

รายงานวิจัยฉบับสมบูรณ์

โครงการการศึกษาฤทธิ์ทางเภสัชวิทยาของสารสกัดจากใบหญ้าหวานในการการลด อัตราการเติบโตของซีสต์จากเซลล์หลอดไต: ศักยภาพในการพัฒนาเป็นยารักษาโรค polycystic kidney

โดย ศาสตราจารย์วรนุช ฉัตรสุทธิพงษ์ และคณะ

สัญญาเลขที่ BRG5380005

รายงานวิจัยฉบับสมบูรณ์

โครงการการศึกษาฤทธิ์ทางเภสัชวิทยาของสารสกัดจากใบหญ้าหวานในการการลดอัตราการเติบโตของ ซีสต์จากเซลล์หลอดไต: ศักยภาพในการพัฒนาเป็นยารักษาโรค polycystic kidney

คณะผู้วิจัย

สังกัด

- 1. ศาสตราจารย์ วรนุช ฉัตรสุทธิพงษ์ ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
- 2. ผศ. ดร. นพ.ฉัตรชัย เหมือนประสาท ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
- 3. นาย เชาวลิต ยั่วจิตร ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
- 4. นางสาว พรหมพร รักษาเสรี ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัยและมหาวิทยาลัยมหิดล

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. และ มหาวิทยาลัยมหิดล ไม่จำเป็นต้องเห็นด้วยเสมอไป)

สารบัญ

	หน้า
Abstract	2
บทคัดย่อ	3
สรุปโครงการวิจัย Executive summary	5
บทน้ำ	15
วัตถุประสงค์ของโครงการวิจัย	17
เนื้อหางานวิจัย	19
Output ที่ได้จากโครงการ	48
ภาคผนวก	50

ABSRACT

Cyst enlargement in ADPKD is associated with cAMP-activated proliferation of cyst-lining epithelial

cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance

regulator (CFTR) chloride channel leading to renal insufficient and no effective treatment is currently

available. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its

derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK) cells and in a rodent

orthologous model of ADPKD (Pkd1flox/flox:Pkhd1-Cre mice). Among 4 steviol-related compounds tested,

steviol (100 microM) was found to be the most potent for inhibiting MDCK cyst growth and cyst formation by

72.5±3.6% and 38.2±8.5%, respectively without effect on MDCK cell viability, proliferation and apoptosis.

Steviol had both acute and chronic effects to inhibit forskolin-stimulated apical chloride current in MDCK

epithelia, measured by Ussing chamber technique. Interestingly, proteasome inhibitor, MG-132, reduced the

effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged

treatment (24 h) with steviol (100 microM) markedly reduced CFTR expression at the plasma membrane.

Taken together, these data suggest that steviol retards MDCK cyst growth by directly inhibiting CFTR

chloride channel activity and by promoting proteasomal degradation of CFTR.

Next, the effect of steviol on renal cystogenesis in ADPKD mouse model was further examined. The

results showed that daily treatment with both 200 mg/kg of steviol and 1,000 mg/kg of stevioside for 14 days

markedly decreased kidney weight and cystic index in these mice. However, only steviol reduced serum BUN

and plasma creatinine by 48.1±18.3% compared with that of vehicle treated mouse. Steviol also reduced cell

proliferation but had no effect on cell apoptosis. In addition, steviol suppressed CFTR expression and

mTOR/S6K pathway of renal cyst-lining epithelial cells. Interestingly, steviol also markedly enhanced AMPK

protein expression in cyst-lining epithelial cells of ADPKD mouse. These findings indicated that steviol slows

cyst progression in Pkd1flox/flox:Pkhd1-Cre mice, in part, by inhibiting CFTR chloride channel expression and

renal epithelial cell proliferation via mTOR/S6K pathway and by activating AMPK. It also helps to improve

kidney function as indicated by BUN and plasma creatinine. Steviol thus has potential to be used as a

therapeutic compound for the treatment of polycystic kidney disease

Keywords: Steviol, Stevioside, Cyst growth, CFTR, ADPKD

2

บทคัดย่อ

การเจริญเติบโตของถุงน้ำหรือซีสต์ในโรคถุงน้ำในไตเกิดจากการแบ่งตัวมากผิดปกติของเซลล์หลอดไตจน กลายเป็นชีสต์ ร่วมกับการหลั่งคลอไรด์มากผิดปกติผ่านทางช่องโปรตีนขนส่งคลอไรด์ CFTR โดยซีสต์เมื่อมีขนาดโต ขึ้นจะกดเบียดเนื้อไต ทำให้การทำงานของไตเสียหายและในที่สุดเกิดภาวะไตวาย ปัจจุบันโรคถุงน้ำในไตยังไม่มีการ รักษาที่มีประสิทธิภาพ แต่การลดหรือยับยั้งการทำงานของช่องโปรตีนขนส่งคลอไรด์ CFTR เพื่อลดการเจริญเติบโต ของซีสต์ก็น่าจะช่วยให้การทำงานของไตไม่เสียหายมากนัก การศึกษานี้จึงมีวัตถุประสงค์เพื่อศึกษาฤทธิ์และกลไกการ ออกฤทธิ์ของสารสกัดจากใบหญ้าหวานและอนุพันธ์ทั้งสี่ชนิด (steviol, isosteviol, dihydroisosteviol, 16-oxime isosteviol) ในการยับยั้งการเจริญเติบโตของซีสต์ในเซลล์โมเดลถุงน้ำที่เกิดจากเซลล์ MDCK ทั้งยังศึกษาดูฤทธิ์ของสาร ในหนูโมเดลโรคถุงน้ำ (Pkd1flox/flox:Pkhd1-Cre mice) เพื่อยืนยันผลที่พบในเซลล์โมเดลถุงน้ำ จากสารอนุพันธ์ทั้งสี่ ชนิดที่ทดสอบ พบว่าสาร steviol มีประสิทธิภาพมากที่สุดในการยับยั้งการเจริญเติบโตของซีลต์ (cyst growth) และ ยับยั้งการเพิ่มจำนวนซีสต์ (cyst formation) แต่ไม่มีผลต่อการอยู่รอดของเซลล์ (cell viability) การเกิดใหม่ของเซลล์ (cell proliferation) และการตายของเซลล์แบบ apoptosis โดยที่สาร steviol ชะลอการเจริญเติบโตของซีสต์โดยออก ฤทธิ์ยับยั้งการหลั่งคลอไรด์ทั้งแบบฉับพลันและแบบเรื้อรังในเซลล์หลอดไต MDCK เมื่อตรวจสอบด้วยการวัดกระแส การหลั่งคลอไรด์โดย Ussing chamber experiment นอกจากนี้สาร steviol ยังลดการแสดงออกของโปรตีนขนส่งคลอ ไรด์ CFTR ในเซลล์หลอดไต MDCK ได้ในช่วงเวลา 6-24 ชั่วโมง อีกทั้งผลการทดลองดย immunofluorescense พบว่า สาร steviol ลดการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR ที่ผิวเซลล์ และเป็นที่น่าสนใจอย่างยิ่งว่า สาร MG-132 (proteasome inhibitor) สามารถยับยั้งฤทธิ์ของสาร steviol ในการลดการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR จากผลการทดลองข้างต้นสรุปได้ว่า สาร steviol ยับยั้งการเจริญเติบโตของซีสต์ในเซลล์โมเดลถุงน้ำ MDCK ผ่าน ทางการยับยั้งการทำงานของโปรตีนขนส่งคลอไรด์ CFTR และการกระตุ้นการสลายโปรตีนขนส่งคลอไรด์ CFTR ที่ผิว เซลล์ผ่าน proteasome

การทดลองต่อมาคือการศึกษาฤทธิ์ของสารสกัดจากใบหญ้าหวาน (stevioside) และสารอนุพันธ์ steviol ต่อ การยับยั้งการเติบโตของซีสต์ในหนูโมเดลโรคถุงน้ำ พบว่าเมื่อให้สาร steviol และ stevioside ความเข้มข้น 200 mg/kg และ 1,000 mg/kg ตามลำดับ กับหนูที่เป็นโรคถุงน้ำ (Pkd1flox/flox:Pkhd1-Cre mice) วันละ 1 ครั้ง ติดต่อเป็นเวลา 14 วัน พบว่า สาร steviol และ stevioside สามารถลดน้ำหนักของไต ขนาดของไต เปอร์เซ็นต์พื้นที่ซีสต์ในไต ได้อย่าง มีนัยสำคัญ อย่างไรก็ตามพบว่าเฉพาะสาร steviol เท่านั้นที่มีผลช่วยเพิ่มการทำงานของไตเมื่อเปรียบเทียบกับหนูโรค ถุงน้ำแบบควบคุม โดยที่สาร steviol สามารถลดการเกิดและแบ่งตัวใหม่ของเซลล์หลอดไต (cell proliferation) แต่ไม่มี

