

Abstract

Project Code: BRG5180021

Project Title: Comparative Characterization and Use of Functional Edible Chitosan Films Prepared by Different Drying Methods to Preserve Quality of Foods

Investigator: Associate Professor Dr. Sakamon Devahastin

E-mail Address: sakamon.dev@kmutt.ac.th

Project Period: 3 years (September 2008-July 2011)

The present study first investigated the effects of drying methods and conditions as well as the concentration of galangal extract, which was incorporated into edible chitosan films as a natural antimicrobial agent, on the antimicrobial activity of the films. Fourier transform infrared (FTIR) spectroscopy was performed to investigate functional group interaction between chitosan and the added active agent. The mechanism of the extract and of the antimicrobial films to inhibit bacterial cell growth was observed using transmission electron microscopy (TEM). The antimicrobial activity and functional group interaction of the antimicrobial films were found to be affected by the drying methods and conditions as well as the concentration of the galangal extract. Then, the effects of drying methods and conditions on the total phenolics content (TPC) of chitosan films incorporated with Indian gooseberry extract, which has proved to be a potent natural antioxidant, were investigated. The release behavior of the antioxidant from the films was also investigated. FTIR spectroscopy was again performed to investigate functional group interaction between chitosan and the added active agent. Swelling of the films was measured to help explain the release behavior of the films. The release characteristics, swelling and functional group interaction of the antioxidant films were found to be affected by the drying methods and conditions as well as the concentration of the Indian gooseberry extract. The third part of the study proposed and tested an idea of using advanced drying methods, in combination with appropriate concentration of plasticizer, to improve the mechanical properties of the films. The drying methods and plasticizer concentration significantly affected the mechanical properties and glass transition temperature of the films. In some cases, there was a limiting value of plasticizer concentration beyond which the effect of the plasticizer concentration on the mechanical properties was negligible. Finally, various simple mathematical models for prediction of the release of antioxidant from edible chitosan films were compared and discussed. A simple-liquid diffusion model assuming the effective diffusion coefficient as a function of the phenolics concentration were noted to give the best agreement with the experimental results.

Keywords: Active packaging; Antimicrobial activity; Antioxidant; Chitosan; Low-pressure superheated steam drying; Mathematical models; Mechanical properties; Release; Vacuum drying.

บทคัดย่อ

รหัสโครงการ: BRG5180021

ชื่อโครงการ: การประเมินลักษณะเฉพาะเชิงเบรี่ยบและการใช้ฟิล์มบริโภคได้เชิงหน้าที่จากไโคโตซานชีงเตรียมโดยวิธีการอบแห้งแบบต่างๆ ในการรักษาคุณภาพของอาหาร

ชื่อนักวิจัย: รศ. ดร.สักกมณ เทพหัสดิน ณ อยุธยา

E-mail Address: sakamon.dev@kmutt.ac.th

ระยะเวลาโครงการ: 3 ปี (กันยายน พ.ศ. 2551 – กรกฎาคม พ.ศ. 2554)

