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                                                บทคัดยอ 
 
         งานวิจัยนี้ทําการศึกษาวิธีการปรับแตง อนุกรมเวลาตอเน่ือง GARCH(1,1) ใหเปนอนุกรมเวลาท่ีมี
หนวยความจํายาวมากข้ึน ดวยวิธีการเปลี่ยนการเคลื่อนท่ีบราวเนี่ยนมาตราฐานใหเปนการเคลื่อนท่ีบราว
เนี่ยนเศษสวนซึ่งท่ีมีความจํายาว และเรียกอนุกรมเวลาใหมนี้วา FIGARCH(1,1) แตดวยเหตุท่ีอนุกรมเวลา
ท่ีมีความจํายาวมีธรรมชาติของความเปน อารบิทาจ ปนอยู จึงไมเหมาะท่ีจะนํามาใชในการกําหนดราคา
ของออพชัน เราจึงไดเสนอแนวทางแกไขดวยการสรางตัวแบบประมาณคาของอนุกรมเวลาท่ีมี
หนวยความจํายาวและไมมีอารบิทาจ ตอจากนั้นกิจกรรมตางๆในทางคณิตศาสตรการเงิน ดังเชน การ
กําหนดราคาของออพชัน การประมาณคาความผันผวน การคํานวณคาพารามิเตอรของตัวแบบอัตรา
ดอกเบ้ีย จะทําบนตัวแบบประมาณคาน้ี   ไดมีการพิจารณาตัวแบบหนวยความจํายาวท่ีมีการกระโดดดวย 
และไดมีการพัฒนาโปรแกรมประยุกตเพื่อการคํานวณหาคาของพารามิเตอรและราคาพันธบัตรจากสูตร
ตางๆท่ีไดพัฒนาไวขางตน 
 
คําสําคัญ   กระบานการมีหนวยความจํายาว กระบวนการเศษสวน ตัวแบบGARCH(1,1)  อารบิทาจ   
กระบวนการเศษสวนท่ีมีการกระโดด  
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Abstract 

 
The purpose of this research project is to modify the continuous time GARCH (1, 1) model in 

such a way that it can explain a long memory effect. To do this, we change the standard Brownian 
motion into a fractional Brownian motion and call it FIGARCH (1, 1) model. Since the long memory 
process has an arbitrage. We then develop an approximate model of FIGARCH (1, 1) which do not 
have an arbitrage.  After that we shall use this approximate model to find a formula for a European 
call option, estimate parameters for some interest rate models, and bond pricing. We also discuss 
the long memory model with jump.  An application software for computing parameters of some 
interest rate models was purposed. 
 
Keywords:  Long memory process, fractional process, GARCH(1,1) model, arbitrage, fractional 
process with jump. 
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Executive Summary 
บทสรุปยอสําหรับผูบรหิาร 

 

วัตถุประสงคของการวิจัย 

1. To develop a method for adding long memory effects into continuous time GARCH(1,1)   
models. This new model is called FIGARCH (1,1). 

2. To construct an approximate model for FIGARCH (1,1) and find a European call option by           
using the approximate model 

3. To investigate FIGARCH model with jump. 
4. To find a formula for European call option when the asset prices follows a stochastic 

volatility Levy model. 
5. To develop an application software for calculating parameters of the CIR model,              

Vasicek interest rate models, and bond pricing. 

ส่ิงท่ีไดดําเนินการไปแลว 

1. We constructed an approximate model for continuous time FIGARCH (1,1) model. We 
proved the convergence of the approximate model to the FIGARCH (1,1) model.  

2. By using FIGARCH (1,1) model, we developed a formula for pricing a European call option.  
We showed by simulation that pricing in FIGARCH (1,1) model can reduce error significantly 
when compare with the original GARCH model. 

3. We investigated FIGARCH (1,1) model with jump.  
4. We investigated the option pricing when the underlying asset follows a stochastic Levy 

model with stochastic interest rate. 
5. We develop an application software for calculating parameters of the CIR model,  Vasicek 

interest rate models, and bond pricing. 

ส่ิงท่ีไดพบ 

 We found that pricing of the contingent claims under FIGARCH model is more realistic than 
the original GARCH model in the sense that error of the approximation can be reduced significantly 
and this is consistent with the nature of the return series which is not Markovian. 

 
_________________________  _END OF EXECUTIVE SUMMARY________________________ 
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เน้ือหางานวิจัย 

1. ตามวัตถุประสงคขอท่ีหน่ึง 

 By a Fractional Integrated GARCH (1,1) model of continuous time (FIGARCH), we shall mean a  
process of the form  

( ) H
t t t td v dt dB                                  (1) 

 where 0 ,t T   ,   are weight parameters and H
tB  is a fractional Brownian  motion. H

tB  is 
defined by 

0
( )

tH
t tB t s dB  , 

where (1 / 2) H    and tB  is the standard Brownian motion. For each 0,   an approximate 
model of FIGARCH is a process of the form 

                                                         ( )t t t td v dt dB         ,                                           (2) 

 where tB  is the approximate process of is H
tB  and is defined by 

                                                           
0
( )

t

t sB t s dB      

One can show that tB  converges to H
tB  in 2 ( )L   as 0  , uniformly with respect to 

[0, ].t T    We have proved the following two main results. 

Theorem 1    For any 0,   a solution of the approximate model (2) is given by 
2

21

2 2 2
0 0

1
exp

2

ss Bt

t tv B t e ds
   

        
  

 
    

   
       

  

where 1 1

2 2
    and 

0
( )

t

t sB t s dW    . 

Theorem 2    The solution (3) converges to the solution of (1) in 2 ( )L   and uniformly with respect to 
[0, ]t T  as 0  . 

 Moreover, we do numerical simulation to confirm that the volatility that come from the approximate 
model give a better approximation to the volatility of SCB stock price than the volatility that come 
from the continuous time GARCH model when   is small enough. [The proof can be found in  Ref. 1] 

2. ตามวัตถุประสงคขอท่ีสองและขอท่ีสาม  

In the second paper, we are interested in the option pricing when the stock pricing follows jump 
diffusion model and their stochastic volatility follows a fractional stochastic volatility model, i.e. our 
dynamic system is of the form: 



 8 

                                      t t t t t tdS S dt dB S YdN                                                              (3)                                   

                                     ( ) H

t t t td v dt dB      . 

We can not price a European call option by using the dynamic (3) directly since it contains a 
fractional process and hence an arbitrage exists.  To solve the problem, we consider an approximate 
model of the form 

                                             t t t t t tdS S dt dB S YdN                                                       (4) 

                                           ( )t t t td v dt dB         . 

Once again, one can show that the solution processes tS   and t
  of equation (4) converge to the 

solutions  tS   and t
  of equation (3) in 2 ( )L   and uniformly with respect to [0, ]t T  as 0  .  

We derived a formula for European call option on the approximate model (4) and we get the following 
main result. 

Theorem 3    For each 0  , the value of a European call option written on the model (4) is  

( )

1 2
ˆ ˆ ˆ( , , , , ) ( , , , , ) ( , , , , )r T t

t t t t t t tC S t K T S P S t K T Ke P S t K T            

where 1P  is the risk neutral probability that TS K  and 2P  is the risk neutral in the money 
probability.  [The proof can be found in   Ref. 2] 

3. ตามวัตถุประสงคขอท่ีสี่ 

In the third paper, we are interested in the option pricing again but the jump process is not the 
compound Poisson process as appeared in the second paper.  Here, we assume that the jump 
process is a pure Levy process and the interest rate is not constant but it is stochastic and satisfies 
the Hull-White process.  
Our models are of the form: 

                                        2

0

1
exp( ( ) )

2t tt t T t TS S r W T J                                                      (5) 

                                        ( ( ) ) r

t t r tdr t r dt dB                                                                        (6) 

where r
tB  is a standard Brownian motion with respect to the process tr , 0r   the volatility 

coefficient of the interest rate process (6), and 
tTJ  the pure Levy process. 

 The process tT  is defined by  

0

t

t sT ds  , 

where t  follows the CIR process 

                                               (1 )t t t td dt dB
       .                                                      (7) 
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When working with the T-forward measure TQ , we can find a formula of European call option for 
which the asset price, the interest rate, and the volatility satisfy the dynamic (5),(6), and (7) 
respectively.  Hence, we have our main results. 

Theorem 4    The value of a European call option of SDE (5)-(7) is 

*

1 2( , , , ; , ) ( , , , ; , ) ( , ) ( , , , ; , )t t t t t t t t t tC t S r T K S P t X r T KP t T P t X r T       . 

 [The proof can be found in Ref. 3] 

 4. ตามวัตถุประสงคขอ 5 

The fourth paper involved in writing a manual for an application software for computing parameters 
for CIR model, Vasicek interest rate model, and also finding the bond price.  One CD which contains 
the software is attached to this report. [The detail can be found in Ref. 4].  

Up to this point, we have finished the work according to the objective that was written in the 
research project. However, we would like to submit another 3 supplementary research articles which 
were undertaken under this research project.  

Supplementary research articles 

5. The fifth paper studied an insurance model where the surplus process can be controlled by two 
activities, one is reinsurance for which the reinsurance company has an opportunity to default and 
other is an investment in a financial market. We prove the existence of an optimal plan and derive a 
formula for the value function which is the minimum of total discounted cost function in the framework 
of discrete-time surplus process.  The main theorem is as follow: 

Theorem 5    Let x S be an initial state. Then there exists * ** ( , )u b U   such that 

( ( ) { ( , ) (1 ) ,*

( , )
( ) min [ ]c b Z h b Y K Y K R

b U
G u E e  



    


    

and, moreover, *u stationary  is an optimal plan. Here * [ , ]b b b  represents the retention level 
of reinsurance and *

1 2( , ,..., )m     is the portfolio vector.  The cost function ( ) : ( , )G u G b   is 
a function of retention level and the portfolio vector.  So this theorem say that, with some assumptions 
as given in the paper, the optimal control (or minimum plan) is stationary, i.e. we should select the 
same retention level and the same investment on every period of time.  The proof of this theorem can 
be found in .  [The proof can be found in  Ref. 5] 

6.  The sixth paper studied an insurance model under the condition that the claims can be control by 
reinsurance and an insurance company requires a sufficient initial capital to ensure a ruin probability 
will not exceed a given quantity  .  We prove the main theorem is about the existence of the 
minimum initial capital which was stated as follow. 
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Theorem 6    Let  1, 2,3,... , ( ,[ , ]) and let (0,1)N P N b b    . Then there exists 

0 such thatx   
                                              

0
min : ( , )N

x
x x x  


   , 

Where is ( ,[ , ])P N b b  the set of all plans and ( , )N x   is the ruin probability at time n. 
[The proof can be found in Ref. 6] 

7. The seven studied forecasting the volatility of gold price using Markov Regime Switching GARCH 
models. These models allow volatility to have different dynamics according to unobserved regime 
variables. The main purpose is to find out whether MRS-GARCH models are an improvement on the 
GARCH type models in terms of modeling and forecasting gold price volatility. The MRS-GARCH is 
the best performance model for gold price volatility in some loss function. Moreover, we forecast the 
closing prices of gold price to trade future contract. MRS-GARCH got the most cumulative return 
same as GIR model. [The details are in Ref. 7]. 
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ผลท่ีไดจากโครงการ 
 
We wrote 6  articles and developed an application software for computing parameters of CIR model, 
Vasicek interest rate model, and also finding the bond price. 
The details are as follows: 

1. Articles according to the objective of this research project 

1.1. T. Plienpanich, P. Sattayatham, and T. Thao, Fractional integrated GARCH diffusion limit 
model, Journal of Korean Statistical Society, 38: 231-238, 2009 

1.2. P. Sattayatham, A. Intarasit, An approximate formula of European option for  fractional 
stochastic volatility jump-diffusion model, Journal of Mathematics and Statistics, 7(3):    
230-238, 2011. 

1.3. S. Pinkam, and  P. Sattayatham,  Option pricing for a stochastic volatility Levy model with 
stochastic interest rate.  Submitted to Journal of Korean Statistical Society, 2011.  

1.4. S. Pinkam and P. Sattayatham, Manual and One CD which contains as application software 
for computing parameters for CIR model, Vasicek interest rate model, and also finding the 
bond price. 

2. Subplementary articles 

2.1. W. Klongdee, P. Sattayatham, and K. Sangaroon, A value function of discrete-time surplus 
process in insurance under investment and reinsurance credit risk, Far East Journal of 
Theoretical Statistics, 32(2): 183-198, 2010. 

2.2. P. Sattayatham, K. Chuarkham, W. Klongdee,  Ruin probability based initial capital of the 
discrete time surplus process in insurance under reinsurance as a control parameter, 
Submitted to Scandinavian Actuarial Journal. 2011. 

2.3. N. Sopipan, P. Sattayatham, B. Premanode,  Forecasting volatility of Gold price using 
Markov regime switching and trading strategy,  Accepted in Journal of Mathematical 
Finance, 2011. 
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ภาคผนวก 
(Appendix) 
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In this paper, we introduce an approximate approach to the fractional integrated
GARCH(1,1) model of continuous time perturbed by fractional noise. Based on the L2-
approximation of this noise by semimartingales, we proved a convergence theorem
concerning an approximate solution. A simulation example shows a significant reduction
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1. Introduction

Risk in a financial market is measured by using volatility. So predictability of volatility has important implications for
risk management. If volatility increases, so will Value At Risk (VAR). Investors may want to adjust their portfolio to reduce
their exposure to those assets whose volatility is predicted to increase. One method that is widely employed for volatility
estimation is to use GARCH models. A discrete time GARCH(1,1) model is a model of the form

νk+1 = ω0 + βνk+1 + ανkU2k , Xk = σkUk (1)

where σk =
√
νk, and α, β are weight parameters,ω0 is a parameter related to the long-term variance, and UK is a sequence

of independent normal random variables with zero mean and variance of 1.
It is well known that GARCH models are not designed for long range-dependence (LRD). But there are some empirical

studies showing that log-return series (Xt) of foreign exchange rates, stock indices and share prices exhibit the LRD effect
(see, for example, Mikosch and Starica (2003, page 445)). In 1990, Nelson (1990) showed that as the time interval decreases
and become infinitesimal, Eq. (1) can be changed to

dvt = (ω − θvt)dt + ξvtdWt (2)

where vt = σ 2t is the stock-return variance, ω, θ and ξ are weight parameters and Wt is a standard Brownian motion
process. To be more accurate, there is a weak convergence of the discrete GARCH process to the continuous diffusion limit.
The purpose of this paper is to introduce LRD effect into GARCHmodels of continuous time (i.e., into Eq. (2)). The importance
of this process in finance is that it can be used to forecast volatility and risk of some financial instruments.

I This research was supported by the Thailand Research Fund and CHE 2008.
∗ Corresponding author. Fax: +66 44224315.
E-mail address: pairote@sut.ac.th (P. Sattayatham).
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Recall that a fractional Brownian motion process WHt , with Hurst index H , is a centered Gaussian process such that its
covariance function R(t, s) = EWHt W

H
s is given by

R(s, t) =
1
2
(|t|γ + |s|γ − |t − s|γ )

where γ = 2H and 0 < H < 1. IfH = 1
2 , thenW

H
t is the usual standard Brownianmotion process. ForH 6=

1
2 ,W

H
t is neither

a semimartingale nor a Markov process so we cannot apply the standard stochastic calculus for this process. It is a process
of long range dependence in the following sense: If ρn = E[WH1 (W

H
n+1)−W

H
n ], then the series

∑
∞

n=0 ρn is either divergent
or convergent with very late rate. It is known that a fractional Brownian motionWHt can be decomposed as follows:

WHt =
1

Γ (1+ α)

[
Zt +

∫ t

0
(t − s)αdWs

]
,

where Γ is the gamma function, Zt =
∫ 0
−∞
[(t − s)α − (−s)α]dWs, α = H − 1

2 , andWt is a standard Brownian motion.
We suppose from now on 0 < α < 1

2 so that
1
2 < H < 1. Then Zt has absolutely continuous trajectories and it is the term

BHt :=
∫ t
0 (t − s)

αdWs that exhibits long range dependence. We will use BHt instead ofW
H
t in fractional stochastic calculus.

In Thao (2006) constructed an approximate process Bεt of B
H
t as follows:

Bεt =
∫ t

0
(t − s+ ε)H−

1
2 dWs

where 12 < H < 1, andWt is a standard Brownian motion. He also proved that B
ε
t → BHt in L

2(Ω) as ε→ 0 (uniformly in t)
and Bεt is a semimartingale. These results give us a convenient way to study fractional Brownian motions since we can use
the standard Ito integrals and then it is easy to do numerical approximation.
By a fractional integrated GARCH model of continuous time (FIGARCH), we shall mean a process of the form

dvt = (ω − θvt)dt + ξvtdBHt (3)

where 0 ≤ t ≤ T , ω, θ and ξ areweight parameters, and BHt is a fractional Brownianmotion. For each ε > 0, an approximate
model of the FIGARCH model is a process of the form

dvεt = (ω − θv
ε
t )dt + ξv

ε
t dB

ε
t (4)

where Bεt is the approximate process of B
H
t . We shall show that its solution converges to the solution of the FIGARCH

model (3).
Moreover, geometric Brownian motion for the asset price was used to simulate the SCB stock prices where the volatility

of this model was predicted from an approximate fractional variance process of GARCH(1,1) model in continuous time and
classical GARCH(1,1) model in continuous time. And both of themwere compared with the empirical historical stock prices
of SCB.

2. Solutions of the approximate models

In this section, we are interested in finding a solution of the approximate model (4) together with initial condition
vεt(t=0) = v0.
Let ε > 0. Recall that an approximated process Bεt is defined by

Bεt =
∫ t

0
(t − s+ ε)αdWs,

where α = H − 1
2 , 0 < H < 1, andWt is a Brownian motion process. By an application of the stochastic Fubini Theorem,

one gets∫ t

0

∫ s

0
(s− u+ ε)α−1dWuds =

∫ t

0

∫ t

u
(s− u+ ε)α−1dsdWu

=
1
α

∫ t

0
((t − u+ ε)α − εα)dWu

=
1
α

[∫ t

0
(t − u+ ε)αdWu − εα

∫ t

0
dWu

]
=
1
α
[Bεt − ε

αWt ].

Consequently

Bεt = α
∫ t

0
ϕεs ds+ ε

αWt
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where

ϕεt =

∫ t

0
(t − s+ ε)α−1dWs.

Thus we have

dBεt = αϕ
ε
t dt + ε

αdWt . (5)

Substituting dBεt from (5) into (4), then Eq. (4) can be rewritten into the following form

dvεt = (ω − θv
ε
t )dt + ξv

ε
t (αϕ

ε
t dt + ε

αdWt),

= (ω − θvεt + ξαϕ
ε
t v
ε
t )dt + ξv

ε
t ε
αdWt . (6)

Theorem 1. For any ε > 0, a solution of the approximate model (4) is given by

vεt = exp
(
ξBεt −

(
θ +

1
2
ξ 2ε2α

)
t
)(

vε0 + ω

∫ t

0
e
(
θ+ 12 ξ

2ε2α
)
s−ξBεs ds

)
, (7)

where− 12 < α < 1
2 and B

ε
t =

∫ t
0 (t − s+ ε)

αdWs.

Proof. To find a solution of (6), we look for a solution of the form

vεt = UtVt

where

dUt = (−θ + ξαϕεt )Utdt + ξε
αUtdWt

and

dVt = atdt + btdWt .

Firstly, we shall find a solution of dUt = (−θ + ξαϕεt )Utdt + ξε
αUtdWt . By an application of the Ito formula to the

function f (u) = ln u for u = Ut , one gets

d (lnUt) =
1
Ut
dUt −

1
2U2t

(dU)2

=
1
Ut

(
(−θ + ξαϕεt )Utdt + ξε

αUtdWt
)
−
1
2U2t

(ξ 2ε2αU2t dt)

=

(
−θ + ξαϕεt −

1
2
ξ 2ε2α

)
dt + ξεαdWt

or, equivalently,

lnUt − lnU0 = ξα
∫ t

0
ϕεs ds−

(
θ +

1
2
ξ 2ε2α

)
t + ξεαWt .

That is

Ut = U0 exp
(
ξα

∫ t

0
ϕεs ds−

(
θ +

1
2
ξ 2ε2α

)
t + ξεαWt

)
. (8)

Set U0 = 1 and V0 = vε0 . Taking the differential of the product, we get

d (UtVt) = UtdVt + VtdUt + dUtdVt
= Ut (atdt + btdWt)+ Vt

(
(−θ + ξαϕεt )Utdt + ξε

αUtdWt
)
+ ξεαUtbtdt

=
(
Utat + Vt(−θ + ξαϕεt )Ut + ξε

αUtbt
)
dt + (Utbt + VtξεαUt) dWt .

Since vεt = UtVt then

dvεt =
(
Utat + (−θ + ξαϕεt )v

ε
t + ξε

αUtbt
)
dt +

(
Utbt + ξεαvεt

)
dWt . (9)

Comparing the coefficients of Eq. (9) with Eq. (6), we see that the desired coefficients at and bt turn out to satisfy the
following equations

Utbt = 0
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and

Utat + ξεαUtbt = ω.

Then bt = 0 and at = ω
Ut
. Hence

Vt := V0 +
∫ t

0
atdt +

∫ t

0
btdWt = vε0 +

∫ t

0

ω

Us
ds.

Moreover, vεt is found to be

vεt := UtVt = Ut

(
vε0 +

∫ t

0

ω

Us
ds
)
.

Hence, with U0 = 1 and using Ut as in (8), the solution of vεt is given by

vεt = exp
(
ξα

∫ t

0
ϕεs ds−

(
θ +

1
2
ξ 2ε2α

)
t + ξεαWt

)(
vε0 + ω

∫ t

0
e
(
θ+ 12 ξ

2ε2α
)
s−ξεαWs−ξα

∫ s
0 ϕ

ε
ududs

)
.

This proves Theorem 1. �

3. Convergence of the solutions of an approximate model

To prove the convergence of vεt , firstly, let us consider the process vt which satisfies Eq. (2). Let Xt = ln vt . It follows from
the Ito formula that

dXt =
(
ωe−Xt −

ξ 2

2
− θ

)
dt + ξdWt . (10)

The fractional model of the process Xt is a process which is of the form

dXt =
(
ωe−Xt −

ξ 2

2
− θ

)
dt + ξdBHt , (11)

where BHt is a fractional Brownian motion. Then an approximated model of (11) is of the form

dXεt =
(
ωe−X

ε
t −

ξ 2

2
− θ

)
dt + ξdBεt (12)

where Bεt has already been defined in Section 1.

Theorem 2. The solution of (12) converges to the solution of (11) in L2(Ω) uniformly with respect to t ∈ [0, T ] as ε→ 0.

Proof. We note that Eqs. (11) and (12) give

Xt − Xεt = ω
∫ t

0

(
e−Xs − e−X

ε
s
)
ds+ ξ

(
BHt − B

ε
t

)
. (13)

Let ‖·‖ denote the norm in L2(Ω). It follows from (13) that∥∥Xt − Xεt ∥∥ = ∥∥∥∥ω ∫ t

0

(
e−Xs − e−X

ε
s
)
ds+ ξ

(
BHt − B

ε
t

)∥∥∥∥
6 |ω|

∫ t

0

∥∥∥e−Xs − e−Xεs ∥∥∥ ds+ |ξ | ∥∥BHt − Bεt ∥∥ .
Since e−x is differentiable and bounded on every compact interval, then∥∥Xt − Xεt ∥∥ 6 |ω| ∫ t

0
K1
∥∥Xs − Xεs ∥∥ ds+ |ξ | ∥∥BHt − Bεt ∥∥ (14)

for some constants K1 > 0. Referring to a result Thao (2006, page 127), one gets∥∥BHt − Bεt ∥∥ ≤ C(α)ε 12+α, (15)

where 0 < α < 1
2 for

1
2 < H < 1 and−

1
2 < α < 0 for 0 < H < 1

2 , and C(α) is a positive constant depending only on α.
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It follows from (14) and (15) that∥∥Xt − Xεt ∥∥ 6 |ω|K1 ∫ t

0

∥∥Xs − Xεs ∥∥ ds+ |ξ |C(α)ε 12+α. (16)

Applying Gronwall’s lemma to (16), then∥∥Xt − Xεt ∥∥ 6 |ξ |C(α)ε 12+αe|ω|K1t .
Therefore

sup
0≤t≤T

∥∥Xt − Xεt ∥∥ 6 |ξ |C(α)ε 12+αe|ω|K1T → 0

as ε→ 0. So Xεt → Xt in L2(Ω) as ε→ 0 and uniformly with respect to t . �

Theorem 3. If Xεt → Xt in L2(Ω) uniformly with respect to t ∈ [0, T ] as ε→ 0, then vεt → vt in L2(Ω) uniformly with respect
to t ∈ [0, T ] as ε→ 0.