ผลต่อการตายของเซลล์แบบ apoptosis นอกจากนี้ steviol ยังมีผลลดการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR, โปรตีนใน mTOR/S6K pathway และกระตุ้นการทำงานของโปรตีน AMPK ในไตของหนูโรคถุงน้ำ จากผลการทดลองนี้ ชี้ให้เห็นว่า สาร steviol สามารถช่วยชะลอการเติบโตของซีสต์ในหนูโมเดลโรคถุงน้ำโดยการลดการแสดงออกโปรตีน ขนส่งคลอไรด์ CFTR ซึ่งเชื่อมโยงกับการทำงานของโปรตีน AMPK ทั้งยังช่วยยับยั้งการเกิดเซลล์ถุงน้ำใหม่ผ่าน mTOR/S6K pathway อันส่งผลทำให้การทำงานของไตของหนูโมเดลโรคถุงน้ำดีขึ้น ดังนั้นสารอนุพันธ์จากใบหญ้า หวาน steviol มีศักภาพสูงที่สามารถนำไปพัฒนาเป็นยารักษาโรคถุงน้ำในไต เพราะสารนี้มีผลยับยั้งการเจริญเติบโต ของซีสต์ได้หลายกลไกพร้อมกัน

สรุปโครงการวิจัย

EXECUTIVE SUMMARY

1. ชื่อโครงการ

(ภาษาไทย) โครงการการศึกษาฤทธิ์ทางเภสัชวิทยาของสารสกัดจากใบหญ้าหวานในการการลดอัตรา

การเติบโตของซีสต์จากเซลล์ท่อไต: ศักยภาพในการพัฒนาเป็นยารักษาโรค polycystic kidney

(ภาษาอังกฤษ) Pharmacological studies on effects of stevioside and derivatives on renal cyst

growth: potential therapeutic for polycystic kidney disease

2. ชื่อคณะผู้วิจัยและหน่วยสังกัด ที่อยู่ หมายเลขโทรศัพท์ โทรสาร และ E-mail

หัวหน้าโครงการ

ชื่อ-นามสกุล ศาสตราจารย์ ดร.วรนุช ฉัตรสุทธิพงษ์

หน่วยงานที่วิจัย ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

ที่อยู่ ถนนพระรามที่ 6 เขตราชเทวี กรุงเทพมหานคร 10400

โทรศัพท์ 02-201-5614

โทรสาร 02-354-7154

E-mail varanuj@cha.mahidol.ac.th

ผู้ร่วมวิจัย 1

ชื่อ-นามสกุล ผู้ช่วยศาสตราจารย์ ดร.นพ.ฉัตรชัย เหมือนประสาท

หน่วยงานที่วิจัย ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

ที่อยู่ ถนนพระรามที่ 6 เขตราชเทวี กรุงเทพมหานคร 10400

โทรศัพท์ 02-201-5615

โทรสาร 02-354-7154

E-mail chatchai@mua.mahidol.ac.th

ผู้ร่วมวิจัย 2

ชื่อ-นามสกุล นายเชาวลิต ยั่วจิตร

หน่วยงานที่วิจัย ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

ที่อยู่ ถนนพระรามที่ 6 เขตราชเทวี กรุงเทพมหานคร 10400

โทรศัพท์02-201-5614โทรสาร02-354-7154

E-mail yuajit.chaow@gmail.com

ผู้ร่วมวิจัย 3

ชื่อ-นามสกุล นางสาว พรหมพร รักษาเสรี

หน่วยงานที่วิจัย ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

ที่อยู่ ถนนพระรามที่ 6 เขตราชเทวี กรุงเทพมหานคร 10400

โทรศัพท์ 02-201-5614

โทรสาร 02-354-7154

3. สาขาที่ทำการวิจัย

วิทยาศาสตร์สุขภาพ

4. Keywords

Steviol, Stevioside, CFTR, Cyst growth, PKD

5. งบประมาณทั้งโครงการ

1,800,000 บาท

6. ระยะเวลาดำเนินการ

3 ปี

7. ได้เสนอโครงการนี้หรือโครงการที่มีส่วนเหมือนกันกับเรื่องนี้บางส่วน เพื่อขอทุนต่อแหล่งทุนที่ใดบ้าง

ไม่มี

8. ความสำคัญของปัญหาที่ทำการวิจัย

โรคถุงน้ำในไต (polycystic kidney disease) เป็นโรคทางพันธุกรรมชนิดหนึ่งที่เกิดขึ้นค่อนข้างมาก เกิดจาก ความผิดปกติของยืน PKD1 หรือ PKD2 ในเซลล์หลอดไตส่งผลให้การทำงานของโปรตีน polycystin-1 และ polycystin-2 ผิดปกติไป ลักษณะอาการของโรคถุงน้ำคือจะเกิดซีสต์หรือถุงน้ำที่บริเวณหลอดไต จากนั้นซีสต์จะพัฒนา และขยายขนาดขึ้น ซีสต์ที่โตจะไปแทนที่และกดเบียดเนื้อไตปกติ ทำให้ประสิทธิภาพในการทำงานของไตลดลง การ วินิจฉัยโรคถุงน้ำในไต ส่วนใหญ่จะทราบเมื่อผู้ป่วยมีขนาดและจำนวนซีสต์ในไตที่ใหญ่และจำนวนมากแล้ว ทำให้ยาก ต่อการรักษา จนสุดท้ายผู้ป่วยจะเกิดภาวะไตวายเรื้อรัง และเสียชีวิตได้ในที่สุด ปัจจุบันยังไม่มีการรักษาโรคถุงน้ำในไต ที่มีประสิทธิภาพ ผู้ป่วยได้รับรักษาแบบประคับประคองตามอาการ ถ้าผู้ป่วยมีภาวะไตวายก็จะต้องรักษาด้วยวิธีการ ฟอกไต (hemodialysis) หรือ การเปลี่ยนถ่ายไต (renal transplantation)

สาเหตุของโรคถุงน้ำในไตเกิดจากการทำงานที่ผิดปกติไปของโปรตีน PC-1 & PC-2 ซึ่งโปรตีนสองชนิดนี้มีมี การเรียงตัวอยู่ที่บริเวณบนผิวผนังของซีเลียในเซลล์หลอดไต ทำหน้าที่ร่วมกันในการควบคุมสมดุลแคลเซียมภายใน เซลล์ เพื่อให้เซลล์หลอดไตพัฒนาและแบ่งตัวตามปกติ ดังนั้นเมื่อการทำงานของโปรตีนสองชนิดนี้ผิดปกติ ส่งผลให้ ปริมาณแคลเซียมและ cAMP ในเซลล์หลอดไตเพิ่มขึ้น มีผลไปกระตุ้นกระบวนการสร้างเซลล์ใหม่มากผิดปกติ(cell proliferation) ก่อตัวเป็นถุงน้ำหรือซีสต์ หลังจากนั้นถุงน้ำที่ถูกสร้างขึ้นจะเจริญเติบโตขยายขนาดมากขึ้นจากการหลั่ง คลอไรด์อิออนที่มากกว่าปกติผ่านโปรตีนขนส่งคลอไรด์ CFTR (fluid secretion)เข้าไปในโพรงของถุงน้ำหรือซีสต์ ซึ่ง กระบวนการทั้งการสร้างและการขยายขนาดเป็นพยาธิสภาพสำคัญของโรคถุงน้ำในไต ที่ผ่านมาได้มีการศึกษาหากลไก ที่ส่งผลต่อการกระตุ้นการสร้างและแบ่งตัวของเซลล์ถุงน้ำในไต ทำให้ทราบว่ากลไกการสร้างเซลล์ซีสต์ใหม่เกิดขึ้นได้ หลายกลไกด้วยกันอาทิ จากการกระตุ้นการทำงานของโปรตีน MAPK/ERK pathway ซึ่งกลไกนี้เกิดจากปริมาณ cAMP ในเซลล์ท่อไตที่มีมากไปกระตุ้นโปรตีน PKA และส่งผลให้เกิดการกระตุ้น MAPK/ERK ให้มีการทำงานที่ มากกว่าปกติตามมา จนเกิดการสร้างถุงน้ำใหม่ขึ้นมา (cell proliferation and cyst formation) นอกจากนี้มีรายงานว่า เซลล์ถุงน้ำจากไตผู้ป่วยและหนูโมเดลโรคถุงน้ำในไต มีการแสดงออกของโปรตีนที่กระตุ้นการเพิ่มจำนวนเซลล์โดยผ่าน mTOR signaling pathway และ Wnt/β-catenin pathway โดยซีสต์ที่ถูกสร้างขึ้นจะขยายขนาดด้วยกระบวนการหลั่ง คลอไรด์ที่มากกว่าปกติผ่านช่องโปรตีนขนส่งคลอไรด์ที่มีชื่อว่า cystic fibrosis transmembrane conductance regulator (CFTR) ซึ่งโปรตีนตัวนี้จะมีมากในเซลล์ซีสต์และจะเรียงตัวอยู่ที่บริเวณ apical membrane โดยปริมาณ cAMP ที่มีมากในเซลล์หลอดไต นอกจากจะกระตุ้นการสร้างเซลล์ซีสต์ใหม่แล้ว ยังกระตุ้นการทำงานของช่องโปรตีน ขนส่งคลอไรด์ CFTR ผ่านทางโปรตีน PKA อีกด้วย คลอไรด์อิออนเมื่อมีการหลั่งเข้าไปในโพรงถุงน้ำแล้ว จะทำให้เกิด

