interactions between methyl ricinoleate and diesel fuel is high and cannot be ignored.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Neat vegetable oils were primarily considered as alternatives for diesel fuel but their very high viscosity, at room temperature, made them unsuitable in diesel engines. Thus, methyl esters of plant or animal oils (known as biodiesel), which are very much lower in viscosities than the neat oils were considered to be the promising alternatives and have been commercialized in many countries around the world. The effect of viscosity on the atomization process was well described by Msipa et al. [1]. Atomization is the first stage of combustion in the diesel engine. Oxygen in the air will react rapidly with fuel on the outer surface of the oil droplet and releases a tremendous amount of heat to the surrounding. This will initiate other competitive chemical reactions, such as charring or coking and polymerization. Thus, higher viscous liquids, which tend to form larger droplet size, may enhance the polymerization reaction, especially oil of high degree of unsaturation. The problems of using high viscosity oil in diesel engine have long been recognized [2,3]. Although, viscosity is an important factor for biodiesel, methods for estimation of biodiesel viscosities are few [4–7] compared to those for petroleum. In addition, biodiesels

are marketed mostly as the blends (with petroleum diesel) for uses in diesel engines and the methods for estimation of the viscosity of biodiesel blends are even fewer [8–11]. The general equation for calculation the kinematic viscosity of a blend was formulated as [12]:

$$\ln \eta = \sum_{i=1}^k n_i \ln \eta_i + \sum_{i \neq j}^k \sum n_i n_j G_{ij} \quad (1)$$

where n_i and n_j are mole fractions of components i and j , G_{ij} the interaction parameter, k the number of components.

For biodiesel, the interaction G_{ij} was small and could be neglected. Therefore, the simplified Eq. (2) was proposed by Allen et al. [4] for prediction the kinematic viscosity of biodiesel from its fatty acid composition.

$$\ln \eta = \sum_{i=1}^k n_i \ln \eta_i \quad (2)$$

Graboski and McCormick [13] pointed out that kinematic viscosity of the blend was lower than would be predicted from a linear combination model, because dissolution of biodiesel in D-2 minimized intra-molecular interactions.

On the contrary, Yuan et al. [10] reported that the kinematic viscosities of biodiesel blends estimated by Eq. (2) were generally

* Corresponding author. Tel.: +662 470 7759; fax: +662 452 3479.
E-mail address: kanit.kri@kmutt.ac.th (K. Krisnangkura).

lower than the measured values. Hence, the interactions between biodiesel and diesel fuel always existed and Eq. (1) should be used for prediction of the kinematic viscosity of biodiesel blend. However, the G_{ij} was difficult to specify. Therefore, the weight factors were introduced to correct the difference between experimental and predicted values and the equation took the form:

$$\ln \eta = \sum_{i=1}^k w_i n_i \ln \eta_i \quad (3)$$

where w_i is weight factor of the i component.

However, Conclave et al. [14] reported that the average absolute deviations (AAD) in kinematic viscosities of triglycerides computed by Eq. (2) was not greater than 10%.

The effect of temperature on the kinematic viscosity of biodiesel blends or any other non-associated liquids is best described by Andrade equation (Eq. (6)).

$$\eta = A e^{B/T} \quad (4)$$

where A and B are constants. T is absolute temperature. Eq. (4) can be used to predict the kinematic viscosity up to approximately the normal boiling point of the liquid. Comparing Eq. (4) to the reaction rate, an equation (Eq. (5)) similar in form to Eq. (4) was proposed by Eyring [15].

$$\eta = N_A h / \bar{V} e^{-\Delta G_{vis}/RT} \quad (5)$$

where N_A , \bar{V} , h and R are Avogadro's number, molecular volume, Plank's and gas constants, respectively. ΔG_{vis} is the free energy of viscous flow.

Several modifications of Eq. (4) were made to extend the temperature range [16,17]. Makhija and Stairs [18] modified Eq. (4), for associated liquids, by adding a third variable parameter as shown in Eq. (6).

$$\ln \eta = s + \frac{B}{T - T_0} \quad (6)$$

where s , B and T_0 are constants.

The effect of temperature on kinematic viscosity was also proposed by Liew et al. [19] as shown in Eq. (7).

$$\log \eta = a + bT \quad (7)$$

where a and b are constants.

Careful measurement of the commercial biodiesel blended with No. 1 and No. 2 diesel fuels, Tat and Van Gerpen [6] concluded that the kinematic viscosities of biodiesel blends were well fit by Eq. (8).

$$\ln \eta = A + \frac{B}{T} + \frac{C}{T^2} \quad (8)$$

In our previous work, ΔG_{vis} was assumed to be linearly related to the carbon number of the same homologous series and it was expanded to determine kinematic viscosity of saturated fatty acid methyl esters at different temperatures [20]. In this study, ΔG_{vis} (in Eq. (5)) is assumed to be the free energy of viscous flow of biodiesel blend, which derives from the sum of biodiesel and petrodiesel. Substitution of basic thermodynamic parameters into Eq. (5), an equation is obtained and used to predict kinematic viscosities of biodiesel blends at any temperatures (0–100 °C).

2. Theory

As mentioned above, ΔG_{vis} (in Eq. (5)) is assumed to be the free energy of viscous flow of biodiesel blend, which derives from the sum of the free energies of viscous flow of biodiesel and petrodiesel, as shown in Eq. (9).

$$\eta_{blend} = A e^{(-\Delta G_{vis,1} + \Delta G_{vis,2})/RT} \quad (9)$$

where A is $N_A h / \bar{V}$, R universal gas constant, T absolute temperature. The subscript 1 and 2 stand for biodiesel and petrodiesel, respectively.

If the molar volumes of biodiesel and petrodiesel are not very different, Eq. (10) is derived.

$$\ln \eta_{blend} = \ln A - (n_1 \Delta \mu + n_2 \Delta \mu_2) / RT \quad (10)$$

where μ is chemical potential, n mole fraction.

Eq. (10) can be reduced to Eq. (11), which is equivalent to Eq. (2)

$$\ln \eta_{blend} = n_1 \ln \eta_1 + n_2 \ln \eta_2 \quad (11)$$

or

$$\ln \eta_{blend} = n_1 (\ln \eta_1 - \ln \eta_2) + \ln \eta_2 \quad (11a)$$

The mole fraction can be converted to mass (m) and volume (V) fractions as shown in Eqs. (12) and (13), respectively.

For mass fraction,

$$\ln \eta_{blend} = \frac{m_1 \times MW_{blend}}{MW_1} (\ln \eta_1 - \ln \eta_2) + \ln \eta_2 \quad (12)$$

for volume fraction,

$$\ln \eta_{blend} = \frac{d_1 \times V_1 \times MW_{blend}}{d_{blend} \times MW_1} (\ln \eta_1 - \ln \eta_2) + \ln \eta_2 \quad (13)$$

where d is density and MW is molecular weight.

When the viscosity of a biodiesel blend is estimated from the mass or volume fractions, MW and densities of the biodiesel and petrodiesel or the blend must be known. However, if the MW and densities terms are ignored (or assumed to be 1), the predicted viscosity of the blend is just an approximate.

From basic thermodynamics, Eq. (10) is expanded to Eq. (14).

$$\ln \eta_{blend} = \ln A - \frac{n_1 (\Delta \bar{H}_1 - T \Delta \bar{S}_1)}{RT} - \frac{n_2 (\Delta \bar{H}_2 - T \Delta \bar{S}_2)}{RT} \quad (14)$$

$$\ln \eta_{blend} = \ln A - \frac{n_1 \Delta \bar{H}_1}{RT} + \frac{n_1 \Delta \bar{S}_1}{R} - \frac{(1 - n_1) \Delta \bar{H}_2}{RT} + \frac{(1 - n_1) \Delta \bar{S}_2}{R} \quad (14a)$$

$$\text{Rearranging, } \ln \eta_{blend} = \ln A - \frac{\Delta \bar{S}_2}{R} + \frac{n_1 \Delta \bar{S}_1}{R} - \frac{n_1 \Delta \bar{S}_2}{R} - \frac{\Delta \bar{H}_2}{RT} - \frac{n_1 \Delta \bar{H}_1}{RT} + \frac{n_1 \Delta \bar{H}_2}{RT} \quad (14b)$$

Grouping,

$$\ln \eta_{blend} = a + b n_1 + \frac{c}{T} + \frac{d n_1}{T} \quad (15)$$

where

$$a = \ln A - \frac{\Delta \bar{S}_2}{R} \quad (15a)$$

$$b = \frac{\Delta \bar{S}_1 - \Delta \bar{S}_2}{R} \quad (15b)$$

$$c = -\frac{\Delta \bar{H}_2}{R} \quad (15c)$$

$$d = -\frac{\Delta \bar{H}_1 - \Delta \bar{H}_2}{R} \quad (15d)$$

$\Delta \bar{H}_1$ and $\Delta \bar{S}_1$ are molar enthalpy and entropy of viscous flow, respectively.

3. Experimental

The kinematic viscosity values were obtained from Knothe and Steidley [8] and Yuan et al. [10].

4. Results and discussion

4.1. Determination of the 4 constants of Eq. (15)

Although there is no temperature term in both Eqs. (12) and (13), the density and volume terms in Eq. (13) are sensitive to T . This would support the conclusion of Yuan et al. [10] that mass fraction was better than volume fraction for calculation of the kinematic viscosity of biodiesel blends. However, volume fractions of the blends were used in this study because the kinematic viscosities data were taken from Knothe and Steidley [8]. Deviations between experimental and calculated kinematic viscosities would arise partly from the product of $d_1 \times MW_{blend}/d_{blend} \times MW_1$, which was assigned to 1. Thus, mole and volume fractions are used interchangeably.