Proof. It follows from Xt = ln vt , so vt = eXt that∥∥vt − vεt ∥∥ = ∥∥∥eXt − eXεt ∥∥∥ .
Since ex is differentiable and bounded in some closed interval, then∥∥vt − vεt ∥∥ ≤ K2 ∥∥Xt − Xεt ∥∥
for some positive constant K2. From (15), we obtain∥∥vt − vεt ∥∥ 6 K2|ξ |C(α)ε 12+αe|ω|K1t .
Therefore

sup
0≤t≤T

∥∥vt − vεt ∥∥ 6 K2|ξ |C(α)ε 12+αe|ω|K1T → 0

as ε→ 0. The proof is now complete. �

4. Applications

In this section, volatilities of the stock of Siam Commerical Bank (SCB) are computed by using FIGARCH(1,1) model and
classical GARCH(1,1) model of continuous time. Then SCB stock prices are simulated by using these volatilities. After that
both simulated SCB stock prices are compared with the empirical historical prices of SCB.

4.1. SCB simulated stock prices

A model for the dynamic of an asset price that will be considered here is of the form

dSt = µStdt + σtStdWt ,

where µ is known as the drift rate or rate of return of the price St and Wt is a Brownian motion. The stochastic volatility
σt (which measures the standard deviation of the return dStSt ) is defined by σt :=

√
vt where vt is the FIGARCH model of

continuous time as in Eq. (3). For comparative purposes, we shall compute the percentage error (PE) between two sets of
data by the following formula

PE =
1
K

K∑
i=1

|Xi − Yi|
Xi

× 100,

where K is sample size, X = (Xi, i ≥ 1) is the market prices and Y = (Yi, i ≥ 1) is the model prices. We use K = 245 when
we sample data for 12 months.
For simulation purposes, we consider an approximate model

dSεt = µS
ε
t dt + σ

ε
t S

ε
t dWt , (17)

with ε > 0 and σ εt =
√
vεt . The fractional variance process vεt will be simulated by using Eq. (7), i.e.,

vεt = exp
(
ξBεt −

(
θ +

1
2
ξ 2ε2α

)
t
)(

vε0 + ω

∫ t

0
e
(
θ+ 12 ξ

2ε2α
)
s−ξBεs ds

)
. (18)
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Table 1
Discrete parameters ωh, βh and αh of each dataset.

Months Dataset (DD/MM/YY) ωh βh αh

1 1/12/2006–28/12/2006 0.0033 0 0.1689
3 2/10/2006–28/12/2006 0.0012 0 0.1154
6 3/7/2006–28/12/2006 0.00077659 0 0.0887
9 3/4/2006–28/12/2006 0.00071251 0 0.0726
12 3/1/2006–28/12/2006 0.00062672 0 0.0692

Table 2
Parameters ω, θ and ξ obtained from each dataset.

Months Dataset (DD/MM/YY) ω θ ξ

1 1/12/2006–28/12/2006 0.0033 0.8311 0.2389
3 2/10/2006–28/12/2006 0.0012 0.8846 0.1632
6 3/7/2006–28/12/2006 0.00077659 0.9113 0.1254
9 3/4/2006–28/12/2006 0.00071251 0.9274 0.1027
12 3/1/2006–28/12/2006 0.00062672 0.9308 0.0979

Table 3
Average PE for each set of parameters.

Parameters ω θ ξ Average of PE (%)

1 0.0033 0.8311 0.2389 40.5099
2 0.0012 0.8846 0.1632 24.0161
3 0.00077659 0.9113 0.1254 19.3196
4 0.00071251 0.9274 0.1027 18.3600
5 0.00062672 0.9308 0.0979 17.3366

The actual stock prices of Siam Commercial Bank (SCB) were obtained from http://www.tiscoetrade.com. Using the
dataset from January 3, 2006 to December 28, 2007. We divide these data into two disjoint sets. The first one, from January
3, 2006 to December 28, 2006, will be used to estimate parameters ω, θ , and ξ for Eq. (18). The second set (January 3,
2007–December 28, 2007) will be used for comparison with the simulated prices.
We begin by estimating parameters ω, θ and ξ . To do this, we firstly enter the following 5 datasets, i.e., 1 month

(December 1, 2006–December 28, 2006), 3months (October 2, 2006–December 28, 2006), 6months (July 3, 2006–December
28, 2006) and 12 months (January 3, 2006–December 28, 2006) into Matlab 6.5 (GARCH Toolbox) with COMPAQ Presario
B1908TU to obtain discrete parameters of GARCH(1,1) model (ωh, βh and αh). Those discrete parameters from each datasets
are shown in Table 1.
Secondly, we utilize the formulas between discrete parameters and continuous parameters which have been given

by Nelson (1990) to estimate the parameters ω, θ and ξ . The formulas are as follows:

ω = h−1ωh,
θ = h−1(1− βh − αh),

ξ =
√

2h−1αh,

where h is the time lag between two consecutive data. Here we use h = 1. Thus the estimated parameters ω, θ and ξ for
each dataset (1, 3, 6, 9 and 12 months) are given in Table 2.
From the information in Table 2, we look for those parameters which can give us the mimum average of PE. In order to

solve this problem, we simulated vεt (see, Eq. (18)) by using the parameters ω, θ and ξ from each dataset (1, 3, 6, 9 and 12
months). Here, we choose ε = 0.0001, α = 0.15, µ = 0.0017819 and vε0 = 0. Then, by using σ

ε
t =

√
vεt , the SCB stock

prices from January 3, 2007 to December 28, 2007 were forecast by the pricing model Sεt (see, Eq. (17)). Next, we compute
PE by using the information from the simulation and the empirical data of SCB closing prices (January 3, 2007–December
28, 2007). For each set of parameters, we calculated the average of PE for 5000 paths. The results are shown in Table 3.
It can be seen from Table 3 that the parameters ω = 0.00062672, θ = 0.9308 and ξ = 0.0979 give us the minimum

value of the average PE. We select this set of parameters for forecasting the future stock prices of SCB. In summary, when
the SCB stock prices were simulated by Eq. (17) using parameters as mentioned above, the average of PE and its variance
will be given as follows:

average of PE = 17.3366%
variance = 43.0287%.

(19)

Recall that a GARCH(1,1) model of continuous time is of the form

dvt = (ω − θvt)dt + ξvtdWt , (20)
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Fig. 1. Price behaviour of SCB, between January 3, 2007 andDecember 28, 2007, comparedwith a scenario simulated from fractional pricingmodel (dashed
line := empirical data, solid line := simulated by dSεt = µS

ε
t dt + σ

ε
t S

ε
t dW t , PE = 6.0401%).

Fig. 2. Price behaviour of SCB, between January 3, 2007 and December 28, 2007, compared with a scenario simulated by pricing model (dashed line :=
empirical data, solid line := simulated by dSt = µStdt + σtStdWt , PE = 6.9627%).

and the pricing model is

dSt = µStdt + σtStdWt , (21)

where σt =
√
vt .

We simulated the pricing model (21) by using ω = 0.00062672, θ = 0.9308, ξ = 0.0979, µ = 0.0017819, v0 = 0 and
K = 245. We compute the PE of these simulation prices and the empirical data of SCB closing prices from January 3, 2007
to December 28, 2007. Next we compute the average of PE, by using N = 5000, and found that

average of PE = 21.6536%
variance = 69.2135%.

(22)

By comparing the average PE and its variance by Eq. (19) and (22), one can see that in the case of SCB, the forecast of the
future stock prices by using model (17) (which includes the fractional part) give an average error significantly smaller than
using model (21) (which does not includes the fractional part).
For an illustration, Fig. 1 shows the empirical data of SCB as compared to the price simulated by the fractional pricemodel

(17). Here we used ε = 0.0001, α = 0.15, θ = 0.9308, ω = 0.00062672, ξ = 0.0979 and vε0 = 0. The percentage error
PE = 6.0401%.
Fig. 2, shows the empirical data of SCB as compared to the price simulated by the price model (21). Here we used

θ = 0.9308, ω = 0.00062672, ξ = 0.0979, µ = 0.0017819, v0 = 0 and σt =
√
vt . The percentage error PE = 6.9627%.

By comparing PE and variance of Figs. 1 and 2, one can see that in the case of SCB the sample path from the fractional
pricing model gives a better fit with the data than the ordinary pricing model, since the percentage error is smaller.
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Abstract: Problem statement: We presented option pricing when the stock prices follows a jump-
diffusion model and their stochastic volatility follows a fractional stochastic volatility model. This 
proposed model exhibits the a memory of a stochastic volatility model that is not expressed in the 
classical stochastic volatility model. Approach: We introduce an approximated method to fractional 
stochastic volatility model perturbed by the fractional Brownian motion. A relationship between 
stochastic differential equations and partial differential equations for a bivariate model is presented. 
Results: By using an approximate method, we provide the approximate solution of the fractional 
stochastic volatility model. And European options are priced by using the risk-neutral valuation. 
Conclusion/Recommendations: The formula of European option is calculated by using the technique 
base on the characteristic function of an underlying asset which can be expressed in an explicit 
formula. A numerical integration technique to simulation fractional stochastic volatility are presented 
in this study. 
 
Key words: Fractional Brownian motion, approximate method, fractional stochastic volatility, jump 

diffusion model, option pricing model 
 

INTRODUCTION 
 
 Let ( ,F,P)Ω .be a probability space with filtration

t 0 t T(F ) ≤ ≤=F ..All processes that we shall consider in 
this section will be defined in this space. For t ∈  [0, T] 
and T <  ∞ a geometric Brownian motion (gBm) model 
with jumps and with fractional stochastic volatility is a 
model of the form: 
 

( )t t t t t tdS S dt v dW S YdN−= µ + +   (1) 

 
where t t [0,T], S (S ) ∈µ ∈ℜ =  is a process representing a 
price of the underlying risky assets, [ ]t t 0,TW (W ) ∈= is the 

standard Brownian motion, [ ]t t 0,TN (N ) ∈= is a Poisson 

process with intensity λ and St-Yt represents the 
amplitude of the jump which occurs at time t. We 
assume that the processes W and N are independent. 
The volatility process 2

t tv := σ in (1) is modeled by: 
 

( )t t t tdv v dt v dB= ω − θ + ξ   (2) 

where, ω > 0 is the mean long-term volatility, θ∈ℜ  is 
the rate at which the volatility reverts toward its long-
term mean, ξ>0 is the volatility of the volatility process 
and [ ]t t 0,T(B ) ∈ is a fractional Brownian motion.  
 Assume that the processes (St) and (vt) are Ft-
measurable.  
 The notation St- means that whenever there is a 
jump, the value of the process before the jump is used 
on the left-hand side of the formula.  
 The fractional version of Eq. 1 is given by: 
 

( )t t t t t t tdS S dt v dB S Y dN−= µ + +   (3) 

 
 The process St in (3) can be approximated in 

2L ( )Ω  by a semimartingale tSε  in the sense that 

2
t t L ( )

S S 0 as 0,ε

Ω
− → ε →  where tSε  satisfies the 

following equation (Intarasit and Sattayatham, 2010 for 
more details): 
 

( )t t t t t t tdS S dt v dB S Y dNε ε ε ε ε
−= µ + +  
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 The purpose of this study is to consider the 
problem of option pricing for the gBm model with 
jumps (1) and with fractional stochastic volatility (2). 
Since driving process Bt of vt in Eq. 2 is not a 
semimartingale, thus we cannot apply Itô calculus 
directly. We shall thus work in another direction by 
introducing an approximate model of SDE (1) and (2) 
then using it to price European call option. The 
advantage of these approximate model is there no more 
arbitrage. In order to find such a formula, we shall work 
in the space of a risk-neutral probability measure. 
Indeed, there are some authors who have investigated 
this problem before but not in the fractional case, for 
example (Heston, 1993). In fact, there are many author 
studies a volatility and fractional volatility process. For 
example (Magnus and Fosu, 2006) use GARCH to 
model and forecast volatility returns on the Ghana stock 
exchange and (Shamiri and Isa, 2009) study modeling 
and forecasting of volatility of the Malaysian stock 
markets. An empirical study of fractional volatility are 
presented in (Cheong, 2008) for example.  
 Recall that the fractional Brownian motion with 
Hurst coefficient is a Gaussian process H H

t t 0B (B ) ≥=
with zero mean and the covariance function is given by: 
 

( )2HH H 2H 2H
t s

1R(t,s) E B B s t t s
2

 = = + − −   

 
 If H = 1/2, then R(t, s) = min(t, s) and H

tB  is the 
usual standard Brownian motion. In the case 1/2 < H < 
1 the fractional Brownian motion exhibits statistical 
long-range dependency in the sense that 

( )H H H
n 1 n 1 n: E B B B 0+

 ρ = − >   for all n = 1, 2, 3, … and 

nn 1

∞

=
ρ = ∞∑ . Hence, in financial modeling, one usually 

assumes that H (1 / 2,1)∈ . Put  α= 1/2 –H. It is known 
that a fractional Brownian motion H

tB can be 
decomposed as follows:  
 

t
H
t t s

0

1B Z (t s) dW
(1 )

−α  = + − Γ + α   
∫

  
where, Γ is the gamma function: 

  

( )
0

t sZ [ t s (s) ]dW−α −α

−∞

= − −∫  

 
 We suppose from now on that 0 < α < 1/2. The 
process Zt has absolutely continuous trajectories, so it 
suffices to consider only the term: 

 
t

t s
0

B (t s) dW−α= −∫  (4) 

 
that has a long-range dependence. 
 Note that tB can be approximated by: 
 

( )t

t s0
B t s dw−αε = − + ε∫  (5) 

 
in the sense that tBε converges to Bt in 2L ( )Ω as 0,ε →
uniform with respect to t [0,T]∈  (Thao, 2006). 
 Since t t [0,T](B )ε

∈  is a continuous semimartingale 
then Itô calculus can be applied to the following 
Stochastic Differential Equation (SDE): 
 
 ( )t t tdS S dt dB ,0 t Tε ε ε= µ + σ ≤ ≤  
 
 Let tSε be the solution of the above equation. 
Because of the convergence of tBε  to Bt in 2L ( )Ω  when 

0ε → , we shall define the solution of a fractional 
stochastic differential equation of the form: 
 

( )t t tdS S dt dB ,0 t T= µ + σ ≤ ≤  
 
to be a process *

tS  defined on the probability space (Ω, 
F, P) such that the process tSε  converges to *

tS  in 

2L ( )Ω as 0ε →  and the convergence is uniform with 
respect to t [0,T]∈ . This definition will be applied to the 
other similar fractional stochastic differential equations 
which will appear later.  
 A risk-neutral model for a gBm model combining 
jumps with stochastic volatility is introduced next. Its 
solution will also be discussed. Firstly, let us rewrite the 
model (1) into an integral form as follows: 
 

t t t

t 0 s s s s s s s
0 0 0

S S S ds v S dW S Y dN−= + µ + +∫ ∫ ∫    (6) 

 
 Note that the last term on the right hand side of Eq. 
6 is defined by: 
 

 
tt N

s s s n
n 10

S Y dN : S−
=

= ∆∑∫  

 
Where: 
 

n n n n nS : ST ST S Y− −∆ = − =  
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 The assumption Yn > 0 always leads to positive 
values of the stock prices. The process n n N(Y ) ∈  is 
assumed to be independently identically distributed 
(i.i.d.) with density φY (y) and n n N(T ) ∈ is a sequence of 
jump time. 
 In order to solve Eq. 6 with an initial condition 

t ( t 0) 0S S= = we assume that 
T 2

s s0
E v S ds  < ∞
  ∫ . Then, by 

an application of Itô’s formula for the jump process 
(Cont and Tankov, 2009, Theorem 8.14) on Eq. 6 with 

t tf (S , t) log (S )=  we get: 
 

t t t

t 0 s s s s s
0 0 0

1S S exp t v ds v dW log(1 Y )dN
2

 
= µ − + + +  

 
∫ ∫ ∫  

 
 It is assumed that a risk-neutral probability 
measure M exists; the asset price St, under this risk-
neutral measure, follows a jump-diffusion process, with 
zero-mean, risk-free rate r: 
 

( )t t M t t t t t tdS S r E [Y ] dt v dW ) S Y dN−= − λ + +   (7) 
 
and the stochastic variance vt satisfies the following 
fractional SDE: 
 

( )t t t tdv v dt v dB= ω − θ + ξ   (8) 
 
with an initial condition t ( t 0) 0 2v v L ( )= = ∈ Ω . 
 It is only necessary to know that the risk-neutral 
measure exists (Cont and Tankov, 2009). Hence, all 
processes to be discussed after this will be the processes 
under the risk-neutral probability measure M.  
 Using an initial condition t ( t 0) 0 2S S L ( )= = ∈ Ω , the 
solution of Eq. 7 is given by: 
 

t t t

M s s s s
0 0 0

t 0 t

s s
0

1(r E [Y ])ds v ds v dW
2

S S exp .
log(1 Y )dN

 
− λ − + 

 =  
 + + 
 

∫ ∫ ∫

∫
 (9) 

 
 Under approximate method, for each ε > 0, 
consider an approximate model of Eq. 7 and 8 
respectively: 
 

( )t t M t t t t t tdS S (r E [Y ])dt v W S Y dNε ε ε ε
−= − λ + +   (10) 

 
( )t t t tdv v dt v dBε ε ε ε= ω − θ + ξ  (11) 

 By using the same initial condition as in Eq. 10, we 
have: 
 

t t

M s s
0 0

t 0 t t

s s s s
0 0

1(r E [Y ])ds v ds
2

S S exp
v dW log(1 Y dN )

ε

ε

ε

 
− λ − + 

 =  
 + + 
 

∫ ∫

∫ ∫
 (12) 

 
and one can prove that tSε converges to St of Eq. 9 in 

2L ( )Ω as 0ε → and uniformly on t ∈ [0, T]. Moreover, 
one can show that the solution tvε of Eq. 11 converges 
in 2L ( )Ω to the process: 
 

t

t 0 s t
0

v v exp( s B )ds exp( B t)
 

= + ω γ − ξ ξ − γ  
 

∫  

 
for some real constant γ . Hence, by definition, vt is the 
solution of Eq. 8 (Intarasit and Sattayatham, 2010, 
Lemma 2).  
 

MATERIALS AND METHODS  
 
 The relationship between the stochastic deferential 
equation and the partial differential equation for 
bivarate model is presented. 
 Consider the process 1 2

t t tX (X ,X )=
�

where 1
tX  and 

2
tX  are processes in ℜ  and satisfy the following 

equations: 
 

1 1
t 1 1 t t t t

2
tt 2 2

dX f (t)dt g (t)dW X Y dN

dX f (t)dt g (t)dW

−= + +

= +  (13)
 

 
where, f1, g1, f2 and g2 are all continuous functions from 
[0, T] into ℜ .  
 Since every compound Poisson process can be 
represented as an integral form of Poisson random 
measure (Cont and Tankov, 2009) then the last term on 
the right hand side of Eq. 13 can be written as follows: 
 

t t

n n

t N N
1 1 1 1
s s s n n T T

n 1 n 10

t
1
s z

0

X Y dN X Y [X X ]

X zJ (dsdz)

− − −
= =

−
ℜ

= = −

=

∑ ∑∫

∫ ∫

 

 
where, Yn are i.i.d. random variables with density φY 
(y) and JZ is a Poisson random measure of the process 

tN
t nn 1

Z Y
=

=∑  with intensity measure Y z(d )dtλφ .  
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 Let U(x)�  be a bounded real function on 2ℜ  and 
twice continuously differentiable in 2

1 2x (x ,x )= ∈ℜ�  and: 
 

( )T tu(x, t) E u X X x = = 

� �� �  (14) 

 
 By the two dimensional Dynkin’s formula 
(Hanson, 2007, Theorem 7.7), u is a solution of the 
Partial Integro-Differential Equation (PIDE): 
 

[ ] Y
v(x, t)0 Av(x, t) v(x y, t) v(x, t) (y)dy

t ℜ

∂= + + λ + − φ
∂ ∫
�

� � � �  

 
subject to the final condition u(x,T) U(x)=� �  and
y (y,0).=�  The notation A  is defined by: 
 

 
( )

2
2

1 2 1 2
1 2 1

2 2
2

1 2 2 2
1 2 2

u(x, t) u(x, t) 1 u(x, t)Au x, t f (t) f (t) g (t)
x x 2 x

u(x, t) 1 u(x, t)g (t)g (t) g (t)
x x 2 x

∂ ∂ ∂= + +
∂ ∂ ∂

∂ ∂+ρ +
∂ ∂ ∂

� � �
�

� �  

 
and the correlation ρ  defined by t tCorr[dW ,dW ]ρ = . 
 Next, we present the classical method to pricing of 
European call option. The European call option formula 
in terms of characteristic function is given in the next 
section. 
 Let C denote the price at time t of a European style 
call option on the current price of the underlying asset 
St with strike price K and expiration time T. The 
terminal payoff of a European call option on the 
underling stock St with strike price K is max (ST- K; 0). 
This means that the holder will exercise his right only if 
ST > K and then his gain is ST -K. Otherwise, if ST> K, 
then the holder will buy the underlying asset from the 
market and the value of the option is zero. Assuming 
the risk-free interest rate r is constant over the lifetime 
of the option, the price of the European call at time t is 
equal to the discounted conditional expected payoff: 
 

( )

r (T t )

r ( T t )

r (T t)
t t M T t t

r(T t )
T M T t t T

K

t T M T t t T
KM T t

M T t t T
K

t 1 t t 2 t t

C S ,v , t;K,T e E max(S K,0) S ,v

e (S K)P (S | S ,v )dS

1S S P (S | S ,v )dS
E S S , t

Ke P (S | S ,v )dS

S P (S ,v , t;K T) Ke P (S ,v , t;K T)

− −

− −

− −

∞
− −

∞

∞

 = − 

 
= −  

 

 
 =
  

  

−

= < − <

∫

∫

∫

 (15) 

where, EM is the expectation with respect to the risk-
neutral probability measure, M T t tP (S | S ,v )  is the 
corresponding conditional density given (St, vt) and: 
 

1 t t T M T t t T M T t t
K

P (S ,v , t;K,T) S P (S S , v )dS / E [S | S ,v ]
∞ 

=   
 
∫  

 
 Note that P1 is the risk-neutral probability that ST > 
K (since the integrand is nonnegative and the integral 
over [0, ∞) is one) and finally, that: 
 

2 t t M t t T T t t
K

P (S ,v , t;K,T) P (S ,v )dS Prob(S K | S ,v )
∞

= = >∫  

 
is the risk-neutral in-the-money probability. Moreover,

r(T t)
M T t t tE [S | S ,v ] e S for t 0−= ≥ . 

 Note that we do not have a formulation for these 
probabilities thus we will calculate some 
approximations of P1 and P2. Indeed, these probabilities 
are related to characteristic functions which have 
formulation as will be seen in Lemma 2.  
 

RESULTS 
 
 In order to calculate the price of a European call 
option with strike price K and maturity T of the model 
(7) for which its fractional stochastic volatility satisfies 
Eq. 8, we consider the approximate model (10) and 
(11). Firstly, we consider logarithm of tSε namely 

t t tL ,i.e. L log(S )ε ε ε=  where tSε  satisfies Eq. 12 (the 
solution of Eq. 10) and its inverse t tS exp(L )ε ε= . Denote 
k = log (K) the logarithm of the strike price. Secondly, 
we now refer to SDE (11), since this approximate 
model is driven by a semimartingale tBε  and hence 
there is no opportunity of arbitrage (for more details 
(Thao, 2006)). This is the advantage of our approximate 
approach and we will use this model for pricing the 
European call option instead of SDE (8). 
 Note that we can write: 
 

t t tdB dt dWε ε α= αϕ + ε   (16) 
 
where 

t 1
t u0

(t u ) dW , 1 / 2 Hε −αϕ = − + ε α = −∫  and 0< α < 
1/2 ((Thao, 2006), Lemma 2.1). 
 Substituting (16) into Eq. 11, we obtain: 
 

t t t t tdv ( ( )v )dt v dWε ε ε α ε= ω + αξϕ − θ + ξε  (17) 
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 Consider the SDE (10) and (17). Define a function 
U on 2ℜ  as follows: 
 

r (T t )
1 2 1U(x ,x ) e max(exp(x ),0).− −= − κ  

 
 By virtue of Eq. 14: 
 

( )M T t

r(T t)
M t t t

u(x, t) E U X X x

e E max(exp((L ) ),0) L ,v v

: C( ,v , t; ,T)

− − ε ε ε ε ε

ε ε

 = = 

 = − κ = = 

= κ

� �� �

ℓ

ℓ

 

 
satisfies the following PIDE: 
 

2
2

1 2 1 2

2 2
2

1 2 2 2

Y

C C C 1 C0 f f g
t v 2 ( )

C 1 Cg g g rC
v 2 (v )

C( y,v , t; ,T) C( , v , t; ,T) (y)dy.

ε ε ε

ε ε ε

ε ε ε ε

ℜ

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

∂ ∂+ρ + −
∂ ∂ ∂

 +λ + κ − κ φ ∫

ℓ ℓ

ℓ

ℓ ℓ

 

 (18) 

 
 In the current state variable, the last line of Eq. 15 
becomes: 
 

1
r(T t )

2

C( ,v , t; ,T) e P ( ,v , t; ,T)

e P ( ,v , t; ,T).

