บทคัดย่อ

ออกซิสเตอรอล (oxysterol) คืออนุพันธ์ของคลอเรสเตอรอลที่เกิดจากกระบวนการ oxidation วิถีการสร้าง ออกซิสเตอรอล มี 2 วิธีคือการสร้างโดยเอนไซม์ cytochrome P450 (CYP) ซึ่งเป็นวิถีหลักในการสร้างกรดน้ำดี (bile acid) และการสร้างโดยการทำปฏิกิริยาของอนุมูลอิสระชนิด reactive oxygen/nitrogen species ในสภาวะปกติ ออกซิสเตอรอล มีบทบาทสำคัญที่เกี่ยวข้องกับกระบวนการควบคุมการสร้างและสลายคลอเรสเตอรอลในเนื้อเยื่อหลายชนิด ในทางตรงกันข้าม ออกซิสเตอรอลยังมีบทบาทที่เกี่ยวข้องกับภาวะความผิดปกติหลายชนิดเช่น โรคหลอดเลือดหัวใจ อุดตัน อัลไซเมอร์ และมะเร็งหลายชนิด บทบาทของออกซิสเตอรอล ในกระบวนการก่อมะเร็งตั้งแต่ขั้นเริ่มต้นจนถึงขั้น ก้าวหน้าจึงเป็นที่น่าสนใจศึกษา โดยผู้วิจัยได้ตั้งสมมติฐานว่า ในสภาวะการติดเชื้อเรื้อรังของพยาธิใบไม้ตับ ในท่อ ทางเดินน้ำดีส่งผลให้เกิดการสร้างออกซิสเตอรอล ทั้งชนิดและปริมาณที่ผิดปกติ ซึ่งออกซิสเตอรอลที่เกิดขึ้นนี้อาจมี บทบาทในการกระตุ้นให้เกิดมะเร็งท่อน้ำดี (cholangiocarcinoma, CCA)

ผลการศึกษาชนิดและปริมาณของออกซิสเตอรอล ในชิ้นเนื้อมะเร็งของหนูแฮมสเตอร์ที่ถูกเหนี่ยวนำให้เป็น CCA ด้วยพยาธิ Opisthorchis viverrini และสาร N-nitrosodimethylamine พบปริมาณของ ออกซิสเตอรอล ชนิด 3keto-cholest-4-ene (3K4) and cholestan-3eta, 5lpha, 6eta-triol (Triol) เพิ่มสูงขึ้นอย่างมีนัยสำคัญทางสถิติเมื่อ เปรียบเทียบกับชิ้นเนื้อตับจากหนูปกติ นอกจากนี้ยังได้ทำการศึกษากลไกของ Triol และ 3K4 ที่เกี่ยวกับการส่งเสริมให้ เกิด CCA ในเซลล์เพาะเลี้ยงเยื่อบุท่อน้ำดี (MMNK-1 cell line) ผลการศึกษาพบว่า Triol และ 3K4 กระตุ้นให้เกิดการ ์ตายแบบ apoptosis โดยอาศัยกลไกผ่านทางไมโทคอนเดรีย (mitochondria-dependent mechanism) นอกจากนี้Triol และ3K4ยังกระตุ้นให้เกิดการทำลายดีเอ็นเอ โดยพบว่ามีปริมาณของ etheno adducts ได้แก่ 1,*N*⁵-etheno-2'deoxyadenosine, 3,N⁴-etheno-2'-deoxycytidine และ 8-oxo-7,8-dihydro-2'-deoxyguanosine สูงขึ้น ผู้วิจัยยังได้ทำ การกระตุ้นเซลล์ MMNK-1 ให้ดื้อต่อการตายโดยกระตุ้นด้วย ออกซิสเตอรอล ชนิด Triol โดยวิธี long term culture จนได้ Triol-resistant cell ที่ดื้อต่อกระบวนการ apoptosis เมื่อกระตุ้นด้วย H₂O₂ การศึกษากลไกของ Triol-resistant cell ที่เกี่ยวข้องกับการดื้อต่อ apoptosis และมีผลต่อการเกิด CCA พบว่า ใน Triol-resistant cell มีการกระตุ้นกลไกที่ เกี่ยวข้องกับการอยู่รอดของเซลล์ เช่น มีการกระตุ้นให้เกิดการ phosphorylation ของ p38 mitogen-activated protein kinase lpha (p38-lpha), extracellular signal-regulated kinase (ERK1/2), oncogenic kinase ชนิด Src, Lyn, Yes และ Fak และ oncogenic transcription factors, cAMP response element-binding (CREB), and c-Jun (S63) ้นอกจากนี้ยังพบการเพิ่มขึ้นของการแสดงออกของโปรตีนที่เกี่ยวข้องกับการต้าน apoptosis (anti-apoptosis) เช่น Bcl-2, Bcl-x, cIAP-2 และ survivin สรุปได้ว่าใน Triol-resistant cell มีการกระตุ้น receptor tyrosine kinase pathway ส่งผลให้เกิดการแสดงออกของโปรตีนที่เกี่ยวข้องกับการดื้อต่อ apoptosis อย่างชัดเจน