The 4 constants of Eq. (15) were determined on the Microsoft Excel Spreadsheet, as described by Krisnangkura et al. [21]. At constant T , Eq. (15) is reduced to Eq. (16).

$$\ln \eta_{blend} = a' + b' n_1 \quad (16)$$

where

$$a' = a + \frac{c}{T} \quad (16a)$$

and

$$b' = b + \frac{d}{T} \quad (16b)$$

The plots of $\ln \eta_{blend}$ against n_1 of different blends give straight lines with intercepts and slopes of a' and b' , respectively. Additional plots of a' against $1/T$ and b' against $1/T$ give straight lines with intercepts and slopes of a , c and b , d , respectively. Table 1 shows the natural logarithm of kinematic viscosities [8], the slopes and intercepts of the plots of V_1 against $\ln \eta_{blend}$ and the four numeric constants of Eq. (15). The numeric values of a , b , c and d (for commercial biodiesel and low sulfur petrodiesel blends) are -6.26 , 0.459 , 2283.7 and -35.96 , respectively. Hence, Eq. (17) is obtained by substituting these four numeric values into Eq. (15) and Eq. (17) can be used to estimate the kinematic viscosities of biodiesel blends of different degree of blending at any temperatures above pour point to 100°C .

$$\ln \eta_{blend} = -6.26 + 0.459 n_1 + \frac{2283.7}{T} - \frac{35.96 n_1}{T} \quad (17)$$

Table 1

Natural logarithm of kinematic viscosities of biodiesel (SoyGold [8]) blends at different temperatures. The numeric values of a , b , c and d are shown in the lower right of the Table. The viscosity data were taken from Knothe and Steidley [8].

n_1	$^\circ\text{C}$									Intercept	Slope	RSQ			
	$40 \quad 35 \quad 30 \quad 25 \quad 20 \quad 15 \quad 10 \quad 5 \quad 0$														
	$1/T$														
	0.00319	0.00325	0.00330	0.00335	0.00341	0.00347	0.00353	0.00360	0.00366						
0.0	1.065	1.179	1.292	1.406	1.515	1.670	1.826	1.978	2.149	-6.32	2307.60	0.9976			
0.1	1.082	1.209	1.319	1.423	1.543	1.681	1.829	2.011	2.155	-6.21	2281.16	0.9973			
0.2	1.122	1.235	1.340	1.459	1.579	1.712	1.863	2.036	2.179	-6.14	2267.27	0.9980			
0.3	1.147	1.261	1.371	1.479	1.593	1.739	1.889	2.052	2.214	-6.11	2268.09	0.9974			
0.4	1.182	1.292	1.399	1.509	1.625	1.772	1.920	2.081	2.247	-6.09	2269.03	0.9973			
0.5	1.218	1.327	1.440	1.560	1.656	1.810	1.946	2.120	2.269	-5.96	2243.06	0.9976			
0.6	1.261	1.379	1.491	1.597	1.703	1.850	1.995	2.163	2.316	-5.91	2240.61	0.9973			
0.7	1.292	1.409	1.520	1.627	1.733	1.883	2.037	2.194	2.355	-5.94	2259.17	0.9973			
0.8	1.327	1.447	1.552	1.662	1.775	1.923	2.079	2.235	2.402	-5.98	2282.06	0.9972			
0.9	1.371	1.486	1.587	1.701	1.810	1.964	2.100	2.300	2.412	-5.86	2257.51	0.9961			
1.0	1.423	1.535	1.639	1.751	1.861	2.018	2.160	2.349	2.464						
Slope (b')	1.048	1.164	1.276	1.387	1.502	1.644	1.796	1.957	2.123	-6.26 (a)	2283.7 (c)				
Intercept (a')	0.358	0.355	0.348	0.348	0.340	0.352	0.343	0.361	0.329	0.459 (b)	-35.96 (d)				
RSQ	0.9936	0.9924	0.9920	0.9918	0.9903	0.9882	0.9829	0.9765	0.9860						

4.2. Prediction of kinematic viscosity of commercial biodiesel blends

According to Eq. (13), $\ln \eta_2$ and $[d_1 \times MW_{blend}/d_{blend} \times MW_1(\ln \eta_1 - \ln \eta_2)]$ are the intercept and slope of the plot of $\ln \eta_{blend}$ against V_1 . As pointed out earlier, the product of $d_1 \times MW_{blend}/d_{blend} \times MW_1$ was assigned to 1. Hence the slope of the plot is reduced to $\ln \eta_1 - \ln \eta_2$. The 2nd and 3rd row from the bottom of Table 1 are the intercepts and slopes of the plots of $\ln \eta_{blend}$ against V_1 at temperatures 0–40 °C. Thus, kinematic viscosities of the low sulfur petrodiesel and biodiesel are calculated and listed in Table 2. The AAD, calculated according to Eq. (18) [22], of the low sulfur petrodiesel fuel is 2.01% with the highest deviation of 2.97%.

$$\text{AAD} = \sum_{i=1}^k \left[\frac{|\eta_{exp} - \eta_{cal}|}{\eta_{exp}} \times 100 \right] / N \quad (18)$$

However, all the predicted kinematic viscosities are lower than the experimental values. Yuan et al. [10] discussed that biodiesel blends estimated by Eq. (2) were generally lower than the measured values, which led them to conclude that the interactions between biodiesel and diesel fuel always existed. Nevertheless, the interaction between petrodiesel and biodiesel, in this case, would be very small. Fig. 1 is the plot between $\ln \eta_{blend}$ and V_1 . Only data at 10 and 40 °C are used for demonstration. The natural logarithm of pure diesel ($V_1 = 0$) tends to level off. The leveling is more conspicuous at lower temperature. Thus, if a straight line is drawn between biodiesel and diesel, all the measured kinematic viscosities of biodiesel blends would be below this line. Similar observation was reported by Grabski and McCormick [13]. The dissolution of biodiesel in petrodiesel and minimized intra-molecular interactions was the main reason [13].

The kinematic viscosities of neat biodiesel obtained from the slope of the plots at different temperatures agree well with the experimental values (Table 2). The AAD is only 0.41% and the highest deviation is 1.00%. If the same reason of Grabski and McCormick is applied, the dissolution of petrodiesel in biodiesel would affect the intermolecular interaction to a lesser extent.

Kinematic viscosities of commercial biodiesel blended with low sulfur diesel fuel at 1:9 to 9:1 volume ratios, calculated by using Eq. (17) are summarized in Table 3. Percent deviations from the experimental values are given in parenthesis. All the calculated values are in good agreement with the experimental values. The AAD is 1.64% and the highest deviation is ±4.89%.

Table 2

Kinematic viscosities of low sulfur diesel fuel (η_2) and commercial biodiesel (SoyGold, [8]) estimated from slopes and intercepts of the plots of $\ln \eta_{\text{blend}}$ and volume fraction (V_1) at different temperatures, according to Eq. (13).

	Temperature (°C)									AAD
	40	35	30	25	20	15	10	5	0	
Intercept ($\ln \eta_2$)	1.048	1.164	1.276	1.387	1.502	1.644	1.796	1.957	2.123	
η_2	2.851	3.203	3.582	4.004	4.491	5.176	6.026	7.081	8.357	
Deviation (%)	1.71	1.44	1.61	1.87	1.29	2.53	2.97	2.06	2.60	2.01
Slope + intercept ($\ln \eta_2$)	1.405	1.519	1.624	1.735	1.842	1.996	2.139	2.319	2.452	
η_1	4.076	4.568	5.074	5.672	6.311	7.360	8.493	10.161	11.613	
Deviation (%)	-0.40	-0.40	-0.27	-0.21	-0.65	-0.40	-0.16	-1.00	0.15	0.41

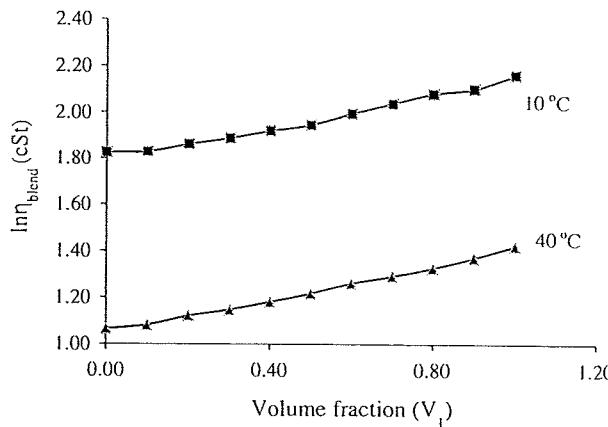


Fig. 1. The relationship between $\ln \eta_{\text{blend}}$ and volume fraction of biodiesel blends. Kinematic viscosity at 10 °C, ■—■; 40 °C, ▲—▲.

4.3. Prediction of kinematic viscosities of blends of fatty acid methyl esters in low sulfur petrodiesel

Kinematic viscosities of methyl oleate and methyl ricinoleate in low sulfur diesel fuel at different temperatures were reported by Knothe and Steidley [8]. These data are converted to natural logarithmic values. The plots between natural logarithm of kinematic viscosities and volume fraction at different temperatures (0–40 °C) give straight lines with good linearity ($r^2 \geq 0.98$). The four constants (a , b , c and d) of Eq. (15) for methyl oleate and methyl ricinoleate blended with low sulfur diesel fuel were determined, as described in the above section. Substitutions these numeric values back into Eq. (15), Eqs. (19) and (20) were obtained, respectively

$$\ln \eta_{\text{blend}} = -6.36 - 0.106n_1 + \frac{2313.1}{T} + \frac{168.6n_1}{T} \quad (19)$$

$$\ln \eta_{\text{blend}} = -6.63 - 5.448n_1 + \frac{2367.6}{T} + \frac{2230.3n_1}{T} \quad (20)$$

Kinematic viscosities generated by these two equations are summarized in Tables 4 and 5, respectively. Very good agreement between the experimental kinematic viscosities for methyl oleate in diesel fuel and the calculated values are observed (Table 4). There are only 4 out of 91 data, which have the differences greater than 3%. The AAD is 1.71%. Greater different are observed for methyl ricinoleate. Methyl ricinoleate has a hydroxyl group at C12. Hence, the molecule is more polar than methyl oleate and biodiesel. In addition, the hydroxyl group can easily form intermolecular H-bonding (associated). This would intensify the interaction factor ($n_1 n_2 G_{12}$) of Eq. (1) and it cannot be ignored. Thus, the AAD increases to 4.50% (Table 5) and about half of the data have the differences between the experimental and calculated values higher than 3.00% with the highest value of 12.80%.

4.4. Analysis of Yuan et al. data [10]

Yuan et al. reported the kinematic viscosities of various biodiesels blended with diesel No. 1 and No. 2 at temperatures between 20 and 100 °C. These data are well fit to Eq. (15) with the numeric constants shown in Eqs. (21)–(24) for each type of the blend.

$$\ln \eta_{\text{blend}} = -4.81 + 0.367n_1 + \frac{1838.47}{T} + \frac{3.80n_1}{T} \quad (21)$$

for SMEA, a soybean oil methyl ester (Growmark Inc., Bloomington, IL).

$$\ln \eta_{\text{blend}} = -4.77 + 0.176n_1 + \frac{1828.60}{T} + \frac{90.90n_1}{T} \quad (22)$$

for SMEB, a second natural soybean oil methyl ester.

$$\ln \eta_{\text{blend}} = -4.72 + 0.0710n_1 + \frac{1798.53}{T} + \frac{162.76n_1}{T} \quad (23)$$

for GMSME, a genetically modified soybean oil methyl ester.

$$\ln \eta_{\text{blend}} = -4.77 - 0.139n_1 + \frac{1823.91}{T} + \frac{229.11n_1}{T} \quad (24)$$

for YGME, a yellow grease methyl ester.

