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Abstract

The purpose of this research project is to modify the continuous time GARCH (1, 1) model in
such a way that it can explain a long memory effect. To do this, we change the standard Brownian
motion into a fractional Brownian motion and call it FIGARCH (1, 1) model. Since the long memory
process has an arbitrage. We then develop an approximate model of FIGARCH (1, 1) which do not
have an arbitrage. After that we shall use this approximate model to find a formula for a European
call option, estimate parameters for some interest rate models, and bond pricing. We also discuss
the long memory model with jump. An application software for computing parameters of some

interest rate models was purposed.

Keywords: Long memory process, fractional process, GARCH(1,1) model, arbitrage, fractional

process with jump.



Executive Summary
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1.

To develop a method for adding long memory effects into continuous time GARCH(1,1)

models. This new model is called FIGARCH (1,1).

2. To construct an approximate model for FIGARCH (1,1) and find a European call option by
using the approximate model
3. Toinvestigate FIGARCH model with jump.
4. To find a formula for European call option when the asset prices follows a stochastic
volatility Levy model.
5. To develop an application software for calculating parameters of the CIR model,
Vasicek interest rate models, and bond pricing.
Fanldaniumshlud
1. We constructed an approximate model for continuous time FIGARCH (1,1) model. We
proved the convergence of the approximate model to the FIGARCH (1,1) model.
2. By using FIGARCH (1,1) model, we developed a formula for pricing a European call option.
We showed by simulation that pricing in FIGARCH (1,1) model can reduce error significantly
when compare with the original GARCH model.
3. We investigated FIGARCH (1,1) model with jump.
4. We investigated the option pricing when the underlying asset follows a stochastic Levy
model with stochastic interest rate.
5. We develop an application software for calculating parameters of the CIR model, Vasicek
interest rate models, and bond pricing.
CR

We found that pricing of the contingent claims under FIGARCH model is more realistic than

the original GARCH model in the sense that error of the approximation can be reduced significantly

and this is consistent with the nature of the return series which is not Markovian.

_END OF EXECUTIVE SUMMARY
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By a Fractional Integrated GARCH (1,1) model of continuous time (FIGARCH), we shall mean a
process of the form

dv, = (w-6v,)dt + £v,dB (1)

where 0<t<T, 8, & are weight parameters and BtH is a fractional Brownian motion. BtH is

defined by

t
B! = | (t—s)“dB,,

where & =(1/2)—H and B, is the standard Brownian motion. For each & >0, an approximate

model of FIGARCH is a process of the form
dvy =(w—-6v])dt+ v dB/, (2)

& . . . H . .

where Bt is the approximate process of is Bt and is defined by
t
& %4
B = | (t—s+)“dB,

One can show that Bf converges to BtH in L,(Q) as ¢ > 0, uniformly with respect to
te[0,T]. We have proved the following two main results.

Theorem 1 Forany & >0, a solution of the approximate model (2) is given by
1 ¢ [oste s—¢BY
Vo= exp{ng —[9+E§252“jt} ve +ij e( 2 ] ds

1 1
where ——<a <— and B/ =Jt(t—s+5)“dWS.
2 2 0

Theorem 2 The solution (3) converges to the solution of (1) in L’ (Q) and uniformly with respect to

te[0,T]as € >0.

Moreover, we do numerical simulation to confirm that the volatility that come from the approximate
model give a better approximation to the volatility of SCB stock price than the volatility that come

from the continuous time GARCH model when & is small enough. [The proof can be found in Ref. 1]

o dy A v A
2. ﬂ]?J'JﬂQ‘]Jﬁ%ﬁﬂﬂmﬂﬂﬁﬂ@!!ﬁ%mﬂﬂﬁ]u

In the second paper, we are interested in the option pricing when the stock pricing follows jump
diffusion model and their stochastic volatility follows a fractional stochastic volatility model, i.e. our

dynamic system is of the form:



dS, = S, (clt + /v, dB, ) + 5, YaN, (3)
dv, = (- 6v,)dt + £v,dB" .

We can not price a European call option by using the dynamic (3) directly since it contains a
fractional process and hence an arbitrage exists. To solve the problem, we consider an approximate

model of the form
ds: = s:(ydt+\/EdBt)+ S YaN, (@)
dv: = (@—6v°)dt+ EvidB’ .

Once again, one can show that the solution processes Stg and Vf of equation (4) converge to the
solutions S and V¥ of equation (3) in L*(€2) and uniformly with respect to t €[0,T] as & —0.
We derived a formula for European call option on the approximate model (4) and we get the following

main result.
Theorem 3 For each £ > 0, the value of a European call option written on the model (4) is
C(S vt K T) =S P (5!, vy, t, K, T) —Ke " ™P,(S°,v°,t,K,T)

where P, is the risk neutral probability that S, > K and P, is the risk neutral in the money

probability. [The proof can be found in Ref. 2]

¢ ¥

3. muingilszasadena

In the third paper, we are interested in the option pricing again but the jump process is not the
compound Poisson process as appeared in the second paper. Here, we assume that the jump
process is a pure Levy process and the interest rate is not constant but it is stochastic and satisfies
the Hull-White process.

Our models are of the form:
1
S, =S, exp(r, + (oW, _EGZT‘) +3;) (5)
dr. = (a(t)- pr)dt+ o, dB’ (6)
where Btr is a standard Brownian motion with respect to the process I, O, >0 the volatility

coefficient of the interest rate process (6), and JT1 the pure Levy process.

The process Tt is defined by
t
T = L v ds,
where v, follows the CIR process

dv, = 7(l-v,)dt+ o, \[v,dB . (7)



When working with the T-forward measure QT , we can find a formula of European call option for
which the asset price, the interest rate, and the volatility satisfy the dynamic (5),(6), and (7)

respectively. Hence, we have our main results.
Theorem 4  The value of a European call option of SDE (5)-(7) is
C(t,S,r,v;T,K)=SP(t,X,,r,v;T,x)—KP (t,T)P,(t, X, ,r,v:T,x).

[The proof can be found in Ref. 3]

[y J
4. muTagiszasnde 5

The fourth paper involved in writing a manual for an application software for computing parameters
for CIR model, Vasicek interest rate model, and also finding the bond price. One CD which contains

the software is attached to this report. [The detail can be found in Ref. 4].

Up to this point, we have finished the work according to the objective that was written in the
research project. However, we would like to submit another 3 supplementary research articles which

were undertaken under this research project.
Supplementary research articles

5. The fifth paper studied an insurance model where the surplus process can be controlled by two
activities, one is reinsurance for which the reinsurance company has an opportunity to default and
other is an investment in a financial market. We prove the existence of an optimal plan and derive a
formula for the value function which is the minimum of total discounted cost function in the framework

of discrete-time surplus process. The main theorem is as follow:
Theorem 5 Let X € S be an initial state. Then there exists U~ = (b",8") €U such that

G(U*) _ (m;nu E[e—ﬁ(c(b)z{h(b,Y)K+Y(l—K)+<6,R>] <o
,0)€él

and, moreover, U~ — stationary is an optimal plan. Here b” €[b,b] represents the retention level
of reinsurance and & = (&}, 3, ,..., 5, ) is the portfolio vector. The cost function G(u) =G (b, 5) is
a function of retention level and the portfolio vector. So this theorem say that, with some assumptions
as given in the paper, the optimal control (or minimum plan) is stationary, i.e. we should select the
same retention level and the same investment on every period of time. The proof of this theorem can

be found in . [The proof can be found in Ref. 5]

6. The sixth paper studied an insurance model under the condition that the claims can be control by
reinsurance and an insurance company requires a sufficient initial capital to ensure a ruin probability
will not exceed a given quantity & . We prove the main theorem is about the existence of the

minimum initial capital which was stated as follow.



Theorem 6 Let N € {1, 2,3,...},7[ e P(N,[Q,b_]) and let « € (0,1) . Then there exists

x* >0 such that
 =mi ()] <
X XZIoﬂ{X. N(X,/Z)_O{},

Where is P(N,[b,b]) the set of all plans and @ (X, 7) is the ruin probability at time n.
[The proof can be found in Ref. 6]

7. The seven studied forecasting the volatility of gold price using Markov Regime Switching GARCH
models. These models allow volatility to have different dynamics according to unobserved regime
variables. The main purpose is to find out whether MRS-GARCH models are an improvement on the
GARCH type models in terms of modeling and forecasting gold price volatility. The MRS-GARCH is
the best performance model for gold price volatility in some loss function. Moreover, we forecast the
closing prices of gold price to trade future contract. MRS-GARCH got the most cumulative return

same as GIR model. [The details are in Ref. 7].

10
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1. Introduction

Risk in a financial market is measured by using volatility. So predictability of volatility has important implications for
risk management. If volatility increases, so will Value At Risk (VAR). Investors may want to adjust their portfolio to reduce
their exposure to those assets whose volatility is predicted to increase. One method that is widely employed for volatility
estimation is to use GARCH models. A discrete time GARCH(1,1) model is a model of the form

k1 = @o + okt + avUg, X = oxUy (1)

where o = /v, and «, B are weight parameters, wy is a parameter related to the long-term variance, and Uy is a sequence
of independent normal random variables with zero mean and variance of 1.

It is well known that GARCH models are not designed for long range-dependence (LRD). But there are some empirical
studies showing that log-return series (X;) of foreign exchange rates, stock indices and share prices exhibit the LRD effect
(see, for example, Mikosch and Starica (2003, page 445)). In 1990, Nelson (1990) showed that as the time interval decreases
and become infinitesimal, Eq. (1) can be changed to

dv[ = (C!) — th)dt + gUtdW[ (2)

where v, = atz is the stock-return variance, w, 6 and & are weight parameters and W; is a standard Brownian motion
process. To be more accurate, there is a weak convergence of the discrete GARCH process to the continuous diffusion limit.
The purpose of this paper is to introduce LRD effect into GARCH models of continuous time (i.e., into Eq. (2)). The importance
of this process in finance is that it can be used to forecast volatility and risk of some financial instruments.

* This research was supported by the Thailand Research Fund and CHE 2008.
* Corresponding author. Fax: +66 44224315.
E-mail address: pairote@sut.ac.th (P. Sattayatham).

1226-3192/$ - see front matter © 2008 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.jkss.2008.10.003
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Recall that a fractional Brownian motion process W, with Hurst index H, is a centered Gaussian process such that its
covariance function R(t, s) = EW/W! is given by

1
R(s, t) = E(Ifl” + Is|” — It = sI”)

wherey =2Hand0 < H < 1.IfH = % then W/ is the usual standard Brownian motion process. For H # % W/ is neither
a semimartingale nor a Markov process so we cannot apply the standard stochastic calculus for this process. It is a process
of long range dependence in the following sense: If p, = E[Wl” (W,f’H) — W,f], then the series Y -, pn is either divergent

or convergent with very late rate. It is known that a fractional Brownian motion W/ can be decomposed as follows:

H_; /t Yt :|
W= T [Zt+ (e —saw].

where I" is the gamma function, Z; = ffoo[(t —8)* — (—9)¥]dW, 0 = H — % and W; is a standard Brownian motion.
We suppose fromnowon0 < o < % so that % < H < 1.Then Z; has absolutely continuous trajectories and it is the term

B = t(t — 5)“dW; that exhibits long range dependence. We will use B instead of W in fractional stochastic calculus.
t 0 t t
In Thao (2006) constructed an approximate process B¢ of Bf as follows:

t
B = / (t — s+ &)~ 2dw,
0

where % < H < 1,and W, is a standard Brownian motion. He also proved that B; — Bf inL%(£2) as ¢ — 0 (uniformly in t)
and B¢ is a semimartingale. These results give us a convenient way to study fractional Brownian motions since we can use
the standard Ito integrals and then it is easy to do numerical approximation.

By a fractional integrated GARCH model of continuous time (FIGARCH), we shall mean a process of the form

dv; = (0 — Ovy)dt + Ev,dB! 3)

where0 <t < T, w, 0 and £ are weight parameters, and B’t’ is a fractional Brownian motion. For each € > 0, an approximate
model of the FIGARCH model is a process of the form

dvf = (0 — Ovf)dt + EvidBE (4)

where B is the approximate process of Bf. We shall show that its solution converges to the solution of the FIGARCH
model (3).

Moreover, geometric Brownian motion for the asset price was used to simulate the SCB stock prices where the volatility
of this model was predicted from an approximate fractional variance process of GARCH(1,1) model in continuous time and
classical GARCH(1,1) model in continuous time. And both of them were compared with the empirical historical stock prices
of SCB.

2. Solutions of the approximate models
In this section, we are interested in finding a solution of the approximate model (4) together with initial condition

Vs (t=0) = Vo-
Let & > 0. Recall that an approximated process B; is defined by

t
Bf:/ (t — s+ &)*dw;,
0

wherea« = H — % 0 < H < 1, and W, is a Brownian motion process. By an application of the stochastic Fubini Theorem,
one gets

t K t t
/ / (s —u+¢e)* dW,ds = / / (s — u+ )% 'dsdw,
0o Jo 0o Ju

t
= l/ (t —u+8)* — &*)dw,
a Jo

-l t t
= —|:/ (t—u+s)“qu—8°‘/ qu]
o 0 0

1
== —[Bf - SaWt].
o
Consequently

t
Bf:o{f ngdS—‘_SaWt
0
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where
t
o =f (t —s+ &) dW..
0

Thus we have
dB; = agp/dt + £*dW;. (5)
Substituting dB; from (5) into (4), then Eq. (4) can be rewritten into the following form
dvf = (0 — 0v])dt + &v] (ag;dt + *dW;),
= (w — 0v; + Eagivy)dt + Evie*dW;. (6)

Theorem 1. For any ¢ > 0, a solution of the approximate model (4) is given by

e e 12 2 ¢ ‘ (63262 )s—gB3
v, =exp|&B, — |0 + ES & t){vy+ow [ e ds |, (7)
0

where —1 < o < 1 and B = fot(t — s+ &)*dW..

Proof. To find a solution of (6), we look for a solution of the form
vy = UV,

where
dU; = (=0 + &ag))Udt + U dW,

and
dV; = a,dt + b, dW;.

Firstly, we shall find a solution of dU; = (-6 + §ag;)U.dt + £&*U,dW;. By an application of the Ito formula to the
function f (u) = Inu for u = U, one gets

1

— (dU)?
2UE( )

1
d(ln Ut) == UdUt -
t

1
— (=60 + Eag)Udt 4 £°UdW,) — — (27Ul dr)
U, 2U;

1
= <_9 + Eagf — 552820‘) dt + £¢%dW,
or, equivalently,
t 1
InU; — InUy = Ea/ @i ds — (9 + 552820‘) t+ EW,.
0
That is
t 1
U = Ugexp <Ea/ @i ds — (9 + 552520[) £+ Ss“Wt> ' (8)
0

Set Up = 1and V = v§. Taking the differential of the product, we get

d (UtVt) - Utht + V[dUt + dUtht
Ut (a[dt + b[th) + Vt ((_0 + Sa(pf)det + éSaUtth) + SS“U[btdt

= (Utat =+ Vt(—g + Sotgaf)Ut + %‘8“Utbt) dt + (Utbt + VtESaUt) th

Since v{ = U;V; then

dv; = (Uar + (=6 + Ea@))v; + §€*Uh,) dt + (Ueh + £€%vf) dW,. 9)

Comparing the coefficients of Eq. (9) with Eq. (6), we see that the desired coefficients a; and b; turn out to satisfy the
following equations

Utbt = 0
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and
Utat + E&'autbt = w.

Then by =0and a; = uﬂf Hence

t t t w
Vt = VO + / atdt + / bdel' == US +/ —ClS
0 0 o Us

Moreover, v{ is found to be

"w
vp = UV, = Uy (vf) +/0 Uds) .
S

Hence, with Uy = 1 and using U; as in (8), the solution of v; is given by
t 1 t 162 20\ sy S e
Uf = exp (S(X‘/\ (pfds— (9 =+ 552820!> t +€8aWt> (vg +CO/ e(9+2§_ & )5 Ee¥Ws gdfo‘pududs) )
0 0
This proves Theorem 1. ®

3. Convergence of the solutions of an approximate model

To prove the convergence of v{, firstly, let us consider the process v; which satisfies Eq. (2). Let X; = In v;. It follows from
the Ito formula that

2
dx; = <a)eX‘ — % - 9) dt + £dw,. (10)
The fractional model of the process X; is a process which is of the form
o —X¢ 52 H
dX; = | we —5—9 dt 4+ &dB;, (11)
where B! is a fractional Brownian motion. Then an approximated model of (11) is of the form
dx¢ = —X¢ 52 &
;= | we f—?—é dt + &dB; (12)
where B; has already been defined in Section 1.

Theorem 2. The solution of (12) converges to the solution of (11) in L?(£2) uniformly with respecttot € [0, T] as & — 0.

Proof. We note that Egs. (11) and (12) give
t
Xt—sza)/ (e‘XS—e_xse)ds+§(Bf'—B§). (13)
0
Let ||-|| denote the norm in L?(£2). It follows from (13) that

t
’w/ (e_XS - e_XSS> ds+ & (B! — BY)
0

% —x:] =

e — X

< ol ds + €] |Bff — Bf| .

t
0
Since e is differentiable and bounded on every compact interval, then

t
%= xe <ol [ K %= x| ds-+ 1 |5 = g (14)
for some constants K; > 0. Referring to a result Thao (2006, page 127), one gets

|BY — B|| < Clayete, (15)

where0 <o < Jforl <H < land—3 <a < 0for0 <H < 3,and C(a) is a positive constant depending only on o.
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It follows from (14) and (15) that

t
Ixe — X7 < |a)|K1/ |1Xs — X2 || ds + E|C(a)e2 ™. (16)
0
Applying Gronwall’s lemma to (16), then
X = X¢[| < 181C@e 2 e,
Therefore

1
sup [[Xe — X7 | < [EIC(e)ez e — 0
0<t<T

ase — 0.S0X{ — X, in[*(£2) as ¢ — 0 and uniformly with respecttot. W

Theorem 3. If X{ — X; in [2(£2) uniformly with respect tot € [0, T] as & — 0, then v = v in L?(£2) uniformly with respect
tot €[0,T]ase — 0.

Proof. It follows from X; = In vy, so v; = Xt that

_

Joc v = [

Since e* is differentiable and bounded in some closed interval, then
Jve—vi]| = Ko X = x|

for some positive constant K,. From (15), we obtain
v — vf || < KalEIC (@) el

Therefore

1
sup [vr — vf | < Kal€|C(a)e2telIT — 0
0<t<T —
as ¢ — 0. The proof is now complete. ®

4. Applications

In this section, volatilities of the stock of Siam Commerical Bank (SCB) are computed by using FIGARCH(1,1) model and
classical GARCH(1,1) model of continuous time. Then SCB stock prices are simulated by using these volatilities. After that
both simulated SCB stock prices are compared with the empirical historical prices of SCB.

4.1. SCB simulated stock prices

A model for the dynamic of an asset price that will be considered here is of the form
dSt = ;LS[dt + GtStth,

where u is known as the drift rate or rate of return of the price S; and W, is a Brownian motion. The stochastic volatility
o¢ (which measures the standard deviation of the return ds%) is defined by oy := ./v; where v; is the FIGARCH model of

continuous time as in Eq. (3). For comparative purposes, we shall compute the percentage error (PE) between two sets of
data by the following formula

1 o X — Vil
PE = — —— x 100,
K ; Xi

where K is sample size, X = (X;, i > 1) is the market prices and Y = (Y;, i > 1) is the model prices. We use K = 245 when
we sample data for 12 months.
For simulation purposes, we consider an approximate model

dSf = uSedt 4 ofSEdWs, (17)

with e > 0and o7 = ,/v;. The fractional variance process v; will be simulated by using Eq. (7), i.e.,

1 t 162 2a\._g£pe
Uf = exp (%'Bf — (9 + 5;;-‘2820‘) t) <US + a)/ e(9+2§ 3 )S EBS d5> ) (18)
0
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Table 1

Discrete parameters wy, f, and oy, of each dataset.

Months Dataset (DD/MM/YY) wp Br op
1 1/12/2006-28/12/2006 0.0033 0 0.1689
3 2/10/2006-28/12/2006 0.0012 0 0.1154
6 3/7/2006-28/12/2006 0.00077659 0 0.0887
9 3/4/2006-28/12/2006 0.00071251 0 0.0726

12 3/1/2006-28/12/2006 0.00062672 0 0.0692

Table 2

Parameters w, 6 and & obtained from each dataset.

Months Dataset (DD/MM/YY) w 6 &
1 1/12/2006-28/12/2006 0.0033 0.8311 0.2389
3 2/10/2006-28/12/2006 0.0012 0.8846 0.1632
6 3/7/2006-28/12/2006 0.00077659 0.9113 0.1254
9 3/4/2006-28/12/2006 0.00071251 0.9274 0.1027

12 3/1/2006-28/12/2006 0.00062672 0.9308 0.0979

Table 3

Average PE for each set of parameters.