แรงออสโมติก ดึงเอาโซเดียมอิออนและน้ำเข้าสู่ถุงน้ำร่วมด้วย ผ่านช่องว่างระหว่างเซลล์ ส่งผลให้ถุงน้ำขยายขนาดและ โตขึ้น

การรักษาในปัจจุบันส่วนใหญ่ถ้าตรวจวินิจฉัยพบรอยโรคในระยะสุดท้าย (มีภาวะไตวายเรื้อรังเกิดขึ้น) ก็จะให้ การรักษาแบบประคับประคอง อาทิ ให้ยาลดอาการปวด ลดความดันโลหิต หรือการฟอกไต เป็นต้น อย่างไรก็ตามได้มี งานวิจัยเพื่อพัฒนายาในการรักษาโรคถุงน้ำในไตเกิดขึ้นมากมาย ซึ่งกลไกการออกฤทธิ์ของยาหรือสารที่มีผลชะลอการ เจริญเติบโตของซีสต์มีอยู่หลายกลไก และส่วนใหญ่ยังอยู่ในขั้นการทดลองในคนระยะตัน (clinical trial phase II & III) การศึกษาที่ผ่านมาพบว่า การยับยั้งกลไกของการสร้างซีสต์ใหม่ (cell proliferation) อาทิ การยับยั้ง MAPK/ERK pathway การใช้ยา rapamycin (mTOR inhibitor) ยับยั้งการทำงานของ mTOR signaling หรือแม้แต่การยับยั้ง Wnt/β-catenin pathway กลไกลเหล่านี้สามารถชะลอการเจริญเติบโตของซีสต์ได้ดีทั้งเซลล์และในหนูโมเดลโรคถุงน้ำ นอกจากนี้ การใช้สารยับยั้งการทำงานของโปรตีนขนส่งคลอไรด์ CFTR (CFTR inhibitor) ก็สามารถลดการขยายตัว ของซีสต์ได้เป็นอย่างดีทั้งในเซลล์โมเดลถุงน้ำ MDCK และในหนูโมเดลถุงน้ำ

ปัจจุบันมีการศึกษาวิจัยกันอย่างแพร่หลายในการนำเอาสารจากพืชสมุนไพรหรือสารสกัดจากพืชธรรมชาติมา
ศึกษาฤทธิ์และกลไกการออกฤทธิ์ในด้านการเสริมสร้างสุขภาพ ป้องกันและรักษาโรคทางการแพทย์ ได้มีการศึกษาวิจัย
ใช้สารสกัดจากสมุนไพรและพืชธรรมชาติมาทดสอบกับหนูโมเดลโรคถุงน้ำ พบว่าได้ผลเป็นดีพอควร อาทิ สารสกัดจาก
ขมิ้น (curcumin) สารสกัดจากสมุนไพรจีน (Triptolide) มีฤทธิ์ในการชะลอการเจริญเติบโตของซีสต์จากการยับยั้งกลไก
การสร้างซีสต์ใหม่มากกว่าหนึ่งกลไก อันจะส่งผลดีในการนำมาประยุกต์ใช้รักษาโรคถุงน้ำร่วมกันกับสารสังเคราะห์อื่น ๆ
เพื่อให้เสริมฤทธิ์กัน สารสกัดจากใบหญ้าหวาน (stevioside) เป็นสารสกัดจากพืชธรรมชาติ สามารถให้ความหวานสูง
มากกว่าน้ำตาลซูโครสถึง 300 เท่า โดยสารสกัดจากใบหญ้าหวานนี้มีคุณสมบัติในด้านการรักษาโรคต่าง ๆ มากมาย
โดยมีรายงานว่า สาร stevioside สามารถลดความดันโลหิต ช่วยขับปัสสาวะ นอกจากนี้สารอนุพันธ์ของมัน steviol ยัง
มีผลลดการอักเสบ ลดน้ำตาลในเลือดของผู้ป่วยโรคเบาหวาน อีกทั้งยังมีฤทธิ์ในการยับยั้งการขับยาทิ้งบริเวณหลอดไต
ส่วนตันอันจะช่วยเสริมฤทธิ์ให้ยามีเวลาในการออกฤทธิ์ในกระแสเลือดได้นานขึ้น และเป็นที่น่าสนใจอย่างยิ่งว่า สาร
steviol และอนุพันธ์ สามารถยับยั้งการหลังคลอไรด์ผ่านโปรตีนขนส่งคลอไรด์ CFTR ได้อย่างมีประสิทธิภาพ และออก
ฤทธิ์อย่างดีในการรักษาโรคอุจาระร่วงในลำใส้หนูโมเดลโรคอหิวาตกโรค ดังนั้นเราจึงตั้งสมมุติฐานว่า สารสกัดจากใบ
หญ้าหวานและสารอนุพันธ์ของมัน น่าจะมีฤทธิ์ในการชะลอการเจริญเติบโตของซีสต์ในเซลล์โมเดลถุงน้ำ MDCK และ
ในหนูโมเดลโรคอุงน้ำ ผ่านการยับยั้งการทำงานของโปรตีนขนส่งคลอไรด์ CFTR หรือกลไกอื่นร่วมด้วย ซึ่งน่าจะมี
ค้ายภาพในการพัฒนาเป็นยารักษาโรคอุงน้ำในไตต่อไป

9. วัตถุประสงค์

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาฤทธิ์และกลไกการออกฤทธิ์ของสารสกัดจากใบหญ้าหวานและสาร อนุพันธ์ต่อการยับยั้งการเจริญเติบโตของซีสต์ในเซลล์โมเดลถุงน้ำ MDCK และการประยุกต์ใช้ในการรักษาโรคในหนู โมเดลโรคถุงน้ำ (ADPKD mouse model) โดยมีวัตถุประสงค์ย่อยดังนี้

- 1. ศึกษาฤทธิ์ของสารสกัดจากใบหญ้าหวานและสารอนุพันธ์ในการยับยั้งการเจริญเติบโตของซีสต์จากเซลล์ โมเดลถุงน้ำในเซลล์หลอดไต MDCK
- 2. ศึกษาคุณสมบัติเชิงเภสัชวิทยาและกลไกการออกฤทธิ์ของสารสกัดจากใบหญ้าหวานและอนุพันธ์ในการ ยับยั้งการเจริญเติบโตของซีสต์จากเซลล์โมเดลถุงน้ำในเซลล์หลอดไต MDCK
- 3. ศึกษาศักยภาพในการพัฒนาสารสกัดจากใบหญ้าหวานและสารอนุพันธ์ steviol ในการรักษาโรค polycystic kidney ในหนูโมเดลโรคถุงน้ำ (ADPKD mouse model)

10. ระเบียบวิธีวิจัย

โครงการวิจัยนี้ได้แบ่งการทดลองออกเป็นสามตอนตามวัตถุประสงค์ย่อย ซึ่งมีระเบียบวิธีการวิจัยดังต่อไปนี้

ตอนที่ 1 ศึกษาฤทธิ์ของสารสกัดจากใบหญ้าหวานและสารอนุพันธ์ในการยับยั้งการเจริญเติบโตของซีสต์จากเซลล์
โมเดลถุงน้ำในเซลล์หลอดไต MDCK

- การทดสอบผลของสารสกัดจากใบหญ้าหวาน (stevioside) และสารอนุพันธ์ ทั้ง 4 (steviol, isosteviol, dihydroisosteviol, 16-oxime isosteviol) ต่อการยับยั้งการเพิ่มจำนวนซีสต์ของเซลล์โมเดลถุงน้ำ MDCK (MDCK cyst formation)
- 2. การทดสอบผลของสารสกัดจากใบหญ้าหวาน (stevioside) และสารอนุพันธ์ทั้ง 4 ต่อการชะลอการเจริญเติบโต ของซีสต์ของเซลล์โมเดลถุงน้ำ MDCK (MDCK cyst growth)
- 3. การทดสอบผลของสารสกัดจากใบหญ้าหวาน (stevioside) และสารอนุพันธ์ทั้ง 4 ต่อการฆ่าเซลล์หลอดไต MDCK (cell viability)

นำผลการทดลองที่ได้ข้างต้นมาประเมินเลือกสารหนึ่งตัวที่สามารถชะลอการเจริญเติบโตและลดจำนวนซีสต์ของ เซลล์โมเดล MDCK ได้ดีที่สุดโดยไม่มีผลต่อการฆ่าเซลล์ จากนั้นทำการศึกษากลไกการออกฤทธิ์ของสารต่อไป

ตอนที่ 2 ศึกษาคุณสมบัติเชิงเภสัชวิทยาและกลไกการออกฤทธิ์ของสารสกัดจากใบหญ้าหวานและอนุพันธ์ในการ ยับยั้งการเจริญเติบโตของซีสต์จากเซลล์โมเดลถุงน้ำในเซลล์หลอดไต MDCK

