

# โครงการ "การพยากรณ์ความเสี่ยงบนพื้นฐานของการอินทิเกรตแบบเศษส่วน"

โดย ศาสตราจารย์ ดร.ไพโรจน์ สัตยธรรม และคณะ

มกราคม 2555

# สัญญาเลขที่ BRG5180020

# รายงานวิจัยฉบับสมบูรณ์

# โครงการ "การพยากรณ์ความเสี่ยงบนพื้นฐานของการอินทิเกรตแบบเศษส่วน"

# คณะผู้วิจัย

- 1. ศาสตราจารย์ คร.ไพโรจน์ สัตยธรรม
- 2. นายอาทิตย์ อินทรสิทธิ์
- 3. นางสาวสาริสา ปั่นคำ

### สังกัด

มหาวิทยาลัยเทคโนโลยีสุรนารี มหาวิทยาลัยเทคโนโลยีสุรนารี มหาวิทยาลัยเทคโนโลยีสุรนารี

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย
(ความเห็นในรายงานนี้เป็นของผู้วิจัย
สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

# สารบัญ

|                          | หน้า |
|--------------------------|------|
| บทคัดย่อภาษาไทย          | 4    |
| บทคัดย่อภาษาอังกฤษ       | 5    |
| บทสรุปย่อสำหรับผู้บริหาร | 6    |
| เนื้อหางานวิจัย          | 7    |
| ผลที่ได้จากโครงการวิจัย  | 12   |
| ภาคผนวก                  | 13   |

### บทคัดย่อ

งานวิจัยนี้ทำการศึกษาวิธีการปรับแต่ง อนุกรมเวลาต่อเนื่อง GARCH(1,1) ให้เป็นอนุกรมเวลาที่มี หน่วยความจำยาวมากขึ้น ด้วยวิธีการเปลี่ยนการเคลื่อนที่บราวเนี่ยนมาตราฐานให้เป็นการเคลื่อนที่บราว เนี่ยนเสษส่วนซึ่งที่มีความจำยาว และเรียกอนุกรมเวลาใหม่นี้ว่า FIGARCH(1,1) แต่ด้วยเหตุที่อนุกรมเวลา ที่มีความจำยาวมีธรรมชาติของความเป็น อาร์บิทาจ ปนอยู่ จึงไม่เหมาะที่จะนำมาใช้ในการกำหนดราคา ของออพชัน เราจึงได้เสนอแนวทางแก้ไขด้วยการสร้างตัวแบบประมาณค่าของอนุกรมเวลาที่มี หน่วยความจำยาวและ ไม่มีอาร์บิทาจ ต่อจากนั้นกิจกรรมต่างๆในทางคณิตสาสตร์การเงิน ดังเช่น การ กำหนดราคาของออพชัน การประมาณค่าความผันผวน การคำนวณค่าพารามิเตอร์ของตัวแบบอัตรา คอกเบี้ย จะทำบนตัวแบบประมาณก่านี้ ได้มีการพิจารณาตัวแบบหน่วยความจำยาวที่มีการกระโดดด้วย และได้มีการพัฒนาโปรแกรมประยุกต์เพื่อการคำนวณหาค่าของพารามิเตอร์และราคาพันธบัตรจากสูตร ต่างๆที่ได้พัฒนาไว้ข้างต้น

คำสำคัญ กระบานการมีหน่วยความจำยาว กระบวนการเศษส่วน ตัวแบบGARCH(1,1) อาร์บิทาจ

### **Abstract**

The purpose of this research project is to modify the continuous time GARCH (1, 1) model in such a way that it can explain a long memory effect. To do this, we change the standard Brownian motion into a fractional Brownian motion and call it FIGARCH (1, 1) model. Since the long memory process has an arbitrage. We then develop an approximate model of FIGARCH (1, 1) which do not have an arbitrage. After that we shall use this approximate model to find a formula for a European call option, estimate parameters for some interest rate models, and bond pricing. We also discuss the long memory model with jump. An application software for computing parameters of some interest rate models was purposed.

Keywords: Long memory process, fractional process, GARCH(1,1) model, arbitrage, fractional process with jump.

### **Executive Summary**

## บทสรุปย่อสำหรับผู้บริหาร

### วัตถุประสงค์ของการวิจัย

- 1. To develop a method for adding long memory effects into continuous time GARCH(1,1) models. This new model is called FIGARCH (1,1).
- 2. To construct an approximate model for FIGARCH (1,1) and find a European call option by using the approximate model
- 3. To investigate FIGARCH model with jump.
- 4. To find a formula for European call option when the asset prices follows a stochastic volatility Levy model.
- 5. To develop an application software for calculating parameters of the CIR model, Vasicek interest rate models, and bond pricing.

### สิ่งที่ได้ดำเนินการไปแล้ว

- 1. We constructed an approximate model for continuous time FIGARCH (1,1) model. We proved the convergence of the approximate model to the FIGARCH (1,1) model.
- 2. By using FIGARCH (1,1) model, we developed a formula for pricing a European call option. We showed by simulation that pricing in FIGARCH (1,1) model can reduce error significantly when compare with the original GARCH model.
- 3. We investigated FIGARCH (1,1) model with jump.
- 4. We investigated the option pricing when the underlying asset follows a stochastic Levy model with stochastic interest rate.
- 5. We develop an application software for calculating parameters of the CIR model, Vasicek interest rate models, and bond pricing.

## สิ่งที่ได้พบ

We found that pricing of the contingent claims under FIGARCH model is more realistic than the original GARCH model in the sense that error of the approximation can be reduced significantly and this is consistent with the nature of the return series which is not Markovian.

| END OF EXECUTIVE SUMMARY |  |
|--------------------------|--|
|                          |  |

# เนื้อหางานวิจัย

### 1. ตามวัตถุประสงค์ข้อที่หนึ่ง

By a Fractional Integrated GARCH (1,1) model of continuous time (FIGARCH), we shall mean a process of the form

$$dv_{t} = (\omega - \theta v_{t})dt + \xi v_{t}dB_{t}^{H}$$
(1)

where  $0 \le t \le T$ ,  $\theta$ ,  $\xi$  are weight parameters and  $B_t^H$  is a fractional Brownian motion.  $B_t^H$  is defined by

$$B_t^H = \int_0^t (t-s)^{-\alpha} dB_t,$$

where  $\alpha=(1/2)-H$  and  $B_t$  is the standard Brownian motion. For each  $\varepsilon>0$ , an approximate model of FIGARCH is a process of the form

$$dv_t^{\varepsilon} = (\omega - \theta v_t^{\varepsilon})dt + \xi v_t^{\varepsilon} dB_t^{\varepsilon}, \qquad (2)$$

where  $\emph{\textbf{\textit{B}}}_{t}^{arepsilon}$  is the approximate process of is  $\emph{\textbf{\textit{B}}}_{t}^{H}$  and is defined by

$$B_t^{\varepsilon} = \int_0^t (t - s + \varepsilon)^{-\alpha} dB_s$$

One can show that  $B_t^{\varepsilon}$  converges to  $B_t^H$  in  $L_2(\Omega)$  as  $\varepsilon \to 0$ , uniformly with respect to  $t \in [0,T]$ . We have proved the following two main results.

Theorem 1 For any  $\varepsilon > 0$ , a solution of the approximate model (2) is given by

$$v_{t}^{\varepsilon} = \exp\left[\xi B_{t}^{\varepsilon} - \left(\theta + \frac{1}{2}\xi^{2}\varepsilon^{2\alpha}\right)t\right] \left[v_{0}^{\varepsilon} + \omega \int_{0}^{t} e^{\left(\theta + \frac{1}{2}\varepsilon^{2\varepsilon^{2\alpha}}\right)s - \xi B_{s}^{\varepsilon}} ds\right]$$

$$\text{ where } -\frac{1}{2} < \alpha < \frac{1}{2} \text{ and } B_{\scriptscriptstyle t}^{\scriptscriptstyle \mathcal{E}} = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle t} (t-s+\varepsilon)^{\alpha} dW_{\scriptscriptstyle s} \, .$$

Theorem 2 The solution (3) converges to the solution of (1) in  $L^2(\Omega)$  and uniformly with respect to  $t \in [0,T]$  as  $\varepsilon \to 0$ .

Moreover, we do numerical simulation to confirm that the volatility that come from the approximate model give a better approximation to the volatility of SCB stock price than the volatility that come from the continuous time GARCH model when  $\mathcal{E}$  is small enough. [The proof can be found in Ref. 1]

## 2. ตามวัตถุประสงค์ข้อที่สองและข้อที่สาม

In the second paper, we are interested in the option pricing when the stock pricing follows jump diffusion model and their stochastic volatility follows a fractional stochastic volatility model, i.e. our dynamic system is of the form:

$$dS_{t} = S_{t} \left( \mu dt + \sqrt{v_{t}} dB_{t} \right) + S_{t-} Y dN_{t}$$

$$dv_{t} = (\omega - \theta v_{t}) dt + \xi v_{t} dB_{t}^{H}.$$
(3)

We can not price a European call option by using the dynamic (3) directly since it contains a fractional process and hence an arbitrage exists. To solve the problem, we consider an approximate model of the form

$$dS_{t}^{\varepsilon} = S_{t}^{\varepsilon} \left( \mu dt + \sqrt{v_{t}^{\varepsilon}} dB_{t} \right) + S_{t-}^{\varepsilon} Y dN_{t}$$

$$dv_{t}^{\varepsilon} = (\omega - \theta v_{t}^{\varepsilon}) dt + \xi v_{t}^{\varepsilon} dB_{t}^{\varepsilon}.$$

$$(4)$$

Once again, one can show that the solution processes  $S^\varepsilon_t$  and  $V^\varepsilon_t$  of equation (4) converge to the solutions  $S^\varepsilon_t$  and  $V^\varepsilon_t$  of equation (3) in  $L^2(\Omega)$  and uniformly with respect to  $t\in [0,T]$  as  $\varepsilon\to 0$ . We derived a formula for European call option on the approximate model (4) and we get the following main result.

**Theorem 3** For each  $\varepsilon > 0$ , the value of a European call option written on the model (4) is

$$\hat{C}(S_t^{\varepsilon}, v_t^{\varepsilon}, t, K, T) = S_t^{\varepsilon} \hat{P}_1(S_t^{\varepsilon}, v_t^{\varepsilon}, t, K, T) - Ke^{-r(T-t)} \hat{P}_2(S_t^{\varepsilon}, v_t^{\varepsilon}, t, K, T)$$

where  $P_1$  is the risk neutral probability that  $S_T > K$  and  $P_2$  is the risk neutral in the money probability. [The proof can be found in Ref. 2]

### 3. ตามวัตถุประสงค์ข้อที่สี่

In the third paper, we are interested in the option pricing again but the jump process is not the compound Poisson process as appeared in the second paper. Here, we assume that the jump process is a pure Levy process and the interest rate is not constant but it is stochastic and satisfies the Hull-White process.

Our models are of the form:

$$S_{t} = S_{0} \exp(r_{t} + (\sigma W_{T_{t}} - \frac{1}{2}\sigma^{2}T_{t}) + J_{T_{t}})$$
(5)

$$dr_{t} = (\alpha(t) - \beta r_{t})dt + \sigma_{r}dB_{t}^{r}$$
(6)

where  $B_t^r$  is a standard Brownian motion with respect to the process  $r_t$ ,  $\sigma_r > 0$  the volatility coefficient of the interest rate process (6), and  $J_{T_t}$  the pure Levy process.

The process  $T_{\scriptscriptstyle t}$  is defined by

$$T_{t} = \int_{0}^{t} v_{s} ds ,$$

where  $\mathcal{V}_t$  follows the CIR process

$$dv_{t} = \gamma (1 - v_{t})dt + \sigma_{v} \sqrt{v_{t}} dB_{t}^{v}. \tag{7}$$

When working with the T-forward measure  $Q^T$ , we can find a formula of European call option for which the asset price, the interest rate, and the volatility satisfy the dynamic (5),(6), and (7) respectively. Hence, we have our main results.

**Theorem 4** The value of a European call option of SDE (5)-(7) is

$$C(t, S_{t}, r_{t}, v_{t}; T, K) = S_{t} \tilde{P}_{1}(t, X_{t}, r_{t}, v_{t}; T, K) - KP^{*}(t, T) \tilde{P}_{2}(t, X_{t}, r_{t}, v_{t}; T, K).$$

[The proof can be found in Ref. 3]

### 4. ตามวัตถุประสงค์ข้อ 5

The fourth paper involved in writing a manual for an application software for computing parameters for CIR model, Vasicek interest rate model, and also finding the bond price. One CD which contains the software is attached to this report. [The detail can be found in Ref. 4].

Up to this point, we have finished the work according to the objective that was written in the research project. However, we would like to submit another 3 supplementary research articles which were undertaken under this research project.

### Supplementary research articles

5. The fifth paper studied an insurance model where the surplus process can be controlled by two activities, one is reinsurance for which the reinsurance company has an opportunity to default and other is an investment in a financial market. We prove the existence of an optimal plan and derive a formula for the value function which is the minimum of total discounted cost function in the framework of discrete-time surplus process. The main theorem is as follow:

Theorem 5 Let  $x \in S$  be an initial state. Then there exists  $u^* = (b^*, \delta^*) \in U$  such that

$$G(u^*) = \min_{(b,\delta) \in U} E[e^{-\beta(c(b)Z - \{h(b,Y)K + Y(1-K) + \langle \delta,R \rangle\}}] < \infty$$

and, moreover,  $u^*$  – stationary is an optimal plan. Here  $b^* \in [\underline{b}, \overline{b}]$  represents the retention level of reinsurance and  $\delta^* = (\delta_1, \delta_2, ..., \delta_m)$  is the portfolio vector. The cost function  $G(u) := G(b, \delta)$  is a function of retention level and the portfolio vector. So this theorem say that, with some assumptions as given in the paper, the optimal control (or minimum plan) is stationary, i.e. we should select the same retention level and the same investment on every period of time. The proof of this theorem can be found in . [The proof can be found in Ref. 5]

6. The sixth paper studied an insurance model under the condition that the claims can be control by reinsurance and an insurance company requires a sufficient initial capital to ensure a ruin probability will not exceed a given quantity  $\alpha$ . We prove the main theorem is about the existence of the minimum initial capital which was stated as follow.

Theorem 6 Let  $N \in \{1,2,3,...\}$ ,  $\pi \in P(N,[\underline{b},\overline{b}\,])$  and let  $\alpha \in (0,1)$ . Then there exists  $x^* \geq 0$  such that

$$x^* = \min_{x \ge 0} \left\{ x : \Phi_N(x, \pi) \le \alpha \right\},\,$$

Where is  $P(N, [\underline{b}, \overline{b}])$  the set of all plans and  $\Phi_N(x, \pi)$  is the ruin probability at time n. [The proof can be found in Ref. 6]

7. The seven studied forecasting the volatility of gold price using Markov Regime Switching GARCH models. These models allow volatility to have different dynamics according to unobserved regime variables. The main purpose is to find out whether MRS-GARCH models are an improvement on the GARCH type models in terms of modeling and forecasting gold price volatility. The MRS-GARCH is the best performance model for gold price volatility in some loss function. Moreover, we forecast the closing prices of gold price to trade future contract. MRS-GARCH got the most cumulative return same as GIR model. [The details are in Ref. 7].

### References

- T. Plienpanich, P. Sattayatham, and T. Thao, Fractional integrated GARCH diffusion limit model, Journal of Korean Statistical Society, 38: 231-238, 2009
- 2. P. Sattayatham, A. Intarasit, An approximate formula of European option for fractional stochastic volatility jump-diffusion model, Journal of Mathematics and Statistics, 7(3): 230-238, 2011.
- 3. S. Pinkam, and P. Sattayatham, Option pricing for a stochastic volatility Levy model with stochastic interest rate. To be published in the Journal of Korean Statistical Society, 2012.
- 4. S. Pinkam and P. Sattayatham, Manual and One CD which contains as application software for computing parameters for CIR model, Vasicek interest rate model, and also finding the bond price.
- 5. W. Klongdee, P. Sattayatham, and K. Sangaroon, A value function of discrete-time surplus process in insurance under investment and reinsurance credit risk, Far East Journal of Theoretical Statistics, 32(2): 183-198, 2010.
- 6. P. Sattayatham, K. Chuarkham, and W. Klongdee, Run probability based initial capital of the discrete time surplus process in insurance under reinsurance as a control parameter, Submitted to Scandinavian Actuarial Journal 2011.
- 7. N. Sopipan, P. Sattayatham, and B. Premanode, Forecasting volatility of gold price using Markov regime switching and trading strategy, Accepted in the Journal of mathematical finance 2011.

### ผลที่ได้จากโครงการ

We wrote 6 articles and developed an application software for computing parameters of CIR model, Vasicek interest rate model, and also finding the bond price.

The details are as follows:

#### 1. Articles according to the objective of this research project

- 1.1. T. Plienpanich, P. Sattayatham, and T. Thao, Fractional integrated GARCH diffusion limit model, Journal of Korean Statistical Society, 38: 231-238, 2009
- 1.2. P. Sattayatham, A. Intarasit, An approximate formula of European option for fractional stochastic volatility jump-diffusion model, Journal of Mathematics and Statistics, 7(3): 230-238, 2011.
- 1.3. S. Pinkam, and P. Sattayatham, Option pricing for a stochastic volatility Levy model with stochastic interest rate. Submitted to Journal of Korean Statistical Society, 2011.
- 1.4. S. Pinkam and P. Sattayatham, Manual and One CD which contains as application software for computing parameters for CIR model, Vasicek interest rate model, and also finding the bond price.

#### 2. Subplementary articles

- 2.1. W. Klongdee, P. Sattayatham, and K. Sangaroon, A value function of discrete-time surplus process in insurance under investment and reinsurance credit risk, Far East Journal of Theoretical Statistics, 32(2): 183-198, 2010.
- 2.2. P. Sattayatham, K. Chuarkham, W. Klongdee, Ruin probability based initial capital of the discrete time surplus process in insurance under reinsurance as a control parameter, Submitted to Scandinavian Actuarial Journal. 2011.
- 2.3. N. Sopipan, P. Sattayatham, B. Premanode, Forecasting volatility of Gold price using Markov regime switching and trading strategy, Accepted in Journal of Mathematical Finance, 2011.

#### ภาคผนวก

### (Appendix)

### ประกอบด้วยเอกสารแนบ 7 ฉบับดังนี้

### 1. Articles according to the objective of this research project

- 1.1. T. Plienpanich, P. Sattayatham, and T. Thao, Fractional integrated GARCH diffusion limit model, Journal of Korean Statistical Society, 38: 231-238, 2009
- 1.2. P. Sattayatham, A. Intarasit, An approximate formula of European option for fractional stochastic volatility jump-diffusion model, Journal of Mathematics and Statistics, 7(3): 230-238, 2011.
- 1.3. S. Pinkam, and P. Sattayatham, Option pricing for a stochastic volatility Levy model with stochastic interest rate. Submitted to Journal of Korean Statistical Society, 2011.
- 1.4. S. Pinkam and P. Sattayatham, Manual and One CD which contains as application software for computing parameters for CIR model, Vasicek interest rate model, and also finding the bond price.

### 2. Subplementary articles

- 1.1. W. Klongdee, P. Sattayatham, and K. Sangaroon, A value function of discrete-time surplus process in insurance under investment and reinsurance credit risk, Far East Journal of Theoretical Statistics, 32(2): 183-198, 2010.
- 1.2. P. Sattayatham, K. Chuarkham, W. Klongdee, Ruin probability based initial capital of the discrete time surplus process in insurance under reinsurance as a control parameter, Submitted to Scandinavian Actuarial Journal. 2011.
- 1.3. N. Sopipan, P. Sattayatham, B. Premanode, Forecasting volatility of Gold price using Markov regime switching and trading strategy, Accepted in Journal of Mathematical Finance, 2011.

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.



This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

### **Author's personal copy**

Journal of the Korean Statistical Society 38 (2009) 231–238



Contents lists available at ScienceDirect

## Journal of the Korean Statistical Society

journal homepage: www.elsevier.com/locate/jkss



## Fractional integrated GARCH diffusion limit models\*

T. Plienpanich<sup>a</sup>, P. Sattayatham<sup>a,\*</sup>, T.H. Thao<sup>b</sup>

- <sup>a</sup> School of Mathematics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- <sup>b</sup> Institute of Mathematics, Vietnam Academy of Science and Technology, Viet Nam

### ARTICLE INFO

Article history: Received 17 April 2008 Accepted 8 October 2008 Available online 2 December 2008

AMS 2000 subject classifications: 91B28 65C50

Keywords: Fractional Brownian motion Approximate approach GARCH model Geometric Brownian motion

#### ABSTRACT

In this paper, we introduce an approximate approach to the fractional integrated GARCH(1,1) model of continuous time perturbed by fractional noise. Based on the  $L^2$ -approximation of this noise by semimartingales, we proved a convergence theorem concerning an approximate solution. A simulation example shows a significant reduction of error in a fractional stock price model as compared to the classical stock price model.

© 2008 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

### 1. Introduction

Risk in a financial market is measured by using volatility. So predictability of volatility has important implications for risk management. If volatility increases, so will Value At Risk (VAR). Investors may want to adjust their portfolio to reduce their exposure to those assets whose volatility is predicted to increase. One method that is widely employed for volatility estimation is to use GARCH models. A discrete time GARCH(1,1) model is a model of the form

$$v_{k+1} = \omega_0 + \beta v_{k+1} + \alpha v_k U_k^2, \qquad X_k = \sigma_k U_k \tag{1}$$

where  $\sigma_k = \sqrt{\nu_k}$ , and  $\alpha$ ,  $\beta$  are weight parameters,  $\omega_0$  is a parameter related to the long-term variance, and  $U_K$  is a sequence of independent normal random variables with zero mean and variance of 1.

It is well known that GARCH models are not designed for long range-dependence (LRD). But there are some empirical studies showing that log-return series ( $X_t$ ) of foreign exchange rates, stock indices and share prices exhibit the LRD effect (see, for example, Mikosch and Starica (2003, page 445)). In 1990, Nelson (1990) showed that as the time interval decreases and become infinitesimal, Eq. (1) can be changed to

$$dv_t = (\omega - \theta v_t)dt + \xi v_t dW_t \tag{2}$$

where  $v_t = \sigma_t^2$  is the stock-return variance,  $\omega$ ,  $\theta$  and  $\xi$  are weight parameters and  $W_t$  is a standard Brownian motion process. To be more accurate, there is a weak convergence of the discrete GARCH process to the continuous diffusion limit. The purpose of this paper is to introduce LRD effect into GARCH models of continuous time (i.e., into Eq. (2)). The importance of this process in finance is that it can be used to forecast volatility and risk of some financial instruments.

 $<sup>^{</sup> iny}$  This research was supported by the Thailand Research Fund and CHE 2008.

Corresponding author. Fax: +66 44224315. E-mail address: pairote@sut.ac.th (P. Sattayatham).

Recall that a fractional Brownian motion process  $W_t^H$ , with Hurst index H, is a centered Gaussian process such that its covariance function  $R(t, s) = EW_t^H W_s^H$  is given by

$$R(s,t) = \frac{1}{2}(|t|^{\gamma} + |s|^{\gamma} - |t - s|^{\gamma})$$

where  $\gamma=2H$  and 0< H<1. If  $H=\frac{1}{2}$ , then  $W_t^H$  is the usual standard Brownian motion process. For  $H\neq\frac{1}{2}$ ,  $W_t^H$  is neither a semimartingale nor a Markov process so we cannot apply the standard stochastic calculus for this process. It is a process of long range dependence in the following sense: If  $\rho_n=E[W_1^H(W_{n+1}^H)-W_n^H]$ , then the series  $\sum_{n=0}^{\infty}\rho_n$  is either divergent or convergent with very late rate. It is known that a fractional Brownian motion  $W_t^H$  can be decomposed as follows:

$$W_t^H = \frac{1}{\Gamma(1+\alpha)} \left[ Z_t + \int_0^t (t-s)^\alpha dW_s \right],$$

where  $\Gamma$  is the gamma function,  $Z_t = \int_{-\infty}^0 [(t-s)^\alpha - (-s)^\alpha] dW_s$ ,  $\alpha = H - \frac{1}{2}$ , and  $W_t$  is a standard Brownian motion.

We suppose from now on  $0 < \alpha < \frac{1}{2}$  so that  $\frac{1}{2} < H < 1$ . Then  $Z_t$  has absolutely continuous trajectories and it is the term  $B_t^H := \int_0^t (t-s)^{\alpha} dW_s$  that exhibits long range dependence. We will use  $B_t^H$  instead of  $W_t^H$  in fractional stochastic calculus. In Thao (2006) constructed an approximate process  $B_t^{\varepsilon}$  of  $B_t^H$  as follows:

$$B_t^{\varepsilon} = \int_0^t (t - s + \varepsilon)^{H - \frac{1}{2}} dW_s$$

where  $\frac{1}{2} < H < 1$ , and  $W_t$  is a standard Brownian motion. He also proved that  $B_t^{\varepsilon} \to B_t^H$  in  $L^2(\Omega)$  as  $\varepsilon \to 0$  (uniformly in t) and  $B_t^{\varepsilon}$  is a semimartingale. These results give us a convenient way to study fractional Brownian motions since we can use the standard Ito integrals and then it is easy to do numerical approximation.

By a fractional integrated GARCH model of continuous time (FIGARCH), we shall mean a process of the form

$$dv_t = (\omega - \theta v_t)dt + \xi v_t dB_t^H \tag{3}$$

where  $0 \le t \le T$ ,  $\omega$ ,  $\theta$  and  $\xi$  are weight parameters, and  $B_t^H$  is a fractional Brownian motion. For each  $\epsilon > 0$ , an approximate model of the FIGARCH model is a process of the form

$$dv_t^{\varepsilon} = (\omega - \theta v_t^{\varepsilon})dt + \xi v_t^{\varepsilon}dB_t^{\varepsilon} \tag{4}$$

where  $B_t^{\varepsilon}$  is the approximate process of  $B_t^H$ . We shall show that its solution converges to the solution of the FIGARCH model (3).

Moreover, geometric Brownian motion for the asset price was used to simulate the SCB stock prices where the volatility of this model was predicted from an approximate fractional variance process of GARCH(1,1) model in continuous time and classical GARCH(1,1) model in continuous time. And both of them were compared with the empirical historical stock prices

#### 2. Solutions of the approximate models

In this section, we are interested in finding a solution of the approximate model (4) together with initial condition  $v^{\varepsilon}_{t(t=0)}=v_0.$  Let  $\varepsilon>0.$  Recall that an approximated process  $B^{\varepsilon}_t$  is defined by

$$B_t^{\varepsilon} = \int_0^t (t - s + \varepsilon)^{\alpha} dW_s,$$

where  $\alpha = H - \frac{1}{2}$ , 0 < H < 1, and  $W_t$  is a Brownian motion process. By an application of the stochastic Fubini Theorem, one gets

$$\int_0^t \int_0^s (s - u + \varepsilon)^{\alpha - 1} dW_u ds = \int_0^t \int_u^t (s - u + \varepsilon)^{\alpha - 1} ds dW_u$$

$$= \frac{1}{\alpha} \int_0^t ((t - u + \varepsilon)^{\alpha} - \varepsilon^{\alpha}) dW_u$$

$$= \frac{1}{\alpha} \left[ \int_0^t (t - u + \varepsilon)^{\alpha} dW_u - \varepsilon^{\alpha} \int_0^t dW_u \right]$$

$$= \frac{1}{\alpha} [B_t^{\varepsilon} - \varepsilon^{\alpha} W_t].$$

Consequently

$$B_t^{\varepsilon} = \alpha \int_0^t \varphi_s^{\varepsilon} ds + \varepsilon^{\alpha} W_t$$

T. Plienpanich et al. / Journal of the Korean Statistical Society 38 (2009) 231-238

where

$$\varphi_t^{\varepsilon} = \int_0^t (t - s + \varepsilon)^{\alpha - 1} dW_s.$$

Thus we have

$$dB_t^{\varepsilon} = \alpha \varphi_t^{\varepsilon} dt + \varepsilon^{\alpha} dW_t. \tag{5}$$

Substituting  $dB_t^{\varepsilon}$  from (5) into (4), then Eq. (4) can be rewritten into the following form

$$dv_t^{\varepsilon} = (\omega - \theta v_t^{\varepsilon})dt + \xi v_t^{\varepsilon}(\alpha \varphi_t^{\varepsilon} dt + \varepsilon^{\alpha} dW_t),$$
  

$$= (\omega - \theta v_t^{\varepsilon} + \xi \alpha \varphi_t^{\varepsilon} v_t^{\varepsilon})dt + \xi v_t^{\varepsilon} \varepsilon^{\alpha} dW_t.$$
(6)

**Theorem 1.** For any  $\varepsilon > 0$ , a solution of the approximate model (4) is given by

$$v_t^{\varepsilon} = \exp\left(\xi B_t^{\varepsilon} - \left(\theta + \frac{1}{2}\xi^2 \varepsilon^{2\alpha}\right)t\right) \left(v_0^{\varepsilon} + \omega \int_0^t e^{\left(\theta + \frac{1}{2}\xi^2 \varepsilon^{2\alpha}\right)s - \xi B_s^{\varepsilon}} ds\right),\tag{7}$$

where  $-\frac{1}{2} < \alpha < \frac{1}{2}$  and  $B_t^{\varepsilon} = \int_0^t (t - s + \varepsilon)^{\alpha} dW_s$ .

**Proof.** To find a solution of (6), we look for a solution of the form

$$v_t^{\varepsilon} = U_t V_t$$

where

$$dU_t = (-\theta + \xi \alpha \varphi_t^{\varepsilon}) U_t dt + \xi \varepsilon^{\alpha} U_t dW_t$$

and

$$dV_t = a_t dt + b_t dW_t.$$

Firstly, we shall find a solution of  $dU_t = (-\theta + \xi \alpha \varphi_t^{\varepsilon})U_t dt + \xi \varepsilon^{\alpha} U_t dW_t$ . By an application of the Ito formula to the function  $f(u) = \ln u$  for  $u = U_t$ , one gets

$$d (\ln U_t) = \frac{1}{U_t} dU_t - \frac{1}{2U_t^2} (dU)^2$$

$$= \frac{1}{U_t} \left( (-\theta + \xi \alpha \varphi_t^{\varepsilon}) U_t dt + \xi \varepsilon^{\alpha} U_t dW_t \right) - \frac{1}{2U_t^2} (\xi^2 \varepsilon^{2\alpha} U_t^2 dt)$$

$$= \left( -\theta + \xi \alpha \varphi_t^{\varepsilon} - \frac{1}{2} \xi^2 \varepsilon^{2\alpha} \right) dt + \xi \varepsilon^{\alpha} dW_t$$

or, equivalently,

$$\ln U_t - \ln U_0 = \xi \alpha \int_0^t \varphi_s^{\varepsilon} ds - \left(\theta + \frac{1}{2} \xi^2 \varepsilon^{2\alpha}\right) t + \xi \varepsilon^{\alpha} W_t.$$

That is

$$U_{t} = U_{0} \exp\left(\xi \alpha \int_{0}^{t} \varphi_{s}^{\varepsilon} ds - \left(\theta + \frac{1}{2} \xi^{2} \varepsilon^{2\alpha}\right) t + \xi \varepsilon^{\alpha} W_{t}\right). \tag{8}$$

Set  $U_0 = 1$  and  $V_0 = v_0^{\varepsilon}$ . Taking the differential of the product, we get

$$\begin{split} \mathrm{d}\left(U_{t}V_{t}\right) &= U_{t}\mathrm{d}V_{t} + V_{t}\mathrm{d}U_{t} + \mathrm{d}U_{t}\mathrm{d}V_{t} \\ &= U_{t}\left(a_{t}\mathrm{d}t + b_{t}\mathrm{d}W_{t}\right) + V_{t}\left((-\theta + \xi\alpha\varphi_{t}^{\varepsilon})U_{t}\mathrm{d}t + \xi\varepsilon^{\alpha}U_{t}\mathrm{d}W_{t}\right) + \xi\varepsilon^{\alpha}U_{t}\mathrm{d}t \\ &= \left(U_{t}a_{t} + V_{t}(-\theta + \xi\alpha\varphi_{t}^{\varepsilon})U_{t} + \xi\varepsilon^{\alpha}U_{t}b_{t}\right)\mathrm{d}t + \left(U_{t}b_{t} + V_{t}\xi\varepsilon^{\alpha}U_{t}\right)\mathrm{d}W_{t}. \end{split}$$

Since  $v_t^{\varepsilon} = U_t V_t$  then

$$dv_t^{\varepsilon} = \left(U_t a_t + (-\theta + \xi \alpha \varphi_t^{\varepsilon}) v_t^{\varepsilon} + \xi \varepsilon^{\alpha} U_t b_t\right) dt + \left(U_t b_t + \xi \varepsilon^{\alpha} v_t^{\varepsilon}\right) dW_t. \tag{9}$$

Comparing the coefficients of Eq. (9) with Eq. (6), we see that the desired coefficients  $a_t$  and  $b_t$  turn out to satisfy the following equations

$$U_t b_t = 0$$

234 and

$$U_t a_t + \xi \varepsilon^{\alpha} U_t b_t = \omega.$$

Then  $b_t = 0$  and  $a_t = \frac{\omega}{U_t}$ . Hence

$$V_t := V_0 + \int_0^t a_t dt + \int_0^t b_t dW_t = v_0^{\varepsilon} + \int_0^t \frac{\omega}{U_s} ds.$$

Moreover,  $v_t^{\varepsilon}$  is found to be

$$v_t^{\varepsilon} := U_t V_t = U_t \left( v_0^{\varepsilon} + \int_0^t \frac{\omega}{U_s} \mathrm{d}s \right).$$

Hence, with  $U_0 = 1$  and using  $U_t$  as in (8), the solution of  $v_t^{\varepsilon}$  is given by

$$v_t^\varepsilon = \exp\left(\xi\alpha\int_0^t \varphi_s^\varepsilon \mathrm{d}s - \left(\theta + \frac{1}{2}\xi^2\varepsilon^{2\alpha}\right)t + \xi\varepsilon^\alpha W_t\right)\left(v_0^\varepsilon + \omega\int_0^t \mathrm{e}^{\left(\theta + \frac{1}{2}\xi^2\varepsilon^{2\alpha}\right)s - \xi\varepsilon^\alpha W_s - \xi\alpha\int_0^s \varphi_u^\varepsilon \mathrm{d}u} \mathrm{d}s\right).$$

This proves Theorem 1. ■

#### 3. Convergence of the solutions of an approximate model

To prove the convergence of  $v_t^{\varepsilon}$ , firstly, let us consider the process  $v_t$  which satisfies Eq. (2). Let  $X_t = \ln v_t$ . It follows from the Ito formula that

$$dX_t = \left(\omega e^{-X_t} - \frac{\xi^2}{2} - \theta\right) dt + \xi dW_t. \tag{10}$$

The fractional model of the process  $X_t$  is a process which is of the form

$$dX_t = \left(\omega e^{-X_t} - \frac{\xi^2}{2} - \theta\right) dt + \xi dB_t^H, \tag{11}$$

where  $B_t^H$  is a fractional Brownian motion. Then an approximated model of (11) is of the form

$$dX_t^{\varepsilon} = \left(\omega e^{-X_t^{\varepsilon}} - \frac{\xi^2}{2} - \theta\right) dt + \xi dB_t^{\varepsilon}$$
(12)

where  $B_t^{\varepsilon}$  has already been defined in Section 1.

**Theorem 2.** The solution of (12) converges to the solution of (11) in  $L^2(\Omega)$  uniformly with respect to  $t \in [0, T]$  as  $\varepsilon \to 0$ .

**Proof.** We note that Eqs. (11) and (12) give

$$X_t - X_t^{\varepsilon} = \omega \int_0^t \left( e^{-X_s} - e^{-X_s^{\varepsilon}} \right) ds + \xi \left( B_t^H - B_t^{\varepsilon} \right). \tag{13}$$

Let  $\|\cdot\|$  denote the norm in  $L^2(\Omega)$ . It follows from (13) that

$$\|X_t - X_t^{\varepsilon}\| = \left\| \omega \int_0^t \left( e^{-X_s} - e^{-X_s^{\varepsilon}} \right) ds + \xi \left( B_t^H - B_t^{\varepsilon} \right) \right\|$$

$$\leqslant |\omega| \int_0^t \left\| e^{-X_s} - e^{-X_s^{\varepsilon}} \right\| ds + |\xi| \left\| B_t^H - B_t^{\varepsilon} \right\|.$$

Since  $e^{-x}$  is differentiable and bounded on every compact interval, then

$$\|X_t - X_t^{\varepsilon}\| \le |\omega| \int_0^t K_1 \|X_s - X_s^{\varepsilon}\| \, \mathrm{d}s + |\xi| \|B_t^H - B_t^{\varepsilon}\|$$

$$\tag{14}$$

for some constants  $K_1 > 0$ . Referring to a result Thao (2006, page 127), one gets

$$\|B_t^H - B_t^{\varepsilon}\| \le C(\alpha)\varepsilon^{\frac{1}{2} + \alpha},\tag{15}$$

where  $0 < \alpha < \frac{1}{2}$  for  $\frac{1}{2} < H < 1$  and  $-\frac{1}{2} < \alpha < 0$  for  $0 < H < \frac{1}{2}$ , and  $C(\alpha)$  is a positive constant depending only on  $\alpha$ .

T. Plienpanich et al. / Journal of the Korean Statistical Society 38 (2009) 231–238

It follows from (14) and (15) that

$$\|X_t - X_t^{\varepsilon}\| \leq |\omega| K_1 \int_0^t \|X_s - X_s^{\varepsilon}\| \, \mathrm{d}s + |\xi| C(\alpha) \varepsilon^{\frac{1}{2} + \alpha}. \tag{16}$$

Applying Gronwall's lemma to (16), then

$$||X_t - X_t^{\varepsilon}|| \leq |\xi| C(\alpha) \varepsilon^{\frac{1}{2} + \alpha} e^{|\omega|K_1 t}$$

Therefore

$$\sup_{0 \le t \le T} \|X_t - X_t^{\varepsilon}\| \leqslant |\xi| C(\alpha) \varepsilon^{\frac{1}{2} + \alpha} e^{|\omega|K_1 T} \to 0$$

as  $\varepsilon \to 0$ . So  $X_t^{\varepsilon} \to X_t$  in  $L^2(\Omega)$  as  $\varepsilon \to 0$  and uniformly with respect to t.

**Theorem 3.** If  $X_t^{\varepsilon} \to X_t$  in  $L^2(\Omega)$  uniformly with respect to  $t \in [0, T]$  as  $\varepsilon \to 0$ , then  $v_t^{\varepsilon} \to v_t$  in  $L^2(\Omega)$  uniformly with respect to  $t \in [0, T]$  as  $\varepsilon \to 0$ .

**Proof.** It follows from  $X_t = \ln v_t$ , so  $v_t = e^{X_t}$  that

$$\|v_t - v_t^{\varepsilon}\| = \|e^{X_t} - e^{X_t^{\varepsilon}}\|.$$

Since e<sup>x</sup> is differentiable and bounded in some closed interval, then

$$\|v_t - v_t^{\varepsilon}\| \le K_2 \|X_t - X_t^{\varepsilon}\|$$

for some positive constant  $K_2$ . From (15), we obtain

$$\|v_t - v_t^{\varepsilon}\| \leq K_2 |\xi| C(\alpha) \varepsilon^{\frac{1}{2} + \alpha} e^{|\omega|K_1 t}$$

Therefore

$$\sup_{0 \le t \le T} \|v_t - v_t^{\varepsilon}\| \le K_2 |\xi| C(\alpha) \varepsilon^{\frac{1}{2} + \alpha} e^{|\omega|K_1 T} \to 0$$

as  $\varepsilon \to 0$ . The proof is now complete.

#### 4. Applications

In this section, volatilities of the stock of Siam Commercial Bank (SCB) are computed by using FIGARCH(1,1) model and classical GARCH(1,1) model of continuous time. Then SCB stock prices are simulated by using these volatilities. After that both simulated SCB stock prices are compared with the empirical historical prices of SCB.

### 4.1. SCB simulated stock prices

A model for the dynamic of an asset price that will be considered here is of the form

$$dS_t = \mu S_t dt + \sigma_t S_t dW_t$$

where  $\mu$  is known as the drift rate or rate of return of the price  $S_t$  and  $W_t$  is a Brownian motion. The stochastic volatility  $\sigma_t$  (which measures the standard deviation of the return  $\frac{\mathrm{d}S_t}{S_t}$ ) is defined by  $\sigma_t := \sqrt{v_t}$  where  $v_t$  is the FIGARCH model of continuous time as in Eq. (3). For comparative purposes, we shall compute the percentage error (PE) between two sets of data by the following formula

$$PE = \frac{1}{K} \sum_{i=1}^{K} \frac{|X_i - Y_i|}{X_i} \times 100,$$

where K is sample size,  $X = (X_i, i \ge 1)$  is the market prices and  $Y = (Y_i, i \ge 1)$  is the model prices. We use K = 245 when we sample data for 12 months.

For simulation purposes, we consider an approximate model

$$dS_t^{\varepsilon} = \mu S_t^{\varepsilon} dt + \sigma_t^{\varepsilon} S_t^{\varepsilon} dW_t, \tag{17}$$

with  $\epsilon>0$  and  $\sigma_t^\varepsilon=\sqrt{v_t^\varepsilon}$ . The fractional variance process  $v_t^\varepsilon$  will be simulated by using Eq. (7), i.e.,

$$v_t^{\varepsilon} = \exp\left(\xi B_t^{\varepsilon} - \left(\theta + \frac{1}{2}\xi^2 \varepsilon^{2\alpha}\right)t\right) \left(v_0^{\varepsilon} + \omega \int_0^t e^{\left(\theta + \frac{1}{2}\xi^2 \varepsilon^{2\alpha}\right)s - \xi B_s^{\varepsilon}} ds\right). \tag{18}$$

**Table 1** Discrete parameters  $\omega_h$ ,  $\beta_h$  and  $\alpha_h$  of each dataset.

| Months | Dataset (DD/MM/YY)   | $\omega_h$ | $eta_{h}$ | $\alpha_h$ |
|--------|----------------------|------------|-----------|------------|
| 1      | 1/12/2006-28/12/2006 | 0.0033     | 0         | 0.1689     |
| 3      | 2/10/2006-28/12/2006 | 0.0012     | 0         | 0.1154     |
| 6      | 3/7/2006-28/12/2006  | 0.00077659 | 0         | 0.0887     |
| 9      | 3/4/2006-28/12/2006  | 0.00071251 | 0         | 0.0726     |
| 12     | 3/1/2006-28/12/2006  | 0.00062672 | 0         | 0.0692     |

**Table 2** Parameters  $\omega$ ,  $\theta$  and  $\xi$  obtained from each dataset.

| Months | Dataset (DD/MM/YY)   | ω          | $\theta$ | ξ      |
|--------|----------------------|------------|----------|--------|
| 1      | 1/12/2006-28/12/2006 | 0.0033     | 0.8311   | 0.2389 |
| 3      | 2/10/2006-28/12/2006 | 0.0012     | 0.8846   | 0.1632 |
| 6      | 3/7/2006-28/12/2006  | 0.00077659 | 0.9113   | 0.1254 |
| 9      | 3/4/2006-28/12/2006  | 0.00071251 | 0.9274   | 0.1027 |
| 12     | 3/1/2006-28/12/2006  | 0.00062672 | 0.9308   | 0.0979 |

**Table 3** Average *PE* for each set of parameters.

| Parameters | ω          | θ      | ξ      | Average of PE (%) |
|------------|------------|--------|--------|-------------------|
| 1          | 0.0033     | 0.8311 | 0.2389 | 40.5099           |
| 2          | 0.0012     | 0.8846 | 0.1632 | 24.0161           |
| 3          | 0.00077659 | 0.9113 | 0.1254 | 19.3196           |
| 4          | 0.00071251 | 0.9274 | 0.1027 | 18.3600           |
| 5          | 0.00062672 | 0.9308 | 0.0979 | 17.3366           |

The actual stock prices of Siam Commercial Bank (SCB) were obtained from http://www.tiscoetrade.com. Using the dataset from January 3, 2006 to December 28, 2007. We divide these data into two disjoint sets. The first one, from January 3, 2006 to December 28, 2006, will be used to estimate parameters  $\omega$ ,  $\theta$ , and  $\xi$  for Eq. (18). The second set (January 3, 2007–December 28, 2007) will be used for comparison with the simulated prices.

We begin by estimating parameters  $\omega$ ,  $\theta$  and  $\xi$ . To do this, we firstly enter the following 5 datasets, i.e., 1 month (December 1, 2006–December 28, 2006), 3 months (October 2, 2006–December 28, 2006), 6 months (July 3, 2006–December 28, 2006) and 12 months (January 3, 2006–December 28, 2006) into Matlab 6.5 (GARCH Toolbox) with COMPAQ Presario B1908TU to obtain discrete parameters of GARCH(1,1) model ( $\omega_h$ ,  $\beta_h$  and  $\alpha_h$ ). Those discrete parameters from each datasets are shown in Table 1.

Secondly, we utilize the formulas between discrete parameters and continuous parameters which have been given by Nelson (1990) to estimate the parameters  $\omega$ ,  $\theta$  and  $\xi$ . The formulas are as follows:

$$\omega = h^{-1}\omega_h,$$
  

$$\theta = h^{-1}(1 - \beta_h - \alpha_h),$$
  

$$\xi = \sqrt{2h^{-1}}\alpha_h,$$

where h is the time lag between two consecutive data. Here we use h=1. Thus the estimated parameters  $\omega$ ,  $\theta$  and  $\xi$  for each dataset (1, 3, 6, 9 and 12 months) are given in Table 2.