Parameters w 0 & Average of PE (%)

1 0.0033 0.8311 0.2389 40.5099

2 0.0012 0.8846 0.1632 24.0161

3 0.00077659 0.9113 0.1254 19.3196

4 0.00071251 0.9274 0.1027 18.3600

5 0.00062672 0.9308 0.0979 17.3366

The actual stock prices of Siam Commercial Bank (SCB) were obtained from http://www.tiscoetrade.com. Using the
dataset from January 3, 2006 to December 28, 2007. We divide these data into two disjoint sets. The first one, from January
3, 2006 to December 28, 2006, will be used to estimate parameters w, 6, and & for Eq. (18). The second set (January 3,
2007-December 28, 2007) will be used for comparison with the simulated prices.

We begin by estimating parameters w, # and &£. To do this, we firstly enter the following 5 datasets, i.e.,, 1 month
(December 1,2006-December 28, 2006), 3 months (October 2, 2006-December 28, 2006), 6 months (July 3, 2006-December
28, 2006) and 12 months (January 3, 2006-December 28, 2006) into Matlab 6.5 (GARCH Toolbox) with COMPAQ Presario
B1908TU to obtain discrete parameters of GARCH(1,1) model (wy,, By and o). Those discrete parameters from each datasets
are shown in Table 1.

Secondly, we utilize the formulas between discrete parameters and continuous parameters which have been given
by Nelson (1990) to estimate the parameters w, 0 and &. The formulas are as follows:

o =h"oy,
6 =h""(1—Bn—an),
S =V 2h7]Olh,

where h is the time lag between two consecutive data. Here we use h = 1. Thus the estimated parameters w, 6 and & for
each dataset (1, 3, 6, 9 and 12 months) are given in Table 2.

From the information in Table 2, we look for those parameters which can give us the mimum average of PE. In order to
solve this problem, we simulated v; (see, Eq. (18)) by using the parameters w, 8 and & from each dataset (1, 3, 6,9 and 12
months). Here, we choose ¢ = 0.0001, = 0.15, u = 0.0017819 and v = 0. Then, by using of = /v{, the SCB stock
prices from January 3, 2007 to December 28, 2007 were forecast by the pricing model S (see, Eq. (17)). Next, we compute
PE by using the information from the simulation and the empirical data of SCB closing prices (January 3, 2007-December
28, 2007). For each set of parameters, we calculated the average of PE for 5000 paths. The results are shown in Table 3.

It can be seen from Table 3 that the parameters w = 0.00062672, 0 = 0.9308 and & = 0.0979 give us the minimum
value of the average PE. We select this set of parameters for forecasting the future stock prices of SCB. In summary, when
the SCB stock prices were simulated by Eq. (17) using parameters as mentioned above, the average of PE and its variance
will be given as follows:

average of PE = 17.3366%
variance = 43.0287%.

Recall that a GARCH(1,1) model of continuous time is of the form
dv; = (0 — Ovy)dt + v, dW,, (20)



T. Plienpanich et al. / Journal of the Korean Statistical Society 38 (2009) 231-238 237

Fig. 1. Price behaviour of SCB, between January 3, 2007 and December 28, 2007, compared with a scenario simulated from fractional pricing model (dashed
line := empirical data, solid line := simulated by dS; = uS;dt + o/S{dW,, PE = 6.0401%).

Fig. 2. Price behaviour of SCB, between January 3, 2007 and December 28, 2007, compared with a scenario simulated by pricing model (dashed line :=
empirical data, solid line := simulated by dS; = uS;dt + 0:S;dW;, PE = 6.9627%).

and the pricing model is
dst == /,LStdl' + O'tSIth, (21)

where o; = /v.

We simulated the pricing model (21) by using w = 0.00062672, 0 = 0.9308, £ = 0.0979, © = 0.0017819, vg = 0 and
K = 245. We compute the PE of these simulation prices and the empirical data of SCB closing prices from January 3, 2007
to December 28, 2007. Next we compute the average of PE, by using N = 5000, and found that

average of PE = 21.6536%

. (22)
variance = 69.2135%.

By comparing the average PE and its variance by Eq. (19) and (22), one can see that in the case of SCB, the forecast of the
future stock prices by using model (17) (which includes the fractional part) give an average error significantly smaller than
using model (21) (which does not includes the fractional part).

For an illustration, Fig. 1 shows the empirical data of SCB as compared to the price simulated by the fractional price model
(17). Here we used ¢ = 0.0001, « = 0.15,0 = 0.9308, w = 0.00062672, £ = 0.0979 and v = 0. The percentage error
PE = 6.0401%.

Fig. 2, shows the empirical data of SCB as compared to the price simulated by the price model (21). Here we used
6 = 0.9308, v = 0.00062672, £ = 0.0979, © = 0.0017819, vy = 0 and o; = ,/v;. The percentage error PE = 6.9627%.

By comparing PE and variance of Figs. 1 and 2, one can see that in the case of SCB the sample path from the fractional
pricing model gives a better fit with the data than the ordinary pricing model, since the percentage error is smaller.
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Abstract: Problem statement: We presented option pricing when the stock prices follows a jump-
diffusion model and their stochastic volatility follows a fractional stochastic volatility model. This
proposed model exhibits the a memory of a stochastic volatility model that is not expressed in the
classical stochastic volatility model. Approach: We introduce an approximated method to fractional
stochastic volatility model perturbed by the fractional Brownian motion. A relationship between
stochastic differential equations and partial differential equations for a bivariate model is presented.
Results. By using an approximate method, we provide the approximate solution of the fractional
stochastic volatility model. And European options are priced by using the risk-neutral valuation.
Conclusion/Recommendations. The formula of European option is calculated by using the technique
base on the characteristic function of an underlying asset which can be expressed in an explicit
formula. A numerical integration technique to simulation fractional stochastic volatility are presented

in this study.

Key words. Fractional Brownian motion, approximate method, fractional stochastic volatility, jump

diffusion model, option pricing model

INTRODUCTION

Let (Q,F,P) be a probability space with filtration
F = (F, )o<i<r - All processes that we shall consider in
this section will be defined in this space. For t O [0, T]
and T < oo a geometric Brownian motion (gBm) model
with jumps and with fractional stochastic volatility is a
model of the form:

ds, =8, (udt+\/;th )+SI_YdNt (1)

where pO0,S=(S,),4,5 1S a process representing a

price of the underlying risky assets, W =(W, ) is the

to.7]

standard Brownian motion, N=(N) o is a Poisson

process with intensity A and S_Y, represents the
amplitude of the jump which occurs at time t. We
assume that the processes W and N are independent.
The volatility process v, := o7 in (1) is modeled by:

dv, =(c0-0v, )dt +&v,dB, )

where, w> 0 is the mean long-term volatility, 600 is
the rate at which the volatility reverts toward its long-
term mean, £>0 is the volatility of the volatility process

and (B,),y, 1 a fractional Brownian motion.

Assume that the processes (S;) and (v,) are F-
measurable.

The notation S._ means that whenever there is a
jump, the value of the process before the jump is used
on the left-hand side of the formula.

The fractional version of Eq. 1 is given by:

ds, =S, (udt +Jv.dB, ) +S,_Y,dN, 3)

The process S; in (3) can be approximated in
L,(Q) by a semimartingale S; in the sense that

S-S -0 as satisfies the

€ - O,
L,(Q)

) where S}

following equation (Intarasit and Sattayatham, 2010 for
more details):

dst = ¢ (udt + VE dBf) +S°Y,dN,
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The purpose of this study is to consider the
problem of option pricing for the gBm model with
jumps (1) and with fractional stochastic volatility (2).
Since driving process B; of v, in Eq. 2 is not a
semimartingale, thus we cannot apply It6 calculus
directly. We shall thus work in another direction by
introducing an approximate model of SDE (1) and (2)
then using it to price European call option. The
advantage of these approximate model is there no more
arbitrage. In order to find such a formula, we shall work
in the space of a risk-neutral probability measure.
Indeed, there are some authors who have investigated
this problem before but not in the fractional case, for
example (Heston, 1993). In fact, there are many author
studies a volatility and fractional volatility process. For
example (Magnus and Fosu, 2006) use GARCH to
model and forecast volatility returns on the Ghana stock
exchange and (Shamiri and Isa, 2009) study modeling
and forecasting of volatility of the Malaysian stock
markets. An empirical study of fractional volatility are
presented in (Cheong, 2008) for example.

Recall that the fractional Brownian motion with

Hurst coefficient is a Gaussian process B" =(B}).,

with zero mean and the covariance function is given by:
1 2H
R(t.s)=E[B!'B! ] :E(SZH . )

If H = 1/2, then R(t, s) = min(t, s) and B! is the

usual standard Brownian motion. In the case 1/2 < H <
1 the fractional Brownian motion exhibits statistical
long-range  dependency in the sense that

P, :=E[B}‘(BL‘+1—B;')J>O foralln=1, 2, 3, ... and

Z::lpn = . Hence, in financial modeling, one usually

assumes that HO(1/2,1). Put o= 1/2 —H. It is known

that a fractional Brownian motion B'can be

decomposed as follows:

1 ; -
B = Z, +|(t=s)"dW.
| r(1+u){ MR }
where, " is the gamma function:
t -a
z,= [[(t=s)" ~(s)"1dW,

We suppose from now on that 0 < a < 1/2. The
process Z; has absolutely continuous trajectories, so it
suffices to consider only the term:

B, =[(t-5)"aw, )

that has a long-range dependence.
Note that B, can be approximated by:

B} :J.Ol(t—s+8)_a dw, (5)

in the sense that Bfconverges to B, in L,(Q)as € - 0,
uniform with respect to tJ0,T] (Thao, 2006).
Since (Bf),qor 1S a continuous semimartingale

then Itd calculus can be applied to the following
Stochastic Differential Equation (SDE):

ds{ =Sf (pdt +0dB?),0< t< T

Let S;be the solution of the above equation.
Because of the convergence of B to B;in L,(Q) when

€ -0, we shall define the solution of a fractional
stochastic differential equation of the form:

ds, =S, (ndt +0dB,),0<t<T

to be a process Sf defined on the probability space (Q,
F, P) such that the process S° converges to S, in

L,(Q)as € - 0 and the convergence is uniform with
respect to t [0, T]. This definition will be applied to the

other similar fractional stochastic differential equations
which will appear later.

A risk-neutral model for a gBm model combining
jumps with stochastic volatility is introduced next. Its
solution will also be discussed. Firstly, let us rewrite the
model (1) into an integral form as follows:

S, =S, + juSsds + f\/v_ S.dw, + jsS_YS dN, (©6)
0 0 0

Note that the last term on the right hand side of Eq.
6 is defined by:

t N,
[s.Y,dN =3 As,
0 n=1

Where:

AS, :=ST, -ST, =S, Y,

n
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The assumption Y, > 0 always leads to positive
values of the stock prices. The process (Y,),,n 1S
assumed to be independently identically distributed
(i.i.d.) with density @y (y) and (T,),,y 1S @ sequence of
jump time.

In order to solve Eq. 6 with an initial condition

Si=0) =S, we assume that E[J‘OTVSSfds} <o . Then, by

an application of It6’s formula for the jump process
(Cont and Tankov, 2009, Theorem 8.14) on Eq. 6 with

f(S;,t) =log(S,) we get:

S, =S, exp[pt —%jvsds + j\/vfdws + jlog(l +Y, )stj
0 0

0

It is assumed that a risk-neutral probability
measure M exists; the asset price S, under this risk-
neutral measure, follows a jump-diffusion process, with
zero-mean, risk-free rate r:

dS, =8, (r=AE,[Y, 1)dt+4/v,dW,) +S,_Y,dN, (7)

and the stochastic variance v, satisfies the following
fractional SDE:

dv, = (m— Bv, )dt +&v,dB, ®)

with an initial condition v, ., =v, 0L,(Q).

It is only necessary to know that the risk-neutral
measure exists (Cont and Tankov, 2009). Hence, all
processes to be discussed after this will be the processes
under the risk-neutral probability measure M.

Using an initial conditionS, ., =S,0L,(Q), the

solution of Eq. 7 is given by:

t t t

!(r—AEM[YS 1)ds —%Jo‘vsds +£\/vfdws

S, =S, exp .9

+ j log(1+Y, )dN,
0

Under approximate method, for each & > 0,
consider an approximate model of Eq. 7 and 8
respectively:

t="t

ds? :Sf((r—)\EM[Y, Dt +VEW, )+s€ YN, (10)

dvf = (w=6vE)dt +EvidBE (11)

232

By using the same initial condition as in Eq. 10, we
have:

[ =AE[Y, ds —%vads +
St =S, exp ? 0 (12)

[Jviaw, + jlog(l +Y.dN,)
0 0

and one can prove that S converges to S; of Eq. 9 in
L,(Q)as € - 0and uniformly on t O[0, T]. Moreover,
one can show that the solution v{of Eq. 11 converges

in L,(Q) to the process:

V= {Vo + wjeXp(vs -&B, )dSJeXp(EBt ~Yo)

for some real constant y . Hence, by definition, v, is the
solution of Eq. 8 (Intarasit and Sattayatham, 2010,
Lemma 2).

MATERIALSAND METHODS

The relationship between the stochastic deferential
equation and the partial differential equation for
bivarate model is presented.

Consider the process X, =(X|,X}) where X! and
X} are processes in [] and satisfy the following
equations:
dX! =f, (t)dt +g, ()dW, +X\Y,dN,
dX? = £, (t)dt + g, (H)d W, (13)

where, f, g1, f; and g, are all continuous functions from
[0, T]into O .

Since every compound Poisson process can be
represented as an integral form of Poisson random
measure (Cont and Tankov, 2009) then the last term on
the right hand side of Eq. 13 can be written as follows:

s

ce—\

N, N,
XY, AN, =>'X Y, = Z;[X‘T“ -X;

n=1

= j j X! 7] (dsdz)
00

where, Y, are i.i.d. random variables with density @y
(y) and J; is a Poisson random measure of the process

Z, :an;lYn with intensity measure A@, (d,)dt .
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Let U(X) be a bounded real function on [0* and
twice continuously differentiable in % =(x,,x,)00° and:

u(i,t):E[u(XT)f(l :i] (14)

By the two dimensional Dynkin’s formula
(Hanson, 2007, Theorem 7.7), u is a solution of the
Partial Integro-Differential Equation (PIDE):

6V(X t)

0= FAVE, ) +A J [V(E+9,0) = v(%,0] @, (v)dy

subject to the final condition u(X,T)=U(X) and
y =(y,0). The notation A is defined by:

au(x t) du(X,t) 92 u(x t)
Au(%,t) =1, (t) N +1, (1) ax, +2 g () —5—
+pg, (02,0 "a“(;‘ D LUy

and the correlation p defined by p =Corr[dW, ,dW, ].

Next, we present the classical method to pricing of
European call option. The European call option formula
in terms of characteristic function is given in the next
section.

Let C denote the price at time t of a European style
call option on the current price of the underlying asset
S; with strike price K and expiration time T. The
terminal payoff of a European call option on the
underling stock S; with strike price K is max (St- K; 0).
This means that the holder will exercise his right only if
St > K and then his gain is St -K. Otherwise, if St> K,
then the holder will buy the underlying asset from the
market and the value of the option is zero. Assuming
the risk-free interest rate r is constant over the lifetime
of the option, the price of the European call at time t is
equal to the discounted conditional expected payoff:

C(S. v 6K, T) =B, [ max(S; ~K,0)[S,.v, |

= r(T0 U (S =K)Py (S, |S;,v,)dS; J

=S.P,(S,,v

st P, (S;1S,,v,)dS, ] (15)

[
T"TP (S;18,,v,)dS;
K

K <T)-Ke " P,(S,,v,,t:K<T)

t? t’
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where, Ey is the expectation with respect to the risk-
neutral probability measure, P,(S;|S,,v,) is the
corresponding conditional density given (S, v;) and:

P, (S,.v |,tK,T)=USTPM(ST S,,v,)dS, ]/EM[S 1S,.v,]
K

Note that P, is the risk-neutral probability that St >
K (since the integrand is nonnegative and the integral
over [0, o) is one) and finally, that:

P,(S,,v,,tK,T) = jp (S,,v,)dS; =Prob(S; >K|S,,v,

is the risk-neutral in-the-money probability. Moreover,
E\[S;1S,,v,]1=€e"™"S fort=0.

Note that we do not have a formulation for these
probabilities thus we  will calculate some
approximations of P; and P,. Indeed, these probabilities
are related to characteristic functions which have
formulation as will be seen in Lemma 2.

RESULTS

In order to calculate the price of a European call
option with strike price K and maturity T of the model
(7) for which its fractional stochastic volatility satisfies
Eq. 8, we consider the approximate model (10) and

(11). Firstly, we consider logarithm of S} namely
L ie L% =log(S¥) where S} satisfies Eq. 12 (the
solution of Eq. 10) and its inverse S} =exp(L}) . Denote

= log (K) the logarithm of the strike price. Secondly,
we now refer to SDE (11), since this approximate
model is driven by a semimartingale B and hence
there is no opportunity of arbitrage (for more details
(Thao, 2006)). This is the advantage of our approximate
approach and we will use this model for pricing the
European call option instead of SDE (8).

Note that we can write:

dB; =ad:dt +"dW, (16)
where ¢f:f;(t—u+s)1’“qu,a:1/2—H and 0< a<
1/2 ((Thao, 2006), Lemma 2.1).

Substituting (16) into Eq. 11, we obtain:

=(w+ (a&d; —B)vi)dt + & vidW, (17)
233
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Consider the SDE (10) and (17). Define a function

U on 0O? as follows:

-r(T-t)

U(x,,x,)=e max(exp(x, —K),0).

By virtue of Eq. 14:

u(x,t) =E, [U(XT)

=e"E, [max(exp((le) -K),0)

X, =]

L =¢5vi= VS:|
=C(L5,v*,5K,T)

satisfies the following PIDE:

0=9¢,
ot

9°C
G

oC
¢

ac 1

P ove Eg
°c 1 o 0°C

v 2200y

AA[[CEE +y,v5, 6K, T) = C(, V5, 6K, T) | @y ()dy.
O

+1|

2
1

+pg,g, (18)

In the current state variable, the last line of Eq. 15
becomes:

C(V5,v5, K, T) =" P, (¢£,v5,t;K,T)
—e“IP, (05,5, 6K, T).

(19)

The following lemma shows the relationship
between P, and P, in the option value of the Eq. 19.

Lemma 1: The probability P, in the option value of the
Eq. 19 satisfies the following PIDE:

OZ%M[R 0V K T) +vE it PR (Y )”a
Hr=AEy, (Y, )P,

+A j [(ey -DP, (£ + y,v*,t;K,T)}tpy(y)dy (29)

= DLk A TP 5K T)

subject to the boundary condition at expiration time t =
T:

P, (£5,v,T;k,T) =1 1)

F>K’

And the probability P, in the option value of the
Eq. 19 satisfies the following PIDE:
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—‘3L(€s,vs,t;K,T)+rP2
(22)
= aaPt2+A[ ) ] (5, v 6K, T)

subject to the boundary condition at expiration time t = T:

P, (£*,v5,T;k,T) =1 (23)

1>k

Where:

of
or*

A[f](€5,v, K, T) = (r = AE[Y, ] =

va)

1 e
V)
o’f
a(za)z

220 €32 azf
E (v )a(vs)2

€

of
+

VE

+(w+(az¢f—e) %v
(24)
+pEe (V) ———

—rf+A£|:

Note that 1,

(56 ¢
f(6* +y,v5, 4K, T)

d
—£(£5,v5,t;K,T) }My) Y

=1 if ¢* >k and otherwisel,. =0.

1>k

Proof: Calculating the partial derivatives of function
C(#%,v5, 5k, T)in Eq. 19 and substituting it’s in Eq. 18
then separating it by assumed independent terms P, and
P,. This gives two PIDEs for the risk-neutralized
probability P, (¢°,v*,t;K,T), j=1, 2. For j=1 we have:

oP, +(r—)\EM(Y )—l EJ( +P1]
ot 2

2
o) )aP +lvg OPIZ 0P, P,
o' 2\ Toar 25)

2

9 Pl + aPl +l£2£20(v )2 a P I'Pl
orfave ovt ) 2 a(ve)?
(e =DP, (£F +y,v",,T)
P (F+y, VT =P (£ +y, v

op,
ar

0=

+(0+ (g -

+p££a (Vs)3/2 {

+Aj {

u]
subject to the boundary condition at the expiration time
t =T according to Eq. 21. By using the notation in Eq.
24 to PIDE (25) we get Eq. 20:

For P, (¢%,v%,t;K,T), we have:
3
2

1 . 0°P,

+1y P
a(w:)z

2
+— 2820( VE 2
ZE )

’t;TJ@Y(y)dy

oP.

—2 + 1P, +[r—)\E (Y)- op,
ot

‘)

0=

€

2

+((a&d; -

(26)
a°P,
a(VE)Z

s, O7P
00f0v*

P, (¢* +y,v",t;K,T)
=P, (* +y,v,t;K,T)

+p&e® (vF)

-rP, +)\j{

} @y (y)dy
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subject to the boundary condition at expiration time t =
T according to Eq. 23. Again, by using the notation (24)
to PIDE (26) we get Eq. 22. The proof is now
completed.