- การทดสอบฤทธิ์ของสารอนุพันธ์ตัวที่ดีที่สุด (steviol) ต่อการเพิ่มจำนวนของเซลล์หลอดไต MDCK (cell proliferation) และการตายของเซลล์หลอดไต MDCK แบบ apoptosis โดยวิธี BrdU incorporation และ flow cytometry (annexin V) ตามลำดับ
- 2. การทดสอบฤทธิ์ของ steviol ต่อการหลั่งกระแสคลอไรด์อิออนของเซลล์หลอดไต MDCK เมื่อกระตุ้นด้วย forskolin (a cAMP activator) ทั้งฤทธิ์แบบฉับพลันและแบบเรื้อรังโดย ussing chamber experiment
- 3. การทดสอบฤทธิ์ของ steviol ต่อการลดการแสดงออกของช่องโปรตีนขนส่งคลอไรด์ CFTR ในเซลล์หลอดไต MDCK โดยวิธี western blot analysis
- 4. การทดสอบฤทธิ์ของ steviol ต่อการแสดงออกของช่องโปรตีนขนส่งน้ำ AQP2 ในเซลล์หลอดไต MDCK โดยวิธี western blot analysis
- 5. การทดสอบฤทธิ์ของ steviol ต่อการยับยั้งการแบ่งเซลล์ใหม่ (cell proliferation) ผ่านการกระตุ้นของโปรตีน ERK ในเซลล์โมเดลถุงน้ำ MDCK (MDCK cyst growth and cyst formation) โดยวิธี western blot analysis

ตอนที่ 3 ศึกษาศักยภาพในการพัฒนาสารสกัดจากใบหญ้าหวานและสารอนุพันธ์ steviol ในการรักษาโรค polycystic kidney ในหนูโมเดลโรคถุงน้ำ (ADPKD mouse model)

1. การทดสอบสารสกัดจากใบหญ้าหวาน (stevioside) และสารอนุพันธ์ (steviol) ในการรักษาโรคถุงน้ำในหนู โมเดลโรคถุงน้ำ (PKD mouse model) โดยใช้ค่าที่บงบอกความรุนแรงของโรค (body weight, kidney weight, kidney weight/ body weight ratio, and cystic index) และการทำงานของไต (blood urea nitrogen, creatinine)

2. การทดสอบผลของสารสกัดจากใบหญ้าหวาน (stevioside) และสารอนุพันธ์ (steviol) ต่อการยับยั้งการเพิ่ม จำนวนเซลล์ (cell proliferation) และการตายของเซลล์แบบ apoptosis ในไตหนูโมเดลโรคถุงน้ำด้วยวิธี immunohistochemistry for detection of Ki67 (a marker of proliferating cell) และ วิธี TUNEL assay (apoptotic detection kits)

3. การทดสอบกลไกการออกฤทธิ์ของสารอนุพันธ์ (steviol) ในการรักษาโรคถุงน้ำในหนูโมเดล ต่อกลไกการ กระตุ้นการสร้างเซลล์ซีสต์ใหม่ (cell proliferation; MAPK/ERK, mTOR/S6K) กลไกการหลั่งกระแสคลอไรด์ (fluid secretion; CFTR protein) และโปรตีนที่ควบคุมการทำงานของ CFTR (AMPK protein) โดยวิธี western blot analysis

11. สรุปผลการวิจัยที่ได้

ผลการวิจัยพบว่า สารอนุพันธ์ของสารสกัดจากใบหญ้าหวานทั้ง 4 ชนิด (steviol, isosteviol, dihydroisosteviol, 16-oxime isosteviol) สามารถชะลอการเจริญเติบโตและลดจำนวนของชีสต์ในเซลล์โมเดลถุงน้ำ MDCK โดยสาร steviol มีฤทธิ์ในการลดขนาดของชีสต์ดีที่สุดเมื่อเทียบกับสารอนุพันธ์ตัวอื่นและไม่มีผลฆ่าเซลล์หลอดไต MDCK ดังนั้น steviol จึงถูกเลือกนำมาศึกษากลไกในการออกฤทธิ์ เนื่องการเจริญเติบโตของชีสต์เป็นผลอันเนื่องมาจากการแบ่งตัว ใหม่ของเซลล์ (cell proliferation) และการขยายขนาดด้วยการหลั่งคลอไรด์เพิ่มเข้าในโพรงถุงน้ำมากขึ้น (fluid secretion) การทดลอง BrdU cell proliferation assay and flow cytometry (annexin V) พบว่าสาร steviol ไม่มีผลต่อ การแบ่งตัวใหม่ และการตายของเซลล์แบบ apoptosis ในเซลล์หลอดไต MDCK แต่จากการวัดการหลั่งกระแสคลอไรด์ ด้วยวิธี ussing chamber experiment พบว่า สาร steviol ลดการหลั่งกระแสคลอไรด์ที่กระตุ้นด้วย forskolin ในเซลล์ หลอดไต MDCK เมื่อ incubate กับสารเป็นเวลา 2-24 ชั่วโมง นอกจากนี้สาร steviol ยังสามารถลดการแสดงออกของ โปรตีนขนส่งคลอไรด์ CFTR โดยการกระตุ้นการสลายโปรตีน CFTR ผ่านทาง proteasome activity จากการทดลองนี้ สรุปได้ว่า สาร steviol สามารถชะลอการเจริญเติบโตของชีสต์ในเซลล์โมเดลถุงน้ำ MDCK ผ่านทางการยับยั้งการ ทำงานของช่องโปรตีนขนส่งคลอไรด์ CFTR โดยตรงอีกทั้งยังกระตุ้นการทำงานของ proteasome เพื่อสลายการ แสดงออกของช่องโปรตีนขนส่งคลอไรด์ CFTR นอกจากนี้สาร steviol ยังมีผลต่อการลดการแสดงออกของช่องโปรตีนขนส่งคลอไรด์ CFTR นอกจากนี้สาร steviol ยังมีผลต่อการลดการแสดงออกของช่องโปรตีน ขนส่งคลอไรด์ CFTR นอกจากนี้สาร steviol ยังมีผลต่อการลดการแสดงออกของช่องโปรตีน ขนส่งน้ำ AQP2 และยับยั้งการทำงานของโปรตีน phospho-ERK ในการกระอุ้นการแบ่งเซลล์ซีสต์ใหม่อีกด้วย

การทดลองต่อมาคือการศึกษาศักยภาพของสาร steviol ในการรักษาโรคถุงน้ำในไดในหนูที่เป็นโรคถุงน้ำ ในการ ทดลองนี้ให้สาร stevioside และ steviol ที่ความเข้มขัน 1,000 mg/kg และ 200 mg/kg ตามลำดับ ในหนูโมเดลโรคถุง น้ำ (Pkd1^{กองกัด}ะ: Pkhd1-Cre mouse) ผลการทดลองพบว่า สาร stevioside และ steviol สามารถลดขนาดของไต น้ำหนักไต และเปอร์เซ็นต์พื้นที่ของชีสต์ในไตเมื่อเทียบกับหนูโมเดลโรคถุงน้ำในกลุ่มควบคุม อย่างไรก็ตามเฉพาะสาร steviol เท่านั้นที่ช่วยพื้นฟูการทำงานของไตหนูโมเดลโรคถุงน้ำให้ดีขึ้นอย่างมีนัยสำคัญทางสถิติ เมื่อทำการวัดค่า cell proliferation & apoptosis ด้วย Ki67 & TUNEL assay ตามลำดับ ผลปรากฏว่า สาร steviol มีผลยับยั้งการแบ่งเซลล์ ใหม่ (cell proliferation) แต่ไม่มีผลทำลาย/ฆ่าของเซลล์หลอดไตแบบ apoptosis เมื่อทำการหากลไกการออกฤทธิ์ของ สาร steviol ที่เกี่ยวข้อง พบว่าสาร steviol สามารถชะลอการเจริญเติบโตของซีสต์ในหนูโมเดลโรคถุงน้ำผ่านกระตุ้น การทำงานของโปรตีน AMPK ซึ่งมีผลลดการหลังกระแสคลอไรด์ผ่านการลดการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR และลดการสร้างซีสต์ใหม่โดยยับยั้ง mTOR/S6K pathway ดังนั้น สารอนุพันธ์ของสารหญ้าหวาน steviol จึงมี ศักยภาพดีที่จะพัฒนาเป็นยารักยาโรคถุงน้ำในไตได้ในอนาคตเพราะมีฤทธิ์ยับยั้ง/ชะลอการเจริญเติบโตของซีสต์ได้ หลายกลใกลเสริมกัน

12. การตีพิมพ์ผลงานวิจัย

งานวิจัยจากโครงการนี้ได้รับการตีพิมพ์ในวารสารวิชาการระดับนานาชาติจำนวน 3 เรื่อง และได้ส่งตีพิมพ์และรอ ผลพิจารณา 1 เรื่อง ได้แก่

1) Yuajit C, Homvisasevongsa S, Chatsudthipong L, Soodvilai S, Muanprasat C and <u>Chatsudthipong</u> V. Steviol Reduces MDCK Cyst Formation and Growth by Inhibiting CFTR Channel Activity and Promoting Proteasome-Mediated CFTR Degradation. PLoS ONE. 2013, 8(3):

e58871.doi:10.1371/journal.pone.0058871 (IF = 3.78)

- 2) Muanprasat C, Chatsudthipong V. Cholera: pathophysiology and emerging therapeutic targets. Future Med Chem. 2013 May; 5(7):781-98. (IF=3.31)
- 3) Raksaseri P, <u>Chatsudthipong V</u>, Muanprasat C, Soodvilai S. *Activation of liver X receptors reduces*CFTR-mediated Cl- transport in kidney collecting duct cells. Am J Physiol Renal Physiol. 2013 Aug;

 305(4):F583-91. (IF=3.612)

และอีก 1 เรื่องได้ส่งตีพิมพ์อยู่ระหว่างรอผลพิจารณาคือ

4) Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease.