Table 3

Kinematic viscosities of commercial biodiesel (SoyGold [8]) blends calculated by Eq. (17). Numbers in parentheses are percent deviation from experimental values reported by Knothe and Steidley [8]. The AAD is 1.64%.

n_1	40	35	30	25	20	15	10	5	0
0.1	2.91 (1.22)	3.28 (2.10)	3.71 (0.93)	4.20 (-1.28)	4.79 (-2.33)	5.48 (-2.07)	6.30 (-1.17)	7.28 (2.48)	8.46 (1.92)
0.2	3.02 (1.76)	3.39 (1.35)	3.83 (-0.35)	4.35 (-1.11)	4.95 (-2.12)	5.67 (-2.30)	6.52 (-1.17)	7.53 (1.71)	8.75 (1.07)
0.3	3.12 (0.90)	3.51 (0.52)	3.97 (-0.66)	4.50 (-2.45)	5.12 (-4.11)	5.86 (-2.98)	6.74 (-1.90)	7.78 (-0.01)	9.04 (1.24)
0.4	3.23 (0.89)	3.63 (0.16)	4.10 (-1.32)	4.65 (-2.93)	5.30 (-4.28)	6.06 (-3.04)	6.96 (-2.09)	8.04 (-0.40)	9.34 (1.30)
0.5	3.34 (1.07)	3.76 (0.25)	4.25 (-0.60)	4.81 (-1.10)	5.48 (-4.55)	6.26 (-2.53)	7.20 (-2.82)	8.31 (0.23)	9.65 (0.23)
0.6	3.46 (1.95)	3.89 (1.98)	4.39 (1.07)	4.98 (-0.77)	5.67 (-3.20)	6.48 (-1.85)	7.44 (-1.23)	8.59 (1.27)	9.97 (1.69)
0.7	3.58 (1.59)	4.03 (1.54)	4.54 (0.56)	5.15 (-1.16)	5.86 (-3.52)	6.70 (-1.94)	7.69 (-0.28)	8.88 (1.03)	10.30 (2.28)
0.8	3.71 (1.66)	4.17 (1.95)	4.70 (0.39)	5.33 (-1.07)	6.06 (-2.71)	6.92 (-1.24)	7.95 (0.61)	9.17 (1.87)	10.64 (3.60)
0.9	3.84 (2.61)	4.31 (2.44)	4.86 (0.52)	5.51 (-0.54)	6.27 (-2.57)	7.16 (-0.42)	8.22 (-0.61)	9.48 (4.89)	11.00 (1.46)

Table 4

Kinematic viscosities of methyl oleate in low sulfur diesel fuel calculated by Eq. (19). Numbers in parentheses are percent deviation from experimental values reported by Knothe and Steidley [8]. The AAD is 1.71%.

n_1	40	35	30	25	20	15	10	5	0
0.1	2.92 (1.62)	3.30 (1.88)	3.73 (−0.13)	2.92 (1.62)	3.30 (1.88)	3.73 (−0.13)	6.43 (0.96)	7.45 (2.20)	8.69 (0.83)
0.2	3.05 (0.94)	3.45 (1.56)	3.91 (−0.43)	3.05 (0.94)	3.45 (1.56)	3.91 (−0.43)	6.75 (−0.29)	7.83 (2.19)	9.14 (−0.03)
0.3	3.19 (0.75)	3.60 (0.53)	4.09 (−1.15)	3.19 (0.75)	3.60 (0.53)	4.09 (−1.15)	7.09 (−1.12)	8.24 (1.95)	9.62 (−1.18)
0.4	3.33 (1.29)	3.76 (0.97)	4.27 (−1.29)	3.33 (1.29)	3.76 (0.97)	4.27 (−1.29)	7.44 (0.62)	8.66 (−0.67)	10.13 (−1.57)
0.5	3.47 (0.47)	3.93 (1.18)	4.47 (0.42)	3.47 (0.47)	3.93 (1.18)	4.47 (0.42)	7.82 (0.68)	9.10 (−0.46)	10.66 (−1.98)
0.6	3.63 (1.18)	4.11 (0.96)	4.68 (−1.02)	3.63 (1.18)	4.11 (0.96)	4.68 (−1.02)	8.21 (−0.23)	9.57 (1.25)	11.22 (4.46)
0.7	3.79 (1.12)	4.30 (1.25)	4.89 (0.16)	3.79 (1.12)	4.30 (1.25)	4.89 (0.16)	8.62 (−0.47)	10.06 (1.19)	11.80 (4.11)
0.8	3.95 (1.63)	4.49 (1.56)	5.12 (−0.54)	3.95 (1.63)	4.49 (1.56)	5.12 (−0.54)	9.05 (−0.47)	10.57 (0.52)	12.42 (3.99)
0.9	4.13 (2.16)	4.69 (2.06)	5.35 (0.13)	4.13 (2.16)	4.69 (2.06)	5.35 (0.13)	9.51 (0.46)	11.12 (1.45)	13.07 (5.12)

Table 5

Kinematic viscosities of methyl ricinoleate in low sulfur diesel fuel calculated by Eq. (20). Numbers in parentheses are percent deviation from experimental values reported by Knothe and Steidley [8]. The AAD is 4.50%.

n_1	40	35	30	25	20	15	10	5	0
0.1	3.00 (7.29)	3.44 (−0.75)	3.26 (3.04)	3.72 (1.63)	4.26 (−2.97)	4.90 (−1.44)	5.66 (0.04)	6.58 (−7.01)	10.09 (2.81)
0.2	3.55 (2.17)	4.11 (0.76)	3.95 (−0.98)	4.55 (−3.74)	5.28 (−2.79)	6.16 (−7.10)	7.22 (−5.15)	8.51 (−5.47)	13.24 (−2.54)
0.3	4.20 (0.04)	4.91 (−1.32)	4.78 (−3.05)	5.58 (−5.37)	6.56 (−10.10)	7.74 (−8.57)	9.20 (−6.54)	11.00 (−6.47)	17.37 (−3.71)
0.4	4.96 (−0.27)	5.88 (−1.85)	5.78 (−4.90)	6.84 (−6.61)	8.14 (−10.24)	9.74 (−10.53)	11.73 (−7.43)	14.22 (−5.65)	22.79 (−4.04)
0.5	5.87 (−0.31)	7.03 (−0.55)	7.00 (−4.17)	8.38 (−7.30)	10.10 (−12.80)	12.25 (−11.20)	14.95 (−7.72)	18.39 (−6.41)	29.91 (−4.40)
0.6	6.94 (1.32)	8.41 (0.87)	8.47 (−2.40)	10.27 (−5.47)	12.53 (−11.18)	15.40 (−9.18)	19.07 (−6.42)	23.78 (−6.97)	39.25 (−1.42)
0.7	8.20 (3.17)	10.05 (2.11)	10.25 (−1.36)	12.58 (−5.17)	15.55 (−10.69)	19.37 (−8.40)	24.31 (−4.97)	30.75 (−4.98)	51.50 (0.37)
0.8	9.70 (5.77)	12.02 (4.95)	12.41 (1.54)	15.42 (−1.85)	19.30 (−7.24)	24.36 (−3.21)	30.99 (−1.61)	39.77 (−1.22)	67.58 (3.07)
0.9	11.46 (8.15)	14.38 (7.64)	15.02 (3.94)	18.89 (0.13)	23.96 (−5.93)	30.63 (−1.32)	39.51 (0.28)	51.42 (0.77)	88.68 (5.89)

Table 6

Percent deviations between kinematic viscosities of biodiesel blends [10] and those calculated by using Eqs. (21)–(24).

Biodiesel ^a	n_1	20	40	60	80	100
$\ln \eta_{blend} = -4.81 + 0.367n_1 + \frac{1838.47}{T} + \frac{3.80n_1}{T}$						
SMEA 25	0.25	2.03	−2.13	−3.35	−0.18	1.97
SMEA 50	0.5	3.62	−2.40	−1.82	−0.26	3.05
SMEA 75	0.75	4.11	−1.56	−1.78	−0.12	3.15
SMEA 100	1.00	2.24	−2.95	−3.31	−0.82	2.44
$\ln \eta_{blend} = -4.77 + 0.176n_1 + \frac{1828.60}{T} + \frac{90.90n_1}{T}$						
SMEB 25	0.25	0.20	−5.61	−5.79	−2.81	1.15
SMEB 50	0.5	5.09	−2.18	−2.32	0.13	3.75
SMEB 75	0.75	4.31	−1.56	−2.25	−0.07	3.66
SMEB 100	1.00	0.20	−5.31	−5.39	−3.55	1.52
$\ln \eta_{blend} = -4.72 + 0.0710n_1 + \frac{1798.53}{T} + \frac{162.76n_1}{T}$						
GMSME 25	0.25	2.69	−3.33	−3.61	−0.75	2.36
GMSME 50	0.5	4.57	−1.79	−1.89	0.14	3.47
GMSME 75	0.75	2.63	−3.32	−3.77	−0.75	2.96
GMSME 100	1.00	3.45	−2.81	−3.23	−0.53	2.72
$\ln \eta_{blend} = -4.77 + 0.139n_1 + \frac{1823.91}{T} + \frac{229.11n_1}{T}$						
YGME 25	0.25	3.38	−3.05	−3.61	−0.93	3.29
YGME 50	0.5	3.15	−3.77	−3.58	−1.31	2.28
YGME 75	0.75	4.75	−1.51	−2.12	1.14	4.37
YGME 100	1.00	2.64	−3.42	−4.24	−2.09	2.73

^a SMEA, SMEB, GMSME and YGME stand for soybean methyl ester (obtained from Growmak Inc.), natural soybean methyl ester, genetically modified soybean methyl ester and yellow grease methyl ester, respectively.

Good agreement between the calculated kinematic viscosities and those reports by Yaun et al. [10] is observed. The differences are about ± 5.5 (Table 6) and the AAD is 2.6%.

5. Conclusion

The kinematic viscosity of biodiesel blends at different degree of blending and different temperatures can be predicted by the general equation (Eq. (15)). However, the numeric values of the four

constants (a , b , c and d) are changed as the compositions of biodiesel or petrodiesel are changed. Eq. (15) is derived on the assumption that $\Delta G_{vis} = \Delta G_1 + \Delta G_2$, and the molecular volume of the two liquid are not be very different. For $\Delta G_{vis} = \Delta G_1 + \Delta G_2$, it means that free energy arise from the intermolecular interactions between the two liquid components are not very different from ΔG_1 and ΔG_2 .

Due to the complexity of both biodiesel and diesel fuel compositions, which may vary from batch to batch, therefore, the enthalpic and entropic terms of both fuels may also vary from batch to batch. However, fatty acid composition of biodiesel is not complicate and can be easily determined by gas chromatographic method. Thus, the enthalpic and entropic constants for biodiesel may be estimated from its fatty acid composition [20].

Acknowledgement

This work was supported by Thailand Research Fund.