Next, an approximate formula of European call
option is calculated. For j = 1, 2 the characteristic
functions for P, (¢,v",t;k,T) with respect to the

variable k are defined by:

£ (F,v5, %, T) = —J eix"de (05, v5,t:k,T)

—o0

with a minus sign to account for the negativity of the
measure dP; . Note that f; also satisfies similar PIDEs:

of,
— 4+ A

ot j|:fj ](Egavg,t;K,T):O

@7

with the respective boundary conditions:

£ (5,5, Tix,T) = —j ™ dP, (¢%,v", T;K,T)

= —T ™ (=3(¢F - K)dK) = ™"

Since:
dP; (¢°,v, Tk, T) =dl,_ =dH(¢* —K) = =§(¢* —K)dk

Note that the probabilities Pj, j = 1, 2 are the
conditional probabilities that the option expires in-the-
money that is:

P, =M{L; 2logK | L = (*,v; = v}

where again L =logS; and (S;,v{) evolves according
to Eq. 10 and 11 respectively.
Using a Fourier transform method one gets:

+00

e (L5, VE i x, T
de (EEsVE,t:K,T)=l+lJRe ¥
2 no* 1X

:‘dx 28)

where, j 1, 2 and the characteristic function
f,(£5,v5,t:x,T) also satisfy the PIDEs in lemma 1,

namely Eq. 20 and 22 and Re[.] denoting the real
component of a complex number. The practice to
solving of this kind of equations is to guess the general
form of the solution. The following lemma shows how
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to calculate the probabilities P, and P, as they appeared
in Lemma 1.

Lemma 2: The probabilities P; and P, can be
calculated by Eq. 28 where the explicit expressions of
the characteristic functions is given as follows. (i) The
characteristic function f; is given by:

f; (5, v, tx,t+ 1) =exp(g, (V) + v'h, (T) + jx(°)

where, T=T-t:

g, (0 =[r=AE(Y,)jx =AEy(Y,) |t

FIN[ (Y =gy (y)dy
n]
1- (s +n)+d —e'

2w
ey {log [ 24, } A )T}’
(n; = A7) 1)

EZEZGEVE(W +A1 ‘(Th _A1)eAIT)’
N, = PEESNV (1+ix) +(aE(° - 6)

and A, =./n7 —&%&*%ix(ix +1)

(i1) The characteristic function f, is given by:

h, (1) =

f, ((E,VE,t;X,t + T) =exp(g, (1) + v*h, (1) +ix/(* +1T)
Where:
&,(0) =[r = AE[Y, Jiy = rt+ 1A [ (" =D, (y)dy

O

2w
EZEZGVE

2A

(n; —A)(E™ —1)
Ezsmvs(nz + Az _(nz _Az)eAZT)
N, = pEe°Veix + (0E¢° - 8)

and A, =n? + £ vix(ix - 1)

2

{log(l (B, )+ —eAzt)] +(D, + nZ)T},

h, (1) =

s

Proof: Proof of (i). To solve for the characteristic
explicitly, letting T=T—-t be the time-to-go. Following
(Heston, 1993), we conjecture that the function f; is
given by:

£, (5,v5, tx,t+ 1) = exp((g, (1) + v, (1) +ix?) (29)
and the boundary condition g;(0) = 0 = h;(0). This

conjecture exploits the linearity of the coefficient in
PIDE (27).



J. Math. & Stat., 7 (3): 230-238, 2011

Note that the characteristic functions of f; always
exists. In order to substitute (29) into (27), firstly, we
calculate the partial derivative of f; and substitute it’s
into Eq. 27. After canceling the common factor of fj,
we get a simplified form as follows:

0 =g/ (1) = vh(T) +(r —AE,[Y, ] +%Vs)ix
+Hw+ (a&d; —O)v) +p&e” (vF)*h, (1)
_%VEXZ + pasq (VE)3/2 iXhl (T) + %Ezsm (Vs)z hlz(.[)

SAE[Y, 1+ A [ =gy (y)dy
]

By separating the order v* and ordering the
remaining terms, we can reduce it to two Ordinary
Differential Equations (ODEs):

(1) =262V (1) + (pEe™VV (1 + %)
2 L (30)
+(0&h; —8)h, (1) + Eix - EXZ

g/(1) =wh, (0 +(r =AB,[
N[ (Y 1) @y (yMy

Yt ])IX _)\EM[Yt ]
(3D

Let n, :pEs“x/? (1+ix) +(a&p; —8) and substitute
it to Eq. 30.

We get:

h(T)—fEZ 2a a(hf(T) 22?‘ h, (1) + Ziix(ix+l)J
E a E E 8 C(VE

=yt [hl 0+

_ 2 4F2e0
x[hl('[) + 2n, \/4n12EZEZ:' EV ix(ix +1)]

2.20 € rll 1
h
ES ( (T) Ez 2a s][ ( )E.Z 2a a]

Where:

2N, +4/4n? — 482 VFix(ix +1)
ZEZSZG £

A, =In? -8 Vix(ix +1)

By method of variable separation, we have:

EZ 2a a]

2dh, (1)

h
( (T)+Ez 2 s][ o+

- EZEZGVEdT
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Using partial fractions, we get:

Al ! A lﬂ " dh, (1) =dt
' h (T) + EZ 2a 1: hl (T) + Ezlemvls

Integrating both sides, we obtain:

EZ&

h 1
(T) EZE €

h, (D) +

log =AT+C

Using boundary condition h;(1=0)=0 we get:
n, -
C l 1 1
Sty
Solving for h;, we obtain:

(n} =) ~1)
Ezszace(nl +4, -(n, _Al)eAIT)

h (1)=

In order to solve g; (T) explicitly, we substitute h,
into Eq. 31 and integrate with respect to T on both
sides.

Then we get:

g, (1) =[ (r =AE,, (Y, Dix = AE(Y, )|t
N[ =Dy (y)dy

- [mg[l-ml *“I)M'CA'T)}(AI +n1)T}
&2e’v*

Proof of (ii). The details of the proof are similar to
case (i). Hence, we have:

£, (0°,v5, 5y, 1+ T) = exp(g, (T) + v'h,(T) +iyl® +17)

where, g,(1),h,(T),n, and A, are as given in the
Lemma.

We can thus evaluate the characteristic functions in
explicit form. However, we are interested in the risk-
neutral probabilities P;. These can be inverted from the
characteristic functions by performing the following

integration:
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P, (S5, Vi K, T) =P, (£5,v",;K,T)
_1 +1TRe e f, (L5, vit;x,T) dx
2 T[0+ i

1X

for j = 1, 2, where
K =log(K).

To verify the above equation, firstly we note that:

¢ =1log(S), v* =log(v?), and

E, [ i (log(S; ~log(K)) \log (S5 =

— 1)((/E
=E, [

LEV—V:|

to Tt

Lt =05,v; —V:|

The computation of the right of above equation are:

+00 +oo
—ix (/% -K) £ & .. — L -ixK —ix/® £ & ..
[e dP, (£,v5, 6K, T) =e 7™ [ e dP, (¢,v, K, T)

+00

= o™ [ (=8(1° ~ K)dK) = ¢, (1%, 6%, T)

Then

e (5, v, T
l+lJ‘Re—J(, : )dx
2 g, X

+o0 ix (log(S; ) ~log(K)) € € —

T, ix

i ix (5 —K)
=Ey *+ jRe{e = }dx Li:ea,vf:v‘}
=, |1 2 T[j mx(ﬁ Li:f‘,vf:vs}
=E, %+sgn(K -K)— j “‘(X) Lst:f,vf:vg}
=E, %+sgn(fs -K)|L, = vE,vi :v‘}
:EM |:1/22K Lat :££=Vf :VS:|
where we have wused the Dirichlet formula
Jﬂm sm(x) x =1 and the sgn function is defined as sgn

sgn(x):1 if x>0,0i1f x=0 and and -1 if x<0.

In summary, we have just proved the following
main theorem.

Theorem 3: For each € > 0; the value of a European
call option written on the model (10) and (11) is:

C(SE Ve, 6,K,T) = SEP, (SF, v
—Ke™ " IP, (S5,vE,t,K,T)

¢ LK, T)

where, P, and P, are as given in Lemma 2.
DISCUSSION

A simple and efficient numerical scheme for

determining the approximate process Sfand viis

presented.

In order to compute the value of C(Sf,vf,t;K,T)
according to the formula as given in Theorem 3, we
firstly choose a real number € >0, the solution that we
get is the value of a European call option of the
approximation model (10) with (11) and this value can
be used as an approximating value of a call option of
the fractional model (7) including model (8) as €
approaches zero. As the Monte-Carlo based technique,
it will generate discrete sample values S} and v of the
stock and its variance respectively, by discretizing the
associated SDEs (10) and (11). A natural choice for this
purpose is the Euler scheme:

8, =S5, ((r = AE[Y, Ddt +[REAW, ) + LY, AN,
Vi, = (W= 6V))h + EViAB!

(32)

Where:

AW, =Standard normal random variable with variance
h, which is defined as the time mesh-size

AN; =A Poisson process with intensity Ah

These processes, W and N are assumed
independent. However, (Glasserman, 2004) suggests
that the second-order scheme has a better convergence
(less bias) for option pricing applications but this
scheme quite complex. For the simulation of Brownian
motion there are numerous procedures see (Glasserman,
2004). For a sample path of fractional Brownian motion
in Eq. 10, we can be simulated, for fixed t > 0, as:

B, Z(t 70 (k+1) ]

L
N

N k o/t
= 4 (t_ﬁt) \/%[W(kﬂ)_wk]

t k
= (t=—=1)°
Nkzl( N)gk

where, g, ~N(0,1) and 0<a <1/2.
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There are two basic estimation of the volatility
process of Eq. 32 in the cast the volatility process is
constant. The first method considers the function of
density of transition from solution of Eq. 32. The
second method proposes the estimate of the parameters
of the model via the observation. Khaled and Samia
(2010) for more details). In our case, the volatility of
Eq. 32 is the stochastic process. There are many articles
provided the estimation procedure for example see
(Fiorentini et al., 2002).

CONCLUSION

An alternative fractional stochastic volatility model
with jump is proposed in this study which the stock
prices follows a geometric Brownian motion combining
a compound Poisson processes and a stochastic
volatility perturbed by a fractional Brownian motion.
This proposed model exhibits a long memory of a
stochastic volatility model that is not expressed in the
classical stochastic volatility model. By using a
fundamental result of the L*-approximation of a
fractional Brownian motion, we provide an
approximate solution of bivariate diffusion model. A
relationship between stochastic differential equations
and partial differential equations for a bivariate model
is presented. The risk-neutral method for valuation of
options are reviewed. By using the technique base on
the characteristic function of an underlying assets, an
approximate formula of a European options is derived
in an explicit formula. Finally a numerical integration
technique to simulation the fractional stochastic
volatility are present.
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1. Introduction

Let (©,F,P)be a probability space. A stochastic process L, is a Lévy process if it has independent
and stationary increments and has a stochastically continuous sample path, i.e. for any &>0,
lim P(|L., —L|>&)—0. The simplest possible Lévy processes are the standard Brownian motion W,

Poisson process N,, and compound Poisson process ZY where Y, are i.i.d. random variables. Of

course, we can build a new Lévy process from known ones by using the technique of linear

transformation. For example, the jump diffusion process ut+ow, +Zy, where u, o are constants, is a

Lévy process which comes from a linear transformation of two independent Lévy processes, i.e. a
Brownian motion with drift and a compound Poisson process.

Assume that a risk-neutral probability measure Q exists and all processes in section 1 and 2
will be considered under this risk-neutral measure.

In the Black - Scholes model, the price of a risky asset S, under a risk-neutral measure Q
and with non dividend payment follows
S, =S, exp(L,) =S, exp(rtJr(oJWt —%azt)),
(1.2)

where r e R is arisk-free interest rate, o <R is a volatility coefficient of the stock price.
Instead of modeling the log returns L, :rt+(cr\/\/t —%O'Zt) with a normal distribution, we now

replace it with a more sophisticated process L, which is a Lévy process of the form
L =rt+(oW, —10t)+J,, (1.2)

where J, denotes a pure Lévy jump component, (i.e. a Lévy process with no Brownian motion part).
We assume that the processes W, and J, are independent.

1 This research is (partially) supported by the Thailand Research Fund.

2 Corresponding author. E-mail address: pairote@sut.ac.th (P.Sattayatham).
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To incorporate the volatility effect to the model Eq. (1.2), we follow the technique of Carr and
Wu (2004) by subordinating a standard Brownian motion component oW, —1o°t and a pure jump

Lévy process J, by the time integral of a mean reverting Cox Ingersoll Ross (CIR) process

T, =jvsds,
0

where v, follows the CIR process
dv, = 7LV, dt + o, v, dW,". (1.3)

Here W," is a standard Brownian motion which corresponds to the processy, . The constant y e R is
the rate at which the process v, reverts toward its long term mean and o, >0 is the volatility
coefficient of the processy, .

Hence, the model (1.2) has been changed to

L =rt+(oW, —10°T, )+ J; (1.4)

and this new process is called a stochastic volatility Lévy process. One can interpret T, as the

t
stochastic clock process with activity rate processv,. By replacing L[ in (1.1) with L, we obtain a
model of an underlying asset under the risk-neutral measure Q with stochastic volatility as follows:

S, =S, exp(L,) =S, exp(rt+(oWT! —%az'l't)h]n). (1.5)

In this paper, we shall consider the problem of finding a formula for European call options based on
the underlying asset model (1.5) for which the constant interest rates r is replaced by the stochastic
interest rates r,, i.e. the model under our consideration is given by

S, =5, exp(rtt+(oWT( —%aZTt)+ Jn)- (1.6)

Here, we assume that r; follows the Hull-White process
dr, = (a(t) - Br)dt + o, AW, (17)

W," is a standard Brownian motion with respect to the process r, and dW,dW, =0. The constant
B R is the rate at which the interest rate reverts toward its long term mean, o, >0 is the volatility
coefficient of the interest rate process (1.7), «a(t) is a deterministic function, and is well defined in a
time interval [0,T]. We also assume that the interest rate process r, and the activity rate process v,
are independent.

The problem of option pricing under stochastic interest rates has been investigated for along
time. Kim (2001) constructed the option pricing formula based on Black-Scholes model under several
stochastic interest rate processes, i.e., Vasicek, CIR, Ho-Lee type. He found that by incorporating
stochastic interest rates into the Black-Scholes model, for a short maturity option, does not contribute
to improvement in the performance of the original Black-Scholes’ pricing formula. Brigo and
Mercurio (2006, page 883) mention that the stochastic feature of interest rates has a stronger impact
on the option price when pricing for a long maturity option. Carr and Wu (2004) continue this study
by giving the option pricing formula based on a time-changed Levy process model. But they still use
constant interest rates in the model.

In this paper, we give an analysis on the option pricing model based on a time-changed Levy
process with stochastic interest rates.



The rest of the paper is organized as follows. The dynamics under the forward measure is
described in section 2. The option pricing formula is given in section 3. Finally, the close form
solution for a European call option in terms of the characteristic function is given in section 4.

2. The dynamics under the Forward Measure

We begin by giving a brief review of the definition of a correlated Brownian motion and some
of its properties (see Brummelhuis (2008) page 70). Recalling that a standard Brownian motion in

R"is a stochastic process (Z,),., whose value at time t is simply a vector of n independent Brownian
motions at t:
Z, =2y Zy,).

We use Z instead of W, since we would like to reserve the latter for the more general case of
correlated Brownian motion, which will be defined as follows:

Let p=(p;). -, b€ a (constant) positive symmetric matrix satisfying p, =1 and -1<p, <1.
By Cholesky’s decomposition theorem, one can find an upper triangular nxn matrix H=(h;) such
that p=HH', where H' is the transpose of the matrix H. Let Z, =(Z,,,..Z,,) be a standard Brownian
motion as introduced above, we define a new vector-valued process W, = (\W,,,..,W,,) by W,=HZ
or, in term of components,

W, :Zhijzj,t’ i=1..,n.
j=1

The process (W,),., is called a correlated Brownian motion with a (constant) correlation matrix p .
Each component-process (W,,),.., is itself a standard Brownian motion. Note that if p=1Id (the

identity matrix) then W, is a standard Brownian motion. For example, if we let a symmetric matrix

1 p, O
p=lp, 1 0. (2.0)
0 0 1

Then p hasa Cholesky decomposition of the form p=HHT™ where H is an upper triangular matrix
of the form

1_/0\/2 Py 0
H= 0 1 0].
0 0 1

Let Z =(z,Z',2") be three independent Brownian motions then W, =W, W",W.") defined by
W, =HZ,, or in terms of components,

W, ==z +pZ0, W =2, W =2/, (2.2)
is a correlated Brownian motion with correlation matrix o as given in Eq. (2.1).

Now let us turn to our problem. Note that, by Ito’s lemma, the model (1.6) has the dynamic given by
ds, =S,_rdt+oS,_dw, +S,_dJ;,
dr, = (a(t) - gr,)dt + o, dW,", (2.3)
av, =y(1-v,)dt+ o, \/\ZdWIV,

where dJ; =dJ; +(e"" —1-AJ;), dWdW," =dW,"dW,’ =0, and dw,dw," = p,dt .



We can re-write the system (2.3) in terms of three independent Brownian motions (Z,,2,",Z,") as
follows:

dS, =S,_rdt+oS, ( pdzy +\1-p2dz, )+ s.dJ;, (2.4)
dr, = (a(t) - Br,)dt + o,dz;, (2.5)
dv, = 7(1-V,)dt + 0, dZ;" (2.6)

This decomposition makes it easier to perform a measure transformation. In fact, for any fixed
maturity T, let us denote by Q" the T-forward measure, i.e. the probability measure that is defined by
the Radon-Nikodym derivative,
T
exp| —|r,du
w )

= 2.7
dQ P(0,T)
Here, P(t,T) is the price at time t of a zero-coupon bond with maturity T and is defined as
P(t,T)=E, {ej, " Ft} . (2.8)

We denote f(0,t) to be the market instantaneous forward rate at time O for the maturity time t>0 and
it is defined by

f(0,t) ::—%In P(0,t), 0<t<T. (2.9
Poulsen (2005) gave a relation between the coefficients of Eq. (2.5) and the forward rate f(0,t) as
follows:

alt) = afgt) )

+p£(0,)+ ﬁ(l e ™). (2.10)

Lemmal The process r, which satisfies the dynamic in (2.5) can be written in the form
rL=x+o¢(), 0<t<T, (2.11)
where the process x, satisfies
dx, =—pxdt+o,dZ, x, =0. (2.12)

Moreover, the function ¢ is deterministic, well defined in the time interval [0,T], and satisfies

(’;2 (1) (2.13)
In particular, (0) =r,.
Proof To find a solution of SDE (2.5), we let g(t,r) =¢”'r. By using Ito’s Lemma, we have

dg = de”'r, = a(t)e’'dt +e”o,dZ;. (2.14)

Integrating on both sides of the above equation from O to t, we obtain
r=re” +'t[a(u)eﬁ(”“)du + je/"”‘t’ardZJ. (2.15)
0 0
Substituting the value of «(t) from Eq. (2.10) into (2.15), we have
r=re” +I[6f(o ) +41(0,u)+ ,8(1 g )je Adu + o, je Awgzr (2.16)
Applying integration by parts formula to Eq. (2.16) and after simplifying, we obtain
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2 t
r=re”+f(0,t)—f(0,0)e” + Zc—ﬂrz(eﬂ‘ —1)2 +o, j e Ptz (2.17)
0
By using the definition of ¢, from Eq. (2.13), we can write Eq.(2.17) into a compact form as follows:
t t
r=re”—£(0,00e” +p(t)+o, j e /dZ! = p(t) + o, j e Mgz, (2.18)
0 0

because of f(0,0)=r,, see Andrew(2004) page 89.
Note that the solution of Eq. (2.12) is

t t
X = X,.e " +arje*ﬁ“*“)dz; = arje*ﬁ“*“)dz; . (2.19)
0 0

Hence, r, =¢(t)+x, 0<t<T. The proof is now complete.
Now we are ready to calculate the Radon-Nikodym derivative as appears in Eq. (2.7). By virtue of

Lemmal, r, = ¢ +X. Substituting r, and P(O,T)—exp(—]f(o,u)duj into Eq. (2.7), one gets

0

dQT _ _ O—rz T -A(T u)
) exp{ jx du 2,32! 1 e J (2.20)

Stochastic integration by parts implies

].xudu =Tx, —T[udxu :]'(T —u)dx, . (2.22)
0 0

0

By substituting the expression for dx, from Eq.(2.12), we have

[y I—

(T —u)dx, =—ﬁ]U—U)XudU+Gr]G—U)dZJ. (2.22)

Moreover, by substituting the expression for x, from Eq. (2.19) into the right hand side of Eq. (2.22),
one gets

—B j (T —u)x,du = —fo, j {(T —u) j eﬂ(“S)dz;}iu. (2.23)
0 0 0
Using integration by parts, we have
T [ g-u-s UT(,B(T) ) f (2.24)
—fo, || (T-u)|e ™ dZu’Jdu:——{ et -1 dZu’}—o-r (T -u)dz;. 24
o] al !
Substituting Eqg. (2.24) into (2.22) and Eq. (2.21) becomes
T o T
Ixudu = ——'D(eﬂ”“) —1) dz; } (2.25)
0 ﬁ 0
Substituting Eg. (2.25) into (2.20), we obtain
dQ’ o, | s\ gt Or [ -pT-u)\? j
——=exp| ——|(1-e dz; ——L|(1-e du |. 2.26
4Q p( ol Ll ) &)

Hence, by Girsanov’s theorem, the three processes z7,z" and z. defined by

dz™ =dz’ +/3(1 e V)dt, dz" =dz;, dz] =dz, (2.27)



are three independent Brownian motions under the T-forward measure Q' . Therefore, the dynamics
of r,v,and S,under Q" are given by

dS, =S, _rdt+oS, ( Pz +\[1- p2dz] )+ S.dJ;, (2.28)
2

dr, = (a(t) - pr. —a—ﬁr(l—e’”(”) )) dt+o,.dz, (2.29)

dv, = y(A-v)dt +o,\v,dz)". (2.30)

3. The Pricing of a European Call Option on the Given Asset
Let (S,).q0r; D€ the price of a financial asset modeled as a stochastic process on a filtered probability

space (Q, F, E,QT), and F, is usually taken to be the price history up to time t. All processes in this

section will be defined in this space. We denote C the price at time t of a European call option on the
current price of an underlying asset S, with strike price K and expiration time T.
The terminal payoff of a European option on the underlying stock S, with strike price K is
max(S; —K,0). (3.1)

This means the holder will exercise his right only S, > K and then his gain is S, — K. Otherwise, if
S, <K then the holder will buy the underlying asset from the market and the value of the option is
zero.