13. การเผยแพร่ผลงานวิจัยสู่สาธารณะ

นำเสนอผลงานวิจัยในการประชุมวิชาการ

1.1 ผลงานจากงานวิจัยในโครงการได้ถูกนำเสนอในรูปแบบโปสเตอร์ในงานประชุมต่างๆ ดังนี้

ปี 2554

 The 40th Annual Scientific Meeting & International Conference of the Physiological Society of Thailand, May 2-4, 2011, Khon kaen, Thailand

หัวข้อ: Steviol, a derivative of natural sweetener stevioside, slows cyst enlargement in an in vitro model of polycystic kidney disease

ปี 2555

1) Experimental Biology 2012, April 21-25, San Diego Convention Center, San Diego, CA, USA หัวข้อ: Steviol, an aglycone of natural sweetener stevioside, slows MDCK cyst progression by reducing activity and expression of CFTR chloride channel

ปี 2556

1) Experiment Biology 2013, April 22-26, Boston Exhibition & Convention Center, Boston, MA, USA

หัวข้อ: Steviol retards cyst growth through inhibition of ERK and Wnt/β-catenin pathways

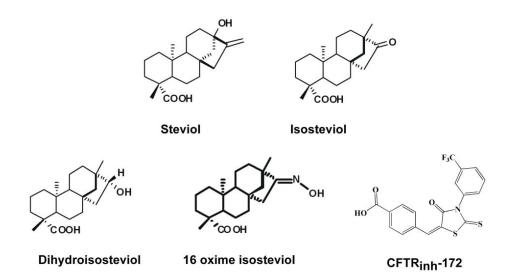
บทน้ำ

ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

โรคถุงน้ำในไต (polycystic kidney disease) เป็นโรคทางพันธุกรรมที่เกิดจากการผ่าเหล่าของยืน PKD1 หรือ PKD2 ในเซลล์หลอดไตส่งผลให้การทำงานของโปรตีน polycystin 1 (PC-1)และ polycystin 2 (PC-2) ผิดปกติไป [1] อันเป็นเหตุให้ปริมาณแคลเซียมและ cAMP ในเซลล์หลอดไตเพิ่มขึ้น ส่งผลให้เกิดการกระตุ้นกระบวนการสร้างเซลล์ ใหม่เป็นเซลล์ถุงน้ำหรือซีสต์ (cell proliferation) และถุงน้ำที่สร้างขึ้นจะมีการขยายขนาดโดยการเพิ่มการหลั่งคลอไรด์ และน้ำ (fluid secretion) เข้าในโพรงถุงน้ำมากขึ้น [2] ซีสต์ที่โตขึ้นจะไปกดเบียดและทำลายเซลล์เนื้อไต ทำให้การ ทำงานของไตมีประสิทธิภาพลดลง ผู้ป่วยจะเกิดภาวะไตวายได้ในที่สุด อันเป็นสาเหตุทำให้ผู้ป่วยตายได้ ปัจจุบันยังไม่ มีวิธีการรักษาโรคถุงน้ำในไตที่มีประสิทธิภาพ ผู้ป่วยจะต้องได้รับการรักษาตามอาการ เช่น การฟอกไต (hemodialysis) หรือ การเปลี่ยนถ่ายไต (renal transplantation) [3]

พยาธิสรีรวิทยาของโรคถุงน้ำในไตประกอบด้วยสองกระบวนการที่สำคัญ กระบวนการแรกคือการสร้างเซลล์ ซีสต์ใหม่ที่หลอดไต (cell proliferation) ผ่านกลไกการกระตุ้นการสร้างและแบ่งตัวของถุงน้ำ อาทิ การทำงานของ โปรตีน MAPK/ERK pathway ที่เพิ่มขึ้นจากการที่มีปริมาณ cAMP ในเซลล์หลอดไตมาก ส่งผลให้เกิดการกระตุ้น PKA และ MAPK/ERK ตามลำดับ [4,5] นอกจากนี้การศึกษาที่ผ่านมาพบว่าพยาธิสรีรวิทยาของโรคถุงน้ำในไตนั้นชับซ้อน มีหลายกลไกที่สามารถกระตุ้นการเพิ่มจำนวนเซลล์ ซึ่งรวมถึง mTOR signaling pathway [6] และ Wnt/β-catenin pathway หลังจากการสร้างเซลล์ซีสต์แล้วกระบวนการต่อมาคือการหลังคลอไรด์และน้ำเข้าไปในโพรงของซีสต์ (fluid secretion) ทำให้ซีสต์ขยายขนาดขึ้น การเพิ่มการหลังคลอไรด์ผ่านทางช่องโปรตีนขนส่งคลอไรด์ที่มีชื่อว่า cystic fibrosis transmembrane conductance regulator (CFTR) [7,8] ซึ่งเป็นโปรตีนที่อยู่บริเวณ apical ของเซลล์ซีสต์เกิด จากการกระตุ้นด้วย cAMP และโปรตีน PKA ที่เพิ่มขึ้นตามลำดับ คลอไรด์เมื่อถูกหลังลงสู่ถุงน้ำผ่านทางช่องโปรตีน ขนส่ง CFTR แล้วทำให้เกิดแรงออสโมติกดึงโซเดียมอิออนและน้ำให้เคลื่อนตามเข้าสู่โพรงถุงน้ำผ่านช่องว่างระหว่าง เซลล์ ทำให้ถุงน้ำโตขึ้น

การรักษาในปัจจุบันส่วนใหญ่ถ้าตรวจวินิจฉัยพบภาวะไตวายเรื้อรังร่วมด้วย ผู้ป่วยจะได้รับการรักษาแบบ ประคับประคองตามอาการ อาทิ ยาลดความดันโลหิตสูง และการฟอกไต เป็นต้น [9] งานวิจัยในด้านการพัฒนายาที่ใช้ ในการรักษาโรคถุงน้ำในไต ที่ผ่านมาได้ให้ความสนใจวิธีที่จะยับยั้งกลไกที่ทำให้เกิดพยาธิสภาพของโรค แต่ส่วนใหญ่ ยังอยู่ในขั้นการทดลองเบื้องต้นในคน การศึกษาที่ผ่านมาได้รายงานว่า การยับยั้งกลไกของการสร้างซีสต์ใหม่ (cell proliferation) อาทิ การยับยั้ง MAPK/ERK pathway การใช้ยา rapamycin (mTOR inhibitor) ในการยับยั้ง mTOR signaling หรือแม้แต่การยับยั้ง Wnt/β-catenin pathway สามารถชะลอการเจริญเติบโตของซีสต์ได้ทั้งในเซลล์และ หนูโมเดลโรคถุงน้ำ นอกจากนี้การใช้สารยับยั้งการทำงานของโปรตีนขนส่งคลอไรด์ CFTR (CFTR inhibitor) ยัง สามารถลดการเจริญเติบโตของซีสต์ได้เป็นอย่างดีเช่นกันทั้งในเซลล์โมเดลถุงน้ำ MDCK หรือแม้แต่ในหนูโมเดลถุงน้ำ [10,11]


ปัจจุบันมีการศึกษากันอย่างแพร่หลายในการนำเอาสารสมุนไพรหรือสารสกัดจากพืชธรรมชาติมาศึกษาฤทธิ์ และกลไกการออกฤทธิ์ในด้านต่างๆ เช่น การเสริมสร้างสุขภาพ ป้องกันและรักษาโรคต่างๆ เพื่อเป็นการลดค่าใช้จ่ายใน การรักษาและช่วยเศรษฐกิจของประเทศนั้นๆ มีการศึกษาใช้สารสกัดจากสมุนไพรและพืชธรรมชาติหลายชนิด มา ทดลองกับหนูโมเดลโรคถุงน้ำและได้ผลเป็นที่น่าพอใจ อาทิ สารสกัดจากขมิ้น (curcumin) [12] สารสกัดจากสมุนไพร จีน (Triptolide) พบว่าสารสกัดจากพืชธรรมชาติเหล่านี้สามารถยับยั้งการเจริญเติบโตของซีสต์ได้ผ่านหลายกลไก อัน จะเป็นผลดีถ้าจะนำมาประยุกต์ใช้รักษาโรคถุงน้ำร่วมกันกับยาอื่นๆ เพื่อเสริมฤทธิ์กัน