References

- [1] Msipa CKM, Goering CE, Karcher TD. Trans Am Soc Agric Eng 1983;26: 1669–72.
- [2] Ryan III TW, Callahan TJ, Dodge LG. In: Proceedings of the international conference on plant and vegetable oils as fuels. St. Joseph, MI: ASAE; 1982. p. 70–81.
- [3] Quick GR, Wilson BT, Woodmore PJ. In: Proceedings of the international conference on plant and vegetable oils as fuels. St. Joseph, MI: ASAE; 1982. p. 239–46.
- [4] Allen CAW, Watts KC, Ackman RG, Pegg MJ. Fuel 1999;78:1319–26.
- [5] Fisher CH. J Am Oil Chem Soc 1988;65:1647–51.
- [6] Tat M, Van Gerpen J. J Am Oil Chem Soc 1999;76:1511–3.
- [7] Knothe G. Fuel Proces Technol 2005;86:1059–70.
- [8] Knothe G, Steidley KR. Fuel 2007;86:2560–7.
- [9] Erhan S, Asadauskas S, Adhvaryu A. J Am Oil Chem Soc 2002;79:1157–61.
- [10] Yuan W, Hansen A, Zhang Q, Tan Z. J Am Oil Chem Soc 2005;82:195–9.
- [11] Ramadhas AS, Jayaraj S, Muraleedharan C. Renew Energy 2005;30:795–803.
- [12] Grunberg L, Nissan AH. Nature 1949;164:799–800.
- [13] Graboski MS, McCormick RL. Prog Energy Comb Sci 1998;24:125–64.
- [14] Goncalves CB, Ceriani R, Rabelo J, Maffia MC, Meirelles AJA. J Chem Eng Data 2007;52:2000–6.

- [15] Eyring H. *J Chem Phys* 1936;4:283–91.
- [16] Özdogan S, Yücel HG. *Fuel* 2001;80:447–9.
- [17] Korsten H. *AIChE J* 2001;47:453–62.
- [18] Makhija RC, Stairs DRA. *Can J Chem Eng* 1970;48:1214–8.
- [19] Liew KY, Seng CE, Oh LL. *J Am Oil Chem Soc* 1992;69:155–8.
- [20] Krisnangkura K, Yimsuwan T, Pairintra R. *Fuel* 2006;85:107–13.
- [21] Krisnangkura K, Tancharoon A, Konkao C, Jeyashoke N. *J Chromatogr Sci* 1997;35:329–32.
- [22] Azian M, Mustafa Kamal A, Panau F, Ten W. *J Am Oil Chem Soc* 2001;78:1001–5.

Transesterification/acetylation of long chain alcohols with alkyl acetate

Phattaraporn Kaewkool^a, Kanit Krisnangkura^{b,*}

^a Department of Agriculture and Environment, Faculty of Science and Technology, Surindra Rajapat University, Muang, Surin 32000, Thailand

^b Biochemical Technology Division, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49, Tientalay 25 Rd. Takham, Bangkok, Bangkok 10150, Thailand

ARTICLE INFO

Article history:

Received 5 April 2010

Received in revised form 14 June 2010

Accepted 16 June 2010

Available online 23 June 2010

Keywords:

Castor oil

Fatty alcohol

Policosanol

Transacetylation

Transesterification

ABSTRACT

Gas chromatographic characterizations of fatty alcohols are generally carried out as the free alcohols, trimethyl silyl or acetyl derivatives. In this study, transesterification/acetylation of long chain fatty alcohols is simply carried out by dissolving the alcohol in ethyl/methyl acetate and passing through a micro-column packed with solid NaOH. Reaction times are slightly different for alcohols of different chain length. Rice bran alcohols of 24–34 carbon atom are successfully acetylated. Also, castor oil methyl ester can be interesterified but with longer reaction time.

© 2010 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Long chain alcohols are found ubiquitously in nature as free and bound forms. Policosanol, the common name for a mixture of long chain alcohols (20–36 carbons), has become of more and more interest to the general public as a nutritional supplement and subjected to numerous studies (Oliaro-Bosso et al., 2009; Taylor et al., 2003; Viola et al., 2008). On the other hand triacontanol is used as a plant growth regulator. It exerts effects on photosynthesis, enzymatic activity and respiration (Ries et al., 1977). On the bad side, accumulation of long chain alcohols in plasma is an inborn error associated with fatty alcohol metabolism, known as Sjogren–Larsson syndrome [Rizzo].

GC has mostly been used to analyze long chain alcohols with and without derivatization. Trimethylsilylation with *N,O*-bis(trimethylsilyl)trifluoroacetamide (BSTFA) or *N*-methyl-*N*-trimethylsilyl trifluoro-acetamide (MSTFA) were described by Bonaduce and Colombini (2004) and Irmak et al. (2006). Acetic anhydride was also used to acetylate policosanol but poor yield was obtained (Wang et al., 2007). In addition, it was difficult to achieve identical yields for quantitative analysis and the acetylation procedure was laborious and time consuming. Some researchers developed non-derivatization GC methods for policosanol analysis (Chen et al., 2003).

In this study, acetylation of fatty alcohols, including policosanol from rice bran wax was performed by transacetylation of the alcohols with methyl or ethyl acetate. Transesterification has wide academic interests and industrial applications. Generally, transesterification is carried out on low molecular weight alcohols and long chain or high molecular weight esters. The preparation of fatty acid esters from fats and oils for GC analysis (Jeyashoke et al., 1998; Kaewkool et al., 2009) and for industrial biodiesel production (Lertsathapornsuk et al., 2008; Ma and Hanna, 1999) are good examples. On the other hand, transesterification of long chain alcohol with low molecular weight esters are less common but there have been reported in literatures. Stapp and Rabjohn (1959) reported that lithium aluminium alkoxide could catalyze transacetylation of alcohol with ethyl acetate with good yield.

Vinyl acetate could donate its acetyl group to benzyl alcohol in very good yields (Shirae et al., 2005). Transesterification of ethyl acetoacetate with dodecanol without a catalyst was described by Koval et al. (2008). However, reaction took a very long time at distillation temperature to continuously remove ethyl alcohol and a 93% yield was reported.

2. Experimental

2.1. Materials

Higher alcohols were obtained from Aldrich–Sigma Chem. Co. (St. Louis, MO). Crude rice bran wax was a gift of Surin Rice Bran Oil Refinery (Surin, Thailand). Ethyl acetate was reagent grade obtained

* Corresponding author. Tel.: +66 2 470 7759; fax: +66 2 452 3479.
E-mail address: kanit.kri@kmutt.ac.th (K. Krisnangkura).

from Lab Scan Co (Bangkok, Thailand). Methyl acetate and NaOH, were reagent grade from Fluka (Buchs, Switzerland).

2.2. Policosanol from rice bran wax

Crude rice bran wax (containing approximately 65% oil and 35% wax, 10 g) was dissolved in hot iso-propanol, 100 mL. The hot solution was left at room temperature for 2 h. And kept in a refrigerator overnight. The precipitate was filtered rapidly on a buchner funnel and washed once with 20 mL of cold iso-propanol. The partially purified wax was refluxed with 2N ethanolic KOH (80% ethanol + 20% water, v/v) for 8 h. Excess solvent was partially removed in vacuo. The mixture was left in refrigerator overnight. Policosanol was extracted with hexane and allowed to crystallize at room temperature.

2.3. Transesterification micro-reactor

The micro-reactor (Kaewkool et al., 2009) was prepared by plugging a small piece of cotton wool at the bottom the outlet of a disposable syringe (3 mL) and 0.5 g of ground NaOH was packed onto the top of the cotton wool. The micro-reactor was used for transesterification.

2.4. Interesterification of castor oil

Castor oil (2 mg) was dissolved in 1 mL methanol + tetrahydrofuran (1:5, v/v). The mixture was passed through a NaOH micro-reactor as described by Kaewkool et al. (2009).

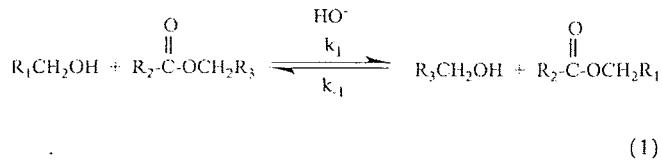
2.5. Transesterification/transacetylation

Transesterification/acetylation was carried out by dissolving about 2 mg of sample (long chain alcohol) in 1 mL of methyl or ethyl acetate. Transesterification/acetylation was started by passing the solution through the micro-reactor gravitationally. Elution rate depended very much on the fineness of the ground NaOH. The elution time was controlled manually to be about 60 s by the plunger provided. The eluent was acidified with 0.1 mL glacial acetic acid and the mixture was ready for analysis by HPSEC. The adding of acetic acid was necessary. If the mixture was not acidified, the ester product would be continuously hydrolyzed to fatty alcohol by the dissolved NaOH.

2.6. High performance size exclusion chromatography (HPSEC)

HPSEC was used to monitor the transesterification/acetylation product and was carried out according to Kittirattanapiboon and Krisnangkura (2008). The HPSEC system was consisted of a pump model 510 (Waters Associates, Milford, MA), a Rheodyne 7125 valve-injector, a 20 μ L loop and a Sedex 55 Evaporative Light Scattering Detector (ELSD; Sedere, Alfortville, France). Detector temperature was set at 30 °C and N₂ gas was 2 bars. Data were collected and processed by CSW32 HPLC software (DataApex Ltd, Prague, Czech Republic). Reaction mixture was analyzed on a 100 Å Phenogel column (300 mm \times 7.8 mm ID, 5 μ m) (Phenomenex, Torrance, CA) protected with Bondapak C18 Guard Pak (Millipore Co., Milford, MA). Toluene containing 0.25% acetic acid was used as the mobile phases at a flow rate of 1.0 mL/min.

2.7. Gas chromatography


Gas chromatographic (GC) analysis was carried out on a Shimadzu gas chromatograph model 2010 (Shimadzu Inc.) equipped with an FID and a split-splitless injector. Rtx-2330

(90% biscyanopropyl 10% cyanopropylphenyl polysiloxane) capillary column (30 m \times 0.25 mm i.d., 0.25 μ m film thickness) was obtained from Restex International (Bellefonte, PA). The chromatographic conditions were as follows: helium carrier gas flow, 2 mL/min; nitrogen makeup gas flow, 30 mL/min; detector/injector, 230 °C; split ratio, about 50:1.

3. Results and discussion

3.1. Acetylation of fatty alcohols

The general equation for hydroxide catalyzed transesterification can be written as

where k_1 , k_{-1} are rate constants for the forward and backward reactions, respectively; R_1 , R_2 and R_3 are alkyl groups or H-atom.