εε ε ε ε

κ− − ε ε

κ = κ

− κ

ℓ
ℓ ℓ

ℓ

  (19) 

 
 The following lemma shows the relationship 
between P1 and P2 in the option value of the Eq. 19. 
 
Lemma 1: The probability P1 in the option value of the 
Eq. 19 satisfies the following PIDE: 
 

3/ 21 1 1
1

M t 1

y
1 Y

1
1 1

P P P0 A[P ]( ,v , t; ,T) v (v )
t v

(r E (Y ))P

(e 1)P ( y, v , t; ,T) (y)dy

p: A [P ]( , v , t; ,T)
t

ε ε ε α ε
ε ε

ε ε

ℜ

ε ε

∂ ∂ ∂= + κ + + ρξε
∂ ∂ ∂

+ − λ

 +λ − + κ φ 

∂= + κ
∂

∫

ℓ
ℓ

ℓ

ℓ

 

(20) 

 
subject to the boundary condition at expiration time t = 
T: 
 

1P ( ,v ,T; ,T) 1 .ε
ε ε

>κ
κ =

ℓ
ℓ   (21) 

 
 And the probability P2 in the option value of the 
Eq. 19 satisfies the following PIDE: 

2
2

2
2 2

P0 ( , v , t; ,T) rP
t

P: A P ( ,v , t; ,T)
t

ε ε

ε ε

∂= κ +
∂

∂
 = + κ ∂

ℓ

ℓ

  (22) 

 
subject to the boundary condition at expiration time t = T: 
 

2P ( ,v ,T; ,T) 1 ε
ε ε

>κ
κ =

ℓ
ℓ   (23) 

 
Where: 
 

[ ]

( )

t

2

2

2 2
3/2 2 2 2

2

Y

1 fA f ( , v , t; ,T) : (r E[Y ] v )
2

f 1 f( )v v
v 2 ( )

f 1 f(v ) (v )
v 2 (v )

f ( y,v , t; ,T)
rf (y)dy

f ( ,v , t; ,T)

ε ε ε
ε

ε ε ε
ε ε

α ε α ε
ε ε ε

ε ε

ε ε
ℜ

∂κ = − λ −
∂

∂ ∂+ ω + αξϕ − θ +
∂ ∂

∂ ∂+ρξε + ξ ε
∂ ∂ ∂

 + κ
− + λ φ 

− κ  
∫

ℓ
ℓ

ℓ

ℓ

ℓ

ℓ

  (24) 

 
 Note that 1 1ε >κ

=
ℓ  if ε > κℓ  and otherwise1 0ε >κ

=
ℓ

. 
 
Proof: Calculating the partial derivatives of function 
C( , v , t; ,T)ε ε κℓ in Eq. 19 and substituting it’s in Eq. 18 
then separating it by assumed independent terms P1 and 
P2. This gives two PIDEs for the risk-neutralized 
probability jP ( ,v , t; ,T),ε ε κℓ j =1, 2. For j=1 we have: 
 

( )

1 1
M t 1

2
1 1 1

t 12

2 2
3/ 2 2 2 21 1 1

12

y
1

1

P 1 P0 r E (Y ) v P
t 2

P 1 P P( )v v 2 P
v 2 ( )

P P 1 P(v ) (v ) rP
v v 2 (v )

(e 1)P ( y, v , t;T)
(P ( y, v , t;T) P

ε
ε

ε ε ε
ε ε ε

α ε α ε
ε ε ε ε

ε ε

ε ε
ℜ

 ∂ ∂ = + − λ − +  ∂ ∂  

 ∂ ∂ ∂+ ω + αξϕ − θ + + + ∂ ∂ 

 ∂ ∂ ∂+ρξε + + ξ ε − ∂ ∂ ∂ ∂ 

− +
+λ

+ + −∫

ℓ

ℓ ℓ

ℓ

ℓ

ℓ 1

Y(y)dy
( y, v , t;T)ε ε

 
φ + ℓ

(25) 

 
subject to the boundary condition at the expiration time 
t = T according to Eq. 21. By using the notation in Eq. 
24 to PIDE (25) we get Eq. 20: 
 For 2P ( ,v , t; ,T),ε ε κℓ we have: 
 

 

2 2
2 M t

2
2 2

t 2

2 2
3/ 2 2 2 21 1

2

2
2 Y

2

P 1 P0 rP r E (Y ) v
t 2

P 1 P( ( )v ) v
v 2 ( )

P 1 P(v ) (v )
v 2 (v )

P ( y, v , t; ,T)
rP (y)dy

P ( y, v , t; , T)

ε
ε

ε ε ε
ε ε

α ε α ε
ε ε ε

ε ε

ε ε
ℜ

 ∂ ∂ = + + − λ −   ∂ ∂   

∂ ∂+ ω αξϕ − θ +
∂ ∂

∂ ∂+ρξε + ξ ε
∂ ∂ ∂

 + κ
− + λ φ 

− + κ  
∫

ℓ

ℓ

ℓ

ℓ

ℓ
 

(26) 
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subject to the boundary condition at expiration time t = 
T according to Eq. 23. Again, by using the notation (24) 
to PIDE (26) we get Eq. 22. The proof is now 
completed. 
 Next, an approximate formula of European call 
option is calculated. For j = 1, 2 the characteristic 
functions for jP ( ,v , t; ,T)ε ε κℓ  with respect to the 
variable k are defined by: 
 

ix
j jf ( , v , t : x,T) : e dP ( ,v , t : ,T)

∞
ε ε κ ε ε

−∞

= − κ∫ℓ ℓ  

 
with a minus sign to account for the negativity of the 
measure dPj . Note that fj also satisfies similar PIDEs: 
 

j
j j

f
A f ( , v , t; ,T) 0

t
ε ε∂

 + κ = ∂
ℓ

 
(27) 

 
with the respective boundary conditions: 
 

jxk
j j

ix ix

f ( ,v ,T;x,T) e dP ( , v ,T; ,T)

e ( ( )d ) e
ε

∞
ε ε ε ε

−∞

∞
κ ε

−∞

= − κ

= − −δ − κ κ =

∫

∫
ℓ

ℓ ℓ

ℓ

 

 
Since: 
 

jdP ( , v ,T : ,T) d1 dH( ) ( )dε
ε ε ε ε

>κ
κ = = − κ = −δ − κ κ

ℓ
ℓ ℓ ℓ  

 
 Note that the probabilities Pj, j = 1, 2 are the 
conditional probabilities that the option expires in-the-
money that is: 
 

j T t tP M{L logK | L ,v v}ε ε ε ε= ≥ = =ℓ  
 
where again t tL logSε ε=  and t t(S ,v )ε ε  evolves according 
to Eq. 10 and 11 respectively. 
  Using a Fourier transform method one gets: 
 

ix
j

j
0

e f ( ,v , t : x,T)1 1dP ( ,v , t : ,T) Re dx
2 ix+

− κ ε ε+∞
ε ε  

κ = +  π   
∫

ℓ
ℓ

 

(28) 

 
where, j = 1, 2 and the characteristic function 

jf ( ,v , t;x,T)ε ε
ℓ also satisfy the PIDEs in lemma 1, 

namely Eq. 20 and 22 and Re[.] denoting the real 
component of a complex number. The practice to 
solving of this kind of equations is to guess the general 
form of the solution. The following lemma shows how 

to calculate the probabilities P1 and P2 as they appeared 
in Lemma 1.  
 
Lemma 2: The probabilities P1 and P2 can be 
calculated by Eq. 28 where the explicit expressions of 
the characteristic functions is given as follows. (i) The 
characteristic function f1 is given by: 
 

j 1 1f ( ,v , t;x, t ) exp(g ( ) v h ( ) jx )ε ε ε ε+ τ = τ + τ +ℓ ℓ  
 
where, T tτ = − : 
 

1

1

1

1 M t M t

(ix 1)y
Y

1 1
1 12 2

1

2 2
1 1

1 2 2
1 1 1 1

1 t

g ( ) r E (Y ) jx E (Y )

(e 1) (y)dy

2 ( ) (1 e )log 1 ( ) ,
v 2

( )(e 1)h ( ) ,
v ( ( )e )

v (1 ix) ( )

+

ℜ

τ

α ε

∆ τ

∆ ταε ε

α ε ε

 τ = − λ − λ τ 

+τλ − φ

  ω +η + −− − + ∆ + η τ  ξ ε ∆   

η − ∆ −τ =
ξ ε η + ∆ − η − ∆

η = ρξε + + αξ − θ

∫
△

△

ℓ

 

and 2 2 2
1 1 ix(ix 1)α∆ = η − ξ ε +  

 
(ii) The characteristic function f2 is given by: 
 

( )2 2 2f , v , t;x, t exp(g ( ) v h ( ) ix r )ε ε ε ε+ τ = τ + τ + + τℓ ℓ  
 
Where: 
 

2

2

2

ixy
2 M t Y

2 2
2 22 2

2

2 2
2 2

2 2 2
2 2 2 2

2 t

g ( ) [r E [Y ]iy r] (e 1) (y)dy

2 ( ) (1 e )log 1 ( ) ,
v 2

( )(e 1)h ( ) ,
v ( ( )e )

v ix ( )

ℜ

∆ τ

α ε

∆ τ

∆ τα ε

α ε ε

τ = − λ − τ + τλ − φ

  ω ∆ + η + −− − + ∆ + η τ  ξ ε ∆   

η − ∆ −τ =
ξ ε η + ∆ − η − ∆

η = ρξε + αξϕ − θ

∫

 

and  2 2 2
2 2 v ix(ix 1)α ε∆ = η + ξ ε −  

 
Proof: Proof of (i). To solve for the characteristic 
explicitly, letting T tτ = −  be the time-to-go. Following 
(Heston, 1993), we conjecture that the function f1 is 
given by: 
 

( )1 1 1f ( ,v , t;x, t ) exp (g )( ) v h ( ) ixε ε ε ε+ τ = τ + τ +ℓ ℓ
 

(29) 
 
and the boundary condition g1(0) = 0 = h1(0). This 
conjecture exploits the linearity of the coefficient in 
PIDE (27). 
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 Note that the characteristic functions of f1 always 
exists. In order to substitute (29) into (27), firstly, we 
calculate the partial derivative of f1 and substitute it’s 
into Eq. 27. After canceling the common factor of f1, 
we get a simplified form as follows: 
 

1 1 M t

3/ 2
t 1

2 3/2 2 2 2 2
1 1

(ix 1)y
M t Y

10 g ( ) v h ( ) (r E [Y ] v )ix
2

( ( )v ) (v ) h ( )
1 1v x (v ) ixh ( ) (v ) h ( )
2 2
E [Y ] (e 1) (y)dy

ε ε

ε ε α ε

ε α ε α ε

+

ℜ

′ ′= τ − τ + − λ +

+ ω + αξϕ − θ + ρξε τ

− + ρξε τ + ξ ε τ

−λ + λ − φ∫

 

 
 By separating the order vε and ordering the 
remaining terms, we can reduce it to two Ordinary 
Differential Equations (ODEs): 
 

2 2 2
1 1

2
t 1

1h ( ) v h ( ) ( v (1 ix)
2

1 1( ))h ( ) ix x
2 2

α ε α ε

ε

′ τ = ξ ε τ + ρξε +

+ αξϕ − θ τ + −
 

(30) 

 
1 1 M t M t

(ix 1)y
Y

g ( ) h ( ) (r E [Y ])ix E [Y ]

(e 1) (y)dy+

ℜ

′ τ = ω τ + − λ − λ

+λ − φ∫
 

(31) 

 

 Let 1 tv (1 ix) ( )α ε εη = ρξε + + αξϕ − θ  and substitute 
it to Eq. 30.  
 
We get: 
 

2 2 2 1
1 1 12 2 2 2

2 2 2
1 12 2

1 2 2

2 2 2
1 1

1 2 2

2 2 1 1
1 12 2

1 2 1h ( ) v h ( ) h ( ) ix(ix 1)
2 v v

2 4 4 v ix(ix 1)1 h ( )
2 2 v

2 4 4 v ix(ix 1)
h ( )

2 v

1 v h ( ) h
2 v

α ε
α ε α ε

α ε
α

α ε

α ε

α ε

α ε
α ε

 η′ τ = ξ ε τ + τ + + ξ ε ξ ε 

 η + η − ξ ε +
 = ξ ε τ +
 ξ ε
 

 η − η − ξ ε +
 × τ +
 ξ ε
 

 η + ∆= ξ ε τ + ξ ε 

1 1
2 2( )

vα ε

 η − ∆τ ξ ε 

 

 
Where: 
 

2 2 2
1 1 v ix(ix 1)α ε∆ = η − ξ ε +  

 
 By method of variable separation, we have: 
 

 2 21

1 1 1 1
1 12 2 2 2

2dh ( ) v d
h ( ) h ( )

v v

α ε

α ε α ε

τ = ξ ε τ
  η + ∆ η − ∆τ + τ +  ξ ε ξ ε  

 

 Using partial fractions, we get: 
 

1
1 1 1 11

1 12 2 2 2

1 1 1 dh ( ) d
h ( ) h ( )

v vα ε α ε

 
 
 − τ = τ
 η − ∆ η + ∆∆ τ + τ + ξ ε ξ ε 

 

 
 Integrating both sides, we obtain: 
 

1 1
1 2

1
1 1

1 2

h ( )
vlog C

h ( )
v

ε ε

ε ε

 η − ∆τ + ξ α  = ∆ τ +
 η + ∆τ + ξ α 

 

 
 Using boundary condition 1h ( 0) 0τ = =  we get: 
 

1 1

1 1

C log
 η − ∆=  η + ∆ 

 

 
 Solving for h1, we obtain: 
 

1

1

2 2
1 1

1 2 2
1 1 1 1

( )(e 1)h ( )
c ( ( )e )

∆ τ

∆ τα ε

η − ∆ −τ =
ξ ε η + ∆ − η − ∆

 

 
 In order to solve g1 (τ) explicitly, we substitute h1 
into Eq. 31 and integrate with respect to T on both 
sides.  
 Then we get: 
 

1

1 M t t

(ix 1)y
Y

1 1
1 12 2

g ( ) (r E (Y ))ix E(Y )

(e 1) (y)dy

2 ( ) (1 e )log 1 ( )
v

+

ℜ

∆ τ

α ε

 τ = − λ − λ τ 

+τλ − φ

  ω ∆ + η + −− − + ∆ + η τ  ξ ε    

∫  

 
 Proof of (ii). The details of the proof are similar to 
case (i). Hence, we have: 
 

2 2 2f ( , v , t; y, t ) exp(g ( ) v h ( ) iy r )ε ε ε ε+ τ = τ + τ + + τℓ ℓ  
 
where, 2 2 2 2g ( ), h ( ), andτ τ η ∆ are as given in the 
Lemma. 
 We can thus evaluate the characteristic functions in 
explicit form. However, we are interested in the risk-
neutral probabilities Pj. These can be inverted from the 
characteristic functions by performing the following 
integration: 
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j t t j

ix
j t

0

P̂ (S ,v ;K,T) P ( ,v , t; ,T)

e f ( , v t;x,T)1 1 Re dx
2 ix

ε ε ε ε

− κ ε ε+∞

+

= κ

 
= +  

π   
∫

ℓ

ℓ  

 
for j = 1, 2, where t tlog(S ), v log(v ),ε ε ε ε= =ℓ and 

log(K).κ =  
 To verify the above equation, firstly we note that: 
 

tix (log(S log(K))
M t t t

ix( K)
M t t

E e log (S ) L ,v v

E e L ,v v

ε

ε

− ε ε ε ε

− ε ε ε ε

 = =
 

 = = =
 

ℓ
ℓ

 

 
 The computation of the right of above equation are: 
 

ix( ) ix ix
j j

ix ix ix
j

e dP ( ,v , t; ,T) e e dP ( ,v , t; ,T)

e e ( ( )d ) e f ( , , t;x,T)

ε ε

ε

+∞ +∞
− −κ ε ε − κ − ε ε

−∞ −∞

+∞
− κ ε − κ ε

−∞

κ = κ

= −δ − κ κ = ε

∫ ∫

∫

ℓ ℓ

ℓ

ℓ ℓ

ℓ ℓ

 

 
Then: 
 

t

i x
j t

0

ix (log(S ) log( ))
M t t t

0

ix( )

M t t
0

M t
0

e f ( ,v t;x,T)1 1 Re dx
2 ix

E [e log(S ) L ,v v ]1 1 Re dx
2 ix

1 1 eE Re dx L ,v v
2 ix

1 1 sin x( )E dx L
2 x

ε

ε

− ∞ ε ε+∞

+

− κ ε ε ε ε+∞

+

+∞ −κ
ε ε ε ε

+

+∞ ε
ε

+

 
+  

π   

 = =
= +  

π   

  
= + = =  

π    

− κ= + =
π

∫

∫

∫

∫

ℓ

ℓ

ℓ

ℓ
ℓ t

M t t
0

M t t

M t t

,v v

1 1 sin(x)E sg n( ) dx L ,v v
2 x

1E sg n( ) L v ,v v
2

E 1 L ,v vε

ε ε ε

+∞
ε ε ε ε ε

+

ε ε ε ε ε

ε ε ε ε
≥κ

 
= 

 

 
= + κ − κ = = π 

 = + − κ = = 
 

 = = = 

∫

ℓ

ℓ

ℓ

ℓ

 

 
where we have used the Dirichlet formula

sin(x)dx 1
x

+∞

−∞
=∫  and the sgn function is defined as sgn

sgn(x) 1= if x 0> , 0 if x 0= and and 1−  if x 0< .  
 In summary, we have just proved the following 
main theorem. 
  
Theorem 3: For each ε > 0; the value of a European 
call option written on the model (10) and (11) is: 

t t t 1 t t

r (T t )
2 t t

ˆ ˆC(S ,v , t,K,T) S P (S ,v , t,K,T)
ˆKe P (S ,v , t,K,T)

ε ε ε ε ε

− − ε ε

=

−
 

 
where, P1 and P2 are as given in Lemma 2. 
 

DISCUSSION 
 
 A simple and efficient numerical scheme for 
determining the approximate process tSε and tvε is 
presented. 
 In order to compute the value of t tĈ(S ,v , t;K,T)ε ε

according to the formula as given in Theorem 3, we 
firstly choose a real number 0ε > , the solution that we 
get is the value of a European call option of the 
approximation model (10) with (11) and this value can 
be used as an approximating value of a call option of 
the fractional model (7) including model (8) as ε 
approaches zero. As the Monte-Carlo based technique, 
it will generate discrete sample values iSε and ivε of the 
stock and its variance respectively, by discretizing the 
associated SDEs (10) and (11). A natural choice for this 
purpose is the Euler scheme: 
 

i 1 i 1 M i i t i i i

i 1 i i i

ˆ ˆ ˆS S ((r E [Y ])dt v W ) S Y N

ˆ ˆ ˆv ( v )h v B

ε ε ε ε
+ + −

ε ε ε ε
+

= − λ + ∆ + ∆

= ω − θ + ξ ∆  
(32) 

 
Where: 
∆Wt = Standard normal random variable with variance 

h, which is defined as the time mesh-size 
∆Ni = A Poisson process with intensity λh 
 
 These processes, W and N are assumed 
independent. However, (Glasserman, 2004) suggests 
that the second-order scheme has a better convergence 
(less bias) for option pricing applications but this 
scheme quite complex. For the simulation of Brownian 
motion there are numerous procedures see (Glasserman, 
2004). For a sample path of fractional Brownian motion 
in Eq. 10, we can be simulated, for fixed t > 0, as: 
 

t t
N N

N

t (k 1) k
k 1

N

(k 1) k
k 1

N

k
k 1

kB (t t) [W W ]
N

k t(t t) [W W ]
N N

t k(t t) g
N N

α
+

=

α
+

=

α

=

− −

= − −

= −

∑

∑

∑

≃

 

 
where, kg N(0,1) and 0 1/ 2.< α <∼  
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 There are two basic estimation of the volatility 
process of Eq. 32 in the cast the volatility process is 
constant. The first method considers the function of 
density of transition from solution of Eq. 32. The 
second method proposes the estimate of the parameters 
of the model via the observation. Khaled and Samia 
(2010) for more details). In our case, the volatility of 
Eq. 32 is the stochastic process. There are many articles 
provided the estimation procedure for example see 
(Fiorentini et al., 2002).  
 

CONCLUSION 
 

 An alternative fractional stochastic volatility model 
with jump is proposed in this study which the stock 
prices follows a geometric Brownian motion combining 
a compound Poisson processes and a stochastic 
volatility perturbed by a fractional Brownian motion. 
This proposed model exhibits a long memory of a 
stochastic volatility model that is not expressed in the 
classical stochastic volatility model. By using a 
fundamental result of the L2-approximation of a 
fractional Brownian motion, we provide an 
approximate solution of bivariate diffusion model. A 
relationship between stochastic differential equations 
and partial differential equations for a bivariate model 
is presented. The risk-neutral method for valuation of 
options are reviewed. By using the technique base on 
the characteristic function of an underlying assets, an 
approximate formula of a European options is derived 
in an explicit formula. Finally a numerical integration 
technique to simulation the fractional stochastic 
volatility are present.  
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1. Introduction 

Let  , ,F P be a probability space. A stochastic process tL  is a Lévy process if it has independent 

and stationary increments and has a stochastically continuous sample path, i.e. for any 0,   

 
0

lim 0t h t
h

P L L 


   . The simplest possible Lévy processes are the standard Brownian motion tW , 

Poisson process ,tN  and compound Poisson process
1

t
N

i

i

Y


  where iY  are i.i.d. random variables. Of 

course, we can build a new Lévy process from known ones by using the technique of linear 

transformation. For example, the jump diffusion process 
1

,
t

N

t i

i

t W Y 


   where ,  are constants, is a 

Lévy process which comes from a linear transformation of  two independent Lévy processes, i.e. a 

Brownian motion with drift and a compound Poisson process. 

Assume that a risk-neutral probability measure Q  exists and all processes in section 1 and  2 

will be considered under this risk-neutral measure.  

In the Black - Scholes model, the price of a risky asset tS   under a risk-neutral measure Q  

and with non dividend payment follows  

  21
0 0 2

exp( ) exp ,t t tS S L S rt W t          

(1.1) 

where r  is a risk-free interest rate,   is a volatility coefficient of the stock price. 

Instead of modeling the log returns  21

2t tL rt W t     with a normal distribution, we now 

replace it with a more sophisticated process tL  which is a Lévy process of the form 

 21

2
,t t tL rt W t J           (1.2) 

where tJ denotes a pure Lévy jump component, (i.e. a Lévy process with no Brownian motion part).  

We assume that the processes tW  and tJ are independent.   

                                                           
1 This research is (partially) supported by the Thailand Research Fund. 
2 Corresponding author. E-mail address: pairote@sut.ac.th (P.Sattayatham). 
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To incorporate the volatility effect to the model Eq. (1.2), we follow the technique of Carr and 

Wu (2004) by subordinating a standard Brownian motion component 21

2tW t   and a pure jump 

Lévy process 
tJ  by the time integral of a mean reverting Cox Ingersoll Ross (CIR) process 

0

t

t sT v ds  , 

where  
tv   follows the CIR  process   

(1 ) .v

t t v t tdv v dt v dW                  (1.3) 

Here  v

tW   is a standard Brownian motion which corresponds to the process
tv . The constant     is 

the rate at which the process 
tv  reverts toward its long term mean  and 0v   is the volatility 

coefficient of the process
tv .    

Hence, the model (1.2) has been changed to  

 21

2t tt T t TL rt W T J                    (1.4) 

and this new process is called a stochastic volatility Lévy process. One can interpret  tT  as the 

stochastic clock process with activity rate process
tv . By replacing tL  in (1.1) with 

tL , we obtain a 

model of an underlying asset  under the risk-neutral measure Q with stochastic volatility  as follows: 

 21
0 0 2

exp( ) exp( ).
t tt t T t TS S L S rt W T J                      (1.5) 

In this paper, we shall consider the problem of finding a formula for European call options based on 

the underlying asset model (1.5) for which the constant interest rates r  is replaced by the  stochastic 

interest rates ,tr i.e. the model under our consideration is given by 

  21
0 2

exp .
t tt t T t TS S rt W T J                                      (1.6) 

Here, we assume that rt  follows the Hull-White process 
 

( ( ) ) ,r

t t r tdr t r dt dW                   (1.7) 

  r

tW  is a standard Brownian motion with respect to the process ,tr  and 0r

t tdW dW  . The constant 

   is the rate at which the interest rate reverts toward its long term mean, 0r   is the volatility 

coefficient of the interest rate process (1.7), ( )t  is a deterministic function, and is well defined in a 

time interval  0,T . We also assume that the interest rate process tr  and the activity rate process tv  

are independent. 