สารสกัดจากใบหญ้าหวาน (stevioside) สกัดได้จากพืช Stevia Rebuadiana เป็นสารที่ให้ความหวานสูง มากกว่าน้ำตาลซูโครสมากถึง 300 เท่า จากการศึกษาที่ผ่านมาพบว่า สารสกัดจากใบหญ้าหวานนี้ มีคุณสมบัติในการ รักษาโรคต่าง ๆมากมาย เช่นมีรายงานว่า สาร stevioside สามารถลดความดันโลหิต ช่วยขับปัสสาวะ ลดการอักเสบ ลดน้ำตาลในเลือดของผู้ป่วยโรคเบาหวาน นอกจากนี้ทั้งสาร stevioside และสารอนุพันธ์ steviol ยังมีฤทธิ์ในการยับยั้ง การขนส่งสารบริเวณหลอดไต ซึ่งจะช่วยลดการขับทิ้งของยา ทำให้ยามีเวลาในการอออกฤทธิ์นานขึ้น [13] และเป็นที่ น่าสนใจอย่างยิ่ง ที่พบว่าสาร steviol และอนุพันธ์ สามารถยับยั้งการหลั่งคลอไรด์ผ่านโปรตีนขนส่งคลอไรด์ CFTR ได้ ดีส่งผลให้มีฤทธิ์ในการรักษาโรคอหิวาได้อย่างมีประสิทธิภาพ ผลนี้ได้จากการทดลองในลำไส้หนูโมเดลโรคอหิวา [14] ด้วยคุณสมบัติข้างต้น จึงมีความเป็นไปได้ที่สารสกัดจากใบหญ้าหวานและสารอนุพันธ์จะมีฤทธิ์ในการยับยั้งการ เจริญเติบโตของซีสต์ ผ่านการยับยั้งการทำงานของโปรตีนขนส่งคลอไรด์ CFTR ดังนั้นสารสกัดจากใบหญ้าหวานและ สารอนุพันธ์จึงน่าจะมีศักยภาพในการพัฒนาเป็นยารักษาโรคถุงน้ำในไตได้

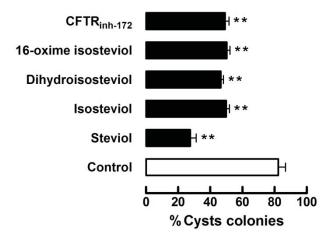
วัตถุประสงค์ของโครงการวิจัย

การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาฤทธิ์และกลไกการออกฤทธิ์ของสารสกัดจากใบหญ้าหวาน (stevioside) และสารอนุพันธ์ (steviol, isosteviol, dihydroisosteviol, 16-oxime isosteviol) ในการยับยั้งการเจริญเติบโตของซีสต์ใน เซลล์โมเดลถุงน้ำ MDCK และการประยุกต์ใช้ในการรักษาโรคในหนูโมเดลโรงถุงน้ำ (PKD mouse model) โดยมี วัตถุประสงค์ย่อยดังนี้

- 1. ศึกษาฤทธิ์ของสารสกัดจากใบหญ้าหวานและสารอนุพันธ์ในการยับยั้งการเจริญเติบโตของซีสต์จากเซลล์ โมเดลถุงน้ำในเซลล์หลอดไต MDCK
- 2. ศึกษาคุณสมบัติเชิงเภสัชวิทยาและกลไกการออกฤทธิ์ของสารสกัดจากใบหญ้าหวานและอนุพันธ์ในการ ยับยั้งการเจริญเติบโตของซีสต์จากเซลล์โมเดลถุงน้ำในเซลล์หลอดไต MDCK
- 3. ศึกษาศักยภาพในการพัฒนาสารสกัดจากใบหญ้าหวานและสารอนุพันธ์ steviol ในการรักษาโรค polycystic kidney ในหนูโมเดลโรคถุงน้ำ (PKD mouse model)

รูปที่ 1. แสดงโครงสร้างทางเคมีของสารอนุพันธ์ของสารสกัดจากใบหญ้าหวานทั้งสี่ชนิด (steviol, isosteviol, dihydroisosteviol, and 16-oxime isosteviol) และสารยับยั้งโปรตีนขนส่งคลอไรด์ CFTR (CFTR-inh172) ที่ทดสอบ

เอกสารอ้างอิง

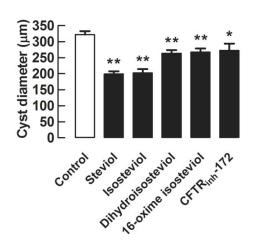

- Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13: 2384-2398.
- 2. Wallace DP (2011) Cyclic AMP-mediated cyst expansion. Biochim Biophys Acta 1812: 1291-1300.
- 3. Torres VE, Harris PC (2007) Polycystic kidney disease: genes, proteins, animal models, disease mechanisms and therapeutic opportunities. J Intern Med 261: 17-31.
- 4. Belibi FA, Reif G, Wallace DP, Yamaguchi T, Olsen L, et al. (2004) Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int 66: 964-973.
- Yamaguchi T, Nagao S, Wallace DP, Belibi FA, Cowley BD, et al. (2003) Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 63: 1983-1994.
- Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, et al. (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease.
 Proc Natl Acad Sci U S A 103: 5466-5471.
- 7. Terryn S, Ho A, Beauwens R, Devuyst O (2011) Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1812: 1314-1321.
- Sullivan LP, Wallace DP, Grantham JJ (1998) Epithelial transport in polycystic kidney disease.
 Physiol Rev 78: 1165-1191.
- 9. Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76: 149-168.
- Li H, Findlay IA, Sheppard DN (2004) The relationship between cell proliferation, CI- secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int 66: 1926-1938.
- 11. Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS (2008) Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol 19: 1300-1310.
- 12. Gao J, Zhou H, Lei T, Zhou L, Li W, et al. (2011) Curcumin inhibits renal cyst formation and enlargement in vitro by regulating intracellular signaling pathways. Eur J Pharmacol 654: 92-99.
- 13. Chatsudthipong V, Muanprasat C (2009) Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther 121: 41-54.
- Pariwat P, Homvisasevongsa S, Muanprasat C, Chatsudthipong V (2008) A natural plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion. J Pharmacol Exp Ther 324: 798-805.

เนื้อหางานวิจัย

ตอนที่ 1 ศึกษาฤทธิ์ของสารสกัดจากใบหญ้าหวานและสารอนุพันธ์ในการยับยั้งการเจริญเติบโตของซีสต์จาก เซลล์โมเดลถุงน้ำในเซลล์หลอดไต MDCK

1.1 ฤทธิ์ของสาร steviol และสารอนุพันธ์ ทั้ง 3 (isosteviol, dihydroisosteviol, 16-oxime isosteviol) ในการ ยับยั้งการเพิ่มจำนวนซีสต์ของเซลล์โมเดลถุงน้ำ MDCK (MDCK cyst formation)

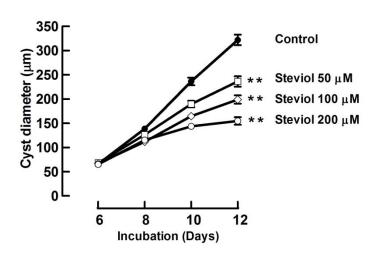
ทำการศึกษาผลของสารสกัดจากใบหญ้าหวานทั้ง 4 ชนิดต่อการยับยั้งการเกิดและเพิ่มจำนวนชีสต์จากเซลล์ โมเดลถุงน้ำ MDCK โดยเลี้ยงชีสต์จากเซลล์หลอดไตในเจลคอลลาเจนโดยใช้สาร forskolin เป็นตัวกระตุ้นการ เจริญเติบโตของชีสต์ และใส่สารอนุพันธ์จากสารสกัดจากใบหญ้าหวานทั้งสี่ชนิดที่ความเข้มขัน 100 µM ตั้งแต่วันแรก ของการเลี้ยงชีสต์จนถึงวันที่หก โดยมีเปลี่ยนอาหารเลี้ยงเซลล์และสารที่ทดสอบทุกสองวัน เมื่อถึงวันที่ 6 ของการเลี้ยง ซีสต์ นับจำนวนเซลล์ที่เกิดซีสต์ (diameter > 50 µm) เทียบกับจำนวนเซลล์ที่ไม่เกิดซีสต์ (diameter < 50 µM) ผล การทดลองพบว่าว่า เปอร์เซ็นต์ของการเกิดซีสต์ในกลุ่มควบคุมมีค่าประมาณ 82.2 ± 4.5% ส่วนเปอร์เซ็นต์การเกิด ซีสต์ในกลุ่มที่ใส่สารยับยั้งโปรตีนขนส่งคลอไรด์ (CFTR-_{inh} 172) ที่ความเข้มขัน 10 µM ลดลง มีค่าประมาณ 49.2 ± 2.4% ในขณะที่กลุ่มที่ใส่สารอนุพันธ์จากสารสกัดจากใบหญ้าหวาน steviol, isosteviol, dihydroisosteviol และ16-oxime isosteviol ที่ความเข้มขันของสาร 100 µM มีเปอร์เซ็นต์การเกิดซีสต์ลดลงเหลือร้อยละ 27.5 ± 3.6, 49.8 ± 2.0, 46.5 ± 1.6 และ 50.3 ± 1.9 ตามลำดับ ดังแสดงในรูปที่ 2