We would like to find a formula for pricing a European call option with strike price K and
maturity T based on the model (2.28) - (2.30). Consider a continuous-time economy where interest
rates are stochastic and the price of the European call option at time t under the T-forward measure

Q' is
C(t, S, K,V T,K) =P (t, T)E, (max(S; —=K,0)|S,,1,v,)
= P"(t,T) [ max(S; —K,0) pr (Sy | ;. v, )dS;.
0

Here E is the expectation with respect to the T-forward probability measure, Pyr is the

corresponding conditional density given (S,,r,v,), and P”is a zero coupon bond which is defined by
P (t,T) = E, {exp(—]. rsds]| Ft} . (3.2)

With a change in variable X, =InS,, |

C(t,S,,r,v;T,K) = P*(t,T)T max (7 =K, 0)p.: (X; | X, 5, v,,)dX;

= eX‘Pl (t1 Xtv nivt;Tx K)_ KP*(th)PZ (t’ Xt’ rt'vt;T’ K) (33)
=€ Pr(X; >InK| X, 1, v )= KP" (L T)Pr(X; > InK| X5, ),
where those probabilities in Eq. (3.3) are calculated under the probability measure Q'.

The European call option for log asset price X, =InS,, will be denoted by

C(t, X 1, Vs T, x) =P (t, X, 1,V T, 5) =P (6, T)P, (8, X, 1,V T, x), (3.4)



where x=InK and P, (t, X, v;T,x) = P, (t, X.,6,v;T,K), j=12

Note that we do not have a closed form solution for these probabilities. However, these probabilities
are related to characteristic functions which have closed form solutions as will be seen in Lemma 4.

Next, consider a continuous-time economy where interest rates are stochastic and satisfy Eq.
(2.29). Since the SDE in Eq. (2.29) satisfies all the necessary conditions of Theorem 32, see Protter
(2005) page 238, then the solution has Markov property. As a consequence, the zero coupon bond
price at time t under the forward measure Q' in Eq. (3.2) satisfies

P (t,T)= E, {exp(—].rsds) rt}. (3.5)

Note that P'(t,T) depends on r, then it becomes a function F(t,r) of r. This means that the
calculation of P(t,T) can now be formulated as a search for the function F(t,r,).

Lemma 2 The price of a zero coupon bond can be derived by computing the expectation (3.5). We
obtain
P'(t,T) =exp(a(t, T) +b(t, T)r,) (3.6)

1, o P'(0,T)) 3 S
where b(t,T):E(e a0 _g), a(t,T)=—f(0,t)b(t,T)+In(P*((O,t))] fﬂ[ tLT)(1-e ﬂt)].

Proof  Under the T-forward measure Q', the interest rate is given by Eq. (2.29). The specification

of the interest rate means that the model (2.29) belong to the affine class of interest rate models. Thus
the bond price at time t with maturity T is of the form Eq. (3.6) where a(t,T) and b(t,T) are functions

to be determined under the condition a(T,T)=0and b(T,T)=0. We will now find explicit formulas
for the functions a(t,T)and b(t,T) in Eq. (3.6).
The zero coupon bond price PDE satisfies (the proof is similar to Privault (2008) Prop. 4.1)

oF(tr) _ aF(tr) 162F(tr)
p ((t) ﬁ(l e 1) ﬂl] o + = —rF(tr)=0. (3.7)

Note that F(t,r)=P"(t,T). We substitute the value F(t,r)from (3.6) into the above equation and
after canceling some common factors, we have

oa(t,T ob(t, T 1
( E?t )+q ;t )J [ (t)— ﬁ(l e /) ﬂrtjb(t,T)+§b2(t,T)o-f—rt:O.
We can reduce it to two ordinary differential equations

6a(t T) O'r bz(t T)+{ (t)— 7 (1 Ny ‘))]b(t,T) -0, (3.8)

—abgt'T) — Bb(t,T)-1=0, (39)

with boundary conditions a(T,T)=0, b(T,T)=0.
Firstly, we note that the solution of Eq. (3.9) which satisfies the boundary conditions b(T,T) =0 is
b(t,T) = %(e-/f”-"—l). (3.10)

Secondly, we try to solve Eq. (3.8). Note that

Iaa(” Dy =[a@T)]"" =a T)-a@.T)=-aT). (311)



Thus

a(t,T) = [3(;2 ]}(b(u,T)zdu +_T[a(u)b(u,T)du. (3.12)

It follows from Eq. (2.9) and (3.6) that the forward rate at time 0 with the maturity T can be written as

ca0,T) __ ab(O,T)

3.13
oT o oT (3.13)

f(0,T)= _6%"1 P'(0,T)=-

Differentiate a(0,T) with respectto T and using a(T,T)=0, b(T,T)=0, we obtain from Eq. (3.12)
that

da(0,T) ab(u T)
0

=30 jb( T)——d +j (u)Md

Substituting the value of b(u,T) from Eq. (3.10) into the above equation and after some calculations,
we get
3 2
aa(O,T) — ( Ufz)(e AT 1 J'e B(T— u)a(u)du
aT 28
2a(0,T)
T

and the value of

Now substitute the value of ab(?T)

into Eqg. (3.13), we have

307, _ 2 b u _
f(0,T) =—2—,8r2(e m-1) +.([e PT9a(u)du+1, (e77). (3.14)
To isolate «(T), we differentiate f (0,T) with respectto T and get

o g_)I_’T) = %(e‘”T —e )— r,pe”" +[a(T) —ﬁ@e‘m‘“’a(u)duB.

Using Eg. (3.14) to rewrite the above equation and after simplifying , we get

o) = af(o T)

Next, we shall find a formula for a(t,T) in Eq. (3.12). Note that

+Bf(0,T)- ﬂ ( 2T-1). (3.15)

397t tyau— 3% Loty 4 L ]
7]:b(u,T) du = 2/}( 2b(t,T) +ﬂ(b(t,T)+T t)j,

and
of (0,T) 367, ,
ja(u)b(u T)du = j( ﬂf(O,T)—E(e ”T—l)jb(u,T)du
30-r2 3Urz — - +t - —t -2/t
:—f(O,t)b(t,T)—.!' f(O,u)du—Zﬂz T-t) +4_/;3[e YT g AT 2 AT g P o],
Therefore

a(t, T)=—f(0,t)b(t, T) —j. f(0,u)du —%bz(t,T)(l—e’m).

By definition, P*(0.T)=e > "®*. Thus [ f(@.udu=in[ 2T
y definition, P*(0,T) =e us f[ (0,u)du =In (0.0
Finally, we have

P*(0,T)

a(t, T)=—f(0,t)b(t, T) + In[ P01

30—r 2 _2pt
J 4ﬂb(tT)(l e M.



The proof is now complete.
The following lemma shows the relationship between P, and P, in the option value of Eq. (3.4).

Lemma 3. The functions P, and P, in the option values of Eq. (3.4) satisfy the PIDEs:

0= a@t + A[P]+;a Vaa—P-‘rvaVG %D
¢ X (3.16)
J [(ey ~D(Btx+y,r,vT,0)-R(xt, r,v;T,zc))]k(y)dy
and subject to the boundary condition at expirationt=T, P(T,x,r,v;T,x) =1_,. (3.17)
Moreover, P, satisfies the equation
L AP, ]_a_v@ ot T) P, (aa(t,T) o 6b(t,T)j|52
OX ot ot
3 (3.18)
[ Z b? (8, T) -1 +(a(t)— Br)b(t, T)]
and subject to the boundary condition at expirationt="T, P,(T,x,r,v;T,x)=1__. (3.19)
Here, for i=1,2,
sy | 9P P olvo'R oV aR
A[P]_ r—+[a(t) ﬂr— B (1 e AT ))JE‘F}/(]-—V)E TW-FT PV
(3.20)

ol 0F
2 or?

Notethat 1__=1 if x>« and zero otherwise. We assume that the jump kernel k(y) exists.

+(va'VO'v)ai—}ZX+VIO£F~’i(t,X+ y,r,v;T,K)—ﬁ(x,t,r,v;T,x)—(Z—fj(ey —1)jk(y)dy.

Proof. See Appendix.

4. The Closed-Form Solution for European call options

For j=1,2, the characteristic function for |5j (t,x,r,v;T,x), with respect to the variable «, are defined
by
f,(t,xrvT,u)= —j e‘”’“dlf’j t,x,r,v;T,x), 4.1)

—o0

with a minus sign to account for the negativity of the measure dP,. Note that f; also satisfies similar
PIDEs

%+Aj[fj](t,x,r,v;T,K)=O, 4.2)

with the respective boundary conditions

f,(T,x,r,vT,u) =—_[ e‘“"dISJ. t,xrvT,x) = —j e (—5(x —x))dx =™,

The following lemma shows how to calculate the characteristic functions for P and P, as they
appeared in Lemma 3.



Lemma4 The functions P, and P, can be calculated by the inverse Fourier transformations of the
characteristic function, i.e.

~ © eiu’(f. t,X’r,V;T,u
Pj(tlx’r’V;T’K):£+£JRE|: j( ):ldu,
2

iu
for j =1,2, with Re[.] denoting the real component of a complex number.
By letting =T —t, the characteristic function f; is given by

f,(t,xr,v,t+z,u) :exp(iux+ B, (z) +1C;(z) +VE;(z) - (j-DIn P*(t,t+r)),

where B, =b, +V,, b, =b, -V, V,=/b7-4n0 , b, =poo,iu-y,

af(o t) + RO - ﬂ:( -21:’1_1)’

O'

= 2 blepVO'o’v(l-i-iU)_}/. O.’(t)
bm:%(lu—u J'|:e|ux+y iu(e’ 1)]k(y)dy, C, (T)_ﬁ(l e’),C,(r) = IUﬂl( eﬂr),

by, = —a—z(iu +u?)+ T(e‘“X —iu(e’ -1))k(y)dy, E;(z) = —( _ _1)2 ° ,
2 2b, (b, -e™b,, )

Bl(r)=]a(t)C1(T ~t)dt + 2(£+i—u)((eﬂ’—2)z+2ﬂr—l) 7'(5:.-5), (6%_611 ]+72521V17,

CTz

T-7 Zﬂ 2 ﬂ 2b1 Tvbzl - bu 2b1
T of(U-1)(1 (u-1))([ 5 .\ %V,
Bz(r)=TJ:Ta(t)C2(T—t)dt+ gﬂa )[E_ > j((eﬂ -2) +2pr_1)+72_blf

K SNEE
2b1 eTvbzz _b12

Proof. To solve the characteristic function explicitly, letting =T -t be the time-to-go, we
conjecture that the function f, is given by

f.(t,x,r,v;t+7,u) =exp(iux+ B, (r) + rC,(z) + VE, (7)) , (4.3

and the boundary condition B, (0) =C,(0) = E,;(0) =0. This conjecture exploits the linearity of the
coefficient in PIDEs (4.2). Note that the characteristic function of f, always exists. In order to
substitute Eq. (4.3) into (4.2), firstly, we compute

of , , , of, . of of
Elz—(Bl(T)-i-l’Cl(T)-i-VEl(‘[)) f,, 6—;=qu1, 8—;=C1(7)f1, Elel(T)fl’
o f 52 o%f, .

ale =-u’ fll E1( )f11 2 C ( )fll 6V_(3;(:IUE1(T) fl’

iux

f(t x+ y,r,v;t+r,u)— f, (L, %, r,v,t+r,u) =e"f(t,x,r,v;t+7,u).

Substituting all the above terms into Eq. (4.2), after cancelling the common factor of f,, we get a
simplified form as follows:
A

IU
0= v{— E1(1)+( v(l+iu)—;/)E1(r)+ j " —iu(e’ ~1) Jk(y)dy

—00

2

_B! t)— =
+[ (T)+[Ot() i

By separating the order r, v and ordering the remaining terms, we can reduce it to three ordinary
differential equations (ODES) as follows:

C(1-e /0 ")jC(r)ﬂ/E (2)+ rC (T)JH( Cl(z) +iu=BCy(7)).
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C/(r) = —,BC (7) +iu, (4.4)

El() = Z-EX0)+[ o, (1+i) -7 JE (@) + iﬂ%ilj'vaw ~1)k(y)dy, (4.5)

B/(r) = [a(t) —%’(1—6’“”) )j C.(7) +%’Cf (2)+7E (7). (4.6)

It is clear from Eq. (4.4) and C(0) =0 that Cl(r)z%(l—e‘”’). 4.7
(lu u?) = o2 .

Let b0=—+j[e'“”y iu(e’ —1) |k(y)dy, bl_ % and b, =(p,00,(1+iu)-y).

Substitute these constants into Eq. (4.5), one gets

E/(z) = bl(Ef(r)+El—2E1(r)+El—°] = Q[(El(f)—@)(ﬁ(r)— —Q—J;ﬁ)}

By method of variable separation, we have
dE (7)
e e

Using partial fraction on the left hand side, one obtains

. N 2 dE =.b.2—-4bbdr.
[E (r)f@] [E (T),@} l(T) ﬁ T
! 2by 1

2b

Integrating both sides, we obtain

[E@-mg
av)ﬂgﬁﬂﬁ

= 7,(b,? —4b)b, +E,.

; - —o _ *%+ﬁ22*4b0b1)
Applying boundary condition E,(r =0) =0, we get E, In(ibrm .
(e )58,

206 - 75

where b =b, +,/bz2 —4byb, and b, =b, _,/b; —4byb,.

In order to solve B, (z) , we substitute C,(z)and E,(z) into Eq. (4.6) to get

o’ (u2+i;]((eﬁr )2+2,Br—1)+y2(b2_bl)ln[ b, b ]+7262vr,

Solving for E,, we have E(7)=

B.(r)= | a(®)C,(T - 25

where Vv =./b2—4bb and «f(t) is defined in Eq. (3.15).
The details of the proof for the characteristic function f, are similar to f,. Hence, we have
f,txrvt+z,u)= exp[iux+ B, () +rC,(z) +VE,(r) - In P"(t,t +‘[):| ,

where B,(z),C,(z),and E,(z) are as given in the Lemma.
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Up to this point, we obtained the characteristic functions in close form. However, we are
interested in the probability |5j . These can be inverted from the characteristic functions by performing

the following integration

“ [e'“” f, (t,x,v.r;T,u)

P (t,x,r,v;T,x) :1+ljRe Jdu, i=12, (4.14)
2 7Z.O+

u

where X, =InS, and x=InK ( see Sattayatham and Intarasit (2011)).
The proof is now complete.

In summary, we have just proved the following main theorem.

Theorem 5 The value of a European call option of SDE (2.28) is

C(t,S,. Vs T,K) =SB, (t, X, 1,V T, 6)—KP (t, T)B, (t, X, 1, v, T, k)

where p and P,are given in Lemma 4 and P"(t,T)is given in Lemma 2.
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Appendix: Proof of Lemma 3

By Ito’s lemma, C(t,x,r,v) follows the partial integro - differential equation (PIDE)

2 2 2
rC=@+(r—lo- vj§+£a(t) ﬂr—?(l—e”‘T")JZ—C+7(l )8C+G o'C ovaC
r

p > x N2 a7 2
U_Z"azé+( ava)ﬁzc3 +VT Ct,x+y,r,v)—C(t XFV)—ﬁ(ey_l) k(y)d (Al)
2 aXz Py V) oxev J ! y.r T OX Y.

We plan to substitute Eq. (3.4) into (Al). Firstly, we compute

oC P > aC P . 0P
— = L —e"P(t,T —+P— a(t,T)+b(t, T)r =e*| =L +P |-e"P(t,T) =2,
ot ot (){ (() ())}ax [8x J ()ax
@:exap —e P(tT)a—P @ exap e"P” (tT) +Pb(tT)

ov ov ov  or or

P

o))

aZC_ex 62I5 ok, o’F, O°C_ 'R
ox* " ov? o

X2 2§+P] e P (1, T)—2 —e* = L¢P (tT)a

o0°C Xazﬁ
;=€
or

aZ

) N
+2b(tT)—+Pb t,T) |, 0 =g apl R -
OX oOVOX oV

Ct,x+y,r,v,;T,x)-C(t,x,r,v,;T,x)
= e[ ~DR (L x+y,rvT, 1)+ (Bt x+y, v T, -BtrvT,x) |

—e"P (tT)(

—e’“P*(t,T)[ﬁz(t, X+Y,r,vT,5)—P,(t,% r,v;T,zc)}.

Substitute all terms above into Eq. (A1) and separate it by assumed independent terms of P, and P,.
This gives two PIDEs for the forward probability for P(t,x,r,v;T,x), j=12:
-, oo
0= th) +(r %a Vja—+[7/(l v)+(p,0v0,) 665 +O; ZP

P, avaP o’v o%P, oP
Ea(t) ﬂl’—?(l e /- t))j =t o Ly — 5 ol L+ (p,ovo, ) —

- (A2)
+le {Fa(t,x+ v, 0T, x) =P (xtrvT, k) — ( j(ey 1)}k(y)dy
+vj [(ey —1)<I51(t, X+y,rvT,c)-P(xtrvT, K))]k(y)dy,
and subject to the boundary condition at the expiration time t =T according to Eq. (3.17).
By using the notation in Eq. (3.20), Eqg. (A2) becomes
0—£+ A[P]+(lo' VJP +o V%+va'VO' %
+vj {f’l(t, X+Y,0,vT,5)-P(xtrvT, ) —[%}(ey —1)}k(y)dy = %4— A[P].
ForP,(t,x,r,v;T,x):
P 1 P o’ prt P P, o’v o*P,
0=Ez+(r—Eazvja—xz+(a(t)—ﬂr—?(l—e A ))+0'fb(t,T))a—r2+y(l— )8\/2+ =T
o’ &*P, o’ P P, (307 <
+7r5722+07 o~ +(pV0'V0'V)6V62X+(T’b2(t,T)—r+(a(t)—ﬂr)b(t,T)j P, (A3)
+(6agt'T) 6bgtT)j I{P (6 X+ Y, VT ) = Byt X, VT 1) — 2 (e 1)Jk(y)dy,
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and subject to the boundary condition at expiration time t =T according to Eq. (3.19).
Again, by using the notation (3.20), Eq. (A3) becomes

. - .
G NP s BT (aa(t,T) o 8b(t,T))|52

0 oV 24
ot 2 0x or ot ot
302, < P 5
+[Trb (t,T)_r+(a(t)—ﬁl’)b(t,T)JP2 .=E+ AlPR]

The proof is now completed.
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Appendix A: MATLAB Code

%
% RUN GMM ESTIMATION ROUTINE OF THE INTEREST RATE MODEL
%
Clc

clf

clear variables

close all

fprintf("\n -
fprintf("\n RAMETER ESTIMATION AND FORCASTING NTERST RATE MODEL * );
fprintf("\n ")

o/

Ffile=input("\n Input data (file _.txt)");%"E:/code/test3.txt"

Model .Data = load(file);

Model _.Name = input("\n Input the model name?""CIR""or""Vasicek®":);
Model .TimeStep = input("\n Input the time step ?
%recommended: " "1/12" "for monthly or ""1/250""for daily :* );

Model -MatlabDisp = "off"; % “off"|"iter" | notify"| "final~"(default:off)

Model .Disp = "y~; % "y"]"n® (Print results in Matlab®s command
window, draws graphs)

Model . Iters = 1; % # of iterations of the weighting matrix
(traditionally = 1)

Model.q = 12; % # of lags in the spectral density matrix
estimation,

% Model.q = O reduces the spectral density

matrix to the sample covariance matrix

Y — — — —

% ESTIMATION

function J = GMMobjective(Params, Model, W)

%
% Objective function for Interest rate models

%

% INPUT: Params, vector, vector of estimated parameters
% Model, structure

% W, matrix, weighting matrix

% OUTPUT: d, Jacobian matrix

Data = Model .Data;

DataF = Data(2:end);

DatalL = Data(l:end-1);
Nobs length(Datal);

Nobs = Nobs-1;