The reaction rate (v) is

$$v = k_1[R_1CH_2OH][R_2COOCH_2R_3][HO^-] - k_{-1}[R_3CH_2OH][R_2COOCH_2R_1][HO^-] \quad (2)$$

Initially, products on right side of Eq. (1) are negligible, and Eq. (2) is reduced to Eq. (3).

$$v = k_1[R_1CH_2OH][R_2COOCH_2R_3][HO^-] \quad (3)$$

With large excess of R_1CH_2OH and saturated HO^- , the conversion rate of $R_2COOCH_2R_3$ would be maximal. This was the condition that Kaewkool et al. (2009) used to create micro-reactor for transesterification at room temperature. By the same analogy, when R_1 is a long chain alkyl group, R_2 and R_3 are low molecular weight alkyl or H-atom, Eq. (3) would still be applicable. When R_2 and R_3 are methyl, the reaction is transacetylation. The rate of transacetylation will be maximal when ethyl acetate is in large excess and the HO^- is saturated. It was speculated that the transacetylation rate would be comparable to that of transesterification of vegetable oil with lower alcohols but results in Table 1 show that the rate of transacetylation is about 10 times slower. Transmethylation reported by Kaewkool et al. (2009) was completed in less than 45 s but it took about 8 min to complete transacetylation. The transacetylation, at this condition, is pseudo-first order in alcohol.

The free alcohol peaks are slightly tailed (Fig. 1) but the tails are disappeared in the acetate derivatives. The acetate is eluted at a faster rate than the corresponding alcohol.

3.2. Acetylation of rice bran policosanol

Transacetylation of policosanol with ethyl acetate took the same time as the long chain alcohol (8 min). Fig. 2 is the chromatogram of policosanol from rice bran wax and the corresponding acetate. The free alcohol peaks tailed badly. Thus, it might be concluded that acetate derivative is superior to the free alcohol on Rtx 2330 column. The corresponding acetate is eluted out of the column at a shorter time with no tail. In addition the acetate is more resistant to hydrolysis than the trimethylsilyl derivative. The major drawback of the acetate derivative described in the literature was the method of preparation, which was laborious, time consuming and poor yield (Wang et al., 2007). In this study, the acetate can be easily prepared from ethyl acetate and quantitative yield is obtained in a short time. Fig. 2 shows that policosanol from rice bran wax contains long chain alcohol from C₂₄–C₃₄ and C₃₀ is the highest

Table 1
Transacetylation rate of long chain alcohols (C_{12} – C_{18}) in a micro-reactor packed with 0.5 g of NaOH.

Time (min)	C_{12} (%)	C_{14} (%)	C_{16} (%)	C_{18} (%)	Total (%)
0	22.80	0.00	20.47	0.00	100.00
1	8.22	14.03	7.77	12.65	38.36
2	4.13	18.44	4.03	16.40	61.33
4	1.67	21.77	1.80	18.84	79.12
6	0.49	22.12	0.66	19.88	90.68
8	0.00	22.87	0.00	20.40	96.37

component. The results are consistent with the report of Chen et al. (2007).

3.3. Interesterification between castor oil and methyl acetate

In this section, transacetylation of other natural alcohols, castor oil, was reported. Castor oil contains 12-hydroxy octadec-9-cenoic acid (ricinoleic acid). For unknown reason, interesterification of castor oil with ethyl acetate was not successful. Similarly, rice bran oil could not be interesterified. On the other hand, the methyl ester of ricinoleic acid could be transesterified. With ethyl acetate, transesterification and interesterification occurred simul-

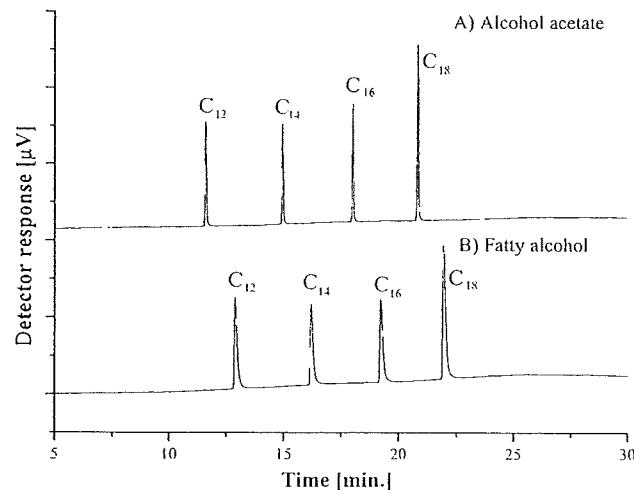


Fig. 1. Gas chromatogram of fatty alcohols (C_{12} – C_{18}) at 100–200 °C, 5 °C/min on Rtx 2330 capillary column: (A) acetates and (B) free alcohols.

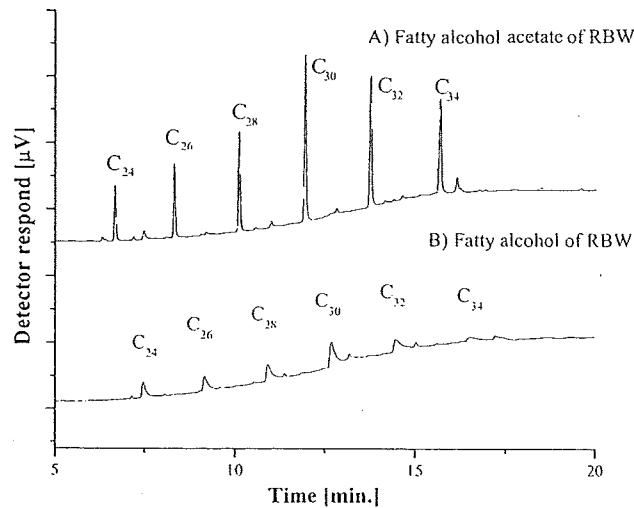


Fig. 2. Gas chromatogram of rice bran alcohols (C_{24} – C_{34}) at 210–260 °C, 4 °C/min on Rtx 2330 capillary column: (A) acetates and (B) free alcohols.

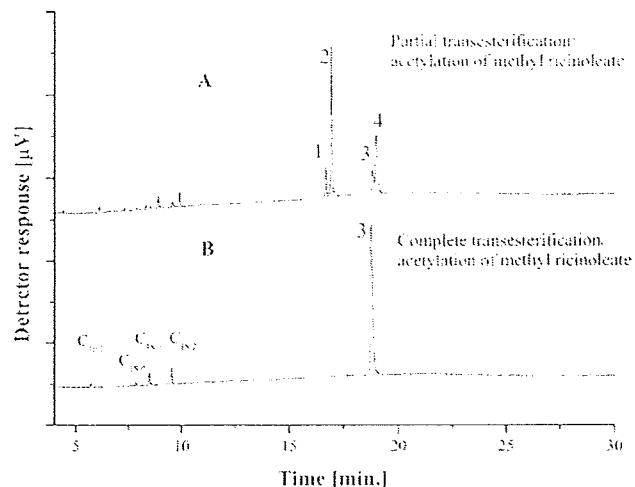


Fig. 3. Gas chromatogram of transesterification/acetylation of castor oil with ethyl acetate at 160–220 °C, 5 °C/min on Rtx 2330 capillary column: (A) incomplete and (B) complete. Peaks identification: (1) acetoxy methyl oleate; (2) hydroxy methyl oleate; (3) acetoxy ethyl oleate; (4) hydroxy ethyl oleate.

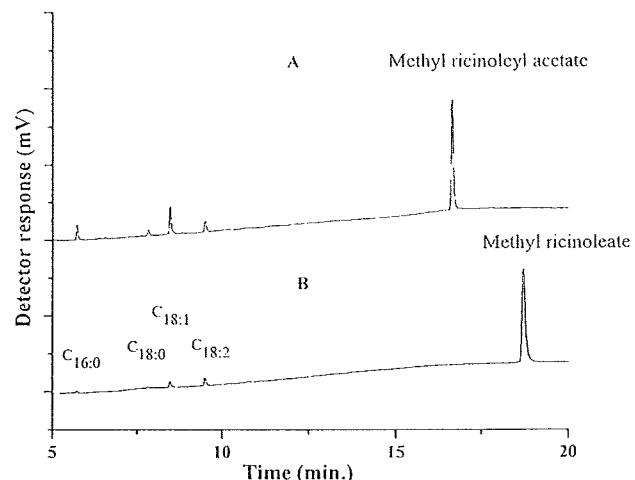


Fig. 4. Gas chromatogram of transesterification/acetylation of castor oil with methyl acetate at 160–220 °C, 5 °C/min on Rtx 2330 capillary column: (A) acetates and (B) free alcohols.

taneously. Both methyl and esters of ricinoleic acid and free 12-hydroxyl and 12-acetoxy were found in the reaction mixture in the earlier state (2 min, Fig. 3A). When the reaction was prolonged to 16 min, complete acetylation and interesterification were observed. The methyl ester was completely converted into ricinoleyl acetate (Fig. 3B). Similarly, the methyl ricinoleyl acetate was obtained when methyl acetate was used in place of ethyl acetate (Fig. 4).

4. Conclusion

Acetylation of long chain fatty alcohol can be performed by transesterification/transacetylation of the alcohol and ethyl or methyl acetate in the present of sodium hydroxide. Reaction is clean and rapid. Quantitative conversion was observed for policosanol and castor oil methyl ester.

Acknowledgement

This work was supported by Thailand Research Fund.

References

Bonaduce, I., Colombini, M.P., 2004. Characterisation of beeswax in works of art by gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry procedures. *J. Chromatogr. A* 1028, 297–306.

Chen, F., Yan, H., Cai, T.Y., 2003. Quantitative analysis of octacosanol and triacontanol in extracts of higher fatty alcohols by gc. *Food Sci.* 24, 119–121.

Chen, F., Wang, Z., Zhao, G., Liao, X., Cai, T., Guo, L., Hu, X., 2007. Purification process of octacosanol extracts from rice bran wax by molecular distillation. *J. Food Eng.* 79, 63–68.

Irmak, S., Dunford, N.T., Milligan, J., 2006. Policosanol contents of beeswax, sugar cane and wheat extracts. *Food Chem.* 95, 312–318.

Jeyashoke, N., Krisnangkura, K., Chen, S.-T., 1998. Microwave induced rapid transmethylation of fatty acids for analysis of food oil. *J. Chromatogr. A* 818, 133–137.

Kaewkool, P., Kittirattanapiboon, K., Aryusuk, K., Krisnangkura, K., 2009. Micro-reactor for transesterification of plant seed oils. *Eur. J. Lipid Sci. Technol.* 111, 474–480.

Kittirattanapiboon, K., Krisnangkura, K., 2008. Separation of acylglycerols, fAME and fFA in biodiesel by size exclusion chromatography. *Eur. J. Lipid Sci. Technol.* 110, 422–427.

Koval, L.I., Dzyuba, V.I., Ilnitska, O.L., Pekhnyo, V.I., 2008. Efficient transesterification of ethyl acetoacetate with higher alcohols without catalysts. *Tetrahedron Lett.* 49, 1645–1647.

Lertsathapornsuk, V., Pairintra, R., Aryusuk, K., Krisnangkura, K., 2008. Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kw diesel generator. *Fuel Process. Technol.* 89, 1330–1336.