The problem of option pricing under stochastic interest rates has been investigated for along 

time. Kim (2001) constructed the option pricing formula based on Black-Scholes model under several 

stochastic interest rate processes, i.e., Vasicek, CIR, Ho-Lee type. He found that by incorporating 

stochastic interest rates into the Black-Scholes model, for a short maturity option, does not contribute 

to improvement in the performance of the original Black-Scholes’ pricing formula.  Brigo and 

Mercurio (2006, page 883) mention that the stochastic feature of interest rates has a stronger impact 

on the option price when pricing for a long maturity option. Carr and Wu (2004) continue this study 

by giving the option pricing formula based on a time-changed Levy process model. But they still use 

constant interest rates in the model. 

In this paper, we give an analysis on the option pricing model based on a time-changed Levy 

process with stochastic interest rates.  
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The rest of the paper is organized as follows. The dynamics under the forward measure is 

described in section 2. The option pricing formula is given in section 3.  Finally, the close form 

solution for a European call option in terms of the characteristic function is given in section 4. 
 

2.  The dynamics under the Forward Measure 

We begin by giving a brief review of the definition of a correlated Brownian motion and some 

of its properties (see Brummelhuis (2008) page 70). Recalling that a standard Brownian motion in 
nR is a stochastic process 

0( )t tZ 
 whose value at time t  is simply a vector of n  independent Brownian 

motions at t : 

                                                1, ,( ,... ).t t n tZ Z Z  

We use Z instead of ,W  since we would like to reserve the latter for the more general case of 

correlated Brownian motion, which will be defined as follows:  

Let 1 ,( )ij i j n     be a (constant) positive symmetric matrix satisfying 1ii   and 1 1.ij    

By Cholesky’s decomposition theorem, one can find an upper triangular n n  matrix ( )ijh 
 
such 

that  ,t   where  
t  is the transpose of the matrix .  Let 1, ,( ,... )t t n tZ Z Z  be a standard Brownian 

motion as introduced above, we define a new vector-valued process 1, ,( ,..., )t t n tW W W   by 
 t tW Z   

or, in term of components, 

                   , ,

1

,  1,..., .
n

i t ij j t

j

W h Z i n


   

The process 0( )t tW   is called a correlated Brownian motion with a (constant) correlation matrix  .  

Each component-process , 0( )i t tW   is itself a standard Brownian motion.  Note that if Id   (the 

identity matrix) then tW  is a standard Brownian motion.  For example, if we let a symmetric matrix  

1 0

1 0

0 0 1

v

v



 

 
 


 
  

 .            (2.1) 

Then   has a  Cholesky decomposition of the form THH   where H  is an upper triangular matrix  

of the form 

21 0

0 1 0

0 0 1

v v

H

  
 

  
 
  

. 

Let tZ  ( , , )r

t t tZ Z Z   be three independent Brownian motions then ( , , )r

t t t tW W W W  defined by 

t tW Z  , or in terms of  components, 

2 ( 1 ) , , ,r r

t v t v t t t t tW Z Z W Z W Z                       (2.2) 

is  a correlated Brownian motion with correlation matrix   as given in Eq. (2.1). 

Now let us turn to our problem.  Note that, by Ito’s lemma, the model (1.6) has the dynamic given by 
* ,

( ( ) ) ,

(1 ) ,

t tt t t t T t T

r

t t r t

v

t t v t t

dS S r dt S dW S dJ

dr t r dt dW

dv v dt v dW



  

 

    

  

  

                    (2.3) 

where * ( 1 ),Tt

t t t

J

T T TdJ dJ e J


     0r r v

t t t tdW dW dW dW  , and v

t t vdW dW dt .  
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We can re-write the system (2.3) in terms of three independent Brownian motions ( , , )r

t t tZ Z Z  as 

follows:  

  2 *1 ,
t t t

v

t t t t v T v T t TdS S r dt S dZ dZ S dJ                        (2.4) 

( ( ) ) ,r

t t r tdr t r dt dZ               (2.5) 

(1 ) .v

t t v t tdv v dt v dZ              (2.6) 

This decomposition makes it easier to perform a measure transformation. In fact, for any fixed 

maturity T, let us denote by TQ  the T-forward measure, i.e. the probability measure that is defined by 

the Radon-Nikodym derivative,  

         0

exp

.
(0, )

T

uT
r du

dQ

dQ P T

 
 
 




                                   (2.7) 

Here, ( , )P t T  is the price at time t  of a zero-coupon bond with maturity T   and is defined as 

( , ) |

T

s
t

r ds

Q tP t T E e F
   

 
.                       (2.8) 

We denote (0, )f t  to be the market instantaneous forward rate at time 0 for the maturity time 0t   and 

it is defined by 

(0, ) : ln (0, ),    0 .f t P t t T
t


   


                      (2.9) 

 Poulsen (2005) gave a relation between the coefficients of Eq. (2.5) and the forward rate (0, )f t  as 

follows: 

  
2

2(0, )
( ) (0, ) 1 .

2

trf t
t f t e

t


 




   


                                (2.10) 

Lemma 1     The process 
tr  which satisfies the dynamic in (2.5) can be written in the form 

( ),    0 ,t tr x t t T                      (2.11) 

where the process 
tx  satisfies 

0, 0r

t t r tdx x dt dZ x     .              (2.12) 

Moreover, the function   is deterministic, well defined in the time interval [0,T], and satisfies  

 
2

2

2
( ) (0, ) 1

2

trt f t e 




   .                       (2.13) 

In particular, 0(0) .r    

Proof    To find a solution of  SDE (2.5), we let  ( , ) .tg t r e r  By using  Ito’s Lemma, we have 

( ) .t t t r

t r tdg de r t e dt e dZ                             (2.14) 

Integrating on both sides of the above equation from 0 to t, we obtain    

           
( ) ( )

0

0 0

( ) .

t t

t u t u t r

t r ur r e u e du e dZ                                         (2.15) 

Substituting the value of ( )t  from Eq. (2.10) into (2.15), we have 

 
2

2 ( ) ( )

0

0 0

(0, )
 (0, ) 1 .

2

t t

t u t u t u rr

t r u

f u
r r e f u e e du e dZ

u

   
 



      
      

 
              (2.16) 

Applying integration by parts formula to Eq. (2.16) and after simplifying, we obtain                             
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 
2

2
( )

0 2

0

(0, ) (0,0) 1 .
2

t

t t t t u rr
t r ur r e f t f e e e dZ   




                                 (2.17) 

By using the definition of t  from  Eq. (2.13), we can write Eq.(2.17) into a compact form as follows: 

( ) ( )

0

0 0

(0,0) ( ) ( ) ,

t t

t t t u r t u r

t r u r ur r e f e t e dZ t e dZ                               (2.18) 

because of 
0 (0,0)f r , see Andrew(2004)  page 89. 

Note that the solution of Eq. (2.12) is 

                                           ( ) ( )

0

0 0

t t

t t u r t u r

t r u r ux x e e dZ e dZ           .                                  (2.19) 

Hence,  ( ) ,t tr t x   0 .t T    The proof is now complete.  

Now we are ready to calculate the Radon-Nikodym derivative as appears in Eq. (2.7).  By virtue of 

Lemma 1, .t t tr x   Substituting 
tr   and 

0

(0, ) exp (0, )

T

P T f u du 
 
 
 
  into Eq. (2.7), one gets  

 
2

2
( )

2

0 0

exp 1
2

T TT
T ur

u

dQ
x du e du

dQ





 
 

    
 
  .                             (2.20) 

 Stochastic integration by parts implies  

 
0 0 0

T T T

u T u ux du Tx udx T u dx      .                (2.21) 

By substituting the expression for 
udx from Eq.(2.12), we have 

 
0 0 0

( ) ( )

T T T

r

u u r uT u dx T u x du T u dZ         .                         (2.22) 

Moreover, by substituting the expression for 
ux  from Eq. (2.19) into the right hand side of Eq. (2.22), 

one gets  

( )

0 0 0

( ) ( ) .

T T u

u s r

u r uT u x du T u e dZ du   
 

     
 

                                (2.23) 

Using integration by parts, we have  

 ( ) ( )

0 0 0 0

( ) 1 ( ) .

T u T T

u s r T u r rr

r u u r uT u e dZ du e dZ T u dZ 
 



   
   

         
   
                                (2.24) 

Substituting Eq. (2.24) into (2.22) and Eq. (2.21) becomes 

      

 ( )

0 0

1 .

T T

T u rr

u ux du e dZ



 
 

   
 

               (2.25) 

Substituting Eq. (2.25) into (2.20), we obtain 

   
2

2
( ) ( )

2

0 0

exp 1 1
2

T TT
T u r T ur r

u

dQ
e dZ e du

dQ

  

 

   
 

     
 

  .                      (2.26) 

Hence, by Girsanov’s theorem, the three processes ,rT vT

t tZ Z  and T

tZ defined by 

    ( )1 ,  , ,rT r T t vT v Tr

t t t t t tdZ dZ e dt dZ dZ dZ dZ



                           (2.27) 
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are three independent Brownian motions under the T-forward measure TQ . Therefore, the dynamics 

of ,t tr v and 
tS under TQ are given by 

 

 2 *1 ,
t t t

vT T

t t t t v T v T t TdS S r dt S dZ dZ S dJ                              (2.28) 

 

 
2

( )( ) 1 ,T t rTr

t t r tdr t r e dt dZ
  



  
     
 

          (2.29) 

 
(1 ) .vT

t t v t tdv v dt v dZ                (2.30) 

3. The Pricing of a European Call Option on the Given Asset  

Let [0, ]( )t t TS   
be the price of a financial asset modeled as a stochastic process on a filtered probability 

space  , , , ,T

tF F Q and 
tF  is usually taken to be the price history up to time t .  All processes in this 

section will be defined in this space. We denote C the price at time t of a European call option on the 

current price of an underlying asset tS with strike price K  and expiration time .T   

The terminal payoff of a European option on the underlying stock 
tS   with strike price K  is 

max( ,0)TS K .             (3.1) 

This means the holder will exercise his right only TS K   and then his gain is .TS K  Otherwise,  if 

TS K then the holder will buy the underlying asset from the market and the value of the option is 

zero. 

We would like to find a formula for pricing a European call option with strike price K  and 

maturity T based on the model (2.28) - (2.30). Consider a continuous-time economy where interest 

rates are stochastic and the price of the European call option at time t under the T-forward measure 
TQ  is 

   

 

*

*

0

( , , , ; , ) ( , ) max ,0 | , ,

                            ( , ) max ,0 ( | , , ) .

T

T

t t t T t t tQ

T T t t t TQ

C t S r v T K P t T E S K S r v

P t T S K p S S r v dS



 

   

 

Here TQ
E  is the expectation with respect to the T-forward probability measure, TQ

p  is the 

corresponding conditional density given  , , ,t t tS r v  and *P is a zero coupon bond which is defined by 

*( , ) : exp |T

T

s tQ

t

P t T E r ds F
  

   
   

 .                     (3.2) 

With a change in variable  ln ,t tX S  

 

   

   

 

*

*

1 2

*

( , , , ; , ) ( , ) max ,0 | , , ,

                            P , , , ; , ( , )P , , , ; ,  

                            Pr ln | , , ( , ) Pr ln |

T
T

t

t

X

t t t T t t t TQ

X

t t t t t t

X

T t t t T t

C t S r v T K P t T e K p X X r v dX

e t X r v T K KP t T t X r v T K

e X K X r v KP t T X K X





 

 

   



 , , ,    t tr v

 

   

          (3.3) 

where those probabilities in Eq. (3.3) are calculated under the probability measure .TQ  

The European call option for log asset price ln ,t tX S  will be denoted by 

   *

1 2
ˆ( , , , ; , ) P , , , ; , ( , )P , , , ; , ,tX

t t t t t t t t tC t X r v T e t X r v T e P t T t X r v T               (3.4) 
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where   ln K   and     P , , , ; ,  :=  P , , , ; , ,    1,2.j t t t j t t tt X r v T t X r v T K j   

Note that we do not have a closed form solution for these probabilities.  However, these probabilities 

are related to characteristic functions which have closed form solutions as will be seen in Lemma 4. 

Next, consider a continuous-time economy where interest rates are stochastic and satisfy Eq. 

(2.29).  Since the SDE in Eq. (2.29) satisfies all the necessary conditions of Theorem 32, see Protter 

(2005)  page 238, then the solution has  Markov property.  As a consequence, the zero coupon bond 

price at time t under the forward measure TQ  in Eq. (3.2) satisfies  

*( , ) exp | .T

T

s tQ

t

P t T E r ds r
  

   
   

                         (3.5) 

Note that *( , )P t T  depends on 
tr  then it becomes a function ( , )tF t r  of .tr  This means that the 

calculation of *( , )P t T  can now be formulated as a search for the function ( , ).tF t r  

Lemma 2   The price of a zero coupon bond can be derived by computing the expectation (3.5). We 

obtain 

 *( , ) exp ( , ) ( , ) tP t T a t T b t T r                  (3.6) 

where   ( )1
( , ) e 1 ,T tb t T 



    
2*

2 2

*

3(0, )
( , ) (0, ) ( , ) ln ( , ) 1 .

4(0, )

trP T
a t T f t b t T b t T e

P t





 
        

 
 

        

. 

 Proof     Under the T-forward measure ,TQ  the interest rate is given by Eq. (2.29). The specification 

of the interest rate means that the model (2.29) belong to the affine class of interest rate models. Thus 

the bond price at time t with maturity T is of the form Eq. (3.6) where ( , )a t T  and ( , )b t T are functions 

to be determined under the condition ( , ) 0a T T  and ( , ) 0b T T  . We will now find explicit formulas 

for the functions ( , )a t T and ( , )b t T in Eq. (3.6).  

The zero coupon bond price  PDE satisfies (the proof is similar to Privault (2008) Prop. 4.1) 

 
22

( ) 2

2

( , ) ( , ) ( , )1
( ) 1 ( , ) 0

2

T tt t tr

t r t t

t t

F t r F t r F t r
t e r r F t r

t r r


  



    
       

   
.                    (3.7) 

Note that ( , )tF t r = *( , )P t T .  We substitute the value ( , )tF t r from (3.6) into the above equation and 

after canceling some common factors, we have

 

     

  
2

( ) 2 2( , ) ( , ) 1
( ) 1 ( , ) ( , ) 0.

2

T tr

t t r t

a t T b t T
r t e r b t T b t T r

t t


  



    
         

    
 

We can reduce it to two ordinary differential equations 
 

           
 

2 2

2 ( )( , )
( , ) ( ) 1 ( , ) 0,

2

T tr ra t T
b t T t e b t T

t

 




  
     

  
                 (3.8) 

                                      
   

( , )
( , ) 1 0,

b t T
b t T

t



  


             (3.9) 

with boundary conditions  ( , ) 0, ( , ) 0.a T T b T T       

Firstly, we note that the solution of Eq. (3.9) which satisfies the boundary conditions ( , ) 0b T T   is  

 ( )1
( , ) e 1 .T tb t T 



                           (3.10) 

Secondly, we try to solve Eq. (3.8).  Note that  

 
( , )

( , ) ( , ) ( , ) ( , )

T
u T

u t

t

a u T
du a u T a T T a t T a t T

u






    

 .                   (3.11) 
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 Thus 

 
2

23
( , ) ( , ( ) ( , ) .

2

T T

r

t t

a t T b u T du u b u T du



 

  
 

                            (3.12) 

It follows from Eq. (2.9) and (3.6) that the forward rate at time 0 with the maturity T can be written as 

 

*

0

(0, ) (0, )
(0, ) ln (0, )

a T b T
f T P T r

T T T

  
    

  
.                       (3.13) 

 

Differentiate (0, )a T with respect to T and using ( , ) 0,a T T   ( , ) 0b T T  , we obtain from Eq. (3.12) 

that  

    2

0 0

(0, ) ( , ) ( , )
3 ( , )   ( ) .

T T

r

a T b u T b u T
b u T du u du

T T T
 

  
 

     

Substituting the value of ( , )b u T from Eq. (3.10) into the above equation and after some calculations, 

we get 

 

 
 

2
2

( )

2

0

3(0, )
e 1 e ( ) .

2

T
r T T ua T

u du
T

 





  
  

   

Now substitute the value of 
(0, )a T

T




and the value of 

(0, )b T

T




into Eq. (3.13), we have 

   
2

2
( )

02

0

3
(0, ) e 1 e ( ) e .

2

T

T T u Trf T u du r  




                  (3.14) 

To isolate ( ),T  we differentiate (0, )f T with respect to T  and get 

 
2

2 ( )

0

0

3(0, )
e e e ( ) e ( ) .

T

T T T T urf T
r T u du

T

   
   



    
  

          
  

Using  Eq. (3.14) to rewrite the above equation and after simplifying , we get 

 
2

23(0, )
( ) (0, ) e 1

2

Trf T
T f T

T


 




   


.             (3.15) 

Next, we shall find a formula for ( , )a t T  in Eq. (3.12).   Note that  

              

 
2 2

2 23 3 1 1
( , ) ( , ) ( , ) ,

2 2 2

T

r r

t

b u T du b t T b t T T t
 

 

 
     

 
                   

and

 
 

2

23(0, )
(0, ) e 1

2
( ) ( , ) ( , )Tr

T T

t t

f T
f T

T
u b u T du b u T du




 
  



 
  

 
   

2 2

2 ( ) ( ) 2

2 3

3 3
(0, ) ( , ) (0, ) ( ) e 2e 2e e 2 .

2 4

T

T T t T t tr r

t

f t b t T f u du T t     

 

                  

Therefore 
2

2 23
( , ) (0, ) ( , ) (0, ) ( , )(1 ).

4

T

tr

t

a t T f t b t T f u du b t T e 



      

By definition, 0
(0, )

*(0, ) .

T

f u du

P T e
   Thus

  

*

*

(0, )
(0, ) ln

(0, )

T

t

P T
f u du

P t

 
   

 
 . 

Finally, we have 
2*

2 2

*

3(0, )
( , ) (0, ) ( , ) ln ( , )(1 ).

4(0, )

trP T
a t T f t b t T b t T e

P t





 
     

 
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The proof is now complete.  

The following lemma shows the relationship between 
1P  and

2P in the option value of Eq. (3.4). 

Lemma 3.    The functions 1P  and 2P  in the option values of Eq. (3.4) satisfy the PIDEs:

  

21 1 1

1

1 1

1
0 [ ]

2

 ( 1) ( , , , ; , ) ( , , , ; , ) ( )

v v

y

P P P
A P v v

t x v

v e P t x y r v T P x t r v T k y dy

   

 




  
   
  

    
 

          (3.16) 

and subject to the boundary condition at expiration t= T ,
 1( , , , ; , ) 1 .xP T x r v T                     (3.17)         

Moreover, 2P  satisfies the equation                     

 

2
22 2 2

2 2

2

2

2

( , ) ( , )
0 [ ] ( , )

2

3
     ( , ) ( ) ( , )

2

r

r

P P Pv a t T b t T
A P b t T r P

t x r t t

b t T r t r b t T P





 

     
      

     

 
    
 

                   (3.18) 

and subject to the boundary condition at expiration t= T,
 2 ( , , , ; , ) 1 .xP T x r v T                       (3.19) 

Here, for i=1,2, 

      

 

 

2 2 22 2
( )

2 2

22

2

[ ] ( ) 1 (1 )
2 2

( , , , ; , ) ( , , , ; , ) ( 1) ( ) .
2

T ti i i v i ir
i

yi i ir

v v i i

P P P v P Pv
A P r t r e v

x r v v x

P P P
v v P t x y r v T P x t r v T e k y dy

v x xr

  
  




    

 





     
         

     

    
              



       (3.20) 

Note that  1 1x    if x   and zero otherwise. We assume that the jump kernel k(y) exists. 

Proof.  See Appendix.     

 

 

4.   The Closed-Form Solution for European call options 

For  j =1,2,  the characteristic function for ( , , , ; , )jP t x r v T  , with respect to the variable  , are defined 

by 

( , , , ; , ) : ( , , , ; , ),iu

j jf t x r v T u e dP t x r v T 




                                   (4.1) 

with a minus sign to account for the negativity of the measure jdP .  Note that jf  also satisfies similar  

PIDEs 

( , , , ; , ) 0,
j

j j

f
A f t x r v T

t



   

                        (4.2) 

with the respective boundary conditions 

( , , , ; , ) ( , , , ; , ) ( ( )) .iu iu iux

j jf T x r v T u e dP t x r v T e x d e    
 

 

         

The following lemma shows how to calculate the characteristic functions for 1P  and 2P as they 

appeared in Lemma 3.  
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Lemma 4   The functions 
1P  and 

2P can be calculated by the inverse Fourier transformations of the 

characteristic function, i.e.

 

0

( , , , ; , )1 1
( , , , ; , ) Re ,

2

iu

j

j

e f t x r v T u
P t x r v T du

iu










 
   

  
  

for 1,2,j   with Re[.] denoting the real component of a complex number.   

By letting T t   ,  the characteristic function 
jf  is given by  

 *( , , , ; , ) exp ( ) ( ) ( ) ( 1) ln ( , ) ,j j j jf t x r v t u iux B rC vE j P t t             

where   1 2 2 2,j j j j j jb b b b    , 2

2 0 14j j jb b b   , 
22 ,v vb iu     

   
2 2

2

1 21

3(0, )
, 1 , ( ) (0, ) e 1 ,

2 2

tv r

v v

f t
b b iu t f t

t

 
    




       


 

   
2

2

01 1 2

1
( 1) ( ) ,  ( ) (1 ), ( ) 1 ,

2

iux y y iu iu
b iu u e iu e k y dy C e C e 

 
 



 




          

             

 
 
 

2
1 22

02

1 1 2

1
( ) ( 1) ( ) ,  ( ) ,

2 2

j

j

j jiux y

j

j j

e b b
b iu u e iu e k y dy E

b b e b















      


  

  
 22 22

2 2 1 21 11 21 1

1 1 3

1 121 11

( ) ( ) ( ) 2 2 1 ln ,
2 2 22

T

r

T

b b b b bu iu
B t C T t dt e

b be b b






  
  

 



     
          

   


 

 
  

 

2 2
2

22 2
2 2 3

1

2

22 12 22 12

1 22 12

1 1 ( 1)
( ) ( ) ( ) 2 2 1

2 22

          ln .
2

T

r

T

iu biu
B t C T t dt e

b

b b b b

b e b b







  
  









  
        

 

  
  

 


 

Proof.     To solve the characteristic function explicitly, letting  T t    be the time-to-go, we 

conjecture that the function 1f  is given by 

 1 1 1 1( , , , ; , ) exp ( ) ( ) ( )f t x r v t u iux B rC vE        ,              (4.3)  

and the boundary condition
  1 1 1(0) (0) (0) 0B C E   . This conjecture exploits the linearity of the 

coefficient in PIDEs (4.2).   Note that the characteristic function of  1f  always exists.  In order to 

substitute Eq. (4.3) into (4.2), firstly, we compute 

 1 1 1 1

1 1 1 1 1 1 1 1 1( ) ( ) ( ) , , ( ) , ( ) ,
f f f f

B rC vE f iuf C f E f
t x r v

    
   

        
   

 

                                               

2 2 2 2

2 2 21 1 1 1

1 1 1 1 1 1 12 2 2
, ( ) , ( ) , ( ) ,

f f f f
u f E f C f iuE f

v xx v r
  

   
    

   
 

                                                       1 1 1( , , , ; , ) ( , , , ; , ) ( , , , ; , ).iuxf t x y r v t u f t x r v t u e f t x r v t u         

Substituting all the above terms into Eq. (4.2), after cancelling the common factor of 1f , we get a 

simplified form as follows:

  

   

  
 

   

2 22

2

1 1 1

2 2

( ) 2

1 1 1 1 1 1

0 ( ) ( ) 1 ( ) ( 1) ( )
2 2

   ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) .
2

iux y yv

v v

T tr r

iu u
v E E iu E e iu e k y dy

B t e C E C r C iu C


     

 
        









 

 
              
 

  
              

  


 

By separating the order ,r v  and ordering the remaining terms, we can reduce it to three ordinary 

differential equations (ODEs) as follows: 
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1 1( ) ( ) ,C C iu                                     (4.4) 

   
2 2 2

2

1 1 1

( )
( ) ( ) 1 ( ) ( 1) ( ) ,

2 2

iux y yv

v v

iu u
E E iu E e iu e k y dy

 
     








                   (4.5) 

 
2 2

( ) 2

1 1 1 1( ) ( ) 1 ( ) ( ) ( ).
2

T tr rB t e C C E 
     



  
      

 
           (4.6) 

It is clear from Eq. (4.4) and (0) 0C   that
    1( ) (1 ).

iu
C e 



                         (4.7) 

Let    
 2 2

0 ( 1) ( ) ,
2

iux y y
iu u

b e iu e k y dy
 






     

2

1
2

vb


  and   2 1 .v vb iu        

Substitute these constants into Eq. (4.5), one gets     

 

 

  
2 2

2 2 0 1 2 2 0 1

1 1

4 42 02

1 1 1 1 1 1 12 2

1 1

( ) ( ) ( ) ( ) ( ) .
b b b b b b b b

b b

bb
E b E E b E E

b b
    

                   
 

By method of variable separation, we have 

  
2 2

2 2 0 1 2 2 0 1

1 1

1
1

4 4

1 12 2

( )
.