From the information in Table 2, we look for those parameters which can give us the mimum average of PE. In order to solve this problem, we simulated  $v_t^{\varepsilon}$  (see, Eq. (18)) by using the parameters  $\omega$ ,  $\theta$  and  $\xi$  from each dataset (1, 3, 6, 9 and 12 months). Here, we choose  $\varepsilon=0.0001$ ,  $\alpha=0.15$ ,  $\mu=0.0017819$  and  $v_0^{\varepsilon}=0$ . Then, by using  $\sigma_t^{\varepsilon}=\sqrt{v_t^{\varepsilon}}$ , the SCB stock prices from January 3, 2007 to December 28, 2007 were forecast by the pricing model  $S_t^{\varepsilon}$  (see, Eq. (17)). Next, we compute PE by using the information from the simulation and the empirical data of SCB closing prices (January 3, 2007–December 28, 2007). For each set of parameters, we calculated the average of PE for 5000 paths. The results are shown in Table 3.

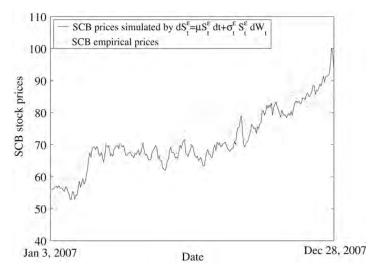
It can be seen from Table 3 that the parameters  $\omega=0.00062672$ ,  $\theta=0.9308$  and  $\xi=0.0979$  give us the minimum value of the average *PE*. We select this set of parameters for forecasting the future stock prices of SCB. In summary, when the SCB stock prices were simulated by Eq. (17) using parameters as mentioned above, the average of *PE* and its variance will be given as follows:

average of 
$$PE = 17.3366\%$$
 variance = 43.0287%. (19)

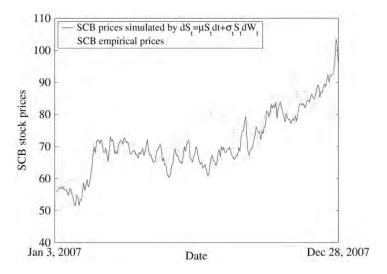
Recall that a GARCH(1,1) model of continuous time is of the form

$$dv_t = (\omega - \theta v_t)dt + \xi v_t dW_t, \tag{20}$$

T. Plienpanich et al. / Journal of the Korean Statistical Society 38 (2009) 231-238



**Fig. 1.** Price behaviour of SCB, between January 3, 2007 and December 28, 2007, compared with a scenario simulated from fractional pricing model (dashed line := empirical data, solid line := simulated by  $dS_t^{\varepsilon} = \mu S_t^{\varepsilon} dt + \sigma_t^{\varepsilon} S_t^{\varepsilon} dW_t$ , PE = 6.0401%).



**Fig. 2.** Price behaviour of SCB, between January 3, 2007 and December 28, 2007, compared with a scenario simulated by pricing model (dashed line := empirical data, solid line := simulated by  $dS_t = \mu S_t dt + \sigma_t S_t dW_t$ , PE = 6.9627%).

and the pricing model is

$$dS_t = \mu S_t dt + \sigma_t S_t dW_t, \tag{21}$$

where  $\sigma_t = \sqrt{v_t}$ .

We simulated the pricing model (21) by using  $\omega = 0.00062672$ ,  $\theta = 0.9308$ ,  $\xi = 0.0979$ ,  $\mu = 0.0017819$ ,  $v_0 = 0$  and K = 245. We compute the *PE* of these simulation prices and the empirical data of SCB closing prices from January 3, 2007 to December 28, 2007. Next we compute the average of *PE*, by using N = 5000, and found that

average of 
$$PE = 21.6536\%$$
 variance = 69.2135%. (22)

By comparing the average *PE* and its variance by Eq. (19) and (22), one can see that in the case of SCB, the forecast of the future stock prices by using model (17) (which includes the fractional part) give an average error significantly smaller than using model (21) (which does not includes the fractional part).

For an illustration, Fig. 1 shows the empirical data of SCB as compared to the price simulated by the fractional price model (17). Here we used  $\varepsilon=0.0001$ ,  $\alpha=0.15$ ,  $\theta=0.9308$ ,  $\omega=0.00062672$ ,  $\xi=0.0979$  and  $v_0^\varepsilon=0$ . The percentage error PE=6.0401%.

Fig. 2, shows the empirical data of SCB as compared to the price simulated by the price model (21). Here we used  $\theta = 0.9308$ ,  $\omega = 0.00062672$ ,  $\xi = 0.0979$ ,  $\mu = 0.0017819$ ,  $v_0 = 0$  and  $\sigma_t = \sqrt{v_t}$ . The percentage error PE = 6.9627%.

By comparing *PE* and variance of Figs. 1 and 2, one can see that in the case of SCB the sample path from the fractional pricing model gives a better fit with the data than the ordinary pricing model, since the percentage error is smaller.

# **Author's personal copy**

T. Plienpanich et al. / Journal of the Korean Statistical Society 38 (2009) 231–238

### References

Mikosch, T. M., & Starica, C. (2003). Long-range dependence effects and ARCH modeling. In *Theory and application of long-range dependence*. Birkhauser. Nelson, D. B. (1990). ARCH models as diffusion approximations. *Journal of Econometrics*, 45, 7–38. Thao, T. H. (2006). An approximate approach to fractional analysis of finance. *Nonlinear Analysis: Real World Applications*, 7, 124–132.

238

# An Approximate Formula of European Option for Fractional Stochastic Volatility Jump-Diffusion Model

<sup>1</sup>P. Sattayatham and <sup>2</sup>A. Intarasit

<sup>1</sup>Institute of Science, School of Mathematics,
Suranaree University of Technology, Thailand

<sup>2</sup>Department of Mathematics and Computer Science,
Faculty of Science and Technology, Prince of Songkla University,
Pattani Campus, Thailand

Abstract: Problem statement: We presented option pricing when the stock prices follows a jump-diffusion model and their stochastic volatility follows a fractional stochastic volatility model. This proposed model exhibits the a memory of a stochastic volatility model that is not expressed in the classical stochastic volatility model. Approach: We introduce an approximated method to fractional stochastic volatility model perturbed by the fractional Brownian motion. A relationship between stochastic differential equations and partial differential equations for a bivariate model is presented. Results: By using an approximate method, we provide the approximate solution of the fractional stochastic volatility model. And European options are priced by using the risk-neutral valuation. Conclusion/Recommendations: The formula of European option is calculated by using the technique base on the characteristic function of an underlying asset which can be expressed in an explicit formula. A numerical integration technique to simulation fractional stochastic volatility are presented in this study.

**Key words:** Fractional Brownian motion, approximate method, fractional stochastic volatility, jump diffusion model, option pricing model

### INTRODUCTION

Let  $(\Omega, F, P)$  be a probability space with filtration  $\mathbb{F} = (F_t)_{0 \leq t \leq T}$ . All processes that we shall consider in this section will be defined in this space. For  $t \in [0, T]$  and  $T < \infty$  a geometric Brownian motion (gBm) model with jumps and with fractional stochastic volatility is a model of the form:

$$dS_{t} = S_{t} \left( \mu dt + \sqrt{v_{t}} dW_{t} \right) + S_{t-} Y dN_{t}$$
 (1)

where  $\mu \in \mathfrak{R}$ ,  $S = (S_t)_{t \in [0,T]}$  is a process representing a price of the underlying risky assets,  $W = (W_t)_{t \in [0,T]}$  is the standard Brownian motion,  $N = (N_t)_{t \in [0,T]}$  is a Poisson process with intensity  $\lambda$  and  $S_t.Y_t$  represents the amplitude of the jump which occurs at time t. We assume that the processes W and W are independent. The volatility process  $V_t := \sigma_t^2$  in (1) is modeled by:

$$dv_{t} = (\omega - \theta v_{t})dt + \xi v_{t}dB_{t}$$
 (2)

where,  $\omega > 0$  is the mean long-term volatility,  $\theta \in \Re$  is the rate at which the volatility reverts toward its long-term mean,  $\xi > 0$  is the volatility of the volatility process and  $(B_t)_{t \in [0,T]}$  is a fractional Brownian motion.

Assume that the processes  $(\boldsymbol{S}_t)$  and  $(\boldsymbol{v}_t)$  are  $\boldsymbol{F}_t$  measurable.

The notation  $S_{t\cdot}$  means that whenever there is a jump, the value of the process before the jump is used on the left-hand side of the formula.

The fractional version of Eq. 1 is given by:

$$dS_{t} = S_{t} \left( \mu dt + \sqrt{v_{t}} dB_{t} \right) + S_{t-} Y_{t} dN_{t}$$
(3)

The process  $S_t$  in (3) can be approximated in  $L_2(\Omega)$  by a semimartingale  $S_t^\epsilon$  in the sense that  $\left\|S_t^\epsilon-S_t\right\|_{L_2(\Omega)}\to 0$  as  $\epsilon\to 0$ , where  $S_t^\epsilon$  satisfies the following equation (Intarasit and Sattayatham, 2010 for more details):

$$dS_{t}^{\varepsilon} = S_{t}^{\varepsilon} \left( \mu dt + \sqrt{v_{t}^{\varepsilon}} dB_{t}^{\varepsilon} \right) + S_{t-}^{\varepsilon} Y_{t} dN_{t}$$

The purpose of this study is to consider the problem of option pricing for the gBm model with jumps (1) and with fractional stochastic volatility (2). Since driving process  $B_t$  of  $v_t$  in Eq. 2 is not a semimartingale, thus we cannot apply Itô calculus directly. We shall thus work in another direction by introducing an approximate model of SDE (1) and (2) then using it to price European call option. The advantage of these approximate model is there no more arbitrage. In order to find such a formula, we shall work in the space of a risk-neutral probability measure. Indeed, there are some authors who have investigated this problem before but not in the fractional case, for example (Heston, 1993). In fact, there are many author studies a volatility and fractional volatility process. For example (Magnus and Fosu, 2006) use GARCH to model and forecast volatility returns on the Ghana stock exchange and (Shamiri and Isa, 2009) study modeling and forecasting of volatility of the Malaysian stock markets. An empirical study of fractional volatility are presented in (Cheong, 2008) for example.

Recall that the fractional Brownian motion with Hurst coefficient is a Gaussian process  $B^H = (B_t^H)_{t\geq 0}$  with zero mean and the covariance function is given by:

$$R(t,s) = E[B_t^H B_s^H] = \frac{1}{2}(s^{2H} + t^{2H} - |t-s|^{2H})$$

If H = 1/2, then R(t, s) = min(t, s) and  $B_t^H$  is the usual standard Brownian motion. In the case 1/2 < H < 1 the fractional Brownian motion exhibits statistical long-range dependency in the sense that  $\rho_n \coloneqq E\Big[B_t^H\Big(B_{n+1}^H - B_n^H\Big)\Big] > 0$  for all n = 1, 2, 3, ... and  $\sum_{n=1}^\infty \rho_n = \infty$ . Hence, in financial modeling, one usually assumes that  $H \in (1/2,1)$ . Put  $\alpha = 1/2$  –H. It is known that a fractional Brownian motion  $B_t^H$  can be decomposed as follows:

$$B_t^{H} = \frac{1}{\Gamma(1+\alpha)} \left\{ Z_t + \int_0^t (t-s)^{-\alpha} dW_s \right\}$$

where,  $\Gamma$  is the gamma function:

$$Z_{t} = \int_{0}^{\infty} \left[ \left( t - s \right)^{-\alpha} - \left( s \right)^{-\alpha} \right] dW_{s}$$

We suppose from now on that  $0 < \alpha < 1/2$ . The process  $Z_t$  has absolutely continuous trajectories, so it suffices to consider only the term:

$$B_{t} = \int_{0}^{t} (t - s)^{-\alpha} dW_{s}$$

$$\tag{4}$$

that has a long-range dependence.

Note that B<sub>t</sub> can be approximated by:

$$B_t^{\varepsilon} = \int_0^t (t - s + \varepsilon)^{-\alpha} dw_s \tag{5}$$

in the sense that  $B_t^{\epsilon}$  converges to  $B_t$  in  $L_2(\Omega)$  as  $\epsilon \to 0$ , uniform with respect to  $t \in [0,T]$  (Thao, 2006).

Since  $(B_t^{\epsilon})_{t \in [0,T]}$  is a continuous semimartingale then Itô calculus can be applied to the following Stochastic Differential Equation (SDE):

$$dS_{t}^{\varepsilon} = S_{t}^{\varepsilon} \left( \mu dt + \sigma dB_{t}^{\varepsilon} \right), 0 \le t \le T$$

Let  $S_t^{\epsilon}$  be the solution of the above equation. Because of the convergence of  $B_t^{\epsilon}$  to  $B_t$  in  $L_2(\Omega)$  when  $\epsilon \rightarrow 0$ , we shall define the solution of a fractional stochastic differential equation of the form:

$$dS_t = S_t (\mu dt + \sigma dB_t), 0 \le t \le T$$

to be a process  $S_t^*$  defined on the probability space  $(\Omega, F, P)$  such that the process  $S_t^\epsilon$  converges to  $S_t^*$  in  $L_2(\Omega)$  as  $\epsilon \to 0$  and the convergence is uniform with respect to  $t \in [0,T]$ . This definition will be applied to the other similar fractional stochastic differential equations which will appear later.

A risk-neutral model for a gBm model combining jumps with stochastic volatility is introduced next. Its solution will also be discussed. Firstly, let us rewrite the model (1) into an integral form as follows:

$$S_{t} = S_{0} + \int_{0}^{t} \mu S_{s} ds + \int_{0}^{t} \sqrt{v_{s}} S_{s} dW_{s} + \int_{0}^{t} S_{s-} Y_{s} dN_{s}$$
 (6)

Note that the last term on the right hand side of Eq. 6 is defined by:

$$\int_{0}^{t} S_{s-} Y_{s} dN_{s} := \sum_{n=1}^{N_{t}} \Delta S_{n}$$

Where:

$$\Delta S_n := ST_n - ST_{n-} = S_{n-}Y_n$$

The assumption  $Y_n > 0$  always leads to positive values of the stock prices. The process  $(Y_n)_{n \in N}$  is assumed to be independently identically distributed (i.i.d.) with density  $\phi_Y$  (y) and  $(T_n)_{n \in N}$  is a sequence of jump time.

In order to solve Eq. 6 with an initial condition  $S_{t(t=0)} = S_0$  we assume that  $E\left[\int_0^T v_s S_s^2 ds\right] < \infty$ . Then, by an application of Itô's formula for the jump process (Cont and Tankov, 2009, Theorem 8.14) on Eq. 6 with  $f(S_1,t) = \log(S_t)$  we get:

$$S_{t} = S_{0} \exp \left( \mu t - \frac{1}{2} \int_{0}^{t} v_{s} ds + \int_{0}^{t} \sqrt{v_{s}} dW_{s} + \int_{0}^{t} \log (1 + Y_{s}) dN_{s} \right)$$

It is assumed that a risk-neutral probability measure M exists; the asset price  $S_t$ , under this risk-neutral measure, follows a jump-diffusion process, with zero-mean, risk-free rate r:

$$dS_{t} = S_{t} (r - \lambda E_{M}[Y_{t}]) dt + \sqrt{v_{t}} dW_{t} + S_{t} Y_{t} dN_{t}$$
 (7)

and the stochastic variance  $v_t$  satisfies the following fractional SDE:

$$dv_{t} = (\omega - \theta v_{t})dt + \xi v_{t}dB_{t}$$
(8)

with an initial condition  $v_{t(t=0)} = v_0 \in L_2(\Omega)$ .

It is only necessary to know that the risk-neutral measure exists (Cont and Tankov, 2009). Hence, all processes to be discussed after this will be the processes under the risk-neutral probability measure M.

Using an initial condition  $S_{\iota(\iota=0)}=S_0\in L_2(\Omega)$ , the solution of Eq. 7 is given by:

$$S_{t} = S_{0} \exp \begin{pmatrix} \int_{0}^{t} (r - \lambda E_{M}[Y_{s}]) ds - \frac{1}{2} \int_{0}^{t} v_{s} ds + \int_{0}^{t} \sqrt{v_{s}} dW_{s} \\ + \int_{0}^{t} \log(1 + Y_{s}) dN_{s} \end{pmatrix}.$$
(9)

Under approximate method, for each  $\epsilon>0$ , consider an approximate model of Eq. 7 and 8 respectively:

$$dS_{t}^{\varepsilon} = S_{t}^{\varepsilon} \left( (r - \lambda E_{M}[Y_{t}]) dt + \sqrt{v_{t}^{\varepsilon}} W_{t} \right) + S_{t}^{\varepsilon} Y_{t} dN_{t}$$
 (10)

$$dv_{t}^{\varepsilon} = (\omega - \theta v_{t}^{\varepsilon})dt + \xi v_{t}^{\varepsilon} dB_{t}^{\varepsilon}$$
(11)

By using the same initial condition as in Eq. 10, we have:

$$S_{t}^{\varepsilon} = S_{0} \exp \begin{pmatrix} \int_{0}^{t} (r - \lambda E_{M}[Y_{s}]) ds - \frac{1}{2} \int_{0}^{t} v_{s}^{\varepsilon} ds + \\ \int_{0}^{t} \sqrt{v_{s}^{\varepsilon}} dW_{s} + \int_{0}^{t} log(1 + Y_{s} dN_{s}) \end{pmatrix}$$
(12)

and one can prove that  $S_t^{\epsilon}$  converges to  $S_t$  of Eq. 9 in  $L_2(\Omega)$  as  $\epsilon \to 0$  and uniformly on  $t \in [0, T]$ . Moreover, one can show that the solution  $v_t^{\epsilon}$  of Eq. 11 converges in  $L_2(\Omega)$  to the process:

$$v_{t} = \left(v_{0} + \omega \int_{0}^{t} exp(\gamma s - \xi B_{s}) ds\right) exp(\xi B_{t} - \gamma t)$$

for some real constant  $\gamma$ . Hence, by definition,  $v_t$  is the solution of Eq. 8 (Intarasit and Sattayatham, 2010, Lemma 2).

#### MATERIALS AND METHODS

The relationship between the stochastic deferential equation and the partial differential equation for bivarate model is presented.

Consider the process  $\vec{X}_t = (X_t^1, X_t^2)$  where  $X_t^1$  and  $X_t^2$  are processes in  $\Re$  and satisfy the following equations:

$$dX_{t}^{1} = f_{1}(t)dt + g_{1}(t)dW_{t} + X_{t-}^{1}Y_{t}dN_{t}$$

$$dX_{t}^{2} = f_{2}(t)dt + g_{2}(t)d\overline{W}_{t}$$
(13)

where,  $f_1$ ,  $g_1$ ,  $f_2$  and  $g_2$  are all continuous functions from [0,T] into  $\Re$  .

Since every compound Poisson process can be represented as an integral form of Poisson random measure (Cont and Tankov, 2009) then the last term on the right hand side of Eq. 13 can be written as follows:

$$\begin{split} &\int\limits_{0}^{t} X_{s-}^{1} Y_{s} \, dN_{s} = \sum_{n=1}^{N_{t}} X_{n-}^{1} Y_{n} = \sum_{n=1}^{N_{t}} [X_{T_{n}}^{1} - X_{T_{n-}}^{1}] \\ &= \int\limits_{0}^{t} \int\limits_{\Re} X_{s-}^{1} z J_{z} (ds \, dz) \end{split}$$

where,  $Y_n$  are i.i.d. random variables with density  $\phi_Y$  (y) and  $J_Z$  is a Poisson random measure of the process  $Z_t = \sum_{n=1}^{N_t} Y_n$  with intensity measure  $\lambda \phi_Y(d_z) dt$ .

Let  $U(\vec{x})$  be a bounded real function on  $\Re^2$  and twice continuously differentiable in  $\vec{x} = (x_1, x_2) \in \Re^2$  and:

$$\mathbf{u}(\vec{\mathbf{x}},t) = \mathbf{E} \left[ \mathbf{u} \left( \vec{\mathbf{X}}_{\mathrm{T}} \right) \vec{\mathbf{X}}_{\mathrm{t}} = \vec{\mathbf{x}} \right] \tag{14}$$

By the two dimensional Dynkin's formula (Hanson, 2007, Theorem 7.7), u is a solution of the Partial Integro-Differential Equation (PIDE):

$$0 = \frac{\partial v(\vec{x}, t)}{\partial t} + Av(\vec{x}, t) + \lambda \int_{\Re} \left[ v(\vec{x} + \vec{y}, t) - v(\vec{x}, t) \right] \phi_{Y}(y) dy$$

subject to the final condition  $u(\vec{x},T) = U(\vec{x})$  and  $\vec{y} = (y,0)$ . The notation A is defined by:

$$\begin{split} &Au\left(\vec{x},t\right)\!=\!f_{_{1}}\left(t\right)\!\frac{\partial u(\vec{x},t)}{\partial x_{_{1}}}\!+\!f_{_{2}}\left(t\right)\!\frac{\partial u(\vec{x},t)}{\partial x_{_{2}}}\!+\!\frac{1}{2}g_{_{1}}^{2}(t)\!\frac{\partial^{2}u(\vec{x},t)}{\partial x_{_{1}}^{2}}\\ &+\!\rho g_{_{1}}(t)g_{_{2}}(t)\!\frac{\partial^{2}u(\vec{x},t)}{\partial x_{_{1}}\partial x_{_{2}}}\!+\!\frac{1}{2}g_{_{2}}^{2}(t)\!\frac{\partial^{2}u(\vec{x},t)}{\partial x_{_{2}}^{2}} \end{split}$$

and the correlation  $\rho$  defined by  $\rho = \text{Corr}[dW_t, dW_t]$ .

Next, we present the classical method to pricing of European call option. The European call option formula in terms of characteristic function is given in the next section

Let C denote the price at time t of a European style call option on the current price of the underlying asset  $S_t$  with strike price K and expiration time T. The terminal payoff of a European call option on the underling stock  $S_t$  with strike price K is max ( $S_T$ - K; 0). This means that the holder will exercise his right only if  $S_T > K$  and then his gain is  $S_T$ -K. Otherwise, if  $S_T > K$ , then the holder will buy the underlying asset from the market and the value of the option is zero. Assuming the risk-free interest rate r is constant over the lifetime of the option, the price of the European call at time t is equal to the discounted conditional expected payoff:

$$\begin{split} &C\left(S_{t}, v_{t}, t; K, T\right) = e^{-r(T-t)} E_{M} \left[ \max(S_{T} - K, 0) \middle| S_{t}, v_{t} \right] \\ &= e^{-r(T-t)} \left( \int_{K}^{\infty} (S_{T} - K) P_{M}(S_{T} | S_{t}, v_{t}) dS_{T} \right) \\ &= S_{t} \left( \frac{1}{E_{M} \left[ S_{T} \middle| S_{t}, t \right]} \int_{K}^{\infty} S_{T} P_{M}(S_{T} | S_{t}, v_{t}) dS_{T} \right) \\ &- K e^{-r(T-t)} \int_{K}^{\infty} P_{M}(S_{T} | S_{t}, v_{t}) dS_{T} \\ &= S_{t} P_{1}(S_{t}, v_{t}, t; K < T) - K e^{-r(T-t)} P_{2}(S_{t}, v_{t}, t; K < T) \end{split}$$
(15)

where,  $E_M$  is the expectation with respect to the risk-neutral probability measure,  $P_M(S_T | S_t, v_t)$  is the corresponding conditional density given  $(S_t, v_t)$  and:

$$P_{1}(S_{t}, v_{t}, t; K, T) = \left(\int_{K}^{\infty} S_{T} P_{M}(S_{T} | S_{t}, v_{t}) dS_{T}\right) / E_{M}[S_{T} | S_{t}, v_{t}]$$

Note that  $P_1$  is the risk-neutral probability that  $S_T > K$  (since the integrand is nonnegative and the integral over  $[0, \infty)$  is one) and finally, that:

$$P_{2}(S_{t}, v_{t}, t; K, T) = \int_{K}^{\infty} P_{M}(S_{t}, v_{t}) dS_{T} = Prob(S_{T} > K \mid S_{t}, v_{t})$$

is the risk-neutral in-the-money probability. Moreover,  $E_M[S_T | S_t, v_t] = e^{r(T-t)}S_t$  for  $t \ge 0$ .

Note that we do not have a formulation for these probabilities thus we will calculate some approximations of  $P_1$  and  $P_2$ . Indeed, these probabilities are related to characteristic functions which have formulation as will be seen in Lemma 2.

#### RESULTS

In order to calculate the price of a European call option with strike price K and maturity T of the model (7) for which its fractional stochastic volatility satisfies Eq. 8, we consider the approximate model (10) and (11). Firstly, we consider logarithm of  $S_t^{\epsilon}$  namely  $L_t^{\epsilon}$ , i.e.  $L_t^{\epsilon} = \log(S_t^{\epsilon})$  where  $S_t^{\epsilon}$  satisfies Eq. 12 (the solution of Eq. 10) and its inverse  $S_t^{\epsilon} = \exp(L_t^{\epsilon})$ . Denote  $k = \log(K)$  the logarithm of the strike price. Secondly, we now refer to SDE (11), since this approximate model is driven by a semimartingale  $B_t^{\epsilon}$  and hence there is no opportunity of arbitrage (for more details (Thao, 2006)). This is the advantage of our approximate approach and we will use this model for pricing the European call option instead of SDE (8).

Note that we can write:

$$dB_{t}^{\varepsilon} = \alpha \varphi_{t}^{\varepsilon} dt + \varepsilon^{\alpha} dW_{t} \tag{16}$$

where  $\varphi_t^{\epsilon} = \int_0^t (t - u + \epsilon)^{1-\alpha} dW_u$ ,  $\alpha = 1/2 - H$  and  $0 < \alpha < 1/2$  ((Thao, 2006), Lemma 2.1).

Substituting (16) into Eq. 11, we obtain:

$$dv_t^{\epsilon} = (\omega + (\alpha \xi \phi_t^{\epsilon} - \theta) v_t^{\epsilon}) dt + \xi \epsilon^{\alpha} v_t^{\epsilon} dW_t$$
 (17)

Consider the SDE (10) and (17). Define a function U on  $\Re^2$  as follows:

$$U(x_1, x_2) = e^{-r(T-t)} \max(\exp(x_1 - \kappa), 0)$$

By virtue of Eq. 14:

$$\begin{split} &u(\vec{x},t) = E_{M} \Big[ U \Big( \vec{X}_{T} \Big) \Big| \vec{X}_{t} = \vec{x} \Big] \\ &= e^{-r(T-t)} E_{M} \Big[ max(exp((L^{\epsilon}_{t}) - \kappa), 0) \Big| L^{\epsilon}_{t} = \ell^{\epsilon}, v^{\epsilon}_{t} = v^{\epsilon} \Big] \\ &\coloneqq C(\ell^{\epsilon}, v^{\epsilon}, t; \kappa, T) \end{split}$$

satisfies the following PIDE:

$$\begin{split} 0 &= \frac{\partial C}{\partial t} + f_1 \frac{\partial C}{\partial \ell^\epsilon} + f_2 \frac{\partial C}{\partial v^\epsilon} + \frac{1}{2} g_1^2 \frac{\partial^2 C}{(\partial \ell^\epsilon)^2} \\ &+ \rho g_1 g_2 \frac{\partial^2 C}{\partial \ell^\epsilon \partial v^\epsilon} + \frac{1}{2} g_2^2 \frac{\partial^2 C}{\partial (v^\epsilon)^2} - rC \\ &+ \lambda \! \int_{\mathbb{R}} \! \left[ C(\ell^\epsilon + y, v^\epsilon, t; \kappa, T) - C(\ell^\epsilon, v^\epsilon, t; \kappa, T) \right] \phi_Y(y) dy. \end{split} \tag{18}$$

In the current state variable, the last line of Eq. 15 becomes:

$$C(\ell^{\varepsilon}, v^{\varepsilon}, t; \kappa, T) = e^{\ell^{\varepsilon}} P_{1}(\ell^{\varepsilon}, v^{\varepsilon}, t; \kappa, T)$$

$$-e^{\kappa - r(T - t)} P_{2}(\ell^{\varepsilon}, v^{\varepsilon}, t; \kappa, T).$$
(19)

The following lemma shows the relationship between  $P_1$  and  $P_2$  in the option value of the Eq. 19.

**Lemma 1:** The probability  $P_1$  in the option value of the Eq. 19 satisfies the following PIDE:

$$\begin{split} &0 = \frac{\partial P_1}{\partial t} + A[P_1](\ell^\epsilon, v^\epsilon, t; \kappa, T) + v^\epsilon \frac{\partial P_1}{\partial \ell^\epsilon} + \rho \xi \epsilon^\alpha (v^\epsilon)^{3/2} \frac{\partial P_1}{\partial v^\epsilon} \\ &+ (r - \lambda E_M(Y_t)) P_1 \\ &+ \lambda \int_{\Re} \Big[ (e^y - 1) P_1 \left(\ell^\epsilon + y, v^\epsilon, t; \kappa, T\right) \Big] \varphi_Y(y) dy \\ &= \frac{\partial p_1}{\partial t} + A_1[P_1](\ell^\epsilon, v^\epsilon, t; \kappa, T) \end{split} \tag{20}$$

subject to the boundary condition at expiration time t = T:

$$P_{1}(\ell^{\varepsilon}, v^{\varepsilon}, T; \kappa, T) = 1_{\ell^{\varepsilon} > \kappa}.$$
(21)

And the probability  $P_2$  in the option value of the Eq. 19 satisfies the following PIDE:

$$0 = \frac{\partial P_2}{\partial t} (\ell^{\varepsilon}, v^{\varepsilon}, t; \kappa, T) + rP_2$$
  

$$= \frac{\partial P_2}{\partial t} + A_2 \Big[ P_2 \Big] (\ell^{\varepsilon}, v^{\varepsilon}, t; \kappa, T)$$
(22)

subject to the boundary condition at expiration time t = T:

$$P_{2}(\ell^{\varepsilon}, v^{\varepsilon}, T; \kappa, T) = 1_{\ell^{\varepsilon} > \kappa}$$
(23)

Where:

$$\begin{split} &A\big[f\big](\ell^{\epsilon},v^{\epsilon},t;\kappa,T) \coloneqq (r - \lambda E[Y_{t}] - \frac{1}{2}v^{\epsilon}) \frac{\partial f}{\partial \ell^{\epsilon}} \\ &+ \Big(\omega + (\alpha \xi \phi^{\epsilon} - \theta)v^{\epsilon}\Big) \frac{\partial f}{\partial v^{\epsilon}} + \frac{1}{2}v^{\epsilon} \frac{\partial^{2} f}{\partial (\ell^{\epsilon})^{2}} \\ &+ \rho \xi \epsilon^{\alpha} (v^{\epsilon})^{3/2} \frac{\partial^{2} f}{\partial \ell^{\epsilon} \partial v^{\epsilon}} + \frac{1}{2} \xi^{2} \epsilon^{2\alpha} (v^{\epsilon})^{2} \frac{\partial^{2} f}{\partial (v^{\epsilon})^{2}} \\ &- rf + \lambda \int_{\Re} \left[ f(\ell^{\epsilon} + y, v^{\epsilon}, t; \kappa, T) - \phi_{Y}(y) dy \right] dy \end{split} \tag{24}$$

Note that  $1_{\ell^{\epsilon} > \kappa} = 1$  if  $\ell^{\epsilon} > \kappa$  and otherwise  $1_{\ell^{\epsilon} > \kappa} = 0$ .

**Proof:** Calculating the partial derivatives of function  $C(\ell^{\epsilon}, v^{\epsilon}, t; \kappa, T)$  in Eq. 19 and substituting it's in Eq. 18 then separating it by assumed independent terms  $P_1$  and  $P_2$ . This gives two PIDEs for the risk-neutralized probability  $P_i(\ell^{\epsilon}, v^{\epsilon}, t; \kappa, T)$ , j=1, 2. For j=1 we have:

$$\begin{split} 0 &= \frac{\partial P_1}{\partial t} + \left(r - \lambda E_M(Y_t) - \frac{1}{2}v^{\epsilon}\right) \left(\frac{\partial P_1}{\partial \ell^{\epsilon}} + P_1\right) \\ &+ \left(\omega + (\alpha \xi \phi_t^{\epsilon} - \theta)v^{\epsilon}\right) \frac{\partial P_1}{\partial v^{\epsilon}} + \frac{1}{2}v^{\epsilon} \left(\frac{\partial^2 P_1}{(\ell^{\epsilon})^2} + 2\frac{\partial P_1}{\partial \ell^{\epsilon}} + P_1\right) \\ &+ \rho \xi \epsilon^{\alpha} (v^{\epsilon})^{3/2} \left(\frac{\partial^2 P_1}{\partial \ell^{\epsilon} \partial v^{\epsilon}} + \frac{\partial P_1}{\partial v^{\epsilon}}\right) + \frac{1}{2} \xi^2 \epsilon^{2\alpha} (v^{\epsilon})^2 \frac{\partial^2 P_1}{\partial (v^{\epsilon})^2} - r P_1 \\ &+ \lambda \int_{\Re} \left[ \frac{(e^y - 1)P_1 (\ell^{\epsilon} + y, v^{\epsilon}, t; T)}{+ (P_1 (\ell^{\epsilon} + y, v^{\epsilon}, t; T) - P_1 (\ell^{\epsilon} + y, v^{\epsilon}, t; T)} \right] \phi Y(y) dy \end{split}$$

subject to the boundary condition at the expiration time t = T according to Eq. 21. By using the notation in Eq. 24 to PIDE (25) we get Eq. 20:

For  $P_{2}(\ell^{\epsilon}, v^{\epsilon}, t; \kappa, T)$ , we have:

$$0 = \frac{\partial P_{2}}{\partial t} + rP_{2} + \left(r - \lambda E_{M}(Y_{t}) - \frac{1}{2}v^{\epsilon}\right) \left(\frac{\partial P_{2}}{\partial \ell^{\epsilon}}\right)$$

$$+ (\omega(\alpha \xi \phi_{t}^{\epsilon} - \theta)v^{\epsilon}) \frac{\partial P_{2}}{\partial v^{\epsilon}} + \frac{1}{2}v^{\epsilon} \frac{\partial^{2}P_{2}}{\partial (\ell^{\epsilon})^{2}}$$

$$+ \rho \xi \epsilon^{\alpha} (v^{\epsilon})^{3/2} \frac{\partial^{2}P_{1}}{\partial \ell^{\epsilon}\partial v^{\epsilon}} + \frac{1}{2} \xi^{2} \epsilon^{2\alpha} (v^{\epsilon})^{2} \frac{\partial^{2}P_{1}}{\partial (v^{\epsilon})^{2}}$$

$$- rP_{2} + \lambda \int_{\Re} \left[ P_{2} (\ell^{\epsilon} + y, v^{\epsilon}, t; \kappa, T) - P_{2} (\ell^{\epsilon} + y, v^{\epsilon}, t; \kappa, T) \right] \phi_{Y}(y) dy$$

$$(26)$$

subject to the boundary condition at expiration time t = T according to Eq. 23. Again, by using the notation (24) to PIDE (26) we get Eq. 22. The proof is now completed.

Next, an approximate formula of European call option is calculated. For j=1, 2 the characteristic functions for  $P_j(\ell^\epsilon, v^\epsilon, t; \kappa, T)$  with respect to the variable k are defined by:

$$f_{j}(\ell^{\varepsilon}, v^{\varepsilon}, t: x, T) := -\int_{-\infty}^{\infty} e^{ix\kappa} dP_{j}(\ell^{\varepsilon}, v^{\varepsilon}, t: \kappa, T)$$

with a minus sign to account for the negativity of the measure  $dP_i$ . Note that  $f_i$  also satisfies similar PIDEs:

$$\frac{\partial f_{j}}{\partial t} + A_{j} \left[ f_{j} \right] (\ell^{\varepsilon}, v^{\varepsilon}, t; \kappa, T) = 0$$
(27)

with the respective boundary conditions:

$$\begin{split} &f_{_{j}}\left(\ell^{\epsilon},v^{\epsilon},T;x,T\right) = -\int\limits_{-\infty}^{\infty}e^{jxk}dP_{_{j}}\left(\ell^{\epsilon},v^{\epsilon},T;\kappa,T\right) \\ &= -\int\limits_{-\infty}^{\infty}e^{ix\kappa}(-\delta(\ell^{\epsilon}-\kappa)d\kappa) = e^{ix\ell^{\epsilon}} \end{split}$$

Since:

$$dP_{i}\left(\ell^{\epsilon}, v^{\epsilon}, T : \kappa, T\right) = d1_{\ell^{\epsilon} \times \nu} = dH(\ell^{\epsilon} - \kappa) = -\delta(\ell^{\epsilon} - \kappa)d\kappa$$

Note that the probabilities  $P_j$ ,  $j=1,\,2$  are the conditional probabilities that the option expires in-themoney that is:

$$P_i = M\{L_T^{\varepsilon} \ge \log K \mid L_t^{\varepsilon} = \ell^{\varepsilon}, v_t^{\varepsilon} = v\}$$

where again  $L_t^{\epsilon} = \log S_t^{\epsilon}$  and  $(S_t^{\epsilon}, v_t^{\epsilon})$  evolves according to Eq. 10 and 11 respectively.

Using a Fourier transform method one gets:

$$dP_{j}(\ell^{\varepsilon}, v^{\varepsilon}, t: \kappa, T) = \frac{1}{2} + \frac{1}{\pi} \int_{0^{+}}^{+\infty} Re \left[ \frac{e^{-ix\kappa} f_{j}(\ell^{\varepsilon}, v^{\varepsilon}, t: x, T)}{ix} \right] dx \quad (28)$$

where, j=1, 2 and the characteristic function  $f_j(\ell^\epsilon, v^\epsilon, t; x, T)$  also satisfy the PIDEs in lemma 1, namely Eq. 20 and 22 and Re[.] denoting the real component of a complex number. The practice to solving of this kind of equations is to guess the general form of the solution. The following lemma shows how

to calculate the probabilities  $P_1$  and  $P_2$  as they appeared in Lemma 1.

**Lemma 2:** The probabilities  $P_1$  and  $P_2$  can be calculated by Eq. 28 where the explicit expressions of the characteristic functions is given as follows. (i) The characteristic function  $f_1$  is given by:

$$f_i(\ell^{\varepsilon}, v^{\varepsilon}, t; x, t + \tau) = \exp(g_1(\tau) + v^{\varepsilon}h_1(\tau) + jx\ell^{\varepsilon})$$

where,  $\tau = T - t$ :

$$\begin{split} g_{1}(\tau) &= \left[r - \lambda E_{M}(Y_{t})jx - \lambda E_{M}(Y_{t})\right]\tau \\ &+ \tau \lambda \int_{\Re} (e^{(ix+1)y} - 1)\varphi_{Y}(y)dy \\ &- \frac{2\omega}{\xi^{2}\epsilon^{2\alpha}v^{\epsilon}} \left[log\left(1 - \frac{(\Delta_{l} + \eta_{l}) + (1 - e^{\omega_{l}\tau})}{2\Delta_{l}}\right) + (\Delta_{l} + \eta_{l})\tau\right], \\ h_{1}(\tau) &= \frac{(\eta_{l}^{2} - \Delta_{l}^{2})(e^{\Delta_{l}\tau} - 1)}{\xi^{2}\epsilon^{2\alpha\epsilon}v^{\epsilon}(\eta_{l} + \Delta_{l} - (\eta_{l} - \Delta_{l})e^{\Delta_{l}\tau})}, \\ \eta_{1} &= \rho\xi\epsilon^{\alpha}\sqrt{v^{\epsilon}}(1 + ix) + (\alpha\xi\ell^{\epsilon}_{t} - \theta) \end{split}$$
 and  $\Delta_{1} = \sqrt{\eta_{1}^{2} - \xi^{2}\epsilon^{2\alpha}ix(ix + 1)}$ 

(ii) The characteristic function  $f_2$  is given by:

$$f_2(\ell^{\varepsilon}, v^{\varepsilon}, t; x, t + \tau) = \exp(g_2(\tau) + v^{\varepsilon}h_2(\tau) + ix\ell^{\varepsilon} + r\tau)$$

Where:

$$\begin{split} &g_2(\tau) = [r - \lambda E_M[Y_t \ ] iy - r] \tau + \tau \lambda \int_{\Re} (e^{ixy} - l) \varphi_Y(y) dy \\ &- \frac{2\omega}{\xi^2 \epsilon^{2\alpha} v^\epsilon} \Bigg[ log \Bigg( 1 - \frac{(\Delta_2 + \eta_2) + (1 - e^{\Delta_2 \tau})}{2\Delta_2} \Bigg) + (\Delta_2 + \eta_2) \tau \Bigg], \\ &h_2(\tau) = \frac{(\eta_2^2 - \Delta_2^2)(e^{\Delta_2 \tau} - l)}{\xi^2 \epsilon^{2\alpha} v^\epsilon (\eta_2 + \Delta_2 - (\eta_2 - \Delta_2)e^{\Delta_2 \tau})}, \\ &\eta_2 = \rho \xi \epsilon^\alpha \sqrt{v^\epsilon} ix + (\alpha \xi \phi_t^\epsilon - \theta) \\ ∧ \quad \Delta_2 = \sqrt{\eta_2^2 + \xi^2 \epsilon^{2\alpha}} v^\epsilon ix (ix - l) \end{split}$$

**Proof:** Proof of (i). To solve for the characteristic explicitly, letting  $\tau = T - t$  be the time-to-go. Following (Heston, 1993), we conjecture that the function  $f_1$  is given by:

$$f_1(\ell^{\varepsilon}, v^{\varepsilon}, t; x, t + \tau) = \exp((g_1)(\tau) + v^{\varepsilon}h_1(\tau) + ix\ell^{\varepsilon})$$
 (29)

and the boundary condition  $g_1(0) = 0 = h_1(0)$ . This conjecture exploits the linearity of the coefficient in PIDE (27).

Note that the characteristic functions of  $f_1$  always exists. In order to substitute (29) into (27), firstly, we calculate the partial derivative of  $f_1$  and substitute it's into Eq. 27. After canceling the common factor of  $f_1$ , we get a simplified form as follows:

$$\begin{split} 0 &= g_1'(\tau) - v^{\epsilon}h_1'(\tau) + (r - \lambda E_M[Y_t] + \frac{1}{2}v^{\epsilon})ix \\ &+ (\omega + (\alpha\xi\phi_t^{\epsilon} - \theta)v^{\epsilon}) + \rho\xi\epsilon^{\alpha}(v^{\epsilon})^{3/2}h_1(\tau) \\ &- \frac{1}{2}v^{\epsilon}x^2 + \rho\xi\epsilon^{\alpha}(v^{\epsilon})^{3/2}ixh_1(\tau) + \frac{1}{2}\xi^2\epsilon^{2\alpha}(v^{\epsilon})^2h_1^2(\tau) \\ &- \lambda E_M[Y_t] + \lambda\int_{\Re}(e^{(ix+1)y} - 1)\phi_Y(y)dy \end{split}$$

By separating the order  $v^{\epsilon}$  and ordering the remaining terms, we can reduce it to two Ordinary Differential Equations (ODEs):

$$\begin{split} h_1'(\tau) &= \frac{1}{2} \xi^2 \epsilon^{2\alpha} v^{\epsilon} h_1^2(\tau) + (\rho \xi \epsilon^{\alpha} \sqrt{v^{\epsilon}} (1 + ix) \\ &+ (\alpha \xi \phi_t^{\epsilon} - \theta)) h_1(\tau) + \frac{1}{2} ix - \frac{1}{2} x^2 \end{split} \tag{30}$$

$$\begin{split} g_1'(\tau) &= \omega h_1(\tau) + (r - \lambda E_M[Y_t]) ix - \lambda E_M[Y_t] \\ &+ \lambda \int_{\Sigma} (e^{(ix+1)y} - 1) \phi_Y(y) dy \end{split} \tag{31}$$

Let  $\eta_t = \rho \xi \epsilon^{\alpha} \sqrt{v^{\epsilon}} (1+ix) + (\alpha \xi \phi^{\epsilon}_t - \theta)$  and substitute it to Eq. 30.