TimeStep = Model .TimeStep;
a = Params(1);

b = Params(2);



switch Model .Name
case °“CIR"
sigma = Params(3);

gl = sum(DataF - a - b*Datal);

g2 = sum((DataF - a - b*DatalL).”2 - sigma”2*DatalL.*TimeStep);
g3 = sum((DataF - a -b*Datal).*Datal);

g4 = sum(((DataF - a - b*Datal).”2 -

sigma”™2*DatalL . *TimeStep) . *Datal);
gl = gl/Nobs; g2 = g2/Nobs; g3 = g3/Nobs; g4 = g4/Nobs;
case "Vasicek”
sigma = Params(3);

gl = sum(DataF - a - b*Datal);
g2 = sum((DataF - a - b*DatalL).”2 - sigma”™2*TimeStep);
g3 = sum((DataF - a -b*DatalL).*Datal);
g4 = sum(((DataF - a - b*DatalL).”2 - sigma™2*TimeStep).*DatalL);
gl = gl/Nobs; g2 = g2/Nobs; g3 = g3/Nobs; g4 = g4/Nobs;
end
g = [91 92 g3 g4];
J = g*W*g*";
end

function W = GMMweightsNW(Params, Model)

%
% Optimal weighting matrix for CKLS nested models

%

% INPUT: Params, vector, vector of estimated parameters
% Model, structure, see RunAssignment?2

% OUTPUT: W, matrix, optimal weighting matrix

%

Data = Model .Data;
TimeStep = Model .TimeStep;

q = Model .q;
a = Params(1);
b = Params(2);

DataF = Data(2:end);
DataL = Data(l:end-1);
Gamma = zeros(4,4,q+1);

switch Model .Name
case °“CIR"
sigma = Params(3);

glt = DataF - a - b*Datal;

g2t = (DataF - a - b*DatalL).”2 - sigma”™2*DatalL.*TimeStep;

g3t = (DataF - a -b*DatalL).*Datal;

gdat = ((DataF - a - b*DatalL).”2 - sigma”2*Datal.*TimeStep).*Datal;

case "Vasicek"
sigma = Params(3);

glt = DataF - a - b*Datal;

g2t = (DataF - a - b*DatalL).”2 - sigma”2*TimeStep;

g3t = (DataF - a -b*Datal).*Datal;

gdat = ((DataF - a - b*DatalL).”2 - sigma”™2*TimeStep) .*Datal;

end



gt = [glt g2t g3t g4t];
Nobs = length(glt);

% Calculate the Newey-West estimate of the spectral density matrix with g
lags

gt = gt - repmat(mean(gt), Nobs, 1);
for v =0:q¢
gtF = gt(l+v:end, :);
gtL = gt(l:end-v, :);
Gamma(:,:,v+1l) = (gtF"*gtL)./Nobs;
end
S = Gamma(:,:,1);
for v=1:q¢
Snext = (1-v/(g+1))*(Gamma(:,:,v+1l) + Gamma(:,:,v+1)");
S = S + Snext;
end
W = inv(S);
End

function d = MomentsJacobian(Params, Model)

%
% Jacobian matrix for testing parameters significance (t-test)
%

% INPUT: Params, vector, vector of estimated parameters

% Model, structure, see RunAssignment2

% OUTPUT: d, Jacobian matrix

%

x

TimeStep = Model .TimeStep;
Data = Model .Data;

DataF = Data(2:end);

DatalL = Data(l:end-1);
Nobs = length(Datal);

switch Model .Name
case °“CIR"
a = Params(1);
b = Params(2);

gla = -Nobs;
g2a = -2*sum(DataF - a - b*Datal);
g3a = -sum(Datal);
gd4a = -2*sum((DataF - a - b*Datal).*Datal);
glb = -sum(Datal);
g2b = -2*sum((DataF - a - b*Datal).*Datal);
g3b = -sum(DatalL."2);
g4b = -2*sum((DataF - a - b*DatalL).*DatalL."2);
gls = O;
g2s = -sum(TimeStep*Datal);
g3s = 0;
g4s = -sum(TimeStep*DatalL .*Datal);
d = [gla glb gls;...
g2a g2b g2s;...
g3a g3b g3s;...
gd4a g4b g4s];
d = d./Nobs;

case "Vasicek”
a = Params(1);



b = Params(2);

gla = -Nobs;
g2a = -2*sum(DataF - a - b*Datal);
g3a = -sum(Datal);
gd4a = -2*sum((DataF - a - b*Datal).*Datal);
glb = -sum(Datal);
g2b = -2*sum((DataF - a - b*Datal).*Datal);
g3b = -sum(DatalL.”2);
g4b = -2*sum((DataF - a - b*DatalL).*DatalL."2);
gls = O;
g2s = -TimeStep*Nobs;
g3s = 0;
g4s = -sum(TimeStep*Datal);
d = [gla glb gls;...
g2a g2b g2s;...
g3a g3b g3s;...
gd4a g4b g4s];
d = d./Nobs;

function Results = GMMestimation(Model)

%
» GMM estimation routine for CKLS nested models
% % INPUT: Model,structure, see RunAssignment2
% OUTPUT: Results, structure

XX

% Results.Params, estimated parameters

% Results.Fval, objective function value

% Results_Exitflag, Matlab®s optimization result

% Results.Tstat, t-statistics for individual parameters
% Results.Chi2statisitcs, Chi2 test of model specificaion

% USES: GMMobjective, GMMweightsNW, MomentsJacobian
%

TimeStep = Model .TimeStep;

% Initial Parameters for optimization
% Must be set manually. But the fmnisearch optimization algorithm seems to
be quite robust
switch Model .Name
case {"CIR", "Vasicek"}
alpha = 0.01;
beta = -0.01;
sigma = 0.01;
a = alpha*TimeStep;
b = beta*TimeStep + 1;
InitialParams = [a b sigma];

% ====== First run, with identity weighting matrix

W = eye(4);

options = OPTIMSET("LargeScale®, "off", "Maxlter®", 2500, "MaxFunEvals-®,

3500, "Display”, Model _MatlabDisp, "TolFun®, 1e-40, "TolX", 1le-40);

[Params, Fval, Exitflag] = TfTminsearch(@(Params) GMMobjective(Params,

Model, W), InitialParams, options);

switch Model .Name

case "CIR"

Ralpha
Rbeta

Params(1)/TimeStep;
(Params(2)-1)/TimeStep;



Rsigma2 = Params(3)"2;
Rgamma = 0.5;

case {"Vasicek"}
Ralpha = Params(1)/TimeStep;
Rbeta = (Params(2)-1)/TimeStep;
Rsigma2 = Params(3)"2;
Rgamma = O;

end
if strecmp(Model .Disp, "y")
fprintf("\n Parameters etimates\n");
fprintf(® First run without weighting matrix®);

fprintf("\n alpha = %+3.5f\n beta = %+3.5F\n sigma2 = %+3.5F\n gamma
=%+3.5f\n --------- - - - : \}t}b1 0 f f i i i i i i i
\n",...

Ralpha, Rbeta, Rsigma2, Rgamma);
end
% ========= Second run, with optimal weighting matrix W ==========

if Model._.lters > 0
for 1 = 1 : Model.lters

InitialParams = Params;

W = GMMweightsNW(Params, Model);

options = OPTIMSET("LargeScale®, “off", "Maxlter®, 2500,
"MaxFunEvals®, 3500, "Display”, Model _MatlabDisp, "TolFun®, 1e-8, "TolX",
le-8);

[Params, Fval, Exitflag] = Tminsearch(@(Params)
GMMobjective(Params, Model, W), InitialParams, options);

switch Model .Name

case "CIR"

Ralpha = Params(1)/TimeStep;
Rbeta = (Params(2)-1)/TimeStep;
Rsigma2 = Params(3)"2;
Rgamma = 0.5;

case {"Vasicek"}
Ralpha = Params(1)/TimeStep;
Rbeta = (Params(2)-1)/TimeStep;

Rsigma2 = Params(3)"2;
Rgamma = 0O;
end
switch Model _.Name
case {"CIR", "Vasicek","TF"}
%Chi2 statistics of the overidentified model. Are the empirical moments
%sufficiently close to 07?
Chi2statistic = Fval*length(Model .Data);
Chi2pvalue = 1-chi2cdf(Chi2statistic,l);
Results.Chi2statisitcs = Chi2statistic;
Results.Chi2pvalue = Chi2pvalue;
end
% t-statistic
Nobs = length(Model .Data)-1;
d = MomentsJacobian(Params, Model);
VarParams = diag(inv(d**W*d))./Nobs;
Params(2) = Params(2)-1;
Params(3) = Params(3)"2;
Tstat = Params®./sqrt(VarParams);
if strcmp(Model .Disp, "y")
fprintf("\n Parameters etimates, t-statistic in parentheses\n®)
fprintf(® Second run with weighting matrix, lteration #%d\n", i
switch Model .Name
case {"CIR", "Vasicek"}

);



fprintf("\n alpha = %+3.5F (%+3.2F) \n beta = %+3.5F
(+3.2F)\n sigma2 = %+3.5F (%+3.2F) \n gamma = % +3.5F\n", ...
Ralpha, Tstat(l), Rbeta, Tstat(2), Rsigma2, Tstat(3),

Rgamma) ;
fprintf(" Chi2 statistic = %+2.4F\n", Chi2statistic);
fprintf(" p-value = %+2_41\n", Chi2pvalue);
end
fprintf(" Objective function = %2.3e\n", Fval);
forintfC-----------------o  \ i o b b - \n");
end
end

Results.Tstat = Tstat;

Results.VarParams = VarParams;

end

Results.Params = [Ralpha Rbeta Rsigma2 Rgamma];
Results.Fval = Fval;

Results._Exitflag = Exitflag;

End

function R2 = R2measures(Model, Results)

%
% R2 measures

%

¢ INPUT: Model, structure

X

% Results, structure, see GMMestimation

% OUTPUT: R2, structure

% R2_.Rsquarel, forecast power for interest rate changes,

% R2_Rsquare2, forecast power for squared interest rate changes
% Graph of empirical data vs forcasting data

% MSE

%
%

Data = Model .Data;

TimeStep = Model .TimeStep;
alpha = Results.Params(l);
beta = Results.Params(2);
sigma2 = Results.Params(3);
gamma = Results.Params(4);

CondEdata = alpha*TimeStep + (l+beta*TimeStep).*Data;
CondEddata = CondEdata - Data;
Realddata = diff(Data);

CondVARdata = sigma2*Data.”(2*gamma)*TimeStep;

RealVARdata = Realddata.”2;

%

% "forecast power™ - calcluate R2 of the OLS of conditional values

% implied by the selected model on observed values
%

y = Realddata;
X = CondEddata(l:end-1);
bl = x\y;

Rsquarel = sum((bl.*x-mean(y))."2)/sum((y-mean(y)).-"2);

RealVARdata;

y
X CondVARdata(l:end-1);



bl = x\y;
Rsquare2 = sum((bl.*x-mean(y)).-"2)/sum((y-mean(y)).-"2);

R2_Rsquarel = Rsquarel;
R2_Rsquare2 = Rsquare2;

%

% Forcasting Interest rate model

%

fdata(l)=Data(l);
fdata2(1)=Data(l);
fdata3(1)=Data(l);
NN=Iength(Data);
for J=1:NN
ex2(J)=exp(-1*beta);
end
dt=1/NN;
for i=2:length(Data)
fdata(i)=alpha*TimeStep + (l+beta*TimeStep)*fdata(i-1)+...
sgrt(sigma2*fdata(i-1)"~(2*gamma)*TimeStep)*randn(l);
fdata2(i)=alpha*TimeStep + (1+beta*TimeStep)*fdata2(i-1)-...
sigma2”2*(1-ex2(i))*TimeStep/beta+. ..
sgrt(sigma2*TimeStep)*randn(l);
fdata3(i)=alpha*dt+ (l+beta*dt)*fdata(i-1)+...
sgrt(sigma2*fdata(i-1)"(2*gamma)*dt)*randn(l);
end

%

% Calculate Mean Square Error

%
SumErrsqrt=0;
SumErrsqrt2=0;
SUmErrsqrt3=0;
for i=1:length(Data)
Err(i)=Data(i)-fdata(i);
Err2(i)=Data(i)-fdata2(i);
Err3(i)=Data(i)-fdata3(i);
Errsqrt(i)=Err(i)"2;
Errsqrt2(1)=Err2(i)"2;
Errsqrt3(1)=Err3(i)"2;
SUmErrsqrt=Errsqrt(i)+SumErrsqrt;
SumErrsqrt2=Errsqrt2(i)+SumErrsqrt2;
SumErrsqrt3=Errsqrt3(i)+SumErrsqrt3;
end
MSE= SumErrsqgrt/length(Data);
MSE2= SumErrsqrt2/length(Data);
MSE3= SumErrsqrt3/length(Data);
MeanlR=mean(Data) ;

%

% Display Graph

%
if strecmp(Model .Disp, "y")
switch Model _.Name
case "CIR"
ns=10;
for j=1:ns
fdatad4(1,j)=Data(l);
for i1=2:length(Data)
fdatad(i,j)=alpha*TimeStep + ...
1+beta*TimeStep)*fdatad(i-1,j)+ - ..
sgrt(sigma2*fdatad(i-1, j)*(2*gamma)*TimeStep)*randn(l);
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fprintf("\n ")
fprintf("\n ZERO COUPON BOND PRICE \n . I
fprintf ("\n ")

end
subplot(2,1,2)
plot(l:length(Data), Data, "b", 1:length(fdatad4), fdatad)
hold on
title("Simulate Interest Rate 10 sample paths *)
end
subplot(2,1,1)
plot(l:length(Data), Data, "b", 1:length(fdata), fdata, "-r")
title("Interest Rate " CIR model™™)
legend("Empirical®, "Simulation®)
fprintf("\n Mean of data = %d ",MeanlIR);
fprintf("\n Variance of data = %d",var(Data));
fprintf("\n Number of data = %d ",length(Data));
fprintf("\n MSE = %+3.5F \n",MSE);

% Calculate bond price by using formula
ro=input("\n Input initial interest rate (r0) := ");
T=input("\n Input matuarity time (T) := ");
h=sgrt(beta”2+2*sigma2”2);

bl=exp(h*T)-1;

b2=2*h+((h-beta)*(exp(h*T)-1));

btT=2*b1/b2;
atT=(2*h*exp((h-beta)*T/2)/b2)"(2*alpha/sigma2°2);
Zerob=atT*exp(-1*btT*r0);

fprintf("\n Exact CIR Price = %f \n",Zerob );

% Calculate bond price by using Monte Carlo Simulation
TS=T/length(fdata);

sfdata=exp(-1*sum(fdata*TS));

MC=mean(sfdata);

fprintf("\n Monte Carlo Price = %f \n",MC );

case "Vasicek”
ns=10;
for j=1:ns
fdatad4(1,j)=Data(l);
for i1=2:length(Data)
fdata4(i,j)=alpha*TimeStep +

(1+beta*TimeStep) ... *fdatad(i-1,j)+. ..

sqgrt(sigma2*fdatad(i-
1, ) (2*gamma)*TimeStep)*randn(l);
end
subplot(2,1,2)
plot(l:length(Data), Data, "b", 1:length(fdata4), fdatad)
hold on
title("Simulate Interest Rate 10 sample paths *)
end
subplot(2,1,1)

plot(1l:length(Data), Data, "b", 1:length(fdata), fdata, "-r")
plot(l:length(Data), Data, "b", 1:length(fdata), fdata, "r")
title("Interest Rate ''Vasicek model™")
legend("Empirical®, "ForecastVS")
fprintf("\n Mean of data = %d ",MeanlIR);
fprintf("\n Variance of data = %d",var(Data));
fprintf("\n Number of data = %d ",length(Data));
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fprintf("\n
fprintf("\n
fprintf("\n

fprintf("\n MSE of Vasicek model = %+3.5F " ,MSE);

ZERO COUPON BOND PRICE

LT I |
o o/ o/
T

% Calculate bond price by using formula
ro=input("\n Input initial interest rate (r0) := ");
T=input(*\n Input matuarity time (T) := 7);
btT=-1/beta*(1-exp(beta*T));
atT=(-1*alpha/beta-sigma2”2/(2*betan2))*(btT-

T)+(sigma2*beta)”"2/(4*beta);

end

end end

Zerob=exp(atT-btT*r0);
fprintf("\n Exact Vasicek Price = %f \n",Zerob );

% Calculate bond price by using Monte Carlo Simulation
TS=T/length(fdata);

sfdata=exp(-1*sum(fdata*TS));

MC=mean(sfdata);

fprintf("\n Monte Carlo Price = %f \n",MC );

Appendix B : The empirical Example
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The Treasury bill yield data used are daily T-bill form Board of Governors of the Federal

Reserve System. The data are daily cover period form 4 January 2009 to 8 December 2011. The

data set is saved in DBT33.txt.

The estimation and pricing routine is execute by running the runestimattion.m with MATLAB
program version 7.2 (see MATLAB code in appendix A) . The results are displayed in the
MATLAB’s command window. The results are follow :

Parameter
Model 7 test P-value
a B o’
CIR 0.44570 -3.71553 0.30599 9.0847 0.0026
Vasieck 0.57989 -5.45376 0.04105 2.1127 0.1461

Table 1 Parameter estimator and Statistic test
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Number

Zero coupon bond price with
rR,=008and T =1

Model Mean Variance MSE
of data
Exact Monte Carlo
CIR 736 0.1160734 0.004457622 0.00478 0.896508 0.910618
Vasieck 736 0.1160734 0.004457622 0.00844 0.901410 0.922795

Table 2 The statistics description and Bond price

Figure 1 Empirical data VS Forecast data
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Appendix C: Parameter Estimation and Application in Finance

1. The interest rate models

In this work , we focus on two specifications of the dynamics of the short-term interest rate as
following

CIR model : dr, = (& + Ar,)dt + o\/r.dW, 1)
Varicek model : dr, = (a + #r)dt + o\/r,dW, (2)

where r, is the interest rate, W, is the Brownion motion, «, #and o are parameter. The model (1) and
(2) are define the parameter vector ez(a, B, o—z). We consider to estimate parameters by using the

Generalize Method of Moments (GMM) technique which can be used for financial models and
application the model in financial problem with MATLAB program.

2. Generalized method of moments

To estimate parameter of (1) and (2) using GMM , we have to discretized the SDE by applied
Euler discretization scheme are follow

CIRmodel: r,—r, =(a+pBr)At+¢,,, &, =0rLAtN(0,1) 3)
Vasicek model : 1, -1, =(a+fBr)At+5,,, &.,=0JAIN(0,1) 4)

where N(0,1) is normal variable with zero mean and unit variance, and At is time step. Form (3) and
(4) we can derive a set of four moment function

ng €t+1
‘912+1 - O-zrt . ‘("t2+1 -0’
CIR model : f.(0) = , Vasicek model : f (9)= . 5)
t sml’t ! €t+1rt
2 2 2 2
(g2, -o™)r, (g2, -c*)r,

The moment function are constructed so that E[ f,(6)] = 0 and the sample moment are defines as

5:(0) = Y £(0)

where T is a number of observations. Then the sample moments of (5) as follows

T T
Z gt+l z €t+1
t=1 t=1
u 2 2 u 2 2
Z(5t+1_6 rt) ng_o_
t=1

< , Vasicek model : g, (0) =

T
Z‘C“le; Z‘C“Hln

t=1
Y (2, - 0%)r
=1

CIR model : g, (6’):Tl (6)

’L
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The GMM objective function is defined as
3 (0) = 9 (OW; (9) 9, () (7)
where W, (9) is positive definite weight matrix , or , equivalently, by solving the system of equations
D, (6)'W, g, () =0, 8
where D,(0) is the Jacobian matrix of g, (9) wish respect to . We find the parameter by solving
é:agg min J; . (€)]

For the unrestricted model, the parameter are just identified and J, (9) attains zero for all
choices of W, (¢). For the interest rate models, the GMM estimates of the over-identified parameter
sub-vector of ¢ do depend on the choice of W, (#). Hanson [5] shows the optimal choice of the
weighting matrix in term minimizing the asymptotic covariance matrix of the estimator is

- -1
W, (6) = ( D E[f (O (0) ']j . (10)
k=—00
In our consideration, GMM is a two stage estimator. We usually proceed in the following
way: First, we minimize (7) using identity weighting matrix W, =1 . This means that we consider all

moments equally important. We plug estimated parameter vector into (10) to get W, . And secondly ,
we minimize (7) again, but time using the W, form the previous step.

When the number of moment condition is greater than the dimension of parameter vector, the
model is said to be over identified. Over identification allows us to check whether the model’s
moment conditions match the data well or not. We can check whether sample moment is sufficiently
close to zero to suggest that the model fits the data well. The test statistics is asymptotically
2 distributed ,

Txg. (OW, (D)o, (0)> 22, (11)

where m is a number of moment condition and pis a number of parameters. If the test statistic
reject, then the underlying model that generated the system of moment condition is declared invalid.

