

บทคัดย่อ

ผลลัพธ์การแอนิโอดอนโดยสารประกอบ 1,3-บิส(4-ไนโตรฟีนิล) ยูเรีย หรือ รีเซ็ปเตอร์ 1 กับแอนิโอดอนเป็นตามลำดับดังนี้ $\text{CH}_3\text{COO}^- > \text{HCO}_3^- > \text{C}_6\text{H}_5\text{COO}^- > \text{NO}_2^- > \text{H}_2\text{PO}_4^- > \text{NO}_3^- > \text{HSO}_4^-$ และ $\text{F}^- > \text{Cl}^- > \text{Br}^-$ ผลลัพธ์การแอนิโอดอนของสารประกอบเชิงช้อนระหว่างสารประกอบเอนไซม์ด้วย แวนจานวน 6 รีเซ็ปเตอร์คือ 2, 3, 4, 5, 6 และ 7 กับ ไอโอดอน F^- , Cl^- , Br^- , CH_3COO^- , HSO_4^- และ H_2PO_4^- ความสามารถการยึดเกาะแอนิโอดอนโดยรีเซ็ปเตอร์ทั้งหมดเป็นลำดับดังนี้ $\text{F}^- > \text{CH}_3\text{COO}^- > \text{Br}^- > \text{H}_2\text{PO}_4^- > \text{Cl}^- > \text{HSO}_4^-$ สำหรับรีเซ็ปเตอร์ 2, $\text{F}^- > \text{Br}^- > \text{CH}_3\text{COO}^- > \text{H}_2\text{PO}_4^- > \text{Cl}^- > \text{HSO}_4^-$ สำหรับรีเซ็ปเตอร์ 3 และ 4, $\text{F}^- > \text{H}_2\text{PO}_4^- > \text{CH}_3\text{COO}^- \approx \text{Br}^- > \text{Cl}^- > \text{HSO}_4^-$ สำหรับรีเซ็ปเตอร์ 5, $\text{F}^- > \text{H}_2\text{PO}_4^- \approx \text{CH}_3\text{COO}^- \approx \text{Br}^- > \text{Cl}^- > \text{HSO}_4^-$ สำหรับรีเซ็ปเตอร์ 6 และ $\text{F}^- > \text{H}_2\text{PO}_4^- > \text{Br}^- > \text{CH}_3\text{COO}^- \approx \text{Cl}^- \approx \text{HSO}_4^-$ สำหรับรีเซ็ปเตอร์ 7 ผลลัพธ์การแอนิโอดอนโดยสารประกอบเชิงช้อน Li^+ , Na^+ และ K^+ คลิก[4]เอริน (L หรือ 8) กับไฮไดร์ไอโอดอน F^- , Cl^- , Br^- , ไอโอดอนที่มีออกซิเจนเป็นองค์ประกอบ HCO_3^- , HSO_4^- และ CH_3COO^- และค่าอุณหพลศาสตร์ของสารประกอบเชิงช้อน LiL^+ , NaL^+ และ KL^+ กับแอนิโอดอนเหล่านี้ได้รับการคำนวณ ผลลัพธ์การแอนิโอดอนโดย LiL^+ , NaL^+ และ KL^+ เป็นลำดับดังนี้ $\text{F}^- >> \text{CH}_3\text{COO}^- > \text{HCO}_3^- > \text{Br}^- > \text{HSO}_4^- > \text{Cl}^-$, $\text{F}^- >> \text{CH}_3\text{COO}^- > \text{HCO}_3^- > \text{Br}^- > \text{Cl}^- > \text{HSO}_4^-$ และ $\text{F}^- >> \text{CH}_3\text{COO}^- > \text{HCO}_3^- > \text{Br}^- > \text{Cl}^- > \text{HSO}_4^-$ ตามลำดับ รีเซ็ปเตอร์ LiL^+ , NaL^+ และ KL^+ พบว่ามี ความสามารถในการเลือกจับฟลูออโอลิค โครงสร้างของสารประกอบ 8,8'-บิส(3-ฟีนิล)ไอโอยูโรโค เมทิล)-2,2'-ไบแวนทัลลีน (9) 8,8'-บิส(3-บิวทิล)ไอโอยูโรโคเมทิล)-2,2'-ไบแวนทัลลีน (10) และ สารประกอบเชิงช้อนกับเกสต์ที่เป็นคาร์บอนออกซิเลต (อะซิเตต, ออกซานเดต, มัลโโลเนต, ซัคซิเนต, กลูต้า รेट, อะดิเพต, พิมีเดต, ชับเบอเดต และ อะซีเดต) และไอโอดอนสารอินทรีย์ที่มีออกซิเจนเป็น องค์ประกอบ (NO_3^- , SO_4^{2-} , HCO_3^- , HPO_4^{2-} , และ H_2PO_4^-) และไฮไดร์ไอโอดอนได้รับการคำนวณ สารประกอบไดพิโคลิลยูเรียกับพวว่ามีสีโครงรูป และพบว่าโครงสร้างพันธะไอโครเจนแบบภายใน ไม่เด่นดูเป็นโครงรูปที่เสถียรที่สุด ค่าพลังงาน ค่าอุณหพลศาสตร์ ค่าคงที่อัตราเร็ว ค่าคงที่การเกิดสมดุลเคมี ของการเปลี่ยนแปลงโครงรูปได้รับการคำนวณ สารประกอบเชิงช้อนกับกรดฟอร์มิก กรดน้ำส้ม กรดเบนซ์โซิก กรดออกชาลิก และแอนิโอดอนของกรดเหล่านี้ได้รับการสืบสาน ค่าพลังงาน ค่าอุณหพล ศาสตร์ ค่าคงที่อัตราเร็ว ค่าคงที่การเกิดสมดุลเคมี ของการรวมตัวกันได้รับการคำนวณ