We get:

$$\begin{split} &h_1'(\tau) = \frac{1}{2} \xi^2 \epsilon^{2\alpha} v^\epsilon \Bigg( h_1^2(\tau) + \frac{2\eta_1}{\xi^2 \epsilon^{2\alpha} v^\epsilon} h_1(\tau) + \frac{1}{\xi^2 \epsilon^{2\alpha} v^\epsilon} ix(ix+1) \Bigg) \\ &= \frac{1}{2} \xi^2 \epsilon^{2\alpha} \Bigg( h_1(\tau) + \frac{2\eta_1 + \sqrt{4\eta_1^2 - 4\xi^2 \epsilon^{2\alpha} v^\epsilon} ix(ix+1)}{2\xi^2 \epsilon^{2\alpha} v^\epsilon} \Bigg) \\ &\times \Bigg( h_1(\tau) + \frac{2\eta_1 - \sqrt{4\eta_1^2 - 4\xi^2 \epsilon^{2\alpha} v^\epsilon} ix(ix+1)}{2\xi^2 \epsilon^{2\alpha} v^\epsilon} \Bigg) \\ &= \frac{1}{2} \xi^2 \epsilon^{2\alpha} v^\epsilon \left( h_1(\tau) + \frac{\eta_1 + \Delta_1}{\xi^2 \epsilon^{2\alpha} v^\epsilon} \right) \Bigg( h_1(\tau) \frac{\eta_1 - \Delta_1}{\xi^2 \epsilon^{2\alpha} v^\epsilon} \Bigg) \end{split}$$

Where:

$$\Delta_1 = \sqrt{\eta_1^2 - \xi^2 \epsilon^{2\alpha} v^{\epsilon} ix(ix+1)}$$

By method of variable separation, we have:

$$\frac{2dh_{_{1}}(\tau)}{\left(h_{_{1}}(\tau)+\frac{\eta_{_{1}}+\Delta_{_{1}}}{\xi^{2}\epsilon^{2\alpha}v^{\epsilon}}\right)\!\!\left(h_{_{1}}(\tau)+\frac{\eta_{_{1}}-\Delta_{_{1}}}{\xi^{2}\epsilon^{2\alpha}v^{\epsilon}}\right)\!\!=\!\xi^{2}\epsilon^{2\alpha}v^{\epsilon}d\tau}$$

Using partial fractions, we get:

$$\frac{1}{\Delta_1} \left( \frac{1}{h_1(\tau) + \frac{\eta_1 - \Delta_1}{\xi^2 \epsilon^{2\alpha} v^\epsilon}} - \frac{1}{h_1(\tau) + \frac{\eta_1 + \Delta_1}{\xi^2 \epsilon^{2\alpha} v^\epsilon}} \right) dh_1(\tau) = d\tau$$

Integrating both sides, we obtain:

$$log\left(\frac{h_1(\tau) + \frac{\eta_1 - \Delta_1}{\xi^{2\epsilon}\alpha v^{\epsilon}}}{h_1(\tau) + \frac{\eta_1 + \Delta_1}{\xi^{2\epsilon}\alpha v^{\epsilon}}}\right) = \Delta_1 \tau + C$$

Using boundary condition  $h_1(\tau = 0) = 0$  we get:

$$C = \log \left( \frac{\eta_1 - \Delta_1}{\eta_1 + \Delta_1} \right)$$

Solving for  $h_1$ , we obtain:

$$h_1(\tau) = \frac{(\eta_1^2 - \Delta_1^2)(e^{\Delta_1 \tau} - 1)}{\xi^2 \epsilon^{2\alpha} c^{\epsilon} (\eta_1 + \Delta_1 - (\eta_1 - \Delta_1)e^{\Delta_1 \tau})}$$

In order to solve  $g_1(\tau)$  explicitly, we substitute  $h_1$  into Eq. 31 and integrate with respect to T on both sides.

Then we get:

$$\begin{split} &g_{1}(\tau)\!=\!\Big[(r\!-\!\lambda E_{_{M}}(Y_{_{t}}))ix\!-\!\lambda E(Y_{_{t}})\Big]\tau\\ &+\!\tau\!\lambda\!\int_{\mathfrak{R}}(e^{(ix+1)y}-\!1)\!\varphi_{_{Y}}(y)dy\\ &-\!\frac{2\omega}{\xi^{2}\epsilon^{2\alpha}v^{\epsilon}}\!\Bigg[log\!\left(1\!-\!\frac{(\Delta_{_{1}}+\eta_{_{1}})\!+\!(1\!-\!e^{\Delta_{_{1}}\tau})}{2}\right)\!+\!(\Delta_{_{1}}+\eta_{_{1}})\tau\Bigg] \end{split}$$

Proof of (ii). The details of the proof are similar to case (i). Hence, we have:

$$f_2(\ell^{\varepsilon}, v^{\varepsilon}, t; y, t + \tau) = \exp(g_2(\tau) + v^{\varepsilon}h_2(\tau) + iy\ell^{\varepsilon} + r\tau)$$

where,  $g_2(\tau)$ ,  $h_2(\tau)$ ,  $\eta_2$  and  $\Delta_2$  are as given in the Lemma.

We can thus evaluate the characteristic functions in explicit form. However, we are interested in the risk-neutral probabilities  $P_j$ . These can be inverted from the characteristic functions by performing the following integration:

$$\begin{split} \hat{P}_{j}\left(S_{t}^{\epsilon}, v_{t}^{\epsilon}; K, T\right) &= P_{j}\left(\ell^{\epsilon}, v^{\epsilon}, t; \kappa, T\right) \\ &= \frac{1}{2} + \frac{1}{\pi} \int_{0+}^{+\infty} Re \left[\frac{e^{-ix\kappa} f_{j}\left(\ell^{\epsilon}, v_{t}^{\epsilon}t; x, T\right)}{ix}\right] dx \end{split}$$

 $\begin{array}{lll} \text{for} & j &=& 1, & 2, & \text{where} & \ell^\epsilon = \log(S^\epsilon_t), \, v^\epsilon = \log(v^\epsilon_t), \, \, \text{and} \\ & \kappa = \log(K). \end{array}$ 

To verify the above equation, firstly we note that:

$$\begin{split} &E_{M}\bigg[e^{ix(log(S_{t}^{\epsilon}-log(K))}\big|log(S_{t}^{\epsilon}) = L_{t}^{\epsilon}, v_{t}^{\epsilon} = v^{\epsilon}\bigg] \\ &= E_{M}\bigg[e^{ix(\ell^{\epsilon}-K)}\Big|L_{t}^{\epsilon} = \ell^{\epsilon}, v_{t}^{\epsilon} = v^{\epsilon}\bigg] \end{split}$$

The computation of the right of above equation are:

$$\begin{split} &\int\limits_{-\infty}^{+\infty} e^{-ix(\ell^{\epsilon}-\kappa)} dP_{j}\left(\ell^{\epsilon}, v^{\epsilon}, t; \kappa, T\right) = e^{-ix\kappa} \int\limits_{-\infty}^{+\infty} e^{-ix\ell^{\epsilon}} dP_{j}\left(\ell^{\epsilon}, v^{\epsilon}, t; \kappa, T\right) \\ &= e^{-ix\kappa} \int\limits_{-\infty}^{+\infty} e^{ix\ell^{\epsilon}} \left(-\delta(\ell^{\epsilon}-\kappa) d\kappa\right) = e^{-ix\kappa} f_{j}\left(\ell^{\epsilon}, \epsilon, t; x, T\right) \end{split}$$

Then:

$$\begin{split} &\frac{1}{2} + \frac{1}{\pi} \int_{0+}^{+\infty} Re \Bigg[ \frac{e^{-i\infty x} f_{j} \left(\ell^{\epsilon}, v_{t}^{\epsilon} t; x, T\right)}{ix} \Bigg] dx \\ &= \frac{1}{2} + \frac{1}{\pi} \int_{0+}^{+\infty} Re \Bigg[ \frac{E_{M} \left[ e^{ix(\log(S_{t}^{\epsilon}) - \log(\kappa))} \left| \log(S_{t}^{\epsilon}) = L_{t}^{\epsilon}, v_{t}^{\epsilon} = v^{\epsilon} \right. \right]}{ix} dx \Bigg] \\ &= E_{M} \Bigg[ \frac{1}{2} + \frac{1}{\pi} \int_{0+}^{+\infty} Re \Bigg[ \frac{e^{ix(\ell^{\epsilon} - \kappa)}}{ix} \Bigg] dx \Big| L_{t}^{\epsilon} = \ell^{\epsilon}, v_{t}^{\epsilon} = v^{\epsilon} \Bigg] \\ &= E_{M} \Bigg[ \frac{1}{2} + \frac{1}{\pi} \int_{0+}^{+\infty} \frac{\sin x(\ell^{\epsilon} - \kappa)}{x} dx \Big| L_{t}^{\epsilon} = \ell^{\epsilon}, v_{t}^{\epsilon} = v^{\epsilon} \Bigg] \\ &= E_{M} \Bigg[ \frac{1}{2} + sgn(\kappa^{\epsilon} - \kappa) \frac{1}{\pi} \int_{0+}^{+\infty} \frac{\sin(x)}{x} dx \Big| L_{t}^{\epsilon} = \ell^{\epsilon}, v_{t}^{\epsilon} = v^{\epsilon} \Bigg] \\ &= E_{M} \Bigg[ \frac{1}{2} + sgn(\ell^{\epsilon} - \kappa) \Big| L_{t}^{\epsilon} = v^{\epsilon}, v_{t}^{\epsilon} = v^{\epsilon} \Bigg] \\ &= E_{M} \Bigg[ 1_{\ell^{\epsilon} > \kappa} \Big| L_{t}^{\epsilon} = \ell^{\epsilon}, v_{t}^{\epsilon} = v^{\epsilon} \Bigg] \end{split}$$

where we have used the Dirichlet formula  $\int_{-\infty}^{+\infty} \frac{\sin(x)}{x} dx = 1 \text{ and the sgn function is defined as sgn}$  $\operatorname{sgn}(x) = 1 \text{ if } x > 0, 0 \text{ if } x = 0 \text{ and and } -1 \text{ if } x < 0.$ 

In summary, we have just proved the following main theorem.

**Theorem 3:** For each  $\varepsilon > 0$ ; the value of a European call option written on the model (10) and (11) is:

$$\begin{split} \hat{C}(S_t^\epsilon, v_t^\epsilon, t, K, T) &= S_t^\epsilon \hat{P}_l\left(S_t^\epsilon, v_t^\epsilon, t, K, T\right) \\ &- K e^{-r(T-t)} \hat{P}_2\left(S_t^\epsilon, v_t^\epsilon, t, K, T\right) \end{split}$$

where, P<sub>1</sub> and P<sub>2</sub> are as given in Lemma 2.

#### DISCUSSION

A simple and efficient numerical scheme for determining the approximate process  $S^\epsilon_t$  and  $v^\epsilon_t$  is presented.

In order to compute the value of  $\hat{C}(S_t^\epsilon, v_t^\epsilon, t; K, T)$  according to the formula as given in Theorem 3, we firstly choose a real number  $\epsilon > 0$ , the solution that we get is the value of a European call option of the approximation model (10) with (11) and this value can be used as an approximating value of a call option of the fractional model (7) including model (8) as  $\epsilon$  approaches zero. As the Monte-Carlo based technique, it will generate discrete sample values  $S_i^\epsilon$  and  $v_i^\epsilon$  of the stock and its variance respectively, by discretizing the associated SDEs (10) and (11). A natural choice for this purpose is the Euler scheme:

$$\hat{S}_{i+1}^{\varepsilon} = S_{i+1}^{\varepsilon} ((r - \lambda E_{M}[\hat{Y}_{i}]) dt + \sqrt{\hat{v}_{i}^{\varepsilon}} \Delta W_{t}) + S_{i-}^{\varepsilon} Y_{i} \Delta N_{i}$$

$$\hat{v}_{i+1}^{\varepsilon} = (\omega - \theta \hat{v}_{i}^{\varepsilon}) h + \xi \hat{v}_{i}^{\varepsilon} \Delta B_{\varepsilon}^{\varepsilon}$$
(32)

Where:

 $\Delta W_t$  = Standard normal random variable with variance h, which is defined as the time mesh-size  $\Delta N_i$  = A Poisson process with intensity  $\lambda h$ 

These processes, W and N are assumed independent. However, (Glasserman, 2004) suggests that the second-order scheme has a better convergence (less bias) for option pricing applications but this scheme quite complex. For the simulation of Brownian motion there are numerous procedures see (Glasserman, 2004). For a sample path of fractional Brownian motion in Eq. 10, we can be simulated, for fixed t > 0, as:

$$\begin{split} & B_{t} \simeq \sum_{k=1}^{N} (t - \frac{k}{N} t)^{\alpha} [W_{(k+1)_{\frac{t}{N}}} - W_{\frac{t}{N}}] \\ & = \sum_{k=1}^{N} (t - \frac{k}{N} t)^{\alpha} \sqrt{\frac{t}{N}} [W_{(k+1)} - W_{k}] \\ & = \sqrt{\frac{t}{N}} \sum_{k=1}^{N} (t - \frac{k}{N} t)^{\alpha} g_{k} \end{split}$$

where,  $g_k \sim N(0,1)$  and  $0 < \alpha < 1/2$ .

There are two basic estimation of the volatility process of Eq. 32 in the cast the volatility process is constant. The first method considers the function of density of transition from solution of Eq. 32. The second method proposes the estimate of the parameters of the model via the observation. Khaled and Samia (2010) for more details). In our case, the volatility of Eq. 32 is the stochastic process. There are many articles provided the estimation procedure for example see (Fiorentini *et al.*, 2002).

### **CONCLUSION**

An alternative fractional stochastic volatility model with jump is proposed in this study which the stock prices follows a geometric Brownian motion combining a compound Poisson processes and a stochastic volatility perturbed by a fractional Brownian motion. This proposed model exhibits a long memory of a stochastic volatility model that is not expressed in the classical stochastic volatility model. By using a fundamental result of the L²-approximation of a fractional Brownian motion, we provide approximate solution of bivariate diffusion model. A relationship between stochastic differential equations and partial differential equations for a bivariate model is presented. The risk-neutral method for valuation of options are reviewed. By using the technique base on the characteristic function of an underlying assets, an approximate formula of a European options is derived in an explicit formula. Finally a numerical integration technique to simulation the fractional stochastic volatility are present.

#### ACKNOWLEDGMENT

This research is (partially) supported by Thailand Research Fund.

#### REFERENCES

Cheong, C.W., 2008. Volatility in Malaysian stock market: An empirical study using fractionally integrated Am. J. of Applied Sci. 5: 683-688. DOI: 10.3844/ajassp.2008.683.688

- Cont, R. and P. Tankov, 2009. Financial Modeling with Jump Processes. 2nd Edn., Taylor and Francis, ISBN: 1420082191, 978-1420082197, pp: 606.
- Fiorentini, G., A. Leon and G. Rubio, 2002. Estimation and empirical performance of Heston's stochastic volatility model: The case of a thinly traded market. J. Empirical Finance, 9: 225-255. DOI: 10.1016/S0927-5398(01)00052-4
- Glasserman, P., 2004. Monte-Carlo in Financial Engineering. 1st Edn., Springer, ISBN: 0387004513, 978-0387004518, pp. 596.
- Hanson, F.B., 2007. Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation. 1st Edn., SIAM Books, ISBN: 0898716330, 978-0898716337, pp. 443.
- Heston, S.L., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud., 6: 327-343. DOI: 10.1093/rfs/6.2.327
- Intarasit, A. and P. Sattayatham, 2010. A geometric Brownian motion model with compound Poisson process and fractional stochastic volatility. Adv. Appli. Stat., 16: 25-47. http://risklabbkk.com/images/PDF\_files/Intarasit01.pdf
- Khaled, K. and M. Samia, 2010. Estimation of the parameters of the stochastic differential equations black-scholes model share price of gold. J. Math. Stat., 6: 421-424. DOI: 10.3844/jmssp.2010.421.424
- Magnus, F.J. and O.E. Fosu, 2006. Modeling and forecasting volatility of returns on the ghana stock exchange using garch models. Am. J. Applied Sci., 3: 2042-2048. DOI: 10.3844/ajassp.2006.2042.2048
- Shamiri, A. and Z. Isa, 2009. Modeling and forecasting volatility of the malaysian stock markets. J. Math. Stat., 5: 234-240. DOI: 10.3844/jmssp.2009.234.240
- Thao, T.H., 2006. An approximate approach to fractional analysis for finance. Nonlinear Anal.: Real World Appli., 7: 124-132. DOI: 10.1016/J.NONRWA.2004.08.012

# Elsevier Editorial System(tm) for Journal of the Korean Statistical Society Manuscript Draft

Manuscript Number: JKSS-D-11-00069R2

Title: Option Pricing for a Stochastic Volatility Lévy model with Stochastic Interest Rates.

Article Type: Full Length Article

Keywords: Time-change Lévy process; Stochastic interest rate; Option pricing.

Corresponding Author: Professor Pairote SATTAYATHAM, Ph.D.

Corresponding Author's Institution: Suranaree University of Technology

First Author: Pairote Sattayatham

Order of Authors: Pairote Sattayatham; Sarisa Pinkham, Ph.D Mathematics

Abstract: An alternative option pricing model under a forward measure is proposed, in which asset prices follow a stochastic volatility Lévy model with stochastic interest rate. The stochastic interest rate is driven by the Hull White process. By using an approximate method, we find a formulation for the European option in term of the characteristic function of the tail probabilities.

**Detailed Response to Reviewers and/or Cover Letter** 

Department of Mathematics, Suranaree University of Technology, Thailand, April 26, 2012.

Ms. Ref. No.: JKSS-D-11-00069R1

Title: Option Pricing for a Stochastic Volatility Levy model with Stochastic Interest Rates

Dear the Editor in Chief (Journal of the Korean Statistical Society)

Referring to your email letter on April 22, 2012 about the accepting the paper (with reference above) to publish in Korean statistical Society journal. I would like to thank you very much for your kind consideration. I did not change the title of this paper since I agree with your comment.

Moreover, I and the second author have carefully read and checked this paper again line by line. We have already corrected a little bit typing mistakes which we found while preparing the final version.

Now I have finished the process of preparing the draft of a final version and I just uploaded this final draft of the paper to you. I am glad to see the published article soon.

Yours Sincerely,

Professor Dr. Pairote Sattayatham Suranaree University of Technology, Thailand. www.risklabbkk.com

## Option Pricing for a Stochastic Volatility Lévy model with Stochastic Interest Rates

P. Sattayatham<sup>2</sup> and S. Pinkham

School of Mathematics, SUT, Thailand

**Abstract.** An alternative option pricing model under a forward measure is proposed, in which asset prices follow a stochastic volatility Lévy model with stochastic interest rate. The stochastic interest rate is driven by the Hull White process. By using an approximate method, we find a formulation for the European option in term of the characteristic function of the tail probabilities.

Keywords: Time-change Lévy process, Stochastic interest rate, Option pricing.

2010 Mathematics Subject Classification: 60G51

### 1. Introduction

Let  $(\Omega, F, P)$  be a probability space. A stochastic process  $L_i$  is a Lévy process if it has independent and stationary increments and has a stochastically continuous sample path, i.e. for any  $\varepsilon > 0$ ,  $\lim_{h \to 0} P(|L_{i+h} - L_i| > \varepsilon) \to 0$ . The simplest possible Lévy processes are the standard Brownian motion  $W_i$ , Poisson process  $N_i$ , and compound Poisson process  $\sum_{i=1}^{N_i} Y_i$  where  $Y_i$  are i.i.d. random variables. Of course, we can build a new Lévy process from known ones by using the technique of linear transformation. For example, the jump diffusion process  $\mu t + \sigma W_i + \sum_{i=1}^{N_i} Y_i$ , where  $\mu, \sigma$  are constants, is a Lévy process which comes from a linear transformation of two independent Lévy processes, i.e. a Brownian motion with drift and a compound Poisson process.

Assume that a risk-neutral probability measure Q exists and all processes in section 1 and 2 will be considered under this risk-neutral measure.

In the Black - Scholes model, the price of a risky asset  $S_t$  under a risk-neutral measure Q and with non dividend payment follows

$$S_{t} = S_{0} \exp(\tilde{L}_{t}) = S_{0} \exp\left(rt + \left(\sigma W_{t} - \frac{1}{2}\sigma^{2}t\right)\right),$$
(1.1)

where  $r \in \Re$  is a risk-free interest rate,  $\sigma \in \Re$  is a volatility coefficient of the stock price.

Instead of modeling the log returns  $\tilde{L}_t = rt + \left(\sigma W_t - \frac{1}{2}\sigma^2 t\right)$  with a normal distribution, we now replace it with a more sophisticated process  $L_t$  which is a Lévy process of the form

$$L_{t} = rt + \left(\sigma W_{t} - \frac{1}{2}\sigma^{2}t\right) + J_{t}, \tag{1.2}$$

where  $J_t$  denotes a pure Lévy jump component, (i.e. a Lévy process with no Brownian motion part). We assume that the processes  $W_t$  and  $J_t$  are independent.

<sup>&</sup>lt;sup>1</sup> This research is (partially) supported by the Thailand Research Fund.

<sup>&</sup>lt;sup>2</sup> Corresponding author. *E-mail address*: pairote@sut.ac.th (P.Sattayatham).

To incorporate the volatility effect to the model Eq. (1.2), we follow the technique of Carr and Wu (2004) by subordinating a standard Brownian motion component  $\sigma W_t - \frac{1}{2}\sigma^2 t$  and a pure jump Lévy process  $J_t$  by the time integral of a mean reverting Cox Ingersoll Ross (CIR) process

$$T_t = \int_0^t v_s ds ,$$

where  $v_t$  follows the CIR process

$$dv_t = \gamma (1 - v_t) dt + \sigma_v \sqrt{v_t} dW_t^v. \tag{1.3}$$

Here  $W_i^{\nu}$  is a standard Brownian motion which corresponds to the process  $v_i$ . The constant  $\gamma \in \mathbb{R}$  is the rate at which the process  $v_i$  reverts toward its long term mean and  $\sigma_{\nu} > 0$  is the volatility coefficient of the process  $v_i$ .

Hence, the model (1.2) has been changed to

$$L_{t} = rt + \left(\sigma W_{T} - \frac{1}{2}\sigma^{2}T_{t}\right) + J_{T} \tag{1.4}$$

and this new process is called a stochastic volatility Lévy process. One can interpret  $T_i$  as the stochastic clock process with activity rate process  $v_i$ . By replacing  $\tilde{L}_i$  in (1.1) with  $L_i$ , we obtain a model of an underlying asset under the risk-neutral measure Q with stochastic volatility as follows:

$$S_{t} = S_{0} \exp(L_{t}) = S_{0} \exp(rt + \left(\sigma W_{T_{t}} - \frac{1}{2}\sigma^{2}T_{t}\right) + J_{T_{t}}). \tag{1.5}$$

In this paper, we shall consider the problem of finding a formula for European call options based on the underlying asset model (1.5) for which the constant interest rates r is replaced by the stochastic interest rates r, i.e. the model under our consideration is given by

$$S_t = S_0 \exp\left(r_t t + \left(\sigma W_T - \frac{1}{2}\sigma^2 T_t\right) + J_T\right). \tag{1.6}$$

Here, we assume that  $r_t$  follows the Hull-White process

$$dr_{t} = (\alpha(t) - \beta r_{t})dt + \sigma_{r}dW_{t}^{r}, \qquad (1.7)$$

 $W_t^r$  is a standard Brownian motion with respect to the process  $r_t$ , and  $dW_t^r dW_t = 0$ . The constant  $\beta \in \mathbb{R}$  is the rate at which the interest rate reverts toward its long term mean,  $\sigma_r > 0$  is the volatility coefficient of the interest rate process (1.7),  $\alpha(t)$  is a deterministic function, and is well defined in a time interval [0,T]. We also assume that the interest rate process  $r_t$  and the activity rate process  $v_t$  are independent.

The problem of option pricing under stochastic interest rates has been investigated for along time. Kim (2001) constructed the option pricing formula based on Black-Scholes model under several stochastic interest rate processes, i.e., Vasicek, CIR, Ho-Lee type. He found that by incorporating stochastic interest rates into the Black-Scholes model, for a short maturity option, does not contribute to improvement in the performance of the original Black-Scholes' pricing formula. Brigo and Mercurio (2006, page 883) mention that the stochastic feature of interest rates has a stronger impact on the option price when pricing for a long maturity option. Carr and Wu (2004) continue this study by giving the option pricing formula based on a time-changed Levy process model. But they still use constant interest rates in the model.

In this paper, we give an analysis on the option pricing model based on a time-changed Levy process with stochastic interest rates.

The rest of the paper is organized as follows. The dynamics under the forward measure is described in section 2. The option pricing formula is given in section 3. Finally, the close form solution for a European call option in terms of the characteristic function is given in section 4.

### 2. The dynamics under the Forward Measure

We begin by giving a brief review of the definition of a correlated Brownian motion and some of its properties (see Brummelhuis (2008) page 70). Recalling that a *standard Brownian motion in*  $R^n$  is a stochastic process  $(\vec{Z}_t)_{t\geq 0}$  whose value at time t is simply a vector of n independent Brownian motions at t:

$$\vec{Z}_{t} = (Z_{1,t},...Z_{n,t}).$$

We use Z instead of W, since we would like to reserve the latter for the more general case of correlated Brownian motion, which will be defined as follows:

Let  $\rho = (\rho_{ij})_{1 \le i,j \le n}$  be a (constant) positive symmetric matrix satisfying  $\rho_{ii} = 1$  and  $-1 \le \rho_{ij} \le 1$ . By Cholesky's decomposition theorem, one can find an upper triangular  $n \times n$  matrix  $H = (h_{ij})$  such that  $\rho = HH^t$ , where  $H^t$  is the transpose of the matrix H. Let  $\vec{Z}_t = (Z_{1,t},...,Z_{n,t})$  be a standard Brownian motion as introduced above, we define a new vector-valued process  $\vec{W}_t = (W_{1,t},...,W_{n,t})$  by  $\vec{W}_t = H\vec{Z}_t$  or, in term of components,

$$W_{i,t} = \sum_{j=1}^{n} h_{ij} Z_{j,t}, i = 1,...,n.$$

The process  $(\vec{W_t})_{t\geq 0}$  is called a *correlated Brownian motion* with a (constant) correlation matrix  $\rho$ . Each component-process  $(W_{i,t})_{t\geq 0}$  is itself a standard Brownian motion. Note that if  $\rho = Id$  (the identity matrix) then  $\vec{W_t}$  is a standard Brownian motion. For example, if we let a symmetric matrix

$$\rho = \begin{bmatrix}
1 & \rho_{\nu} & 0 \\
\rho_{\nu} & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} .$$
(2.1)

Then  $\rho$  has a *Cholesky decomposition* of the form  $\rho = HH^T$  where H is an upper triangular matrix of the form

$$H = egin{bmatrix} \sqrt{1-
ho_{v}^{2}} & 
ho_{v} & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$

Let  $\vec{Z}_t = (Z_t, Z_t^r, Z_t^r)$  be three independent Brownian motions then  $\vec{W}_t = (W_t, W_t^r, W_t^r)$  defined by  $\vec{W}_t = H\vec{Z}_t$ , or in terms of components,

$$W_{t} = (\sqrt{1 - \rho_{v}^{2}}) Z_{t} + \rho_{v} Z_{t}^{v}, \quad W_{t}^{v} = Z_{t}^{v}, \quad W_{t}^{r} = Z_{t}^{r},$$
(2.2)

is a correlated Brownian motion with correlation matrix  $\rho$  as given in Eq. (2.1).

Now let us turn to our problem. Note that, by Ito's lemma, the model (1.6) has the dynamic given by  $dS_t = S_{t-}r_t dt + \sigma S_{t-} dW_T + S_{t-} dJ_T^*,$ 

$$dr_{t} = (\alpha(t) - \beta r_{t})dt + \sigma_{r}dW_{t}^{r},$$

$$dv_{t} = \gamma(1 - v_{t})dt + \sigma_{v}\sqrt{v_{t}}dW_{t}^{v},$$
(2.3)

where  $dJ_{T_t}^* = dJ_{T_t} + (e^{\Delta J_{T_t}} - 1 - \Delta J_{T_t})$ ,  $dW_t dW_t^r = dW_t^r dW_t^v = 0$ , and  $dW_t dW_t^v = \rho_v dt$ .

We can re-write the system (2.3) in terms of three independent Brownian motions  $(Z_t, Z_t^v, Z_t^r)$  as follows:

$$dS_{t} = S_{t-} r_{t} dt + \sigma S_{t-} \left( \rho_{v} dZ_{T_{t}}^{v} + \sqrt{1 - \rho_{v}^{2}} dZ_{T_{t}} \right) + S_{t-} dJ_{T_{t}}^{*}, \tag{2.4}$$

$$dr_{t} = (\alpha(t) - \beta r_{t})dt + \sigma_{r}dZ_{t}^{r}, \qquad (2.5)$$

$$dv_t = \gamma (1 - v_t) dt + \sigma_v \sqrt{v_t} dZ_t^v. \tag{2.6}$$

This decomposition makes it easier to perform a measure transformation. In fact, for any fixed maturity T, let us denote by  $Q^T$  the T-forward measure, i.e. the probability measure that is defined by the Radon-Nikodym derivative,

$$\frac{dQ^{T}}{dQ} = \frac{\exp\left(-\int_{0}^{T} r_{u} du\right)}{P(0,T)}.$$
(2.7)

Here, P(t,T) is the price at time t of a zero-coupon bond with maturity T and is defined as

$$P(t,T) = E_{\mathcal{Q}} \left[ e^{-\int_{t}^{T} r_{s} ds} \mid F_{t} \right]. \tag{2.8}$$

We denote f(0,t) to be the market instantaneous forward rate at time 0 for the maturity time  $t \ge 0$  and it is defined by

$$f(0,t) := -\frac{\partial}{\partial t} \ln P(0,t), \quad 0 \le t \le T.$$
(2.9)

Poulsen (2005) gave a relation between the coefficients of Eq. (2.5) and the forward rate f(0,t) as follows:

$$\alpha(t) = \frac{\partial f(0,t)}{\partial t} + \beta f(0,t) + \frac{\sigma_r^2}{2\beta} \left( 1 - e^{-2\beta t} \right). \tag{2.10}$$

**Lemma 1** The process r, which satisfies the dynamic in (2.5) can be written in the form

$$r_t = x_t + \varphi(t), \quad 0 \le t \le T, \tag{2.11}$$

where the process  $x_t$  satisfies

$$dx_{t} = -\beta x_{t}dt + \sigma_{r}dZ_{t}^{r}, x_{0} = 0.$$
 (2.12)

Moreover, the function  $\varphi$  is deterministic, well defined in the time interval [0,T], and satisfies

$$\varphi(t) = f(0,t) + \frac{\sigma_r^2}{2\beta^2} \left( 1 - e^{-\beta t} \right)^2.$$
 (2.13)

In particular,  $\varphi(0) = r_0$ .

**Proof** To find a solution of SDE (2.5), we let  $g(t,r) = e^{\beta t}r$ . By using Ito's Lemma, we have

$$dg = de^{\beta t}r_{r} = \alpha(t)e^{\beta t}dt + e^{\beta t}\sigma_{r}dZ_{t}^{r}.$$
(2.14)

Integrating on both sides of the above equation from 0 to t, we obtain

$$r_{t} = r_{0}e^{-\beta t} + \int_{0}^{t} \alpha(u)e^{\beta(u-t)}du + \int_{0}^{t} e^{\beta(u-t)}\sigma_{r}dZ_{u}^{r}.$$
 (2.15)

Substituting the value of  $\alpha(t)$  from Eq. (2.10) into (2.15), we have

$$r_{t} = r_{0}e^{-\beta t} + \int_{0}^{t} \left( \frac{\partial f(0,u)}{\partial u} + \beta f(0,u) + \frac{\sigma_{r}^{2}}{2\beta} (1 - e^{-2\beta u}) \right) e^{-\beta(t-u)} du + \sigma_{r} \int_{0}^{t} e^{-\beta(t-u)} dZ_{u}^{r}.$$
 (2.16)

Applying integration by parts formula to Eq. (2.16) and after simplifying, we obtain

$$r_{t} = r_{0}e^{-\beta t} + f(0,t) - f(0,0)e^{-\beta t} + \frac{\sigma_{r}^{2}}{2\beta^{2}} \left(e^{-\beta t} - 1\right)^{2} + \sigma_{r} \int_{0}^{t} e^{-\beta(t-u)} dZ_{u}^{r}.$$
(2.17)

By using the definition of  $\varphi_t$  from Eq. (2.13), we can write Eq.(2.17) into a compact form as follows:

$$r_{t} = r_{0}e^{-\beta t} - f(0,0)e^{-\beta t} + \varphi(t) + \sigma_{r} \int_{0}^{t} e^{-\beta(t-u)} dZ_{u}^{r} = \varphi(t) + \sigma_{r} \int_{0}^{t} e^{-\beta(t-u)} dZ_{u}^{r}, \qquad (2.18)$$

because of  $f(0,0) = r_0$ , see Andrew(2004) page 89.

Note that the solution of Eq. (2.12) is

$$x_{t} = x_{0}e^{-\beta t} + \sigma_{r} \int_{0}^{t} e^{-\beta(t-u)} dZ_{u}^{r} = \sigma_{r} \int_{0}^{t} e^{-\beta(t-u)} dZ_{u}^{r}.$$
(2.19)

Hence,  $r_t = \varphi(t) + x_t$ ,  $0 \le t \le T$ . The proof is now complete.

Now we are ready to calculate the Radon-Nikodym derivative as appears in Eq. (2.7). By virtue of Lemma 1,  $r_t = \varphi_t + x_t$ . Substituting  $r_t$  and  $P(0,T) = \exp\left(-\int_0^T f(0,u)du\right)$  into Eq. (2.7), one gets

$$\frac{dQ^{T}}{dQ} = \exp\left(-\int_{0}^{T} x_{u} du - \frac{\sigma_{r}^{2}}{2\beta^{2}} \int_{0}^{T} (1 - e^{-\beta(T - u)})^{2} du\right). \tag{2.20}$$

Stochastic integration by parts implies

$$\int_{0}^{T} x_{u} du = Tx_{T} - \int_{0}^{T} u dx_{u} = \int_{0}^{T} (T - u) dx_{u}.$$
(2.21)

By substituting the expression for  $dx_u$  from Eq.(2.12), we have

$$\int_{0}^{T} (T - u) dx_{u} = -\beta \int_{0}^{T} (T - u) x_{u} du + \sigma_{r} \int_{0}^{T} (T - u) dZ_{u}^{r}.$$
(2.22)

Moreover, by substituting the expression for  $x_u$  from Eq. (2.19) into the right hand side of Eq. (2.22), one gets

$$-\beta \int_{0}^{T} (T-u)x_{u} du = -\beta \sigma_{r} \int_{0}^{T} \left( (T-u) \int_{0}^{u} e^{-\beta(u-s)} dZ_{u}^{r} \right) du.$$
 (2.23)

Using integration by parts, we have

$$-\beta \sigma_r \int_0^T \left( (T - u) \int_0^u e^{-\beta(u - s)} dZ_u^r \right) du = -\frac{\sigma_r}{\beta} \left[ \int_0^T \left( e^{-\beta(T - u)} - 1 \right) dZ_u^r \right] - \sigma_r \int_0^T (T - u) dZ_u^r. \tag{2.24}$$

Substituting Eq. (2.24) into (2.22) and Eq. (2.21) becomes

$$\int_{0}^{T} x_{u} du = -\frac{\sigma_{r}}{\beta} \left[ \int_{0}^{T} \left( e^{-\beta(T-u)} - 1 \right) dZ_{u}^{r} \right]. \tag{2.25}$$

Substituting Eq. (2.25) into (2.20), we obtain

$$\frac{dQ^{T}}{dQ} = \exp\left(-\frac{\sigma_{r}}{\beta} \int_{0}^{T} \left(1 - e^{-\beta(T - u)}\right) dZ_{u}^{r} - \frac{\sigma_{r}^{2}}{2\beta^{2}} \int_{0}^{T} \left(1 - e^{-\beta(T - u)}\right)^{2} du\right). \tag{2.26}$$

Hence, by Girsanov's theorem, the three processes  $Z_t^{rT}$ ,  $Z_t^{vT}$  and  $Z_t^{T}$  defined by

$$dZ_{t}^{rT} = dZ_{t}^{r} + \frac{\sigma_{r}}{\beta} \left( 1 - e^{-\beta(T-t)} \right) dt, \quad dZ_{t}^{rT} = dZ_{t}^{r}, \quad dZ_{t}^{T} = dZ_{t}, \tag{2.27}$$

are three independent Brownian motions under the T-forward measure  $Q^T$ . Therefore, the dynamics of  $r_t, v_t$  and  $S_t$  under  $Q^T$  are given by

$$dS_{t} = S_{t-} r_{t} dt + \sigma S_{t-} \left( \rho_{v} dZ_{T_{t}}^{vT} + \sqrt{1 - \rho_{v}^{2}} dZ_{T_{t}}^{T} \right) + S_{t-} dJ_{T_{t}}^{*},$$
(2.28)

$$dr_{t} = \left(\alpha(t) - \beta r_{t} - \frac{\sigma_{r}^{2}}{\beta} \left(1 - e^{-\beta(T - t)}\right)\right) dt + \sigma_{r} dZ_{t}^{rT}, \qquad (2.29)$$

$$dv_t = \gamma (1 - v_t) dt + \sigma_v \sqrt{v_t} dZ_t^{vT}. \tag{2.30}$$

## 3. The Pricing of a European Call Option on the Given Asset

Let  $(S_t)_{t \in [0,T]}$  be the price of a financial asset modeled as a stochastic process on a filtered probability space  $(\Omega, F, F_t, Q^T)$ , and  $F_t$  is usually taken to be the price history up to time t. All processes in this section will be defined in this space. We denote C the price at time t of a European call option on the current price of an underlying asset  $S_t$  with strike price K and expiration time T.

The terminal payoff of a European option on the underlying stock  $S_{ij}$  with strike price K is

$$\max(S_T - K, 0). \tag{3.1}$$

This means the holder will exercise his right only  $S_T > K$  and then his gain is  $S_T - K$ . Otherwise, if  $S_T \le K$  then the holder will buy the underlying asset from the market and the value of the option is zero.

We would like to find a formula for pricing a European call option with strike price K and maturity T based on the model (2.28) - (2.30). Consider a continuous-time economy where interest rates are stochastic and the price of the European call option at time t under the T-forward measure  $Q^T$  is

$$C(t, S_t, r_t, v_t; T, K) = P^*(t, T) E_{Q^T} \left( \max \left( S_T - K, 0 \right) | S_t, r_t, v_t \right)$$
$$= P^*(t, T) \int_0^\infty \max \left( S_T - K, 0 \right) p_{Q^T}(S_T | S_t, r_t, v_t) dS_T.$$

Here  $E_{Q^T}$  is the expectation with respect to the T-forward probability measure,  $p_{Q^T}$  is the corresponding conditional density given  $(S_t, r_t, v_t)$ , and  $P^*$  is a zero coupon bond which is defined by

$$P^*(t,T) := E_{Q^T} \left[ \exp\left(-\int_t^T r_s ds\right) | F_t \right]. \tag{3.2}$$

With a change in variable  $X_t = \ln S_t$ ,

$$C(t, S_{t}, r_{t}, v_{t}; T, K) = P^{*}(t, T) \int_{-\infty}^{\infty} \max \left( e^{X_{T}} - K, 0 \right) p_{Q^{T}} \left( X_{T} \mid X_{t}, r_{t}, v_{t}, \right) dX_{T}$$

$$= e^{X_{t}} P_{1} \left( t, X_{t}, r_{t}, v_{t}; T, K \right) - K P^{*}(t, T) P_{2} \left( t, X_{t}, r_{t}, v_{t}; T, K \right)$$

$$= e^{X_{t}} Pr \left( X_{T} > \ln K \mid X_{t}, r_{t}, v_{t} \right) - K P^{*}(t, T) Pr \left( X_{T} > \ln K \mid X_{t}, r_{t}, v_{t} \right),$$
(3.3)

where those probabilities in Eq. (3.3) are calculated under the probability measure  $Q^{T}$ .

The European call option for log asset price  $X_{i} = \ln S_{i}$ , will be denoted by

$$\hat{C}(t, X_{.}, r, v_{.}; T, \kappa) = e^{X_{.}} \tilde{P}_{1}(t, X_{.}, r, v_{.}; T, \kappa) - e^{\kappa} P^{*}(t, T) \tilde{P}_{2}(t, X_{.}, r, v_{.}; T, \kappa), \tag{3.4}$$

where  $\kappa = \ln K$  and  $\tilde{P}_i(t, X_t, r_t, v_t; T, \kappa) := P_i(t, X_t, r_t, v_t; T, K), j = 1, 2.$ 

Note that we do not have a closed form solution for these probabilities. However, these probabilities are related to characteristic functions which have closed form solutions as will be seen in Lemma 4.

Next, consider a continuous-time economy where interest rates are stochastic and satisfy Eq. (2.29). Since the SDE in Eq. (2.29) satisfies all the necessary conditions of Theorem 32, see Protter (2005) page 238, then the solution has Markov property. As a consequence, the zero coupon bond price at time t under the forward measure  $Q^T$  in Eq. (3.2) satisfies

$$P^*(t,T) = E_{Q^T} \left[ \exp\left(-\int_t^T r_s ds\right) | r_t \right]. \tag{3.5}$$

Note that  $P^*(t,T)$  depends on  $r_t$  then it becomes a function  $F(t,r_t)$  of  $r_t$ . This means that the calculation of  $P^*(t,T)$  can now be formulated as a search for the function  $F(t,r_t)$ .

**Lemma 2** The price of a zero coupon bond can be derived by computing the expectation (3.5). We obtain

$$P^{*}(t,T) = \exp(a(t,T) + b(t,T)r_{t})$$
(3.6)

where 
$$b(t,T) = \frac{1}{\beta} \left( e^{-\beta(T-t)} - 1 \right), \ a(t,T) = -f(0,t)b(t,T) + \ln \left( \frac{P^*(0,T)}{P^*(0,t)} \right) - \frac{3\sigma_r^2}{4\beta} \left[ b(t,T)^2 \left( 1 - e^{-2\beta t} \right) \right].$$

**Proof** Under the T-forward measure  $Q^T$ , the interest rate is given by Eq. (2.29). The specification of the interest rate means that the model (2.29) belong to the affine class of interest rate models. Thus the bond price at time t with maturity T is of the form Eq. (3.6) where a(t,T) and b(t,T) are functions to be determined under the condition a(T,T) = 0 and b(T,T) = 0. We will now find explicit formulas for the functions a(t,T) and b(t,T) in Eq. (3.6).

The zero coupon bond price PDE satisfies (the proof is similar to Privault (2008) Prop. 4.1)

$$\frac{\partial F(t, r_t)}{\partial t} + \left(\alpha(t) - \frac{\sigma_r^2}{\beta} \left(1 - e^{-\beta(T - t)}\right) - \beta r_t\right) \frac{\partial F(t, r_t)}{\partial r_t} + \frac{1}{2} \frac{\partial^2 F(t, r_t)}{\partial r_t^2} \sigma_r^2 - r_t F(t, r_t) = 0.$$
(3.7)

Note that  $F(t,r_t) = P^*(t,T)$ . We substitute the value  $F(t,r_t)$  from (3.6) into the above equation and after canceling some common factors, we have

$$\left(\frac{\partial a(t,T)}{\partial t} + r_t \frac{\partial b(t,T)}{\partial t}\right) + \left(\alpha(t) - \frac{\sigma_r^2}{\beta} \left(1 - e^{-\beta(T-t)}\right) - \beta r_t\right) b(t,T) + \frac{1}{2}b^2(t,T)\sigma_r^2 - r_t = 0.$$

We can reduce it to two ordinary differential equations

$$\frac{\partial a(t,T)}{\partial t} + \frac{\sigma_r^2}{2}b^2(t,T) + \left(\alpha(t) - \frac{\sigma_r^2}{\beta}\left(1 - e^{-\beta(T-t)}\right)\right)b(t,T) = 0,$$
(3.8)

$$\frac{\partial b(t,T)}{\partial t} - \beta b(t,T) - 1 = 0, (3.9)$$

with boundary conditions a(T,T) = 0, b(T,T) = 0.

Firstly, we note that the solution of Eq. (3.9) which satisfies the boundary conditions b(T,T) = 0 is

$$b(t,T) = \frac{1}{\beta} \left( e^{-\beta(T-t)} - 1 \right). \tag{3.10}$$

Secondly, we try to solve Eq. (3.8). Note that

$$\int_{t}^{T} \frac{\partial a(u,T)}{\partial u} du = \left[ a(u,T) \right]_{u=t}^{u=T} = a(T,T) - a(t,T) = -a(t,T) . \tag{3.11}$$

Thus

$$a(t,T) = \left(\frac{3\sigma_r^2}{2}\right) \int_t^T \left(b(u,T)^2 du + \int_t^T \alpha(u)b(u,T)du.\right)$$
(3.12)

It follows from Eq. (2.9) and (3.6) that the forward rate at time 0 with the maturity T can be written as

$$f(0,T) = -\frac{\partial}{\partial T} \ln P^*(0,T) = -\frac{\partial a(0,T)}{\partial T} - r_0 \frac{\partial b(0,T)}{\partial T}.$$
(3.13)

Differentiate a(0,T) with respect to T and using a(T,T) = 0, b(T,T) = 0, we obtain from Eq. (3.12) that

$$\frac{\partial a(0,T)}{\partial T} = 3\sigma_r^2 \int_0^T b(u,T) \frac{\partial b(u,T)}{\partial T} du + \int_0^T \alpha(u) \frac{\partial b(u,T)}{\partial T} du.$$

Substituting the value of b(u,T) from Eq. (3.10) into the above equation and after some calculations, we get

$$\frac{\partial a(0,T)}{\partial T} = \frac{\left(3\sigma_r^2\right)}{2\beta^2} \left(e^{-\beta T} - 1\right)^2 - \int_0^T e^{-\beta(T-u)} \alpha(u) du.$$

Now substitute the value of  $\frac{\partial a(0,T)}{\partial T}$  and the value of  $\frac{\partial b(0,T)}{\partial T}$  into Eq. (3.13), we have

$$f(0,T) = -\frac{3\sigma_r^2}{2\beta^2} \left( e^{-\beta T} - 1 \right)^2 + \int_0^T e^{-\beta(T-u)} \alpha(u) du + r_0 \left( e^{-\beta T} \right).$$
 (3.14)

To isolate  $\alpha(T)$ , we differentiate f(0,T) with respect to T and get

$$\frac{\partial f(0,T)}{\partial T} = \frac{3\sigma_r^2}{\beta} \left( e^{-2\beta T} - e^{-\beta T} \right) - r_0 \beta e^{-\beta T} + \left( \alpha(T) - \beta \left( \int_0^T e^{-\beta(T-u)} \alpha(u) du \right) \right).$$

Using Eq. (3.14) to rewrite the above equation and after simplifying, we get

$$\alpha(T) = \frac{\partial f(0,T)}{\partial T} + \beta f(0,T) - \frac{3\sigma_r^2}{2\beta} \left( e^{-2\beta T} - 1 \right). \tag{3.15}$$

Next, we shall find a formula for a(t,T) in Eq. (3.12). Note that

$$\frac{3\sigma_r^2}{2} \int_{t}^{T} b(u,T)^2 du = \frac{3\sigma_r^2}{2\beta} \left( -\frac{1}{2}b(t,T)^2 + \frac{1}{\beta} (b(t,T) + T - t) \right),$$

and

$$\int_{t}^{T} \alpha(u)b(u,T)du = \int_{t}^{T} \left( \frac{\partial f(0,T)}{\partial T} + \beta f(0,T) - \frac{3\sigma_{r}^{2}}{2\beta} \left( e^{-2\beta T} - 1 \right) \right) b(u,T)du$$

$$= -f(0,t)b(t,T) - \int_{t}^{T} f(0,u)du - \frac{3\sigma_{r}^{2}}{2\beta^{2}} (T-t) + \frac{3\sigma_{r}^{2}}{4\beta^{3}} \left[ e^{-2\beta T} - 2e^{-\beta(T+t)} - 2e^{-\beta(T-t)} + e^{-2\beta t} + 2 \right].$$

Therefore

$$a(t,T) = -f(0,t)b(t,T) - \int_{t}^{T} f(0,u)du - \frac{3\sigma_{r}^{2}}{4\beta}b^{2}(t,T)(1 - e^{-2\beta t}).$$

By definition,  $P^*(0,T) = e^{-\int_0^T f(0,u)du}$ . Thus  $-\int_t^T f(0,u)du = \ln\left(\frac{P^*(0,T)}{P^*(0,t)}\right)$ .