การศึกษาชนิดและปริมาณของออกซิสเตอรอลในเนื้อเยื่อมะเร็งท่อน้ำดีของผู้ป่วย พบออกซิสเตอรอลจำนวน 7 ชนิด คือ 7-keto-cholesta-3,5-diene (7KD), 7β-hydroxycholesterol (7β-OH), 5,6-epoxycholesterol (Epoxy), 7-ketocholesterol (7-keto), 24-hydroxycholesterol (24-OH), Triol และ 3K4 โดยปริมาณของ 7β-OH, 3K4 และ epoxy ในเนื้อเยื่อ CCA สูงขึ้นอย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบกับเนื้อเยื่อตับปกติ ปริมาณของ 7KD, Triol และ 24-OH ใน CCA ยังสูงขึ้นอย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบกับมะเร็งตับ (hepatocellular carcinoma, HCC) และตับปกติ นอกจากนี้ยังพบปริมาณของ 7β-OH, Epoxy, Triol และ 7-keto ในน้ำดีจากถุงน้ำดีของผู้ป่วย CCA และ HCC สูงขึ้นเมื่อเปรียบเทียบกับผู้ป่วย benign biliary disease แต่ไม่พบความแตกต่างของปริมาณออกซิสเตอรอล รูปใด ๆ ระหว่างผู้ป่วย CCA ที่มีและไม่มีภาวะท่อทางเดินน้ำดีอุดตัน เมื่อศึกษาเอนไซม์ CYP7A1 และ CYP39A1 ซึ่ง มีบทบาทในการเมทาบอลิซึมของ 24-OH ในตับ พบการการลดลงของระดับ mRNA ของยืน CYP7A1 และ CYP39A1 ผลการทดลองนี้แสดงให้เห็นว่าการลดการแสดงออกของเอนไซม์ CYP7A1 และ CYP39A1 น่าจะเกี่ยวข้องกับปริมาณ ของ 24-OH ที่เพิ่มขึ้นในผู้ป่วย CCA ซึ่งยังคงต้องศึกษาสาเหตุของการเปลี่ยนแปลงการแสดงออกนี้ต่อไป