รูปที่ 2. ผลของสารอนุพันธ์จากสารสกัดจากใบหญ้าหวานทั้งสี่ชนิดในการลดอัตราการเกิดซีสต์ (MDCK cyst formation) แสดงค่าเป็นเปอร์เซ็นต์การเกิดซีสต์จากเซลล์หลอดไตในกลุ่มควบคุม (DMSO) กลุ่มที่ได้รับสารอนุพันธ์ ของสารสกัดจากใบหญ้าหวาน (steviol และอนุพันธุ์) ที่ความเข้มข้น 100 µM และกลุ่มที่ได้รับสารยับยั้งช่องโปรตีน ขนส่งคลอไรด์ (CFTR-inh 172) ที่ความเข้มข้น 10 µM ณ วันที่ 6 (mean ± SE, n = 4 wells/condition, **P < 0.01)

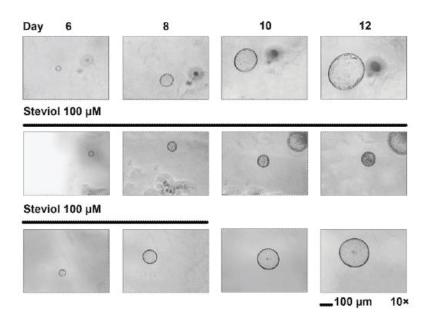
จากผลการทดลองนี้สรุปได้ว่า สารอนุพันธ์ของสารสกัดจากใบหญ้าหวานทั้งสี่ชนิด สามารถยับยั้งการเกิดชีสต์ จากเซลล์หลอดไตอย่างมีนัยสำคัญทางสถิติ (one-way ANOVA; bonferoni post hoc test) เมื่อเทียบกับกลุ่มควบคุม โดยที่สาร steviol มีฤทธิ์ในการยับยั้งการเกิดชีสต์ดีที่สุด

1.2 ฤทธิ์ของสาร steviol และสารอนุพันธ์ทั้ง 3 (isosteviol, dihydroisosteviol, 16-oxime isosteviol) ในการ ชะลอการเจริญเติบโตของซีสต์ของเซลล์โมเดลถุงน้ำ MDCK (MDCK cyst growth)

เพื่อศึกษาผลของสารอนุพันธ์ของสารสกัดจากใบหญ้าหวานทั้งสี่ชนิดต่อการชะลอการเจริญเติบโตของชีสต์ จากเซลล์โมเดลถุงน้ำ MDCK ได้ทำการเลี้ยงชีสต์จากเซลล์หลอดไต MDCK ในเจลคอลลาเจนเป็นเวลาหกวัน โดยการ กระตุ้นการเจริญเติบโตของชีสต์ด้วยสาร forskolin จากนั้น ใส่สารอนุพันธ์ทั้งสี่ชนิดลงในน้ำเลี้ยงเซลล์ ที่ความเข้มข้น 100 µM และเปลี่ยนอาหารเลี้ยงเซลล์และสารที่ทดสอบทุกสองวัน เป็นเวลาสามครั้ง ทำการวัดขนาดของชีสต์และ ถ่ายภาพก่อนการเปลี่ยนสารอาหารทุกครั้ง ในวันที่ 12 ของการเลี้ยงซีสต์ ขนาดซีสต์จะถูกนำมาเปรียบเทียบกับกลุ่ม ควบคุม เพื่อดูฤทธิ์ของสารอนุพันธ์ทั้งสี่ชนิดต่อการชะลอการเจริญเติบโตซีสต์จากเซลล์โมเดลถุงน้ำ MDCK สารที่มี ฤทธิ์ยับยั้งที่ดีที่สุดจะถูกเลือกมาใช้ในการทดลองต่อไป


ดังแสดงในรูปที่ 3 ขนาดของซีสต์ในกลุ่มควบคุมมีค่าประมาณ 321.8 \pm 10.9 μ m กลุ่มสาร CFTR- $_{inh}$ 172 ที่ความ เข้มข้น 10 μ M มีขนาดของซีสต์เท่ากับ 272.7 \pm 21.2 μ m ในขณะที่กลุ่มที่ใส่สารอนุพันธ์ทั้งสี่ชนิด steviol, isosteviol, dihydroisosteviol และ16-oxime isosteviol (ที่ความเข้มข้น 100 μ M) มีขนาดซีสต์เท่ากับ 198.9 \pm 8.5, 202.0 \pm 12.2, 263.8 \pm 10.0 และ 267.6 \pm 10.9 μ m ตามลำดับ

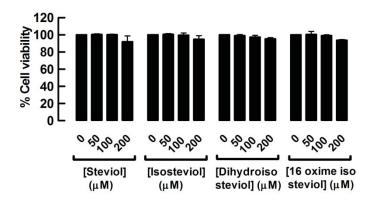
รูปที่ 3. ผลของสารอนุพันธ์ของสารสกัดจากใบหญ้าหวานทั้งสี่ชนิดต่อขนาดของซีสต์จากเซลล์โมเดลถุงน้ำ MDCK (MDCK cyst growth) แสดงขนาดของซีสต์จากเซลล์โมเดลถุงน้ำ MDCK ในกลุ่มควบคุม (DMSO) กลุ่มที่ได้รับสาร อนุพันธ์ของสารสกัดจากใบหญ้าหวาน (steviol และอนุพันธุ์) ที่ความเข้มขัน 100 µM และกลุ่มที่ได้รับสารยับยั้งช่อง โปรตีนขนส่งคลอไรด์ (CFTR-_{inh} 172) ที่ความเข้มขัน 10 µM ณ วันที่ 12 (mean ± SE, n > 30 cysts, *P < 0.05, **P < 0.01)


สรุปได้ว่า สาร steviol มีฤทธิ์ชะลอการเจริญเติบโตของซีสต์ได้ดีที่สุดคือ ประมาณ 39% ในขณะที่ สาร isosteviol, dihydroisosteviol และ 16-oxime isosteviol มีฤทธิ์ชะลอการเจริญเติบโตของซีสต์ประมาณ 37%, 18% และ 17% ตามลำดับ โดยที่ขนาดของซีสต์ในทุกกลุ่มนี้ความแตกต่างอย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบกับกลุ่ม ควบคุม ในขณะที่สารยับยั้งช่องโปรตีนขนส่งคลอไรด์ CFTR หรือ CFTR_{inh}-172 สามารถลดขนาดของซีสต์ได้เพียง 16% เท่านั้น

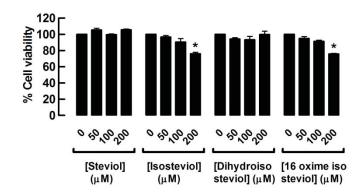
จากการศึกษาข้างต้น (cyst growth, cyst formation) แสดงให้เห็นว่า สาร steviol เป็นสารที่ดีที่สุดที่สามารถ ยับยั้งการเกิดการเพิ่มจำนวนซีสต์และการซะลอการเจริญเติบโตของซีสต์จากเซลล์โมเดลถุงน้ำ MDCK ดังนั้นสาร steviol จึงถูกเลือกเพื่อนำมาศึกษาฤทธิ์ของสารตามความเข้มข้น (dose-response) ในการซะลอการเจริญเติบโตของ ซีสต์จากเซลล์โมเดลถุงน้ำ MDCK ดังแสดงในรูปที่ 4 พบว่าสาร steviol ที่ความเข้มข้นของสาร 50, 100, และ 200 µM มีขนาดซีสต์เท่ากับ 236.8 ± 10.7, 198.9 ± 8.5 และ 154.7 ± 7.8 µm ตามลำดับ หรือมีเปอร์เซ็นต์การยับยั้งการ เจริญเติบโตของซีสต์เท่ากับ 26.7%, 38.2%, 51.94% ตามลำดับ โดยขนาดของซีสต์มีความแตกต่างอย่างมีนัยสำคัญ ทางสถิติเมื่อเทียบกับกลุ่มควบคุม (321.8 ± 10.9 µm) สรุปได้ว่า สาร steviol ออกฤทธิ์ชะลอการเจริญเติบโตของซีสต์ ตามความเข้มข้นของสาร (dose-response)

รูปที่ 4. การศึกษา dose – response ของสาร steviol ที่ความเข้มขัน 50, 100, 200 µM ต่อขนาดซีสต์จากเซลล์โมเดล ถุงน้ำ MDCK (mean ± SE, *n* > *30 cysts,* ***P* < 0.01)

ต่อมาได้ทำการทดลองการกลับคืนสู่สภาพการเจริญเติบโตของซีสต์หลังจากเอาสาร steviol ออกจากน้ำเลี้ยงเซลล์ (Reversibility of steviol's effect on cyst growth) ในกานทดลองนี้ได้เลือกเอาสาร steviol ที่มีผลยับยั้งการเกิดและ ชะลอการเจริญเติบโตของซีสต์จากเซลล์หลอดไตที่ดีที่สุด มาศึกษาการย้อนกลับของฤทธิ์ (reversibility) ในการยับยั้ง การเจริญเติบโตของซีสต์ เมื่อเลี้ยงซีสต์ในเจลคอลลาเจนเป็นเวลาหกวัน ใส่สาร steviol ที่ความเข้มขัน 100 µM ลงใน น้ำเลี้ยงเซลล์ ตั้งแต่วันที่ 6 จนถึงวันที่ 9 เป็นเวลา 4 วัน จากนั้นนำสาร steviol ออก และเลี้ยงซีสต์ ต่อไปจนถึงวันที่ 12 ดังแสดงในรูปที่ 5 ผลปรากฏว่า ซีสต์สามารถกลับมาเจริญเติบโตได้อีก