3. Pricing of Zero Coupon Bond

A zero coupon bond is a contract priced P(t,T)at time t<T to deliver P(T,T)=1 at time T.
The computation of the arbitrage price P(t,T) of a zero coupon bond base on as underlying short term
interest rate process r, is a basic and important issue in interest rate modeling. We may distinguish
three different situations:

- The short rate is a deterministic constants r > 0. In this case P(t,T) should satisfy
e ""YP(t,T)=P(T,T)=1 which leads to
Pt,T)=e""™ 0<t<T. (12)
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- The short rate is a deterministic function (r,)_. . In this case, an argument similar to the
above shows that

P(t,T) :exp(—]‘rsds), 0<t<T. (13)

- The short rate is a deterministic process(r, ) . . In this case, formula (13) no longer makes
sense because the price P(t,T) being set at time t, can depend only on information known up to time t.
This is contradiction with (13) in which P(t,T) depends on the future values of r, forse[t,T] . Then
P(t,T) should be

P(t,T)= E{exp(—]rsdsﬂ FI}, 0<t<T. (14)

Theorem 1 (Zero coupon bond in the Vasicek model). In the Vasicek model , the price of a zero
coupon bond with maturity T at time t [0, T] is given by

P(t,T)=A(t, T)exp(-rB(t,T)),

where  B(t,T)= —%(l—exp(ﬂ(T -1))

2
o

o o’ .,
a.nd A(t,T)=eXp|:(—E—2—ﬂz)(B(t,T)—T +t)+EB (t,T):|

Proof. See Brigo [2] pp.58-59.

Theorem 2 (Zero coupon bond in the CIR model). In the CIR model , the price of a zero coupon
bond with maturity T at time t [0, T] is given by

P(t,T) = A(t,T)exp(-r,B(t,T)),

2(eh(T—t) _1)

where B(t,T) = 2h+(h_ﬁ)(eh(T—[) _1) )

2he(h—/})(T—t)/2
2h+(h-p)(Ee"" " -1
Proof. See Bohner [1].

2alc?
and A(t,T):( j with h=./p*+20%.
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Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process in
Insurance under Reinsurance as a Control Parameter!
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Abstract

This paper studied the surplus process model as a premium income minus and
the claims are iid random variables. The insurer is allowed to buy reinsurance with
retention level b for the period of time between two claims. Whereas the general
approach is to consider the ruin probability as a function of initial capital, the authors
suggest to study the initial capital via ruin probability. The objective is to find the
minimum initial capital for a given boundary for the ruin probability.

Keywords : Insurance, Reinsurance, Capital reserve, Ruin probability.
2011 Mathematics Subject Classification : Primary 91B30; Secondary 93E20.

1. Introduction

In recent years, risk models have been attracted much attention in an insurance
business, in connection with any possible insolvency and the capital reserves of an insurance
company. The main interest from the point of view of an insurance company is claim arrival
and claim size, which affect the capital of the company.

In this paper, we assume that all processes are defined in a probability space (2, S, P).
Claims happen at the times T;, satisfying 0 = Ty < Ty < T < ---. We call them arrivals.
The n'* claim arriving at time 7T}, causes the claim size Y,. The interarrival, Z, :=
T,, — T}, _1 is the length of time between the (n — 1) claim and the n'" claim. By a period
n, we shall mean the random interval [T,,—1,T},),n > 1.

Now let a constant ¢y represent the premium rate for one unit time; the random

n n
variable cg Z Z; = ¢oT, describes the inflow of capital into the business in [0, T,], and Z Y;
i=1 i=1
describes the outflow of capital due to payments for claims occurring in [0,7},]. Therefore,
the quantity

n n
X =, Xn:x+COZZi—Zl/}7n:1,2,3,... (1)
i=1 i=1

is the discrete-time surplus process at time 7, with the constant x > 0 as initial capital.

The general approach for studying ruin probability in the discrete-time surplus pro-
cess is the so-called Gerber — Shiu discounted penalty function; as found in, Pavlovao
and Willmot [11], Dickson [4] and Li [8][9]. These articles study the ruin probability as a
function of the initial capital z.

In this paper, we study the initial capital for the discrete-time surplus process via the
ruin probability. The objective is to find the minimum initial capital for a given boundary
for the ruin probability.

1This research is (partially) supported by the Thailand research fund BRG 5180020. E-mail address of
corresponding author : pairote@sut.ac.th (P. Sattayatham)

2School of Mathematics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

3Faculty of Commerce and Management, Prince of Songkla University, Trang 92000, Thailand.

4 Applied Mathematics Research Group, Department of Mathematics, Faculty of Science, Khonkaen Uni-
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2. Model Descriptions

Let {X,,,n > 0} be the surplus process which can be controlled by choosing a reten-
tion level b € [b, B], 0<b<b<b< 0, of areinsurance for one period. Next, for each level
b, an insurer pays a premium rate to a reinsurer which is deducted from cy. As a result,
the insurer’s income rate will be represented by a function c(b). The level b stands for the
control action without reinsurance, so that ¢y = c(b) and the level b is the smallest retention
level which can be chosen. As a consequence, we obtain the net income rate c¢(b) where

0 < ¢(b) < ¢ for all b € [b,b] and ¢(b) is non-decreasing. The premium rate for one unit
time ¢g and the net income rate ¢(b) are assumed to be satisfied the following:

ElY] and c(b) > E[%([bé}y)]

“©~ B

(2)
where Y is a claim size and Z is an interarrival.

Moreover, by the expected value principle, ¢y and ¢(b) can be calculated as follows:

E[Y — h(b,Y)]
E[Z]

co=(1+00) 20 and e(b) = co— (14 61)

where 0 < 6y < 1 and 0 < 6; < 1 are the safety loadings of the insurer and the reinsurer
respectively. The measurable function h(b,y) is the part of the claim size y paid by the
insurer, and the remaining part y — h(b,y) which is called reinsurance recovery paid by
the reinsurer. In the case of an excess of loss reinsurance, we have

h(b,y) = min{b,y} with retention level 0 <b<b<b= oo.
In the case of a proportional reinsurance, we have
h(b,y) = by with retention level 0 <b<b< b=1.

For each n € {1,2,3,...}, let b,_1 be a retention level (control action) at the time
T,.—1 and let Z,, = 1. Therefore, we can modify the surplus process (1) to be the following:

X, :erZc(bi_l) th(bi_l,Yi) (4)

where Xy = z.

We see that the process {X,,n > 0} is driven by the sequence of retention level
(control actions) {b,—1,n > 1} and the sequence of claims {Y,,,n > 1}. So, we make the
following assumption:

Assumption 1. Independence Assumption (IA)
The sequence of claims {Y,,n > 1} is independent and identically distributed (iid) random
variables.

From Assumption IA, it follows that {h(b,—1,Y,),n > 1} is an independent sequence.

Definition 1. Let N € {1,2,3,...} be a time horizon (number of periods). A plan for the
time N is a (finite) sequence ™ = {bn_1}5_, of by—1 € [b,] forn=1,2,3,...,N. A set of

all plans for the time horizon N over a control space [b,b] is denoted by P(N, [b,b]). A plan
m € P(N,[b,b]) is said to be stationary, if bp =by =-+- =by_1.



3. Main Results

In this section, we consider a finite-time ruin probability of the discrete-time surplus
process as in equation (4) where the sequence of claims {Y;,,n > 1} satisfy Assumption TA.
Let Fy, be the distribution function of Y7, i.e.,

Fy,(y) = P(Y1 <y).

Let N € {1,2,3,...} be a time horizon and > 0 be an initial capital. The
survival probability at a time n € {1,2,3,..., N} is defined by

Qon(xaﬂ-) = P(Xl Z OaXQ Z O7X3 2 0)"'aXn Z O|XO = 'T) (5)
where © € P(N, [b,b]). Moreover, the ruin probability at a time n € {1,2,3,..., N} is
defined by

D, (z,7) =1— @p(z,7). (6)

Definition 2. Let {X,,n > 0} be the surplus process as in equation (4), driven by the
sequence of control actions {b,_1,n > 1} and the sequence of claims {Y,,n > 1}. Let
{c(bn-1)}n>1 be a sequence of net income rates and x > 0 be an initial capital. For each

time horizon N € {1,2,3,...}, let m € P(N,[b,b]) and a € (0,1). If Py (z,7) < v, then x is
called an acceptable initial capital corresponding to (o, N,{c(bp-1)}n>1, {h(bn—1,Yn) n>1)-
Particularly, if

¥ =min{z : dn(z,7) < a}
x>0

exists, x* is called the minimum initial capital corresponding to (o, N, {c(bp—1)}n>1, {h(bn=1,Yn) }n>1)
and is written as

¥ = MIC(a, N, {c(bp—1)}n>1, {h(bn=1,Yn) }rn>1)-

3.1 Ruin and Survival Probability
We defined a total claim process by
Sn = h(bOa }/1) + h(b17 Y2) +--- 4+ h(bn—h Yn)

for all n € {1,2,3,...}. The survival probability at the time horizon N as mentioned in
equation (5) can be expressed as follows:

2 N
on(z,m) = P (Sl <x+celby),S2 <x+ Zc(bn_l), N Zc(bn_1)>

P(ﬂ {Sngx+zn:c(bk1) ) (7)

n=1 k=1

From equation (7), we have

on(z,m)=FE




where

1 ,z€eA
lA(x):{ 0 , else,

for all A C R. For each a € R and x > 0, we obtain

1 ,xz>a
L(—oo0(a = 2) :{ 0 , z<a.

Then 1(_q g)(a — ) is non-decreasing in x and right continuous on (0,00]. This implies
N
that H 1(~s0,0](@n — ) is also non-decreasing in x and right continuous on (0, co] where

n=1
an € Ryom = 1,2,3,...,N. For each plan m# = {bg,b1,ba,...,bx_1}, by the Dominated
Convergence Theorem, we get

N n
hm on(u,m) = lim+ E H 1(—00,0] (Sn - Zc(bk,ﬂ - u)]
u—axt u—x 1 1
N n
= F liHlJr 1(_00)0] (Sn - Z C(bk_1) - U>‘|
YT 2 k=1
N n
= F H 1(_0070] (Sn - Zc(bkfl) - $>‘|
n=1 k=1
= on(z,m).

Therefore, @y (x,m) is non-decreasing in z and right continuous on (0,00). This implies
that @y (x,7) =1 — pn(x,7) is non-increasing in « and also right continuous on (—o0, 00).
Theorem 1. Let N € {1,2,3,...}, m € P(N,[b,b]), and let x > 0 be given. Then

lim on(z,7) =1 and lim Py(x,7)=0.

Proof : Firstly, we will show the following relation

N N n
() {w: (b1, Vo) (W) Sz +e(ba1)} € ) {w S, Z (br—1 } (8)

n=1 n=1

N
Let wy € ﬂ {w: h(bp—1,Y,)(w) < x4+ c(bp_1)} be given. For each n € {1,2,3,..., N},

n=1
we have h(b,—1,Yn)(wo) < @ + ¢(bp—1). Thus, S,(wy) = Zh(bk,l,Yk)(wo) < nx +
k=1
Zc(bk_l) < Nz + Zc(bk_l). That is wg € {w : Sp(w) < Na:—l—z bk—l)}- There-
k=1 k=1

fore (8) follows. By Assumption IA, the process {h(b,_1,Y},),n > 1} is an independent
sequence, then we have

N
P(ﬂ{h(bnl,Y <z+ec > HP boo1,Yn) <z +c(bp_y1)).  (9)



Note that Y,, > h(b,_1,Y,) for all n € {1,2,3,..., N}, then
{w: Y, (w) <z +c(bp-1)} S{w: hlbp_1,Yn)(w) < z+ c(byp_1)}-

From equation (9), we get

Vv
=

N
P (ﬂ {h(bp-1,Yy) <z + c(bn_l)}> P (Y, <z +c(bo1))

3

3
Il
-

I
=

Py, (2 + c(bp_1)) . (10)

3
Il
N

Moreover, it follows from equation (7) that

N n
@N(Nx,w):P<ﬂ {sn <Nx+Zc(bk1)}>. (11)

n=1 k=1
Thus

N
I1 #v. (@ +e(bun))

A
v
3
=

{h(bp-1,Y,) <z + c(bn_l)})

Il
_

A
Y
3
=

S, < Nx + ZC(bk—l)}> (By (8))

k=1

Il
-

= on(Nz,7) <1 (By equation (11))
N
Since Fy, (z+c(bp—1)) = lasx — oo forn =1,2,3,..., N, then H Fy (x+c(bp_1)) — 1
n=1

as ¢ — oo. Hence pn(z,m) — 1 and ®y(x,7) =1 — on(z,7) — 0 for £ — oo. The proof
is now complete.

Corollary 2. Let N € {1,2,3,...}, m € P(N,[b,b]), a € (0,1), and let x > 0 be given.
Then there exists * > 0 such that, for all x > T, x is an acceptable initial capital corre-

sponding to (a, N, {c(bp-1)}n>1, {h(bn—1,Yn) In>1).
Proof : We consider by cases:

Case 1. 0 < ®yn(0,7) < a. Since ®y(x,7) is non-increasing in x, then ¢y (z,m) <
®x(0,7) < o for all > 0. In this case choose T =0

Case 2. ®x(0,7) > . By Theorem 1, we have ®y(x,7) — 0 as x — oco. Thus there exists
Z > 0 such that ®n(Z,7) < a. Since ®n(z,n) is non-increasing in z, then @y (z,7) <
Oy (Z,7) < «for all z > Z.

3.2 Bounds of the Ruin Probability

In this part, we shall describe the upper bound of the ruin probability with negative
exponential. In order to prove the following lemma, we shall use an equivalent definition of
the ruin probability which will be given as follows:

k
O, (x,m) =P ( max (Z(h(bi_l,Yi) - c(bi_l))> > x) ,n=1,23,....

1<k<n \ 4
i=1



Lemma 3. Let N € {1,2,3,...}, 7 € P(N,[b,b]) be stationary, o € (0,1), and let x > 0 be
given. Then the ruin probability at the time N satisfies the following equation
By (e, 1) = By (2, 7) + / By (x + e(bo) — hibory), m)dFy, (y)  (12)
{y:0<h(bo,y)<z+e(bo)}
where ®o(x,m) = 0.

Proof : We will prove equation (12) by induction. We start with N = 1. Since ®y(x,7) =0
for all x > 0, then

QO('T + C(bO) - h(bOa y)7 ﬂ-)dFyl (y) =0.
{y:0<h(bo,y)<z+c(bo)}

This proves equation (12) for N = 1. Now assume that equation (12) holds for 1 < n < N—1.

Oy (z,m) =P (1232(]\] <Z(h(bi1,yi) - C(bil))> > 39)

=1

{ inax ( (h(bzfl,Y;) — ) £E} ﬂ {{h bo,Yl — C(bo) > {I?}U {h(bo,yl) — C(bo) < $}}>

=P ( max (i(h(bil,Yi) - c(bil))> > x,h(bo, Y1) — c(bo) > x )

max (i(h(bihﬁ) — c(bil))) >z, h(by, Y1) — c(bo) < x)

Since 7 is stationary and {Y,,},>1 is an iid sequence, then

{w eN:  nax, (Z(h(bil,Yi)(w) - c(bil))> > x,h(bo, Y1) (w) — c(bg) > x}

= {w cQ: h(bo,Yl)(w) — C(bo) > l‘}
This result implies
Py (z,m) = P(h(bo, Y1) — c(bo) > )

+ P <2g}1a<xN <h(b0,Y1) — C(bo) + l (h(bz_l,)/z) - C(bi_l))> > Z, h(bo, Yl) — C(bo) S 56)

=2
= (bl($771')
+ P h(bo,yl) — C(b(]) + g}lszN (Z;(h(bll,y;) - C(bzl))> >, h(b(), Yl) - C(bo) S iE)
=& (z,7)
+E|1
h(bo,Y1)—c(bo)<z, h(bo,Y1)— c(b0)+ max (Z(h( i 1,Y7',)—c(b,;_1))) >z




1 . n
h(bg,Y1)—c(bg)<z h(bO,Yl)fc(bg)Jrzinaé(N ( > (h(bi,l,Yi)fc(bi,l))> >z
<n<N \i=2

=Py (x,m)

E|E |1 e(bo)<a + 1 n V)
+ h(bo, Y1) —e(bo) < h(boyyl)_c(bo)tgbaév(EQ(WJH7Yi)_c(biil))>>$|a( 1)”

= @1{%7 ’/T)

+E | Lny v Bl . (Y,
s 22%(Egh(biﬂ,mfc(biﬂ)))+<h<bo,m7w7c<bo>>>o| )

=&i(z,m) + B |:1h(bon1)Sz+C(bo) B [1(0,00)(2 + W)|U(Y1)H (13)

where Z = max (Z(h(bil,Yi)—c(bil))> and W = h(bo,Y1) —  — c(bp). Since

2<n<N |\ 4
=2

{h(bp—1,Y,)}n>1 is an independent sequence, then Z and W are independent. It follows
from [5, exercise 9, page 341] that

E[10.00)(Z +W)le(W)] = / L(0,00) (Z(w) + W|o(Y1))dP7(w)
we Q

= /1(0’00) (Z + W)sz(Z)
R

This implies that

(I)N(IL'/]T) = @1(%, 71') + FE ]-h(bg,Y1)§:c+c(b0) . /1(0,00)(2 + W)sz(Z)
R

= @1(%7’/T) + E 1h(b0,Y1)§rc+c(b0) . /1(0700) (Z + h(bo7 Yl) — T — C(bo))sz(Z)

R
=& (z,m)+ / / 1(0,00) (2 + h(bo, Y1)(w) — 2 — c(bo))dFz(z) | dP(w)
{we:h(by,Y1)(w)€[0,24c(bo)]} \R
=& (z,7) + / E [12501c(bo)—h(bo,v1)(w) ]| 4P ()

{weQ:h(bo,Y1)(w)€[0,24+c(bo)]}
= ®y(x,m) + P(Z > x+ c(by) — h(bo, Y1)(w)) dP(w)

{wEQ:h(bo, Y1) (w)€[0,z+c(bo)]}

= & (z,7) + P(Z >+ c(bo) — h(bo,y)) dFy, (y)

{y€R:0<h(bo,y)<z+c(bo)}



=&y (z,7) + / DN _1(x + c(bo) — h(bo,y), 7)dFy, (y).
{y:0<h(bo,y)<z4-c(bo) }

This proves equation (12).

Remark 4. Let N € {1,2,3,...}, m# € P(N,[b,b]) be stationary, o € (0,1). Assume that
{Y,,n > 1} is an iid sequence of exponential distribution with intensity X > 0, i.e., Y1 has
the probability density function

Fly) = Ae ™.

By Lemma 3, the ruin probability can be written in a recursive form as follows:

Case 1: For an excess of loss reinsurance, we get

Dg(z,m) =0 and

Az + ne(bo))]" ™ e—)\[x-&-nc(bo)]Lc(bo)
(n—1)! x + ne(by)

O, (z,7) = Ppi(z,m)+ (14)

for by > x 4+ c(bp) and n =1,2,3,..., N.
Case 2: For a proportional reinsurance, we get
Dg(x,m) =0 and

1 A o x + c(bo)
O, (2,7) = By _ I S IS 2 (etneo)) T+ clbo)
(w,m) 1(z,m) (=11 L?o (@ + ne( 0))} e P (15)

for all n = 1,2,3,..., N. Further, for by = by = 1, we also obtained the recursive form as
follows :

n— —A(x+nc +
Oy(z,7) =0 and @, (z,7) = ®p_y(x,7) + S Az + neo)]" e At 0);—1—7:20
foralln=1,2,3,...,N.

Definition 3. (Sub-adjustment coefficient). Let s > 0 and Y be a non-negative random
variable. If there exists do > 0 such that

E [edoy] < s (16)

then do is called a sub-adjustment coefficient of (s,Y). Specifically, if (16) is an equality
then dy is called an adjustment coefficient of (s,Y).

Theorem 5. Let N € {1,2,3,...}, m € P(N,[b,b]) be stationary, and let c¢(by) > 0 be a net
income rate. If dy > 0 is a sub-adjustment coefficient of (c¢(bo), h(bg, Y1)), then

D, (x,m) < e~ oz (17)

forallxz >0 and alln =1,2,3,...,N.



Proof : Let > 0 and dp > 0 be a sub-adjustment coefficient of (c(bo), h(bg, ¥1)), i.e.,

E |:ed0h(bO7Y1)] S edoc(bo).

We shall prove this theorem by induction. We start with n =1,

Qy(x,m) = P(h(bo,Y1) >z + c(bo))
= P(doh(bo, Y1) > do(z + c(by)))
P(edgh(bg,Yl) > 6d0(a:+c(bo)))
E [edoh(bo¥1)]
edo(z+c(bo))
edoc(bo)

S Gty

(By Markov’s inequality)

e—doz

Let k < N — 1. Assume that inequality (17) holds for 1 < n < k. Next, we shall show that
inequality (17) holds for n = k + 1. By Lemma 3 and inductive assumption, we get

(I)k+1(:1777r)
= m@mt [ et el) ~ o) M )
{y:0<h(bo,y)<z+c(bo)}
< By(zm)+ / e do(atebo)=hbov) Gy (). (18)

{y:0<h(bo,y)<zA4-c(bo) }

Next, we shall calculate the first term of right-hand side of inequality (18).

Dy (z, )
= P(h(bo, Y1) > x + ¢(by))

=P (e®"®oY)1 4 0).00) (R(Do, Y1) > edolzFebo)))
< E [ed0noY)1 4 0),00) (R(b0, Y7))]

(By Markov’s inequality)

- edo(w-‘rc(bo))

/ (oo o (h(boy))dFy, (3)
_ R
= do(a+<(b))

6d0h(b0’y)dFY1 ()

. {y:xz+c(bo)<h(bo,y)<oo}
= edo(z+c(bo))

- e~ do(@+e(bo)=h(bo.w)) g, (y).