Finally, we have

$$a(t,T) = -f(0,t)b(t,T) + \ln\left(\frac{P^*(0,T)}{P^*(0,t)}\right) - \frac{3\sigma_r^2}{4\beta}b^2(t,T)(1 - e^{-2\beta t}).$$

The proof is now complete.

The following lemma shows the relationship between  $\tilde{P}_1$  and  $\tilde{P}_2$  in the option value of Eq. (3.4).

**Lemma 3.** The functions  $\tilde{P}_1$  and  $\tilde{P}_2$  in the option values of Eq. (3.4) satisfy the PIDEs:

$$0 = \frac{\partial \tilde{P}_{1}}{\partial t} + A[P_{1}] + \frac{1}{2}\sigma^{2}v\frac{\partial \tilde{P}_{1}}{\partial x} + \rho_{v}\sigma v\sigma_{v}\frac{\partial \tilde{P}_{1}}{\partial v} + v\int_{-\infty}^{\infty} \left[ (e^{y} - 1)(\tilde{P}_{1}(t, x + y, r, v; T, \kappa) - \tilde{P}_{1}(x, t, r, v; T, \kappa)) \right] k(y)dy$$

$$(3.16)$$

and subject to the boundary condition at expiration t = T,  $\tilde{P}_1(T, x, r, v; T, \kappa) = 1_{x > \kappa}$ . (3.17)

Moreover,  $\tilde{P}_2$  satisfies the equation

$$0 = \frac{\partial \tilde{P}_{2}}{\partial t} + A[\tilde{P}_{2}] - \frac{\sigma^{2} v}{2} \frac{\partial \tilde{P}_{2}}{\partial x} + \sigma_{r}^{2} b(t, T) \frac{\partial \tilde{P}_{2}}{\partial r} + \left(\frac{\partial a(t, T)}{\partial t} + r \frac{\partial b(t, T)}{\partial t}\right) \tilde{P}_{2}$$

$$+ \left(\frac{3\sigma_{r}^{2}}{2} b^{2}(t, T) - r + (\alpha(t) - \beta r)b(t, T)\right) \tilde{P}_{2}$$
(3.18)

and subject to the boundary condition at expiration t = T,  $\tilde{P}_2(T, x, r, v; T, \kappa) = 1_{x > \kappa}$ . (3.19)

Here, for i=1,2,

$$\begin{split} A[\tilde{P}_{i}] &= r \frac{\partial \tilde{P}_{i}}{\partial x} + \left(\alpha(t) - \beta r - \frac{\sigma_{r}^{2}}{\beta} \left(1 - e^{-\beta(T - t)}\right)\right) \frac{\partial \tilde{P}_{i}}{\partial r} + \gamma(1 - v) \frac{\partial \tilde{P}_{i}}{\partial v} + \frac{\sigma_{v}^{2} v}{2} \frac{\partial^{2} \tilde{P}_{i}}{\partial v^{2}} + \frac{\sigma^{2} v}{2} \frac{\partial^{2} \tilde{P}_{i}}{\partial x^{2}} \\ &+ \frac{\sigma_{r}^{2}}{2} \frac{\partial^{2} \tilde{P}_{i}}{\partial r^{2}} + \left(\rho_{v} \sigma v \sigma_{v}\right) \frac{\partial \tilde{P}_{i}}{\partial v \partial x} + v \int_{-\infty}^{\infty} \left(\tilde{P}_{i}(t, x + y, r, v; T, \kappa) - \tilde{P}_{i}(x, t, r, v; T, \kappa) - \left(\frac{\partial \tilde{P}_{i}}{\partial x}\right)(e^{y} - 1)\right) k(y) dy. \end{split}$$
(3.20)

Note that  $1_{x>\kappa} = 1$  if  $x > \kappa$  and zero otherwise. We assume that the jump kernel k(y) exists.

**Proof.** See Appendix.

## 4. The Closed-Form Solution for European call options

For j=1,2, the characteristic function for  $\tilde{P}_j(t,x,r,v;T,\kappa)$ , with respect to the variable  $\kappa$ , are defined by

$$f_j(t, x, r, v; T, u) := -\int_{-\infty}^{\infty} e^{iu\kappa} d\tilde{P}_j(t, x, r, v; T, \kappa), \tag{4.1}$$

with a minus sign to account for the negativity of the measure  $d\tilde{P}_j$ . Note that  $f_j$  also satisfies similar PIDEs

$$\frac{\partial f_j}{\partial t} + A_j \left[ f_j \right] (t, x, r, v; T, \kappa) = 0, \tag{4.2}$$

with the respective boundary conditions

$$f_{j}(T,x,r,v;T,u) = -\int_{-\infty}^{\infty} e^{iu\kappa} d\tilde{P}_{j}(t,x,r,v;T,\kappa) = -\int_{-\infty}^{\infty} e^{iu\kappa} (-\delta(\kappa-x)) d\kappa = e^{iu\kappa}.$$

The following lemma shows how to calculate the characteristic functions for  $\tilde{P}_1$  and  $\tilde{P}_2$  as they appeared in Lemma 3.

**Lemma 4** The functions  $\tilde{P}_1$  and  $\tilde{P}_2$  can be calculated by the inverse Fourier transformations of the characteristic function, i.e.

$$\tilde{P}_{j}(t,x,r,v;T,\kappa) = \frac{1}{2} + \frac{1}{\pi} \int_{0+}^{\infty} \text{Re} \left[ \frac{e^{iu\kappa} f_{j}(t,x,r,v;T,u)}{iu} \right] du,$$

for j = 1, 2, with Re[.] denoting the real component of a complex number.

By letting  $\tau = T - t$ , the characteristic function  $f_i$  is given by

$$\begin{split} f_{j}(t,x,r,v;t+\tau,u) &= \exp\left(iux + B_{j}(\tau) + rC_{j}(\tau) + vE_{j}(\tau) - (j-1)\ln P^{*}(t,t+\tau)\right), \\ where \quad \tilde{b}_{1j} &= b_{2j} + \nabla_{j}, \quad \tilde{b}_{2j} &= b_{2j} - \nabla_{j}, \quad \nabla_{j} = \sqrt{b_{2j}^{2} - 4b_{0j}b_{1}}, \quad b_{22} = \rho_{v}\sigma\sigma_{v}iu - \gamma, \\ b_{1} &= \frac{\sigma_{v}^{2}}{2}, \quad b_{21} &= \rho_{v}\sigma\sigma_{v}\left(1 + iu\right) - \gamma, \quad \alpha(t) = \frac{\partial f\left(0,t\right)}{\partial t} + \beta f\left(0,t\right) - \frac{3\sigma_{r}^{2}}{2\beta}\left(e^{-2\beta t} - 1\right), \\ b_{01} &= \frac{\sigma^{2}}{2}\left(iu - u^{2}\right) + \int_{-\infty}^{\infty} \left[e^{iux + y} - iu(e^{y} - 1)\right]k(y)dy, \quad C_{1}(\tau) &= \frac{iu}{\beta}(1 - e^{-\beta r}), C_{2}(\tau) = \frac{iu - 1}{\beta}\left(1 - e^{\beta \tau}\right), \\ b_{02} &= -\frac{\sigma^{2}}{2}\left(iu + u^{2}\right) + \int_{-\infty}^{\infty} \left(e^{iux} - iu(e^{y} - 1)\right)k(y)dy, \quad E_{j}(\tau) &= \frac{\left(e^{\tau V_{j}} - 1\right)\tilde{b}_{1j}\tilde{b}_{3j}}{2b_{1}\left(\tilde{b}_{1j} - e^{\tau V_{j}}\tilde{b}_{2j}\right)}, \\ B_{1}(\tau) &= \int_{\tau - \tau}^{\tau} \alpha(t)C_{1}(T - t)dt + \frac{\sigma_{r}^{2}}{2\beta^{3}}\left(\frac{u^{2}}{2} + \frac{iu}{\beta}\right)\left(\left(e^{\beta \tau} - 2\right)^{2} + 2\beta\tau - 1\right) + \frac{\gamma^{2}\left(\tilde{b}_{2} - \tilde{b}_{1}\right)}{2b_{1}}\ln\left(\frac{\tilde{b}_{21} - \tilde{b}_{11}}{e^{\tau V}\tilde{b}_{21} - \tilde{b}_{11}}\right) + \frac{\gamma^{2}\tilde{b}_{21}\nabla_{1}\tau}{2b_{1}}, \\ B_{2}(\tau) &= \int_{\tau - \tau}^{\tau} \alpha(t)C_{2}(T - t)dt + \frac{\sigma_{r}^{2}\left(iu - 1\right)}{2\beta^{3}}\left(\frac{1}{\beta} - \frac{(iu - 1)}{2}\right)\left(\left(e^{\beta \tau} - 2\right)^{2} + 2\beta\tau - 1\right) + \frac{\gamma^{2}\tilde{b}_{22}\nabla_{2}\tau}{2b_{1}} + \frac{\gamma^{2}\left(\tilde{b}_{22} - \tilde{b}_{12}\right)}{2b_{1}}\ln\left(\frac{\tilde{b}_{22} - \tilde{b}_{12}}{e^{\tau V}\tilde{b}_{22} - \tilde{b}_{12}}\right). \end{split}$$

**Proof.** To solve the characteristic function explicitly, letting  $\tau = T - t$  be the time-to-go, we conjecture that the function  $f_1$  is given by

$$f_1(t, x, r, v; t + \tau, u) = \exp(iux + B_1(\tau) + rC_1(\tau) + vE_1(\tau)), \tag{4.3}$$

and the boundary condition  $B_1(0) = C_1(0) = E_1(0) = 0$ . This conjecture exploits the linearity of the coefficient in PIDEs (4.2). Note that the characteristic function of  $f_1$  always exists. In order to substitute Eq. (4.3) into (4.2), firstly, we compute

$$\begin{split} \frac{\partial f_1}{\partial t} &= -\left(B_1'(\tau) + rC_1'(\tau) + vE_1'(\tau)\right)f_1, \quad \frac{\partial f_1}{\partial x} = iuf_1, \quad \frac{\partial f_1}{\partial r} = C_1(\tau)f_1, \quad \frac{\partial f_1}{\partial v} = E_1(\tau)f_1, \\ \frac{\partial^2 f_1}{\partial x^2} &= -u^2f_1, \quad \frac{\partial^2 f_1}{\partial v^2} = E_1^2(\tau)f_1, \quad \frac{\partial^2 f_1}{\partial r^2} = C_1^2(\tau)f_1, \quad \frac{\partial^2 f_1}{\partial v \partial x} = iuE_1(\tau)f_1, \\ f_1(t, x + y, r, v; t + \tau, u) - f_1(t, x, r, v; t + \tau, u) &= e^{iux}f_1(t, x, r, v; t + \tau, u). \end{split}$$

Substituting all the above terms into Eq. (4.2), after cancelling the common factor of  $f_1$ , we get a simplified form as follows:

$$\begin{split} 0 &= v \Biggl( -E_1'(\tau) + \frac{\sigma_v^2}{2} E_1^2(\tau) + \left( \rho_v \sigma \sigma_v \left( 1 + iu \right) - \gamma \right) E_1(\tau) + \frac{\sigma^2 \left( iu - u^2 \right)}{2} + \int_{-\infty}^{\infty} \left[ e^{iux + y} - iu(e^y - 1) \right] k(y) dy \Biggr) \\ &+ \Biggl( -B_1'(\tau) + \left( \alpha(t) - \frac{\sigma_r^2}{\beta} \left( 1 - e^{-\beta(T - t)} \right) \right) C_1(\tau) + \gamma E_1(\tau) + \frac{\sigma_r^2}{2} C_1^2(\tau) \Biggr) + r \left( -C_1'(\tau) + iu - \beta C_1(\tau) \right). \end{split}$$

By separating the order r, v and ordering the remaining terms, we can reduce it to three ordinary differential equations (ODEs) as follows:

$$C_1'(\tau) = -\beta C_1(\tau) + iu, \tag{4.4}$$

$$E_{1}'(\tau) = \frac{\sigma_{\nu}^{2}}{2} E_{1}^{2}(\tau) + \left[\rho_{\nu} \sigma \sigma_{\nu} \left(1 + iu\right) - \gamma\right] E_{1}(\tau) + \frac{\sigma^{2} (iu - u^{2})}{2} + \int_{-\infty}^{\infty} \left(e^{iux + y} - iu(e^{y} - 1)\right) k(y) dy, \tag{4.5}$$

$$B_{1}'(\tau) = \left(\alpha(t) - \frac{\sigma_{r}^{2}}{\beta} \left(1 - e^{-\beta(T - t)}\right)\right) C_{1}(\tau) + \frac{\sigma_{r}^{2}}{2} C_{1}^{2}(\tau) + \gamma E_{1}(\tau). \tag{4.6}$$

It is clear from Eq. (4.4) and 
$$C(0) = 0$$
 that  $C_1(\tau) = \frac{iu}{\beta}(1 - e^{-\beta \tau})$ . (4.7)

Let 
$$b_0 = \frac{\sigma^2 (iu - u^2)}{2} + \int_{-\infty}^{\infty} [e^{iux + y} - iu(e^y - 1)]k(y)dy$$
,  $b_1 = \frac{\sigma_v^2}{2}$  and  $b_2 = (\rho_v \sigma \sigma_v (1 + iu) - \gamma)$ .

Substitute these constants into Eq. (4.5), one gets

$$E_{\rm l}'(\tau) = b_{\rm l} \left( E_{\rm l}^2(\tau) + \frac{b_2}{b_{\rm l}} E_{\rm l}(\tau) + \frac{b_0}{b_{\rm l}} \right) = b_{\rm l} \left[ \left( E_{\rm l}(\tau) - \frac{-b_2 + \sqrt{b_2^2 - 4b_0b_{\rm l}}}{2b_{\rm l}} \right) \left( E_{\rm l}(\tau) - \frac{-b_2 - \sqrt{b_2^2 - 4b_0b_{\rm l}}}{2b_{\rm l}} \right) \right].$$

By method of variable separation, we have

$$\frac{dE_1(\tau)}{\left(E_1(\tau) - \frac{-b_2 + \sqrt{b_2^2 - 4h_0h_1}}{2h_1}\right) \left(E_1(\tau) - \frac{-b_2 - \sqrt{b_2^2 - 4h_0h_1}}{2h_1}\right)} = b_1 d\tau.$$

Using partial fraction on the left hand side, one obtains

$$\left(\frac{\frac{1}{\left(E_{1}(\tau)-\frac{-b_{2}+\sqrt{b_{2}^{2}-4b_{0}b_{1}}}{2b_{1}}\right)}-\frac{1}{\left(E_{1}(\tau)-\frac{-b_{2}-\sqrt{b_{2}^{2}-4b_{0}b_{1}}}{2b_{1}}\right)}\right)dE_{1}(\tau)=\sqrt{b_{2}^{2}-4b_{0}b_{1}}d\tau.$$

Integrating both sides, we obtain

$$\ln\left(\frac{E_1(\tau) - \frac{-b_2 + \sqrt{b_2^2 - 4b_0b_1}}{2b_1}}{E_1(\tau) - \frac{-b_2 - \sqrt{b_2^2 - 4b_0b_1}}{2b_0}}\right) = \tau \sqrt{b_2^2 - 4b_0b_1} + E_0.$$

Applying boundary condition  $E_1(\tau = 0) = 0$ , we get  $E_0 = \ln \left( \frac{-b_2 + \sqrt{b_2^2 - 4b_0b_1}}{-b_2 - \sqrt{b_2^2 - 4b_0b_1}} \right)$ .

Solving for 
$$E_1$$
, we have  $E_1(\tau) = \frac{\left(e^{\tau \sqrt{b_2^2 - 4b_0b_1}} - 1\right)\tilde{b_1}\tilde{b_2}}{2b_1\left(\tilde{b_1} - e^{\tau \sqrt{b_2^2 - 4b_0b_1}}\tilde{b_2}\right)}$ ,

where 
$$\tilde{b}_1 = b_2 + \sqrt{b_2^2 - 4b_0b_1}$$
, and  $\tilde{b}_2 = b_2 - \sqrt{b_2^2 - 4b_0b_1}$ .

In order to solve  $B_1(\tau)$ , we substitute  $C_1(\tau)$  and  $E_1(\tau)$  into Eq. (4.6) to get

$$B_{1}(\tau) = \int_{T-\tau}^{T} \alpha(t)C_{1}(T-t)dt + \frac{\sigma_{r}^{2}}{2\beta^{3}} \left(\frac{u^{2}}{2} + \frac{iu}{\beta}\right) \left(\left(e^{\beta\tau} - 2\right)^{2} + 2\beta\tau - 1\right) + \frac{\gamma^{2}\left(\tilde{b}_{2} - \tilde{b}_{1}\right)}{2b_{1}} \ln\left(\frac{\tilde{b}_{2} - \tilde{b}_{1}}{e^{r\tilde{v}}\tilde{b}_{2} - \tilde{b}_{1}}\right) + \frac{\gamma^{2}\tilde{b}_{2}\nabla\tau}{2b_{1}},$$

where  $\nabla = \sqrt{b_2^2 - 4b_0b_1}$  and  $\alpha(t)$  is defined in Eq. (3.15).

The details of the proof for the characteristic function  $f_2$  are similar to  $f_1$ . Hence, we have

$$f_2(t, x, r, v; t + \tau, u) = \exp\left[iux + B_2(\tau) + rC_2(\tau) + vE_2(\tau) - \ln P^*(t, t + \tau)\right],$$

where  $B_2(\tau)$ ,  $C_2(\tau)$ , and  $E_2(\tau)$  are as given in the Lemma.

Up to this point, we obtained the characteristic functions in close form. However, we are interested in the probability  $\tilde{P}_j$ . These can be inverted from the characteristic functions by performing the following integration

$$\tilde{P}_{j}(t, x, r, v; T, \kappa) = \frac{1}{2} + \frac{1}{\pi} \int_{0+}^{\infty} \text{Re}\left(\frac{e^{iu\kappa} f_{j}(t, x, v, r; T, u)}{iu}\right) du, \ j = 1, 2,$$
(4.14)

where  $X_t = \ln S_t$  and  $\kappa = \ln K$  (see Sattayatham and Intarasit (2011)).

The proof is now complete.

In summary, we have just proved the following main theorem.

**Theorem 5** The value of a European call option of SDE (2.28) is

$$C(t, S_t, r_t, v_t; T, K) = S_t \tilde{P}_1(t, X_t, r_t, v_t; T, \kappa) - KP^*(t, T) \tilde{P}_2(t, X_t, r_t, v_t; T, \kappa)$$

where  $\tilde{P}_1$  and  $\tilde{P}_2$  are given in Lemma 4 and  $P^*(t,T)$  is given in Lemma 2.

#### References

- [1] Andrew, C. (2004). Interest Rate Models: An Introduction, Princeton University Press, New Jersey.
- [2] Brigo, D. and Mercuiro, F.(2001). Interest Rate Models: Theory and Practice: with smile, Inflation and Credit. 2 ed , Springer, New York .
- [3] Brummelhuis, R. (2009). Mathematical Method for financial Engineering, University of London. http://ems.bbk.ac.uk/for-students/mscfinEng/math-methods/lecture1.pdf.
- [4] Carr, P. and Wu, L. (2004). Time-Changed Lévy Processes and Option Pricing, Journal of Financial Economics, 17(1), 113-141.
- [5] Kim, Y.J. (2001). Option Pricing under Stochastic Interest Rates: An Empirical *Investigation*, Asia Pacific Financial Markets, Volume 9(1), 23-44.
- [6] Poulsen, N. (2005). Computations in the Hull-White Model. Danske Bank Quantitative Research and Copenhagen Business School. http://nielsrom.com/profression/documents/HWM odel.pdf.
- [7] Protter, P.E. (2005). Stochastic Integration and Differential Equations, Stochastic Modeling and Applied Probability, 2<sup>nd</sup> Edn., Vol. 21, Springer.
- [8] Privault, N. (2008). An elementary introduction to stochastic interest rate modeling. Vol.12 of advance series on statistical science & applied probability, Word Scientific, Singapore.
- [9] Sattayatham, P. and Intarasit, A. (2011). An approximate formula of European option for fractional stochastic volatility jump-diffusion model, Journal of Mathematics and Statistics, Vol.7, 230-238.

### **Appendix:** Proof of Lemma 3

By Ito's lemma,  $\hat{C}(t, x, r, v)$  follows the partial integro - differential equation (PIDE)

$$\begin{split} r\hat{C} &= \frac{\partial \hat{C}}{\partial t} + \left(r - \frac{1}{2}\sigma^{2}v\right) \frac{\partial \hat{C}}{\partial x} + \left(\alpha(t) - \beta r - \frac{\sigma_{r}^{2}}{\beta}\left(1 - e^{-\beta(T - t)}\right)\right) \frac{\partial \hat{C}}{\partial r} + \gamma(1 - v) \frac{\partial C}{\partial v} + \frac{\sigma_{r}^{2}}{2} \frac{\partial^{2} \hat{C}}{\partial r^{2}} + \frac{\sigma_{v}^{2}v}{2} \frac{\partial^{2} \hat{C}}{\partial v^{2}} \\ &+ \frac{\sigma^{2}v}{2} \frac{\partial^{2} \hat{C}}{\partial x^{2}} + \left(\rho_{v}\sigma v\sigma_{v}\right) \frac{\partial^{2} \hat{C}}{\partial x\partial v} + v \int_{-\infty}^{\infty} \left(\hat{C}(t, x + y, r, v) - \hat{C}(t, x, r, v) - \frac{\partial \hat{C}}{\partial x}(e^{y} - 1)\right) k(y) dy. \end{split} \tag{A1}$$

We plan to substitute Eq. (3.4) into (A1). Firstly, we compute

$$\begin{split} \frac{\partial \hat{C}}{\partial t} &= e^x \frac{\partial \tilde{P}_1}{\partial t} - e^\kappa P^*(t,T) \Bigg[ \frac{\partial \tilde{P}_2}{\partial t} + \tilde{P}_2 \frac{\partial}{\partial t} \Big( a(t,T) + b(t,T) r \Big) \Bigg], \frac{\partial \hat{C}}{\partial x} &= e^x \Bigg( \frac{\partial \tilde{P}_1}{\partial x} + \tilde{P}_1 \Bigg) - e^\kappa P^*(t,T) \frac{\partial \tilde{P}_2}{\partial x}, \\ \frac{\partial \hat{C}}{\partial v} &= e^x \frac{\partial \tilde{P}_1}{\partial v} - e^\kappa P^*(t,T) \frac{\partial \tilde{P}_2}{\partial v}, \frac{\partial \hat{C}}{\partial r} &= e^x \frac{\partial \tilde{P}_1}{\partial r} - e^\kappa P^*(t,T) \Bigg( \frac{\partial \tilde{P}_2}{\partial r} + \tilde{P}_2 b(t,T) \Bigg), \\ \frac{\partial^2 \hat{C}}{\partial x^2} &= e^x \Bigg( \frac{\partial^2 \tilde{P}_1}{\partial x^2} + 2 \frac{\partial \tilde{P}_1}{\partial x} + \tilde{P}_1 \Bigg) - e^\kappa P^*(t,T) \frac{\partial^2 \tilde{P}_2}{\partial x^2}, \frac{\partial^2 \hat{C}}{\partial v^2} &= e^x \frac{\partial^2 \tilde{P}_1}{\partial v^2} - e^\kappa P^*(t,T) \frac{\partial^2 \tilde{P}_2}{\partial v^2}, \\ \frac{\partial^2 \hat{C}}{\partial r^2} &= e^x \frac{\partial^2 \tilde{P}_1}{\partial r^2} - e^\kappa P^*(t,T) \Bigg( \frac{\partial^2 \tilde{P}_2}{\partial r^2} + 2 b(t,T) \frac{\partial \tilde{P}_2}{\partial r} + \tilde{P}_2 b^2(t,T) \Bigg), \frac{\partial^2 \hat{C}}{\partial v \partial x} &= e^x \Bigg( \frac{\partial \tilde{P}_1}{\partial v \partial x} + \frac{\partial \tilde{P}_1}{\partial v} \Bigg) - e^\kappa P^*(t,T) \frac{\partial \tilde{P}_2}{\partial v \partial x}, \\ \hat{C}(t,x+y,r,v,T,\kappa) - \hat{C}(t,x,r,v,T,\kappa) \\ &= e^x \Bigg[ (e^y-1) \tilde{P}_1(t,x+y,r,v,T,\kappa) + \Big( \tilde{P}_1(t,x+y,r,v,T,\kappa) - \tilde{P}_1(x,t,r,v,T,\kappa) \Big) \Bigg] \\ &- e^\kappa P^*(t,T) \Bigg[ \tilde{P}_2(t,x+y,r,v,T,\kappa) - \tilde{P}_2(t,x,r,v,T,\kappa) \Bigg]. \end{split}$$

Substitute all terms above into Eq. (A1) and separate it by assumed independent terms of  $\tilde{P}_1$  and  $\tilde{P}_2$ . This gives two PIDEs for the forward probability for  $\tilde{P}_i(t,x,r,v;T,\kappa)$ , j=1,2:

$$0 = \frac{\partial \tilde{P}_{1}}{\partial t} + \left(r + \frac{1}{2}\sigma^{2}v\right) \frac{\partial \tilde{P}_{1}}{\partial x} + \left[\gamma(1-v) + \left(\rho_{v}\sigma v\sigma_{v}\right)\right] \frac{\partial \tilde{P}_{1}}{\partial v} + \frac{\sigma_{r}^{2}}{2} \frac{\partial^{2}\tilde{P}_{1}}{\partial r^{2}}$$

$$+ \left(\alpha(t) - \beta r - \frac{\sigma_{r}^{2}}{\beta} \left(1 - e^{-\beta(T-t)}\right)\right) \frac{\partial \tilde{P}_{1}}{\partial r} + \frac{\sigma_{v}^{2}v}{2} \frac{\partial^{2}\tilde{P}_{1}}{\partial v^{2}} + \frac{\sigma^{2}v}{2} \frac{\partial^{2}\tilde{P}_{1}}{\partial x^{2}} + \left(\rho_{v}\sigma v\sigma_{v}\right) \frac{\partial \tilde{P}_{1}}{\partial v\partial x}$$

$$+ v \int_{-\infty}^{\infty} \left[\tilde{P}_{1}(t, x + y, r, v; T, \kappa) - \tilde{P}_{1}(x, t, r, v; T, \kappa) - \left(\frac{\partial \tilde{P}_{1}}{\partial x}\right) (e^{y} - 1)\right] k(y) dy$$

$$+ v \int_{-\infty}^{\infty} \left[\left(e^{y} - 1\right) \left(\tilde{P}_{1}(t, x + y, r, v; T, \kappa) - \tilde{P}_{1}(x, t, r, v; T, \kappa)\right)\right] k(y) dy,$$
(A2)

and subject to the boundary condition at the expiration time t = T according to Eq. (3.17). By using the notation in Eq. (3.20), Eq. (A2) becomes

$$\begin{split} 0 &= \frac{\partial \tilde{P}_{1}}{\partial t} + A[P_{1}] + \left(\frac{1}{2}\sigma^{2}v\right)\tilde{P}_{1} + \sigma^{2}v\frac{\partial \tilde{P}_{1}}{\partial x} + \rho_{v}\sigma v\sigma_{v}\frac{\partial \tilde{P}_{1}}{\partial v} \\ &+ v\int_{-\infty}^{\infty} \left[\tilde{P}_{1}(t, x + y, r, v; T, \kappa) - \tilde{P}_{1}(x, t, r, v; T, \kappa) - \left(\frac{\partial \tilde{P}_{1}}{\partial x}\right)(e^{y} - 1)\right]k(y)dy := \frac{\partial \tilde{P}_{1}}{\partial t} + A_{1}[\tilde{P}_{1}]. \end{split}$$

For  $\tilde{P}_2(t, x, r, v; T, \kappa)$ :

$$0 = \frac{\partial \tilde{P}_{2}}{\partial t} + \left(r - \frac{1}{2}\sigma^{2}v\right) \frac{\partial \tilde{P}_{2}}{\partial x} + \left(\alpha(t) - \beta r - \frac{\sigma_{r}^{2}}{\beta}\left(1 - e^{-\beta(T - t)}\right) + \sigma_{r}^{2}b(t, T)\right) \frac{\partial \tilde{P}_{2}}{\partial r} + \gamma(1 - v)\frac{\partial \tilde{P}_{2}}{\partial v} + \frac{\sigma_{v}^{2}v}{2}\frac{\partial^{2}\tilde{P}_{2}}{\partial v^{2}} + \frac{\sigma_{v}^{2}v}{2}\frac{\partial^{2}\tilde{P}_{2}}{\partial v^{2}} + \left(\rho_{v}\sigma v\sigma_{v}\right)\frac{\partial \tilde{P}_{2}}{\partial v\partial x} + \left(\frac{3\sigma_{r}^{2}}{2}b^{2}(t, T) - r + \left(\alpha(t) - \beta r\right)b(t, T)\right)\tilde{P}_{2}$$

$$+ \left(\frac{\partial a(t, T)}{\partial t} + r\frac{\partial b(t, T)}{\partial t}\right)\tilde{P}_{2} + v\int_{-\infty}^{\infty} \left(\tilde{P}_{2}(t, x + y, r, v; T, \kappa) - \tilde{P}_{2}(t, x, r, v; T, \kappa) - \frac{\partial \tilde{P}_{2}}{\partial x}(e^{y} - 1)\right)k(y)dy, \tag{A3}$$

and subject to the boundary condition at expiration time t = T according to Eq. (3.19). Again, by using the notation (3.20), Eq. (A3) becomes

$$\begin{split} 0 &= \frac{\partial \tilde{P}_2}{\partial t} + A[\tilde{P}_2] - \frac{\sigma^2 v}{2} \frac{\partial \tilde{P}_2}{\partial x} + \sigma_r^2 b(t, T) \frac{\partial \tilde{P}_2}{\partial r} + \left( \frac{\partial a(t, T)}{\partial t} + r \frac{\partial b(t, T)}{\partial t} \right) \tilde{P}_2 \\ &+ \left( \frac{3\sigma_r^2}{2} b^2(t, T) - r + \left( \alpha(t) - \beta r \right) b(t, T) \right) \tilde{P}_2 := \frac{\partial \tilde{P}_2}{\partial t} + A_2[\tilde{P}_2]. \end{split}$$

The proof is now completed.

# การใช้งานโปรแกรมคำนวณค่าพารามิเตอร์ของโมเดลอัตราดอกเบี้ย และราคาพันธบัตรที่ไม่ระบุดอกเบี้ย (Zero Coupon Bond Price) S. Pinkham and P.Sattayatham

โปรแกรมที่ใช้งาน: MATLAB 7.2

ใฟล์ที่ใช้ดำเนินงาน: runestimation.m, R2measure.m, GMMweigthsNW.m, GMMobjective.m,

GMMestimation.m, MomentJacobian.m

(รายละเอียด MATLAB code ใน Appendix A)

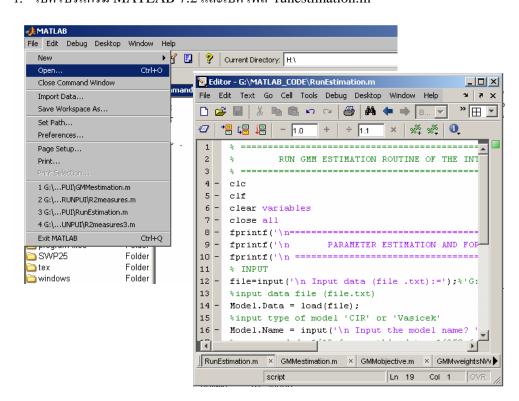
ใฟล์ข้อมูลที่ใช้ดำเนินงาน: file.txt

## ผลการดำเนินการโปรแกรม:

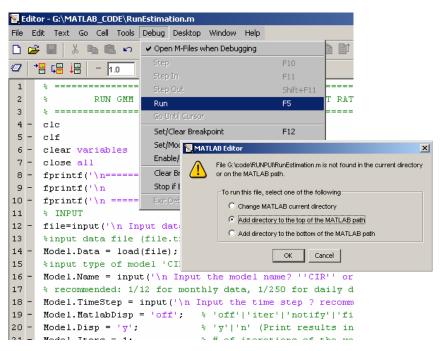
- คำนวณค่าพารามิเตอร์ของโมเคลอัตราคอกเบี้ย ชนิค CIR และ Vasicek และทคสอบสมมติฐาน ของ
  ค่าพารามิเตอร์
- จำลองข้อมูลโดยใช้ค่าพารามิเตอร์ที่คำนวณได้
- แสดงกราฟของข้อมูลที่ได้จากการจำลองเปรียบเทียบกับข้อมูลจริง และคำนวณค่าเฉลี่ยความคลาด
   เคลื่อนกำลังสอง(MSE)
- คำนวณค่าราคาพันธบัตรที่ไม่ระบุคอกเบี้ย (Zero coupon bond) โดยใช้สูตรการคำนวณ (Exact formula) และคำนวณโดยใช้เทคนิคของ Monte Carlo

## การใช้งานโปรแกรม:

1. เปิดโปรแกรม MATLAB 7.2 และเปิดไฟล์ runestimation.m



2. ที่ แถบเมนู ให้เลือก Debug และ เลือก Run หรือ กดบุ่ม F5 ที่ คีย์บอร์ด เพื่อดำเนินงานโปรแกรม คำนวณ และ เลือก add directory to the top of the MATLAB path



3. ผลการดำเนินการจะแสดงบนหน้าต่างคำสั่ง (command window) ดังนี้

\_\_\_\_\_

#### PARAMETER ESTIMATION AND FORCASTING INTERST RATE MODEL

Input data (file .txt):= .....

(ระบุไฟล์ข้อมูลที่ต้องการคำนวณ ตัวอย่างเช่น 'G:\MATLAB\_CODE\DTB33.txt')

Input the model name? := 'CIR' or 'Vasicek':= .....

(ระบุรูปแบบของโมเคล 'CIR' หรือ 'Vasicek')

Input the time step ? := ......

recommended:'1/12' for monthly or '1/250'for daily :=1/250 :=

(ระบุ time step โดยแนะนำว่าถ้า ข้อมูลเป็นรายวันให้ ระบุ 1/12 หรือข้อมูลรายเดือนให้ ระบุ 1/250)

4. ผลการคำนวณจะแสดงดังนี้

#### **Parameters etimates:**

First run without weighting matrix

alpha = 
$$+0.52044$$
 beta =  $-4.68300$   
sigma2 =  $+0.38250$  gamma =  $+0.50000$ 

Parameters etimates, t-statistic in parentheses Second run with weighting matrix, Iteration #1

alpha = +0.44570 (+2.36)

beta = -3.71553 (-2.16)

sigma2 = +0.30599 (+6.64)

gamma = +0.50000

Chi2 statistic = +9.0847

p-value = +0.0026

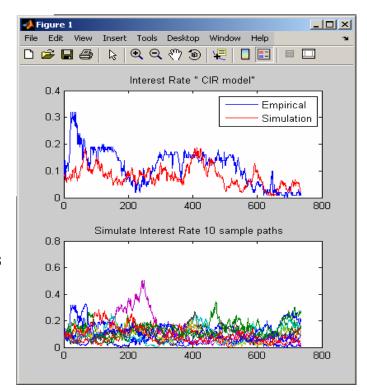
Objective function = 1.234e-002

Mean of data = 1.160734e-001

Variance of data = 4.457622e-003

Number of data = 736

MSE = +0.01244



ผลการวิเคราะห์จะได้ค่าพารามิเตอร์ ค่าสถิติทดสอบ และ ค่าเฉลี่ยความคลาดเคลื่อนกำลังสอง รวมถึง แสดงกราฟของข้อมูลจริงเปรียบเทียบกับการจำลองข้อมูลโดยอาศัยพารามิเตอร์ที่ได้จากการคำนวณ (สามารถดู รายละเอียดของวิธีการประมาณค่าพารามิเตอร์โดยใช้ GMM ที่ Appendix C)

5. คำนวณค่าราคาพันธบัตรที่ไม่ระบุคอกเบี้ย (Zero coupon bond) โดยจะต้องระบุ ค่าอัตราคอกเบี้ย เริ่มต้น ( $r_0$ ) และ อายุของพันธบัตร (maturity time , T) ยกตัวอย่างเช่น  $r_0=0.08\%,\ T=1$  ผลการคำนวณ จะแสดงบนหน้าต่างคำสั่ง (command window) ดังนี้

#### ZERO COUPON BOND PRICE

Input initial interest rate (r0) := 0.08

Input matuarity time (T) := 1

Exact CIR Price = 0.896508

Monte Carlo Price = 0.902940

ผลลัพธ์ที่ได้จะแสดงค่า Exact Price ซึ่งเป็นค่าของ zero coupon bond ที่ได้จากสูตร และ ค่า Monte Carlo Price ซึ่งเป็นค่าที่ได้จาก การคำนวณโดยใช้เทคนิคของ Monte Carlo