เพื่อให้ทราบถึงความสัมพันธ์ของการแสดงออกระหว่างออกซิสเตอรอล กับ oxysterol binding proteins (OSBPs) เราพบการแสดงออกที่ลดลงของ OSBP1 และ OSBPL8 mRNA ในชื้นเนื้อมะเร็งของผู้ป่วย CCA และ HCC ในขณะที่มีการเพิ่มสูงขึ้นของ OSBP2 และ OSBPL7 ในชื้นเนื้อมะเร็งของผู้ป่วย CCA เมื่อเปรียบเทียบกับเนื้อตับปกติ นอกจากนี้ผู้วิจัยยังพบความสัมพันธ์อย่างมีนัยสำคัญ (r=0.57, P<0.0001) ของระดับ 24-OH และ การแสดงออกของ OSBP2ในตับของผู้ป่วย CCA และระดับของ 7-keto และ 7KD กับ การแสดงออกของ OSBPL5 ทั้งนี้ยังต้องมี การศึกษากลไกการทำงานร่วมกันของ ออกซิสเตอรอล และ OSBP ต่อไป

ผู้วิจัยยังได้ทำการศึกษาชนิดและปริมาณของกรดน้ำดี (bile acids) ในน้ำดีจากถุงน้ำดี พบว่าในผู้ป่วย CCA มีปริมาณ total bile acid, total conjugated bile acid และ total primary bile acid เพิ่มสูงขึ้นเมื่อเปรียบเทียบกับผู้ป่วย benign biliary disease ปริมาณกรดน้ำดีชนิด cholic acid, chenodeoxycholic acid และ deoxycholic acid มีระดับ เพิ่มสูงขึ้นในน้ำดีของผู้ป่วย CCA อาจกล่าวได้ว่า ภาวะท่อทางเดินน้ำดีอุดตันและความสามารถในการเมทาบอลิซึม ของเซลล์อาจมีผลต่อปริมาณของกรดน้ำดี

ดังนั้นในการศึกษานี้ได้ชี้ให้เห็นถึงชนิดและปริมาณของออกซิสเตอรอล ที่เปลี่ยนแปลงไปที่อาจเกี่ยวข้องกับ กระบวนการเกิดมะเร็งท่อน้ำดีทั้งในสัตว์ทดลองและในมนุษย์นอกจากนี้ยังได้แสดงถึงกลไกของออกซิสเตอรอล ที่ เกี่ยวข้องกับการเกิดมะเร็งซึ่งจะนำไปสู่การใช้เป็นกลไกที่จะนำไปสู่การป้องกันหรือยับยั้งการเกิดมะเร็งท่อน้ำดีต่อไป

ABSTRACT

Oxysterols are oxidation products of cholesterol that are generated by enzymatic reactions mediated by cytochrome P450 family enzymes or by non-enzymatic reactions involving reactive oxygen and nitrogen species. Oxysterols play various regulatory roles in normal cellular processes such as cholesterol homeostasis. Pathological effects of oxysterols have also been described, including atherosclerosis, neurological disease, and cancer. The molecular mechanisms whereby oxysterols contribute to the initiation and progression of cancer are an area of active investigation. We hypothesized that biliary oxysterols resulting from liver fluke infection participate in cholangiocarcinogenesis. To prove the hypothesis, the study was performed in both in animal and human models.