{y:z+c(bo)<h(bo,y)<oo}
Thus inequality (18) can be modified to be the following

(I)k+1(x> 7T)



< e—do(aerc(bo)fh(bo,y))dFYl (y)
{y:z+c(bo)<h(bo,y)<oco}

n / e—do(:c+c(bo)—h(boyy))dFY1 (y)
{y:0<h(bo,y)<z+c(bo)}

B e,do(z+c(bo)*h(bﬂ’y))dFY1 (y)

{y:0<h(bo,y)<oo}

_ e edoh(bo.y) g, (

= docbo) / v; (¥)
{y:0<h(bo,y)<oo}

- sl

< e_dOfL' dgc(bo)_ —dow

S doctho) e =e .

This proves equation (17) for n = k + 1 and concludes the proof.

Corollary 6. Let N € {1,2,3,...}, = € P(N,[b,b]) be stationary, a € (0,1), and let
c(bo) > 0 be a net income rate. Assume that dy > 0 is a sub-adjustment coefficient of
(c(bo), h(bg,Y1)), then there exists an acceptable initial capital x(x > 0) corresponding to
(o, N, {c(bn-1) = c(bo) }n>1, {P(bo, Yp) }n>1) such that

Ina
0<a<—"—= or a<e %z
do

Proof : Let dy > 0 be a sub-adjustment coefficient of (¢(bg), h(bg,Y1)). By Theorem 5, we
have
Oy (u,m) < e %,

for all w > 0. Let o € (0,1). By Corollary 2, there exists v > 0 which is an acceptable
initial capital corresponding to (o, N, {c(bn—1) = c(bo) }n>1, {h(bo,Yn)}n>1). By Definition
2, we have

Oy (v,7) < a.

Since @y (v, ) is non-increasing in v for each m, then there exists 0 < z < v such that o =
O (x,m) < e~% Hence z is an acceptable initial capital corresponding to (a, N, {c¢(bp_1) =
c(bo) }n>1, {P(bo, Y) }n>1). The proof is now complete.

Note:It’s known that a large initial capital results in a small ruin probability. However, an
insurance company usually does not posses unlimited initial capital, but only a small initial
capital, that must be sufficient for a predetermined solvency (not ruin) condition for the
firm is preferable. If an acceptable ruin probability is fixed, the firm can find an interval of
acceptable initial capital by virtue of Corollary 6.

Example 1. (Ezponential claims under the proportional reinsurance). We assume that
{Yo}n>1 is a sequence of claims with iid exponential Exp(1), and {X,}n>0 s a sequence
of surplus which satisfies the model (4). Let N € {1,2,3,...}, and ® € P(N,[b,b]) be

10



stationary. Suppose that h(bg,y) is the proportional reinsurance with retention level by, and
¢(bo) > 0 is a net income rate which is calculated by the expected value principle, i.e.,

C(bo) = Cy — (1 + 91)E[}/1 - h(b07Y1)] = 9() - 91 + bo(l + 6‘1) (19)

Assume that o = 0.05, 8y = 61 = 0.1, and by = 0.6. Then there exists an adjustment
coefficient dg = 0.2935569060 of (c(bo), boY1) such that

0< —1n0.05

< = .
ST S 55035560060  L0-20494566

which is an interval of acceptable initial capital with corresponding to (1, N,{c(bp—1) =
c(bo) }n>1,1b0Yn n>1)

Let
fld):=F [edbf’yl] — ede(bo)
Note that
oo [ee] 1
E [6db0Y1] _ /6db0yfyl (y)dy _ /edboye*ydy — b, and 6dc(bo) — edbo(1+91). (20)
0 0

By Definition 3, dy is an adjustment coefficient of (¢(bg),boY1) if f(do) = 0. Hence
E [edoboyl] = edoc(o) | By substitute by and @) into equation (20), we get

1 —  (0-66do
1 — 0.6do '

Solving for dy, we get dy = 0.2935569060. By Corollary 6, we get

0< —1n0.05

_ Y 10.20494
ST S 55035560060 | L0-20494566

which is an interval of acceptable initial capital with corresponding to (0.05, N, {¢(b,—1) =
0.66},>1,{0.6Y;, }n>1). This means that ®x(z,7) < 0.05 for all 0 < z < 10.20494566.

Example 2. (Ezponential claims under the excess of loss reinsurance). We assume that
{Yo}n>1 and {X,}n>0 are the sequences given in example 1. Let N € {1,2,3,...}, and
7 € P(N,[b,b]) be stationary. Suppose that h(by,y) is the excess of loss reinsurance with re-
tention level by. By expected value principle, the net income rate c¢(by) satisfies the following
equation

C(bo) = Cy — (]. + 01)E[Y1 — h(bo, Yl)] = 90 — 91 + (]. + 01)[1 — e_bo]. (21)

Assume that o = 0.05, g = 07 = 0.1 and by = 100. Then there exists a sub-adjustment
coefficient do = 0.17 of (c(by), h(bo,Y1)) such that

_ 1n0.05

<<
Osz<-397

= 17.6220

which is an interval of acceptable initial capital with corresponding to (0.05, N, {c(bp—1) =
C(bo)}’ﬂzl’ {h<b07 Yn)}nZl)

11



Let
£(d) i= I [eh )] et

Note that
oo bo o0
E {edh(bo,Yl)} _ /edh(bo,y)e—ydy _ /edye—ydy+/eb0de_ydy _ debo(d=1) _ 1’
0 0 bo i1
and  edebo) — 6d(1+91)[1—e’b0]. (22)

By Definition 3, dy is a sub-adjustment coefficient of (c¢(bg), h(bo, Y1)) if f(do) < 0. Hence
E [edﬂh(bo’yl)] < edoc(bo) | By substitute by, 6y and 6, into equation (22), we get
doel00(do—1) _ 1
do—1 =

e1.1d0[1—e*100}_

Solving for dy, we get dy = 0.17. By Corollary 6, we get

0<z< _ [n0.05

=17.622
- 0.17 7.6220

which is an interval of acceptable initial capital with corresponding to (0.05, N, {c(b,—1) =
1.1},>1,{R(100,Y},) }n>1). This means that & (x,7) < 0.05 for all 0 < z < 17.6220.

3.3 Existence of Minimal Capital

Let o € (0,1). As a result of Corollary 4.6 that {x > 0 : ®y(z,7) < a} is a
non-empty set. Since the set {x > 0 : ®y(x,7) < a} is an infinite set, then there are
many acceptable initial capital corresponding to (o, N, {c(bn—1)}n>1,{R(bn-1,Y,)}n>1). In
this section, we will prove the existence of a minimum initial capital that correspond to
(a, N, {c(bn-1)tnz1, {P(bn—1, V) }nz1)-

Lemma 7. Let a,b and « be real numbers such that a < b. If f is non-increasing and right
continuous on [a,b] and o € [f(D), f(a)], then there exists d € [a,b] such that

d =min{x € [a,b] : f(z) < a}.

Proof : Let
S:={z€lab]: flzx) <a}.

Since a € [f(D), f(a)], i.e., f(b) < a < f(a), then we have b € S. Hence S is a non empty
set. Since S is a subset of the closed and bounded interval [a, b], then there exists d € [a, b]
such that d = inf S. Next, we consider the following cases:

Case 1. d =b. We know that b € S, thus b = min S.
Case 2. a < d < b. Since d = inf S, then there exists d,, € S such that

d<d,<d+1/n
for all n € {1,2,3,...}. Since f is non-increasing and d,, € S, then

f(dy) < a.

12



Since f is right continuous at d, we have
F(@) = Jm_f(d) <

Therefore, d € S, i.e., d = min S. This completes the proof.
Theorem 8. Let N € {1,2,3,...}, m € P(N,[b,b]) and let « € (0,1). Then there exists
x* > 0 such that

xt = I;IZIIOl{LL' O (z,7m) < al.
Proof : Let m € P(N, [b,b]). We consider by case.
Case 1: For & (0,7) < a. We get 1;1>1161{a: Oy (z,m) <a}=0.
Case 2: For ®n(0,7) > «. By Corollary 2, there exists £ > 0 such that ®n(Z,7) < a.

Hence a € [P (Z,7), Pn(0,7)]. Since @ (z,7) is non-increasing in x and right continuous
on [0,00). Then ,by Lemma 7, there exists * € [0, Z] such that

2= min {z: ®y(z,7) < a}= min {z:Py(z,7m) < a}.
z€[0,%] x€[0,00)

From case 1 and 2, we have z* = m;g{x Oy (z,m) < a}.
z7

Next, we will approximate the minimal initial capital * by the bisection method.

Theorem 9. Let N € {1,2,3,...}, 7 € P(N,[b,b]) and let o € (0,1). Assume that vy, zo >
0 such that vo < zg. Let {vm tm>1 and {zmm>1 be two real sequences defined by

T—1 + U — . Tr—1 + U —
Uy = Uy 1 and xm:%ml’ if dy ("112m1m) <a
Vm—1+ Ty — . Tm—1+ Um—
vm:%(md Ty = 1, if dy (ﬂ%12ﬂ11’ﬂ>>a

forallm=1,2,3,.... If ®n(z9,7) < a < Pn(vo, ), then

lim z,, = min{z: ®y(z,7) < a} =a”.
m—o0 x>0

Proof : Obviously, {2, }m>1 is non-increasing and {v,, };n>1 is non-decreasing. Moreover,
U < X, for all m € {1,2,3,...}. Thus, {zm}m>1 and {v;, }m>1 are convergent. Since

Lo — Yo

0<zy — Uy = om — 0 as m — o0,
then there exists #* € [vg, xo] such that
lim =z, = lim v, = 2%
m—00 m—0o0

Since @ (z,7) is right continuous in z for each m and @ (2, 7) < « for all m, then
On(z*,7) = lim Pn(zpm,7) < a.
m— 00
Since ®n(z,m) is non-increasing in x for each m and ®n (v, m) > a for all m, then
by (x,7) >« for z < xz*. Therefore

xt = m>i{)1{x Oy (z,m) < al. (23)

This completes the proof.

13



4. Numerical Results

In this section, we provide numerical illustration of main results. We approximate the
minimal initial capital of the discrete-time surplus process (4) by using Theorem 9 according
to the following cases:

(a). Proportional Reinsurance.

We assume that {Y),},>1 is a sequence of claims with iid exponential Exp(1) and h(bo,y)
is the proportional reinsurance with retention level by. Let N € {1,2,3,...} be the time
horizon and 7 = {b,_1 = 0.6}2_; be stationary. We choose model parameters as follows:
6o = 61 = 0.10 which give ¢(by) = 0.66 and 6y = 6; = 0.25 which give ¢(by) = 0.75.
Moreover, we choose o = 0.05,a = 0.1 and a = 0.2. As a result, we get the table of the
minimum initial capital as below :

a=0.05 a=0.1 a=0.2
N 00_01 0y = 0.25 00_01 0o = 0.25 90_01 0y = 0.25
10 3.3909 : 2.7854 2.5919 : 2.0384 1.7358 : 1.2562
20 4.4983 : 3.3728 3.4846 : 2.4796 2.3918 : 1.5524
30 5.2438 : 3.6605 4.0747 : 2.6854 2.8148 : 1.6829
40 5.8067 : 3.8215 4.5137 : 2.7963 3.1233 : 1.7504
50 6.2558 : 3.9175 4.8593 : 2.8605 3.3619 : 1.7884
100 7.6364 : 4.0664 5.8902 : 2.9559 4.0471 : 1.8426
200 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
300 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
400 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
500 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
1,000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
5,000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
10,000 | 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

Table 1: Minimum initial capital in the case proportional reinsurance.

Table 1 shows an approximation of m>i{)1{x : Py (x,m) < af with m =25, vg = 0,20 = 20 as

mentioned in Theorem 9 and ® y (z, 7) is computed by using the recursive form as mentioned
in equation (15). The numerical results in Table 1 show a minimum initial capital z = 3.3909
for « = 0.05, N =10 and 6y = 6; = 0.1 etc.

(b). Excess of Loss Reinsurance.
Again we assume that {Y,,},>1 is a sequence of claims with iid exponential Exp(1) and
h(bo,y) is the excess of loss reinsurance with retention level by = 100. Let N € {1,2,3,...}
be the time horizon and 7 = {b,,_; = 100})\_, be stationary. We choose model parameters
as follows: 6y = 6; = 0.10 which give ¢(bg) = 1.1 and 6y = 6; = 0.25 which give ¢(by) = 1.25.
Moreover, we choose a@ = 0.05,« = 0.1 and o = 0.2. As a result, we get the table of the
minimum initial capital as below :
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o =0.05 a=0.1 a=0.2
N 90 =0.1: 90 =0.25 90 =0.1: 90 =0.25 90 =0.1: 90 =0.25
10 5.6515 : 4.6424 4.3198 : 3.3973 2.8930 : 2.0936
20 7.4972 : 5.6213 5.8076 : 4.1327 3.9863 : 2.5874
30 8.7396 : 6.1009 6.7911 : 4.4756 4.6913 : 2.8048
40 9.6779 : 6.3692 7.5229 : 4.6605 5.2054 : 2.9174
50 10.4264 : 6.5291 8.0989 : 4.7675 5.6031 : 2.9806
100 12.7273 : 6.7773 9.8169 : 4.9265 6.7452 : 3.0709
200 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
300 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
400 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
500 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
1,000 | 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
5,000 | 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
10,000 | 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

Table 2: Minimum initial capital in the case excess of loss reinsurance.

Table 2 shows an approximation of m>i{)1{x s @y (x,m) < af with m =25, vg = 0,20 = 20 as

mentioned in Theorem 9 and ® y (z, 7) is computed by using the recursive form as mentioned
in equation (14). The numerical results in Table 2 show a minimum initial capital z = 5.6515
for a = 0.05, N =10 and 6y = 6; = 0.1 etc.
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Abstract

We present a European option pricing when the underlying asset price dynamics is governed by a linear
combination of the time-change Lévy process and a stochastic interest rate which follows the Vasicek proc-
ess. We obtain an explicit formula for the European call option in term of the characteristic function of the

tail probabilities.

Keywords: Time-Change Lévy Process, Stochastic Interest Rate, Vasicek Process, Forward Measure, Option

Pricing
1. Introduction

Let (©,F,P) be a probability space. A stochastic process
L, isa Lévy process if it has independent and stationary
increments and has a stochastically continuous sample path,
ie. for any £>0, lim P(|L.n—L|>&)—0. The sim-

plest possible Lévy processes are the standard Brownian
motion W, , Poisson process N,, and compound Poisson

N . - . .
process Zi:‘lYi where N, is Poisson process with inten-

sity At and Y, are i.i.d. random variables. Of course,

1

we can build a new Lévy process from known ones by
using the technique of linear transformation. For example,
the jump diffusion process ut +oW, +ZiN:‘1Yi , Where u,o
are constants, is a Lévy process which comes from a lin-
ear transformation of two independent Lévy processes,
i.e. a Brownian motion with drift and a compound Poi-
SS0N process.

Assume that a risk-neutral probability measure Q exists
and all processes in section 1 will be considered under
this risk-neutral measure.

In the Black-Scholes model, the price of a risky asset
S, under a risk-neutral measure Q and with non divi-

dend payment follows

S, =S,exp(L) =5, exp(rt +(owl —%aztD (1.1)

where r eRis a risk-free interest rates, o R is a vo-

Copyright © 2011 SciRes.

latility coefficient of the stock price. Instead of modeling
the log returns

[ —rt+ (oW - Lo
t72

with a normal distribution. We now replace it with a more
sophisticated process L, which is a Lévy process of the
form

L, =rt+(o-Wt—%0'2tj+(J[—§t), 1.2)

where J,and £, denotes a pure Lévy jump component,

(i.e. a Lévy process with no Brownian motion part) and
its convexity adjustment. We assume that the processes
W, and J, are independent. To incorporate the volatile-

ity effect to the model (1.2), we follow the technique of
Carr and Wu [1] by subordinating a part of a standard

Brownian motion oW, —%o-zt and a part of jump Lévy

process J,—¢t by the time integral of a mean reverting
Cox Ingersoll Ross (CIR) process

ﬂzﬁw$,

where v, follows the CIR process
dv, =y (1-v, ) dt + o, v, AW, (1.3)
Here W is a standard Brownian motion which corre-
sponds to the processy,. The constant y € R is the rate
at which the processy, reverts toward its long term mean
and o, >0 is the volatility coefficient of the process v, .
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Hence, the model (1.2) has been changed to
Lt:rt+(oWTt—%athj+(JTt—§Tt), (1.4)

and this new process is called a stochastic volatility Levy
process. One can interpret T, as the stochastic clock proc-
ess with activity rate process v, . By replacing I:[ in (1.1)
with L,, we obtain a model of an underlying asset under
the risk-neutral measure Q with stochastic volatility as
follows:

S, =S, exp(rt Jr(avvTt —%02T1)+(JTt —CT, )J (1.5)

In this paper, we shall consider the problem of finding
a formula for European call options based on the under-
lying asset model (1.5) for which the constant interest
rates r is replaced by the stochastic interest rates r,, and

J, is compound Poisson process, i.e. the model under
our consideration is given by

S, =S, exp(rtt+(c;WTt _%021}(% ~(T, )j (1.6)

Here, we assume that r, follows the Vasicek process
dr, =(a - Br,)dt +o,dw1, (1.7)
W Iisa standard Brownian motion with respect to the
process r, and dW,"dW,” =dW,"dW, =0. The constant
B >0 is the rate at which the interest rate reverts to-
ward its long term mean, o, >0 is the volatility coeffi-
cient of the interest rate process (1.7), The constant
a >0 isaspeed reversion.

2. Literature Reviews

Many financial engineering studies have been undertaken
to modify and improve the Black-Scholes model. For ex-
ample, The jump diffusion models of Merton [2], the sto-
chastic Volatility jump diffusion model of Bates [3] and
Yan and Hanson [4]. Furthermore, the time change Lévy
models proposed by Carr and Wu [1].

The problem of option pricing under stochastic interest
rates has been investigated for along time. Kim [5] con-
structed the option pricing formula based on Black-Scholes
model under several stochastic interest rate processes,
i.e., Vasicek, CIR, Ho-Lee type. He found that by incur-
porating stochastic interest rates into the Black-Scholes
model, for a short maturity option, does not contribute to
improvement in the performance of the original Black-
Scholes’ pricing formula. Brigo and Mercurio [6] mention
that the stochastic feature of interest rates has a stronger
impact on the option price when pricing for a long ma-
turity option. Carr and Wu [1] continue this study by giving
the option pricing formula based on a time-changed Lévy
process model. But they still use constant interest rates in

Copyright © 2011 SciRes.

the model.

In this paper, we give an analysis on the option pricing
model based on a time-changed Lévy process with sto-
chastic interest rates.

The rest of the paper is organized as follows. The dy-
namics under the forward measure is described in Section
3. The option pricing formula is given in Section 4. Fi-
nally, the close form solution for a European call option in
terms of the characteristic function is given in Section 5.

3. The Ddynamics under the Forward
Measure

We begin by giving a brief review of the definition of a
correlated Brownian motion and some of its properties
(for more details one see Brummelhuis [7]). Recalling

that a standard Brownian motion in R" is a stochastic
process (Z[ )IZO whose value at time t is simply a vector of
n independent Brownian motions at t,

Z :(ZM’...,ZM) .
We use Z instead of W since we would like to reserve the

latter for the more general case of correlated Brownian
motion, which will be defined as follows:

Let p=(p; )Ki’jgn be a (constant) positive symmetric

matrix satisfying p; =1 and -1<p; <1 By Cholesky’s
decomposition theorem, one can find an upper triangul
nxn matrix H:(hij) such that p=pHH', where
H' is the transpose of the matrix /. Let

Z,=(2,,,-+.2,,) be a standard Brownian motion as
introduced above, we define a new vector-valued process
W, = (W~ W,,) by W,=HZ, or in term of com-

ponents,
W, =>hZ,, i=1-n
j=1

The process (W, ),_, is called a correlated Brownian mo-
tion with a (constant) correlation matrix p . Each com-
ponent process (Wi,t )IZO is itself a standard Brownian
motion. Note that if p=1d (the identity matrix) then
W, is a standard Brownian motion. For example, if we
let a symmetric matrix

1 p 0
p=lp, 1 0 (3.1)
0 0 1

Then p has a Cholesky decomposition of the form

p=HH" where H isan upper triangular matrix of the
form
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1_;0\/2 Py 0
H= 0 1 0
0 0 1

Let Z,=(Z,,Z/.Z}) be three independent Brownian
motions then W, = (W,,W,",W,") defined by W, =HZ,,
or in terms of components,

W, =( ‘,l]-_pv2 )Zt +p, 2 W =2 W' =2" (3.2)

Now let us turn to our problem. Note that, by Ito’s
lemma, the model (1.6) has the dynamic given by

dS, =S, (1 — A,v, ) dt + odWy )+S,_ (" ~1)dN,,
dr, = (a - Br)dt+ o, dw,", (3.3)
dv, = 7 (1-v, ) dt + o, \v, dW,",
where 4, =AE(e" -1), dWdw," =dW,dw, =0 and
dW,dw,’ = p,dt .