ตัวอย่างการวิเคราะห์ ดูรายละเอียดใน Appendix B

## Appendix A: MATLAB Code

```
RUN GMM ESTIMATION ROUTINE OF THE INTEREST RATE MODEL
Clc
clf
clear variables
close all
fprintf('\n=========');
fprintf('\n RAMETER ESTIMATION AND FORCASTING NTERST RATE MODEL ' );
fprintf('\n ============');
                 INPUT The Details
%-----
file=input('\n Input data (file .txt)');%'E:/code/test3.txt'
Model.Data = load(file);
Model.Name = input('\n Input the model name?''CIR''or''Vasicek'':);
Model.TimeStep = input('\n Input the time step ?
%recommended:''1/12''for monthly or ''1/250''for daily :' );
Model.MatlabDisp = 'off'; % 'off'|'iter'|'notify'|'final'(default:off)
                  % 'y'|'n' (Print results in Matlab's command
Model.Disp = 'y';
                    window, draws graphs)
Model.Iters = 1;
                   % # of iterations of the weighting matrix
                    (traditionally = 1)
Model.q = 12;
                   % # of lags in the spectral density matrix
                     estimation,
                   % Model.q = 0 reduces the spectral density
                    matrix to the sample covariance matrix
8______
                   ESTIMATION
Results = GMMestimation(Model);
<u>%______</u>
          PLOT GRAPH AND CALCULATE MEAN SQUARE ERROR
<u>%______</u>
R2 = R2measures(Model, Results);
function J = GMMobjective(Params, Model, W)
% Objective function for Interest rate models
% INPUT: Params, vector, vector of estimated parameters
      Model, structure
응
      W, matrix, weighting matrix
% OUTPUT: d, Jacobian matrix
______
Data = Model.Data;
DataF = Data(2:end);
DataL = Data(1:end-1);
Nobs = length(DataL);
Nobs = Nobs-1;
TimeStep = Model.TimeStep;
a = Params(1);
b = Params(2);
```

```
%-----
% Calculate the sample moments
switch Model.Name
   case 'CIR'
       sigma = Params(3);
       g1 = sum(DataF - a - b*DataL);
       q2 = sum((DataF - a - b*DataL).^2 - sigma^2*DataL.*TimeStep);
       g3 = sum((DataF - a -b*DataL).*DataL);
       g4 = sum(((DataF - a - b*DataL).^2 -
sigma^2*DataL.*TimeStep).*DataL);
       g1 = g1/Nobs; g2 = g2/Nobs; g3 = g3/Nobs; g4 = g4/Nobs;
   case 'Vasicek'
       sigma = Params(3);
       g1 = sum(DataF - a - b*DataL);
       g2 = sum((DataF - a - b*DataL).^2 - sigma^2*TimeStep);
       g3 = sum((DataF - a -b*DataL).*DataL);
       g4 = sum(((DataF - a - b*DataL).^2 - sigma^2*TimeStep).*DataL);
       g1 = g1/Nobs; g2 = g2/Nobs; g3 = g3/Nobs; g4 = g4/Nobs;
end
g = [g1 \ g2 \ g3 \ g4];
J = g*W*g';
end
function W = GMMweightsNW(Params, Model)
% Optimal weighting matrix for CKLS nested models
% INPUT: Params, vector, vector of estimated parameters
        Model, structure, see RunAssignment2
% OUTPUT: W, matrix, optimal weighting matrix
Data = Model.Data;
TimeStep = Model.TimeStep;
q = Model.q;
a = Params(1);
b = Params(2);
DataF = Data(2:end);
DataL = Data(1:end-1);
Gamma = zeros(4,4,q+1);
% Construct sample moment functions
switch Model.Name
   case 'CIR'
       sigma = Params(3);
       glt = DataF - a - b*DataL;
       g2t = (DataF - a - b*DataL).^2 - sigma^2*DataL.*TimeStep;
       g3t = (DataF - a -b*DataL).*DataL;
       g4t = ((DataF - a - b*DataL).^2 - sigma^2*DataL.*TimeStep).*DataL;
   case 'Vasicek'
       sigma = Params(3);
       glt = DataF - a - b*DataL;
       g2t = (DataF - a - b*DataL).^2 - sigma^2*TimeStep;
       g3t = (DataF - a -b*DataL).*DataL;
       g4t = ((DataF - a - b*DataL).^2 - sigma^2*TimeStep).*DataL;
end
```

```
gt = [g1t g2t g3t g4t];
Nobs = length(glt);
8-----
% Calculate the Newey-West estimate of the spectral density matrix with q
%-----
gt = gt - repmat(mean(gt), Nobs, 1);
for v = 0 : q
   qtF = qt(1+v:end, :);
   gtL = gt(1:end-v, :);
   Gamma(:,:,v+1) = (gtF'*gtL)./Nobs;
S = Gamma(:,:,1);
for v = 1 : q
   Snext = (1-v/(q+1))*(Gamma(:,:,v+1) + Gamma(:,:,v+1)');
   S = S + Snext;
end
W = inv(S);
End
function d = MomentsJacobian(Params, Model)
8 -----
 Jacobian matrix for testing parameters significance (t-test)
% INPUT: Params, vector, vector of estimated parameters
       Model, structure, see RunAssignment2
% OUTPUT: d, Jacobian matrix
TimeStep = Model.TimeStep;
Data = Model.Data;
DataF = Data(2:end);
DataL = Data(1:end-1);
Nobs = length(DataL);
switch Model.Name
   case 'CIR'
      a = Params(1);
      b = Params(2);
      gla = -Nobs;
      g2a = -2*sum(DataF - a - b*DataL);
      g3a = -sum(DataL);
      g4a = -2*sum((DataF - a - b*DataL).*DataL);
      g1b = -sum(DataL);
      g2b = -2*sum((DataF - a - b*DataL).*DataL);
      g3b = -sum(DataL.^2);
      g4b = -2*sum((DataF - a - b*DataL).*DataL.^2);
      g1s = 0;
      g2s = -sum(TimeStep*DataL);
      g3s = 0;
      g4s = -sum(TimeStep*DataL.*DataL);
      d = [gla glb gls;...
          g2a g2b g2s;...
          g3a g3b g3s;...
          q4a q4b q4s];
      d = d./Nobs;
   case 'Vasicek'
      a = Params(1);
```

```
b = Params(2);
       gla = -Nobs;
       g2a = -2*sum(DataF - a - b*DataL);
       g3a = -sum(DataL);
       g4a = -2*sum((DataF - a - b*DataL).*DataL);
       glb = -sum(DataL);
       q2b = -2*sum((DataF - a - b*DataL).*DataL);
       q3b = -sum(DataL.^2);
       g4b = -2*sum((DataF - a - b*DataL).*DataL.^2);
       q1s = 0;
       q2s = -TimeStep*Nobs;
       q3s = 0;
       q4s = -sum(TimeStep*DataL);
       d = [gla glb gls;...]
            g2a g2b g2s;...
            g3a g3b g3s;...
            g4a g4b g4s];
       d = d./Nobs;
end end
function Results = GMMestimation(Model)
% GMM estimation routine for CKLS nested models
% % INPUT: Model, structure, see RunAssignment2
% OUTPUT: Results, structure
         Results.Params, estimated parameters
ે
         Results.Fval, objective function value
         Results.Exitflag, Matlab's optimization result
્ર
્ર
         Results. Tstat, t-statistics for individual parameters
         Results.Chi2statisitcs, Chi2 test of model specificaion
% USES: GMMobjective, GMMweightsNW, MomentsJacobian
8 -----
TimeStep = Model.TimeStep;
% Initial Parameters for optimization
% Must be set manually. But the fmnisearch optimization algorithm seems to
be quite robust
switch Model.Name
       case {'CIR', 'Vasicek'}
       alpha = 0.01;
       beta = -0.01;
       sigma = 0.01;
       a = alpha*TimeStep;
       b = beta*TimeStep + 1;
       InitialParams = [a b sigma];
end
% =====
         First run, with identity weighting matrix =============
W = eye(4);
options = OPTIMSET('LargeScale', 'off', 'MaxIter', 2500, 'MaxFunEvals',
3500, 'Display', Model.MatlabDisp, 'TolFun', 1e-40, 'TolX', 1e-40);
[Params, Fval, Exitflag] = fminsearch(@(Params) GMMobjective(Params,
Model, W), InitialParams, options);
switch Model.Name
   case 'CIR'
       Ralpha = Params(1)/TimeStep;
       Rbeta = (Params(2)-1)/TimeStep;
```

```
Rsigma2 = Params(3)^2;
       Rgamma = 0.5;
    case {'Vasicek'}
       Ralpha = Params(1)/TimeStep;
       Rbeta = (Params(2)-1)/TimeStep;
       Rsigma2 = Params(3)^2;
       Rgamma = 0;
end
if strcmp(Model.Disp, 'y')
    fprintf('\n Parameters etimates\n');
    fprintf(' First run without weighting matrix');
    fprintf('\n alpha = %+3.5f\n beta = %+3.5f\n sigma2 = %+3.5f\n gamma
= %+3.5f\n -----
\n',...
   Ralpha, Rbeta, Rsigma2, Rgamma);
end
% ======= Second run, with optimal weighting matrix W =========
if Model.Iters > 0
    for i = 1 : Model.Iters
       InitialParams = Params;
       W = GMMweightsNW(Params, Model);
       options = OPTIMSET('LargeScale', 'off', 'MaxIter', 2500,
'MaxFunEvals', 3500, 'Display', Model.MatlabDisp, 'TolFun', 1e-8, 'TolX',
1e-8);
        [Params, Fval, Exitflag] = fminsearch(@(Params)
GMMobjective(Params, Model, W), InitialParams, options);
       switch Model.Name
        case 'CIR'
           Ralpha = Params(1)/TimeStep;
           Rbeta = (Params(2)-1)/TimeStep;
           Rsigma2 = Params(3)^2;
           Rgamma = 0.5;
        case {'Vasicek'}
           Ralpha = Params(1)/TimeStep;
           Rbeta = (Params(2)-1)/TimeStep;
           Rsigma2 = Params(3)^2;
           Rgamma = 0;
       end
       switch Model.Name
       case {'CIR', 'Vasicek','TF'}
%Chi2 statistics of the overidentified model. Are the empirical moments
%sufficiently close to 0?
           Chi2statistic = Fval*length(Model.Data);
           Chi2pvalue = 1-chi2cdf(Chi2statistic,1);
           Results.Chi2statisitcs = Chi2statistic;
           Results.Chi2pvalue = Chi2pvalue;
       end
       % t-statistic
       Nobs = length(Model.Data)-1;
       d = MomentsJacobian(Params, Model);
       VarParams = diag(inv(d'*W*d))./Nobs;
       Params(2) = Params(2)-1;
       Params(3) = Params(3)^2;
       Tstat = Params'./sqrt(VarParams);
       if strcmp(Model.Disp, 'y')
     fprintf('\n Parameters etimates, t-statistic in parentheses\n');
     fprintf(' Second run with weighting matrix, Iteration #%d\n', i);
           switch Model.Name
           case {'CIR', 'Vasicek'}
```

```
fprintf('\n alpha = %+3.5f(%+3.2f) \n beta
(\$+3.2f)\n sigma2 = \$+3.5f (\$+3.2f) \n gamma = \$ +3.5f \n',...
             Ralpha, Tstat(1), Rbeta, Tstat(2), Rsigma2, Tstat(3),
Rgamma);
             fprintf(' Chi2 statistic = %+2.4f\n', Chi2statistic);
             fprintf(' p-value
                                  = %+2.4f\n', Chi2pvalue);
          fprintf(' Objective function = %2.3e\n', Fval);
   end
Results.Tstat = Tstat;
Results. VarParams = VarParams;
Results.Params = [Ralpha Rbeta Rsigma2 Rgamma];
Results.Fval = Fval;
Results.Exitflag = Exitflag;
function R2 = R2measures(Model, Results)
% R2 measures
% INPUT: Model, structure
       Results, structure, see GMMestimation
%
% OUTPUT: R2, structure
왕
        R2.Rsquare1, forecast power for interest rate changes,
ે
        R2.Rsquare2, forecast power for squared interest rate changes
્ર
        Graph of empirical data vs forcasting data
્ર
        MSE
Data = Model.Data;
TimeStep = Model.TimeStep;
alpha = Results.Params(1);
beta = Results.Params(2);
sigma2 = Results.Params(3);
gamma = Results.Params(4);
CondEdata = alpha*TimeStep + (1+beta*TimeStep).*Data;
CondEddata = CondEdata - Data;
Realddata = diff(Data);
CondVARdata = sigma2*Data.^(2*gamma)*TimeStep;
RealVARdata = Realddata.^2;
% "forecast power" - calcluate R2 of the OLS of conditional values
% implied by the selected model on observed values
y = Realddata;
x = CondEddata(1:end-1);
b1 = x\y;
Rsquare1 = sum((b1.*x-mean(y)).^2)/sum((y-mean(y)).^2);
y = RealVARdata;
x = CondVARdata(1:end-1);
```

```
b1 = x y;
Rsquare2 = sum((b1.*x-mean(y)).^2)/sum((y-mean(y)).^2);
R2.Rsquare1 = Rsquare1;
R2.Rsquare2 = Rsquare2;
%----
              Forcasting Interest rate model
%----
fdata(1) = Data(1);
fdata2(1) = Data(1);
fdata3(1) = Data(1);
NN=length(Data);
for j=1:NN
   ex2(j)=exp(-1*beta);
end
dt=1/NN;
for i=2:length(Data)
   fdata(i)=alpha*TimeStep + (1+beta*TimeStep)*fdata(i-1)+...
          sqrt(sigma2*fdata(i-1)^(2*gamma)*TimeStep)*randn(1);
   fdata2(i)=alpha*TimeStep + (1+beta*TimeStep)*fdata2(i-1)-...
         sigma2^2*(1-ex2(i))*TimeStep/beta+...
         sqrt(sigma2*TimeStep)*randn(1);
   fdata3(i)=alpha*dt+ (1+beta*dt)*fdata(i-1)+...
          sqrt(sigma2*fdata(i-1)^(2*gamma)*dt)*randn(1);
end
응
             Calculate Mean Square Error
SumErrsqrt=0;
SumErrsqrt2=0;
SumErrsqrt3=0;
for i=1:length(Data)
   Err(i) = Data(i) - fdata(i);
   Err2(i)=Data(i)-fdata2(i);
   Err3(i) = Data(i) - fdata3(i);
   Errsqrt(i)=Err(i)^2;
   Errsqrt2(i)=Err2(i)^2;
   Errsqrt3(i)=Err3(i)^2;
   SumErrsqrt=Errsqrt(i)+SumErrsqrt;
   SumErrsqrt2=Errsqrt2(i)+SumErrsqrt2;
   SumErrsqrt3=Errsqrt3(i)+SumErrsqrt3;
end
MSE= SumErrsqrt/length(Data);
MSE2= SumErrsqrt2/length(Data);
MSE3= SumErrsqrt3/length(Data);
MeanIR=mean(Data);
Display Graph
if strcmp(Model.Disp, 'y')
      switch Model.Name
       case 'CIR'
           ns=10;
           for j=1:ns
            fdata4(1,j)=Data(1);
            for i=2:length(Data)
               fdata4(i,j)=alpha*TimeStep + ...
               1+beta*TimeStep)*fdata4(i-1,j)+ ...
         sqrt(sigma2*fdata4(i-1,j)^(2*gamma)*TimeStep)*randn(1);
```

```
end
            subplot(2,1,2)
            plot(1:length(Data), Data, 'b', 1:length(fdata4), fdata4)
            hold on
            title('Simulate Interest Rate 10 sample paths ')
            end
         subplot(2,1,1)
         plot(1:length(Data), Data, 'b', 1:length(fdata), fdata, '-r')
            title('Interest Rate " CIR model"')
            legend('Empirical', 'Simulation')
           fprintf('\n Mean of data = %d ',MeanIR);
           fprintf('\n Variance of data = %d',var(Data));
           fprintf('\n Number of data = %d ',length(Data));
           fprintf('\n MSE = %+3.5f \n', MSE);
fprintf('\n
                         ZERO COUPON BOND PRICE \n ');
fprintf ('\n ==========');
           % Calculate bond price by using formula
           r0=input('\n Input initial interest rate (r0) := ');
           T=input('\n Input matuarity time (T) := ');
           h=sqrt(beta^2+2*sigma2^2);
           b1=\exp(h*T)-1;
           b2=2*h+((h-beta)*(exp(h*T)-1));
           btT=2*b1/b2;
           atT=(2*h*exp((h-beta)*T/2)/b2)^(2*alpha/sigma2^2);
           Zerob=atT*exp(-1*btT*r0);
           fprintf('\n Exact CIR Price = %f \n', Zerob );
           8-----
           % Calculate bond price by using Monte Carlo Simulation
           TS=T/length(fdata);
           sfdata=exp(-1*sum(fdata*TS));
           MC=mean(sfdata);
           fprintf('\n Monte Carlo Price = %f \n',MC );
        case 'Vasicek'
           ns=10;
            for j=1:ns
              fdata4(1,j)=Data(1);
              for i=2:length(Data)
                  fdata4(i,j)=alpha*TimeStep +
(1+beta*TimeStep)...*fdata4(i-1,j)+...
                  sqrt(sigma2*fdata4(i-
1,j)^(2*gamma)*TimeStep)*randn(1);
               end
            subplot(2,1,2)
            plot(1:length(Data), Data, 'b', 1:length(fdata4), fdata4)
            hold on
            title('Simulate Interest Rate 10 sample paths ')
            end
            subplot(2,1,1)
         plot(1:length(Data), Data, 'b', 1:length(fdata), fdata, '-r')
         plot(1:length(Data), Data, 'b', 1:length(fdata), fdata, 'r')
            title('Interest Rate "Vasicek model"')
            legend('Empirical', 'ForecastVS')
            fprintf('\n Mean of data = %d ',MeanIR);
            fprintf('\n Variance of data = %d',var(Data));
            fprintf('\n Number of data = %d ',length(Data));
```

```
fprintf('\n MSE of Vasicek model = %+3.5f ',MSE);
fprintf('\n=========');
fprintf('\n
                     ZERO COUPON BOND PRICE ');
fprintf('\n=========');
           % Calculate bond price by using formula
           r0=input('\n Input initial interest rate (r0) := ');
           T=input('\n Input matuarity time (T) := ');
           btT=-1/beta*(1-exp(beta*T));
           atT=(-1*alpha/beta-sigma2^2/(2*beta^2))*(btT-
T)+(sigma2*beta)^2/(4*beta);
           Zerob=exp(atT-btT*r0);
           fprintf('\n Exact Vasicek Price = %f \n', Zerob );
           % Calculate bond price by using Monte Carlo Simulation
           TS=T/length(fdata);
           sfdata=exp(-1*sum(fdata*TS));
           MC=mean(sfdata);
           fprintf('\n Monte Carlo Price = %f \n',MC );
      end
end end
```

## **Appendix B: The empirical Example**

The Treasury bill yield data used are daily T-bill form Board of Governors of the Federal Reserve System. The data are daily cover period form 4 January 2009 to 8 December 2011. The data set is saved in **DBT33.txt.** 

The estimation and pricing routine is execute by running the runestimattion.m with MATLAB program version 7.2 (see MATLAB code in appendix A) . The results are displayed in the MATLAB's command window. The results are follow:

| Model   |         | Parameter | $\chi^2$ test | P-value |        |
|---------|---------|-----------|---------------|---------|--------|
|         | α       | β         | $\sigma^2$    | ,,      |        |
| CIR     | 0.44570 | -3.71553  | 0.30599       | 9.0847  | 0.0026 |
| Vasieck | 0.57989 | -5.45376  | 0.04105       | 2.1127  | 0.1461 |

 Table 1
 Parameter estimator and Statistic test

| Model   | Number<br>of data | Mean      | Variance    | MSE     | Zero coupon bond price with $r_0 = 0.08$ and $T = 1$ |             |
|---------|-------------------|-----------|-------------|---------|------------------------------------------------------|-------------|
|         |                   |           |             |         | Exact                                                | Monte Carlo |
| CIR     | 736               | 0.1160734 | 0.004457622 | 0.00478 | 0.896508                                             | 0.910618    |
| Vasieck | 736               | 0.1160734 | 0.004457622 | 0.00844 | 0.901410                                             | 0.922795    |

Table 2 The statistics description and Bond price

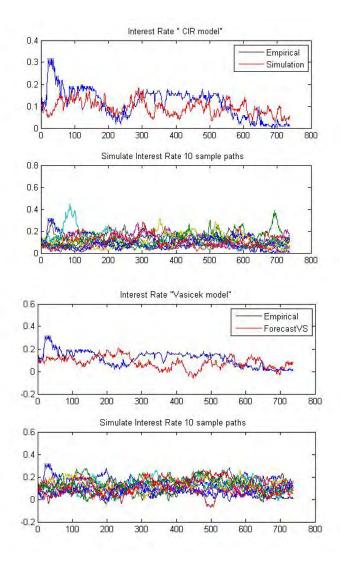


Figure 1 Empirical data VS Forecast data

## **Appendix C: Parameter Estimation and Application in Finance**

#### 1. The interest rate models

In this work , we focus on two specifications of the dynamics of the short-term interest rate as following

CIR model: 
$$dr_t = (\alpha + \beta r_t)dt + \sigma \sqrt{r_t}dW_t$$
 (1)

Varicek model: 
$$dr_t = (\alpha + \beta r_t)dt + \sigma \sqrt{r_t}dW_t$$
 (2)

where  $r_i$  is the interest rate,  $W_i$  is the Brownion motion,  $\alpha, \beta$  and  $\sigma$  are parameter. The model (1) and (2) are define the parameter vector  $\theta = (\alpha, \beta, \sigma^2)$ . We consider to estimate parameters by using the Generalize Method of Moments (GMM) technique which can be used for financial models and application the model in financial problem with MATLAB program.

#### 2. Generalized method of moments

To estimate parameter of (1) and (2) using GMM , we have to discretized the SDE by applied Euler discretization scheme are follow

CIR model: 
$$r_{t+1} - r_t = (\alpha + \beta r_t) \Delta t + \varepsilon_{t+1}, \quad \varepsilon_{t+1} \equiv \sigma \sqrt{r_t \Delta t} N(0, 1)$$
 (3)

Vasicek model: 
$$r_{t+1} - r_t = (\alpha + \beta r_t) \Delta t + \varepsilon_{t+1}, \quad \varepsilon_{t+1} \equiv \sigma \sqrt{\Delta t} N(0, 1)$$
 (4)

where N(0,1) is normal variable with zero mean and unit variance, and  $\Delta t$  is time step. Form (3) and (4) we can derive a set of four moment function

CIR model: 
$$f_{t}(\theta) = \begin{bmatrix} \varepsilon_{t+1} \\ \varepsilon_{t+1}^{2} - \sigma^{2} r_{t} \\ \varepsilon_{t+1} r_{t} \\ \left( \varepsilon_{t+1}^{2} - \sigma^{2} r_{t} \right) r_{t} \end{bmatrix}, \quad \text{Vasicek model:} \quad f_{t}(\theta) = \begin{bmatrix} \varepsilon_{t+1} \\ \varepsilon_{t+1}^{2} - \sigma^{2} \\ \varepsilon_{t+1} r_{t} \\ \left( \varepsilon_{t+1}^{2} - \sigma^{2} \right) r_{t} \end{bmatrix}. \quad (5)$$

The moment function are constructed so that  $E[f_t(\theta)] = 0$  and the sample moment are defines as

$$g_T(\theta) = \frac{1}{T} \sum_{t=1}^{T} f_t(\theta)$$

where T is a number of observations. Then the sample moments of (5) as follows

$$\text{CIR model}: \quad g_{T}(\theta) = \frac{1}{T} \begin{bmatrix} \sum_{t=1}^{T} \varepsilon_{t+1} \\ \sum_{t=1}^{T} \left(\varepsilon_{t+1}^{2} - \sigma^{2} r_{t}\right) \\ \sum_{t=1}^{T} \varepsilon_{t+1} r_{t} \\ \sum_{t=1}^{T} \left(\varepsilon_{t+1}^{2} - \sigma^{2} r_{t}\right) r_{t} \end{bmatrix}, \text{ Vasicek model}: \quad g_{T}(\theta) = \begin{bmatrix} \sum_{t=1}^{T} \varepsilon_{t+1} \\ \sum_{t=1}^{T} \varepsilon_{t+1}^{2} - \sigma^{2} \\ \sum_{t=1}^{T} \varepsilon_{t+1} r_{t} \\ \sum_{t=1}^{T} \left(\varepsilon_{t+1}^{2} - \sigma^{2}\right) r_{t} \end{bmatrix}. \tag{6}$$

The GMM objective function is defined as

$$J_{T}(\theta) = g_{T}(\theta)W_{T}(\theta)g_{T}(\theta) \tag{7}$$

where  $W_T(\theta)$  is positive definite weight matrix, or, equivalently, by solving the system of equations

$$D_0'(\theta)'W_Tg_T(\theta) = 0, (8)$$

where  $D_0(\theta)$  is the Jacobian matrix of  $g_T(\theta)$  wish respect to  $\theta$ . We find the parameter by solving

$$\hat{\theta} = \underset{\alpha}{\arg\min} J_T \,. \tag{9}$$

For the unrestricted model, the parameter are just identified and  $J_T(\theta)$  attains zero for all choices of  $W_T(\theta)$ . For the interest rate models, the GMM estimates of the over-identified parameter sub-vector of  $\theta$  do depend on the choice of  $W_T(\theta)$ . Hanson [5] shows the optimal choice of the weighting matrix in term minimizing the asymptotic covariance matrix of the estimator is

$$W_{T}(\theta) = \left(\sum_{k=-\infty}^{\infty} E[f_{t}(\theta)f_{t-k}(\theta)']\right)^{-1}.$$
 (10)

In our consideration, GMM is a two stage estimator. We usually proceed in the following way: First, we minimize (7) using identity weighting matrix  $W_T = I$ . This means that we consider all moments equally important. We plug estimated parameter vector into (10) to get  $W_T$ . And secondly, we minimize (7) again, but time using the  $W_T$  form the previous step.

When the number of moment condition is greater than the dimension of parameter vector, the model is said to be over identified. Over identification allows us to check whether the model's moment conditions match the data well or not. We can check whether sample moment is sufficiently close to zero to suggest that the model fits the data well. The test statistics is asymptotically  $\chi^2$  distributed,

$$T \times g_T(\hat{\theta}) W_T(\hat{\theta}) g_T(\hat{\theta}) \xrightarrow{d} \chi_{m-p}^2$$
(11)

where m is a number of moment condition and p is a number of parameters. If the test statistic reject, then the underlying model that generated the system of moment condition is declared invalid.

## 3. Pricing of Zero Coupon Bond

A zero coupon bond is a contract priced P(t,T) at time t < T to deliver P(T,T) = 1 at time T. The computation of the arbitrage price P(t,T) of a zero coupon bond base on as underlying short term interest rate process  $r_i$  is a basic and important issue in interest rate modeling. We may distinguish three different situations:

- The short rate is a deterministic constants r > 0. In this case P(t,T) should satisfy  $e^{-r(T-t)}P(t,T) = P(T,T) = 1$ , which leads to

$$P(t,T) = e^{-r(T-t)}, \quad 0 \le t \le T$$
 (12)

- The short rate is a deterministic function  $(r_i)_{i \in R^+}$ . In this case, an argument similar to the above shows that

$$P(t,T) = \exp(-\int_{-T}^{T} r_s ds), \quad 0 \le t \le T.$$
(13)

- The short rate is a deterministic process  $(r_t)_{t \in R^+}$ . In this case, formula (13) no longer makes sense because the price P(t,T) being set at time t, can depend only on information known up to time t. This is contradiction with (13) in which P(t,T) depends on the future values of  $r_s$  for  $s \in [t,T]$ . Then P(t,T) should be

$$P(t,T) = E \left[ \exp(-\int_{t}^{T} r_{s} ds) \mid F_{t} \right], \quad 0 \le t \le T.$$

$$(14)$$

**Theorem** 1 (Zero coupon bond in the Vasicek model). In the Vasicek model, the price of a zero coupon bond with maturity T at time  $t \in [0,T]$  is given by

$$P(t,T) = A(t,T) \exp(-r_t B(t,T)),$$
 where 
$$B(t,T) = -\frac{1}{\beta} \left( 1 - \exp\left(\beta(T-t)\right) \right)$$
 and 
$$A(t,T) = \exp\left[ \left( -\frac{\alpha}{\beta} - \frac{\sigma^2}{2\beta^2} \right) \left( B(t,T) - T + t \right) + \frac{\sigma^2}{4\beta} B^2(t,T) \right].$$

**Proof.** See Brigo [2] pp.58-59.

**Theorem** 2 (Zero coupon bond in the CIR model). In the CIR model, the price of a zero coupon bond with maturity T at time  $t \in [0,T]$  is given by

$$P(t,T) = A(t,T) \exp(-r_t B(t,T)),$$
 where 
$$B(t,T) = \frac{2(e^{h(T-t)} - 1)}{2h + (h-\beta)(e^{h(T-t)} - 1)},$$
 and 
$$A(t,T) = \left(\frac{2he^{(h-\beta)(T-t)/2}}{2h + (h-\beta)(e^{h(T-t)} - 1)}\right)^{2\alpha/\sigma^2} \text{ with } h = \sqrt{\beta^2 + 2\sigma^2}.$$

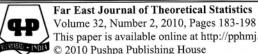
**Proof.** See Bohner [1].

#### Referrence

- [1] Bohner, M. "Fixed Incomed Models", Department of Mathematics and Statistics,2011 http.www.mst.edu/~bohner/fim-10/fim-front.pdf
- [2] Brigo, D. and Mercuiro ,F., "Interest Rate Models: Theory and Practice," 2nd Edition, Springer, Berlin, 2001.
- [3] Chan, K.C., Andrew, G., Longstaff, F.A. and Sanders, A.B., "An Empirical Comparison of Alternative Models of the Short Term Interest Rate", The journal of Finance, Vol. 47, No.3,

pp.1209-1227, 1992.

- [4] Kladivko, K., "The General Method of Moments using MATLAB: The Practical guide based on the CKLS interest rate model", In proceedings MATLAB conference, Institute of Chemical Technology, Prague, Department of Computing and Control Engineering ,2008.
- [5] Hansen, L.P., "Large Sample Properties of GMM Estimators", Econometrica Vol. 50, pp. 1029-1054, 1982.



This paper is available online at http://pphmj.com/journals/fjts.htm © 2010 Pushpa Publishing House

## A VALUE FUNCTION OF DISCRETE-TIME SURPLUS PROCESS IN INSURANCE UNDER INVESTMENT AND REINSURANCE CREDIT RISK

W. KLONGDEE<sup>1</sup>, P. SATTAYATHAM<sup>1</sup> and K. SANGAROON<sup>2</sup>

School of Mathematics Suranaree University of Technology Nakhon Ratchasima 30000, Thailand e-mail: pairote@sut.ac.th

<sup>2</sup>Department of Mathematics Khonkaen University Khonkaen 40002, Thailand

#### Abstract

This paper has studied an insurance model where the surplus process can be controlled by two activities, one is reinsurance for which the reinsurance company has an opportunity to default and other is an investment in a financial market. We prove the existence of an optimal plan and derive a formula for the value function which is the minimum of total discounted cost function in the framework of discrete-time surplus process.

#### 1. Introduction

In recent years, risk models have attracted much attention in the insurance business, in connection with the possible insolvency and the capital reserves of the insurance company. The main interest from the point of view of an insurance 2010 Mathematics Subject Classification: 93B30.

Keywords and phrases: value function, surplus process, reinsurance, investment.

This work is supported by Thailand Research Fund 2008.

Received May 5, 2010

company is claim arrival and claim size, which affect the capital of the company. Claims happen at the times  $T_i$ , satisfying  $0 = T_0 \le T_1 \le T_2 \le \cdots$ . We call them claim arrivals or, simply, arrivals. The *n*th claim arriving at time causes the claim size  $Y_n$ . The inter-arrival times or, simply, inter-arrival,  $Z_n := T_n - T_{n-1}$  is the length of time between (n-1)th claim and *n*th claim. By period n, we shall mean the random interval  $[T_{n-1}, T_n)$ ,  $n \ge 1$ .

Now let the constant  $c_0$  represent the premium rate for one unit time; the random variable  $c_0 \sum_{i=1}^{n+1} Z_i = c_0 T_{n+1}$  describes the inflow of capital into the business by time  $T_{n+1}$ , and  $\sum_{i=1}^{n+1} Y_i$  describes the outflow of capital due to payments for claims occurring in  $[0, T_{n+1}]$ . Therefore, the quantity

$$X_{n+1} = x + c_0 T_{n+1} - \sum_{i=1}^{n+1} Y_i$$
 (1.1)

is the insurer's balance (or surplus) at time  $T_{n+1}$  with the constant  $X_0 = x > 0$  as the initial capital. In summary, the discrete-time surplus process will be defined as follows:

$$X_0 = x$$
,  $X_{n+1} = X_n + c_0 Z_{n+1} - Y_{n+1}$ ,  $n = 0, 1, 2, ...$  (1.2)

Reinsurance and investment are a normally activity of insurance company because reinsurance can reduce the risk (ruin probability) arising from claims, and the investment can make more profit for the company. Thus there are many papers which studied their effect in the insurance business. For example, the effect of reinsurance on ruin probability was studied by Dickson and Waters [3], minimizing ruin probability in a continuous-time model considered by Browne [2], Hipp and Plum [4], Hipp and Vogt [5], Højgaard and Taksar [6, 7], Schmidli [9], and exponential utility and minimizing ruin probability in a discrete-time model considered by Schäl [8].

In this paper, we shall prove the existence of an optimal plan (i.e., the strategy or policy of choosing reinsurance and investment for minimizing a value function) and derive a formula of the value function under the condition that a reinsurer has opportunity to default and an investment in risky assets. Let  $\{X_n, n \ge 1\}$  be the surplus process which can be controlled by choosing the retention level b of

reinsurance for one period, and for each level b, the insurer has to pay the premium rate to the reinsurer which is deducted from  $c_0$ , as a result of which the insurer's income rate will be represented by the function c(b). The level  $\overline{b}$  stands for the control action without reinsurance, so that  $c_0 = c(\overline{b})$  and the level  $\underline{b}$  is the smallest retention level which can be chosen. Of course, we obtain the *net income rate* c(b), where  $0 \le c(b) \le c_0$ , for all  $b \in [\underline{b}, \overline{b}]$  and c(b) is increasing. By the *expected value principle*, c(b) can be calculated as follows:

$$c(b) = c_0 - (1 + \theta_0) \cdot \frac{E[Y - h(b, Y)]}{E[Z]},$$
(1.3)

where  $\theta_0$  is the safety loading of the reinsurer and the function h(b, y) is the part of the claim size y paid by the insurer, and the remaining part y - h(b, y) which called *reinsurance recovery* is paid by the reinsurer.

Next, we shall recall the *reinsurance credit risk* (RCR) which is the risk of the reinsurance counterparty failing to pay reinsurance recoveries in full to the ceding company (insurer) in a timely manner, i.e., unwillingness to pay, or even not paying them at all. Therefore, we assume that for each retention level  $b \in [\underline{b}, \overline{b}]$ , the reinsurer has an opportunity to default, i.e., the insurer has to pay

$$\begin{cases} y, & \text{if reinsurer default with probability } P(K=0) = p, \\ h(b, y), & \text{if reinsurer dose not default with probability } P(K=1) = 1 - p, \end{cases}$$

where K is a random variable with value in  $\{0, 1\}$  and  $p \in [0, 1)$  is constant. The random variable K is said to be *binary recovery*. Let  $\{T_n, n \ge 0\}$  be a sequence of arrival and let  $K_n$  be a binary recovery at time  $T_n$ .

In addition, the insurer can invest the surplus (capital) in a financial market with *m* risky assets, called *stocks*, described by the price process

$$\{S_n=(S_n^1,\,S_n^2,\,...,\,S_n^m),\,n\geq 1\},$$

where  $S_n^k > 0$  is the price of one share of stock k at the time  $T_{n-1}$ . We now define the return process  $\{R_n = (R_n^1, R_n^2, ..., R_n^m), n \ge 1\}$  by  $R_n^k = (S_n^k - S_{n-1}^k)/S_{n-1}^k, 1 \le k \le m$ . For each  $n \ge 1$ , a portfolio vector  $\delta_{n-1} = (\delta_{n-1}^1, \delta_{n-1}^2, ..., \delta_{n-1}^m) \in \mathbb{R}^m$  specifies the

time  $T_{n-1}$  and the component  $\delta_{n-1}^k$  represents the amount invested in stock k during period n. This means that the insurance company holds  $\delta_{n-1}^k/S_{n-1}^k$  shares of stock k during period n, so that the value of these shares at the time  $T_n$  is  $\delta_{n-1}^k \cdot S_n^k/S_{n-1}^k$ .

In this situation, we will allow for a negative value for  $\delta_{n-1}^k$ , that is, we admit the short selling of stocks. Letting  $X_n$  be a surplus and  $(b_n, \delta_n)$  be a control action at the time  $T_n$ , therefore, we can adapt the surplus process (1.2) as follows:

$$\begin{split} X_{n+1} &= X_n + c(b_n) Z_{n+1} - h(b_n, Y_{n+1}) K_{n+1} - Y_{n+1} (1 - K_{n+1}) - \sum_{k=1}^m \delta_n^k + \sum_{k=1}^m \frac{\delta_n^k}{S_n^k} S_{n+1}^k \\ &= X_n + c(b_n) Z_{n+1} - h(b_n, Y_{n+1}) K_{n+1} - Y_{n+1} (1 - K_{n+1}) + \sum_{k=1}^m \delta_n^k \frac{(S_{n+1}^k - S_n^k)}{S_n^k} \\ &= X_n + c(b_n) Z_{n+1} - h(b_n, Y_{n+1}) K_{n+1} - Y_{n+1} (1 - K_{n+1}) + \sum_{k=1}^m \delta_n^k R_{n+1}^k \\ &= X_n + c(b_n) Z_{n+1} - \{h(b_n, Y_{n+1}) K_{n+1} + Y_{n+1} (1 - K_{n+1})\} + \langle \delta_n, R_{n+1} \rangle, \end{split}$$

where  $X_0 = x$  and  $\langle \cdot, \cdot \rangle$  is the inner product in  $\mathbb{R}^m$ . It is convenient to set

$$X_0 = x, \quad X_{n+1} = X_n + L(b_n, \delta_n, K_{n+1}, R_{n+1}, Y_{n+1}, Z_{n+1}), \quad n = 0, 1, 2, ..., \quad (1.4)$$
 where

$$L(b, \delta, k, r, y, z) = c(b) \cdot z - \{h(b, y)k + y(1-k)\} + \langle \delta, r \rangle.$$
 (1.5)

If we let  $f(x, b, \delta, k, r, y, z) = x + L(b, \delta, r, y, z)$ , then f is the system function as mentioned in Bersekas and Shreve [1]. We see that the process  $\{X_n, n \geq 0\}$  is driven by the control action  $u_n = (b_n, \delta_n)$  and the sequence of random vector  $\{W_n, n \geq 1\}$ , where  $W_n = (K_n, R_n, Y_n, Z_n)$  (the disturbance for period n) is the source of the randomness of the model. It is natural to assume that the process  $W_n$  is iid, i.e., we make the following assumption:

#### Assumption 1. Independence assumption (IA)

 $W_n = (K_n, R_n, Y_n, Z_n), n \ge 1$  are independent and identically distributed random variables (iid). In addition, it is assumed that  $(K_n, Y_n, Z_n)$  and  $R_n$  are independent for all  $n \ge 1$ .

As a consequence,  $\{R_n, n \ge 1\}$  as well as  $\{K_n, n \ge 1\}$ ,  $\{Y_n, n \ge 1\}$  and  $\{Z_n, n \ge 1\}$  are also iid. We set  $K = K_1$ ,  $R = R_1$ ,  $Y = Y_1$ ,  $Z = Z_1$  and  $W = W_1$  for a typical binary recovery, typical return, typical period length, typical claim, and typical disturbance, respectively.

#### 2. Dynamic Programming with Finite Horizon

In this section, we assume that all the processes are defined in a probability space  $(\Omega, \mathcal{F}, P)$ . Let  $\{X_n, n \geq 0\}$  be a surplus process (as in Section 1) with value in a state space (S, S) which is a measurable space. Suppose that  $\{X_n, n \geq 0\}$  is driven by a sequence of iid random variables  $\{W_n, n \geq 1\}$  with values in a measurable space  $(E, \mathcal{E})$ . Therefore,  $(E, \mathcal{E})$  is called *disturbance space*. The surplus process can be controlled at the beginning of every period in a measurable space  $(U, \mathcal{U})$  which is called the *control action space*. In addition, the model is specified by the following quantities:

- $\alpha \in [0, 1]$  is the discount factor;
- $g: S \times U \to (-\infty, \infty]$  is the *one-period cost function*, which is measurable and bounded from below;
  - $N \in \{1, 2, 3, ...\}$  is a *time horizon* (number of periods) and
- $\hat{V}_N: S \to (-\infty, \infty]$  is the *terminal cost function* for time horizon N, which is measurable and bounded from below.

**Definition 2.1.** A plan for the time horizon N over action space U is a (finite) sequence  $\pi = (u_i)_{i=0}^{N-1}$  of control action  $u_i \in U$ , for all  $i \in \{0, 1, 2, ..., N-1\}$ . A set of all plans for the time horizon N over action space U is denoted  $\mathcal{P}(N, U)$ . A plan  $\pi \in \mathcal{P}(N, U)$  is said to be *u-stationary*, if  $\pi = \underbrace{(u, u, ..., u)}_{N \text{ terms}}$  for some  $u \in U$ .

For each initial state  $x \in S$  and plan  $\pi = (u_i)_{i=0}^{N-1}$ , the surplus process (1.4) can be written by

$$X_{n+1} = X_n + L(u_n, W_{n+1}) = x + \sum_{k=0}^n L(u_k, W_{k+1}), \quad n = 0, 1, 2, ..., N-1$$
 (2.1) and  $X_0 = x$ .

For the state  $X_n = x_n$ , the cost at the time  $T_n$  will be  $g(x_n, u_n)$  and the next state

$$x_{n+1} = x_n + c(b_n)z_n - (h(b_n, y_{n+1})k_{n+1} + y_{n+1}(1 - k_{n+1})) + \langle \delta_n, r_{n+1} \rangle$$
 (2.2)

which will result in a cost  $g(x_{n+1}, u_{n+1})$  at the time  $T_{n+1}$ . Thus, the present value of the costs at the time  $T_{n+1}$  will be  $\alpha \cdot g(x_{n+1}, u_{n+1})$ , i.e.,  $g(x_{n+1}, u_{n+1})$  is discounted by  $\alpha$ .

**Definition 2.2.** Let N be the time horizon. Then the *total discounted cost* function and the valued function for the time horizon N are defined by

$$\Phi^{(N)}(x, \pi) = E \left[ \sum_{i=0}^{N-1} \alpha^i g(X_i, u_i) + \alpha^N \hat{V}_N(X_N) | X_0 = x \right], \text{ where } \pi = (u_i)_{i=0}^{N-1},$$
(2.3)

and

$$V^{(N)}(x) = \inf_{\pi \in \mathcal{P}(N, U)} \Phi^{(N)}(x, \pi), \text{ respectively.}$$
 (2.4)

A plan  $\pi \in \mathcal{P}(N, U)$  is said to be *optimal*, if  $V^{(N)}(x) = \Phi^{(N)}(x, \pi)$ . If  $\pi$  is u-stationary, then we write  $\Phi^{(N)}(x, \pi) = \Phi^{(N)}(x, u)$ .

#### 3. Main Results

In this section, we study the insurance model introduced in Section 1 under the assumption that the insurer can borrow an unlimited amount of money. Let the state space  $S = \mathbb{R}$  and the control space  $U = [\underline{b}, \overline{b}] \times \mathbb{R}^m$ . Thus, for each state  $x \in S$ , we can choose any control actions  $u = (b, \delta) \in [\underline{b}, \overline{b}] \times \mathbb{R}^m$ , where b is the retention level of reinsurance and  $\delta = (\delta^1, \delta^2, ..., \delta^m)$  is the portfolio vector.

We will study the cost structure which is given by the idea that the insurance company is not insolvency (ruined) but only penalized if the size of the surplus is negative or small. The penalty cost of being in state x is of the form  $\operatorname{const} \times e^{-\beta x}$  for some  $\beta > 0$ . Therefore, we define the cost functions as

$$g(x, u) = \gamma \cdot e^{-\beta x}, \quad \hat{V}_N(x) = v_0 \cdot e^{-\beta x}, \quad \text{for some} \quad \gamma, v_0 \ge 0,$$
 (3.1)

when  $x \in S$ ,  $u \in U$ . Thus, we obtain the total discounted cost function of model (1.4) as

$$\Phi^{(N)}(x, \pi) = E \left[ \sum_{i=0}^{N-1} \alpha^{i} \gamma \cdot e^{-\beta x_{i}} + \alpha^{N} \nu_{0} \cdot e^{-\beta X_{N}} \mid X_{0} = x \right], \tag{3.2}$$

where  $\pi \in \mathcal{P}(N, U)$ .

In this paper, we will use the method of dynamic programming to prove the main theorem. In order to do this, we define  $\Phi_n^{(N)}(x, \pi)$  and  $V_n^{(N)}(x)$  as follows:

$$\Phi_n^{(N)}(x,\pi) = E\left[\sum_{i=n}^{N-1} \alpha^{i-n} \gamma \cdot e^{-\beta X_i} + \alpha^{N-n} \nu_0 \cdot e^{-\beta X_N} \mid X_n = x\right], \quad n = 0, 1, 2, ..., N-1$$

$$\Phi_N^{(N)}(x,\pi) = v_0 \cdot e^{-\beta x}, \text{ where } \pi = (u_i)_{i=0}^{N-1},$$
 (3.4)

and

$$V_n^{(N)}(x) = \inf_{\pi \in \mathcal{P}(N, U)} \Phi_n^{(N)}(x, \pi), \quad n = 0, 1, 2, ..., N - 1,$$
(3.5)

(3.3)

$$V_N^{(N)}(x) = \Phi_N^{(N)}(x, \pi). \tag{3.6}$$

It is obvious to see that  $\Phi^{(N)}(x) = \Phi_0^{(N)}(x)$  and  $V^{(N)}(x) = V_0^{(N)}(x)$ . For each  $\pi = (u_0, u_1, u_2, \dots, u_{N-1}) \in \mathcal{P}(N, U)$ , we can see from equation (3.3) that

$$\Phi_n(x,\,\pi)=\Phi_n(x,\,(u_0,\,u_1,\,u_2,\,...,\,u_{n-1},\,u_n,\,...,\,u_{N-1}))$$

does not depend on the control actions  $u_0, u_1, ..., u_{n-1}$ . Therefore, (3.5) becomes

$$V_n^{(N)}(x) = \inf_{u_n, u_{n+1}, \dots, u_{N-1} \in U} \Phi_n^{(N)}(x, (u_0, u_1, u_2, \dots, u_{n-1}, u_n, \dots, u_{N-1})).$$
(3.7)

Next, we define a function  $G:U\to [0,\infty]$  by

$$G(u) := E[e^{-\beta L(u, W_1)}],$$
 (3.8)

for all  $u \in U$ , where  $W_1$  is given in Assumption 1 (IA). Thus, by Assumption 1 (IA), we have

$$E[e^{-\beta L(u,W_n)}] = E[e^{-\beta L(u,W_1)}],$$
 (3.9)

for all  $u \in U$  and  $n \in \{1, 2, 3, ...\}$ .

**Remark 3.1.** By Assumption 1 (IA), for each  $\pi = (u_i)_{i=0}^{N-1} \in \mathcal{P}(N, U)$ , (3.3) becomes

$$\Phi_n^{(N)}(x,\pi) = \gamma e^{-\beta x} + \alpha G(u_n) \Phi_{n+1}^{(N)}(x,\pi), \tag{3.10}$$

for all n = 0, 1, 2, ..., N - 1.

**Proof of Remark 3.1.** Let  $\pi = (u_i)_{i=0}^{N-1} \in \mathcal{P}(N, U)$ . In the case of n = N-1, we have

$$\begin{split} \Phi_{N-1}^{(N)}(x, \pi) &= E[\gamma e^{-\beta x} + \alpha \nu_0 \cdot e^{-\beta(x + L(u_{N-1}, W_N))}] \\ &= \gamma e^{-\beta x} + \alpha E[e^{-\beta L(u_{N-1}, W_N)}] \nu_0 \cdot e^{-\beta x} \\ &= \gamma e^{-\beta x} + \alpha G(u_{N-1}) \Phi_N^{(N)}(x, \pi). \end{split}$$
(3.11)

In the case of  $0 \le n < N - 1$ . Consider

$$\Phi_{n}^{(N)}(x, \pi) = E \left[ \sum_{i=n}^{N-1} \alpha^{i-n} \gamma e^{-\beta X_{i}} + \alpha^{N-n} v_{0} \cdot e^{-\beta X_{N}} | X_{n} = x \right] 
= E \left[ \gamma e^{-\beta x} + \alpha \gamma e^{-\beta (x + L(u_{n}, W_{n+1}))} + \sum_{i=n+2}^{N-1} \alpha^{i-n} \gamma e^{-\beta \left(x + \sum_{j=n}^{i-1} L(u_{j}, W_{j+1})\right)} + v_{0} \alpha^{N-n} e^{-\beta \left(x + \sum_{j=n}^{N-1} L(u_{j}, W_{j+1})\right)} \right] 
= \gamma e^{-\beta x} + \alpha E \left[ e^{-\beta L(u_{n}, W_{n+1})} \left\{ \gamma e^{-\beta x} + \sum_{i=n+2}^{N-1} \gamma \alpha^{i-(n+1)} \gamma e^{-\beta \left(x + \sum_{j=n+1}^{i-1} L(u_{j}, W_{j+1})\right)} + v_{0} \alpha^{N-(n+1)} e^{-\beta \left(x + \sum_{j=n+1}^{N-1} L(u_{j}, W_{j+1})\right)} \right\} \right].$$
(3.1)

Since the  $\{W_{n+1}, n \ge 0\}$  is an independent sequence,  $\{L(u_n, W_{n+1}), n \ge 0\}$  is also an independent sequence. Thus, we obtain

$$\Phi_{n}^{(N)}(x, \pi) = \gamma e^{-\beta x} + \alpha E[e^{-\beta L(u_{n}, W_{n+1})}] E\left[\gamma e^{-\beta x} + \sum_{i=n+2}^{N-1} \gamma \alpha^{i-(n+1)} e^{-\beta \left(x + \sum_{j=n+1}^{i-1} L(u_{j}, W_{j+1})\right)}\right]$$

$$+ v_0 \alpha^{N-(n+1)} e^{-\beta \left(x + \sum_{j=n+1}^{N-1} L(u_j, W_{j+1})\right)}$$

$$= \gamma e^{-\beta x} + \alpha E[e^{-\beta L(u_n,W_{n+1})}] E\left[\sum_{i=n+1}^{N-1} \alpha^{i-(n+1)} \gamma e^{-\beta X_i} + \alpha^{N-n} v_0 e^{-\beta X_N} \mid X_{n+1} = x\right]$$

$$= \gamma e^{-\beta x} + \alpha G(u_n) \Phi_{n+1}^{(N)}(x, \pi). \tag{3.13}$$

This proves Remark 3.1.

Remark 3.1 leads to the following lemma:

**Lemma 3.2.** Under Assumption 1, let  $x \in S$  be an initial state and  $u \in U$  be a control action. If  $G(u) < \infty$ , then

$$\Phi_n^{(N)}(x, u) = \begin{cases} (\gamma - [\gamma - v_0(1 - \alpha G(u))](\alpha G(u))^{N-n}) \cdot \frac{e^{-\beta x}}{1 - \alpha G(u)}, & \alpha G(u) \neq 1, \\ (\gamma (N-n) + v_0) \cdot e^{-\beta x}, & \alpha G(u) = 1, \end{cases}$$

for all n = 0, 1, 2, ..., N.