( ) ( )
b b b b b b b b

b b

dE
b d

E E




 
     



 

 

Using partial fraction on the left hand side, one obtains 

2 2
2 2 0 1 2 2 0 1

1 1
1 1

21 1
1 2 0 1

4 4
( ) ( )

2 2

( ) 4 .
b b b b b b b b

E E
b b

dE b b b d
 

 
            
   
   

 
 

   
 
 

 

Integrating both sides, we obtain 
2

2 2 0 1

1

2
2 2 0 1

1

4

1 2 2

2 0 1 0
4

1 2

( )
ln 4 .

( )

b b b b

b

b b b b

b

E
b b b E

E






  

  

 
    
   

 

Applying boundary condition 1( 0) 0,E     we get  
2

2 2 0 1

2
2 2 0 1

4

0
4

ln .
b b b b

b b b b
E

  

  
      

Solving for 1,E  we have

  

 
 

2
2 0 1

2
2 0 1

4

1 2

1
4

1 1 2

1

( ) ,

2

b b b

b b b

e b b

E

b b e b
















  

where 2 2

1 2 2 0 1 2 2 2 0 14 ,  and  4 .b b b b b b b b b b       

In order to solve 1( )B  , we substitute 1( )C  and 1( )E  into Eq. (4.6) to get 

  
 22 22

2 2 1 2 1 2

1 1 3

1 12 1

( ) ( ) ( ) 2 2 1 ln ,
2 2 22

T

r

T

b b b b bu iu
B t C T t dt e

b be b b






  
  

 



     
          

   
  

where  2

2 0 14b b b     and ( )t  is defined in Eq. (3.15).  

The details of the proof for the characteristic function 2f  are similar to 1f .  Hence, we have 

            
*

2 2 2 2( , , , ; , ) exp ( ) ( ) ( ) ln ( , )f t x r v t u iux B rC vE P t t             , 

where 2 2( ), ( ),B C  and 2 ( )E   are as given in the Lemma. 
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Up to this point, we obtained the characteristic functions in close form. However, we are 

interested in the probability jP . These can be inverted from the characteristic functions by performing 

the following integration 

0

( , , . ; , )1 1
( , , , ; , ) Re ,  1,2,

2

iu

j

j

e f t x v r T u
P t x r v T du j

iu










 
   

 
 

     (4.14) 

where lnt tX S  and ln K  ( see Sattayatham and Intarasit (2011)). 

The proof is now complete.  

In summary, we have just proved the following main theorem. 

Theorem 5  The value of a European call option of SDE (2.28) is  

   *

1 2( , , , ; , ) , , , ; , ( , ) , , , ; ,t t t t t t t t t tC t S r v T K S P t X r v T KP t T P t X r v T    

where 
1P   and 2P are given in Lemma 4  and *( , )P t T is given in Lemma 2.  
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Appendix:  Proof of Lemma 3 

By Ito’s lemma, ˆ( , , , )C t x r v  follows the partial integro - differential equation (PIDE)  

 
     

 

 

22 2 2 2
2 ( )

2 2

2 2 2

2

ˆ ˆ ˆ ˆ ˆ1ˆ ( ) 1 (1 )
2 2 2

ˆ ˆ ˆ
ˆ ˆ      ( , , , ) ( , , , ) ( 1) ( ) .

2

T t vr r

y

v v

vC C C C C C
rC r v t r e v

t x r v r v

v C C C
v v C t x y r v C t x r v e k y dy

x x v x

  
   




  

 





       
            
        

   
            



       (A1) 

We plan to substitute Eq. (3.4) into (A1). Firstly, we compute  

 * *1 2 1 2

2 1

ˆ ˆ
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Substitute all terms above into Eq. (A1) and separate it by assumed independent terms of 1P   and 2P .  

This gives two PIDEs for the forward probability for ( , , , ; , ), 1,2 :iP t x r v T j   
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and subject to the boundary condition at the expiration time  t = T according to Eq. (3.17). 

By using the notation in Eq. (3.20), Eq. (A2) becomes 
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and subject  to the boundary condition at expiration time t T according to Eq. (3.19). 

Again, by using the notation (3.20), Eq. (A3) becomes 
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The proof is now completed.  
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การใชงานโปรแกรมคํานวณคาพารามิเตอรของโมเดลอัตราดอกเบี้ย  
และราคาพันธบัตรที่ไมระบุดอกเบ้ีย (Zero Coupon Bond Price) 

S. Pinkham and  P.Sattayatham 

 
โปรแกรมที่ใชงาน : MATLAB 7.2 

ไฟลที่ใชดําเนินงาน : runestimation.m, R2measure.m,  GMMweigthsNW.m, GMMobjective.m,   

                                GMMestimation.m, MomentJacobian.m  

       ( รายละเอียด MATLAB code ใน Appendix A) 

ไฟลขอมูลที่ใชดําเนินงาน : file.txt  

ผลการดําเนินการโปรแกรม :  

 คํานวณคาพารามิเตอรของโมเดลอัตราดอกเบ้ีย ชนิด CIR และ Vasicek  และทดสอบสมมติฐาน ของ
คาพารามิเตอร 

  จําลองขอมูลโดยใชคาพารามิเตอรท่ีคํานวณได 
  แสดงกราฟของขอมูลท่ีไดจากการจําลองเปรียบเทียบกับขอมูลจริง และคํานวณคาเฉลี่ยความคลาด 

เคลื่อนกําลังสอง(MSE) 

 คํานวณคาราคาพันธบัตรท่ีไมระบุดอกเบ้ีย (Zero coupon bond) โดยใชสูตรการคํานวณ (Exact  

   formula) และคํานวณโดยใชเทคนิคของ Monte Carlo 
การใชงานโปรแกรม :   

1.    เปดโปรแกรม MATLAB 7.2 และเปดไฟล  runestimation.m 

 

 

 



2 

 

 

         2.  ท่ี แถบเมนู ใหเลือก Debug และ เลือก Run  หรอื กดบุม  F5  ท่ี คียบอรด เพื่อดําเนินงานโปรแกรม
คํานวณ   และ เลือก add directory to the top of the MATLAB path 

 

 

3.   ผลการดําเนินการจะแสดงบนหนาตางคําส่ัง ( command window)  ดังน้ี  
  ======================================================= 

       PARAMETER ESTIMATION AND FORCASTING INTERST RATE MODEL  

 ======================================================== 

 Input data (file .txt):= ……………………… 

( ระบุไฟลขอมูลท่ีตองการคํานวณ ตัวอยางเชน   'G:\MATLAB_CODE\DTB33.txt' ) 

 Input the model name? :=  'CIR' or 'Vasicek':=  …………………… 

(ระบุรูปแบบของโมเดล  ‘CIR’ หรือ  ‘Vasicek’)  

 Input the time step ? := ………………………. 

 recommended:'1/12' for monthly or '1/250'for daily :=1/250 := 

 (ระบุ  time step โดยแนะนําวาถา ขอมูลเปนรายวันให ระบุ 1/12 หรือขอมูลรายเดือนให ระบุ 1/250)  

4.   ผลการคํานวณจะแสดงดังน้ี 

     Parameters etimates :  

      First run without weighting matrix 

 alpha  = +0.52044      beta   = -4.68300 

   sigma2 = +0.38250       gamma  = +0.50000 
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Parameters etimates, t-statistic in parentheses Second run with weighting matrix, Iteration #1 

 alpha  = +0.44570 (+2.36)  

 beta   = -3.71553 (-2.16) 

 sigma2 = +0.30599 (+6.64)  

 gamma  = +0.50000 

 Chi2 statistic = +9.0847 

  p-value        = +0.0026 

 Objective function = 1.234e-002 

 

 

 Mean of data = 1.160734e-001  

 Variance of data = 4.457622e-003 

 Number of data  = 736  

 MSE  = +0.01244  

 

 

 

ผลการวิเคราะหจะไดคาพารามิเตอร  คาสถิติทดสอบ  และ คาเฉลี่ยความคลาดเคลื่อนกําลังสอง รวมถึง
แสดงกราฟของขอมูลจรงิเปรยีบเทียบกับการจําลองขอมูลโดยอาศัยพารามิเตอรทีไดจากการคํานวณ  (สามารถดู
รายละเอียดของวิธีการประมาณคาพารามิเตอรโดยใช  GMM  ท่ี Appendix C ) 

5.   คํานวณคาราคาพันธบัตรท่ีไมระบุดอกเบ้ีย (Zero coupon bond) โดยจะตองระบุ คาอัตราดอกเบ้ีย
เริ่มตน ( 0r ) และ อายุของพันธบัตร (maturity time , T )  ยกตัวอยางเชน  %,08.00 r   1T  ผลการคํานวณ
จะแสดงบนหนาตางคําส่ัง (command window) ดังน้ี 
               ZERO COUPON BOND PRICE      

               Input initial interest rate (r0) := 0.08 

   Input matuarity time (T) := 1 

 Exact CIR Price  = 0.896508  

 Monte Carlo Price  = 0.902940 

 ผลลัพธท่ีไดจะแสดงคา  Exact Price  ซึ่งเปนคาของ zero coupon bond ท่ีไดจากสูตร และ คา Monte 

Carlo Price   ซึ่งเปนคาท่ีไดจาก การคํานวณโดยใชเทคนิคของ Monte Carlo   

  ตัวอยางการวิเคราะห ดูรายละเอียดใน Appendix B 

 



4 

 

Appendix  A :   MATLAB Code 
 
% ===================================================================== 
%        RUN GMM ESTIMATION ROUTINE OF THE INTEREST RATE MODEL 
% ===================================================================== 
Clc 
clf 
clear variables 
close all 
fprintf('\n========================================================' ); 
fprintf('\n    RAMETER ESTIMATION AND FORCASTING NTERST RATE MODEL ' ); 
fprintf('\n =======================================================' ); 
%---------------------------------------------------------------------- 
%                         INPUT The Details 
%---------------------------------------------------------------------- 
file=input('\n Input data (file .txt)');%'E:/code/test3.txt' 
Model.Data = load(file); 
Model.Name = input('\n Input the model name?''CIR''or''Vasicek'':); 
Model.TimeStep = input('\n Input the time step ? 
%recommended:''1/12''for monthly or ''1/250''for daily :' ); 
Model.MatlabDisp = 'off';  % 'off'|'iter'|'notify'|'final'(default:off) 
Model.Disp = 'y';          % 'y'|'n' (Print results in Matlab's command  
                              window, draws graphs) 
Model.Iters = 1;            % # of iterations of the weighting matrix  
                              (traditionally = 1)  
Model.q = 12;               % # of lags in the spectral density matrix  
                               estimation, 
                            % Model.q = 0 reduces the spectral density  
                              matrix to the sample covariance matrix                
  
%---------------------------------------------------------------------- 
%                             ESTIMATION 
%---------------------------------------------------------------------- 
Results = GMMestimation(Model); 
%---------------------------------------------------------------------- 
%               PLOT GRAPH AND CALCULATE MEAN SQUARE ERROR 
%---------------------------------------------------------------------- 
R2 = R2measures(Model, Results);  
 
 
function J = GMMobjective(Params, Model, W) 
 
% ==================================================================== 
% Objective function for Interest rate models 
%  
% INPUT: Params, vector, vector of estimated parameters 
%        Model, structure  
%        W, matrix, weighting matrix 
% OUTPUT: d, Jacobian matrix 
======================================================================= 
 
Data = Model.Data; 
DataF = Data(2:end); 
DataL = Data(1:end-1); 
Nobs = length(DataL); 
Nobs = Nobs-1; 
TimeStep = Model.TimeStep; 
a = Params(1); 
b = Params(2); 
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%---------------------------------------------------------------------- 
% Calculate the sample moments  
%---------------------------------------------------------------------- 
switch Model.Name 
    case 'CIR' 
        sigma = Params(3); 
        g1 = sum(DataF - a - b*DataL); 
        g2 = sum((DataF - a - b*DataL).^2 - sigma^2*DataL.*TimeStep); 
        g3 = sum((DataF - a -b*DataL).*DataL); 
        g4 = sum(((DataF - a - b*DataL).^2 - 
sigma^2*DataL.*TimeStep).*DataL);         
        g1 = g1/Nobs; g2 = g2/Nobs; g3 = g3/Nobs; g4 = g4/Nobs;   
    case 'Vasicek' 
        sigma = Params(3); 
        g1 = sum(DataF - a - b*DataL); 
        g2 = sum((DataF - a - b*DataL).^2 - sigma^2*TimeStep); 
        g3 = sum((DataF - a -b*DataL).*DataL); 
        g4 = sum(((DataF - a - b*DataL).^2 - sigma^2*TimeStep).*DataL);         
        g1 = g1/Nobs; g2 = g2/Nobs; g3 = g3/Nobs; g4 = g4/Nobs;          
end 
g = [g1 g2 g3 g4];                                        
J = g*W*g'; 
end 
 
function W = GMMweightsNW(Params, Model) 
 
% ===================================================================== 
% Optimal weighting matrix for CKLS nested models 
%  
% INPUT: Params, vector, vector of estimated parameters 
%        Model, structure, see RunAssignment2    
% OUTPUT: W, matrix, optimal weighting matrix 
% ===================================================================== 
 
Data = Model.Data; 
TimeStep = Model.TimeStep; 
q = Model.q; 
a = Params(1); 
b = Params(2); 
DataF = Data(2:end); 
DataL = Data(1:end-1); 
Gamma = zeros(4,4,q+1); 
%----------------------------------------------------------------------  
% Construct sample moment functions 
%---------------------------------------------------------------------- 
switch Model.Name 
    case 'CIR' 
        sigma = Params(3); 
        g1t = DataF - a - b*DataL; 
        g2t = (DataF - a - b*DataL).^2 - sigma^2*DataL.*TimeStep; 
        g3t = (DataF - a -b*DataL).*DataL; 
        g4t = ((DataF - a - b*DataL).^2 - sigma^2*DataL.*TimeStep).*DataL;              
    case 'Vasicek' 
        sigma = Params(3); 
        g1t = DataF - a - b*DataL; 
        g2t = (DataF - a - b*DataL).^2 - sigma^2*TimeStep; 
        g3t = (DataF - a -b*DataL).*DataL; 
        g4t = ((DataF - a - b*DataL).^2 - sigma^2*TimeStep).*DataL;        
end 
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gt = [g1t g2t g3t g4t]; 
Nobs = length(g1t); 
%----------------------------------------------------------------------  
% Calculate the Newey-West estimate of the spectral density matrix with q 
lags 
%---------------------------------------------------------------------- 
gt = gt - repmat(mean(gt), Nobs, 1);   
for v = 0 : q    
    gtF = gt(1+v:end, :);  
    gtL = gt(1:end-v, :); 
    Gamma(:,:,v+1) = (gtF'*gtL)./Nobs;            
end 
S = Gamma(:,:,1); 
for v = 1 : q 
    Snext = (1-v/(q+1))*(Gamma(:,:,v+1) + Gamma(:,:,v+1)'); 
    S = S + Snext;         
end 
W = inv(S); 
End 
%---------------------------------------------------------------- 
 
function d = MomentsJacobian(Params, Model) 
 
% ===================================================================== 
%   Jacobian matrix for testing parameters significance (t-test) 
%  
% INPUT: Params, vector, vector of estimated parameters 
%        Model, structure, see RunAssignment2    
% OUTPUT: d, Jacobian matrix 
% ===================================================================== 
 
TimeStep = Model.TimeStep;         
Data = Model.Data; 
DataF = Data(2:end); 
DataL = Data(1:end-1); 
Nobs = length(DataL); 
%----------------------------------------------------------------------   
switch Model.Name 
    case 'CIR' 
        a = Params(1); 
        b = Params(2);         
        g1a = -Nobs; 
        g2a = -2*sum(DataF - a - b*DataL); 
        g3a = -sum(DataL); 
        g4a = -2*sum((DataF - a - b*DataL).*DataL);  
        g1b = -sum(DataL); 
        g2b = -2*sum((DataF - a - b*DataL).*DataL); 
        g3b = -sum(DataL.^2); 
        g4b = -2*sum((DataF - a - b*DataL).*DataL.^2);  
        g1s = 0; 
        g2s = -sum(TimeStep*DataL); 
        g3s = 0; 
        g4s = -sum(TimeStep*DataL.*DataL);  
        d = [g1a g1b g1s;... 
             g2a g2b g2s;... 
             g3a g3b g3s;... 
             g4a g4b g4s];          
        d = d./Nobs; 
    case 'Vasicek' 
        a = Params(1); 
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        b = Params(2);  
        g1a = -Nobs; 
        g2a = -2*sum(DataF - a - b*DataL); 
        g3a = -sum(DataL); 
        g4a = -2*sum((DataF - a - b*DataL).*DataL);  
        g1b = -sum(DataL); 
        g2b = -2*sum((DataF - a - b*DataL).*DataL); 
        g3b = -sum(DataL.^2); 
        g4b = -2*sum((DataF - a - b*DataL).*DataL.^2);  
        g1s = 0; 
        g2s = -TimeStep*Nobs; 
        g3s = 0; 
        g4s = -sum(TimeStep*DataL);  
        d = [g1a g1b g1s;... 
             g2a g2b g2s;... 
             g3a g3b g3s;... 
             g4a g4b g4s];          
        d = d./Nobs;         
end end 
%--------------------------------------------------------------- 
function Results = GMMestimation(Model)  
 
% ===================================================================== 
% GMM estimation routine for CKLS nested models 
% % INPUT: Model,structure, see RunAssignment2 
% OUTPUT: Results, structure  
%         Results.Params, estimated parameters 
%         Results.Fval, objective function value 
%         Results.Exitflag, Matlab's optimization result   
%         Results.Tstat, t-statistics for individual parameters 
%         Results.Chi2statisitcs, Chi2 test of model specificaion 
% USES: GMMobjective, GMMweightsNW, MomentsJacobian 
% ================================================================= 
 
TimeStep = Model.TimeStep; 
  
% Initial Parameters for optimization 
% Must be set manually. But the fmnisearch optimization algorithm seems to 
be quite robust 
switch Model.Name 
        case {'CIR', 'Vasicek'}             
        alpha = 0.01;  
        beta = -0.01; 
        sigma = 0.01;             
        a = alpha*TimeStep; 
        b = beta*TimeStep + 1; 
        InitialParams = [a b sigma]; 
end        
  
% ======   First run, with identity weighting matrix ================= 
W = eye(4); 
options = OPTIMSET('LargeScale', 'off', 'MaxIter', 2500, 'MaxFunEvals', 
3500, 'Display', Model.MatlabDisp, 'TolFun', 1e-40, 'TolX', 1e-40);  
[Params, Fval, Exitflag] =  fminsearch(@(Params) GMMobjective(Params, 
Model, W), InitialParams, options);    
switch Model.Name 
    case 'CIR' 
        Ralpha = Params(1)/TimeStep; 
        Rbeta  = (Params(2)-1)/TimeStep; 
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        Rsigma2 = Params(3)^2; 
        Rgamma = 0.5; 
    case {'Vasicek'}  
        Ralpha = Params(1)/TimeStep; 
        Rbeta  = (Params(2)-1)/TimeStep; 
        Rsigma2 = Params(3)^2; 
        Rgamma = 0; 
end 
if strcmp(Model.Disp, 'y') 
    fprintf('\n Parameters etimates\n'); 
    fprintf(' First run without weighting matrix'); 
    fprintf('\n alpha  = %+3.5f\n beta   = %+3.5f\n sigma2 = %+3.5f\n gamma  
= %+3.5f\n ------------------------------------------------------------- 
\n',... 
    Ralpha, Rbeta, Rsigma2, Rgamma); 
end 
  
% ========= Second run, with optimal weighting matrix W ========== 
if Model.Iters > 0 
    for i = 1 : Model.Iters 
        InitialParams = Params; 
        W = GMMweightsNW(Params, Model);         
        options = OPTIMSET('LargeScale', 'off', 'MaxIter', 2500, 
'MaxFunEvals', 3500, 'Display', Model.MatlabDisp, 'TolFun', 1e-8, 'TolX', 
1e-8);  
        [Params, Fval, Exitflag] =  fminsearch(@(Params) 
GMMobjective(Params, Model, W), InitialParams, options);    
        switch Model.Name 
         case 'CIR' 
            Ralpha = Params(1)/TimeStep; 
            Rbeta  = (Params(2)-1)/TimeStep; 
            Rsigma2 = Params(3)^2; 
            Rgamma = 0.5; 
         case {'Vasicek'}  
            Ralpha = Params(1)/TimeStep; 
            Rbeta  = (Params(2)-1)/TimeStep; 
            Rsigma2 = Params(3)^2; 
            Rgamma = 0; 
        end 
        switch Model.Name 
        case {'CIR', 'Vasicek','TF'} 
%Chi2 statistics of the overidentified model. Are the empirical moments 
%sufficiently close to 0? 
            Chi2statistic = Fval*length(Model.Data); 
            Chi2pvalue = 1-chi2cdf(Chi2statistic,1);    
            Results.Chi2statisitcs = Chi2statistic; 
            Results.Chi2pvalue = Chi2pvalue;            
        end 
        % t-statistic 
        Nobs = length(Model.Data)-1; 
        d = MomentsJacobian(Params, Model); 
        VarParams = diag(inv(d'*W*d))./Nobs; 
        Params(2) = Params(2)-1; 
        Params(3) = Params(3)^2; 
        Tstat = Params'./sqrt(VarParams); 
        if strcmp(Model.Disp, 'y') 
      fprintf('\n Parameters etimates, t-statistic in parentheses\n'); 
      fprintf(' Second run with weighting matrix, Iteration #%d\n', i); 
            switch Model.Name 
            case {'CIR', 'Vasicek'} 
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                fprintf('\n alpha  = %+3.5f (%+3.2f) \n beta   = %+3.5f 
(%+3.2f)\n sigma2 = %+3.5f (%+3.2f) \n gamma  = % +3.5f\n',... 
                Ralpha, Tstat(1), Rbeta, Tstat(2), Rsigma2, Tstat(3), 
Rgamma); 
                fprintf(' Chi2 statistic = %+2.4f\n', Chi2statistic); 
                fprintf(' p-value        = %+2.4f\n', Chi2pvalue); 
            end  
            fprintf(' Objective function = %2.3e\n', Fval); 
            fprintf('-------------------------------------------- \n');             
        end 
    end 
Results.Tstat = Tstat; 
Results.VarParams = VarParams; 
end 
Results.Params = [Ralpha Rbeta Rsigma2 Rgamma]; 
Results.Fval = Fval; 
Results.Exitflag = Exitflag; 
End 
%--------------------------------------------------------------- 
function R2 = R2measures(Model, Results) 
 
% ===================================================================== 
% R2 measures 
%  
% INPUT: Model, structure   
%        Results, structure, see GMMestimation 
% OUTPUT: R2, structure 
%         R2.Rsquare1, forecast power for interest rate changes, 
%         R2.Rsquare2, forecast power for squared interest rate changes 
%         Graph of empirical data vs forcasting data 
%         MSE 
% 
% ===================================================================== 
 
Data = Model.Data; 
TimeStep = Model.TimeStep; 
alpha = Results.Params(1); 
beta = Results.Params(2); 
sigma2 = Results.Params(3); 
gamma = Results.Params(4); 
  
CondEdata = alpha*TimeStep + (1+beta*TimeStep).*Data; 
CondEddata = CondEdata - Data; 
Realddata = diff(Data); 
  
CondVARdata = sigma2*Data.^(2*gamma)*TimeStep; 
RealVARdata = Realddata.^2; 
%====================================================================== 
% "forecast power" - calcluate R2 of the OLS of conditional values  
%  implied by the selected model on observed values 
%====================================================================== 
  
y = Realddata; 
x = CondEddata(1:end-1); 
b1 = x\y; 
Rsquare1 = sum((b1.*x-mean(y)).^2)/sum((y-mean(y)).^2); 
  
y = RealVARdata; 
x = CondVARdata(1:end-1); 
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b1 = x\y; 
Rsquare2 = sum((b1.*x-mean(y)).^2)/sum((y-mean(y)).^2); 
  
R2.Rsquare1 = Rsquare1; 
R2.Rsquare2 = Rsquare2; 
%====================================================================== 
%                  Forcasting Interest rate model     
%====================================================================== 
fdata(1)=Data(1); 
fdata2(1)=Data(1); 
fdata3(1)=Data(1); 
NN=length(Data); 
for j=1:NN 
    ex2(j)=exp(-1*beta); 
end 
dt=1/NN; 
for i=2:length(Data) 
    fdata(i)=alpha*TimeStep + (1+beta*TimeStep)*fdata(i-1)+... 
             sqrt(sigma2*fdata(i-1)^(2*gamma)*TimeStep)*randn(1); 
    fdata2(i)=alpha*TimeStep + (1+beta*TimeStep)*fdata2(i-1)-... 
            sigma2^2*(1-ex2(i))*TimeStep/beta+... 
            sqrt(sigma2*TimeStep)*randn(1); 
    fdata3(i)=alpha*dt+ (1+beta*dt)*fdata(i-1)+... 
             sqrt(sigma2*fdata(i-1)^(2*gamma)*dt)*randn(1); 
end 
  
%====================================================================== 
%                Calculate Mean Square Error 
%====================================================================== 
 SumErrsqrt=0; 
 SumErrsqrt2=0; 
 SumErrsqrt3=0; 
 for i=1:length(Data) 
    Err(i)=Data(i)-fdata(i); 
    Err2(i)=Data(i)-fdata2(i); 
    Err3(i)=Data(i)-fdata3(i); 
    Errsqrt(i)=Err(i)^2; 
    Errsqrt2(i)=Err2(i)^2; 
    Errsqrt3(i)=Err3(i)^2; 
    SumErrsqrt=Errsqrt(i)+SumErrsqrt; 
    SumErrsqrt2=Errsqrt2(i)+SumErrsqrt2; 
    SumErrsqrt3=Errsqrt3(i)+SumErrsqrt3; 
 end 
 MSE= SumErrsqrt/length(Data); 
 MSE2= SumErrsqrt2/length(Data); 
 MSE3= SumErrsqrt3/length(Data); 
 MeanIR=mean(Data); 
%====================================================================== 
%                           Display Graph 
%====================================================================== 
if strcmp(Model.Disp, 'y') 
        switch Model.Name 
         case 'CIR' 
              ns=10; 
              for j=1:ns 
                fdata4(1,j)=Data(1); 
                for i=2:length(Data) 
                    fdata4(i,j)=alpha*TimeStep + ... 