โครงการวิจัยนี้แบ่งออกเป็น 4 ส่วน โดยส่วนแรกเป็นการศึกษาผลของวิธีการและสภาวะการอบแห้ง ตลอดจนความเข้มข้นของสารสกัดจากข้าวชีงเติมลงในฟิล์มบริโภคได้จากไโคโตซานเพื่อให้เป็นสารต้านจุลชีพที่มีต่อฤทธิ์ต้านจุลชีพของฟิล์มที่ผลิตได้ นอกจากนี้ยังได้ศึกษาสหสัมพันธ์ระหว่างหมู่ฟังก์ชันของไโคโตซานและสารสกัดชีงเติมลงในฟิล์มโดยวิธี Fourier transform infrared (FTIR) spectroscopy และศึกษาผลลัพธ์ของการต้านจุลชีพทั้งของสารสกัดและของฟิล์มบริโภคได้ชีงมีสารสกัดเป็นองค์ประกอบโดยวิธี Transmission electron microscopy (TEM) จากผลการทดลองพบว่าวิธีการและสภาวะการอบแห้ง ตลอดจนความเข้มข้นของสารสกัดส่งผลอย่างมีนัยสำคัญต่อฤทธิ์ต้านจุลชีพและสหสัมพันธ์ระหว่างหมู่ฟังก์ชันของฟิล์มบริโภคได้ชีงมีสารสกัดข้าวเป็นองค์ประกอบ สำหรับส่วนที่สองของโครงการเป็นการศึกษาผลของวิธีการและสภาวะการอบแห้งที่มีต่อบริมาณสารฟินอลิกทั้งหมด (Total phenolics content, TPC) ในฟิล์มบริโภคได้ชีงมีสารสกัดจากมะขามป้อมเป็นองค์ประกอบ ทั้งนี้ใช้สารสกัดจากมะขามป้อมเป็นตัวอย่างสารต้านอนุมูลอิสระที่เติมลงในฟิล์มบริโภคได้ นอกจากนี้ยังได้ศึกษาพฤติกรรมการปลดปล่อยและสหสัมพันธ์ระหว่างหมู่ฟังก์ชันของไโคโตซานและสารสกัดตลอดจนการบวมของฟิล์มเพื่อใช้ชิบายผล พฤติกรรมการปลดปล่อยของฟิล์มอีกด้วย จากผลการทดลองพบว่าวิธีการและสภาวะการอบแห้งตลอดจนความเข้มข้นของสารสกัดส่งผลอย่างมีนัยสำคัญต่อพฤติกรรมการปลดปล่อย สหสัมพันธ์ระหว่างหมู่ฟังก์ชัน และการบวมของฟิล์มบริโภคได้ชีงมีสารสกัดมะขามป้อมเป็นองค์ประกอบในลักษณะที่คล้ายคลึงกับผลการศึกษาในส่วนแรก ส่วนที่สามของโครงการเป็นการทดสอบแนวคิดการใช้วิธีการอบแห้งขั้นสูงร่วมกับการใช้พลาสติไซเซอร์ที่มีความเข้มข้นที่เหมาะสมในการปรับปรุงสมบัติเชิงกลของฟิล์มบริโภคได้จากไโคโตซาน ผลการทดลองแสดงให้เห็นว่าวิธีการอบแห้งและความเข้มข้นของพลาสติไซเซอร์ส่งผลอย่างมีนัยสำคัญต่อสมบัติเชิงกลและอุณหภูมิการเปลี่ยนสถานะคล้ายแก้วของฟิล์ม นอกจากนี้ยังพบว่าในบางกรณีแม้เพิ่มความเข้มข้นของพลาสติไซเซอร์ขึ้นไปจากค่าวิกฤติค่าหนึ่ง ก็ไม่ทำให้สมบัติเชิงกลของฟิล์มที่ผลิตได้มีการเปลี่ยนแปลง สำหรับส่วนสุดท้ายของโครงการวิจัยเป็นการเปรียบเทียบและประเมินความสามารถของแบบจำลองทางคณิตศาสตร์แบบต่างๆ ในการทำนายพฤติกรรมการปลดปล่อยสารต้านอนุมูลอิสระจากฟิล์มบริโภคได้จากไโคโตซาน จากผลการทดลองพบว่าแบบจำลองที่ใช้ค่าสัมประสิทธิ์การแพร่ยังผลที่เป็นฟังก์ชันของความเข้มข้นของสารสกัดสามารถทำนายผลการทดลองการปลดปล่อยได้ดีที่สุด

คำสำคัญ: การปลดปล่อย การอบแห้งโดยใช้อินฟาร์นอยด์ยิ่งที่สภาวะความดันต่ำ การอบแห้งแบบสูญญากาศ ไโคโตซาน บรรจุภัณฑ์แบบแอกทีฟ แบบจำลองทางคณิตศาสตร์ ฤทธิ์ต้านจุลชีพ สมบัติเชิงกลสารต้านอนุมูลอิสระ