**Proof.** In the case of  $\alpha G(u) \neq 1$ , we will prove this lemma by using mathematical induction. Obviously, the case n = N holds. Now assume that

$$\Phi_{n+1}^{(N)}(x, u) = (\gamma - [\gamma - v_0 \cdot (1 - \alpha G(u))](\alpha G(u))^{N - (n+1)}) \cdot \frac{e^{-\beta x}}{1 - \alpha G(u)}, \quad (3.14)$$

where n + 1 < N. By virtue of Remark 3.1, we get

$$\Phi_{n}^{(N)}(x, u) 
= \gamma e^{-\beta x} + \alpha G(u) \Phi_{n+1}^{(N)}(x, u) 
= \gamma e^{-\beta x} + \alpha G(u) (\gamma - [\gamma - \nu_0 (1 - \alpha G(u))] (\alpha G(u))^{N - (n+1)}) \cdot \frac{e^{-\beta x}}{1 - \alpha G(u)} 
= (\gamma (1 - \alpha G(u)) + (\gamma \alpha G(u) - [\gamma - \nu_0 (1 - \alpha G(u))] (\alpha G(u))^{N - n})) \cdot \frac{e^{-\beta x}}{1 - \alpha G(u)} 
= (\gamma - [\gamma - \nu_0 (1 - \alpha G(u))] (\alpha G(u))^{N - n}) \cdot \frac{e^{-\beta x}}{1 - \alpha G(u)}.$$
(3.15)

Obviously, the case  $\alpha G(u) = 1$  holds. This proves Lemma 3.2.

**Lemma 3.3.** Under Assumption 1, let  $x \in S$  be an initial state. If there exists  $u^* \in U$  such that  $G(u^*) = \min_{u \in U} E[e^{-\beta L(u, W)}] < \infty$ , then

$$V_n^{(N)}(x) = \gamma e^{-\beta x} + \alpha G(u^*) \cdot V_{n+1}^{(N)}(x)$$
(3.16)

and the  $u^*$ -stationary is an optimal plan, i.e.,  $V^{(N)}(x) = \Phi^{(N)}(x, u^*)$ .

**Proof.** Let  $n \in \{0, 1, 2, ..., N-1\}$ . Then, by equation (3.7) and Remark 3.1, we have

$$V_n^{(N)}(x) = \inf_{u_n, u_{n+1}, \dots, u_{N-1} \in U} \Phi_n^{(N)}(x, (u_0, u_1, u_2, \dots, u_{N-1}))$$
(3.17)

$$= \gamma e^{-\beta x} + \alpha \inf_{u_n, u_{n+1}, \dots, u_{N-1} \in U} \{ G(u_n) \Phi_{n+1}^{(N)}(x, (u_0, u_1, u_2, \dots, u_{N-1})) \}.$$
 (3.18)

For each  $(u_i)_{i=0}^{N-1} \in \mathcal{P}(N, U)$ , we have  $\Phi_{n+1}^{(N)}(x, (u_0, u_1, u_2, ..., u_{N-1})) \ge 0$  and  $G(u_n) \ge 0$ , for all  $n \in \{0, 1, 2, ..., N-1\}$ , and  $\Phi_{n+1}^{(N)}(x, (u_0, u_1, u_2, ..., u_{N-1}))$  does not depend on the control actions  $u_0, u_1, ..., u_n$ . Therefore, (3.18) becomes

$$V_n^{(N)}(x) = \gamma e^{-\beta x} + \alpha \inf_{u_n \in U} G(u_n) \cdot \inf_{u_{n+1}, \dots, u_{N-1} \in U} \Phi_{n+1}^{(N)}(x, (u_0, u_1, u_2, \dots, u_{N-1})), \quad (3.19)$$

$$= \gamma e^{-\beta x} + \alpha G(u^*) \cdot \inf_{\pi \in \mathcal{P}(N, U)} \Phi_{n+1}^{(N)}(x, \pi)$$
(3.20)

$$= \gamma e^{-\beta x} + \alpha G(u^*) \cdot V_{n+1}^{(N)}(x). \tag{3.21}$$

From Remark 3.1 and (3.21), since  $V_N^{(N)}(x) = \Phi_N^{(N)}(x, u^*)$ , we conclude that

$$V_n^{(N)}(x) = \Phi_n^{(N)}(x, u^*), \tag{3.22}$$

for all  $n \in \{0, 1, 2, 3, ..., N-1\}$ . Therefore,  $V^{(N)}(x) = \Phi^{(N)}(x, u^*)$ . This means that  $u^*$ -stationary is an optimal plan.

From Lemma 3.3, we need the condition for the existence of  $\min_{u \in U} G(u)$  which can be shown by using the extreme value theorem. First, we need the property that  $u \to G(u)$  is continuous, so we make the following assumption:

#### Assumption 2. Continuity assumption (CA)

The functions c(b) and h(b, y) are continuous in b (for each y) and

$$E[e^{\beta \cdot Y}] < \infty, \quad E[e^{\varepsilon \cdot ||R||}] < \infty, \quad \text{for all} \quad \varepsilon > 0.$$
 (3.23)

Since (K, Z, Y) and R are assumed to be independent as in Assumption 1 (IA) and since  $0 \le h(b, Y)K + Y(1 - K) \le YK + Y(1 - K) = Y$ ,

$$\begin{split} E[e^{-\beta(c(b)Z - \{h(b,Y)K + Y(1-K)\} + \langle \delta,R \rangle)}] &\leq E[e^{\beta\{h(b,Y)K + Y(1-K)\} - \beta\langle \delta,R \rangle}] \\ &\leq E[e^{\beta\{h(b,Y)K + Y(1-K)\}}] E[e^{-\beta\langle \delta,R \rangle}] \\ &\leq E[e^{\beta Y}] \cdot E[e^{\|\beta\| \|\delta\| \|R\|}] < \infty. \end{split}$$

We now conclude that G(u) is continuous by using the dominated convergence theorem. Moreover,  $b \mapsto E[e^{-\beta(c(b)Z - \{h(b,Y)K + Y(1-K)\})}]$  and  $\delta \mapsto [e^{-\beta(\delta,R)}]$  are also continuous.

Recall that, we have already set  $K = K_1$ ,  $R = R_1$ ,  $Z = Z_1$  and  $Y = Y_1$  but sometimes, in Assumption 3, we write  $K_1$ ,  $K_1$ ,  $K_2$  and  $K_3$  instead of  $K_1$ ,  $K_2$  and  $K_3$  respectively, to emphasize the balance's surplus at time  $K_1$ .

## Assumption 3. No-arbitrage assumption (NA)

For any portfolio vector  $\delta \in \mathbb{R}^m$ ,  $P(\langle \delta, R \rangle \ge 0) = 1$ , implies  $P(\langle \delta, R \rangle = 0) = 1$ .

In the investment, the investor will look for the arbitrage opportunity, i.e., they want to hold the portfolio  $\delta_0 \in \mathbb{R}^m$  such that  $P(\langle \delta_0, R_1 \rangle \geq 0) = 1$ , which implies that for the initial surplus  $X_0 = x$ , we have

$$X_{1} = x + c(b_{0})Z_{1} - \{h(b_{0}, Y_{1})K_{1} + Y_{1}(1 - K_{1})\} + \langle \delta_{0}, R_{1} \rangle$$

$$\geq x + c(b_{0})Z_{1} - \{h(b_{0}, Y_{1})K_{1} + Y_{1}(1 - K_{1})\} \quad \text{a.s.}$$
(3.24)

which means that the portfolio  $\delta_0 \in \mathbb{R}^m$  has no risk. Of course, the investor would like to use this opportunity because the quantity  $P(\langle \delta_0, R_1 \rangle > 0)$  may be positive which indicates an arbitrage opportunity. Note that Assumption 3 (NA) is equivalent to

"for any portfolio  $\delta \in \mathbb{R}^m$ ,  $0 < P(\langle \delta, R \rangle < 0) < 1$  or  $\langle \delta, R \rangle = 0$  a.s." (NA\*) By using (NA\*), we have

$$\mathbb{R}^m = \mathfrak{I} \cup \mathfrak{I}^*$$
 and  $\mathfrak{I} \cup \mathfrak{I}^* \neq \emptyset$ ,

where  $\mathfrak{I} = \{\delta \in \mathbb{R}^m : \langle \delta, R \rangle = 0 \text{ a.s.} \}$  and  $\mathfrak{I}^* = \{\delta \in \mathbb{R}^m : 0 < P(\langle \delta, R \rangle < 0) < 1\}.$ It is easy to see that  $\Im$  is a linear subspace of  $\mathbb{R}^m$ . Thus, there exists a linear subspace  $\mathfrak{I}^{\perp}$  of  $\mathbb{R}^m$  such that  $\mathbb{R}^m = \mathfrak{I} \oplus \mathfrak{I}^{\perp}$  and  $\mathfrak{I} \cap \mathfrak{I}^{\perp} = \{0\}$  ( $\mathbb{R}^m$  is the direct sum of  $\Im$  and  $\Im^{\perp}$ ) which implies  $\Im^{\perp}\setminus\{0\}\subset \Im^*$ .

**Lemma 3.4.** Under Assumptions 1-3, let  $\delta \in \mathbb{R}^m$  be given. If  $\delta \in \mathfrak{I}^{\perp} \setminus \{0\}$ , then there exists an  $\varepsilon > 0$  such that  $E[-\langle \delta, R \rangle 1_{((\delta, R) < 0)}] \ge \varepsilon \cdot P(\langle \delta, R \rangle \le -\varepsilon) > 0$ .

**Proof.** Let  $\delta \in \mathfrak{I}^{\perp} \setminus \{0\}$ . Then, by (NA\*), we have  $P(\langle \delta, R \rangle < 0) := q$  for some q > 0. Let  $A_n := \{\delta \in \Omega : \langle \delta, R \rangle \le -1/n \}$  and  $A_\infty := \{\delta \in \Omega : \langle \delta, R \rangle < 0 \}$ . Obviously,  $A_n \subset A_{n+1} \subset A_{\infty}$ , for all  $n=1,2,3,\ldots$  and  $\bigcup_{n=1}^{\infty} A_n = A_{\infty}$ . Thus,  $\{P(A_n)\}_{n=1}^{\infty}$  is an increasing sequence and then

$$\lim_{l \to \infty} P(A_l) = \lim_{l \to \infty} P\left(\bigcup_{n=1}^{l} A_n\right) = P(A_{\infty}) = q.$$

A VALUE FUNCTION OF DISCRETE-TIME SURPLUS PROCESS ... 195

So that there exists  $l_0 \in \mathbb{N}$  such that  $P(A_{l_0}) > q/2$ , i.e.,  $P(\langle \delta, R \rangle \le -1/l_0) > q/2$ . By Markov's inequality, we have

$$\begin{split} l_0 E [-\langle \delta, \, R \rangle \mathbf{1}_{(\langle \delta, \, R \rangle < 0)}] &\geq P(-\langle \delta, \, R \rangle \mathbf{1}_{(\langle \delta, \, R \rangle < 0)} \geq 1/l_0) \\ &= P(\langle \delta, \, R \rangle \mathbf{1}_{(\langle \delta, \, R \rangle < 0)} \leq -1/l_0) \\ &= P(\langle \delta, \, R \rangle \leq -1/l_0) \\ &> q_0/2 > 0. \end{split}$$

Choose  $\varepsilon = 1/l_0$ . The lemma follows.

**Theorem 3.1.** Under Assumptions 1-3, let  $x \in S$  be an initial state. Then there exists  $u^* = (b^*, \delta^*) \in U$  such that

$$G(u^*) = \min_{(b,\delta) \in U} E\left[e^{-\beta(c(b)Z - \{h(b,Y)K + Y(1-K)\} + \langle \delta,R \rangle)}\right] < \infty$$

and

$$V^{(N)}(x) = \begin{cases} (\gamma - [\gamma - v_0 \cdot (1 - \alpha G(u^*))](\alpha G(u^*))^N) \cdot \frac{e^{-\beta x}}{1 - \alpha G(u^*)}, & \alpha G(u^*) \neq 1, \\ (\gamma (N - n) + v_0) \cdot e^{-\beta x}, & \alpha G(u^*) = 1. \end{cases}$$

Moreover, u\*-stationary is an optimal plan.

**Proof.** By Assumption 1 (IA), we have

$$\inf_{u \in U} G(u) = \inf_{b \in [\underline{b}, \overline{b}]} E[e^{-\beta(c(b)Z - \{h(b, Y)K + Y(1 - K)\})}] \inf_{\delta \in \mathbb{R}^m} E[e^{-\beta\langle\delta, R\rangle}].$$

Since  $[\underline{b}, \overline{b}]$  is compact and  $b \mapsto E[e^{-\beta(c(b)Z - \{h(b,Y)K + Y(1-K)\})}]$  is continuous, by using extreme value theorem, there exists  $b^* \in [\underline{b}, \overline{b}]$  such that

$$E[e^{-\beta(c(b^*)Z - \{h(b^*,Y)K + Y(1-K)\})}] = \min_{b \in [\underline{b},\overline{b}]} E[e^{-\beta(c(b)Z - \{h(b,Y)K + Y(1-K)\})}]. \quad (3.25)$$

Next, we will find the minimizer of  $E[e^{-\beta(\delta,R)}]$  over  $\mathbb{R}^m$ . We consider the following cases:

196

Case 1. If  $\mathfrak{I} = \mathbb{R}^m$ , then by (NA\*), we can see that  $E[e^{-\beta(\delta,R)}] = 1$ , for all  $\delta \in \mathbb{R}^m$ .

Case 2. If  $\mathfrak{I} \subset \mathbb{R}^m$ , then  $\mathfrak{I}^{\perp} \neq \{0\}$ . By using Lemma 3.4, we can show that for each  $\delta \in \mathfrak{I}^{\perp} \setminus \{0\}$ , there exists  $\varepsilon > 0$  such that

$$E[-\langle \delta, R \rangle 1_{(\langle \delta, R \rangle < 0)}] \ge \varepsilon \cdot P(\langle \delta, R \rangle \le -\varepsilon) > 0.$$

Hence

$$\lim_{n \to \infty} E[e^{-\beta \langle n \cdot \delta, R \rangle}] = \lim_{n \to \infty} E[e^{-\beta \langle n \cdot \delta, R \rangle} 1_{(\langle \delta, R \rangle < 0)} + e^{-\beta \langle n \cdot \delta, R \rangle} 1_{(\langle \delta, R \rangle \ge 0)}]$$

$$\geq \lim_{n \to \infty} E[e^{-\beta \langle n \cdot \delta, R \rangle} 1_{(\langle \delta, R \rangle < 0)}]$$

$$\geq \lim_{n \to \infty} e^{\beta n E[-\langle \delta, R \rangle} 1_{(\langle \delta, R \rangle < 0)}]$$

$$\geq \lim_{n \to \infty} e^{\beta n E[(\langle \delta, R \rangle < -\epsilon))}$$

$$= \infty, \tag{3.26}$$

Next, for each  $\kappa > 0$ , we define  $F_{\kappa} := \{ \delta \in \mathfrak{I}^{\perp} : \| \delta \| = 1, E[e^{-\beta(\kappa \cdot \delta, R)}] \le 2 \}$ . Let  $\kappa_1$  and  $\kappa_2$  be two real numbers such that  $\kappa_2 > \kappa_1 > 0$ . If  $F_{\kappa_2} \neq \emptyset$ , then

$$\begin{split} E[e^{-\beta\langle\kappa_1\cdot\delta,R\rangle}] &= E\Bigg[e^{-\beta\frac{\kappa_1}{\kappa_2}\cdot\kappa_2\langle\delta,R\rangle + \frac{\kappa_2-\kappa_1}{\kappa_2}\cdot 0}\Bigg] \\ &\leq \frac{\kappa_1}{\kappa_2}\,E[e^{-\beta\kappa_2\langle\delta,R\rangle}] + \frac{\kappa_2-\kappa_1}{\kappa_2} \\ &\leq \frac{2\kappa_1}{\kappa_2} + \frac{\kappa_2-\kappa_1}{\kappa_2} = \frac{\kappa_2+\kappa_1}{\kappa_2} < 2, \quad \text{for all} \quad \delta \in F_{\kappa_2}. \end{split}$$

This means that  $F_{\kappa_1} \supset F_{\kappa_2}$ , for all  $\kappa_2 > \kappa_1 > 0$ . Since  $F_{\kappa}$  is a compact for all  $\kappa > 0$ , and by inequality (3.26), we have  $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$ . Thus, by the nested sequence property, there exists an  $n_0 \in \mathbb{N}$  such that  $F_n = \emptyset$ , for all  $n \geq n_0$ . This implies that  $F_{\kappa} = \emptyset$ , for all  $\kappa \geq n_0$  and this is equivalent to  $\partial B_{\kappa} := \{\delta \in \mathfrak{I}^{\perp} : \|\delta\| = \kappa$ ,  $E[e^{-\beta(\delta,R)}] \leq 2\} = \emptyset$ , for all  $\kappa \geq n_0$ . Therefore, we have

$$\inf_{\delta \in \mathbb{R}^{m}} E[e^{-\beta\langle \delta, R \rangle}] = \inf_{\delta \in \mathbb{R}^{m}} E[e^{-\beta(\langle \rho(\delta), R \rangle + \langle \delta - \rho(\delta), R \rangle)}]$$

$$= \inf_{\delta \in \mathbb{R}^{m}} E[e^{-\beta\langle \rho(\delta), R \rangle}]$$

$$= \inf_{\delta \in \mathbb{T}^{\perp}} E[e^{-\beta\langle \delta, R \rangle}]$$

$$= \inf_{\delta \in \mathbb{T}^{\perp}} E[e^{-\beta\langle \delta, R \rangle}], \qquad (3.27)$$

where  $\rho: \mathbb{R}^m \to \mathbb{R}^m$  is an orthogonal projection on  $\mathfrak{I}^{\perp}$ . Since  $\{\delta \in \mathfrak{I}^{\perp}: \|\delta\| \le n_0\}$  is compact and  $\delta \mapsto E[e^{-\beta\langle \delta, R \rangle}]$  is continuous, there exists  $\delta^* \in \{\delta \in \mathfrak{I}^{\perp}: \|\delta\| \le n_0\}$  such that

$$E[e^{-\beta\langle\delta^*,R\rangle}] = \inf_{\delta \in \mathfrak{I}^{\perp}, \|\delta\| \le n_0} E[e^{-\beta\langle\delta,R\rangle}]. \tag{3.28}$$

Therefore,  $u^* = (b^*, \delta^*)$  is a minimizer of G(u). By Lemma 3.4, we see that  $u^*$ -stationary is an optimal plan. Also, from Lemma 3.2, we obtain

$$V^{(N)}(x) = \begin{cases} (\gamma - [\gamma - v_0 \cdot (1 - \alpha G(u^*))](\alpha G(u^*))^N) \cdot \frac{e^{-\beta x}}{1 - \alpha G(u^*)}, & \alpha G(u^*) \neq 1, \\ (\gamma (N - n) + v_0) \cdot e^{-\beta x}, & \alpha G(u^*) = 1. \end{cases}$$

This completes the proof.

#### References

- D. Bersekas and S. E. Shreve, Stochastic Optimal Control: the Discrete-time Case, Academic Press, New York, 1978.
- [2] S. Browne, Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin, Math. Oper. Res. 20 (1995), 937-958.
- [3] D. C. M. Dickson and H. R. Waters, Reinsurance and ruin, Insur. Math. Econom. 19 (1996), 61-80.
- [4] C. Hipp and M. Plum, Optimal investment for insurers, Insur. Math. Econom. 27 (2000), 215-228.

## 198 W. KLONGDEE, P. SATTAYATHAM and K. SANGAROON

- [5] C. Hipp and M. Vogt, Optimal XL Insurance, Technical Report, Univers. Karlsruhe, 2001.
- [6] B. Højgaard and M. Taksar, Optimal proportional reinsurance policies for diffusion models, Scand. Actuar. J. 2 (1998), 166-180.
- [7] B. Højgaard and M. Taksar, Optimal proportional reinsurance policies for diffusion models with transaction costs, Insur. Math. Econom. 22(1) (1998), 41-51.
- [8] M. Schäl, On discrete-time dynamic programming in insurance: exponential utility and maximizing the ruin probability, Scand. Actuarial J. 3 (2004), 189-210.
- [9] H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scand. Actuarial J. (2001), 55-68.

# Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process in Insurance under Reinsurance as a Control Parameter<sup>1</sup>

P. Sattayatham<sup>2</sup>, K. Chuarkham<sup>3</sup>, W. Klongdee<sup>4</sup>.

#### Abstract

This paper studied the surplus process model as a premium income minus and the claims are iid random variables. The insurer is allowed to buy reinsurance with retention level b for the period of time between two claims. Whereas the general approach is to consider the ruin probability as a function of initial capital, the authors suggest to study the initial capital via ruin probability. The objective is to find the minimum initial capital for a given boundary for the ruin probability.

Keywords: Insurance, Reinsurance, Capital reserve, Ruin probability.
2011 Mathematics Subject Classification: Primary 91B30; Secondary 93E20.

## 1. Introduction

In recent years, risk models have been attracted much attention in an insurance business, in connection with any possible insolvency and the capital reserves of an insurance company. The main interest from the point of view of an insurance company is claim arrival and claim size, which affect the capital of the company.

In this paper, we assume that all processes are defined in a probability space  $(\Omega, \Im, P)$ . Claims happen at the times  $T_i$ , satisfying  $0 = T_0 \le T_1 \le T_2 \le \cdots$ . We call them arrivals. The  $n^{th}$  claim arriving at time  $T_n$  causes the claim size  $Y_n$ . The interarrival,  $Z_n := T_n - T_{n-1}$  is the length of time between the  $(n-1)^{th}$  claim and the  $n^{th}$  claim. By a period n, we shall mean the random interval  $[T_{n-1}, T_n), n \ge 1$ .

Now let a constant  $c_0$  represent the premium rate for one unit time; the random variable  $c_0 \sum_{i=1}^n Z_i = c_0 T_n$  describes the inflow of capital into the business in  $[0, T_n]$ , and  $\sum_{i=1}^n Y_i$  describes the outflow of capital due to payments for claims occurring in  $[0, T_n]$ . Therefore, the quantity

$$X_0 = x, \ X_n = x + c_0 \sum_{i=1}^n Z_i - \sum_{i=1}^n Y_i, \ n = 1, 2, 3, \dots$$
 (1)

is the discrete-time surplus process at time  $T_n$  with the constant  $x \geq 0$  as initial capital.

The general approach for studying ruin probability in the discrete-time surplus process is the so-called Gerber-Shiu discounted penalty function; as found in, Pavlovao and Willmot [11], Dickson [4] and Li [8][9]. These articles study the ruin probability as a function of the initial capital x.

In this paper, we study the initial capital for the discrete-time surplus process via the ruin probability. The objective is to find the minimum initial capital for a given boundary for the ruin probability.

 $<sup>^1</sup>$ This research is (partially) supported by the Thailand research fund BRG 5180020. E-mail address of corresponding author: pairote@sut.ac.th (P. Sattayatham)

<sup>&</sup>lt;sup>2</sup>School of Mathematics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

 $<sup>^3</sup>$ Faculty of Commerce and Management, Prince of Songkla University, Trang 92000, Thailand.

<sup>&</sup>lt;sup>4</sup> Applied Mathematics Research Group, Department of Mathematics, Faculty of Science, Khonkaen University, Khonkaen 40002, Thailand.

## 2. Model Descriptions

Let  $\{X_n, n \geq 0\}$  be the surplus process which can be controlled by choosing a retention level  $b \in [\underline{b}, \overline{b}], 0 \leq \underline{b} \leq b \leq \overline{b} \leq \infty$ , of a reinsurance for one period. Next, for each level b, an insurer pays a premium rate to a reinsurer which is deducted from  $c_0$ . As a result, the insurer's income rate will be represented by a function c(b). The level  $\overline{b}$  stands for the control action without reinsurance, so that  $c_0 = c(\overline{b})$  and the level  $\underline{b}$  is the smallest retention level which can be chosen. As a consequence, we obtain the *net income rate* c(b) where  $0 \leq c(b) \leq c_0$  for all  $b \in [\underline{b}, \overline{b}]$  and c(b) is non-decreasing. The premium rate for one unit time  $c_0$  and the net income rate c(b) are assumed to be satisfied the following:

$$c_0 > \frac{E[Y]}{E[Z]} \text{ and } c(b) > \frac{E[h(b, Y)]}{E[Z]}$$
 (2)

where Y is a claim size and Z is an interarrival.

Moreover, by the expected value principle,  $c_0$  and c(b) can be calculated as follows:

$$c_0 = (1 + \theta_0) \frac{E[Y]}{E[Z]}$$
 and  $c(b) = c_0 - (1 + \theta_1) \frac{E[Y - h(b, Y)]}{E[Z]}$  (3)

where  $0 < \theta_0 < 1$  and  $0 < \theta_1 < 1$  are the safety loadings of the insurer and the reinsurer respectively. The measurable function h(b, y) is the part of the claim size y paid by the insurer, and the remaining part y - h(b, y) which is called reinsurance recovery paid by the reinsurer. In the case of an excess of loss reinsurance, we have

$$h(b, y) = \min\{b, y\}$$
 with retention level  $0 \le \underline{b} \le b \le \overline{b} = \infty$ .

In the case of a proportional reinsurance, we have

$$h(b, y) = by$$
 with retention level  $0 \le b \le \overline{b} = 1$ .

For each  $n \in \{1, 2, 3, ...\}$ , let  $b_{n-1}$  be a retention level (control action) at the time  $T_{n-1}$  and let  $Z_n = 1$ . Therefore, we can modify the surplus process (1) to be the following:

$$X_n = x + \sum_{i=1}^n c(b_{i-1}) - \sum_{i=1}^n h(b_{i-1}, Y_i)$$
(4)

where  $X_0 = x$ .

We see that the process  $\{X_n, n \geq 0\}$  is driven by the sequence of retention level (control actions)  $\{b_{n-1}, n \geq 1\}$  and the sequence of claims  $\{Y_n, n \geq 1\}$ . So, we make the following assumption:

### Assumption 1. Independence Assumption (IA)

The sequence of claims  $\{Y_n, n \geq 1\}$  is independent and identically distributed (iid) random variables.

From Assumption IA, it follows that  $\{h(b_{n-1}, Y_n), n \geq 1\}$  is an independent sequence.

**Definition 1.** Let  $N \in \{1, 2, 3, ...\}$  be a time horizon (number of periods). A plan for the time N is a (finite) sequence  $\pi = \{b_{n-1}\}_{n=1}^N$  of  $b_{n-1} \in [\underline{b}, \overline{b}]$  for n = 1, 2, 3, ..., N. A set of all plans for the time horizon N over a control space  $[\underline{b}, \overline{b}]$  is denoted by  $\mathcal{P}(N, [\underline{b}, \overline{b}])$ . A plan  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$  is said to be stationary, if  $b_0 = b_1 = \cdots = b_{N-1}$ .

## 3. Main Results

In this section, we consider a finite-time ruin probability of the discrete-time surplus process as in equation (4) where the sequence of claims  $\{Y_n, n \geq 1\}$  satisfy Assumption IA. Let  $F_{Y_1}$  be the distribution function of  $Y_1$ , i.e.,

$$F_{Y_1}(y) = P(Y_1 \le y).$$

Let  $N \in \{1, 2, 3, ...\}$  be a time horizon and  $x \geq 0$  be an initial capital. The survival probability at a time  $n \in \{1, 2, 3, ..., N\}$  is defined by

$$\varphi_n(x,\pi) := P(X_1 \ge 0, X_2 \ge 0, X_3 \ge 0, \dots, X_n \ge 0 | X_0 = x)$$
(5)

where  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$ . Moreover, the ruin probability at a time  $n \in \{1, 2, 3, ..., N\}$  is defined by

$$\Phi_n(x,\pi) = 1 - \varphi_n(x,\pi). \tag{6}$$

**Definition 2.** Let  $\{X_n, n \geq 0\}$  be the surplus process as in equation (4), driven by the sequence of control actions  $\{b_{n-1}, n \geq 1\}$  and the sequence of claims  $\{Y_n, n \geq 1\}$ . Let  $\{c(b_{n-1})\}_{n\geq 1}$  be a sequence of net income rates and  $x\geq 0$  be an initial capital. For each time horizon  $N\in\{1,2,3,\ldots\}$ , let  $\pi\in\mathcal{P}(N,[\underline{b},\overline{b}])$  and  $\alpha\in(0,1)$ . If  $\Phi_N(x,\pi)\leq\alpha$ , then x is called an acceptable initial capital corresponding to  $(\alpha,N,\{c(b_{n-1})\}_{n\geq 1},\{h(b_{n-1},Y_n)\}_{n\geq 1})$ . Particularly, if

$$x^* = \min_{x>0} \{x : \Phi_N(x, \pi) \le \alpha\}$$

exists,  $x^*$  is called the minimum initial capital corresponding to  $(\alpha, N, \{c(b_{n-1})\}_{n\geq 1}, \{h(b_{n-1}, Y_n)\}_{n\geq 1})$  and is written as

$$x^* := \mathbf{MIC}(\alpha, N, \{c(b_{n-1})\}_{n \ge 1}, \{h(b_{n-1}, Y_n)\}_{n \ge 1}).$$

#### 3.1 Ruin and Survival Probability

We defined a total claim process by

$$S_n := h(b_0, Y_1) + h(b_1, Y_2) + \cdots + h(b_{n-1}, Y_n)$$

for all  $n \in \{1, 2, 3, ...\}$ . The survival probability at the time horizon N as mentioned in equation (5) can be expressed as follows:

$$\varphi_N(x,\pi) = P\left(S_1 \le x + c(b_0), S_2 \le x + \sum_{n=1}^2 c(b_{n-1}), \dots, S_N \le x + \sum_{n=1}^N c(b_{n-1})\right)$$

$$= P\left(\bigcap_{n=1}^N \left\{S_n \le x + \sum_{k=1}^n c(b_{k-1})\right\}\right). \tag{7}$$

From equation (7), we have

$$\varphi_N(x,\pi) = E\left[\prod_{n=1}^N 1_{(-\infty,0]} \left(S_n - \sum_{k=1}^n c(b_{k-1}) - x\right)\right],$$

where

$$1_A(x) = \begin{cases} 1 & , x \in A \\ 0 & , \text{ else } \end{cases}$$

for all  $A \subseteq R$ . For each  $a \in R$  and  $x \ge 0$ , we obtain

$$1_{(-\infty,0]}(a-x) = \begin{cases} 1 & , x \ge a \\ 0 & , x < a. \end{cases}$$

Then  $1_{(-\infty,0]}(a-x)$  is non-decreasing in x and right continuous on  $(0,\infty]$ . This implies that  $\prod_{n=0}^{\infty} 1_{(-\infty,0]}(a_n-x)$  is also non-decreasing in x and right continuous on  $(0,\infty]$  where  $a_n \in \mathbb{R}, n = 1, 2, 3, \dots, N$ . For each plan  $\pi = \{b_0, b_1, b_2, \dots, b_{N-1}\}$ , by the Dominated Convergence Theorem, we get

$$\lim_{u \to x^{+}} \varphi_{N}(u, \pi) = \lim_{u \to x^{+}} E \left[ \prod_{n=1}^{N} 1_{(-\infty, 0]} \left( S_{n} - \sum_{k=1}^{n} c(b_{k-1}) - u \right) \right]$$

$$= E \left[ \lim_{u \to x^{+}} \prod_{n=1}^{N} 1_{(-\infty, 0]} \left( S_{n} - \sum_{k=1}^{n} c(b_{k-1}) - u \right) \right]$$

$$= E \left[ \prod_{n=1}^{N} 1_{(-\infty, 0]} \left( S_{n} - \sum_{k=1}^{n} c(b_{k-1}) - x \right) \right]$$

$$= \varphi_{N}(x, \pi).$$

Therefore,  $\varphi_N(x,\pi)$  is non-decreasing in x and right continuous on  $(0,\infty)$ . This implies that  $\Phi_N(x,\pi) = 1 - \varphi_N(x,\pi)$  is non-increasing in x and also right continuous on  $(-\infty,\infty)$ .

**Theorem 1.** Let  $N \in \{1, 2, 3, ...\}$ ,  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$ , and let  $x \geq 0$  be given. Then

$$\lim_{x \to \infty} \varphi_N(x, \pi) = 1 \text{ and } \lim_{x \to \infty} \Phi_N(x, \pi) = 0.$$

Proof: Firstly, we will show the following relation

$$\bigcap_{n=1}^{N} \left\{ \omega : h(b_{n-1}, Y_n)(\omega) \le x + c(b_{n-1}) \right\} \subseteq \bigcap_{n=1}^{N} \left\{ \omega : S_n(\omega) \le Nx + \sum_{k=1}^{n} c(b_{k-1}) \right\}.$$
(8)

Let  $\omega_0 \in \bigcap_{N=1}^{N} \{ \omega : h(b_{n-1}, Y_n)(\omega) \le x + c(b_{n-1}) \}$  be given. For each  $n \in \{1, 2, 3, \dots, N\}$ ,

we have  $h(b_{n-1}, Y_n)(\omega_0) \le x + c(b_{n-1})$ . Thus,  $S_n(\omega_0) = \sum_{k=1}^n h(b_{k-1}, Y_k)(\omega_0) \le nx + c(b_{n-1})$ 

$$\sum_{k=1}^{n} c(b_{k-1}) \leq Nx + \sum_{k=1}^{n} c(b_{k-1}). \text{ That is } \omega_0 \in \left\{\omega : S_n(\omega) \leq Nx + \sum_{k=1}^{n} c(b_{k-1})\right\}. \text{ Therefore (8) follows. By Assumption IA, the process } \{h(b_{n-1}, Y_n), n \geq 1\} \text{ is an independent}$$

sequence, then we have

$$P\left(\bigcap_{n=1}^{N} \left\{ h(b_{n-1}, Y_n) \le x + c(b_{n-1}) \right\} \right) = \prod_{n=1}^{N} P\left(h(b_{n-1}, Y_n) \le x + c(b_{n-1})\right). \tag{9}$$

Note that  $Y_n \ge h(b_{n-1}, Y_n)$  for all  $n \in \{1, 2, 3, \dots, N\}$ , then

$$\{\omega : Y_n(\omega) \le x + c(b_{n-1})\} \subseteq \{\omega : h(b_{n-1}, Y_n)(\omega) \le x + c(b_{n-1})\}.$$

From equation (9), we get

$$P\left(\bigcap_{n=1}^{N} \left\{ h(b_{n-1}, Y_n) \le x + c(b_{n-1}) \right\} \right) \ge \prod_{n=1}^{N} P\left(Y_n \le x + c(b_{n-1})\right)$$

$$= \prod_{n=1}^{N} F_{Y_n} \left(x + c(b_{n-1})\right). \tag{10}$$

Moreover, it follows from equation (7) that

$$\varphi_N(Nx,\pi) = P\left(\bigcap_{n=1}^N \left\{ S_n \le Nx + \sum_{k=1}^n c(b_{k-1}) \right\} \right). \tag{11}$$

Thus

$$\prod_{n=1}^{N} F_{Y_{n}} (x + c(b_{n-1})) \leq P \left( \bigcap_{n=1}^{N} \{ h(b_{n-1}, Y_{n}) \leq x + c(b_{n-1}) \} \right) 
\leq P \left( \bigcap_{n=1}^{N} \left\{ S_{n} \leq Nx + \sum_{k=1}^{n} c(b_{k-1}) \right\} \right)$$
(By (8))
$$= \varphi_{N}(Nx, \pi) \leq 1.$$
(By equation (11))

Since  $F_{Y_n}(x+c(b_{n-1})) \to 1$  as  $x \to \infty$  for  $n=1,2,3,\ldots,N$ , then  $\prod_{n=1}^N F_{Y_n}(x+c(b_{n-1})) \to 1$  as  $x \to \infty$ . Hence  $\varphi_N(x,\pi) \to 1$  and  $\Phi_N(x,\pi) = 1 - \varphi_N(x,\pi) \to 0$  for  $x \to \infty$ . The proof is now complete.

**Corollary 2.** Let  $N \in \{1, 2, 3, ...\}$ ,  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$ ,  $\alpha \in (0, 1)$ , and let  $x \geq 0$  be given. Then there exists  $\tilde{x} \geq 0$  such that, for all  $x \geq \tilde{x}$ , x is an acceptable initial capital corresponding to  $(\alpha, N, \{c(b_{n-1})\}_{n\geq 1}, \{h(b_{n-1}, Y_n)\}_{n\geq 1})$ .

Proof: We consider by cases:

Case 1.  $0 \le \Phi_N(0,\pi) \le \alpha$ . Since  $\Phi_N(x,\pi)$  is non-increasing in x, then  $\Phi_N(x,\pi) \le \Phi_N(0,\pi) \le \alpha$  for all x > 0. In this case choose  $\tilde{x} = 0$ 

Case 2.  $\Phi_N(0,\pi) > \alpha$ . By Theorem 1, we have  $\Phi_N(x,\pi) \to 0$  as  $x \to \infty$ . Thus there exists  $\tilde{x} > 0$  such that  $\Phi_N(\tilde{x},\pi) \le \alpha$ . Since  $\Phi_N(x,\pi)$  is non-increasing in x, then  $\Phi_N(x,\pi) \le \Phi_N(\tilde{x},\pi) \le \alpha$  for all  $x \ge \tilde{x}$ .

### 3.2 Bounds of the Ruin Probability

In this part, we shall describe the upper bound of the ruin probability with negative exponential. In order to prove the following lemma, we shall use an equivalent definition of the ruin probability which will be given as follows:

$$\Phi_n(x,\pi) = P\left(\max_{1 \le k \le n} \left( \sum_{i=1}^k (h(b_{i-1}, Y_i) - c(b_{i-1})) \right) > x \right), \ n = 1, 2, 3, \dots$$

**Lemma 3.** Let  $N \in \{1, 2, 3, ...\}$ ,  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$  be stationary,  $\alpha \in (0, 1)$ , and let  $x \geq 0$  be given. Then the ruin probability at the time N satisfies the following equation

$$\Phi_N(x,\pi) = \Phi_1(x,\pi) + \int_{\{y:0 \le h(b_0,y) \le x + c(b_0)\}} \Phi_{N-1}(x + c(b_0) - h(b_0,y),\pi) dF_{Y_1}(y)$$
(12)

where  $\Phi_0(x,\pi)=0$ .

Proof: We will prove equation (12) by induction. We start with N=1. Since  $\Phi_0(x,\pi)=0$  for all x>0, then

$$\int_{\{y:0 \le h(b_0,y) \le x + c(b_0)\}} \Phi_0(x + c(b_0) - h(b_0,y), \pi) dF_{Y_1}(y) = 0.$$

This proves equation (12) for N = 1. Now assume that equation (12) holds for  $1 < n \le N-1$ . Then

$$\begin{split} &\Phi_{N}(x,\pi) = P\left(\max_{1 \leq n \leq N} \left(\sum_{i=1}^{n} (h(b_{i-1},Y_{i}) - c(b_{i-1}))\right) > x\right) \\ &= P\left(\left\{\max_{1 \leq n \leq N} \left(\sum_{i=1}^{n} (h(b_{i-1},Y_{i}) - c(b_{i-1}))\right) > x\right\} \cap \Omega\right) \\ &= P\left(\left\{\max_{1 \leq n \leq N} \left(\sum_{i=1}^{n} (h(b_{i-1},Y_{i}) - c(b_{i-1}))\right) > x\right\} \cap \left\{h(b_{0},Y_{1}) - c(b_{0}) > x\right\} \cup \left\{h(b_{0},Y_{1}) - c(b_{0}) \leq x\right\}\right\}\right) \\ &= P\left(\max_{1 \leq n \leq N} \left(\sum_{i=1}^{n} (h(b_{i-1},Y_{i}) - c(b_{i-1}))\right) > x, h(b_{0},Y_{1}) - c(b_{0}) > x\right) \\ &+ P\left(\max_{1 \leq n \leq N} \left(\sum_{i=1}^{n} (h(b_{i-1},Y_{i}) - c(b_{i-1}))\right) > x, h(b_{0},Y_{1}) - c(b_{0}) \leq x\right). \end{split}$$

Since  $\pi$  is stationary and  $\{Y_n\}_{n\geq 1}$  is an iid sequence, then

$$\left\{ \omega \in \Omega : \max_{1 \le n \le N} \left( \sum_{i=1}^{n} (h(b_{i-1}, Y_i)(\omega) - c(b_{i-1})) \right) > x, h(b_0, Y_1)(\omega) - c(b_0) > x \right\}$$

$$= \left\{ \omega \in \Omega : h(b_0, Y_1)(\omega) - c(b_0) > x \right\}.$$

This result implies

$$\begin{split} &\Phi_{N}(x,\pi) = P(h(b_{0},Y_{1}) - c(b_{0}) > x) \\ &+ P\left(\max_{2 \leq n \leq N} \left(h(b_{0},Y_{1}) - c(b_{0}) + \sum_{i=2}^{n} (h(b_{i-1},Y_{i}) - c(b_{i-1}))\right) > x, h(b_{0},Y_{1}) - c(b_{0}) \leq x\right) \\ &= \Phi_{1}(x,\pi) \\ &+ P\left(h(b_{0},Y_{1}) - c(b_{0}) + \max_{2 \leq n \leq N} \left(\sum_{i=2}^{n} (h(b_{i-1},Y_{i}) - c(b_{i-1}))\right) > x, h(b_{0},Y_{1}) - c(b_{0}) \leq x\right) \\ &= \Phi_{1}(x,\pi) \\ &+ E\left[1_{h(b_{0},Y_{1}) - c(b_{0}) \leq x, \ h(b_{0},Y_{1}) - c(b_{0}) + \max_{2 \leq n \leq N} \left(\sum_{i=2}^{n} (h(b_{i-1},Y_{i}) - c(b_{i-1}))\right) > x\right] \end{split}$$

$$\begin{split}
&= \Phi_{1}(x,\pi) \\
&+ E \left[ 1_{h(b_{0},Y_{1})-c(b_{0}) \leq x} \cdot 1_{h(b_{0},Y_{1})-c(b_{0})+\max_{2 \leq n \leq N} \left( \sum_{i=2}^{n} (h(b_{i-1},Y_{i})-c(b_{i-1})) \right) > x \right] \\
&= \Phi_{1}(x,\pi) \\
&+ E \left[ E \left[ 1_{h(b_{0},Y_{1})-c(b_{0}) \leq x} \cdot 1_{h(b_{0},Y_{1})-c(b_{0})+\max_{2 \leq n \leq N} \left( \sum_{i=2}^{n} (h(b_{i-1},Y_{i})-c(b_{i-1})) \right) > x \right] |\sigma(Y_{1}) \right] \right] \\
&= \Phi_{1}(x,\pi) \\
&+ E \left[ 1_{h(b_{0},Y_{1}) \leq x+c(b_{0})} \cdot E \left[ 1_{\max_{2 \leq n \leq N} \left( \sum_{i=2}^{n} (h(b_{i-1},Y_{i})-c(b_{i-1})) \right) + (h(b_{0},Y_{1})-x-c(b_{0})) > 0} |\sigma(Y_{1}) \right] \right] \\
&= \Phi_{1}(x,\pi) + E \left[ 1_{h(b_{0},Y_{1}) \leq x+c(b_{0})} \cdot E \left[ 1_{(0,\infty)} (Z+W) |\sigma(Y_{1}) \right] \right] 
\end{split} \tag{13}$$

where  $Z = \max_{2 \le n \le N} \left( \sum_{i=2}^{n} (h(b_{i-1}, Y_i) - c(b_{i-1})) \right)$  and  $W = h(b_0, Y_1) - x - c(b_0)$ . Since  $\{h(b_{n-1}, Y_n)\}_{n \ge 1}$  is an independent sequence, then Z and W are independent. It follows from [5, exercise 9, page 341] that

$$E\left[1_{(0,\infty)}(Z+W)|\sigma(Y_1)\right] = \int_{\omega\in\Omega} 1_{(0,\infty)}(Z(\omega)+W|\sigma(Y_1))dP_Z(\omega)$$
$$= \int_R 1_{(0,\infty)}(z+W)dF_Z(z).$$

This implies that

$$\begin{split} &\Phi_{N}(x,\pi) = \Phi_{1}(x,\pi) + E\left[1_{h(b_{0},Y_{1}) \leq x + c(b_{0})} \cdot \left(\int_{R} 1_{(0,\infty)}(z+W)dF_{Z}(z)\right)\right] \\ &= \Phi_{1}(x,\pi) + E\left[1_{h(b_{0},Y_{1}) \leq x + c(b_{0})} \cdot \left(\int_{R} 1_{(0,\infty)}(z+h(b_{0},Y_{1})-x-c(b_{0}))dF_{Z}(z)\right)\right] \\ &= \Phi_{1}(x,\pi) + \int_{\{\omega \in \Omega: h(b_{0},Y_{1})(\omega) \in [0,x+c(b_{0})]\}} \left(\int_{R} 1_{(0,\infty)}(z+h(b_{0},Y_{1})(\omega)-x-c(b_{0}))dF_{Z}(z)\right)dP(\omega) \\ &= \Phi_{1}(x,\pi) + \int_{\{\omega \in \Omega: h(b_{0},Y_{1})(\omega) \in [0,x+c(b_{0})]\}} E\left[1_{Z>x+c(b_{0})-h(b_{0},Y_{1})(\omega)}\right]dP(\omega) \\ &= \Phi_{1}(x,\pi) + \int_{\{\omega \in \Omega: h(b_{0},Y_{1})(\omega) \in [0,x+c(b_{0})]\}} P\left(Z>x+c(b_{0})-h(b_{0},Y_{1})(\omega)\right)dP(\omega) \\ &= \Phi_{1}(x,\pi) + \int_{\{y \in R: 0 \leq h(b_{0},y) \leq x+c(b_{0})\}} P\left(Z>x+c(b_{0})-h(b_{0},y)\right)dF_{Y_{1}}(y) \end{split}$$

$$= \Phi_1(x,\pi) + \int_{\{y:0 \le h(b_0,y) \le x + c(b_0)\}} \Phi_{N-1}(x + c(b_0) - h(b_0,y),\pi) dF_{Y_1}(y).$$

This proves equation (12).