Ma, F., Hanna, M.A., 1999. Biodiesel production: a review. *Bioresour. Technol.* 70, 1–15.

Oliaro-Bosso, S., Calcio Gaudino, E., Mantegna, S., Giraudo, E., Meda, C., Viola, F., Cravotto, G., 2009. Regulation of hmgcoa reductase activity by policosanol and octacosadienol, a new synthetic analogue of octacosanol. *Lipids* 44, 907–916.

Ries, S.K., Wert, V., Sweeley, C.C., Leavitt, R.A., 1977. Triacontanol: a new naturally occurring plant growth regulator. *Science* 195, 1339–1341.

Shirae, Y., Mino, T., Hasegawa, T., Sakamoto, M., Fujita, T., 2005. Transesterification of various alcohols with vinyl acetate under mild conditions catalyzed by diethylzinc using *n*-substituted diethanolamine as a ligand. *Tetrahedron Lett.* 46, 5877–5879.

Stapp, P.R., Rabjohn, N., 1959. Lithium aluminum alkoxide catalyzed transesterification of primary alcohols with ethyl acetate. *J. Org. Chem.* 24, 1798–1800.

Taylor, J.C., Rapport, L., Lockwood, G.B., 2003. Octacosanol in human health. *Nutrition* 19, 192–195.

Viola, F., Oliaro, S., Binello, A., Cravotto, G., 2008. Policosanol: updating and perspectives. *Mediterr. J. Nutr. Metab.* 1, 77–83.

Wang, M.F., Lian, H.Z., Mao, L., Zhou, J.P., Gong, H.J., Qian, B.Y., Fang, Y., Li, J., 2007. Comparison of various extraction methods for policosanol from rice bran wax and establishment of chromatographic fingerprint of policosanol. *J. Agric. Food Chem.* 55, 5552–5558.

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

1.2 ผลงานวิจัยที่กำลังอยู่ในช่วงดำเนินการ

ชื่อผู้แต่ง : Kanit Krisnangkura, Kornkanok Aryusuk, Supathra Lilitchan and Piyawan Krisnangkura

ชื่อเรื่อง : The free energy of viscous flow of biodiesels at different temperatures and pressures

ชื่อวารสาร : Fuel Processing Technology

ปีที่ตีพิมพ์ : -

Impact Factor: 2.321

Elsevier Editorial System(tm) for Fuel Processing Technology
Manuscript Draft

Manuscript Number:

Title: The free energies of viscous flow of biodiesels at different temperatures and pressures

Article Type: Research Paper

Keywords: biodiesel; free energy; pressure; temperature; viscosity.

Corresponding Author: Assoc Prof. Kanit - Krisnangkura, PhD

Corresponding Author's Institution: King Mongkut's U. Tech. Thonburi

First Author: Kanit - Krisnangkura, PhD

Order of Authors: Kanit - Krisnangkura, PhD; Kornkanok - Aryusuk, PhD; Supathra Lilitchan, PhD; Piyawan Krisnangkura, PhD

Suggested Reviewers: C. J. Schaschke, PhD

Department of Chemical and Process Engineering, University of Strathclyde
carl.schaschke@strath.ac.uk

He is an expert in this field.

Susan M. Stagg-Williams PhD

Department of Chemical and Petroleum Engineering, University of Kansas.
smwilliams@ku.edu

She is an expert in this field.

M. J. Assael PhD

Faculty of Chemical Engineering, Aristotle University
assail@transp.eng.auth.gr

He is an expert in this field.

The free energies of viscous flow of biodiesels at different temperatures and pressures

Kanit Krisnangkura^{1*}, Kornkanok Aryusuk¹, Supathra Lilitchan² and Piyawan Krisnangkura³

¹Biochemical Technology Division, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Thientalay 25 Rd. Thakam, Bangkhuntien, Bangkok 10150, Thailand.

²Department of Nutrition, Faculty of Public Health, Mahidol University, Ratchathewi, Bangkok 10400, Thailand

³Office of Atoms for Peace, 16 Viphavadi-Rangsit Rd., Lad Yoa, Chatuchak, Bangkok 10900, Thailand

Corresponding author. E-mail: kanit.kri@kmutt.ac.th.

Abstract

Viscosity (η) is an important property of a liquid transporting through a pipeline or a small tubing. In this study, the free energy of activation of viscous flow (ΔG_{vis}) of a non-associated liquid is hypothesized to be the sum of $\Delta G_{vis}(0)$ and $p\delta G_{vis}$, the free energy of viscous flow in vacuum and the increment in the free energy per unit pressure (MPa), respectively. The Eyring's equation, , is transformed to (where, a , b , c , d , p and T are thermodynamically related constants, pressure and absolute temperature, respectively). The proposed hypothesis is verified by the good agreement between the calculated viscosities at different temperatures and pressures and the values reported in literatures.

Keywords: biodiesel, free energy, pressure, temperature, viscosity.

1. Introduction

1.1 General

Biodiesel has been widely used as an alternative fuel for diesel engine in many countries, including Thailand. It can be domestically produced from many fatty materials and used frying oils. Thus, standard or specification is essential in biodiesel trading. Viscosity, which plays an important role in transportation of the fuel within a pipeline, has been included in the specifications of most countries. Viscosity also plays an important role in controlling the atomization process, which is a step prior to the combustion. Coconut biodiesel which has lower viscosity than viscosities of palm, soybean, cotton seed, peanut and canola biodiesels can also be better atomized [1].

The specified temperature for biodiesel standard is 40 °C at atmospheric pressure. Thus, viscosity of biodiesel is usually measured at this temperature and at the atmospheric pressure. The measurement is very simple but a mathematical equation would be more convenient in obtaining the value without going through the experimental measurement. High-pressure injection enables rapid atomization, effective combustion and reduction in emissions [2]. Modern common rail automotive diesel engine is a good example for using this advanced technology. Under this extremely high pressure, viscosity of the fuel varies significantly and at a certain point it may pressure-freeze[3]. In addition, at low ambient temperature, petroleum diesel and biodiesel are known to solidify, which is a major issue particularly in the colder climate [4]. Although there are some reports on the measurement and prediction of biodiesel properties at ambient or high-temperature conditions, comparatively little work has been undertaken at high pressure and reduced temperature [3,5-7].

Measurement of viscosity of a liquid under pressure is more complicated [5]. Thus, a mathematical equation for the prediction would be very valuable. A simple equation (Eq.1) that correlates viscosity as a function of pressure was proposed recently by Rajagopal et al. [8]

$$\ln \eta = A(T) + B(T)p + C(T)p^2 \quad (1)$$

$$\text{where } A(T) = A_0 + A_1/T \quad (1a)$$

$$B(T) = B_0 + B_1/T \quad (1b)$$

$$C(T) = C_0 + C_1/T \quad (1c)$$

$A_0, A, B_0, B_1, C_0, C_1$ are constants for each liquid.

Previously, Comuñas et al. [9] showed that viscosities of polyethers and dialkyl carbonates fitted well to Eq.2 and Eq.3.

$$\eta(p, T) = \frac{a + bp + cT}{1 + dp + eT} \quad (2)$$

where a, b, c, d and e are constants.

$$\eta(p, T) = A_\eta \left(\frac{p + E(T)}{p_0 + E(T)} \right)^D e^{\left(\frac{B_\eta}{T - C_\eta} \right)} \quad (3)$$

where A_η , B_η and C_η are constants, $p_0 = 0.1$ MPa, and D and E are functions of temperature given by

$$D = \sum_{i=0}^2 d_i \left(\frac{K}{T} \right)^i \quad (3a)$$

$$\frac{E}{MPa} = \sum_{i=0}^2 e_i \left(\frac{K}{T} \right)^i \quad (3b)$$

Assael et al. [10] reported that the experimental viscosities of toluene at different temperatures and pressures were fitted well to Eq.4.

$$\eta(\rho_r, T_r) = h_0 e^{\left(\frac{h_1 + h_2}{T_r - T_r^4} \right) \frac{\rho_r}{1 - \rho_r(h_3 - h_4)T_r^2}} \quad (4)$$

where $\rho_r = \rho/\rho_c$, $T_r = T/T_c$, ρ_c and T_c the critical density and temperature. T_r and ρ_r are reduced density and reduced temperature, respectively. The values of h_i are determined by fitting the experimental values.

This correlation method has been found both useful and accurate for a number of pure fluids and mixtures over a wide range of temperature and pressure.

Recently, Duncan et al. [6] combined the Tait and Litovitz equations (Eq.5) for the estimation of viscosities of biodiesel at different temperatures and pressures.

$$\eta_p = A e^{(B' T^3) ((D + P) / (D + 0.1))^E} \quad (5)$$

$$B' = B/R$$

where A, B, D and E are constants.

However, most of the constants have no physical meaning. Further improvement of the equation is difficult.

In our previous works, the equation of Andrade (Eq.6) [11] and Martin (Eq.7)[12] were combined to Eq.8 to predict kinematic viscosities of fatty acid methyl esters of different chain length at various temperatures [13]. Thus, the free energy activation of viscous flow (ΔG_{vis}^0) was first demonstrated to be linearly related to the number of carbon atoms in fatty acid. In addition, all the constants are physically defined.

$$\eta = A' e^{-\Delta G_{vis}^0 / RT} \quad (6)$$

$$\Delta G_{vis}^0 = \Delta G_{vis(f)} + z\delta G \quad (7)$$

$$\ln \eta = A + Bz + \frac{C}{T} + \frac{Dz}{T} \quad (8)$$

where $A = \ln A' + \frac{\Delta S_{vis(f)}}{R}$; $B = \frac{\delta S}{R}$; $C = -\frac{\Delta H_{vis(f)}}{R}$; $D = -\frac{\delta H}{R}$

$A' = N_A h / \bar{V}$; ΔG_{vis}^0 is the standard free energy of activation for viscous flow; $\Delta G_{vis(f)}$, $\Delta H_{vis(f)}$ and $\Delta S_{vis(f)}$ are the free energy, enthalpy and entropy of activation of viscous flow of the hypothetical molecule of zero carbon atom; δG is the increment in free energy per carbon atom and z is the number of carbon atom of the homologous series. N_A is the Avogadro's number, h is the Max planck's constant and \bar{V} is the molar volume.