Using gas chromatography/mass spectrometry, we identified oxysterols in liver tissue of cholangiocarcinoma (CCA)-induced hamsters by administration with Opisthorchis viverrini and Nnitrosodimethylamine. Certain oxysterols including 3-keto-cholest-4-ene (3K4) and cholestan-3 β , 5 α , 6 β -triol (Triol) were found at significantly higher levels in the livers of CCA hamsters. We therefore investigated the effects of Triol and 3K4 on induction of cholangiocarcinogenesis using an in vitro MMNK-1 culture model. Cytotoxicity and apoptosis studies showed that Triol- and 3K4-treated cells caused apoptosis via a mitochondrial-dependent mechanism as shown by western blot analysis. Interestingly, Triol and 3K4 also induced formation of the DNA adducts $1.N^6$ -etheno-2'-deoxyadenosine, $3.N^4$ -etheno-2'-deoxycytidine and 8oxo-7,8-dihydro-2'-deoxyguanosine in cholangiocytes. In order to determine whether oxysterol -induced cell death is involved in the development of cholangiocarcinoma, we established oxysterol -resistant MMNK-1 cells by long term culturing with Triol. Triol-resistant cells could resist apoptosis induced by H₂O₂, a known apoptosis inducer. To investigate the mechanisms whereby oxysterol -resistant cells may be involved in cholangiocarcinogenesis, we performed protein array analysis for phosphorylated kinases and apoptosisrelated proteins. Kinase phosphorylation array showed increased induction of mitogen-activated protein kinases such as p38 mitogen-activated protein kinase α (p38- α) and extracellular signal-regulated kinase (ERK1/2) in Triol-resistant cells. Phosphorylation of oncogenic tyrosine kinases such as Src, Lyn, Yes, and Fak were also elevated. Moreover, the oncogenic transcription factors cAMP response element-binding (CREB) and c-Jun (S63) were activated in resistant cells. Additionally, we found the increased expression of anti-apoptosis proteins including Bcl-2, Bcl-x, cIAP-2 and survivin. Conversely, we found reduced expression of the death receptor Fas in Triol-resistant cells compared to controls. Thus, activation of down-stream effectors that play role in receptor tyrosine kinase signaling, results in regulation of gene expression of apoptosis-related proteins. These enhance cellular survival and evasion of apoptosis.

We profiled oxysterols in human bile and normal and malignant hepatic tissue using gas chromatography and mass spectrometry. Seven oxysterols, 7-keto-cholesta-3,5-diene (7KD), 7β hydroxycholesterol (7 β -OH), 5,6-epoxycholesterol (Epoxy), 7-ketocholesterol (7-keto), 24-hydroxycholesterol (24-OH), Triol and 3K4 were identified in normal human liver and cancer tissue including CCA and HCC. Oxysterols accumulated in the cancer groups compared to normal liver. Similar oxysterol species were found in human gallbladder bile. High levels of oxysterols were found in the bile of CCA patients compared to the bile of patients with benign biliary disease. No significant differences were observed in oxysterol levels

between samples from CCA patients with low and high level of total serum bilirubin. Interestingly, we found high levels of 24-OH in CCA tumor tissue and bile compared to cadaveric donors and HCC. Here we demonstrated low mRNA expression of CYP7A1 and CYP39A1 enzymes in CCA resulting in accumulation of 24-OH in tumor tissue. Thus, CYP expression and its role in 24-OH metabolization in CCA tissue need further investigation.

We studied the correlation between certain types of oxyterols and their binding proteins (OSBPs). Relative OSBP1 and OSBPL8 gene expression in CCA tumor tissue and HCC was significantly decreased (*P*<0.05), whereas, relative OSBPL7 and OSBP2 gene expression in CCA tumor tissue and HCC was increased compared to normal liver from cadaveric donors (although this difference was not statistically significant). Correlation between OSBP expression and oxysterol levels in liver tissue was also found. A significant correlation between OSBP2 expression and 24-OH level was found (r=0.57, *P*<0.0001). Moreover, OSBPL5 expression was correlated with 7-keto, Epoxy and 7KD levels.

Major oxysterols were also investigated in human gallbladder bile. Elevated levels of total bile acids, conjugated bile acids and primary bile acids were found in samples from CCA patients, suggesting that bile duct obstruction may contribute to alterations in bile acid concentration. Levels of cholic acid, chenodeoxycholic acid and deoxycholic acid were increased in cancer groups. Correlation of total bile acids, cholic acid and chenodeoxycholic with cholesterol, bilirubin and ALP concentrations was found. These findings suggest a different pattern of bile acid concentration in patients with hepatobiliary cancer compared to patients with benign biliary disease. Alteration of bile acid concentration may be a reflection of the disease process.

In conclusion, our results suggest that certain oxysterols are involved in cholangiocarcinegenesis. Oxysterols may enhance carcinogenesis, thereby providing a rational strategy for the chemoprevention of CCA.