  1+beta*TimeStep)*fdata4(i-1,j)+ ...                  
sqrt(sigma2*fdata4(i-1,j)^(2*gamma)*TimeStep)*randn(1); 
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                end 
              subplot(2,1,2) 
              plot(1:length(Data), Data, 'b', 1:length(fdata4), fdata4) 
              hold on 
              title('Simulate Interest Rate 10 sample paths  ') 
              end 
          subplot(2,1,1)   
          plot(1:length(Data), Data, 'b', 1:length(fdata), fdata, '-r') 
              title('Interest Rate " CIR model"') 
              legend('Empirical', 'Simulation') 
             fprintf('\n Mean of data = %d ',MeanIR);  
            fprintf('\n Variance of data = %d',var(Data));  
            fprintf('\n Number of data  = %d ',length(Data)); 
            fprintf('\n MSE  = %+3.5f \n',MSE); 
            
fprintf('\n========================================================' ); 
fprintf('\n                   ZERO COUPON BOND PRICE     \n        ' ); 
fprintf ('\n ======================================================' ); 
             % Calculate bond price by using formula 
             r0=input('\n Input initial interest rate (r0) := ');  
             T=input('\n Input matuarity time (T) := ');  
             h=sqrt(beta^2+2*sigma2^2); 
             b1=exp(h*T)-1; 
             b2=2*h+((h-beta)*(exp(h*T)-1)); 
             btT=2*b1/b2; 
             atT=(2*h*exp((h-beta)*T/2)/b2)^(2*alpha/sigma2^2); 
             Zerob=atT*exp(-1*btT*r0); 
             fprintf('\n Exact CIR Price  = %f \n',Zerob ); 
             %--------------------------------------------------------- 
             % Calculate bond price by using  Monte Carlo Simulation 
             TS=T/length(fdata); 
             sfdata=exp(-1*sum(fdata*TS)); 
             MC=mean(sfdata); 
             fprintf('\n Monte Carlo Price  = %f \n',MC ); 
%---------------------------------------------------------------- 
            
         case 'Vasicek' 
             ns=10; 
              for j=1:ns 
                fdata4(1,j)=Data(1); 
                for i=2:length(Data) 
                    fdata4(i,j)=alpha*TimeStep + 
(1+beta*TimeStep)...*fdata4(i-1,j)+... 
                     sqrt(sigma2*fdata4(i-
1,j)^(2*gamma)*TimeStep)*randn(1); 
                 end 
              subplot(2,1,2) 
              plot(1:length(Data), Data, 'b', 1:length(fdata4), fdata4) 
              hold on 
              title('Simulate Interest Rate 10 sample paths  ') 
              end 
              subplot(2,1,1)   
          plot(1:length(Data), Data, 'b', 1:length(fdata), fdata, '-r') 
          plot(1:length(Data), Data, 'b', 1:length(fdata), fdata, 'r') 
             title('Interest Rate "Vasicek model"') 
             legend('Empirical', 'ForecastVS') 
             fprintf('\n Mean of data = %d ',MeanIR);  
             fprintf('\n Variance of data = %d',var(Data));  
             fprintf('\n Number of data  = %d ',length(Data)); 
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             fprintf('\n MSE of Vasicek model  = %+3.5f ',MSE); 
             
fprintf('\n========================================================' ); 
fprintf('\n                     ZERO COUPON BOND PRICE             ' );             
fprintf('\n========================================================' ); 
             % Calculate bond price by using formula 
             r0=input('\n Input initial interest rate (r0) := ');  
             T=input('\n Input matuarity time (T) := ');  
             btT=-1/beta*(1-exp(beta*T)); 
             atT=(-1*alpha/beta-sigma2^2/(2*beta^2))*(btT-
T)+(sigma2*beta)^2/(4*beta); 
             Zerob=exp(atT-btT*r0); 
             fprintf('\n Exact Vasicek Price  = %f \n',Zerob ); 
             %-------------------------------------------------------- 
             % Calculate bond price by using  Monte Carlo Simulation 
             TS=T/length(fdata); 
             sfdata=exp(-1*sum(fdata*TS)); 
             MC=mean(sfdata); 
             fprintf('\n Monte Carlo Price  = %f \n',MC ); 
        end 
             
end end 
 

 

Appendix  B  :   The empirical Example 

The Treasury bill yield data used are daily T-bill form Board of Governors of the Federal 
Reserve System.  The data are daily cover period  form  4 January 2009 to 8 December 2011. The 
data set is saved in DBT33.txt.   

The estimation and pricing routine is execute by running the runestimattion.m with MATLAB 
program version 7.2 (see MATLAB code in appendix A) . The results are displayed in the 
MATLAB’s command window. The results are follow : 

 

Parameter 
Model 

    2  

2 test P-value 

CIR 0.44570 -3.71553 0.30599 9.0847 0.0026 

Vasieck 0.57989 -5.45376 0.04105 2.1127 0.1461 

 
Table 1   Parameter estimator and Statistic test 
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Zero coupon bond price with 

08.00 r  and 1T  Model 
Number 
of data 

Mean Variance MSE 

Exact Monte Carlo 

CIR 736 0.1160734 0.004457622 0.00478 0.896508 0.910618 

Vasieck 736 0.1160734 0.004457622 0.00844 0.901410 0.922795 

 

Table 2  The statistics description and Bond price  

 

 

Figure 1  Empirical data VS Forecast data 
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Appendix  C :   Parameter Estimation and Application in Finance 

1. The interest rate models 

In this work , we focus on two specifications of the dynamics of the short-term interest rate as 
following  

CIR model : ( )t t t tdr r dt r dW           (1) 

Varicek model :  ( )t t t tdr r dt r dW          (2) 

where  tr  is the interest rate,  tW is the Brownion motion, ,  and  are parameter. The model (1) and 

(2) are define the parameter vector  2, ,    . We consider to estimate parameters by using the 

Generalize Method of Moments (GMM) technique which can be used for financial models and 
application the model in financial problem with MATLAB program. 

2. Generalized method of moments  

To estimate parameter of (1) and (2) using GMM , we have to discretized the SDE by applied 
Euler discretization scheme are follow 

CIR model :  1 1 1( ) , (0,1)t t t t t tr r r t r t N                (3) 

Vasicek model :  1 1 1( ) , (0,1)t t t t tr r r t t N                (4) 

where (0,1)N is normal  variable with zero mean and unit variance, and t is time step. Form (3) and 

(4) we can derive a set of  four moment function 

       CIR model :      
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The moment function are constructed so that   ( ) 0tE f   and the sample moment are defines as 
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T t
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   

where  T is a number of observations. Then  the sample moments of (5) as follows 

       CIR model :      
 

 

1
1

2 2
1

1

1
1

2 2
1

1

1
( )

T

t
t

T

t t
t

T T

t t
t

T

t t t
t

r

g
T

r

r r



 




 













 
 
 
 

 
 
 
 
 
 

 
 









,  Vasicek model :  
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The GMM objective function is defined as  

'( ) ( ) ( ) ( )T T T TJ g W g         (7) 

where ( )TW   is positive definite weight matrix , or , equivalently, by solving the system of equations 

'
0 ( ) ' ( ) 0,T TD W g         (8) 

where '
0 ( )D   is the Jacobian matrix of ( )Tg   wish respect to  .  We find the parameter by solving  

ˆ arg min TJ


  .      (9) 

For the unrestricted model, the parameter are just identified and ( )TJ   attains zero for all 

choices of ( )TW  .  For the interest rate models,  the GMM estimates of the over-identified parameter 

sub-vector of   do depend on the choice of ( )TW  . Hanson [5] shows the optimal choice of the 

weighting matrix in term minimizing the asymptotic covariance matrix of the estimator is  

   
1

( ) ( ) 'T t t k
k

W E f f  





   
 
 .              (10) 

In our consideration,  GMM is a two stage estimator. We usually proceed in the following 
way:  First, we minimize (7) using identity weighting matrix TW I . This means that we consider all 

moments equally important. We plug estimated parameter vector into (10) to get TW . And secondly , 

we minimize (7) again, but time using the TW form the previous step.  

When the number of moment condition is greater than the dimension of parameter vector, the 
model is said to be over identified. Over identification allows us to check whether the model’s 
moment conditions match the data well or not.  We can check whether sample moment is sufficiently 
close to zero to suggest that the model fits the data well. The test statistics is asymptotically 

2 distributed , 

' 2ˆ ˆ ˆ( ) ( ) ( )
d

T T T m pT g W g                     (11) 

where m  is a number of moment condition and  p is a number of parameters. If the test statistic 

reject, then the underlying model that generated the system of moment condition is declared invalid. 

3. Pricing of  Zero Coupon Bond 
 
A  zero coupon bond is a contract priced  ( , )P t T at time t T  to deliver ( , ) 1P T T   at time T . 

The computation of the arbitrage price ( , )P t T of a zero coupon bond base on as underlying short term 

interest rate process tr is a basic and important issue in interest rate modeling.  We may distinguish 

three different situations: 
 

-  The short rate is a deterministic constants 0r  . In this case ( , )P t T  should satisfy  
( ) ( , ) ( , ) 1,r T te P t T P T T      which leads to      

( )( , ) , 0r T tP t T e t T    .                         (12) 
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-  The short rate is a deterministic function  t t R
r

 
.  In this case, an argument similar to the 

above shows that  

( , ) exp( ), 0 .
T

s

t

P t T r ds t T                     (13) 

-   The short rate is a deterministic process  t t R
r

 
. In this case, formula (13) no longer makes 

sense because the price ( , )P t T being set at time t, can depend only on information known up to time t. 

This is contradiction with (13) in which ( , )P t T  depends on the future values of sr  for  ,s t T  . Then 

( , )P t T  should be 

     ( , ) exp( ) | , 0 .
T

s t

t

P t T E r ds F t T
 

    
 

             (14) 

 

Theorem 1  (Zero coupon bond in the Vasicek model).  In the Vasicek model , the price of  a zero 

coupon bond  with maturity T at time  0,t T  is given by 

 

         ( , ) ( , ) exp( ( , )),tP t T A t T r B t T    

where       1
( , ) 1 exp ( )B t T T t


      

and  
2 2

2
2

( , ) exp ( , ) ( , )
42

A t T B t T T t B t T
  
 

  
       

  
. 

Proof.  See Brigo [2] pp.58-59. 
 
 
Theorem 2  (Zero coupon bond in the CIR model).  In the CIR model , the price of  a zero coupon 

bond  with maturity T at time  0,t T  is given by 

 

        ( , ) ( , ) exp( ( , )),tP t T A t T r B t T    

where     
( )

( )

2( 1)
( , )

2 ( )( 1)

h T t

h T t

e
B t T

h h e







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 , 

and 

22 /( )( )/2

( )

2
( , )

2 ( )( 1)

h T t

h T t

he
A t T

h h e
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

 



 
     

 with   2 22h    . 

Proof.  See Bohner [1]. 
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Abstract

This paper studied the surplus process model as a premium income minus and
the claims are iid random variables. The insurer is allowed to buy reinsurance with
retention level b for the period of time between two claims. Whereas the general
approach is to consider the ruin probability as a function of initial capital, the authors
suggest to study the initial capital via ruin probability. The objective is to find the
minimum initial capital for a given boundary for the ruin probability.
Keywords : Insurance, Reinsurance, Capital reserve, Ruin probability.
2011 Mathematics Subject Classification : Primary 91B30; Secondary 93E20.

1. Introduction

In recent years, risk models have been attracted much attention in an insurance
business, in connection with any possible insolvency and the capital reserves of an insurance
company. The main interest from the point of view of an insurance company is claim arrival
and claim size, which affect the capital of the company.

In this paper, we assume that all processes are defined in a probability space (Ω,=, P ).
Claims happen at the times Ti, satisfying 0 = T0 ≤ T1 ≤ T2 ≤ · · ·. We call them arrivals.
The nth claim arriving at time Tn causes the claim size Yn. The interarrival, Zn :=
Tn− Tn−1 is the length of time between the (n− 1)th claim and the nth claim. By a period
n, we shall mean the random interval [Tn−1, Tn), n ≥ 1.

Now let a constant c0 represent the premium rate for one unit time; the random

variable c0

n∑

i=1

Zi = c0Tn describes the inflow of capital into the business in [0, Tn], and
n∑

i=1

Yi

describes the outflow of capital due to payments for claims occurring in [0, Tn]. Therefore,
the quantity

X0 = x, Xn = x + c0

n∑

i=1

Zi −
n∑

i=1

Yi, n = 1, 2, 3, . . . (1)

is the discrete-time surplus process at time Tn with the constant x ≥ 0 as initial capital.
The general approach for studying ruin probability in the discrete-time surplus pro-

cess is the so-called Gerber − Shiu discounted penalty function; as found in, Pavlovao
and Willmot [11], Dickson [4] and Li [8][9]. These articles study the ruin probability as a
function of the initial capital x.

In this paper, we study the initial capital for the discrete-time surplus process via the
ruin probability. The objective is to find the minimum initial capital for a given boundary
for the ruin probability.
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2School of Mathematics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
3Faculty of Commerce and Management, Prince of Songkla University, Trang 92000, Thailand.
4Applied Mathematics Research Group, Department of Mathematics, Faculty of Science, Khonkaen Uni-
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2. Model Descriptions

Let {Xn, n ≥ 0} be the surplus process which can be controlled by choosing a reten-
tion level b ∈ [b, b], 0 ≤ b ≤ b ≤ b ≤ ∞, of a reinsurance for one period. Next, for each level
b, an insurer pays a premium rate to a reinsurer which is deducted from c0. As a result,
the insurer’s income rate will be represented by a function c(b). The level b stands for the
control action without reinsurance, so that c0 = c(b) and the level b is the smallest retention
level which can be chosen. As a consequence, we obtain the net income rate c(b) where
0 ≤ c(b) ≤ c0 for all b ∈ [b, b] and c(b) is non-decreasing. The premium rate for one unit
time c0 and the net income rate c(b) are assumed to be satisfied the following:

c0 >
E[Y ]
E[Z]

and c(b) >
E[h(b, Y )]

E[Z]
(2)

where Y is a claim size and Z is an interarrival.
Moreover, by the expected value principle, c0 and c(b) can be calculated as follows:

c0 = (1 + θ0)
E[Y ]
E[Z]

and c(b) = c0 − (1 + θ1)
E[Y − h(b, Y )]

E[Z]
(3)

where 0 < θ0 < 1 and 0 < θ1 < 1 are the safety loadings of the insurer and the reinsurer
respectively. The measurable function h(b, y) is the part of the claim size y paid by the
insurer, and the remaining part y − h(b, y) which is called reinsurance recovery paid by
the reinsurer. In the case of an excess of loss reinsurance, we have

h(b, y) = min{b, y} with retention level 0 ≤ b ≤ b ≤ b = ∞.

In the case of a proportional reinsurance, we have

h(b, y) = by with retention level 0 ≤ b ≤ b ≤ b = 1.

For each n ∈ {1, 2, 3, . . .}, let bn−1 be a retention level (control action) at the time
Tn−1 and let Zn = 1. Therefore, we can modify the surplus process (1) to be the following:

Xn = x +
n∑

i=1

c(bi−1)−
n∑

i=1

h(bi−1, Yi) (4)

where X0 = x.
We see that the process {Xn, n ≥ 0} is driven by the sequence of retention level

(control actions) {bn−1, n ≥ 1} and the sequence of claims {Yn, n ≥ 1}. So, we make the
following assumption:

Assumption 1. Independence Assumption (IA)
The sequence of claims {Yn, n ≥ 1} is independent and identically distributed (iid) random
variables.

From Assumption IA, it follows that {h(bn−1, Yn), n ≥ 1} is an independent sequence.

Definition 1. Let N ∈ {1, 2, 3, . . .} be a time horizon (number of periods). A plan for the
time N is a (finite) sequence π = {bn−1}N

n=1 of bn−1 ∈ [b, b] for n = 1, 2, 3, . . . , N . A set of
all plans for the time horizon N over a control space [b, b] is denoted by P(N, [b, b]). A plan
π ∈ P(N, [b, b]) is said to be stationary, if b0 = b1 = · · · = bN−1.
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3. Main Results

In this section, we consider a finite-time ruin probability of the discrete-time surplus
process as in equation (4) where the sequence of claims {Yn, n ≥ 1} satisfy Assumption IA.
Let FY1 be the distribution function of Y1, i.e.,

FY1(y) = P (Y1 ≤ y).

Let N ∈ {1, 2, 3, . . .} be a time horizon and x ≥ 0 be an initial capital. The
survival probability at a time n ∈ {1, 2, 3, . . . , N} is defined by

ϕn(x, π) := P (X1 ≥ 0, X2 ≥ 0, X3 ≥ 0, . . . , Xn ≥ 0|X0 = x) (5)

where π ∈ P(N, [b, b]). Moreover, the ruin probability at a time n ∈ {1, 2, 3, . . . , N} is
defined by

Φn(x, π) = 1− ϕn(x, π). (6)

Definition 2. Let {Xn, n ≥ 0} be the surplus process as in equation (4), driven by the
sequence of control actions {bn−1, n ≥ 1} and the sequence of claims {Yn, n ≥ 1}. Let
{c(bn−1)}n≥1 be a sequence of net income rates and x ≥ 0 be an initial capital. For each
time horizon N ∈ {1, 2, 3, . . .}, let π ∈ P(N, [b, b]) and α ∈ (0, 1). If ΦN (x, π) ≤ α, then x is
called an acceptable initial capital corresponding to (α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).
Particularly, if

x∗ = min
x≥0

{x : ΦN (x, π) ≤ α}

exists, x∗ is called the minimum initial capital corresponding to (α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1)
and is written as

x∗ := MIC(α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

3.1 Ruin and Survival Probability

We defined a total claim process by

Sn := h(b0, Y1) + h(b1, Y2) + · · ·+ h(bn−1, Yn)

for all n ∈ {1, 2, 3, . . .}. The survival probability at the time horizon N as mentioned in
equation (5) can be expressed as follows:

ϕN (x, π) = P

(
S1 ≤ x + c(b0), S2 ≤ x +

2∑
n=1

c(bn−1), . . . , SN ≤ x +
N∑

n=1

c(bn−1)

)

= P

(
N⋂

n=1

{
Sn ≤ x +

n∑

k=1

c(bk−1)

})
. (7)

From equation (7), we have

ϕN (x, π) = E

[
N∏

n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− x

)]
,
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where

1A(x) =
{

1 , x ∈ A
0 , else ,

for all A ⊆ R. For each a ∈ R and x ≥ 0, we obtain

1(−∞,0](a− x) =
{

1 , x ≥ a
0 , x < a.

Then 1(−∞,0](a − x) is non-decreasing in x and right continuous on (0,∞]. This implies

that
N∏

n=1

1(−∞,0](an − x) is also non-decreasing in x and right continuous on (0,∞] where

an ∈ R, n = 1, 2, 3, . . . , N . For each plan π = {b0, b1, b2, . . . , bN−1}, by the Dominated
Convergence Theorem, we get

lim
u→x+

ϕN (u, π) = lim
u→x+

E

[
N∏

n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− u

)]

= E

[
lim

u→x+

N∏
n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− u

)]

= E

[
N∏

n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− x

)]

= ϕN (x, π).

Therefore, ϕN (x, π) is non-decreasing in x and right continuous on (0,∞). This implies
that ΦN (x, π) = 1−ϕN (x, π) is non-increasing in x and also right continuous on (−∞,∞).

Theorem 1. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]), and let x ≥ 0 be given. Then

lim
x→∞

ϕN (x, π) = 1 and lim
x→∞

ΦN (x, π) = 0.

Proof : Firstly, we will show the following relation

N⋂
n=1

{ω : h(bn−1, Yn)(ω) ≤ x + c(bn−1)} ⊆
N⋂

n=1

{
ω : Sn(ω) ≤ Nx +

n∑

k=1

c(bk−1)

}
. (8)

Let ω0 ∈
N⋂

n=1

{ω : h(bn−1, Yn)(ω) ≤ x + c(bn−1)} be given. For each n ∈ {1, 2, 3, . . . , N},

we have h(bn−1, Yn)(ω0) ≤ x + c(bn−1). Thus, Sn(ω0) =
n∑

k=1

h(bk−1, Yk)(ω0) ≤ nx +

n∑

k=1

c(bk−1) ≤ Nx +
n∑

k=1

c(bk−1). That is ω0 ∈
{

ω : Sn(ω) ≤ Nx +
n∑

k=1

c(bk−1)

}
. There-

fore (8) follows. By Assumption IA, the process {h(bn−1, Yn), n ≥ 1} is an independent
sequence, then we have

P

(
N⋂

n=1

{h(bn−1, Yn) ≤ x + c(bn−1)}
)

=
N∏

n=1

P (h(bn−1, Yn) ≤ x + c(bn−1)) . (9)

4



Note that Yn ≥ h(bn−1, Yn) for all n ∈ {1, 2, 3, . . . , N}, then

{ω : Yn(ω) ≤ x + c(bn−1)} ⊆ {ω : h(bn−1, Yn)(ω) ≤ x + c(bn−1)}.
From equation (9), we get

P

(
N⋂

n=1

{h(bn−1, Yn) ≤ x + c(bn−1)}
)

≥
N∏

n=1

P (Yn ≤ x + c(bn−1))

=
N∏

n=1

FYn (x + c(bn−1)) . (10)

Moreover, it follows from equation (7) that

ϕN (Nx, π) = P

(
N⋂

n=1

{
Sn ≤ Nx +

n∑

k=1

c(bk−1)

})
. (11)

Thus
N∏

n=1

FYn (x + c(bn−1)) ≤ P

(
N⋂

n=1

{h(bn−1, Yn) ≤ x + c(bn−1)}
)

≤ P

(
N⋂

n=1

{
Sn ≤ Nx +

n∑

k=1

c(bk−1)

})
(By (8))

= ϕN (Nx, π) ≤ 1. (By equation (11))

Since FYn(x+c(bn−1)) → 1 as x →∞ for n = 1, 2, 3, . . . , N , then
N∏

n=1

FYn (x + c(bn−1)) → 1

as x → ∞. Hence ϕN (x, π) → 1 and ΦN (x, π) = 1 − ϕN (x, π) → 0 for x → ∞. The proof
is now complete.

Corollary 2. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]), α ∈ (0, 1), and let x ≥ 0 be given.
Then there exists x̃ ≥ 0 such that, for all x ≥ x̃, x is an acceptable initial capital corre-
sponding to (α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

Proof : We consider by cases:

Case 1. 0 ≤ ΦN (0, π) ≤ α. Since ΦN (x, π) is non-increasing in x, then ΦN (x, π) ≤
ΦN (0, π) ≤ α for all x > 0. In this case choose x̃ = 0

Case 2. ΦN (0, π) > α. By Theorem 1, we have ΦN (x, π) → 0 as x →∞. Thus there exists
x̃ > 0 such that ΦN (x̃, π) ≤ α. Since ΦN (x, π) is non-increasing in x, then ΦN (x, π) ≤
ΦN (x̃, π) ≤ α for all x ≥ x̃.

