

## Molecular Pathogenesis of Hypodontia, Orofacial Clefts, and Ankyloglossia

### ABSTRACT

In 2010 we have identified the molecular etiology of Mesomelic Dysplasia, Kantaputra type. It was caused by duplication of *HOXD* locus on chromosome 2q. In 2011 we were the first research group who found that isolated tongue tie (ankyloglossia) was caused by mutations in *TBX22* gene. We also the first who demonstrated that *TBX22* mutations could cause missing teeth and limb anomalies. In the same year we found a novel mutation in *WNT7A* gene in 2 daughters of a Thai family who were affected with Severe Al-Awadi/Raas-Rothschild Schinzel Phocomelia Syndrome. We also demonstrated the relationship of *P63* mutation and dental phenotype and micturition difficulties in EEC Syndrome. Regarding *WNT10A* gene, we were the first to demonstrate that its mutation could cause non-syndromic hypodontia. We also were the first who found that mutation in SAM domain of P63 could caused non-syndromic cleft lip and palate. In 2012, we described for the first time that mutation in *P63* gene could cause amelogenesis imperfecta. We also reported p.Arg526Gln mutation in CLC-7 a Thai patient who was affected with Infantile Malignant Autosomal Recessive Osteopetrosis. We also reported for the first time that multiple supernumerary teeth could be associated with mucopolysaccharidosis Type VI. We also describe a novel mutation in *NF1* gene in a Thai

woman who had severe manifestation of neurofibromatosis. Recently we found a novel mutation in *ADAR1* gene in a Thai family affected with Dyschromatosis Symmetrica Hereditaria with long hair of the forearms, hypo/hyperpigmented hair, and dental anomalies.

**Keywords:** Tongue tie, hypodontia, P63, TBX22, missing teeth, CLC-7, WNT10A

BRG5280010

การศึกษาสาเหตุระดับโมเลกุลของภาวะการหายไปของฟันแต่กำเนิด ภาวะปากแหว่งเพดานโหว่และ ภาวะลิ้นยึด บทคัดย่อ

ในปี 2510 เราได้พบสาเหตุของโรค Mesomelic Dysplasia, Kantaputra type ว่าเกิดจากการเพิ่มจำนวนของกลุ่มยีน HOXD บนโครโมโซม 2q และในปี 2011 กลุ่มวิจัยของเราได้พบสาเหตุของลักษณะลิ้นยึดเป็นครั้งแรกของโลก ว่าเกิดจากการกลายพันธุ์ของยีน TBX22 และเรายังพบว่าการกลายพันธุ์ของยีน TBX22 นี้ ทำให้เกิดการหายไปของฟัน และการผิดปกติของแขนและมือ และในปีเดียวกันนี้เราได้พบการกลายพันธุ์ชนิดใหม่ บนยีน WNT7A ในลูกสาว 2 คนของครอบครัวคนไทย ที่เป็นโรค Al-Awadi/Raas-Rothschild Schinzel Phocomelia Syndrome เรา�ังได้แสดงให้เห็นว่าการกลายพันธุ์ของยีน P63 มีความสัมพันธ์กับความผิดปกติของฟันและ กระเพาะปัสสาวะในผู้ป่วย EEC syndrome นอกจากนี้เรายังเป็นนักวิจัยกลุ่มแรกที่พบว่าการกลายพันธุ์ของยีน WNT10A ทำให้เกิดการหายไปของฟัน ชนิด non-syndromic และเรายังพบว่าการกลายพันธุ์ของยีน P63 ในบริเวณ SAM domain ทำให้เกิดปากแหว่งเพดานโหว่หรือเพดานโหว่อ่างเดียวชนิด non-syndromic และในปีนี้ เรา�ังพบเป็นครั้งแรกว่าการกลายพันธุ์ของยีน P63 ทำให้เกิดความผิดปกติ ของเคลือบฟัน ชนิด Amelogenesis imperfecta และเรายังพบว่าการกลายพันธุ์ p.Arg526Gln ในยีน CLC-7 ทำให้เกิด Infantile

Malignant Autosomal Recessive Osteopetrosis และเมื่อเร็วๆนี้  
เราได้รายงานเป็นครั้งแรกว่า ผู้ป่วยโรค mucopolysaccharidosis ชนิด 6  
มีอาการพันเกินเป็นจำนวนมากด้วย และยังพบการกลยยพันธุ์ชนิดใหม่ของยีน  
NF1 ทำให้เกิดโรคทั่วแสงปม ที่มีอาการรุนแรงที่บริเวณใบหน้า  
และสุดท้ายเราได้พบการกลยยพันธุ์ชนิดใหม่ในยีน ADAR1 ในครอบครัวคนไทย  
ที่มีความผิดปกติชนิด Dyschromatosis Symmetrica Hereditaria  
ซึ่งมีความผิดปกติของพันร่วมด้วย

คำสำคัญ: ภาวะลิ้นยึด, พันหายไปแต่กำเนิด, โรคทั่วแสงปม, ภาวะพันเกิน