In gas chromatography, Martire et al [14] demonstrated that the standard free energy of transfer of a solute from solution to gas is the sum of different free energy forms, which derived from different types of interactions as shown in Eq.9.

$$\Delta G^0 = \Delta G_{dispse} + \Delta G_{polar} + \Delta G_{ionic} + \Delta G_{hydrogen bonding} \quad (9)$$

Although, the standard free energy in Eq.9 is derived from the interactions in the molecules, it was found that ΔG_{vis}^0 of a liquid mixture can also be summed from the individual component. The total ΔG_{vis}^0 of a mixture of two liquids is shown in Eq.10.

$$\Delta G_{vis(blend)}^0 = \Delta G_{vis(1)}^0 + \Delta G_{vis(2)}^0 \quad (10)$$

Appropriate substitution and expansion of Eq. 10 gives Eq.11 and Eq.12, which are used to predict viscosities of liquid mixture at a given temperature or at any other temperatures.

$$\ln \eta_{blend} = x_1 \ln \eta_1 + (1 - x_1) \ln \eta_2 \quad (11)$$

$$\text{and } \ln \ln \eta_{blend} = a + bx_1 + \frac{c}{T} + \frac{dx_1}{T} \quad (12)$$

$$\text{where } a = \ln A + \frac{\Delta S_{vis(2)}^0}{R}; b = \frac{\Delta S_{vis(1)}^0 - \Delta S_{vis(2)}^0}{R}; c = -\frac{\Delta H_{vis(2)}^0}{R}; d = -\frac{\Delta H_{vis(1)}^0 - \Delta H_{vis(2)}^0}{R}.$$

ΔH_{vis}^0 and ΔS_{vis}^0 are molar enthalpy and entropy of activation of viscous flow and the subscript 1 and 2 stand for biodiesel and petroleum diesel, respectively.

Also, the additivity of standard free energy was successfully applied to predict vapour pressure of fatty acid esters[15], the gas chromatographic band broadening at different carrier gas flow [16], which take the form,

$$\Delta G_{dis}^0 = \Delta G_{dis(f)} + F\delta G_{dis} \quad (13)$$

where ΔG_{vis}^0 is the free energy of dispersion, F is volumetric flow, $\Delta G_{dis(f)}$ is the dispersion free energy at zero flow and δG_{dis} is the increment in dispersion per unit flow.

Thus, in this work, ΔG_{vis}^0 of a liquid at different pressure is hypothesized to follow the rule of additivity.

1.2. Hypothesis

As it was described in the above section, many types of standard free energy follow the rule of additivity.

The ΔG_{vis}^0 is then postulated to follow this rule as shown in Eq.14.

$$G_{vis}^0 = \Delta G_{(p=0)} + p\delta G \quad (14)$$

where $\Delta G_{(p=0)}$ is the free energy of viscous flow at $p = 0$ MPa, δG is the increment in free energy per unit pressure and p is pressure.

Eq.15 is obtained by substitution the Eyring's equation and basic thermodynamic parameters into Eq.14.

$$\eta = \frac{k_b T}{h} e^{\frac{-\Delta G^0}{RT}}$$

$$\ln\left(\frac{\eta}{T}\right) = -\frac{\Delta H_{(p)}}{RT} + \frac{\Delta S_{(p)}}{R} - \frac{p\delta H}{RT} + \frac{p\delta S}{R} + \ln A \quad (15)$$

or

$$\ln\left(\frac{\eta}{T}\right) = a + bp + \frac{c}{T} + \frac{dp}{T} \quad (16)$$

where k_b and h are Boltzmann and Plank constants, $a = \ln \frac{k_b}{h} + \frac{\Delta S_{(p)}}{R}$; $b = \frac{\delta S}{R}$; $c = -\frac{\Delta H_{(p)}}{R}$;

$$d = -\frac{\delta H}{R}.$$

2. Experimental

Viscosity data of petroleum diesel and biodiesels were obtained from Duncan et al. [6]. The constants a, b, c and d of Eq.16 were determined as described by Krisnangkura et al [13] and briefly described as follow,

At constant T, Eq.16 is reduced to Eq.17.

$$\ln\left(\frac{\eta}{T}\right)_T = a' + b' p \quad (17)$$

$$\text{where } a' = a + \frac{c}{T} \quad (17a)$$

$$\text{and } b' = b + \frac{d}{T} \quad (17b)$$

Thus, plotting of $\ln(\eta/T)$ against p would give a straight line with the intercept, a' and slope, b' . Plotting of a' against $1/T$ and b' against $1/T$ would give the intercepts, a and b , and the slopes c and d , respectively.

3. Results

3.1. Numeric values of Eq.16

The numeric values (a , b , c and d) of Eq.16 for petroleum diesel and biodiesels from different vegetable oils are summarized in Table I together with the standard deviations (sd) of 95% confidence.

3.2. Verification of the proposed hypothesis

The proposed hypothesis is simply verified by comparison of the calculated viscosities with the experimental (published) values. The calculated dynamic viscosities for petroleum diesel and biodiesels agree well with those of the experimental values [6]. Only the percent differences in viscosities between

the calculated and experimental values (reported in [6]), are summarized in Table 2. The highest percent differences between the experimental and the calculated values are 10.06, 7.19, 5.98, 9.55, 8.54 and 9.80 for petroleum diesel, soybean, vistive, canola, used canola and coconut biodiesels respectively. The average absolute deviations (AAD), calculated according to Eq.18, are 5.13, 3.19, 3.43, 4.05, 3.87 and 5.31% for petroleum diesel, soybean, vistive, canola, used canola and coconut biodiesels, respectively.

Thus, it might be concluded that ΔG_{vis}^0 can be divided into $\Delta G_{(p=0)}$ and δG .

$$AAD = \sum_{i=1}^k \left[\frac{\eta_{exp} - \eta_{cal}}{\eta_{exp}} \times 100 \right] / N \quad (18)$$

4. Discussion

According to the Eyring's equation, the natural logarithm of viscosity is proportional to the ΔG_{vis}^0 . In addition, Robertson and Schaschke [3] showed that the natural logarithm of viscosity of biodiesel varied linearly with pressures. Thus, the proposed equation (Eq.14) is in logical. The agreements between the experimental and calculated viscosities of different fuels are good evidences for using Eq.16 to estimate the viscosities of these fuels at different temperatures and pressures. Eq.16 is just the expansion of Eq.14, which is analogous to Martin's equation (Eq.7). Thus, the total free energy of viscous flow can be divided into the free energy of viscous flow in vacuum ($\Delta G_{(p=0)}$) and the increment in free energy of viscous flow with p ($p\delta G$). It is worth pointing out that Eq.16 is derived from the Erying's equation, any drawback in Eq.5 would inherit to Eq.16. One of the major drawbacks is the applicable temperature range, which should not be too wide. Modifications of the Eq.5 to cover wider range of temperature have been reported [17,18]. It is also speculated that Eq.14 would have the limitation similar to Eq.7 or the extrapolation of p would not be too far away.

On the other hand, Eq.16 has certain advantages over the mathematical equations described in the introduction section. All the constants have the exact physical meaning. Thus, further systematic development is feasible. In addition, Eq.16 may provide a better inside to the effect of p over the change in viscosity. Differentiating Eq.16 with respect to p at constant T gives Eq.19.

$$\frac{\delta \ln \eta}{\delta p} = b + \frac{d}{T} \quad (19)$$

The change in $\ln \eta$ ($\Delta \ln \eta$) per unit change in p (Δp) is greater at lower temperature or the effect of p on the viscosity is greater at lower temperature than at higher temperature. Table 3 shows that the ratios of η_2/η_1 (the subscripts 1 and 2 stand for the initial and final p , where the difference is 1 MPa) for petroleum diesel and biodiesels of different sources. Both experimental and the calculated changes (Eq.19) are shown in Table 3. Petroleum diesel is more sensitive to p than biodiesels. This may reflect on the structure of petroleum diesel is less compact than biodiesel. These ratios are lower as T is higher. Among the biodiesels listed in Table 3, coconut biodiesel is the least sensitive to the change in p . Coconut biodiesel contains the average shorter fatty acid chain length and the molecule would be more compact than other biodiesels. Thus, it would be the explanation for its lower susceptibility to p than other biodiesels.

At constant p , Eq.16 is reduced to Eq.20, the well known van't Hoff's equation.

$$\ln \eta = a'' + \frac{c''}{T} \quad (20)$$

$$\text{where } c'' = c + dp \quad (20a)$$

$$\text{and } a'' = a + bp \quad (20b)$$

The plot between $\ln \eta$ and $1/T$ gives the slope $c'' = -\frac{\Delta H_{vis}^0}{R}$ and the standard enthalpy (ΔH_{vis}^0) of activation of viscous flow has generally been determined (Eq.20). ΔH_{vis}^0 can also be divided into $\Delta H_{(p=0)}$ and δH , therefore, the sum of $c + dp$ (Eq.20a) would be equivalent to c'' and it can be used for determination of the standard enthalpy of viscous flow at different p . The values of ΔH_{vis}^0 calculated by using Eq. 20 and Eq.20a are summarized in Table 4 together with the percent differences. The AAD for petroleum diesel, soybean, vistive, canola, used canola and coconut biodiesel are: 0.61, 0.27, 0.35, 0.49, 0.45 and 0.44, respectively.

Acknowledgement: This work was supported by Thailand Research Fund and by the Higher Education Research Promotion, National Research University Project of Thailand , Office of the Higher Education Commission.

References

- [1] C.E. Ejim, B.A. Fleck, A. Amirfazli, *Fuel* 86 (2007) 1534.
- [2] S.W. Lee, D. Tanaka, J. Kusaka, Y. Daisho, *JSAE Review* 23 (2002) 407.
- [3] L.X. Robertson, C.J. Schaschke, *Energy & Fuels* 24 (2010) 1293.
- [4] R. Dunn, M. Shockley, M. Bagby, *J. Am. Oil Chem. Soc.* 73 (1996) 1719.
- [5] K.R. Harris, *J. Chem. Eng. Data* 54 (2009) 2729.
- [6] A.M. Duncan, A. Ahosseini, R. McHenry, C.D. Depcik, S.M. Stagg-Williams, A.M. Scurto, *Energy & Fuels* 24 (2010) 5708.
- [7] J.M. Paton, C.J. Schaschke, *Chemical Engineering Research and Design* 87 (2009) 1520.
- [8] K. Rajagopal, L.L.P.R. Andrade, M.L.L. Paredes, *Journal of Chemical and Engineering Data* 54 (2009) 2967.
- [9] M.J.P. Comuñas, A. Baylaucq, C. Boned, J. Fernández, *Int. J. Thermophys.* 22 (2001) 749.
- [10] M.J. Assael, N.K. Dalaouti, S. Polimatiidou, *Int. J. Thermophys.* 20 (1999) 1367.
- [11] H. Eyring, *J. Chem. Phys.* 4 (1936) 283.
- [12] A.J.P. Martin, R.L.M. Synge, *Biochem. J.* 35 (1941) 1358.
- [13] K. Krisnangkura, T. Yimsuwan, R. Pairintra, *Fuel* 85 (2006) 107.
- [14] D.E. Martire, P. Riedl, *J. Phys. Chem.* 72 (1968) 3478.
- [15] A. Srisaipet, K. Aryusuk, S. Lilitchan, K. Krisnangkura, *J. Chem. Thermodyn.* 39 (2007) 1077.
- [16] K. Krisnangkura, V. Pongtonkulpanich, *J. Sep. Sci.* 29 (2006) 81.
- [17] H. Noureddini, B. Teoh, L. Davis Clements, *J. Am. Oil Chem. Soc.* 69 (1992) 1189.
- [18] M. Tat, J. Van Gerpen, *J. Am. Oil Chem. Soc.* 76 (1999) 1511.