3.2 Bounds of the Ruin Probability

In this part, we shall describe the upper bound of the ruin probability with negative
exponential. In order to prove the following lemma, we shall use an equivalent definition of
the ruin probability which will be given as follows:

Φn(x, π) = P

(
max

1≤k≤n

(
k∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

)
, n = 1, 2, 3, . . . .
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Lemma 3. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈ (0, 1), and let x ≥ 0 be
given. Then the ruin probability at the time N satisfies the following equation

ΦN (x, π) = Φ1(x, π) +
∫

{y:0≤h(b0,y)≤x+c(b0)}

ΦN−1(x + c(b0)− h(b0, y), π)dFY1(y) (12)

where Φ0(x, π) = 0.

Proof : We will prove equation (12) by induction. We start with N = 1. Since Φ0(x, π) = 0
for all x ≥ 0, then

∫

{y:0≤h(b0,y)≤x+c(b0)}

Φ0(x + c(b0)− h(b0, y), π)dFY1(y) = 0.

This proves equation (12) for N = 1. Now assume that equation (12) holds for 1 < n ≤ N−1.
Then

ΦN (x, π) = P

(
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

)

= P

({
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

}
⋂

Ω

)

= P

({
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

}
⋂ {{h(b0, Y1)− c(b0) > x}⋃ {h(b0, Y1)− c(b0) ≤ x}}

)

= P

(
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) > x

)

+ P

(
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) ≤ x

)
.

Since π is stationary and {Yn}n≥1 is an iid sequence, then
{

ω ∈ Ω : max
1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)(ω)− c(bi−1))

)
> x, h(b0, Y1)(ω)− c(b0) > x

}

= {ω ∈ Ω : h(b0, Y1)(ω)− c(b0) > x} .

This result implies

ΦN (x, π) = P (h(b0, Y1)− c(b0) > x)

+ P

(
max

2≤n≤N

(
h(b0, Y1)− c(b0) +

n∑

i=2

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) ≤ x

)

= Φ1(x, π)

+ P

(
h(b0, Y1)− c(b0) + max

2≤n≤N

(
n∑

i=2

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) ≤ x

)

= Φ1(x, π)

+ E

[
1

h(b0,Y1)−c(b0)≤x, h(b0,Y1)−c(b0)+ max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
>x

]
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= Φ1(x, π)

+ E

[
1

h(b0,Y1)−c(b0)≤x
· 1

h(b0,Y1)−c(b0)+ max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
>x

]

= Φ1(x, π)

+ E

[
E

[
1h(b0,Y1)−c(b0)≤x · 1

h(b0,Y1)−c(b0)+ max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
>x
|σ(Y1)

]]

= Φ1(x, π)

+ E

[
1h(b0,Y1)≤x+c(b0) · E

[
1

max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
+(h(b0,Y1)−x−c(b0))>0

|σ(Y1)

]]

= Φ1(x, π) + E
[
1

h(b0,Y1)≤x+c(b0) · E
[
1(0,∞)(Z + W )|σ(Y1)

]]
(13)

where Z = max
2≤n≤N

(
n∑

i=2

(h(bi−1, Yi)− c(bi−1))

)
and W = h(b0, Y1) − x − c(b0). Since

{h(bn−1, Yn)}n≥1 is an independent sequence, then Z and W are independent. It follows
from [5, exercise 9, page 341] that

E
[
1(0,∞)(Z + W )|σ(Y1)

]
=

∫

ω∈ Ω

1(0,∞)(Z(ω) + W |σ(Y1))dPZ(ω)

=
∫

R

1(0,∞)(z + W )dFZ(z).

This implies that

ΦN (x, π) = Φ1(x, π) + E


1h(b0,Y1)≤x+c(b0) ·




∫

R

1(0,∞)(z + W )dFZ(z)







= Φ1(x, π) + E


1h(b0,Y1)≤x+c(b0) ·




∫

R

1(0,∞)(z + h(b0, Y1)− x− c(b0))dFZ(z)







= Φ1(x, π)+
∫

{ω∈Ω:h(b0,Y1)(ω)∈[0,x+c(b0)]}




∫

R

1(0,∞)(z + h(b0, Y1)(ω)− x− c(b0))dFZ(z)


 dP (ω)

= Φ1(x, π) +
∫

{ω∈Ω:h(b0,Y1)(ω)∈[0,x+c(b0)]}

E
[
1Z>x+c(b0)−h(b0,Y1)(ω)

]
dP (ω)

= Φ1(x, π) +
∫

{ω∈Ω:h(b0,Y1)(ω)∈[0,x+c(b0)]}

P (Z > x + c(b0)− h(b0, Y1)(ω)) dP (ω)

= Φ1(x, π) +
∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

P (Z > x + c(b0)− h(b0, y)) dFY1(y)
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= Φ1(x, π) +
∫

{y:0≤h(b0,y)≤x+c(b0)}

ΦN−1(x + c(b0)− h(b0, y), π)dFY1(y).

This proves equation (12).

Remark 4. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈ (0, 1). Assume that
{Yn, n ≥ 1} is an iid sequence of exponential distribution with intensity λ > 0, i.e., Y1 has
the probability density function

f(y) = λe−λy.

By Lemma 3, the ruin probability can be written in a recursive form as follows:

Case 1: For an excess of loss reinsurance, we get

Φ0(x, π) = 0 and

Φn(x, π) = Φn−1(x, π) +
[λ(x + nc(b0))]

n−1

(n− 1)!
e−λ[x+nc(b0)]

x + c(b0)
x + nc(b0)

(14)

for b0 ≥ x + c(b0) and n = 1, 2, 3, . . . , N .

Case 2: For a proportional reinsurance, we get

Φ0(x, π) = 0 and

Φn(x, π) = Φn−1(x, π) +
1

(n− 1)!

[
λ

b0
(x + nc(b0))

]n−1

e−
λ
b0

(x+nc(b0)) x + c(b0)
x + nc(b0)

(15)

for all n = 1, 2, 3, . . . , N . Further, for b0 = b̄0 = 1, we also obtained the recursive form as
follows :

Φ0(x, π) = 0 and Φn(x, π) = Φn−1(x, π) +
1

(n− 1)!
[λ(x + nc0)]

n−1
e−λ(x+nc0)

x + c0

x + nc0

for all n = 1, 2, 3, . . . , N .

Definition 3. (Sub-adjustment coefficient). Let s > 0 and Y be a non-negative random
variable. If there exists d0 > 0 such that

E
[
ed0Y

] ≤ ed0s, (16)

then d0 is called a sub-adjustment coefficient of (s, Y ). Specifically, if (16) is an equality
then d0 is called an adjustment coefficient of (s, Y ).

Theorem 5. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, and let c(b0) > 0 be a net
income rate. If d0 > 0 is a sub-adjustment coefficient of (c(b0), h(b0, Y1)), then

Φn(x, π) ≤ e−d0x, (17)

for all x ≥ 0 and all n = 1, 2, 3, . . . , N.
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Proof : Let x ≥ 0 and d0 > 0 be a sub-adjustment coefficient of (c(b0), h(b0, Y1)), i.e.,

E
[
ed0h(b0,Y1)

]
≤ ed0c(b0).

We shall prove this theorem by induction. We start with n = 1,

Φ1(x, π) = P (h(b0, Y1) > x + c(b0))
= P (d0h(b0, Y1) > d0(x + c(b0)))
= P (ed0h(b0,Y1) > ed0(x+c(b0)))

≤ E
[
ed0h(b0,Y1)

]

ed0(x+c(b0))
(By Markov’s inequality)

≤ ed0c(b0)

ed0(x+c(b0))
= e−d0x.

Let k ≤ N − 1. Assume that inequality (17) holds for 1 < n ≤ k. Next, we shall show that
inequality (17) holds for n = k + 1. By Lemma 3 and inductive assumption, we get

Φk+1(x, π)

= Φ1(x, π) +
∫

{y:0≤h(b0,y)≤x+c(b0)}

Φk(x + c(b0)− h(b0, y), π)dFY1(y)

≤ Φ1(x, π) +
∫

{y:0≤h(b0,y)≤x+c(b0)}

e−d0(x+c(b0)−h(b0,y))dFY1(y). (18)

Next, we shall calculate the first term of right-hand side of inequality (18).

Φ1(x, π)
= P (h(b0, Y1) > x + c(b0))

= P
(
ed0h(b0,Y1)1(x+c(b0),∞)(h(b0, Y1)) > ed0(x+c(b0))

)

≤ E
[
ed0h(b0,Y1)1(x+c(b0),∞)(h(b0, Y1))

]

ed0(x+c(b0))
(By Markov’s inequality)

=

∫

R

ed0h(b0,y)1(x+c(b0),∞)(h(b0, y))dFY1(y)

ed0(x+c(b0))

=

∫

{y:x+c(b0)<h(b0,y)<∞}

ed0h(b0,y)dFY1(y)

ed0(x+c(b0))

=
∫

{y:x+c(b0)<h(b0,y)<∞}

e−d0(x+c(b0)−h(b0,y))dFY1(y).

Thus inequality (18) can be modified to be the following

Φk+1(x, π)

9



≤
∫

{y:x+c(b0)<h(b0,y)<∞}

e−d0(x+c(b0)−h(b0,y))dFY1(y)

+
∫

{y:0≤h(b0,y)≤x+c(b0)}

e−d0(x+c(b0)−h(b0,y))dFY1(y)

=
∫

{y:0≤h(b0,y)<∞}

e−d0(x+c(b0)−h(b0,y))dFY1(y)

=
e−d0x

ed0c(b0)

∫

{y:0≤h(b0,y)<∞}

ed0h(b0,y)dFY1(y)

=
e−d0x

ed0c(b0)
E

[
ed0h(b0,Y1)

]

≤ e−d0x

ed0c(b0)
ed0c(b0) = e−d0x.

This proves equation (17) for n = k + 1 and concludes the proof.

Corollary 6. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈ (0, 1), and let
c(b0) > 0 be a net income rate. Assume that d0 > 0 is a sub-adjustment coefficient of
(c(b0), h(b0, Y1)), then there exists an acceptable initial capital x(x ≥ 0) corresponding to
(α,N, {c(bn−1) = c(b0)}n≥1, {h(b0, Yn)}n≥1) such that

0 ≤ x ≤ − lnα

d0
or α ≤ e−d0x.

Proof : Let d0 > 0 be a sub-adjustment coefficient of (c(b0), h(b0, Y1)). By Theorem 5, we
have

ΦN (u, π) ≤ e−d0u,

for all u ≥ 0. Let α ∈ (0, 1). By Corollary 2, there exists v ≥ 0 which is an acceptable
initial capital corresponding to (α, N, {c(bn−1) = c(b0)}n≥1, {h(b0, Yn)}n≥1). By Definition
2, we have

ΦN (v, π) ≤ α.

Since ΦN (v, π) is non-increasing in v for each π, then there exists 0 ≤ x ≤ v such that α =
ΦN (x, π) ≤ e−d0x. Hence x is an acceptable initial capital corresponding to (α,N, {c(bn−1) =
c(b0)}n≥1, {h(b0, Yn)}n≥1). The proof is now complete.

Note:It’s known that a large initial capital results in a small ruin probability. However, an
insurance company usually does not posses unlimited initial capital, but only a small initial
capital, that must be sufficient for a predetermined solvency (not ruin) condition for the
firm is preferable. If an acceptable ruin probability is fixed, the firm can find an interval of
acceptable initial capital by virtue of Corollary 6.

Example 1. (Exponential claims under the proportional reinsurance). We assume that
{Yn}n≥1 is a sequence of claims with iid exponential Exp(1), and {Xn}n≥0 is a sequence
of surplus which satisfies the model (4). Let N ∈ {1, 2, 3, . . .}, and π ∈ P(N, [b, b]) be

10



stationary. Suppose that h(b0, y) is the proportional reinsurance with retention level b0, and
c(b0) > 0 is a net income rate which is calculated by the expected value principle, i.e.,

c(b0) = c0 − (1 + θ1)E[Y1 − h(b0, Y1)] = θ0 − θ1 + b0(1 + θ1). (19)

Assume that α = 0.05, θ0 = θ1 = 0.1, and b0 = 0.6. Then there exists an adjustment
coefficient d0 = 0.2935569060 of (c(b0), b0Y1) such that

0 ≤ x ≤ −ln0.05
0.2935569060

= 10.20494566

which is an interval of acceptable initial capital with corresponding to (1, N, {c(bn−1) =
c(b0)}n≥1, {b0Yn}n≥1)

Let
f(d) := E

[
edb0Y1

]− edc(b0).

Note that

E
[
edb0Y1

]
=

∞∫

0

edb0yfY1(y)dy =

∞∫

0

edb0ye−ydy =
1

1− db0
and edc(b0) = edb0(1+θ1). (20)

By Definition 3, d0 is an adjustment coefficient of (c(b0), b0Y1) if f(d0) = 0. Hence
E

[
ed0b0Y1

]
= ed0c(b0). By substitute b0 and θ1 into equation (20), we get

1
1− 0.6d0

= e0.66d0 .

Solving for d0, we get d0 = 0.2935569060. By Corollary 6, we get

0 ≤ x ≤ −ln0.05
0.2935569060

= 10.20494566

which is an interval of acceptable initial capital with corresponding to (0.05, N, {c(bn−1) =
0.66}n≥1, {0.6Yn}n≥1). This means that ΦN (x, π) ≤ 0.05 for all 0 ≤ x ≤ 10.20494566.

Example 2. (Exponential claims under the excess of loss reinsurance). We assume that
{Yn}n≥1 and {Xn}n≥0 are the sequences given in example 1. Let N ∈ {1, 2, 3, . . .}, and
π ∈ P(N, [b, b]) be stationary. Suppose that h(b0, y) is the excess of loss reinsurance with re-
tention level b0. By expected value principle, the net income rate c(b0) satisfies the following
equation

c(b0) = c0 − (1 + θ1)E[Y1 − h(b0, Y1)] = θ0 − θ1 + (1 + θ1)[1− e−b0 ]. (21)

Assume that α = 0.05, θ0 = θ1 = 0.1 and b0 = 100. Then there exists a sub-adjustment
coefficient d0 = 0.17 of (c(b0), h(b0, Y1)) such that

0 ≤ x ≤ − ln0.05
0.17

= 17.6220

which is an interval of acceptable initial capital with corresponding to (0.05, N, {c(bn−1) =
c(b0)}n≥1, {h(b0, Yn)}n≥1)

11



Let
f(d) := E

[
edh(b0,Y1)

]
− edc(b0).

Note that

E
[
edh(b0,Y1)

]
=

∞∫

0

edh(b0,y)e−ydy =

b0∫

0

edye−ydy +

∞∫

b0

eb0de−ydy =
deb0(d−1) − 1

d− 1
,

and edc(b0) = ed(1+θ1)[1−e−b0 ]. (22)

By Definition 3, d0 is a sub-adjustment coefficient of (c(b0), h(b0, Y1)) if f(d0) ≤ 0. Hence
E

[
ed0h(b0,Y1)

] ≤ ed0c(b0). By substitute b0, θ0 and θ1 into equation (22), we get

d0e
100(d0−1) − 1
d0 − 1

≤ e1.1d0[1−e−100].

Solving for d0, we get d0 = 0.17. By Corollary 6, we get

0 ≤ x ≤ − ln0.05
0.17

= 17.6220

which is an interval of acceptable initial capital with corresponding to (0.05, N, {c(bn−1) =
1.1}n≥1, {h(100, Yn)}n≥1). This means that ΦN (x, π) ≤ 0.05 for all 0 ≤ x ≤ 17.6220.

3.3 Existence of Minimal Capital

Let α ∈ (0, 1). As a result of Corollary 4.6 that {x ≥ 0 : ΦN (x, π) ≤ α} is a
non-empty set. Since the set {x ≥ 0 : ΦN (x, π) ≤ α} is an infinite set, then there are
many acceptable initial capital corresponding to (α,N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1). In
this section, we will prove the existence of a minimum initial capital that correspond to
(α,N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

Lemma 7. Let a, b and α be real numbers such that a ≤ b. If f is non-increasing and right
continuous on [a, b] and α ∈ [f(b), f(a)], then there exists d ∈ [a, b] such that

d = min{x ∈ [a, b] : f(x) ≤ α}.
Proof : Let

S := {x ∈ [a, b] : f(x) ≤ α} .

Since α ∈ [f(b), f(a)], i.e., f(b) ≤ α ≤ f(a), then we have b ∈ S. Hence S is a non empty
set. Since S is a subset of the closed and bounded interval [a, b], then there exists d ∈ [a, b]
such that d = inf S. Next, we consider the following cases:

Case 1. d = b. We know that b ∈ S, thus b = min S.

Case 2. a ≤ d < b. Since d = inf S, then there exists dn ∈ S such that

d ≤ dn < d + 1/n

for all n ∈ {1, 2, 3, . . .}. Since f is non-increasing and dn ∈ S, then

f(dn) ≤ α.

12



Since f is right continuous at d, we have

f(d) = lim
n→∞

f(dn) ≤ α.

Therefore, d ∈ S, i.e., d = min S. This completes the proof.

Theorem 8. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) and let α ∈ (0, 1). Then there exists
x∗ ≥ 0 such that

x∗ = min
x≥0

{x : ΦN (x, π) ≤ α}.

Proof : Let π ∈ P(N, [b, b]). We consider by case.

Case 1: For ΦN (0, π) ≤ α. We get min
x≥0

{x : ΦN (x, π) ≤ α} = 0.

Case 2: For ΦN (0, π) > α. By Corollary 2, there exists x̃ > 0 such that ΦN (x̃, π) ≤ α.
Hence α ∈ [ΦN (x̃, π),ΦN (0, π)]. Since ΦN (x, π) is non-increasing in x and right continuous
on [0,∞). Then ,by Lemma 7, there exists x∗ ∈ [0, x̃] such that

x∗ = min
x∈[0,x̃]

{x : ΦN (x, π) ≤ α} = min
x∈[0,∞)

{x : ΦN (x, π) ≤ α}.

From case 1 and 2, we have x∗ = min
x≥0

{x : ΦN (x, π) ≤ α}.

Next, we will approximate the minimal initial capital x∗ by the bisection method.

Theorem 9. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) and let α ∈ (0, 1). Assume that v0, x0 ≥
0 such that v0 < x0. Let {vm}m≥1 and {xm}m≥1 be two real sequences defined by





vm = vm−1 and xm =
xm−1 + vm−1

2
, if ΦN

(
xm−1 + vm−1

2
, π

)
≤ α

vm =
vm−1 + xm−1

2
and xm = xm−1, if ΦN

(
xm−1 + vm−1

2
, π

)
> α

for all m = 1, 2, 3, . . .. If ΦN (x0, π) ≤ α < ΦN (v0, π), then

lim
m→∞

xm = min
x≥0

{x : ΦN (x, π) ≤ α} = x∗.

Proof : Obviously, {xm}m≥1 is non-increasing and {vm}m≥1 is non-decreasing. Moreover,
vm ≤ xm for all m ∈ {1, 2, 3, . . .}. Thus, {xm}m≥1 and {vm}m≥1 are convergent. Since

0 ≤ xm − vm =
x0 − v0

2m
→ 0 as m →∞,

then there exists x∗ ∈ [v0, x0] such that

lim
m→∞

xm = lim
m→∞

vm := x∗.

Since ΦN (x, π) is right continuous in x for each π and ΦN (xm, π) ≤ α for all m, then

ΦN (x∗, π) = lim
m→∞

ΦN (xm, π) ≤ α.

Since ΦN (x, π) is non-increasing in x for each π and ΦN (vm, π) > α for all m, then
ΦN (x, π) > α for x < x∗. Therefore

x∗ = min
x≥0

{x : ΦN (x, π) ≤ α}. (23)

This completes the proof.
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4. Numerical Results

In this section, we provide numerical illustration of main results. We approximate the
minimal initial capital of the discrete-time surplus process (4) by using Theorem 9 according
to the following cases:

(a). Proportional Reinsurance.
We assume that {Yn}n≥1 is a sequence of claims with iid exponential Exp(1) and h(b0, y)
is the proportional reinsurance with retention level b0. Let N ∈ {1, 2, 3, . . .} be the time
horizon and π = {bn−1 = 0.6}N

n=1 be stationary. We choose model parameters as follows:
θ0 = θ1 = 0.10 which give c(b0) = 0.66 and θ0 = θ1 = 0.25 which give c(b0) = 0.75.
Moreover, we choose α = 0.05, α = 0.1 and α = 0.2. As a result, we get the table of the
minimum initial capital as below :

α = 0.05 α = 0.1 α = 0.2
N θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25
10 3.3909 : 2.7854 2.5919 : 2.0384 1.7358 : 1.2562
20 4.4983 : 3.3728 3.4846 : 2.4796 2.3918 : 1.5524
30 5.2438 : 3.6605 4.0747 : 2.6854 2.8148 : 1.6829
40 5.8067 : 3.8215 4.5137 : 2.7963 3.1233 : 1.7504
50 6.2558 : 3.9175 4.8593 : 2.8605 3.3619 : 1.7884
100 7.6364 : 4.0664 5.8902 : 2.9559 4.0471 : 1.8426
200 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
300 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
400 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
500 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

1, 000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
5, 000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
10, 000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

Table 1: Minimum initial capital in the case proportional reinsurance.

Table 1 shows an approximation of min
x≥0

{x : ΦN (x, π) ≤ α} with m = 25, v0 = 0, x0 = 20 as

mentioned in Theorem 9 and ΦN (x, π) is computed by using the recursive form as mentioned
in equation (15). The numerical results in Table 1 show a minimum initial capital x = 3.3909
for α = 0.05, N = 10 and θ0 = θ1 = 0.1 etc.

(b). Excess of Loss Reinsurance.
Again we assume that {Yn}n≥1 is a sequence of claims with iid exponential Exp(1) and
h(b0, y) is the excess of loss reinsurance with retention level b0 = 100. Let N ∈ {1, 2, 3, . . .}
be the time horizon and π = {bn−1 = 100}N

n=1 be stationary. We choose model parameters
as follows: θ0 = θ1 = 0.10 which give c(b0) = 1.1 and θ0 = θ1 = 0.25 which give c(b0) = 1.25.
Moreover, we choose α = 0.05, α = 0.1 and α = 0.2. As a result, we get the table of the
minimum initial capital as below :
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α = 0.05 α = 0.1 α = 0.2
N θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25
10 5.6515 : 4.6424 4.3198 : 3.3973 2.8930 : 2.0936
20 7.4972 : 5.6213 5.8076 : 4.1327 3.9863 : 2.5874
30 8.7396 : 6.1009 6.7911 : 4.4756 4.6913 : 2.8048
40 9.6779 : 6.3692 7.5229 : 4.6605 5.2054 : 2.9174
50 10.4264 : 6.5291 8.0989 : 4.7675 5.6031 : 2.9806
100 12.7273 : 6.7773 9.8169 : 4.9265 6.7452 : 3.0709
200 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
300 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
400 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
500 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

1, 000 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
5, 000 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
10, 000 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

Table 2: Minimum initial capital in the case excess of loss reinsurance.

Table 2 shows an approximation of min
x≥0

{x : ΦN (x, π) ≤ α} with m = 25, v0 = 0, x0 = 20 as

mentioned in Theorem 9 and ΦN (x, π) is computed by using the recursive form as mentioned
in equation (14). The numerical results in Table 2 show a minimum initial capital x = 5.6515
for α = 0.05, N = 10 and θ0 = θ1 = 0.1 etc.
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Abstract 
 
We present a European option pricing when the underlying asset price dynamics is governed by a linear 
combination of the time-change Lévy process and a stochastic interest rate which follows the Vasicek proc- 
ess. We obtain an explicit formula for the European call option in term of the characteristic function of the 
tail probabilities. 
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Pricing

1. Introduction 
 
Let

 
 , ,F P  be a probability space. A stochastic process

 
tL  is a Lévy process if it has independent and stationary 

increments and has a stochastically continuous sample path, 

i.e. for any 0,    
0

lim 0t h t
h

P L L 
   . The sim- 

plest possible Lévy processes are the standard Brownian 
motion tW , Poisson process

 
,tN  and compound Poisson 

process 
1
tN

ii
Y

  where tN  is Poisson process with inten- 

sity t  and iY  are i.i.d. random variables. Of course, 

we can build a new Lévy process from known ones by 
using the technique of linear transformation. For example, 

the jump diffusion process 
1
tN

t ii
t W Y 


  , where ,   

are constants, is a Lévy process which comes from a lin- 
ear transformation of two independent Lévy processes, 
i.e. a Brownian motion with drift and a compound Poi- 
sson process. 

Assume that a risk-neutral probability measure Q exists 
and all processes in section 1 will be considered under 
this risk-neutral measure. 