We can re-write the dynamic (3.3) in terms of three
independent Brownian motions (Z,,Z.",Z") follows (3.2),

we get
_ _ v _ 42
ds, =S, ((rt A )+ o fi (2 + 1= dZt)) o
+S, (" ~1)dNy,
dr, =(a—pr)dt+o,dZ, (3.5)
dv, = 7(1-v,)dt + o, v,dZ;, (3.6)

This decomposition makes it easier to perform a
measure transformation. In fact, for any fixed maturity T,
let us denote by Q' the T-forward measure, i.e. the
probability measure that is defined by the Radon-
Nikodym derivative,

Q. exp(—! ruduj
dQ  P(OT)

Here, P(t,T) is the price at time t of a zero-coupon
bond with maturity T and is defined as

P(t,T)=E, [e’f e Fl] (3.8)

(3.7)

Next, Consider a continuous-time economy where in-
terest rates are stochastic and satisfy (3.5). Since the SDE
(3.5) satisfies all the necessary conditions of Theorem 32,
see Protter [8], then the solution of (3.5) has the Markov
property. As a consequence, the zero coupon bond price
at time t under the measure Q in (3.8) satisfies

Copyright © 2011 SciRes.

P(t.T)=E, {exp[—l{ rsdsJ|rt} (3.9)

Note that P(t,T)depends on r,only instead of de-
pending on all information available in F; up to time t.
As such, it becomes a function F(t,r,)of r,,

P(tT)=F(tr),
meaning that the pricing problem can now be formulated
as a search for the function F(t,r).

Lemma 1 The price of a zero coupon bond can be de-
rived by computing the expectation (3.9). We obtain

P(t,T)=exp(a(t,T)+b(t,T)r) (3.10)

where b(t,r,) =%(eﬂ(ﬁ)—l),

a<t,T>=[%—?’i§]—"—ie
B 4p 4B

N AN RSN AR Y
BB 2p* p°

Proof. See Privault [9] (pp. 38-39).
Lemma 2 The process r, following the dynamics in (3.5)
can be written in the form

—2B(T-t)

r.=x+w(t), for each t (3.11)
where the process x, satisfies
dx, =—pxdt+o0,dZ/, x, =0. (3.12)

Moreover, the function w(t) is deterministic and well
defined in the time interval [0,T] which satisfied

w(t)=re” +%(1—e’/") (3.13)
In particular, w(0)=r,.
Proof. To solve the solution of SDE (3.5),
Let g(t,r)=e”rand using Ito’s Lemma
2
dg=9at+ Bar + 299 (gry?,
ot or 20r
Then,
de’'r. = ge’'rdt +e” ((a — pr ) dt + o, dZ/
= Al (o pr)dtodzl)
= ae’'dt +e”'o,dZ],

Integrated on both side the above equation from 0 to t
where 0<t<T and simplified, one get

I =re”" +%(l‘efm)+0r ez,

By using the definition of w(t) form (3.13),
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r=w(t)+o, [ e dz; (3.15)

where w(t)=re” +%(1—e““) :

Note that the solution of (3.12) is
- t_pt-u)qor t —p(t-u) y7r
X =xe" +o,[ e dz] =0, [ edzZ] (3.16)

Hence, r,=w(t)+x for each t. The proof is now

complete.
Next we shall calculate the Radon-Nikodym derivative
as appear in (3.7). By Lemma 1 and 2, we have

r,=x+w(t)and P(0,T). Substituting r,and P(0,T)
into (3.7), we have

Q" exp(—.[oT xu+w(u)du)
dQ exp(a(0.T)+b(0,T)r,)

T O_Z T ~ ~ 2
=exp| - x,du— 1-e" Y du |.
p( .[0 u 2ﬁ2 ,([( )
Stochastic integration by parts implies that

J'OT X, du =Tx; —.[OT udx, =I; (T —u)dx, . (3.18)

(3.17)

By substituting the expression for dx, from (3.12),
T
jo (T —u)dx,

:—ﬂfJ(T—u)xudu +0rI;(T—u)dZJ
Moreover by substituting the expression for x, from

(3.16), the first integral on the right hand side of (3.19)
becomes

(3.19)

—ﬁ.[OT (T—u)x,du
=—fo, E ((T —u)[ ez, ) du

Using integral by parts, we have (Equation 3.21)
Substituting (3.21) into (3.19), we obtain

[ (T -u)dx, = —%[ NG —1)dz;J

(3.20)
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Hence, Jj x,du = —%Ug(e‘ﬁ“‘“) —1)dzur} (3.22)

Substituting (3.22) into (3.17), once get

dQ’
dQ
= exp[%joT (1—e’/"(T—U) )dZJ _20_;2,[; (1_e*ﬁ(T—u) )z duJ

(3.23)
The Girsanov theorem then implies that the three proc-
esses Z7,Z" and Z defined by

0z =dz{ + (1T ot
B (3.24)
dz\" =dz/,dz] =dz,

are three independent Brownian motions under the meas-

ure Q' . Therefore, the dynamics of r,,v, and S, under
Q" are given by

ds, =S, ((q %) dt+ p, oz + o v, (1- o2 )dZ] )

+S,_ (e —1)dN,,
2
dr_t :[a_ﬁrt —%(1—eﬂ(Tl))jdt+O’rdZ{T,

v, = 7(1-v, ) dt + o, dZ,",
(3.25)

4. The Pricing of a European Call Option on
the Given Asset

Let (S,) be the price of a financial asset modeled as

tE[O,T]
a stochastic process on a filtered probability space
(2. F,F.Q"), Fis usually taken to be the price his-
tory up to time t. All processes in this section will be de-
fined in this space. We denote C the price at time t of a

European u call option on the current price of an under-
lying asset S, with strike price K and expiration time T.

- o[ (T -u) [} ez ) au

—~po ) [1e7 a2t (T -u)e Pdu =g ] ([} ez o[} (T-v)e )

g ([T ez ) [ (7 e e [ (7 - ez | o2
=—fo, UOT e (j; (T —v)e‘ﬂ"dv)dzur} = —%UUT (e"B(T‘“) —1) dz; J -0, j; (T-u)dz;.
Copyright © 2011 SciRes. JMF
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The terminal payoff of a European option on the un-
derlying stock S, with strike price K is
max (S; —K,0) 4.1)

This means the holder will exercise his right only S; > K
and then his gain is S; —K . Otherwise, if S; <K then
the holder will buy the underlying asset from the market and
the value of the option is zero.

We would like to find a formula for pricing a Euro-
pean call option with strike price K and maturity T based
on the model (3.25). Consider a continuous-time econ-
omy where interest rates are stochastic and the price of
the European call option at time t under the T-forward
measure Q' is

C(t,S,, 5% T,K)=P(t,T)E, (max(S; ~K,0)[S,. K. v,)
=P(t,T)[, max(S; —K,0) ps (St [Si %% )dS;
where EQT is the expectation with respect to the T-for-

ward probability measure, Pyr is the corresponding con-

ditional density given (S, r,v,)and P is a zero coupon
bond which is defined in Lemma 1.
With a change in variable X, =InS,,

C(t,S, 1. v;T,K)
=P(t,T)[" max(e* —K,0)p s (Xy [Xch vy, ) dXs
=P(tT)[ (" =KL o Py (Xr] Xt )dX;
=P(LT) [, &7 Pgr (Xr [Xe v, )dX,
|

~KP(tT)[ . Por (Xy X0y ) dXs

=Xt 1
Er (]S %)

[ €7 P (%r X )X

—KP(UT)[ Por (Xr [Xe v, ) o,

—KP(ET)[, Por (Xr [Xe v, )dXs

(4.2)

With the first integrand in (4.2) being positive and in-

tegrating up to one. The first integrand therefore defines a
new probability measure that we denote by Ogr below

C(t,S, 1. v;T,K)

=ek |:KqQT(XT|Xt’rt'Vt)dXT
—KP(LT) [ Por (Xr [Xe kv, )Xy

=e P (t, X, [, V;T,K)=KP(t,T)P, (t, X, f,,v; T, K)
=e Pr(X; >InK|X,,K,v,)
—KP(t,T)Pr(X; >InK|X,,K,v)

(4.3)
where those probabilities in (4.3) are calculated under the
probability measure Q' .

The European call option for log asset price
X, =InS, will be denoted by
C(t, X, VT, ) = €54P (8, X, 1,V T &)

. (4.4)
—e"P(t,T)P, (t, X, 1, v; T &)

where x=InK and
P, (t X 6V T k) = Py (6 X 6T, K), j=12

Note that we do not have a closed form solution for these
probabilities. However, these probabilities are related to
characteristic functions which have closed form solutions
as will be seen in Lemma 4. The following lemma shows
the relationship between P, and P, in the option value of
(4.4).

Lemma 3 The functions P, and P, in the option val-

ues of (4.4) satisfy the PIDEs (4.5):
and subject to the boundary condition at expirationt=T

. P (X |X,,r,v P(T,xrv;T,x)=1_. (4.6)
_ ek LnKeXT QT( XTT| ol t)de ) 1( )
E, (e S %) Moreover, P, satisfies the Equation (4.7)
0:6_|51+ A[f’]+(p oVo, )6_|51+VT [(e‘/ —1)(!5 (t,x+y,rv;T,c)-P (x,t,r,v;T,x))Jk(y)dy (4.5)
6t 1 v \ aV 2 1 1
. ) o .
0=, A[ﬁz]—azvﬂ+a—va F;Z +b(t,T)af@
ot ox 2 oX or
2 2
+|52(aa(t'-r)+r(6b(t’T)—1]+o-—’b2 (t,T)]+ f’z[a—ﬂr—a—’(l—eﬁ”t))jb(t,T) (4.7)
ot ot 2 ;
s . 5 . aFN)Z y
+vf Pz(t,x+y,r,v,T,zc)—Pz(t,x,r,v,T,rc)—E(e -1) k(y)dy
Copyright © 2011 SciRes. JMF
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and subject to the boundary condition at expiration t=T

BT xrvT,x)=1,. (4.8)
where for i=1,2

. , .

A[lf’i]Z(l’+102V PRy a—ﬂr—i(l—e'ﬂ(”)) xR

2 ox Y or

R  oiv &R P o’ O°P oP

+y7(1-v)— L+—L—L4(p,0V0, ) —— 4.9
A v e P R Gl v 49)

+v_[{ (tx+y,rvT,x)- P(x.t,r,v;T,x) - (if(}(ey—l)}k(y)dy

Notethat 1, =1 if x>« andotherwise 1, _=0.
Proof. See Appendix A.

5. The Closed-Form Solution for European
Call Options

For j =1,2 the characteristic function for
P (t,x,r,v;T,x), with respect to the variable «, are

defined by
fi(txr,v,T,u):= Ie'““dPtxrvTx) (5.1)

with a minus sign to account for the negativity of the
measure df’j . Note that f; also satisfies similar PIDEs

of,
=+ AL ](txrvT ) =0, (5.2)

with the respective boundary conditions

f (T, xrvT,u)= fe'“”dPtxrvTK)
:_Jeiur((_é‘( ))dl( eIUX
Since dP, (t,x,r,v;T,x)=dl,, =-8(x—x)dx

The following lemma shows how to calculate the char-
acteristic functions for P, and P,as they appeared in
Lemma 3.

Lemma 4 The functions P, and P,can be calculated

by the inverse Fourier transformations of the character-
istic function, i.e.

iurrf' t, T, ,T,
P(txrvT/c):%+ J.R{ i _er u)}du,

T, iu

for j=1,2, with Re[.] denoting the real component of a
complex number.
By letting 7 =T —t, the characteristic function f; is

given by

Copyright © 2011 SciRes.

f,(t.x,r,v;t+7,u) :exp(iux+ B, (z)+rC, (z)+VE, (z’))

where

2
- ~ o,
bu:bjz—i-Vj, bj2 =bj2—Vj, bjl:7’

blz = p,00, (1+ iU)—}/, b22 = :Dvo-o-viu =7

b =[-8 -l )5
b =~ 3?0 +i0) (¢ i1 e(v)oy |

—0

B.(7) _ by +7(6“+612)|n 511~+er~1512
2b11 2bllvl bll+b12
E T
C. 1-e77),v, = /b," —4bjeb;,
()= e ¥, = o=

b ( z |u,2 ~4bjobjy J
( 5 7yfbj2? Abjobjlj

B (T) _ _szz " 7(b22 +b21) In b21~+e jbzz
? 2b21 2b21V2 b21 + bzz
2
Ur 2 H Ua -pr
+| (U +4iu-2)- 1-e77))

2

40/-;3 (u2 +4ju— 2)<e’2m —1)

+

2
a . Or (2
+(F(|uﬂ—ﬂ+l)—2ﬂ2 (u +4IU—2)JT
Proof. See Appendix B.

In summary, we have just proved the following main
theorem.
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Theorem 5 The value of a European call option of
SDE (3.25) is
C(t,S,r,v;T,K)

=SP(t, X, 1,V T,x) = KPP, (t, X, 1,V T, &)

where B and P,are givenin Lemma4and P(t,T) is
given in Lemma 1.
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Appendix A: Proof of L 3 5 5 .
PP roor ot Lemma ﬁzex@_ekp(m){ap +8(a (t,T)+b(t,T)r)},
ot ot ot ot

By Ito’s lemma, é(t,x,r,v) follows the partial inte-

gro-differential equation (PIDE) aC =e* (%Jr PJ—e P(t, T)aP
o6 A - ox OX OX
D J
where ov av
S 1 ,\9C O7 (s |8C o e Y Bb(t,T)
L[DC Z(r—EUZng‘f‘[a—ﬂr—?(l—e AT l))JE 3r =€ or e ( ' ) +
?*C ,[(é*P R - o°
7/(1_ )6C+UV6C+GV6C+G o°C 5228[5 4221 pJ_e P(tT)
v 2 2 X 20 X X’ X’
°C o°C_ OB o aZP
+(pV0'V0'V)aXaV—rC pY: =e" rYa e“P(t,T)—~ ¥
and 28 5 5 5 22¢ 2p
. OB B o) B FE_ R
He ovox | ovox ovox or or
1R . oC . P, P s,
_ _ Koy —e"P(t,T 2b(t, T)=2+Bb*(t,T) |,.
VL(C(t,Xer,r,v) C(t,x,r,v) ™ (e l)Jk(y)dy e“P( )[ e ( )ar +Bb*(t,T)
where k(y) is the Lévy density. o'C :ex(az GPJ P(tT)(82 +b(t, )@j
We plan to substitute (4.4) into (A.1). Firstly, we compute oxor oxor  or "\ exor x )
é(t,x+y,r,v,;T,K)—é(t,x,r,v,;T,K)
:ex[(eV—l)f’(t,x+ Y.V, x)+ (B (tx+ y,r,v;T,K)—E(x,t,r,v;T,K))]
-e"P(t, T)[ (tx+y,rvT,x)-F, (t,x,r,v;T,K)].
Substitute all terms above into (A.1) and separate it by two PIDEs for the T-forward probability for
assumed independent terms of P, and P,. This gives P(tx,rvT k), j=12:
. . , -
ﬁ+(r+£azvj£+ a—ﬂr—i(l—e’ﬂ(m)) Ui
ot 2 oX p or
P, olvO’P o' &P, o’ 'R P,
+(p,0vo, )8V61 Y +— > +—L o (y(l—v)+pVJV(fv)El o
HE < P '
P(t, VT )= R(x v T ) —| =2 |(e) =1) |k (y)dy.
+v_[o{ (tLx+y, v T, &) =R (xtrvT k) (@(](e )} (y)dy
+v.|'[(ey—1)(|5l(t,x+y,r,v;T,zc)—f’l(x,t,r,v;T,K))}k(y)dy.:O
and subject to the boundary condition at the expiration By using the notation in (4.9), then (A.2) becomes
time t = T according to (4.6). Equation (A.3)
A, Al 1]+(pVUVUV)£+VJ. [(ey ~1)(B(tx+y,1vT,x)- ﬁ’l(x,t,r,v;T,K))Jk(y)dy.
at oY
- (A3)
oP -
= TALR]
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For P,(t,x,r,v;T,«):

P, 1 P P, P, o*o’P, oNI’P, o’ 0P, (o? <
OIa—tz-i-(r—EO'ZVJG—XZ-F}/(].—V)EZ-F(IDVO'VO'V)avgx+T 6)(22 + 5 avzz 7 6r22 + 7b2 (t,T)—I’JPZ
~ T T 2
ﬁr——(l eV )+2n(t, T) G} +P, AT, DT, a-pr-"c(1-e7) b(tT)
Yij 2 )l ar ot ot yij
+v_[ (t,x+y,r,vT,x)=P, (tx,r,vT, K')—E( —1) k(y)dy.
oX
(A.4)
and subject to the boundary condition at expiration time t Again, by using the notation (4.9), then (A.4) becomes
=T according to (4.8).
S ») 25 ») 2
0-F2, A[ ;J—o-zvapz + 22 VP, +b(t,T)o? i I52(aa(t’-r)+r(6b(t’T)—1]+G—rb2 (t,T)J
ot ox 2 ox’ or ot ot 2
. 2 F~> -
+P2( ﬂr—7(1 e’ )Jb(tT) =LA [R]
(A.5)

The proof is now completed.
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Appendix B: Proof of Lemma 4

To solve the characteristic function explicitly, letting
=T —t be the time-to-go, we conjecture that the func-
tion f, is given by

f(tx,r,v;t+z,u)
=exp(iux+B, (7)+rC,(z)+VE,(r)),
and the boundary condition B,(0)=C,(0)=E,(0)=0.
This conjecture exploits the linearity of the coefficient in
PIDEs (5.2).

Note that the characteristic function of f, always
exists. In order to substitute (B.1) into (5.2), firstly, we
compute

of,

af ’ ! ! H
a_tl: —(Bl(r)+ rCl(r)+vE1(r)) f,, ~ iuf,

(B.1)

0=r[-C/(z)+iu-BC,(7)]

of of o°f
a—rl:Cl(r) f, El_ L (7) L 8721_ uf,,
o°f o°f

avzl =B/ (7). 6r21 =C’ () f,,

oot . o A

axé’lr =iuC, () f, 8v6>1< =iug (7) f,,

e f,(t, X, r,v;t+7,u)

= f,(t,x+y,r,v;it+z,u)— f.(t,xr,v;t+7,u)

Substituting all the above terms into (5.2), after can-

celling the common factor of f,, we get a simplified
form as follows:

+[_Bl'(f)+[a —%j(l—eﬂ(”) )]cl (r)+%’ch (v)+7Ei(7)

By separating the order I, v and ordering the re-
maining terms, we can reduce it to three ordinary differ-
ential equations (ODES) as follows:

C/(r) = -pCy(z) +iu, (B.2)

El(r) = (r)+(p00, (1+iu)—7)E,(7)
+%(iu —u2)+ T (ei““y —iu(ey —1))k(y)dy, (B.3)

—0

)

B/(7)= {a_%z(l_eﬁ(ﬂ) )}C1 (z-)+7/E1(r)+%'2C12 (7).
(B.4)

—b, +4/b,> —4b,b,

It is clear from (B.2) and C(0) = 0 that

Cl(r):%x(l—eﬂf), (B.5)
Let
o
by :7,

b, = p,o0, (1+iu)-7,

= 3o+ (e -l )y

o

and substitute all term above into (B.3). we get

El'(r):bl[El(T) 2b,

By method of variable separation, we have

dE, (7)

JX[E (z_)__bz_\/bzz_"'bole

2,

=bhdr

2b,

[E (c)- > +m][E (T)_‘bZ‘MJ

Using partial fraction on the left hand side, we get

Copyright © 2011 SciRes.
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! . - 1b dE, (7)=Vdzr
E(r)- 2"V [g -2V
2by 2by
where V =,/b,> —4byb, .
Integrating both sides, we have
El(r)—_béi
| — 2wk,
Ei(r)_—b2 -V
2b,

Using boundary condition E,(r =0) =0 we get

E, :m{—bz-rvj
-b, -V
Solving for E, (z) , we obtain
(e¥ -1)bb,
- 2b, (b, +€™D, )
where b =b, +V, b,=b,-V.

In order to solve B, (z) explicitly, we substitute C,(r)
and E, (r)in (B.5)and (B.6) into (B.4) .

E(7)

(B.6)

2

Bll(T) = [Iu_a_ |Uo'r2 ](1_eﬂr)+iljg_o-2r(eﬂr _efzﬁr)

BB
—ig (1—2e5’+e”’)+—yblbz~(e _~1)
2B 2b, (b, +e™b, )

Integrating with respect to z and using boundary con-
dition B,(r =0) =0, then we get

Copyright © 2011 SciRes.
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B,(7) = (2iu (aﬂ—af)—ofuz )é

.9 2, 2
o (e’ﬂ’ —1)2 + Z’ u (—4e’ﬂf re —3)

2ﬂ3 3
+[—f752 S ﬂ
2b, 2b v b +b,

The details of the proof for the characteristic function
f,are similar to f,.

Hence, we have
f,(t,xr,v;T—7,u)

=exp[iux+B,(7)+rC,(z)+VE,(r)] |

where B, (7),C,(7) and E,(z) are as given in this Lem-

ma.
We can thus evaluate the characteristic function in
close form. However, we are interested in the probabil-

ity I5j. These can be inverted from the characteristic
functions by performing the following integration

P, (tx,r,v;T,x)

1o (e"“fj (t,x,v.r;T,u)Jdu
TT

iu

for j=1,2where X, =InS, and x=InK, see Kendall
et. al. [10]. The proof is now complete.
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