Table 1 Numeric values of a , b , c and d of Eq.16 for petrodiesel and different biodiesels.

Number in parentheses are the standard deviations (95% confidence).

	a	b	c	d
Diesel	-11.877 (0.036)	-0.0084 (0.0005)	2170.9 (9.205)	6.351 (0.123)
Soybean	-11.731 (0.030)	0.0034 (0.0004)	2284.9 (10.06)	2.145 (0.134)
Vistive	-11.860 (0.029)	0.0038 (0.0004)	2332.3 (9.493)	1.995 (0.127)
Canola	-11.982 (0.037)	0.0025 (0.0005)	2396.9 (13.98)	2.396 (0.187)
Used canola	-11.960 (0.033)	0.0026 (0.0004)	2390.1 (12.90)	2.339 (0.172)
Coconut	-11.948 (0.028)	0.0001 (0.0004)	2224.4 (8.746)	2.888 (0.117)

Table 2 Percent differences between the experimental viscosities [5] and the calculated values by Eq. 16 with the four constants listed in Table 1.

Petrodiesel		$T(K)$				Canola		$T(K)$			
	p (MPa)	283.15	298.15	313.15	373.15		p (MPa)	283.15	298.15	313.15	373.15
	0.1	4.63	-6.28	-8.85	-1.53		0.1	2.18	-3.27	-5.86	-0.09
	0.8	5.40	-5.97	-8.59	-0.97		0.8	1.96	-3.19	-5.80	0.26
	7.0	6.11	-5.13	-7.43	0.71		7.0	3.38	-2.34	-4.92	1.46
	13.9	6.62	-4.45	-6.31	2.39		13.9	4.40	-1.42	-4.27	2.32
	20.8	6.97	-3.68	-5.71	3.79		20.8	4.99	-1.03	-3.87	2.94
	27.7	7.54	-3.19	-4.92	4.60		27.7	5.62	-0.74	-3.78	3.65
	34.6	7.74	-2.87	-4.52	5.38		34.6	5.73	-0.67	-3.83	3.83
	41.5	8.02	-2.61	-4.58	5.89		41.5	6.06	-0.90	-4.09	3.78
	48.4	8.15	-2.54	-4.34	6.57		48.4	6.10	-1.34	-4.84	3.77
	55.3	8.35	-2.67	-4.18	6.60		55.3	6.03	-1.64	-5.76	3.88
	62.2	8.47	-3.05	-4.27	6.37		62.2	5.95	-2.35	-6.56	3.60
	69.1	7.91	-3.25	-4.38	6.08		69.1	5.78	-3.40	-7.53	3.15
	75.9	7.62	-3.09	-4.51	5.85		75.9	5.14	-4.05	-8.39	2.48
	82.8	7.51	-3.51	-4.78	5.26		82.8	6.49	-5.16	-9.55	1.41
	89.7	7.04	-3.41	-5.14	4.89						4.05
	96.6	6.65	-3.41	-6.06	4.14						
	103.5	5.92	-3.41	-6.80	3.55		0.1	2.93	-3.76	-5.40	0.12
	110.4	5.36	-3.46	-7.55	2.30		0.8	3.13	-3.66	-5.07	0.53
	117.3	5.53	-3.55	-8.64	1.20		7.0	4.36	-2.97	-4.38	1.43
	124.2	5.95	-3.59	-9.61	0.23		13.9	4.77	-2.19	-3.83	2.38
	131.1	5.90	-3.98	-10.06	-0.81		20.8	5.03	-1.68	-3.17	3.40
	AAD				5.13		27.7	5.55	-1.53	-3.27	3.84
Soybean							34.6	5.86	-1.58	-3.81	4.21
	0.1	1.65	-1.83	-6.40	0.63		41.5	5.97	-1.47	-3.99	3.80
	0.8	2.42	-1.76	-5.96	0.57		48.4	6.25	-1.61	-4.54	3.71
	7.0	3.21	-0.97	-5.24	1.51		55.3	6.17	-2.16	-4.92	3.84
	13.9	3.84	-0.66	-4.40	2.39		62.2	5.92	-2.52	-5.52	3.34
	20.8	4.33	-0.41	-4.35	3.02		69.1	5.66	-3.16	-6.44	2.79
	27.7	4.69	-0.47	-4.34	3.11		75.9	5.37	-3.62	-7.40	2.24
	34.6	4.73	-0.53	-4.87	3.12		82.8	5.74	-4.71	-8.54	1.44
	41.5	4.73	-1.22	-5.17	3.14						3.87
	48.4	4.30	-1.62	-5.60	2.75						
	55.3	4.10	-2.17	-5.87	2.29		0.1	6.38	1.49	-8.79	0.04
	62.2	3.55	-2.96	-6.30	1.43		0.8	6.47	1.47	-6.75	5.03
	69.1	3.39	-3.90	-7.19	0.24		7.0	7.26	2.51	-4.99	6.70
	AAD				3.19		13.9	8.03	3.83	-3.81	7.78
Vistive							20.8	8.84	4.34	-3.01	8.14
	0.1	2.94	-3.60	-5.99	0.56		27.7	9.35	4.69	-2.52	8.49
	0.8	3.08	-3.13	-5.40	0.71		34.6	9.55	4.96	-1.85	8.76
	7.0	3.75	-2.21	-4.29	1.87		41.5	9.76	4.70	-1.73	8.72
	13.9	4.55	-1.65	-3.57	2.63		48.4	9.80	4.46	-1.92	8.30
	20.8	5.08	-1.51	-3.22	3.21		55.3	9.64	4.30	-1.73	8.07
	27.7	5.29	-1.34	-3.07	3.50		62.2	9.36	3.66	-1.87	7.66
	34.6	5.41	-1.48	-3.36	3.53		69.1	8.88	3.04	-2.14	7.01
	41.5	5.54	-1.93	-3.70	3.37		75.9	8.38	2.65	-2.30	6.44
	48.4	5.29	-2.34	-4.25	3.03		82.8	7.66	1.94	-2.66	5.63
	55.3	4.95	-2.96	-4.97	2.36		89.7	7.19	0.97	-3.26	4.51
	62.2	4.34	-3.67	-5.50	1.66		96.6	6.33	-0.14	-3.63	3.30
	69.1	3.70	-4.49	-5.98	0.69						5.31
	AAD				3.43						

Table 3. Relative changes in the dynamic viscosities of petroleum diesel and biodiesels per unit pressure (MPa).

Fuels	η_2/η_1 per MPa					
	283.15 K		298.15 K		313.15 K	
	Experiment	calculation	Experiment	calculation	Experiment	calculation
Diesel	1.014	1.014	1.013	1.013	1.012	1.009
Soybean	1.011	1.011	1.010	1.011	1.010	1.009
Vistive	1.011	1.011	1.011	1.011	1.010	1.009
Canola	1.012	1.011	1.010	1.011	1.010	1.009
Used canola	1.011	1.011	1.010	1.011	1.010	1.009
Coconut	1.010	1.010	1.010	1.010	1.009	1.008

Table 4 Comparison of $\Delta H_{i,s}^0$ (kJ/mol) determined by Eq.20 and Eq.20a.

ρ	Petroleum diesel			Soybean			Visitive			Canola			Used canola			Coconut		
	Eq. 20	Eq. 20a	% Δ [†]	Eq. 20	Eq. 20a	% Δ	Eq. 20	Eq. 20a	% Δ	Eq. 20	Eq. 20a	% Δ	Eq. 20	Eq. 20a	% Δ	Eq. 20	Eq. 20a	% Δ
0.1	18.98	18.75	1.20	18.45	18.51	-0.29	19.11	18.90	1.08	19.42	19.24	0.93	19.46	19.30	0.81	19.81	19.30	2.58
0.8	19.04	18.79	1.33	18.56	18.53	0.19	19.02	18.92	0.52	19.36	19.27	0.48	19.45	19.32	0.63	19.39	19.31	0.43
7.0	19.29	19.12	0.86	18.70	18.69	0.07	19.03	19.07	-0.18	19.64	19.52	0.58	19.72	19.54	0.88	19.33	19.41	-0.40
13.9	19.53	19.50	0.16	18.79	18.87	-0.42	19.18	19.23	-0.25	19.88	19.81	0.36	19.82	19.79	0.16	19.41	19.52	-0.59
20.8	19.85	19.87	-0.14	19.03	19.05	-0.12	19.35	19.39	-0.21	20.07	20.09	-0.10	19.87	20.04	-0.87	19.59	19.64	-0.22
27.7	20.18	20.25	-0.34	19.24	19.23	0.05	19.48	19.55	-0.37	20.35	20.38	-0.13	20.16	20.28	-0.63	19.77	19.75	0.09
34.6	20.50	20.62	-0.58	19.50	19.42	0.44	19.70	19.72	-0.11	20.53	20.67	-0.66	20.50	20.53	-0.16	19.81	19.86	-0.24
41.5	20.96	21.00	-0.20	19.70	19.60	0.52	19.92	19.88	0.22	20.82	20.95	-0.64	20.70	20.78	-0.38	20.00	19.97	0.12
48.4	21.30	21.37	-0.33	19.81	19.78	0.16	20.10	20.04	0.30	21.14	21.24	-0.47	21.03	21.02	0.05	20.21	20.09	0.61
55.3	21.68	21.75	-0.29	19.95	19.96	-0.06	20.30	20.21	0.47	21.47	21.52	-0.24	21.24	21.27	-0.16	20.28	20.20	0.37
62.2	22.10	22.12	-0.08	20.03	20.14	-0.55	20.38	20.37	0.05	21.77	21.81	-0.16	21.44	21.52	-0.34	20.39	20.31	0.38
69.1	22.34	22.49	-0.68	20.32	20.33	-0.01	20.44	20.53	-0.44	22.09	22.09	-0.02	21.72	21.76	-0.19	20.48	20.43	0.26
75.9	22.65	22.86	-0.94							22.25	22.37	-0.55	22.00	22.01	-0.05	20.53	20.54	-0.01
82.8	23.05	23.24	-0.81							23.01	22.66	1.52	22.49	22.25	1.04	20.58	20.65	-0.32
89.7	23.37	23.61	-1.04													20.76	20.76	-0.02
96.6	23.84	23.99	0.34															
103.5	24.18	24.36	0.29															
110.4	24.56	24.74	0.10															
117.3	18.98	18.75	0.61															
124.2	19.04	18.79	1.13															
131.1	19.29	19.12	1.47															
AAD		0.61																
																0.49	0.45	0.44

[†] $\% \Delta$ is the percent different between the enthalpy calculated by Eq.20 and Eq.20a.