In the Black-Scholes model, the price of a risky asset 

tS  under a risk-neutral measure Q and with non divi- 

dend payment follows  

  2
0 0

1
exp exp

2t t tS S L S rt W t        
  

  (1.1) 

where r is a risk-free interest rates,    is a vo- 

latility coefficient of the stock price. Instead of modeling 
the log returns  

 21
2t tL rt W t     

with a normal distribution. We now replace it with a more 
sophisticated process tL which is a Lévy process of the 

form 

 21
,

2t t tL rt W t J t        
 

     (1.2) 

where tJ and t denotes a pure Lévy jump component, 

(i.e. a Lévy process with no Brownian motion part) and 
its convexity adjustment. We assume that the processes 

tW  and tJ are independent. To incorporate the volatile- 

ity effect to the model (1.2), we follow the technique of 
Carr and Wu [1] by subordinating a part of a standard 

Brownian motion 21
2tW t   and a part of jump Lévy 

process tJ t  by the time integral of a mean reverting 

Cox Ingersoll Ross (CIR) process

 
0

d
t

t sT v s  , 

where tv  follows the CIR process   

 d 1 d d v
t t v t tv v t v W           (1.3) 

Here v
tW  is a standard Brownian motion which corre- 

sponds to the process tv . The constant    is the rate 

at which the process tv reverts toward its long term mean 

and 0v   is the volatility coefficient of the process
 tv .  
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Hence, the model (1.2) has been changed to  

 21
,

2t tt T t T tL rt W T J T        
 

   (1.4) 

and this new process is called a stochastic volatility Levy 
process. One can interpret tT  as the stochastic clock proc- 
ess with activity rate process

 tv . By replacing tL  in (1.1) 
with tL , we obtain a model of an underlying asset under 
the risk-neutral measure Q with stochastic volatility as 
follows:

 

 2
0

1
exp

2t tt T t T tS S rt W T J T           
  

(1.5) 

In this paper, we shall consider the problem of finding 
a formula for European call options based on the under- 
lying asset model (1.5) for which the constant interest 
rates r is replaced by the stochastic interest rates ,tr and 

tJ  is compound Poisson process, i.e. the model under 

our consideration is given by 

 2
0

1
exp

2t tt t T t T tS S r t W T J T           
  

 (1.6) 

Here, we assume that rt follows the Vasicek process 
 

 d d ,d r
tt t rr r t W              (1.7) 

r
tW  is a standard Brownian motion with respect to the 

process
 tr  and d d d d 0r v r

t t t tW W W W  . The constant 
0   is the rate at which the interest rate reverts to- 

ward its long term mean, 0r   is the volatility coeffi- 
cient of the interest rate process (1.7), The constant 

0   is a speed reversion. 
 
2. Literature Reviews 
 
Many financial engineering studies have been undertaken 
to modify and improve the Black-Scholes model. For ex- 
ample, The jump diffusion models of Merton [2], the sto- 
chastic Volatility jump diffusion model of Bates [3] and 
Yan and Hanson [4]. Furthermore, the time change Lévy 
models proposed by Carr and Wu [1]. 

The problem of option pricing under stochastic interest 
rates has been investigated for along time. Kim [5] con- 
structed the option pricing formula based on Black-Scholes 
model under several stochastic interest rate processes, 
i.e., Vasicek, CIR, Ho-Lee type. He found that by incur- 
porating stochastic interest rates into the Black-Scholes 
model, for a short maturity option, does not contribute to 
improvement in the performance of the original Black- 
Scholes’ pricing formula. Brigo and Mercurio [6] mention 
that the stochastic feature of interest rates has a stronger 
impact on the option price when pricing for a long ma- 
turity option. Carr and Wu [1] continue this study by giving 
the option pricing formula based on a time-changed Lévy 
process model. But they still use constant interest rates in 

the model. 
In this paper, we give an analysis on the option pricing 

model based on a time-changed Lévy process with sto- 
chastic interest rates.  

The rest of the paper is organized as follows. The dy- 
namics under the forward measure is described in Section 
3. The option pricing formula is given in Section 4. Fi- 
nally, the close form solution for a European call option in 
terms of the characteristic function is given in Section 5. 
 
3. The Ddynamics under the Forward 

Measure 
 
We begin by giving a brief review of the definition of a 
correlated Brownian motion and some of its properties 
(for more details one see Brummelhuis [7]). Recalling 

that a standard Brownian motion in nR  is a stochastic 
process   0t t

Z  whose value at time t is simply a vector of 

n independent Brownian motions at t,  

 1, ,, , t t n tZ ZZ . 

We use Z instead of W since we would like to reserve the 
latter for the more general case of correlated Brownian 
motion, which will be defined as follows:  

Let  
1 ,ij i j n

 
 

  be a (constant) positive symmetric 

matrix satisfying 1ii   and 1 1ij    By Cholesky’s 

decomposition theorem, one can find an upper triangul 
n n matrix    ijh  such that ,  t  where 

tΗ  is the transpose of the matrix .Η  Let  

 1, ,, , t t n tZ ZZ  be a standard Brownian motion as 

introduced above, we define a new vector-valued process 

 1, ,, , t t n tW WW  by t tW Z  or in term of com-

ponents,  

, ,
1

,  1, ,
n

i t ij j t
j

W h Z i n


    

The process   0t t
W  is called a correlated Brownian mo- 

tion with a (constant) correlation matrix  . Each com- 

ponent process  , 0i t t
W


 is itself a standard Brownian 

motion. Note that if Id   (the identity matrix) then 

tW  is a standard Brownian motion. For example, if we 

let a symmetric matrix  
1 0

1 0

0 0 1

v

v


 

 
   
  

            (3.1) 

Then   has a Cholesky decomposition of the form 
THH   where H  is an upper triangular matrix of the 

form
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21 0

0 1 0

0 0 1

v v

H

  
 

  
 
  

 

Let  , ,r v
t t t tZ Z ZZ  be three independent Brownian 

motions then  , ,r
t t t tW W W W  defined by t t W Z , 

or in terms of components, 

 2 1 , ,v v r r
t v t v t t t t tW Z Z W Z W Z       (3.2) 

Now let us turn to our problem. Note that, by Ito’s 
lemma, the model (1.6) has the dynamic given by 

    
 
 

d d d e 1 d ,

d d d ,

d 1 d d ,

 

  

 

    

  

  

t

t t

Y
t t t m t T t T

r
t t r t

v
t t v t t

S S r v t W S N

r r t W

v v t v W

(3.3) 

where
  e 1tY

m E   , d d d d 0r r
t t t tW W W W   and 

 

d d dv
t t vW W t . 

We can re-write the dynamic (3.3) in terms of three 

independent Brownian motions  , , r
t t tZ Z Z follows (3.2), 

we get  

    
 

2d d 1 d

         e 1 d ,

   



    

 t

t

v
t t t m t t v t v t

Y
t T

S S r v t v dZ Z

S N
(3.4) 

 d d d ,r
t t r tr r t Z             (3.5) 

 d 1 d d ,v
t t v t tv v t v Z           (3.6) 

This decomposition makes it easier to perform a 
measure transformation. In fact, for any fixed maturity T, 
let us denote by TQ  the T-forward measure, i.e. the 
probability measure that is defined by the Radon- 
Nikodym derivative,  

 
0

exp d
d

d 0,

T

uT
r u

Q

Q P T

 
 
 


.          (3.7) 

Here,  ,P t T  is the price at time t of a zero-coupon 
bond with maturity T  and is defined as 

 , e
T

st r ds

Q tP t T E F
    

.         (3.8) 

Next, Consider a continuous-time economy where in- 
terest rates are stochastic and satisfy (3.5). Since the SDE 
(3.5) satisfies all the necessary conditions of Theorem 32, 
see Protter [8], then the solution of (3.5) has the Markov 
property. As a consequence, the zero coupon bond price 
at time t under the measure Q in (3.8) satisfies 

 , exp d
T

Q s t
t

P t T E r s r
  

   
   

        (3.9) 

Note that  ,P t T depends on tr only instead of de- 
pending on all information available in Ft up to time t. 
As such, it becomes a function  , tF t r of tr ,  

   , , tP t T F t r , 

meaning that the pricing problem can now be formulated 
as a search for the function  , tF t r . 

Lemma 1 The price of a zero coupon bond can be de- 
rived by computing the expectation (3.9). We obtain 

      , exp , , tP t T a t T b t T r       (3.10) 

where            1
, e 1T t

tb t r 


   , 

   

   

2 2
2

2 3 3

2 2

3 2 2 2

3
, e

4 4

e
2

T tr r

T tr r

a t T

T t





 
  

  
   

 

 

 
   
 
   

       
   

. 

Proof. See Privault [9] (pp. 38-39). 
Lemma 2 The process tr following the dynamics in (3.5) 

can be written in the form 

 t tr x w t  , for each t       (3.11) 

where the process tx satisfies 

0d d d , 0r
t t r tx x t Z x     .      (3.12) 

Moreover, the function w(t) is deterministic and well 
defined in the time interval [0,T] which satisfied  

   0e 1 et tw t r  


            (3.13) 

In particular,   00w r . 

Proof. To solve the solution of SDE (3.5),  

Let  , tg t r e r and using Ito’s Lemma 

 
2

2

2

1
d d d d ,

2

g g g
g t r r

t r r

  
  
  

 

Then,  

  d d d d

          = d d ,

t t t r
t t t r t

t t r
r t

e r e r t e r t Z

e t e Z

  

 

   

 

   


 (3.14) 

Integrated on both side the above equation from 0 to t 
where 0 t T   and simplified, one get 

   
0 0

1 d
t t ut t r

t r ur r e e e Z  


        

By using the definition of  w t  form (3.13), 
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   
0

d
t t u r

t r ur w t e Z             (3.15) 

where         0e 1 et tw t r  


    . 

Note that the solution of (3.12) is 

   
0 0 0
e e d e d

t tt u t ut r r
t r u r ux x Z Z          . (3.16) 

Hence,  t tr w t x   for each t. The proof is now 

complete. 
Next we shall calculate the Radon-Nikodym derivative 

as appear in (3.7). By Lemma 1 and 2, we have 

 t tr x w t  and  0,P T . Substituting tr and  0,P T  

into (3.7), we have 

  
    

  

0

0

2 2

20
0

exp dd

d exp 0, 0,

       exp d 1 d .
2

T
T u

T
T T u

u

x w u uQ

Q a T b T r

x u e u


 

 




 
    

 



 

(3.17) 

Stochastic integration by parts implies that 

 
0 0 0

d d d
T T T

u T u ux u Tx u x T u x      .  (3.18) 

By substituting the expression for udx from (3.12), 

 

   
0

0 0

  d

d d

T

u

T T r
u r u

T u x

T u x u T u Z 



    



 
    (3.19) 

Moreover by substituting the expression for ux from 

(3.16), the first integral on the right hand side of (3.19) 
becomes 

 

    
0

0

d

d d

T

u

T u u s r
r uo

T u x u

T u e Z u



  

 

  



 
    (3.20) 

Using integral by parts, we have (Equation 3.21) 
Substituting (3.21) into (3.19), we obtain

 
    0 0

d 1 d
T T T u rr

u uT u x e Z


          

Hence,   0 0
d e 1 d

T T T u rr
u ux u Z


           (3.22) 

Substituting (3.22) into (3.17), once get 

     
2 2

20 0

d
  

d

exp 1 e d 1 e d
2

T

T TT u T urr r
u

Q

Q

Z u  
 

    
    

 
 

 

(3.23) 

The Girsanov theorem then implies that the three proc- 

esses ,rT vT
t tZ Z  and T

tZ defined by 

  d d 1 e d

d d , d d

T trT r r
t t

vT v T
t t t t

Z Z t

Z Z Z Z




   

 
    (3.24) 

are three independent Brownian motions under the meas- 
ure TQ . Therefore, the dynamics of ,t tr v  and tS under 

TQ  are given by 

    
 

  
 

2

2

d d d 1 d

        1 d ,

d 1 d d ,

d 1 d d ,

t

t

vT T
t t t m t v t t t v t

Y
t T

T t rTr
t t r t

vT
t t v t t

S S r v t v Z v Z

S e N

r r e t Z

v v t v Z



    

  


 



 

    

 

 
     
 

  

 

(3.25) 

 
4. The Pricing of a European Call Option on 

the Given Asset 
 
Let    0,t t T

S
  

be the price of a financial asset modeled as 

a stochastic process on a filtered probability space 

 , , , ,T
tF F Q

 tF is usually taken to be the price his-  

tory up to time t. All processes in this section will be de- 
fined in this space. We denote C the price at time t of a 
European u call option on the current price of an under- 
lying asset tS  with strike price K and expiration time T. 

 

    
       
       

     

0

0 0 0 0 0

0 0 0 0

0 0 0

   d d

d d d d d

d d d d

d d 1 d

T u u s r
r uo

T u T u us r u s r v
r s r s

T T T uu r v v u r
r u u

T u T T uu v r rr
r u u

T u e Z u

e Z T u e u e Z T v e v

e Z T v e v T v e v e Z

e T v e v Z e Z



   

   

 



 






 

 

 

 

 

     

       

            

 

    

   

    
0

d .
T r

r uT u Z  

       (3.21) 
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The terminal payoff of a European option on the un- 

derlying stock tS  with strike price K is 

 max ,0TS K             (4.1) 

This means the holder will exercise his right only TS K  
and then his gain is TS K . Otherwise, if 

 TS K  then 
the holder will buy the underlying asset from the market and 
the value of the option is zero. 

We would like to find a formula for pricing a Euro- 
pean call option with strike price K and maturity T based 
on the model (3.25). Consider a continuous-time econ- 
omy where interest rates are stochastic and the price of 
the European call option at time t under the T-forward 
measure TQ  is 

       
   

0

, , , ; , , max ,0 , ,

( , ) max ,0 , , d


 

 

T

T

t t t T t t tQ

T T t t t TQ

C t S r v T K P t T E S K S r v

P t T S K p S S r v S
 

where TQ
E  is the expectation with respect to the T-for-  

ward probability measure,
 

TQ
p is the corresponding con-  

ditional density given  , ,t t tS r v and P is a zero coupon 
bond which is defined in Lemma 1.  

With a change in variable ln ,t tX S  

 

     
     
   

   

   

lnln

ln

ln

ln

, , , ; ,

, max e ,0 , , , d

, e 1 , , d

= , e , , d

  , , , d

1
e e , ,

e , ,

 

T
T

T
TT

T
T

T

t T
T

T
T

t t t

X
T t t t TQ

X
X K T t t t TQK

X
T t t t TQK

T t t t TQK

X X
T t t t TQX K

t t tQ

C t S r v T K

P t T K p X X r v X

P t T K p X X r v X

P t T p X X r v X

KP t T p X X r v X

p X X r v vX
E S r v















 

 



 
 
 
 











   
ln

  , , , dT T t t t TQK
KP t T p X X r v X


 

 

 
ln

, ,
e d

(e , , )

T
t T

T
T

T t t tQX X
TXK

t t tQ

p X X r v
e X

E S r v

 
 
 
 
  

   
ln

, , , dT T t t t TQK
KP t T p X X r v X


   

(4.2) 
With the first integrand in (4.2) being positive and in-

tegrating up to one. The first integrand therefore defines a 
new probability measure that we denote by TQ

q below  

 

 

   
ln

ln

, , , ; ,

e , , d

  , , , d

t
T

T

t t t

X
T t t t TQK

T t t t TQK

C t S r v T K

q X X r v X

KP t T p X X r v X













 

     
 
   

1 2e P , , , ; , , P , , , ; ,

e Pr ln , ,

   , Pr ln , ,   

 

 

 

t

t

X
t t t t t t

X
T t t t

T t t t

t X r v T K KP t T t X r v T K

X K X r v

KP t T X K X r v

 

(4.3) 
where those probabilities in (4.3) are calculated under the 

probability measure TQ . 

The European call option for log asset price  
lnt tX S  will be denoted by 

   
   

1

2

ˆ , , , ; , e P , , , ; ,

                               e , P , , , ; ,

tX
t t t t t t

t t t

C t X r v T t X r v T

P t T t X r v T

 










(4.4) 

where ln K   and  

   P , , , ; ,  :=  P , , , ; , ,    1, 2.j t t t j t t tt X r v T t X r v T K j   

Note that we do not have a closed form solution for these 
probabilities. However, these probabilities are related to 
characteristic functions which have closed form solutions 
as will be seen in Lemma 4. The following lemma shows 

the relationship between 1P and 2P in the option value of 

(4.4). 

Lemma 3 The functions 1P  and 2P  in the option val- 

ues of (4.4) satisfy the PIDEs (4.5): 
and subject to the boundary condition at expiration t= T 

 1 , , , ; , 1 .xP T x r v T           (4.6) 

Moreover, 2P satisfies the Equation (4.7)
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 
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         (4.7) 
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and subject to the boundary condition at expiration t= T 

 2 , , , ; , 1 .xP T x r v T                                     (4.8) 

where for i=1,2 
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             (4.9) 

 
Note that 1 1x    if x   and otherwise

 
1 0x   . 

Proof. See Appendix A. 
 
5. The Closed-Form Solution for European  

Call Options 
 
For j =1,2 the characteristic function for 

 , , , ; ,jP t x r v T  , with respect to the variable  , are 

defined by

    iuκ, , , ; , : e d , , , ; , ,




   
j jf t x r v T u P t x r v T  (5.1) 

with a minus sign to account for the negativity of the 

measure jdP . Note that jf
 

also satisfies similar PIDEs 
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j j

f
A f t x r v T

t

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       (5.2) 

with the respective boundary conditions 
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Since    d , , , ; , 1 d     
j xP t x r v T d x  

The following lemma shows how to calculate the char- 

acteristic functions for 1P  and 2P as they appeared in 

Lemma 3.  

Lemma 4 The functions 1P  and 2P can be calculated 

by the inverse Fourier transformations of the character- 
istic function, i.e. 
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for 1,2,j   with Re[.] denoting the real component of a 

complex number.  
By letting T t   , the characteristic function jf  is 

given by  
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Proof. See Appendix B.  
In summary, we have just proved the following main 

theorem. 
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Theorem 5 The value of a European call option of 
SDE (3.25) is 

  
   1 2

, , , ; ,

, , , ; , ( , ) , , , ; ,

t t t

t t t t t t t

C t S r v T K

S P t X r v T KP t T P t X r v T     

where 1P  and 2P are given in Lemma 4 and  ,P t T  is 

given in Lemma 1.  
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Appendix A: Proof of Lemma 3 
 

By Ito’s lemma,  ˆ , , ,C t x r v  follows the partial inte-

gro-differential equation (PIDE)  
ˆ

ˆ ˆ 0,D J
t t

C
L C L C

t


  


        (A.1) 

where  
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where ( )k y is the Lévy density. 

We plan to substitute (4.4) into (A.1). Firstly, we compute  
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Substitute all terms above into (A.1) and separate it by 

assumed independent terms of 1P  and 2P . This gives  

two PIDEs for the T-forward probability for 
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  

    

       

2
21 1 1

2 2 2 2 22
1 1 1 1 1

2 2 2

1
1 1

1
1 e

2

1
2 2 2

, , , ; , , , , ; , e 1 d .

e

T tr

v r
v v v v

y

y

P P P
r v r

t x r

vP P P P Pv
v v v

v x vv x r

P
v P t x y r v T P x t r v T k y y

x

v


  



       

 

 





                
    

      
    

  
      

   





  

    

 

        1 11 , , , ; , , , , ; , d . 0P t x y r v T P x t r v T k y y 




       

                

(A.2)

 

 

and subject to the boundary condition at the expiration 
time t = T according to (4.6). 

By using the notation in (4.9), then (A.2) becomes 
Equation (A.3) 
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For 2 ( , , , ; , ) :P t x r v T   
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r e b t T P r r

r t t
 

      

  
   

 
   

                              

    
                

       

   

       2
2 2

,

, , , ; , , , , ; , e 1 d .y

b t T

P
v P t x y r v T P t x r v T k y y

x
 





 
     

 
      


 

 

(A.4) 
and subject to the boundary condition at expiration time t 
= T according to (4.8). 

Again, by using the notation (4.9), then (A.4) becomes 

       

  

2 22
2 2 22 2 2 2

2 22

2
2

2 2 2

, ,
0 , 1 ,

2 2

1 e ( , ) :

r
r

T tr

a t T b t TP P P Pv
A P v b t T P r b t T

t x r t tx

P
P r b t T A P

t


 


 


 

                           
             

    

 
 

(A.5)
The proof is now completed. 
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 Appendix B: Proof of Lemma 4 
 

To solve the characteristic function explicitly, letting 
T t    be the time-to-go, we conjecture that the func-

tion 1f  is given by 

 
      

1

1 1 1

, , , ; ,

exp iux ,



  



   

f t x r v t u

B rC vE
   (B.1) 

and the boundary condition      1 1 10 0 0 0B C E   . 
This conjecture exploits the linearity of the coefficient in 
PIDEs (5.2).  

Note that the characteristic function of 1f  always 
exists. In order to substitute (B.1) into (5.2), firstly, we 
compute 

      1 1
1 1 1 1 1, ,

f f
B rC vE f iuf

t x
  

       
 

 

   

   

   

2
21 1 1

1 1 1 1 12

2 2
2 21 1
1 1 1 12 2

2 2
1 1

1 1 1 1

1

1 1

, , ,

, ,

, ,

( , , , ; , )

( , , , ; , ) ( , , , ; , )

iux

f f f
C f E f u f

r v x

f f
E f C f

v r

f f
iuC f iuE f

x r v x

e f t x r v t u

f t x y r v t u f t x r v t u

 

 

 



 

  
   

  

 
 

 

 
 

   



    

 

Substituting all the above terms into (5.2), after can- 
celling the common factor of 1f , we get a simplified 
form as follows: 

   

                

          

1 1

2 2
2 2

1 1 1

2 2
2

1 1 1 1

0

    1 e e 1 e 1 e d
2 2

+ 1 e
2

iux y y iuxv
v v

T tr r

r C iu C

v E iu E E iu u iu k y y

B C C E

  

      

 
     







 

     

                 

  
       

   

  

 
By separating the order ,r v  and ordering the re- 

maining terms, we can reduce it to three ordinary differ- 
ential equations (ODEs) as follows: 

1 1( ) ( ) ,C C iu                   (B.2) 

        

      

2
2

1 1 1

2
2

1
2

           e 1 d ,
2

v
v v

iux y y

E E iu E

iu u iu e k y y


     

 




    

     (B.3) 

          
2 2

2
1 1 1 11 e .

2
T tr rB C E C 

     


  
      

 
 

(B.4) 

It is clear from (B.2) and (0) 0C  that 

   1 1 e ,
iu

C 


              (B.5) 

Let 
2

1 ,
2

vb


  

 2 1 ,v vb iu      

      2 2
0

1
e e 1 d

2
iux y yb iu u iu k y y






 
      

 
  

and substitute all term above into (B.3). we get 

     
2 2

2 2 0 1 2 2 0 1
1 1 1 1

1 1

4 4

2 2
  

b b b b b b b b
E b E E

b b

        
       
   
   

 

By method of variable separation, we have 

 

   

1
1

2 2
2 2 0 1 2 2 0 1

1 1
1 1

d
d

4 4

2 2

E
b

b b b b b b b b
E E

b b




 


        
    
   
   

 

 
Using partial fraction on the left hand side, we get 
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 
 1

2 2
1 1

1 1

1 1
d d

( )
2 2

E
b b

E E
b b

 
 

 
 
          
          

 

where 2
2 0 14b b b   . 

Integrating both sides, we have 

 

 

2
1

1
0

2
1

1

2
ln

2

b
E

b
E

b
E

b






   
    

   
 

 

Using boundary condition 1( 0) 0E     we get

 

 

2
0

2

ln
b

E
b

  
    

 

Solving for 1( )E  , we obtain 

 
 
 

1 2

1

1 1 2

e 1

2 e

b b
E

b b b















 

            (B.6) 

where 1 2 2 2,b b b b     . 

In order to solve 1( )B  explicitly, we substitute 1( )C 
 

and 1( )E  in (B.5) and (B.6) into (B.4) .   

     

   
 

2 2
2

1 2 2

22
1 22

2
1 1 2

' 1 e e e

e 1
1 2e e

2 2 e

r r

r

iu iuiu
B

b bu

b b b

  


 



 
  




  


 



 
     
 


   



 

 

 

Integrating with respect to and using boundary con- 
dition

 1( 0) 0B    , then we get 

    

   

 

2 2 2
1 2

22 2
2 2

3 3

1 22 1 2

1 1 1 2

 2

e 1 4e e 3
2 4

e
ln

2 2

r r

r r

B iu u

iu u

b bb b b

b b b b

  



   


 
 



  



  

     

        
   

   
 

 

The details of the proof for the characteristic function 

2f are similar to 1f .  

Hence, we have 

 

     
2

2 2 2

, , , ; ,

exp

f t x r v T u

iux B rC vE



  



     
, 

where    2 2,B C  and 2 ( )E  are as given in this Lem- 

ma. 
We can thus evaluate the characteristic function in 

close form. However, we are interested in the probabil- 

ity jP . These can be inverted from the characteristic 

functions by performing the following integration 

 

 iuκ

0

, , , ; ,

, , . ; ,1 1
Re d

2

j

j

P t x r v T

e f t x v r T u
u

iu







 
      





 

for 1,2j  where lnt tX S  and ln K  , see Kendall 

et. al. [10]. The proof is now complete. 
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