**Remark 4.** Let  $N \in \{1, 2, 3, ...\}$ ,  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$  be stationary,  $\alpha \in (0, 1)$ . Assume that  $\{Y_n, n \geq 1\}$  is an iid sequence of exponential distribution with intensity  $\lambda > 0$ , i.e.,  $Y_1$  has the probability density function

$$f(y) = \lambda e^{-\lambda y}.$$

By Lemma 3, the ruin probability can be written in a recursive form as follows:

Case 1: For an excess of loss reinsurance, we get

$$\Phi_0(x,\pi) = 0$$
 and

$$\Phi_n(x,\pi) = \Phi_{n-1}(x,\pi) + \frac{\left[\lambda(x + nc(b_0))\right]^{n-1}}{(n-1)!} e^{-\lambda[x + nc(b_0)]} \frac{x + c(b_0)}{x + nc(b_0)}$$
(14)

for  $b_0 \ge x + c(b_0)$  and  $n = 1, 2, 3, \dots, N$ .

Case 2: For a proportional reinsurance, we get

$$\Phi_0(x,\pi) = 0 \text{ and}$$

$$\Phi_n(x,\pi) = \Phi_{n-1}(x,\pi) + \frac{1}{(n-1)!} \left[ \frac{\lambda}{b_0} (x + nc(b_0)) \right]^{n-1} e^{-\frac{\lambda}{b_0} (x + nc(b_0))} \frac{x + c(b_0)}{x + nc(b_0)}$$
(15)

for all n = 1, 2, 3, ..., N. Further, for  $b_0 = \bar{b}_0 = 1$ , we also obtained the recursive form as follows:

$$\Phi_0(x,\pi) = 0 \text{ and } \Phi_n(x,\pi) = \Phi_{n-1}(x,\pi) + \frac{1}{(n-1)!} \left[ \lambda(x+nc_0) \right]^{n-1} e^{-\lambda(x+nc_0)} \frac{x+c_0}{x+nc_0}$$

for all  $n = 1, 2, 3, \dots, N$ .

**Definition 3.** (Sub-adjustment coefficient). Let s > 0 and Y be a non-negative random variable. If there exists  $d_0 > 0$  such that

$$E\left[e^{d_0Y}\right] \le e^{d_0s},\tag{16}$$

then  $d_0$  is called a sub-adjustment coefficient of (s, Y). Specifically, if (16) is an equality then  $d_0$  is called an adjustment coefficient of (s, Y).

**Theorem 5.** Let  $N \in \{1, 2, 3, \ldots\}$ ,  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$  be stationary, and let  $c(b_0) > 0$  be a net income rate. If  $d_0 > 0$  is a sub-adjustment coefficient of  $(c(b_0), h(b_0, Y_1))$ , then

$$\Phi_n(x,\pi) \le e^{-d_0 x},\tag{17}$$

for all  $x \ge 0$  and all n = 1, 2, 3, ..., N.

Proof: Let  $x \geq 0$  and  $d_0 > 0$  be a sub-adjustment coefficient of  $(c(b_0), h(b_0, Y_1))$ , i.e.,

$$E\left[e^{d_0h(b_0,Y_1)}\right] \le e^{d_0c(b_0)}.$$

We shall prove this theorem by induction. We start with n = 1,

$$\begin{split} \Phi_1(x,\pi) &= P(h(b_0,Y_1) > x + c(b_0)) \\ &= P(d_0h(b_0,Y_1) > d_0(x + c(b_0))) \\ &= P(e^{d_0h(b_0,Y_1)} > e^{d_0(x + c(b_0))}) \\ &\leq \frac{E\left[e^{d_0h(b_0,Y_1)}\right]}{e^{d_0(x + c(b_0))}} \quad \text{(By Markov's inequality)} \\ &\leq \frac{e^{d_0c(b_0)}}{e^{d_0(x + c(b_0))}} = e^{-d_0x}. \end{split}$$

Let  $k \leq N-1$ . Assume that inequality (17) holds for  $1 < n \leq k$ . Next, we shall show that inequality (17) holds for n = k + 1. By Lemma 3 and inductive assumption, we get

$$\Phi_{k+1}(x,\pi)$$

$$= \Phi_{1}(x,\pi) + \int_{\{y:0 \le h(b_{0},y) \le x + c(b_{0})\}} \Phi_{k}(x+c(b_{0}) - h(b_{0},y),\pi)dF_{Y_{1}}(y)$$

$$\le \Phi_{1}(x,\pi) + \int_{\{y:0 \le h(b_{0},y) \le x + c(b_{0})\}} e^{-d_{0}(x+c(b_{0}) - h(b_{0},y))}dF_{Y_{1}}(y).$$
(18)

Next, we shall calculate the first term of right-hand side of inequality (18).

$$\begin{split} &\Phi_{1}(x,\pi) \\ &= P(h(b_{0},Y_{1}) > x + c(b_{0})) \\ &= P\left(e^{d_{0}h(b_{0},Y_{1})}1_{(x+c(b_{0}),\infty)}(h(b_{0},Y_{1})) > e^{d_{0}(x+c(b_{0}))}\right) \\ &\leq \frac{E\left[e^{d_{0}h(b_{0},Y_{1})}1_{(x+c(b_{0}),\infty)}(h(b_{0},Y_{1}))\right]}{e^{d_{0}(x+c(b_{0}))}} \quad \text{(By Markov's inequality)} \\ &= \frac{\int\limits_{R} e^{d_{0}h(b_{0},y)}1_{(x+c(b_{0}),\infty)}(h(b_{0},y))dF_{Y_{1}}(y)}{e^{d_{0}(x+c(b_{0}))}} \\ &= \frac{\int\limits_{\{y:x+c(b_{0})< h(b_{0},y)<\infty\}} e^{d_{0}(x+c(b_{0})-h(b_{0},y))}dF_{Y_{1}}(y). \end{split}$$

Thus inequality (18) can be modified to be the following

$$\Phi_{k+1}(x,\pi)$$

$$\leq \int\limits_{\{y:x+c(b_0)< h(b_0,y)<\infty\}} e^{-d_0(x+c(b_0)-h(b_0,y))} dF_{Y_1}(y)$$

$$+ \int\limits_{\{y:0\leq h(b_0,y)\leq x+c(b_0)\}} e^{-d_0(x+c(b_0)-h(b_0,y))} dF_{Y_1}(y)$$

$$= \int\limits_{\{y:0\leq h(b_0,y)<\infty\}} e^{-d_0(x+c(b_0)-h(b_0,y))} dF_{Y_1}(y)$$

$$= \frac{e^{-d_0x}}{e^{d_0c(b_0)}} \int\limits_{\{y:0\leq h(b_0,y)<\infty\}} e^{d_0h(b_0,y)} dF_{Y_1}(y)$$

$$= \frac{e^{-d_0x}}{e^{d_0c(b_0)}} E\left[e^{d_0h(b_0,Y_1)}\right]$$

$$\leq \frac{e^{-d_0x}}{e^{d_0c(b_0)}} e^{d_0c(b_0)} = e^{-d_0x}.$$

This proves equation (17) for n = k + 1 and concludes the proof.

Corollary 6. Let  $N \in \{1, 2, 3, \ldots\}$ ,  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$  be stationary,  $\alpha \in (0, 1)$ , and let  $c(b_0) > 0$  be a net income rate. Assume that  $d_0 > 0$  is a sub-adjustment coefficient of  $(c(b_0), h(b_0, Y_1))$ , then there exists an acceptable initial capital  $x(x \geq 0)$  corresponding to  $(\alpha, N, \{c(b_{n-1}) = c(b_0)\}_{n \geq 1}, \{h(b_0, Y_n)\}_{n \geq 1})$  such that

$$0 \le x \le -\frac{\ln \alpha}{d_0} \text{ or } \alpha \le e^{-d_0 x}.$$

Proof: Let  $d_0 > 0$  be a sub-adjustment coefficient of  $(c(b_0), h(b_0, Y_1))$ . By Theorem 5, we have

$$\Phi_N(u,\pi) \le e^{-d_0 u},$$

for all  $u \geq 0$ . Let  $\alpha \in (0,1)$ . By Corollary 2, there exists  $v \geq 0$  which is an acceptable initial capital corresponding to  $(\alpha, N, \{c(b_{n-1}) = c(b_0)\}_{n\geq 1}, \{h(b_0, Y_n)\}_{n\geq 1})$ . By Definition 2, we have

$$\Phi_N(v,\pi) \leq \alpha$$
.

Since  $\Phi_N(v,\pi)$  is non-increasing in v for each  $\pi$ , then there exists  $0 \le x \le v$  such that  $\alpha = \Phi_N(x,\pi) \le e^{-d_0x}$ . Hence x is an acceptable initial capital corresponding to  $(\alpha,N,\{c(b_{n-1})=c(b_0)\}_{n\ge 1},\{h(b_0,Y_n)\}_{n\ge 1})$ . The proof is now complete.

**Note**:It's known that a large initial capital results in a small ruin probability. However, an insurance company usually does not posses unlimited initial capital, but only a small initial capital, that must be sufficient for a predetermined solvency (not ruin) condition for the firm is preferable. If an acceptable ruin probability is fixed, the firm can find an interval of acceptable initial capital by virtue of Corollary 6.

**Example 1.** (Exponential claims under the proportional reinsurance). We assume that  $\{Y_n\}_{n\geq 1}$  is a sequence of claims with iid exponential Exp(1), and  $\{X_n\}_{n\geq 0}$  is a sequence of surplus which satisfies the model (4). Let  $N\in\{1,2,3,\ldots\}$ , and  $\pi\in\mathcal{P}(N,[\underline{b},\overline{b}])$  be

stationary. Suppose that  $h(b_0, y)$  is the proportional reinsurance with retention level  $b_0$ , and  $c(b_0) > 0$  is a net income rate which is calculated by the expected value principle, i.e.,

$$c(b_0) = c_0 - (1 + \theta_1)E[Y_1 - h(b_0, Y_1)] = \theta_0 - \theta_1 + b_0(1 + \theta_1). \tag{19}$$

Assume that  $\alpha=0.05$ ,  $\theta_0=\theta_1=0.1$ , and  $b_0=0.6$ . Then there exists an adjustment coefficient  $d_0=0.2935569060$  of  $(c(b_0),b_0Y_1)$  such that

$$0 \le x \le \frac{-ln0.05}{0.2935569060} = 10.20494566$$

which is an interval of acceptable initial capital with corresponding to  $(1, N, \{c(b_{n-1}) = c(b_0)\}_{n>1}, \{b_0Y_n\}_{n>1})$ 

Let

$$f(d) := E[e^{db_0 Y_1}] - e^{dc(b_0)}$$

Note that

$$E\left[e^{db_0Y_1}\right] = \int_0^\infty e^{db_0y} f_{Y_1}(y) dy = \int_0^\infty e^{db_0y} e^{-y} dy = \frac{1}{1 - db_0} \quad \text{and} \quad e^{dc(b_0)} = e^{db_0(1 + \theta_1)}. \quad (20)$$

By Definition 3,  $d_0$  is an adjustment coefficient of  $(c(b_0), b_0 Y_1)$  if  $f(d_0) = 0$ . Hence  $E\left[e^{d_0 b_0 Y_1}\right] = e^{d_0 c(b_0)}$ . By substitute  $b_0$  and  $\theta_1$  into equation (20), we get

$$\frac{1}{1 - 0.6d_0} = e^{0.66d_0}.$$

Solving for  $d_0$ , we get  $d_0 = 0.2935569060$ . By Corollary 6, we get

$$0 \le x \le \frac{-ln0.05}{0.2935569060} = 10.20494566$$

which is an interval of acceptable initial capital with corresponding to  $(0.05, N, \{c(b_{n-1}) = 0.66\}_{n\geq 1}, \{0.6Y_n\}_{n\geq 1})$ . This means that  $\Phi_N(x,\pi) \leq 0.05$  for all  $0\leq x\leq 10.20494566$ .

**Example 2.** (Exponential claims under the excess of loss reinsurance). We assume that  $\{Y_n\}_{n\geq 1}$  and  $\{X_n\}_{n\geq 0}$  are the sequences given in example 1. Let  $N\in\{1,2,3,\ldots\}$ , and  $\pi\in\mathcal{P}(N,[\underline{b},\overline{b}])$  be stationary. Suppose that  $h(b_0,y)$  is the excess of loss reinsurance with retention level  $b_0$ . By expected value principle, the net income rate  $c(b_0)$  satisfies the following equation

$$c(b_0) = c_0 - (1 + \theta_1)E[Y_1 - h(b_0, Y_1)] = \theta_0 - \theta_1 + (1 + \theta_1)[1 - e^{-b_0}]. \tag{21}$$

Assume that  $\alpha = 0.05$ ,  $\theta_0 = \theta_1 = 0.1$  and  $b_0 = 100$ . Then there exists a sub-adjustment coefficient  $d_0 = 0.17$  of  $(c(b_0), h(b_0, Y_1))$  such that

$$0 \le x \le -\frac{ln0.05}{0.17} = 17.6220$$

which is an interval of acceptable initial capital with corresponding to  $(0.05, N, \{c(b_{n-1}) = c(b_0)\}_{n \geq 1}, \{h(b_0, Y_n)\}_{n \geq 1})$ 

Let

$$f(d) := E\left[e^{dh(b_0, Y_1)}\right] - e^{dc(b_0)}.$$

Note that

$$E\left[e^{dh(b_0,Y_1)}\right] = \int_0^\infty e^{dh(b_0,y)} e^{-y} dy = \int_0^{b_0} e^{dy} e^{-y} dy + \int_{b_0}^\infty e^{b_0 d} e^{-y} dy = \frac{de^{b_0(d-1)} - 1}{d-1},$$
and 
$$e^{dc(b_0)} = e^{d(1+\theta_1)\left[1 - e^{-b_0}\right]}.$$
(22)

By Definition 3,  $d_0$  is a sub-adjustment coefficient of  $(c(b_0), h(b_0, Y_1))$  if  $f(d_0) \leq 0$ . Hence  $E\left[e^{d_0h(b_0, Y_1)}\right] \leq e^{d_0c(b_0)}$ . By substitute  $b_0$ ,  $\theta_0$  and  $\theta_1$  into equation (22), we get

$$\frac{d_0 e^{100(d_0-1)}-1}{d_0-1} \leq e^{1.1d_0\left[1-e^{-100}\right]}.$$

Solving for  $d_0$ , we get  $d_0 = 0.17$ . By Corollary 6, we get

$$0 \le x \le -\frac{\ln 0.05}{0.17} = 17.6220$$

which is an interval of acceptable initial capital with corresponding to  $(0.05, N, \{c(b_{n-1}) = 1.1\}_{n\geq 1}, \{h(100, Y_n)\}_{n\geq 1})$ . This means that  $\Phi_N(x, \pi) \leq 0.05$  for all  $0 \leq x \leq 17.6220$ .

## 3.3 Existence of Minimal Capital

Let  $\alpha \in (0,1)$ . As a result of Corollary 4.6 that  $\{x \geq 0 : \Phi_N(x,\pi) \leq \alpha\}$  is a non-empty set. Since the set  $\{x \geq 0 : \Phi_N(x,\pi) \leq \alpha\}$  is an infinite set, then there are many acceptable initial capital corresponding to  $(\alpha, N, \{c(b_{n-1})\}_{n\geq 1}, \{h(b_{n-1}, Y_n)\}_{n\geq 1})$ . In this section, we will prove the existence of a minimum initial capital that correspond to  $(\alpha, N, \{c(b_{n-1})\}_{n\geq 1}, \{h(b_{n-1}, Y_n)\}_{n\geq 1})$ .

**Lemma 7.** Let a, b and  $\alpha$  be real numbers such that  $a \leq b$ . If f is non-increasing and right continuous on [a, b] and  $\alpha \in [f(b), f(a)]$ , then there exists  $d \in [a, b]$  such that

$$d = \min\{x \in [a, b] : f(x) < \alpha\}.$$

Proof: Let

$$S := \{x \in [a, b] : f(x) \le \alpha\}.$$

Since  $\alpha \in [f(b), f(a)]$ , i.e.,  $f(b) \le \alpha \le f(a)$ , then we have  $b \in S$ . Hence S is a non empty set. Since S is a subset of the closed and bounded interval [a, b], then there exists  $d \in [a, b]$  such that  $d = \inf S$ . Next, we consider the following cases:

Case 1. d = b. We know that  $b \in S$ , thus  $b = \min S$ .

Case 2. a < d < b. Since  $d = \inf S$ , then there exists  $d_n \in S$  such that

$$d \le d_n < d + 1/n$$

for all  $n \in \{1, 2, 3, ...\}$ . Since f is non-increasing and  $d_n \in S$ , then

$$f(d_n) \leq \alpha$$
.

Since f is right continuous at d, we have

$$f(d) = \lim_{n \to \infty} f(d_n) \le \alpha.$$

Therefore,  $d \in S$ , i.e.,  $d = \min S$ . This completes the proof.

**Theorem 8.** Let  $N \in \{1, 2, 3, ...\}$ ,  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$  and let  $\alpha \in (0, 1)$ . Then there exists  $x^* \geq 0$  such that

$$x^* = \min_{x \ge 0} \{x : \Phi_N(x, \pi) \le \alpha\}.$$

Proof: Let  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$ . We consider by case.

Case 1: For  $\Phi_N(0,\pi) \leq \alpha$ . We get  $\min_{x\geq 0} \{x : \Phi_N(x,\pi) \leq \alpha\} = 0$ .

Case 2: For  $\Phi_N(0,\pi) > \alpha$ . By Corollary 2, there exists  $\tilde{x} > 0$  such that  $\Phi_N(\tilde{x},\pi) \leq \alpha$ . Hence  $\alpha \in [\Phi_N(\tilde{x},\pi),\Phi_N(0,\pi)]$ . Since  $\Phi_N(x,\pi)$  is non-increasing in x and right continuous on  $[0,\infty)$ . Then ,by Lemma 7, there exists  $x^* \in [0,\tilde{x}]$  such that

$$x^* = \min_{x \in [0,\tilde{x}]} \{x: \Phi_N(x,\pi) \leq \alpha\} = \min_{x \in [0,\infty)} \{x: \Phi_N(x,\pi) \leq \alpha\}.$$

From case 1 and 2, we have  $x^* = \min_{x \ge 0} \{x : \Phi_N(x, \pi) \le \alpha\}.$ 

Next, we will approximate the minimal initial capital  $x^*$  by the bisection method.

**Theorem 9.** Let  $N \in \{1, 2, 3, ...\}$ ,  $\pi \in \mathcal{P}(N, [\underline{b}, \overline{b}])$  and let  $\alpha \in (0, 1)$ . Assume that  $v_0, x_0 \ge 0$  such that  $v_0 < x_0$ . Let  $\{v_m\}_{m \ge 1}$  and  $\{x_m\}_{m \ge 1}$  be two real sequences defined by

$$\begin{cases} v_m = v_{m-1} & and \ x_m = \frac{x_{m-1} + v_{m-1}}{2}, \ if \ \Phi_N\left(\frac{x_{m-1} + v_{m-1}}{2}, \pi\right) \le \alpha \\ v_m = \frac{v_{m-1} + x_{m-1}}{2} \ and \ x_m = x_{m-1}, & if \ \Phi_N\left(\frac{x_{m-1} + v_{m-1}}{2}, \pi\right) > \alpha \end{cases}$$

for all m = 1, 2, 3, ... If  $\Phi_N(x_0, \pi) \le \alpha < \Phi_N(v_0, \pi)$ , then

$$\lim_{m \to \infty} x_m = \min_{x \ge 0} \{ x : \Phi_N(x, \pi) \le \alpha \} = x^*.$$

Proof : Obviously,  $\{x_m\}_{m\geq 1}$  is non-increasing and  $\{v_m\}_{m\geq 1}$  is non-decreasing. Moreover,  $v_m\leq x_m$  for all  $m\in\{1,2,3,\ldots\}$ . Thus,  $\{x_m\}_{m\geq 1}$  and  $\{v_m\}_{m\geq 1}$  are convergent. Since

$$0 \le x_m - v_m = \frac{x_0 - v_0}{2^m} \to 0 \text{ as } m \to \infty,$$

then there exists  $x^* \in [v_0, x_0]$  such that

$$\lim_{m \to \infty} x_m = \lim_{m \to \infty} v_m := x^*.$$

Since  $\Phi_N(x,\pi)$  is right continuous in x for each  $\pi$  and  $\Phi_N(x_m,\pi) \leq \alpha$  for all m, then

$$\Phi_N(x^*, \pi) = \lim_{m \to \infty} \Phi_N(x_m, \pi) \le \alpha.$$

Since  $\Phi_N(x,\pi)$  is non-increasing in x for each  $\pi$  and  $\Phi_N(v_m,\pi) > \alpha$  for all m, then  $\Phi_N(x,\pi) > \alpha$  for  $x < x^*$ . Therefore

$$x^* = \min_{x>0} \{ x : \Phi_N(x,\pi) \le \alpha \}.$$
 (23)

This completes the proof.

## 4. Numerical Results

In this section, we provide numerical illustration of main results. We approximate the minimal initial capital of the discrete-time surplus process (4) by using Theorem 9 according to the following cases:

#### (a). Proportional Reinsurance.

We assume that  $\{Y_n\}_{n\geq 1}$  is a sequence of claims with iid exponential Exp(1) and  $h(b_0,y)$  is the proportional reinsurance with retention level  $b_0$ . Let  $N\in\{1,2,3,\ldots\}$  be the time horizon and  $\pi=\{b_{n-1}=0.6\}_{n=1}^N$  be stationary. We choose model parameters as follows:  $\theta_0=\theta_1=0.10$  which give  $c(b_0)=0.66$  and  $\theta_0=\theta_1=0.25$  which give  $c(b_0)=0.75$ . Moreover, we choose  $\alpha=0.05, \alpha=0.1$  and  $\alpha=0.2$ . As a result, we get the table of the minimum initial capital as below:

|        | $\alpha = 0.05$                    | $\alpha = 0.1$                     | $\alpha = 0.2$                     |
|--------|------------------------------------|------------------------------------|------------------------------------|
| N      | $\theta_0 = 0.1 : \theta_0 = 0.25$ | $\theta_0 = 0.1 : \theta_0 = 0.25$ | $\theta_0 = 0.1 : \theta_0 = 0.25$ |
| 10     | 3.3909 : 2.7854                    | 2.5919 : 2.0384                    | 1.7358 : 1.2562                    |
| 20     | 4.4983 : 3.3728                    | 3.4846 : 2.4796                    | 2.3918 : 1.5524                    |
| 30     | 5.2438 : 3.6605                    | 4.0747 : 2.6854                    | 2.8148 : 1.6829                    |
| 40     | 5.8067 : 3.8215                    | 4.5137 : 2.7963                    | 3.1233 : 1.7504                    |
| 50     | 6.2558 : 3.9175                    | 4.8593 : 2.8605                    | 3.3619 : 1.7884                    |
| 100    | 7.6364 : 4.0664                    | 5.8902 : 2.9559                    | 4.0471 : 1.8426                    |
| 200    | 8.5466 : 4.0881                    | 6.5345 : 2.9690                    | 4.4496 : 1.8497                    |
| 300    | 8.5466 : 4.0881                    | 6.5345 : 2.9690                    | 4.4496 : 1.8497                    |
| 400    | 8.5466 : 4.0881                    | 6.5345 : 2.9690                    | 4.4496 : 1.8497                    |
| 500    | 8.5466 : 4.0881                    | 6.5345 : 2.9690                    | 4.4496 : 1.8497                    |
| 1,000  | 8.5466 : 4.0881                    | 6.5345 : 2.9690                    | 4.4496 : 1.8497                    |
| 5,000  | 8.5466 : 4.0881                    | 6.5345 : 2.9690                    | 4.4496 : 1.8497                    |
| 10,000 | 8.5466 : 4.0881                    | 6.5345 : 2.9690                    | 4.4496 : 1.8497                    |

Table 1: Minimum initial capital in the case proportional reinsurance.

Table 1 shows an approximation of  $\min_{x\geq 0}\{x:\Phi_N(x,\pi)\leq \alpha\}$  with  $m=25,\ v_0=0,x_0=20$  as mentioned in Theorem 9 and  $\Phi_N(x,\pi)$  is computed by using the recursive form as mentioned in equation (15). The numerical results in Table 1 show a minimum initial capital x=3.3909 for  $\alpha=0.05,\ N=10$  and  $\theta_0=\theta_1=0.1$  etc.

## (b). Excess of Loss Reinsurance.

Again we assume that  $\{Y_n\}_{n\geq 1}$  is a sequence of claims with iid exponential Exp(1) and  $h(b_0,y)$  is the excess of loss reinsurance with retention level  $b_0=100$ . Let  $N\in\{1,2,3,\ldots\}$  be the time horizon and  $\pi=\{b_{n-1}=100\}_{n=1}^N$  be stationary. We choose model parameters as follows:  $\theta_0=\theta_1=0.10$  which give  $c(b_0)=1.1$  and  $\theta_0=\theta_1=0.25$  which give  $c(b_0)=1.25$ . Moreover, we choose  $\alpha=0.05, \alpha=0.1$  and  $\alpha=0.2$ . As a result, we get the table of the minimum initial capital as below:

|        | $\alpha = 0.05$                    | $\alpha = 0.1$                     | $\alpha = 0.2$                     |
|--------|------------------------------------|------------------------------------|------------------------------------|
| N      | $\theta_0 = 0.1 : \theta_0 = 0.25$ | $\theta_0 = 0.1 : \theta_0 = 0.25$ | $\theta_0 = 0.1 : \theta_0 = 0.25$ |
| 10     | 5.6515 : 4.6424                    | 4.3198 : 3.3973                    | 2.8930 : 2.0936                    |
| 20     | 7.4972 : 5.6213                    | 5.8076 : 4.1327                    | 3.9863 : 2.5874                    |
| 30     | 8.7396 : 6.1009                    | 6.7911 : 4.4756                    | 4.6913 : 2.8048                    |
| 40     | 9.6779 : 6.3692                    | 7.5229 : 4.6605                    | 5.2054 : 2.9174                    |
| 50     | 10.4264: 6.5291                    | 8.0989 : 4.7675                    | 5.6031 : 2.9806                    |
| 100    | 12.7273:6.7773                     | 9.8169 : 4.9265                    | 6.7452 : 3.0709                    |
| 200    | 14.2443: 6.8135                    | 10.8909: 4.9484                    | 7.4160 : 3.0828                    |
| 300    | 14.2443: 6.8135                    | 10.8909: 4.9484                    | 7.4160 : 3.0828                    |
| 400    | 14.2443: 6.8135                    | 10.8909: 4.9484                    | 7.4160 : 3.0828                    |
| 500    | 14.2443: 6.8135                    | 10.8909: 4.9484                    | 7.4160 : 3.0828                    |
| 1,000  | 14.2443: 6.8135                    | 10.8909: 4.9484                    | 7.4160 : 3.0828                    |
| 5,000  | 14.2443 : 6.8135                   | 10.8909: 4.9484                    | 7.4160 : 3.0828                    |
| 10,000 | 14.2443: 6.8135                    | 10.8909: 4.9484                    | 7.4160 : 3.0828                    |

Table 2: Minimum initial capital in the case excess of loss reinsurance.

Table 2 shows an approximation of  $\min_{x\geq 0}\{x: \Phi_N(x,\pi)\leq \alpha\}$  with  $m=25,\ v_0=0, x_0=20$  as mentioned in Theorem 9 and  $\Phi_N(x,\pi)$  is computed by using the recursive form as mentioned in equation (14). The numerical results in Table 2 show a minimum initial capital x=5.6515 for  $\alpha=0.05,\ N=10$  and  $\theta_0=\theta_1=0.1$  etc.

## References

- [1] Bersekas, D., Shreve, S.E. (1978). Stochastic Optimal Control: the Discrete-Time Case. New York: Academic Press.
- [2] Browne, S. (1995). Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Mathematics of Operations Research. 20(4): 937-958.
- [3] Chan, W. S. and Zhang, L. (2006). Direct Derivative of Finite-Time Ruin Probabilities in the Discrete Risk Model with Exponential or Geometric Claims. North American Actuarial Journal. 10(4): 269-279.
- [4] Dickson, D. C. M. (2005). Insurance Risk and Ruin. New York: Cambridge University Press.
- [5] Dudley, R. M. (2002). Real Analysis and Probability. New York: Cambridge University Press.
- [6] Jone, F. (1993). Lebesgue Integration on Euclidean Space. Boston: Jones and Bartlett Publishers International.
- [7] Klebaner, F. C. (1998). Introduction Stochastis Calculus with Application. London: Imperial College Press.
- [8] Li, S. (2005a). On a Class of Direct Time Renewal Risk Models. Scandinavian Actuarial Journal. 4: 241-260.

- [9] Li, S. (2005b). Distributions of the Surplus before Ruin, the Deficit at Ruin and the Claim Causing Ruin in a Class of Direct Time Renewal Risk Models. Scandinavian Actuarial Journal. 4: 271-284.
- [10] Mikosch, M. (2004). Non-life insurance mathematics: An introduction with the Poisson process. Berlin: Springer-Verlag.
- [11] Pavlova, K. P. and Willmot, G. E. (2004). The Discrete Stationary Renewal Risk Model and the Gerber-Shui Discounted Penalty Function. Insurance: Mathematics and Economics. 35(2): 267-277.
- [12] Schäl, M.(1998). On piecewise deterministic Markov control processes control of jumps and if risk processes in insurance. Insurance: Mathematics and Economics. 22(1): 75-91.
- [13] Schäl, M.(2000). Portfolio optimization and martingale measures. Mathematical Finance. 10(2): 289-303.
- [14] Schäl, M.(2004). On discrete-time dynamic programming in insurance: Exponential utility and maximizing the ruin probability. Scandinavian Actuarial Journal. 3: 189-210.



## European Option Pricing for a Stochastic Volatility Lévy Model with Stochastic Interest Rates

#### Sarisa Pinkham, Pairote Sattavatham

School of Mathematics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand E-mail: sarisa@math.sut.ac.th, pairote@sut.ac.th

Received August 27, 2011; revised September 9, 2011; accepted September 18, 2011

#### **Abstract**

We present a European option pricing when the underlying asset price dynamics is governed by a linear combination of the time-change Lévy process and a stochastic interest rate which follows the Vasicek process. We obtain an explicit formula for the European call option in term of the characteristic function of the tail probabilities.

**Keywords:** Time-Change Lévy Process, Stochastic Interest Rate, Vasicek Process, Forward Measure, Option Pricing

#### 1. Introduction

Let  $(\Omega, F, P)$  be a probability space. A stochastic process  $L_t$  is a Lévy process if it has independent and stationary increments and has a stochastically continuous sample path, i.e. for any  $\varepsilon > 0$ ,  $\lim_{h \downarrow 0} P(|L_{t+h} - L_t| > \varepsilon) \to 0$ . The simplest possible Lévy processes are the standard Brownian motion  $W_t$ , Poisson process  $N_t$ , and compound Poisson process  $\sum_{i=1}^{N_t} Y_i$  where  $N_t$  is Poisson process with intensity  $\lambda t$  and  $Y_i$  are i.i.d. random variables. Of course, we can build a new Lévy process from known ones by using the technique of linear transformation. For example, the jump diffusion process  $\mu t + \sigma W_t + \sum_{i=1}^{N_t} Y_i$ , where  $\mu, \sigma$  are constants, is a Lévy process which comes from a linear transformation of two independent Lévy processes, i.e. a Brownian motion with drift and a compound Poisson process.

Assume that a risk-neutral probability measure Q exists and all processes in section 1 will be considered under this risk-neutral measure.

In the Black-Scholes model, the price of a risky asset  $S_t$  under a risk-neutral measure Q and with non dividend payment follows

$$S_{t} = S_{0} \exp\left(\tilde{L}_{t}\right) = S_{0} \exp\left(rt + \left(\sigma W_{t} - \frac{1}{2}\sigma^{2}t\right)\right)$$
 (1.1)

where  $r \in \mathbb{R}$  is a risk-free interest rates,  $\sigma \in \mathbb{R}$  is a vo-

latility coefficient of the stock price. Instead of modeling the log returns

$$\tilde{L}_{t} = rt + \left(\sigma W_{t} - \frac{1}{2}\sigma^{2}t\right)$$

with a normal distribution. We now replace it with a more sophisticated process  $L_t$  which is a Lévy process of the form

$$L_{t} = rt + \left(\sigma W_{t} - \frac{1}{2}\sigma^{2}t\right) + \left(J_{t} - \zeta t\right), \tag{1.2}$$

where  $J_t$  and  $\zeta_t$  denotes a pure Lévy jump component, (i.e. a Lévy process with no Brownian motion part) and its convexity adjustment. We assume that the processes  $W_t$  and  $J_t$  are independent. To incorporate the volatileity effect to the model (1.2), we follow the technique of Carr and Wu [1] by subordinating a part of a standard Brownian motion  $\sigma W_t - \frac{1}{2}\sigma^2 t$  and a part of jump Lévy process  $J_t - \zeta t$  by the time integral of a mean reverting Cox Ingersoll Ross (CIR) process

$$T_t = \int_0^t v_s \mathrm{d}s$$
,

where  $v_t$  follows the CIR process

$$dv_t = \gamma (1 - v_t) dt + \sigma_v \sqrt{v_t} dW_t^v$$
 (1.3)

Here  $W_t^v$  is a standard Brownian motion which corresponds to the process  $v_t$ . The constant  $\gamma \in \mathbb{R}$  is the rate at which the process  $v_t$  reverts toward its long term mean and  $\sigma_v > 0$  is the volatility coefficient of the process  $v_t$ .

Copyright © 2011 SciRes.

Hence, the model (1.2) has been changed to

$$L_{t} = rt + \left(\sigma W_{T_{t}} - \frac{1}{2}\sigma^{2}T_{t}\right) + \left(J_{T_{t}} - \zeta T_{t}\right), \qquad (1.4)$$

and this new process is called a stochastic volatility Levy process. One can interpret  $T_t$  as the stochastic clock process with activity rate process  $v_t$ . By replacing  $\tilde{L}_t$  in (1.1) with  $L_t$ , we obtain a model of an underlying asset under the risk-neutral measure Q with stochastic volatility as follows:

$$S_t = S_0 \exp\left(rt + \left(\sigma W_{T_t} - \frac{1}{2}\sigma^2 T_t\right) + \left(J_{T_t} - \zeta T_t\right)\right) (1.5)$$

In this paper, we shall consider the problem of finding a formula for European call options based on the underlying asset model (1.5) for which the constant interest rates r is replaced by the stochastic interest rates  $r_t$ , and  $J_t$  is compound Poisson process, *i.e.* the model under our consideration is given by

$$S_{t} = S_{0} \exp \left( r_{t} t + \left( \sigma W_{T_{t}} - \frac{1}{2} \sigma^{2} T_{t} \right) + \left( J_{T_{t}} - \zeta T_{t} \right) \right)$$
 (1.6)

Here, we assume that  $r_t$  follows the Vasicek process

$$dr_{t} = (\alpha - \beta r_{t}) dt + \sigma_{r} dW_{t}^{r}, \qquad (1.7)$$

 $W_t^r$  is a standard Brownian motion with respect to the process  $r_t$  and  $dW_t^r dW_t^v = dW_t^r dW_t = 0$ . The constant  $\beta > 0$  is the rate at which the interest rate reverts toward its long term mean,  $\sigma_r > 0$  is the volatility coefficient of the interest rate process (1.7), The constant  $\alpha > 0$  is a speed reversion.

#### 2. Literature Reviews

Many financial engineering studies have been undertaken to modify and improve the Black-Scholes model. For example, The jump diffusion models of Merton [2], the stochastic Volatility jump diffusion model of Bates [3] and Yan and Hanson [4]. Furthermore, the time change Lévy models proposed by Carr and Wu [1].

The problem of option pricing under stochastic interest rates has been investigated for along time. Kim [5] constructed the option pricing formula based on Black-Scholes model under several stochastic interest rate processes, *i.e.*, Vasicek, CIR, Ho-Lee type. He found that by incurporating stochastic interest rates into the Black-Scholes model, for a short maturity option, does not contribute to improvement in the performance of the original Black-Scholes' pricing formula. Brigo and Mercurio [6] mention that the stochastic feature of interest rates has a stronger impact on the option price when pricing for a long maturity option. Carr and Wu [1] continue this study by giving the option pricing formula based on a time-changed Lévy process model. But they still use constant interest rates in

the model.

In this paper, we give an analysis on the option pricing model based on a time-changed Lévy process with stochastic interest rates.

The rest of the paper is organized as follows. The dynamics under the forward measure is described in Section 3. The option pricing formula is given in Section 4. Finally, the close form solution for a European call option in terms of the characteristic function is given in Section 5.

## 3. The Ddynamics under the Forward Measure

We begin by giving a brief review of the definition of a correlated Brownian motion and some of its properties (for more details one see Brummelhuis [7]). Recalling that a standard Brownian motion in  $R^n$  is a stochastic process  $(\mathbf{Z}_t)_{t\geq 0}$  whose value at time t is simply a vector of n independent Brownian motions at t,

$$\mathbf{Z}_{t} = \left(Z_{1,t}, \cdots, Z_{n,t}\right).$$

We use Z instead of W since we would like to reserve the latter for the more general case of correlated Brownian motion, which will be defined as follows:

Let  $\rho = (\rho_{ij})_{1 \le i,j \le n}$  be a (constant) positive symmetric matrix satisfying  $\rho_{ii} = 1$  and  $-1 \le \rho_{ij} \le 1$  By Cholesky's decomposition theorem, one can find an upper triangul  $n \times n$  matrix  $H = (h_{ij})$  such that  $\rho = HH^t$ , where  $H^t$  is the transpose of the matrix H. Let  $\mathbf{Z}_t = (\mathbf{Z}_{1,t}, \cdots, \mathbf{Z}_{n,t})$  be a standard Brownian motion as introduced above, we define a new vector-valued process  $\mathbf{W}_t = (W_{1,t}, \cdots, W_{n,t})$  by  $\mathbf{W}_t = H\mathbf{Z}_t$  or in term of com-

$$W_{i,t} = \sum_{i=1}^{n} h_{ij} Z_{j,t}, i = 1, \dots, n$$

The process  $(W_t)_{t\geq 0}$  is called a correlated Brownian motion with a (constant) correlation matrix  $\rho$ . Each component process  $(W_{i,t})_{t\geq 0}$  is itself a standard Brownian motion. Note that if  $\rho = Id$  (the identity matrix) then  $W_t$  is a standard Brownian motion. For example, if we let a symmetric matrix

$$\rho = \begin{bmatrix}
1 & \rho_{\nu} & 0 \\
\rho_{\nu} & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$
(3.1)

Then  $\rho$  has a *Cholesky decomposition* of the form  $\rho = HH^T$  where H is an upper triangular matrix of the form

$$H = \begin{bmatrix} \sqrt{1 - \rho_{\nu}^2} & \rho_{\nu} & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Let  $\mathbf{Z}_t = \left(Z_t, Z_t^r, Z_t^v\right)$  be three independent Brownian motions then  $\mathbf{W}_t = \left(W_t, W_t^r, W_t^v\right)$  defined by  $\mathbf{W}_t = H\mathbf{Z}_t$ , or in terms of components,

$$W_{t} = \left(\sqrt{1 - \rho_{v}^{2}}\right) Z_{t} + \rho_{v} Z_{t}^{v}, W_{t}^{v} = Z_{t}^{v}, W_{t}^{r} = Z_{t}^{r} \quad (3.2)$$

Now let us turn to our problem. Note that, by Ito's lemma, the model (1.6) has the dynamic given by

$$dS_{t} = S_{t} \left( \left( r_{t} - \lambda_{m} v_{t} \right) dt + \sigma dW_{T_{t}} \right) + S_{t-} \left( e^{Y_{t}} - 1 \right) dN_{T_{t}},$$

$$dr_{t} = \left( \alpha - \beta r_{t} \right) dt + \sigma_{r} dW_{t}^{r},$$

$$dv_{t} = \gamma \left( 1 - v_{t} \right) dt + \sigma_{v} \sqrt{v_{t}} dW_{t}^{v},$$
(3.3)

where  $\lambda_m = \lambda E(e^{Y_t} - 1)$ ,  $dW_t dW_t^r = dW_t dW_t^r = 0$  and  $dW_t dW_t^r = \rho_v dt$ .

We can re-write the dynamic (3.3) in terms of three independent Brownian motions  $(Z_t, Z_t^{\nu}, Z_t^{r})$  follows (3.2), we get

$$dS_{t} = S_{t} \left( \left( r_{t} - \lambda_{m} v_{t} \right) dt + \sigma \sqrt{v_{t}} \left( \rho_{v} dZ_{t}^{v} + \sqrt{1 - \rho_{v}^{2}} dZ_{t} \right) \right)$$

$$+ S_{t-} \left( e^{Y_{t}} - 1 \right) dN_{T_{t}},$$
(3.4)

$$dr_t = (\alpha - \beta r_t)dt + \sigma_r dZ_t^r, \qquad (3.5)$$

$$dv_t = \gamma (1 - v_t) dt + \sigma_v \sqrt{v_t} dZ_t^v, \qquad (3.6)$$

This decomposition makes it easier to perform a measure transformation. In fact, for any fixed maturity T, let us denote by  $Q^T$  the T-forward measure, *i.e.* the probability measure that is defined by the Radon-Nikodym derivative,

$$\frac{\mathrm{d}Q^T}{\mathrm{d}Q} = \frac{\exp\left(-\int_0^T r_u \mathrm{d}u\right)}{P(0,T)}.$$
 (3.7)

Here, P(t,T) is the price at time t of a zero-coupon bond with maturity T and is defined as

$$P(t,T) = E_{\mathcal{Q}} \left[ e^{-\int_{t}^{T} r_{s} ds} \left| F_{t} \right| \right]. \tag{3.8}$$

Next, Consider a continuous-time economy where interest rates are stochastic and satisfy (3.5). Since the SDE (3.5) satisfies all the necessary conditions of Theorem 32, see Protter [8], then the solution of (3.5) has the Markov property. As a consequence, the zero coupon bond price at time t under the measure Q in (3.8) satisfies

$$P(t,T) = E_{\mathcal{Q}} \left[ \exp\left(-\int_{t}^{T} r_{s} ds\right) \middle| r_{t} \right]$$
 (3.9)

Note that P(t,T) depends on  $r_t$  only instead of depending on all information available in  $F_t$  up to time t. As such, it becomes a function  $F(t,r_t)$  of  $r_t$ ,

$$P(t,T) = F(t,r_t),$$

meaning that the pricing problem can now be formulated as a search for the function  $F(t,r_t)$ .

**Lemma 1** The price of a zero coupon bond can be derived by computing the expectation (3.9). We obtain

$$P(t,T) = \exp(a(t,T) + b(t,T)r_t)$$
(3.10)

where

$$b(t,r_t) = \frac{1}{\beta} \left( e^{-\beta(T-t)} - 1 \right),$$

$$a(t,T) = \left(\frac{\alpha}{\beta^2} - \frac{3\sigma_r^2}{4\beta^3}\right) - \frac{\sigma_r^2}{4\beta^3} e^{-2\beta(T-t)} + \left(\frac{\sigma_r^2}{\beta^3} - \frac{\alpha}{\beta^2}\right) e^{-\beta(T-t)} + \left(\frac{\sigma_r^2}{2\beta^2} - \frac{\alpha}{\beta^2}\right) (T-t)$$

**Proof.** See Privault [9] (pp. 38-39).

**Lemma 2** The process  $r_i$  following the dynamics in (3.5) can be written in the form

$$r_t = x_t + w(t)$$
, for each  $t$  (3.11)

where the process  $x_t$  satisfies

$$dx_{t} = -\beta x_{t} dt + \sigma_{x} dZ_{t}^{r}, x_{0} = 0.$$
 (3.12)

Moreover, the function w(t) is deterministic and well defined in the time interval [0,T] which satisfied

$$w(t) = r_0 e^{-\beta t} + \frac{\alpha}{\beta} \left( 1 - e^{-\beta t} \right)$$
 (3.13)

In particular,  $w(0) = r_0$ .

**Proof.** To solve the solution of SDE (3.5),

Let  $g(t,r) = e^{\beta t}r$  and using Ito's Lemma

$$dg = \frac{\partial g}{\partial t} dt + \frac{\partial g}{\partial r} dr + \frac{1}{2} \frac{\partial^2 g}{\partial r^2} (dr)^2,$$

Then,

$$de^{\beta t}r_{t} = \beta e^{\beta t}r_{t}dt + e^{\beta t}\left(\left(\alpha - \beta r_{t}\right)dt + \sigma_{r}dZ_{t}^{r}\right)$$

$$= \alpha e^{\beta t}dt + e^{\beta t}\sigma_{r}dZ_{t}^{r},$$
(3.14)

Integrated on both side the above equation from 0 to t where  $0 < t \le T$  and simplified, one get

$$r_{t} = r_{0}e^{-\beta t} + \frac{\alpha}{\beta}\left(1 - e^{-\beta t}\right) + \sigma_{r}\int_{0}^{t} e^{-\beta(t-u)} dZ_{u}^{r}$$

By using the definition of w(t) form (3.13),

(3.23)

$$r_t = w(t) + \sigma_r \int_0^t e^{-\beta(t-u)} dZ_u^r$$
 (3.15)

where

$$w(t) = r_0 e^{-\beta t} + \frac{\alpha}{\beta} (1 - e^{-\beta t}).$$

Note that the solution of (3.12) is

$$x_t = x_0 e^{-\beta t} + \sigma_r \int_0^t e^{-\beta(t-u)} dZ_u^r = \sigma_r \int_0^t e^{-\beta(t-u)} dZ_u^r$$
 (3.16)

Hence,  $r_t = w(t) + x_t$  for each t. The proof is now complete.