คำสำคัญ: สารประกอบเอนไซม์ ผลลัพธ์การยึดเกาะ การจัดจำแนก ไอโอดอน แคติไอโอดอน

Abstract

Binding energies of 1,3-bis(4-nitrophenyl)urea receptor **1** are in decreasing orders: $\text{CH}_3\text{COO}^- > \text{HCO}_3^- > \text{C}_6\text{H}_5\text{COO}^- > \text{NO}_2^- > \text{H}_2\text{PO}_4^- > \text{NO}_3^- > \text{HSO}_4^-$ for oxygen-containing anions and $\text{F}^- > \text{Cl}^- > \text{Br}^-$ for halide ions. Binding energies of complexes between six cyclic amide receptors **2**, **3**, **4**, **5**, **6** and **7** and anions F^- , Cl^- , Br^- , CH_3COO^- , HSO_4^- and H_2PO_4^- and thermodynamic properties of these complexations were obtained. The binding abilities of these six receptors are in decreasing orders: $\text{F}^- > \text{CH}_3\text{COO}^- > \text{Br}^- > \text{H}_2\text{PO}_4^- > \text{Cl}^- > \text{HSO}_4^-$ for receptor **2**, $\text{F}^- > \text{Br}^- > \text{CH}_3\text{COO}^- > \text{H}_2\text{PO}_4^- > \text{Cl}^- > \text{HSO}_4^-$ for receptors **3** and **4**, $\text{F}^- > \text{H}_2\text{PO}_4^- > \text{CH}_3\text{COO}^- \approx \text{Br}^- > \text{Cl}^- > \text{HSO}_4^-$ for receptor **5**, $\text{F}^- > \text{H}_2\text{PO}_4^- \approx \text{CH}_3\text{COO}^- \approx \text{Br}^- > \text{Cl}^- > \text{HSO}_4^-$ for receptor **6** and $\text{F}^- > \text{H}_2\text{PO}_4^- > \text{Br}^- > \text{CH}_3\text{COO}^- \approx > \text{Cl}^- \approx \text{HSO}_4^-$ for receptor **7**. Binding energies of Li^+ , Na^+ and K^+ /calix[4]arene (**L**, **8**) complexes and halide ions F^- , Cl^- , Br^- , oxygen-containing anions HCO_3^- , HSO_4^- and CH_3COO^- ions were obtained. Binding energies and thermodynamic properties of complex receptors LiL^+ , NaL^+ and KL^+ with these anions were determined. Binding energies of receptors LiL^+ , NaL^+ and KL^+ are in decreasing orders: $\text{F}^- >> \text{CH}_3\text{COO}^- > \text{HCO}_3^- > \text{Br}^- > \text{HSO}_4^- > \text{Cl}^-$, $\text{F}^- >> \text{CH}_3\text{COO}^- > \text{HCO}_3^- > \text{Br}^- > \text{Cl}^- > \text{HSO}_4^-$ and $\text{F}^- >> \text{CH}_3\text{COO}^- > \text{HCO}_3^- > \text{Br}^- > \text{Cl}^- > \text{HSO}_4^-$. All the alkaline–metal receptors LiL^+ , NaL^+ and KL^+ exhibit their abilities to selectively fluoride ion. The structures of 8,8'-bis(3-phenylthioureidomethyl)-2,2'-binaphthalene (**9**), 8,8'-bis(3-butylthioureidomethyl)-2,2'-binaphthalene (**10**) and their complexes with anionic guests such as carboxylate ions (acetate, oxalate, malonate, succinate, glutarate, adipate, pimelate, suberate, and azelate), inorganic oxygen-containing anions (NO_3^- , SO_4^{2-} , HCO_3^- , HPO_4^{2-} and H_2PO_4^-), and halide ions were obtained. Four isomers of dipicolyl urea were obtained and the intramolecular hydrogen-bonded structure was found to be the most stable isomer. Energetics, thermodynamic properties, rate constants, and association constants of their isomerizations were obtained. Complexes of all isomers of dipicolyl urea with formic acid, acetic acid, benzoic acid, oxalic acid, and their deprotonated species were investigated. Energetics, thermodynamic properties, and rate constants of their associations were obtained. Stabilities of all complexes in terms of association constants of the most stable species were determined.

Keywords: Amide compound, binding energy, anion recognition, cation