Next we shall calculate the Radon-Nikodym derivative as appear in (3.7). By Lemma 1 and 2, we have  $r_t = x_t + w(t)$  and P(0,T). Substituting  $r_t$  and P(0,T) into (3.7), we have

$$\frac{dQ^{T}}{dQ} = \frac{\exp\left(-\int_{0}^{T} x_{u} + w(u)du\right)}{\exp\left(a(0,T) + b(0,T)r_{0}\right)}$$

$$= \exp\left(-\int_{0}^{T} x_{u}du - \frac{\sigma^{2}}{2\beta^{2}} \int_{0}^{T} (1 - e^{-\beta(T-u)})^{2} du\right).$$
(3.17)

Stochastic integration by parts implies that

$$\int_{0}^{T} x_{u} du = Tx_{T} - \int_{0}^{T} u dx_{u} = \int_{0}^{T} (T - u) dx_{u} . \quad (3.18)$$

By substituting the expression for  $dx_u$  from (3.12),

$$\int_0^T (T - u) dx_u$$

$$= -\beta \int_0^T (T - u) x_u du + \sigma_r \int_0^T (T - u) dZ_u^r$$
(3.19)

Moreover by substituting the expression for  $x_u$  from (3.16), the first integral on the right hand side of (3.19) becomes

$$-\beta \int_0^T (T-u) x_u du$$

$$= -\beta \sigma_r \int_0^T \left( (T-u) \int_0^u e^{-\beta(u-s)} dZ_u^r \right) du$$
(3.20)

Using integral by parts, we have (Equation 3.21) Substituting (3.21) into (3.19), we obtain

$$\int_0^T (T-u) dx_u = -\frac{\sigma_r}{\beta} \left[ \int_0^T \left( e^{-\beta(T-u)} - 1 \right) dZ_u^r \right]$$

Hence, 
$$\int_0^T x_u du = -\frac{\sigma_r}{\beta} \left[ \int_0^T \left( e^{-\beta(T-u)} - 1 \right) dZ_u^r \right]$$
 (3.22)

Substituting (3.22) into (3.17), once get

$$\frac{\mathrm{d}Q}{\mathrm{d}Q}$$

$$= \exp\left(\frac{\sigma_r}{\beta} \int_0^T \left(1 - \mathrm{e}^{-\beta(T-u)}\right) \mathrm{d}Z_u^r - \frac{\sigma_r^2}{2\beta^2} \int_0^T \left(1 - \mathrm{e}^{-\beta(T-u)}\right)^2 \mathrm{d}u\right)$$

The Girsanov theorem then implies that the three processes  $Z_t^{rT}, Z_t^{vT}$  and  $Z_t^{T}$  defined by

$$dZ_{t}^{rT} = dZ_{t}^{r} + \frac{\sigma_{r}}{\beta} \left( 1 - e^{-\beta(T-t)} \right) dt$$

$$dZ_{t}^{rT} = dZ_{t}^{r}, dZ_{t}^{T} = dZ_{t}$$
(3.24)

are three independent Brownian motions under the measure  $Q^T$ . Therefore, the dynamics of  $r_t, v_t$  and  $S_t$  under  $Q^T$  are given by

$$\begin{split} \mathrm{d}S_t &= S_t \bigg( \big( r_t - \lambda_m v_t \big) \mathrm{d}t + \rho_v \sigma \sqrt{v_t} \mathrm{d}Z_t^{vT} + \sigma \sqrt{v_t \left( 1 - \rho_v^2 \right)} \mathrm{d}Z_t^T \bigg) \\ &+ S_{t-} \left( e^{Y_t} - 1 \right) \mathrm{d}N_{T_t}, \\ \mathrm{d}r_t &= \bigg( \alpha - \beta r_t - \frac{\sigma_r^2}{\beta} \Big( 1 - e^{-\beta(T - t)} \Big) \bigg) \mathrm{d}t + \sigma_r \mathrm{d}Z_t^{rT}, \\ \mathrm{d}v_t &= \gamma \left( 1 - v_t \right) \mathrm{d}t + \sigma_v \sqrt{v_t} \mathrm{d}Z_t^{vT}, \end{split} \tag{3.25}$$

# 4. The Pricing of a European Call Option on the Given Asset

Let  $(S_t)_{t \in [0,T]}$  be the price of a financial asset modeled as a stochastic process on a filtered probability space  $(\Omega, F, F_t, Q^T)$ ,  $F_t$  is usually taken to be the price history up to time t. All processes in this section will be defined in this space. We denote C the price at time t of a European u call option on the current price of an underlying asset  $S_t$  with strike price K and expiration time T.

$$-\beta \sigma_{r} \int_{0}^{T} \left( (T-u) \int_{o}^{u} e^{-\beta(u-s)} dZ_{u}^{r} \right) du$$

$$= -\beta \sigma_{r} \int_{0}^{T} \left( \int_{0}^{u} e^{\beta s} dZ_{s}^{r} \right) (T-u) e^{-\beta u} du = -\beta \sigma_{r} \int_{0}^{T} \left( \int_{0}^{u} e^{\beta s} dZ_{s}^{r} \right) d\left( \int_{0}^{u} (T-v) e^{-\beta v} dv \right)$$

$$= -\beta \sigma_{r} \left[ \left( \int_{0}^{T} e^{\beta u} dZ_{u}^{r} \right) \left( \int_{0}^{T} (T-v) e^{-\beta v} dv \right) - \int_{0}^{T} \left( \int_{0}^{u} (T-v) e^{-\beta v} dv \right) e^{\beta u} dZ_{u}^{r} \right]$$

$$= -\beta \sigma_{r} \left[ \int_{0}^{T} e^{\beta u} \left( \int_{0}^{u} (T-v) e^{-\beta v} dv \right) dZ_{u}^{r} \right] = -\frac{\sigma_{r}}{\beta} \left[ \int_{0}^{T} \left( e^{-\beta(T-u)} - 1 \right) dZ_{u}^{r} \right] - \sigma_{r} \int_{0}^{T} (T-u) dZ_{u}^{r}.$$

$$(3.21)$$

The terminal payoff of a European option on the underlying stock S, with strike price K is

$$\max\left(S_T - K, 0\right) \tag{4.1}$$

This means the holder will exercise his right only  $S_T > K$  and then his gain is  $S_T - K$ . Otherwise, if  $S_T \le K$  then the holder will buy the underlying asset from the market and the value of the option is zero.

We would like to find a formula for pricing a European call option with strike price K and maturity T based on the model (3.25). Consider a continuous-time economy where interest rates are stochastic and the price of the European call option at time t under the T-forward measure  $O^T$  is

$$C(t, S_t, r_t, v_t; T, K) = P(t, T) E_{Q^T} \left( \max \left( S_T - K, 0 \right) \middle| S_t, r_t, v_t \right)$$
$$= P(t, T) \int_0^\infty \max \left( S_T - K, 0 \right) p_{Q^T} \left( S_T \middle| S_t, r_t, v_t \right) dS_T$$

where  $E_{Q^T}$  is the expectation with respect to the *T*-forward probability measure,  $P_{Q^T}$  is the corresponding conditional density given  $(S_t, r_t, v_t)$  and P is a zero coupon bond which is defined in Lemma 1.

With a change in variable  $X_t = \ln S_t$ ,

$$C(t, S_{t}, r_{t}, v_{t}; T, K)$$

$$= P(t, T) \int_{-\infty}^{\infty} \max(e^{X_{T}} - K, 0) p_{Q^{T}}(X_{T} | X_{t}, r_{t}, v_{t}) dX_{T}$$

$$= P(t, T) \int_{\ln K}^{\infty} (e^{X_{T}} - K) 1_{X_{T} \ge \ln K} p_{Q^{T}}(X_{T} | X_{t}, r_{t}, v_{t}) dX_{T}$$

$$= P(t, T) \int_{\ln K}^{\infty} e^{X_{T}} p_{Q^{T}}(X_{T} | X_{t}, r_{t}, v_{t}) dX_{T}$$

$$- KP(t, T) \int_{\ln K}^{\infty} p_{Q^{T}}(X_{T} | X_{t}, r_{t}, v_{t}) dX_{T}$$

$$= e^{X_{t}} \left( \frac{1}{E_{Q^{T}}(e^{X_{T}} | S_{t}, r_{t}, v_{t})} \int_{\ln K}^{\infty} e^{X_{T}} p_{Q^{T}}(X_{T} | X_{t}, r_{t}, v_{t}) v X_{T} \right)$$

$$- KP(t, T) \int_{\ln K}^{\infty} p_{Q^{T}}(X_{T} | X_{t}, r_{t}, v_{t}) dX_{T}$$

$$= e^{X_{t}} \left( \int_{\ln K}^{\infty} e^{X_{T}} \frac{p_{Q^{T}}(X_{T} | X_{t}, r_{t}, v_{t})}{E_{Q^{T}}(e^{X_{T}} | S_{t}, r_{t}, v_{t})} dX_{T} \right)$$

$$-KP(t,T)\int_{\ln K}^{\infty} p_{Q^T} \left( X_T \left| X_t, r_t, v_t \right) dX_T \right)$$

$$\tag{4.2}$$

With the first integrand in (4.2) being positive and integrating up to one. The first integrand therefore defines a new probability measure that we denote by  $q_{o^T}$  below

$$C(t, S_{t}, r_{t}, v_{t}; T, K)$$

$$= e^{X_{t}} \int_{\ln K}^{\infty} q_{Q^{T}} (X_{T} | X_{t}, r_{t}, v_{t}) dX_{T}$$

$$-KP(t, T) \int_{\ln K}^{\infty} p_{Q^{T}} (X_{T} | X_{t}, r_{t}, v_{t}) dX_{T}$$

$$= e^{X_{t}} P_{1}(t, X_{t}, r_{t}, v_{t}; T, K) - KP(t, T) P_{2}(t, X_{t}, r_{t}, v_{t}; T, K)$$

$$= e^{X_{t}} Pr(X_{T} > \ln K | X_{t}, r_{t}, v_{t})$$

$$-KP(t, T) Pr(X_{T} > \ln K | X_{t}, r_{t}, v_{t})$$

$$(4.3)$$

where those probabilities in (4.3) are calculated under the probability measure  $Q^T$ .

The European call option for log asset price  $X_{i} = \ln S_{i}$ , will be denoted by

$$\hat{C}(t, X_t, r_t, v_t; T, \kappa) = e^{X_t} \tilde{P}_1(t, X_t, r_t, v_t; T, \kappa) - e^{\kappa} P(t, T) \tilde{P}_2(t, X_t, r_t, v_t; T, \kappa)$$
(4.4)

where  $\kappa = \ln K$  and

$$\tilde{\mathbf{P}}_{j}\left(t,X_{t},r_{t},v_{t};T,\kappa\right):=\mathbf{P}_{j}\left(t,X_{t},r_{t},v_{t};T,K\right),\quad j=1,2.$$

Note that we do not have a closed form solution for these probabilities. However, these probabilities are related to characteristic functions which have closed form solutions as will be seen in Lemma 4. The following lemma shows the relationship between  $\tilde{P}_1$  and  $\tilde{P}_2$  in the option value of (4.4).

**Lemma 3** The functions  $\tilde{P}_1$  and  $\tilde{P}_2$  in the option values of (4.4) satisfy the PIDEs (4.5):

and subject to the boundary condition at expiration t=T

$$\tilde{P}_1(T, x, r, \nu; T, \kappa) = 1_{x > \kappa}.$$
(4.6)

Moreover,  $\tilde{P}_2$  satisfies the Equation (4.7)

$$0 = \frac{\partial \tilde{P}_{1}}{\partial t} + A \left[ \tilde{P}_{1} \right] + \left( \rho_{v} \sigma v \sigma_{v} \right) \frac{\partial \tilde{P}_{1}}{\partial v} + v \int_{-\infty}^{\infty} \left[ \left( e^{v} - 1 \right) \left( \tilde{P}_{1} \left( t, x + y, r, v; T, \kappa \right) - \tilde{P}_{1} \left( x, t, r, v; T, \kappa \right) \right) \right] k \left( y \right) dy$$

$$0 = \frac{\partial \tilde{P}_{2}}{\partial t} + A \left[ \tilde{P}_{2} \right] - \sigma^{2} v \frac{\partial v}{\partial x} + \frac{\sigma^{2} v}{2} \frac{\partial^{2} \tilde{P}_{2}}{\partial x^{2}} + b \left( t, T \right) \sigma_{r}^{2} \frac{\partial \tilde{P}_{2}}{\partial r}$$

$$+ \tilde{P}_{2} \left( \frac{\partial a \left( t, T \right)}{\partial t} + r \left( \frac{\partial b \left( t, T \right)}{\partial t} - 1 \right) + \frac{\sigma_{r}^{2}}{2} b^{2} \left( t, T \right) \right) + \tilde{P}_{2} \left( \alpha - \beta r - \frac{\sigma_{r}^{2}}{\beta} \left( 1 - e^{-\beta (T - t)} \right) \right) b \left( t, T \right)$$

$$+ v \int_{-\infty}^{\infty} \left( \tilde{P}_{2} \left( t, x + y, r, v; T, \kappa \right) - \tilde{P}_{2} \left( t, x, r, v; T, \kappa \right) - \frac{\partial \tilde{P}_{2}}{\partial x} \left( e^{v} - 1 \right) \right) k \left( y \right) dy$$

$$(4.5)$$

Copyright © 2011 SciRes.

and subject to the boundary condition at expiration t=T

$$\tilde{P}_2(T, x, r, v; T, \kappa) = 1_{x > \kappa}. \tag{4.8}$$

where for i=1,2

$$A[\tilde{P}_{i}] = \left(r + \frac{1}{2}\sigma^{2}v\right) \frac{\partial \tilde{P}_{i1}}{\partial x} + \left(\alpha - \beta r - \frac{\sigma_{r}^{2}}{\beta}\left(1 - e^{-\beta(T - t)}\right)\right) \frac{\partial \tilde{P}_{i}}{\partial r}$$

$$+ \gamma \left(1 - v\right) \frac{\partial \tilde{P}_{i}}{\partial v} + \frac{\sigma_{v}^{2}v}{2} \frac{\partial^{2}\tilde{P}_{i}}{\partial v^{2}} + \frac{\sigma^{2}v}{2} \frac{\partial^{2}\tilde{P}_{i}}{\partial x^{2}} + \frac{\sigma_{r}^{2}}{2} \frac{\partial^{2}\tilde{P}_{i}}{\partial r^{2}} + \left(\rho_{v}\sigma v\sigma_{v}\right) \frac{\partial \tilde{P}_{i}}{\partial v\partial x}$$

$$+ v \int_{-\infty}^{\infty} \left[\tilde{P}_{i}\left(t, x + y, r, v; T, \kappa\right) - \tilde{P}_{i}\left(x, t, r, v; T, \kappa\right) - \left(\frac{\partial \tilde{P}_{i}}{\partial x}\right) \left(e^{y} - 1\right)\right] k\left(y\right) dy$$

$$(4.9)$$

Note that  $1_{x>\kappa} = 1$  if  $x > \kappa$  and otherwise  $1_{x>\kappa} = 0$ . **Proof.** See Appendix A.

# 5. The Closed-Form Solution for European Call Options

For j=1,2 the characteristic function for  $\tilde{P}_{j}\left(t,x,r,v;T,\kappa\right)$ , with respect to the variable  $\kappa$ , are defined by

$$f_{j}\left(t,x,r,v;T,u\right) := -\int_{-\infty}^{\infty} e^{iu\kappa} d\tilde{P}_{j}\left(t,x,r,v;T,\kappa\right), \quad (5.1)$$

with a minus sign to account for the negativity of the measure  $d\tilde{P}_i$ . Note that  $f_i$  also satisfies similar PIDEs

$$\frac{\partial f_j}{\partial t} + A_j \left[ f_j \right] (t, x, r, v; T, \kappa) = 0, \tag{5.2}$$

with the respective boundary conditions

$$\begin{split} f_{j}\left(T,x,r,v;T,u\right) &= -\int\limits_{-\infty}^{\infty} e^{iu\kappa} \mathrm{d}\tilde{P}_{j}\left(t,x,r,v;T,\kappa\right) \\ &= -\int\limits_{-\infty}^{\infty} e^{iu\kappa} \left(-\delta\left(\kappa-x\right)\right) \mathrm{d}\kappa = \mathrm{e}^{iux}. \end{split}$$

Since 
$$d\tilde{P}_{j}(t, x, r, v; T, \kappa) = d1_{x > \kappa} = -\delta(\kappa - x)d\kappa$$

The following lemma shows how to calculate the characteristic functions for  $\tilde{P}_1$  and  $\tilde{P}_2$  as they appeared in Lemma 3.

**Lemma 4** The functions  $\tilde{P}_1$  and  $\tilde{P}_2$  can be calculated by the inverse Fourier transformations of the characteristic function, i.e.

$$\tilde{P}_{j}(t,x,r,v;T,\kappa) = \frac{1}{2} + \frac{1}{\pi} \int_{0+}^{\infty} \text{Re} \left[ \frac{e^{iu\kappa} f_{j}(t,x,r,v;T,u)}{iu} \right] du,$$

for j = 1, 2, with Re[.] denoting the real component of a complex number.

By letting  $\tau = T - t$ , the characteristic function  $f_j$  is given by

$$f_{j}(t, x, r, v; t + \tau, u) = \exp(iux + B_{j}(\tau) + rC_{j}(\tau) + vE_{j}(\tau)),$$
where

where 
$$\tilde{b}_{j1} = b_{j2} + \nabla_{j}, \quad \tilde{b}_{j2} = b_{j2} - \nabla_{j}, \quad b_{j1} = \frac{\sigma_{v}^{2}}{2},$$

$$b_{12} = \rho_{v}\sigma\sigma_{v}(1+iu) - \gamma, b_{22} = \rho_{v}\sigma\sigma_{v}iu - \gamma,$$

$$b_{10} = -\left(\frac{1}{2}\sigma^{2}\left(iu - u^{2}\right) + \int_{-\infty}^{\infty}\left(e^{iux + y} - iu\left(e^{y} - 1\right)\right)k\left(y\right)dy\right)$$

$$b_{20} = -\left(\frac{1}{2}\sigma^{2}\left(u^{2} + iu\right) - \int_{-\infty}^{\infty}\left(e^{iux} - iu\left(e^{y} - 1\right)\right)k\left(y\right)dy\right)$$

$$B_{1}(\tau) = \frac{-\tau\gamma\tilde{b}_{12}}{2b_{11}} + \frac{\gamma\left(\tilde{b}_{11} + \tilde{b}_{12}\right)}{2b_{11}\nabla_{1}}\ln\left(\frac{\tilde{b}_{11} + e^{\tau\nabla_{1}}\tilde{b}_{12}}{\tilde{b}_{11} + \tilde{b}_{12}}\right)$$

$$+ \frac{iu\sigma_{r}^{2}}{2\beta^{3}}\left(e^{-\beta\tau} - 1\right)^{2} + \left(2iu\left(\alpha\beta - \sigma_{r}^{2}\right) - \sigma_{r}^{2}u^{2}\right)\frac{\tau}{\beta^{2}}$$

$$+ \frac{\sigma_{r}^{2}u^{2}}{4\beta^{3}}\left(-4e^{-\beta\tau} + e^{-2\beta\tau} - 3\right)$$

$$C_{j}(\tau) = \frac{iu}{\beta}\left(1 - e^{-\beta\tau}\right), \nabla_{j} = \sqrt{b_{j2}^{2} - 4b_{j0}b_{j1}}$$

$$E_{j}(\tau) = \frac{\tilde{b}_{j1}\tilde{b}_{j2}\left(e^{\tau\sqrt{b_{j2}^{2} - 4b_{j0}b_{j1}}} - 1\right)}{2b_{j1}\left(\tilde{b}_{j1} + \tilde{b}_{j2}e^{\tau\sqrt{b_{j2}^{2} - 4b_{j0}b_{j1}}} - 1\right)}$$

$$+ \left(\frac{\sigma_{r}^{2}}{\beta^{3}}\left(u^{2} + 4iu - 2\right) - \frac{iu\alpha}{\beta^{2}}\right)\left(1 - e^{-\beta\tau}\right)$$

$$+ \frac{\sigma_{r}^{2}}{4\beta^{3}}\left(u^{2} + 4iu - 2\right)\left(e^{-2\beta\tau} - 1\right)$$

$$+ \left(\frac{\alpha}{\beta^{2}}\left(iu\beta - \beta + 1\right) - \frac{\sigma_{r}^{2}}{2\beta^{2}}\left(u^{2} + 4iu - 2\right)\right)\tau$$

#### **Proof.** See Appendix B.

In summary, we have just proved the following main theorem.

**Theorem 5** The value of a European call option of SDE (3.25) is

$$C(t, S_t, r_t, v_t; T, K)$$

$$=S_{t}\tilde{P}_{1}\left(t,X_{t},r_{t},v_{t};T,\kappa\right)-KP(t,T)\tilde{P}_{2}\left(t,X_{t},r_{t},v_{t};T,\kappa\right)$$

where  $\tilde{P}_1$  and  $\tilde{P}_2$  are given in Lemma 4 and P(t,T) is given in Lemma 1.

## 6. Acknowledgements

This research is (partially) supported by The Center of Excellent in Mathematics, the commission on Higher Education (CHE).

Address: 272 Rama VI Road, Ratchathewi District, Bangkok, Thailand.

#### 7. References

- [1] P. Carr and L. Wu, "Time Change Levy Processes and Option Pricing," *Journal of Financial Economics*, Vol. 17, No. 1, 2004, pp. 113-141. doi:10.1016/S0304-405X(03)00171-5
- [2] R. C. Merton, "Option Pricing when Underlying Stock Returns are Discontinuous," *Journal of Financial Economics*, Vol. 3, No. 1-2, 1976, pp. 125-144. doi:10.1016/0304-405X(76)90022-2

- [3] D. Bates, "Jump and Stochastic Volatility: Exchange Rate Processes Implicit in Deutche Mark in Option," *Review of Financial Studies*, Vol. 9, No. 1, 1996, pp. 69-107. doi:10.1093/rfs/9.1.69
- [4] G. Yan and F. B. Hanson, "Option Pricing for Stochastic Volatility Jump Diffusion Model with Log Uniform Jump Amplitudes," *Proceeding American Control Conference*, Minneapolis, 14-16 June 2006, pp. 2989-2994.
- [5] Y. J. Kim, "Option Pricing under Stochastic Interest rates: An Empirical Investigation," Asia Pacific Financial Markets, Vol. 9, No. 1, 2001, pp. 23-44. doi:10.1023/A:1021155301176
- [6] D. Brigo and F. Mercuiro, "Interest Rate Models: Theory and Practice," 2nd Edition, Springer, Berlin, 2001.
- [7] R. Brummelhuis, "Mathematical Method for Financial Engineering," University of London, 2009. http://www.ems.bbk.ac.uk/for\_students/msc./math\_metho ds/lecture1.pdf
- [8] P.E. Plotter, "Stochastic Integration and Differential Equation," Stochastic Modeling and Applied Probability, Vol. 21, 2nd Edition, Springer, Berlin, 2005.
- [9] N. Privault, "An Elementary Introduction to Stochastic Interest Rate Modeling," Advance Series on Statistical Science & Applied Probability, Vol. 2, World Scientific, Singapore, 2008.
- [10] M. G. Kendall, A. Stuat and J. K. Ord, "Advance Theory of Statistics Vol. 1," Halsted Press, New York, 1987.

## **Appendix A:** Proof of Lemma 3

By Ito's lemma,  $\hat{C}(t,x,r,v)$  follows the partial integro-differential equation (PIDE)

$$\frac{\partial \hat{C}}{\partial t} + L_t^D \hat{C} + L_t^J \hat{C} = 0, \tag{A.1}$$

where

$$\begin{split} L_{t}^{D}\hat{C} = & \left(r - \frac{1}{2}\sigma^{2}v\right) \frac{\partial \hat{C}}{\partial x} + \left(\alpha - \beta r - \frac{\sigma_{r}^{2}}{\beta}\left(1 - e^{-\beta(T - t)}\right)\right) \frac{\partial \hat{C}}{\partial r} \\ & + \gamma\left(1 - v\right) \frac{\partial \hat{C}}{\partial v} + \frac{\sigma_{v}^{2}v}{2} \frac{\partial^{2}\hat{C}}{\partial v^{2}} + \frac{\sigma^{2}v}{2} \frac{\partial^{2}\hat{C}}{\partial x^{2}} + \frac{\sigma_{r}^{2}}{2} \frac{\partial^{2}\hat{C}}{\partial r^{2}} \\ & + \left(\rho_{v}\sigma v\sigma_{v}\right) \frac{\partial^{2}\hat{C}}{\partial x\partial v} - r\hat{C} \end{split}$$

and

$$L_{t}^{J}\hat{C}$$

$$=v\int_{-\infty}^{\infty}\left(\hat{C}(t,x+y,r,v)-\hat{C}(t,x,r,v)-\frac{\partial\hat{C}}{\partial x}(e^{y}-1)\right)k(y)dy$$

where k(y) is the Lévy density.

We plan to substitute (4.4) into (A.1). Firstly, we compute

$$\begin{split} &\frac{\partial \hat{C}}{\partial t} = \mathrm{e}^{x} \frac{\partial \tilde{P}_{1}}{\partial t} - \mathrm{e}^{\kappa} P(t,T) \left[ \frac{\partial \tilde{P}_{2}}{\partial t} + \tilde{P}_{2} \frac{\partial}{\partial t} \left( a(t,T) + b(t,T) r \right) \right], \\ &\frac{\partial \hat{C}}{\partial x} = \mathrm{e}^{x} \left( \frac{\partial \tilde{P}_{1}}{\partial x} + \tilde{P}_{1} \right) - \mathrm{e}^{\kappa} P(t,T) \frac{\partial \tilde{P}_{2}}{\partial x}, \\ &\frac{\partial \hat{C}}{\partial v} = \mathrm{e}^{x} \frac{\partial \tilde{P}_{1}}{\partial v} - \mathrm{e}^{\kappa} P(t,T) \frac{\partial \tilde{P}_{2}}{\partial v}, \\ &\frac{\partial \hat{C}}{\partial r} = \mathrm{e}^{x} \frac{\partial \tilde{P}_{1}}{\partial r} - \mathrm{e}^{\kappa} P(t,T) \left( \frac{\partial \tilde{P}_{2}}{\partial r} + \tilde{P}_{2} b(t,T) \right), \\ &\frac{\partial^{2} \hat{C}}{\partial x^{2}} = \mathrm{e}^{x} \left( \frac{\partial^{2} \tilde{P}_{1}}{\partial x^{2}} + 2 \frac{\partial \tilde{P}_{1}}{\partial x} + \tilde{P}_{1} \right) - \mathrm{e}^{\kappa} P(t,T) \frac{\partial^{2} \tilde{P}_{2}}{\partial x^{2}}, \\ &\frac{\partial^{2} \hat{C}}{\partial v^{2}} = \mathrm{e}^{x} \frac{\partial^{2} \tilde{P}_{1}}{\partial v^{2}} - \mathrm{e}^{\kappa} P(t,T) \frac{\partial^{2} \tilde{P}_{2}}{\partial v^{2}}, \\ &\frac{\partial^{2} \hat{C}}{\partial v \partial x} = \mathrm{e}^{x} \left( \frac{\partial \tilde{P}_{1}}{\partial v \partial x} + \frac{\partial \tilde{P}_{1}}{\partial v} \right) - \mathrm{e}^{\kappa} P(t,T) \frac{\partial \tilde{P}_{2}}{\partial v \partial x}, \frac{\partial^{2} \hat{C}}{\partial r^{2}} = \mathrm{e}^{x} \frac{\partial^{2} \tilde{P}_{1}}{\partial r^{2}} \\ &- \mathrm{e}^{\kappa} P(t,T) \left( \frac{\partial^{2} \tilde{P}_{2}}{\partial r^{2}} + 2 b(t,T) \frac{\partial \tilde{P}_{2}}{\partial r} + \tilde{P}_{2} b^{2}(t,T) \right), . \\ &\frac{\partial^{2} \hat{C}}{\partial x \partial r} = \mathrm{e}^{x} \left( \frac{\partial^{2} \tilde{P}_{1}}{\partial x \partial r} + \frac{\partial \tilde{P}_{1}}{\partial r} \right) - \mathrm{e}^{\kappa} P(t,T) \left( \frac{\partial^{2} \tilde{P}_{2}}{\partial x \partial r} + b(t,T) \frac{\partial \tilde{P}_{2}}{\partial x} \right), \end{split}$$

$$\begin{split} &\hat{C}(t, x+y, r, v, ; T, \kappa) - \hat{C}(t, x, r, v, ; T, \kappa) \\ &= e^{x} \left[ \left( e^{y} - 1 \right) \tilde{P}_{1}(t, x+y, r, v; T, \kappa) + \left( \tilde{P}_{1}(t, x+y, r, v; T, \kappa) - \tilde{P}_{1}(x, t, r, v; T, \kappa) \right) \right] \\ &- e^{\kappa} P(t, T) \left[ \tilde{P}_{2}(t, x+y, r, v; T, \kappa) - \tilde{P}_{2}(t, x, r, v; T, \kappa) \right]. \end{split}$$

Substitute all terms above into (A.1) and separate it by assumed independent terms of  $\tilde{P}_1$  and  $\tilde{P}_2$ . This gives

two PIDEs for the *T*-forward probability for  $\tilde{P}_i(t, x, r, v; T, \kappa)$ , j = 1, 2:

$$\begin{split} &\frac{\partial \tilde{P}_{1}}{\partial t} + \left(r + \frac{1}{2}\sigma^{2}v\right) \frac{\partial \tilde{P}_{1}}{\partial x} + \left(\alpha - \beta r - \frac{\sigma_{r}^{2}}{\beta} \left(1 - e^{-\beta(T-t)}\right)\right) \frac{\partial \tilde{P}_{1}}{\partial r} \\ &+ \left(\rho_{v}\sigma v\sigma_{v}\right) \frac{\partial \tilde{P}_{1}}{\partial v\partial x} + \frac{\sigma_{v}^{2}v}{2} \frac{\partial^{2}\tilde{P}_{1}}{\partial v^{2}} + \frac{\sigma^{2}v}{2} \frac{\partial^{2}\tilde{P}_{1}}{\partial x^{2}} + \frac{\sigma_{r}^{2}}{2} \frac{\partial^{2}\tilde{P}_{1}}{\partial r^{2}} + \left(\gamma(1-v) + \rho_{v}\sigma v\sigma_{v}\right) \frac{\partial \tilde{P}_{1}}{\partial v} \\ &+ v \int_{-\infty}^{\infty} \left[\tilde{P}_{1}(t, x + y, r, v; T, \kappa) - \tilde{P}_{1}(x, t, r, v; T, \kappa) - \left(\frac{\partial \tilde{P}_{1}}{\partial x}\right) \left(e^{y} - 1\right)\right] k(y) dy. \\ &+ v \int_{-\infty}^{\infty} \left[\left(e^{y} - 1\right) \left(\tilde{P}_{1}(t, x + y, r, v; T, \kappa) - \tilde{P}_{1}(x, t, r, v; T, \kappa)\right)\right] k(y) dy. = 0 \end{split}$$

and subject to the boundary condition at the expiration time t = T according to (4.6).

By using the notation in (4.9), then (A.2) becomes Equation (A.3)

$$0 = \frac{\partial \tilde{P}_{1}}{\partial t} + A \left[ \tilde{P}_{1} \right] + \left( \rho_{v} \sigma v \sigma_{v} \right) \frac{\partial \tilde{P}_{1}}{\partial v} + v \int_{-\infty}^{\infty} \left[ \left( e^{v} - 1 \right) \left( \tilde{P}_{1} \left( t, x + y, r, v; T, \kappa \right) - \tilde{P}_{1} \left( x, t, r, v; T, \kappa \right) \right) \right] k \left( y \right) dy.$$

$$:= \frac{\partial \tilde{P}_{1}}{\partial t} + A_{1} \left[ \tilde{P}_{1} \right]. \tag{A.3}$$

Copyright © 2011 SciRes.

For  $\tilde{P}_2(t, x, r, v; T, \kappa)$ :

$$0 = \frac{\partial \tilde{P}_{2}}{\partial t} + \left(r - \frac{1}{2}\sigma^{2}v\right) \frac{\partial \tilde{P}_{2}}{\partial x} + \gamma\left(1 - v\right) \frac{\partial \tilde{P}_{2}}{\partial v} + \left(\rho_{v}\sigma v\sigma_{v}\right) \frac{\partial \tilde{P}_{2}}{\partial v\partial x} + \frac{\sigma^{2}v}{2} \frac{\partial^{2}\tilde{P}_{2}}{\partial x^{2}} + \frac{\sigma_{v}^{2}v}{2} \frac{\partial^{2}\tilde{P}_{2}}{\partial v^{2}} + \frac{\sigma_{v}^{2}}{2} \frac{\partial^{2}\tilde{P}_{2}}{\partial r^{2}} + \left(\frac{\sigma_{v}^{2}}{2}b^{2}\left(t, T\right) - r\right)\tilde{P}_{2}$$

$$+ \left(\alpha - \beta r - \frac{\sigma_{r}^{2}}{\beta}\left(1 - e^{-\beta(T - t)}\right) + 2b\left(t, T\right)\frac{\sigma_{r}^{2}}{2}\right) \left(\frac{\partial \tilde{P}_{2}}{\partial r}\right) + \tilde{P}_{2}\left(\frac{\partial a\left(t, T\right)}{\partial t} + r\frac{\partial b\left(t, T\right)}{\partial t} + \left(\alpha - \beta r - \frac{\sigma_{r}^{2}}{\beta}\left(1 - e^{-\beta(T - t)}\right)\right)b\left(t, T\right)\right)$$

$$+ v\int_{-\infty}^{\infty} \left(\tilde{P}_{2}\left(t, x + y, r, v; T, \kappa\right) - \tilde{P}_{2}\left(t, x, r, v; T, \kappa\right) - \frac{\partial \tilde{P}_{2}}{\partial x}\left(e^{y} - 1\right)\right)k\left(y\right)dy. \tag{A.4}$$

and subject to the boundary condition at expiration time t Again, by using the notation (4.9), then (A.4) becomes = T according to (4.8).

$$0 = \frac{\partial \tilde{P}_{2}}{\partial t} + A \left[ \tilde{P}_{2} \right] - \sigma^{2} v \frac{\partial \tilde{P}_{2}}{\partial x} + \frac{\sigma^{2} v}{2} \frac{\partial^{2} \tilde{P}_{2}}{\partial x^{2}} + b \left( t, T \right) \sigma_{r}^{2} \frac{\partial \tilde{P}_{2}}{\partial r} + \tilde{P}_{2} \left( \frac{\partial a \left( t, T \right)}{\partial t} + r \left( \frac{\partial b \left( t, T \right)}{\partial t} - 1 \right) + \frac{\sigma_{r}^{2}}{2} b^{2} \left( t, T \right) \right)$$

$$+ \tilde{P}_{2} \left( \alpha - \beta r - \frac{\sigma_{r}^{2}}{\beta} \left( 1 - e^{-\beta \left( T - t \right)} \right) \right) b \left( t, T \right) := \frac{\partial \tilde{P}_{2}}{\partial t} + A_{2} \left[ \tilde{P}_{2} \right]$$

$$(A.5)$$

The proof is now completed.

## **Appendix B:** Proof of Lemma 4

To solve the characteristic function explicitly, letting  $\tau = T - t$  be the time-to-go, we conjecture that the function  $f_1$  is given by

$$f_1(t, x, r, v; t + \tau, u)$$

$$= \exp(iux + B_1(\tau) + rC_1(\tau) + vE_1(\tau)),$$
(B.1)

and the boundary condition  $B_1(0) = C_1(0) = E_1(0) = 0$ . This conjecture exploits the linearity of the coefficient in PIDEs (5.2).

Note that the characteristic function of  $f_1$  always exists. In order to substitute (B.1) into (5.2), firstly, we

$$\frac{\partial f_1}{\partial t} = -\left(B_1'(\tau) + rC_1'(\tau) + vE_1'(\tau)\right)f_1, \quad \frac{\partial f_1}{\partial x} = iuf_1,$$

$$\frac{\partial f_1}{\partial r} = C_1(\tau) f_1, \quad \frac{\partial f_1}{\partial \nu} = E_1(\tau) f_1, \quad \frac{\partial^2 f_1}{\partial x^2} = -u^2 f_1,$$

$$\frac{\partial^2 f_1}{\partial \nu^2} = E_1^2(\tau) f_1, \quad \frac{\partial^2 f_1}{\partial r^2} = C_1^2(\tau) f_1,$$

$$\frac{\partial^2 f_1}{\partial x \partial r} = iuC_1(\tau) f_1, \quad \frac{\partial^2 f_1}{\partial v \partial x} = iuE_1(\tau) f_1,$$

$$e^{iux} f_1(t, x, r, v; t + \tau, u)$$

$$= f_1(t, x + y, r, y; t + \tau, u) - f_1(t, x, r, y; t + \tau, u)$$

Substituting all the above terms into (5.2), after cancelling the common factor of  $f_1$ , we get a simplified form as follows:

$$0 = r \left[ -C_{1}'(\tau) + iu - \beta C_{1}(\tau) \right]$$

$$+ v \left[ -E_{1}'(\tau) + \left( \rho_{v} \sigma \sigma_{v} \left( 1 + iu \right) - \gamma \right) E_{1}(\tau) + \frac{\sigma_{v}^{2}}{2} E_{1}^{2}(\tau) + \frac{\sigma^{2}}{2} \left( iu - u^{2} \right) + \int_{-\infty}^{\infty} \left[ e^{iux} - iu \left( e^{y} - 1 \right) + \left( e^{y} - 1 \right) e^{iux} \right] k(y) dy \right]$$

$$+ \left[ -B_{1}'(\tau) + \left( \alpha - \frac{\sigma_{r}^{2}}{\beta} \left( 1 - e^{-\beta(T - t)} \right) \right) C_{1}(\tau) + \frac{\sigma_{r}^{2}}{2} C_{1}^{2}(\tau) + \gamma E_{1}(\tau) \right]$$

By separating the order r, v and ordering the remaining terms, we can reduce it to three ordinary differential equations (ODEs) as follows:

$$C_1'(\tau) = -\beta C_1(\tau) + iu. \tag{B.2}$$

$$E'_{1}(\tau) = \frac{\sigma_{v}^{2}}{2} E_{1}^{2}(\tau) + (\rho_{v} \sigma \sigma_{v} (1 + iu) - \gamma) E_{1}(\tau) + \frac{\sigma^{2}}{2} (iu - u^{2}) + \int_{0}^{\infty} (e^{iux + y} - iu(e^{y} - 1)) k(y) dy, (B.3)$$

$$B_1'(\tau) = \left[\alpha - \frac{\sigma_r^2}{\beta} \left(1 - e^{-\beta(T - t)}\right)\right] C_1(\tau) + \gamma E_1(\tau) + \frac{\sigma_r^2}{2} C_1^2(\tau). \qquad b_0 = -\left(\frac{1}{2}\sigma^2 \left(iu - u^2\right) + \int_{-\infty}^{\infty} \left(e^{iux + y} - iu\left(e^y - 1\right)\right) k(y) dy\right)$$

(B.4)

It is clear from (B.2) and C(0) = 0 that

$$C_1(\tau) = \frac{iu}{\beta} \times (1 - e^{-\beta \tau}),$$
 (B.5)

Let

$$b_{1} = \frac{\sigma_{v}^{2}}{2},$$

$$b_{2} = \rho_{v}\sigma\sigma_{v}(1+iu) - \gamma,$$

$$b_0 = -\left(\frac{1}{2}\sigma^2\left(iu - u^2\right) + \int_{-\infty}^{\infty} \left(e^{iux + y} - iu\left(e^y - 1\right)\right)k\left(y\right)dy\right)$$

and substitute all term above into (B.3), we get

$$E_{1}'(\tau) = b_{1} \left( E_{1}(\tau) - \frac{-b_{2} + \sqrt{b_{2}^{2} - 4b_{0}b_{1}}}{2b_{1}} \right) \times \left( E_{1}(\tau) - \frac{-b_{2} - \sqrt{b_{2}^{2} - 4b_{0}b_{1}}}{2b_{1}} \right)$$

By method of variable separation, we have

$$\frac{\mathrm{d}E_{1}(\tau)}{\left(E_{1}(\tau) - \frac{-b_{2} + \sqrt{b_{2}^{2} - 4b_{0}b_{1}}}{2b_{1}}\right)\left(E_{1}(\tau) - \frac{-b_{2} - \sqrt{b_{2}^{2} - 4b_{0}b_{1}}}{2b_{1}}\right)} = b_{1}\mathrm{d}\tau$$

Using partial fraction on the left hand side, we get

$$\left(\frac{1}{\left(E_{1}\left(\tau\right)-\frac{-b_{2}+\nabla}{2b_{1}}\right)}-\frac{1}{\left(E_{1}\left(\tau\right)-\frac{-b_{2}-\nabla}{2b_{1}}\right)}\right)dE_{1}\left(\tau\right)=\nabla d\tau$$

where  $\nabla = \sqrt{b_2^2 - 4b_0b_1}$ .

Integrating both sides, we have

$$\ln\left(\frac{E_1(\tau) - \frac{-b_2 + \nabla}{2b_1}}{E_1(\tau) - \frac{-b_2 - \nabla}{2b_1}}\right) = \tau \nabla + E_0$$

Using boundary condition  $E_1(\tau = 0) = 0$  we get

$$E_0 = \ln\left(\frac{-b_2 + \nabla}{-b_2 - \nabla}\right)$$

Solving for  $E_1(\tau)$ , we obtain

$$E_{1}(\tau) = \frac{\left(e^{\tau \nabla} - 1\right)\tilde{b}_{1}\tilde{b}_{2}}{2b_{1}\left(\tilde{b}_{1} + e^{\tau \nabla}\tilde{b}_{2}\right)}$$
(B.6)

where  $\tilde{b_1} = b_2 + \nabla$ ,  $\tilde{b_2} = b_2 - \nabla$ .

In order to solve  $B_1(\tau)$  explicitly, we substitute  $C_1(\tau)$  and  $E_1(\tau)$  in (B.5) and (B.6) into (B.4).

$$B'_{1}(\tau) = \left(\frac{iu\alpha}{\beta} - \frac{iu\sigma_{r}^{2}}{\beta^{2}}\right) \left(1 - e^{-\beta\tau}\right) + \frac{iu\sigma_{r}^{2}}{\beta^{2}} \left(e^{-\beta\tau} - e^{-2\beta\tau}\right)$$
$$-\frac{\sigma_{r}^{2}u^{2}}{2\beta^{2}} \left(1 - 2e^{-\beta\tau} + e^{-2\beta\tau}\right) + \frac{\gamma \tilde{b}_{1}\tilde{b}_{2}\left(e^{\tau\nabla} - 1\right)}{2b_{1}\left(\tilde{b}_{1} + e^{\tau\nabla}\tilde{b}_{2}\right)}$$

Integrating with respect to  $\tau$  and using boundary condition  $B_1(\tau = 0) = 0$ , then we get

$$\begin{split} B_{\mathrm{I}}\left(\tau\right) &= \left(2iu\left(\alpha\beta - \sigma_{r}^{2}\right) - \sigma_{r}^{2}u^{2}\right)\frac{\tau}{\beta^{2}} \\ &+ \frac{iu\sigma_{r}^{2}}{2\beta^{3}}\left(\mathrm{e}^{-\beta\tau} - 1\right)^{2} + \frac{\sigma_{r}^{2}u^{2}}{4\beta^{3}}\left(-4\mathrm{e}^{-\beta\tau} + \mathrm{e}^{-2\beta\tau} - 3\right) \\ &+ \left[\frac{-\tau\gamma\tilde{b}_{2}}{2b_{1}} + \frac{\gamma\left(\tilde{b}_{1} + \tilde{b}_{2}\right)}{2b_{1}\nabla}\ln\left(\frac{\tilde{b}_{1} + \mathrm{e}^{\tau\nabla}\tilde{b}_{2}}{\tilde{b}_{1} + \tilde{b}_{2}}\right)\right] \end{split}$$

The details of the proof for the characteristic function  $f_2$  are similar to  $f_1$ .

Hence, we have

$$f_2(t, x, r, v; T - \tau, u)$$

$$= \exp\left[iux + B_2(\tau) + rC_2(\tau) + vE_2(\tau)\right]^{\frac{1}{2}}$$

where  $B_2(\tau)$ ,  $C_2(\tau)$  and  $E_2(\tau)$  are as given in this Lemma.

We can thus evaluate the characteristic function in close form. However, we are interested in the probability  $\tilde{P}_j$ . These can be inverted from the characteristic functions by performing the following integration

$$\tilde{P}_{j}(t, x, r, v; T, \kappa)$$

$$= \frac{1}{2} + \frac{1}{\pi} \int_{0+}^{\infty} \text{Re} \left( \frac{e^{\text{iux}} f_{j}(t, x, v, r; T, u)}{iu} \right) du$$

for j = 1, 2 where  $X_t = \ln S_t$  and  $\kappa = \ln K$ , see Kendall *et. al.* [10]. The proof is now complete.