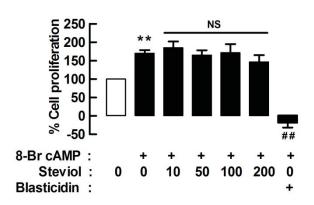
รูปที่ 5. การย้อนกลับของฤทธิ์ (reversibility) ของสาร steviol แสดงตัวอย่างของซีสต์จากเซลล์โมเดลถุงน้ำ MDCK ณ วันที่ 6, 8, 10 และ 12


1.3 ฤทธิ์ของสาร steviol และสารอนุพันธ์ทั้ง 3 (isosteviol, dihydroisosteviol, 16-oxime isosteviol) ต่อการ อยู่รอดของเซลล์ เซลล์หลอดไต MDCK (cell viability)

ทำการศึกษาฤทธิ์ของ steviol ในการฆ่าเซลล์หลอดไต MDCK ด้วยวิธี MTT Assay โดยทดสอบสาร steviol, isosteviol, dihydroisosteviol และ16-oxime isosteviol ที่ความเข้มข้น 50, 100, และ 200 µM กับหลอดท่อไต MDCK เป็นเวลา 24 และ 72 ชั่งโมง จากนั้นทำการวัดการอยู่รอดของเซลล์ แล้วนำค่าที่ได้ มาเทียบเป็นร้อยละของกลุ่มควบคุม ผลปรากฏดังรูปที่ 6 และ 7 กล่าวคือที่ 24 ชั่วโมง สารทั้งสี่ชนิด ที่ทุกความเข้มข้นที่ศึกษา ไม่มีผลต่อฆ่าเซลล์หลอดไต

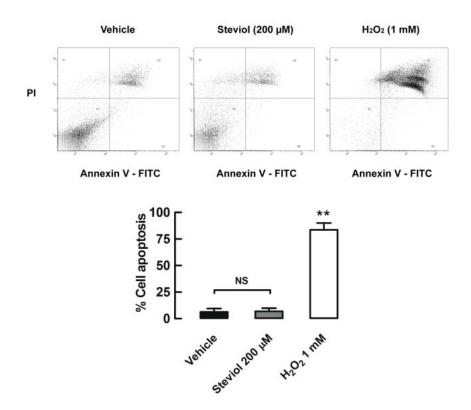
MDCK ขณะที่ 72 ชั่วโมง steviol และ dihydroisosteviol ที่ความเข้มข้น 50, 100, และ 200 µM ไม่มีผลต่อการฆ่า เซลล์หลอดไต MDCK แต่ isosteviol และ 16-oxime isosteviol ที่ความเข้มข้น 200 µM มีผลต่อการอยู่รอดของเซลล์ หลอดไต MDCK จึงสรุปได้ว่า กลไกการลดอัตราการเกิดและการเจริญเติบโตของซีสต์โดยสาร steviol ไม่เกี่ยวข้องกับ การฆ่าเซลล์หลอดไต MDCK

รูปที่ 6. ร้อยละการอยู่รอดของเซลล์ท่อไต MDCK เมื่อเลี้ยงกับสารอนุพันธ์ของสารสกัดจากใบหญ้าหวานทั้งสี่ชนิดเป็น เวลาเวลา 24 ชั่วโมง (mean of % control ± SE, n = 3)


รูปที่ 7. ร้อยละการอยู่รอดของเซลล์ท่อไต MDCK เมื่อเลี้ยงกับสารอนุพันธ์ของสารสกัดจากใบหญ้าหวานทั้งสี่ชนิดเป็น เวลา 72 ชั่วโมง (mean of % control \pm SE, n =3, *P < 0.05)

จากผลจากทดลองในตอนที่หนึ่งสรุปว่า สารอนุพันธ์ทั้งสี่ชนิดสามารถยับยั้งการแบ่งเซลล์ซีสต์ใหม่ ชะลอการ เจริญเติบโตของซีสต์จากเซลล์โมเดลถุงน้ำ MDCK โดยที่สาร steviol เป็นสารที่ออกฤทธิ์ยับยั้งได้ดีที่สุดเมื่อ เปรียบเทียบกับสารอนุพันธ์ตัวอื่น อีกทั้งยังไม่มีผลฆ่าเซลล์หลอดไต MDCK ด้วย ดังนั้นการทดลองในตอนที่สอง จึง ทำการศึกษากลไกการออกฤทธิ์ของสาร steviol ในการยับยั้งการเจริญเติบโตของซีสต์จากเซลล์โมเดลถุงน้ำ MDCK

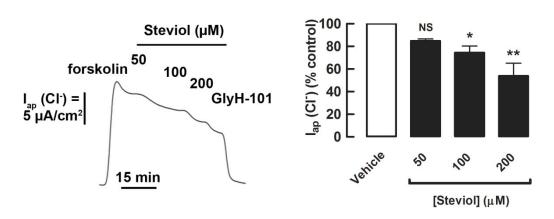
ตอนที่ 2 ศึกษาคุณสมบัติเชิงเภสัชวิทยาและกลไกการออกฤทธิ์ของสารสกัดจากใบหญ้าหวานและอนุพันธ์ใน การยับยั้งการเจริญเติบโตของซีสต์จากเซลล์โมเดลถุงน้ำในเซลล์ท่อไต MDCK


2.1 ฤทธิ์ของสารอนุพันธ์ที่ดีที่สุด (steviol) ต่อการเพิ่มจำนวนของเซลล์หลอดไต MDCK (cell proliferation) และการตายของเซลล์หลอดไต MDCK แบบ apoptosis

กระบวนการเกิดซีสต์ของเชลล์หลอดไตในโรคถุงน้ำในไต เกิดจากการทำงานที่มากผิดปกติของกระบวนการ กระตุ้นการสร้างและเพิ่มจำนวนของเซลล์หลอดไต (cell proliferation) ดังนั้นการหากลไกการยับยั้งการเติบโตของซีสต์ ของสาร steviol ว่าผ่านทางการยับยั้ง cell proliferation หรือไม่ ได้ทำการศึกษาฤทธิ์ของสาร steviol ต่อการยับยั้งการ เกิดและการเพิ่มจำนวนเซลล์หลอดไต MDCK โดยทำการวัดปริมาณ BrdU-labeled DNA ซึ่งบ่งชี้ถึงเซลล์ที่มีการ แบ่งตัวใหม่ ในการทดลองนี้หลังจากเลี้ยงเซลล์หลอดไตแบบ monolayer เป็นเวลา 24 ชั่วโมง แล้ว incubate กับ steviol ที่ความเข้มขัน 10, 50, 100, และ 200 µM พร้อมกับกระตุ้นการเพิ่มจำนวนเซลล์ใหม่ด้วย 8-Br cAMP ที่ความ เข้มขัน 100 µM เป็นระยะเวลา 24 ชั่วโมง จากนั้น incubate กับ BrdU ในชั่วโมงที่ 18 เป็นเวลา 6 ชั่วโมง เมื่อครบ ระยะเวลา 24 ชั่วโมง จึงทำการวัดปริมาณ BrdU-labeled DNA ของเซลล์หลอดไต MDCK ผลการทดลองพบว่า 8-Br cAMP กระตุ้นการเพิ่มจำนวนเซลล์ใหม่ของเซลล์หลอดไตในเทียบกับกลุ่มควบคุมที่ไม่ได้ใส่สารอย่างมีนัยสำคัญทาง สถิติ ในกลุ่มที่ได้รับสาร steviol ทุกความเข้มข้น พบว่า steviol ไม่มีผลต่อการเกิดและการเพิ่มจำนวนของเซลล์หลอด ใตแต่อย่างใด เมื่อเปรียบเทียบกับกลุ่มที่ใส่สาร Blasticidin (20 µg/ml) ซึ่งเป็นกลุ่ม positive control ดังแสดงในรูปที่ 8 การทดลองนี้จึงสรุปได้ว่า การที่สาร steviol ซะลอการเจริญเติบโตของซีสต์ ไม่ได้มีฤทธิ์ผ่านการยับยั้งการเกิดและการ เพิ่มจำนวนสอสล์ใหม่ (cell proliferation)

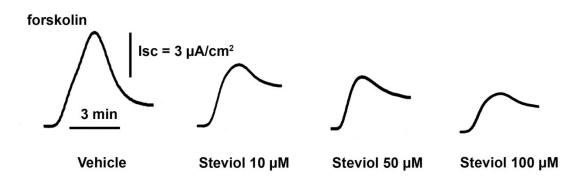
รูปที่ 8. ผลของสาร steviol ที่ความเข้มขัน 0, 10, 50, 100, 200 μM, และ blasticidin (20 μg/ml) ต่อการยับยั้งการเกิด และเพิ่มจำนวนเซลล์ท่อไต (cell proliferation) ที่ทำการกระตู้นการเพิ่มจำนวนเซลล์ใหม่ด้วย 100 μM of 8-Br cAMP โดยทำการวัดการเจริญเติบโตของเซลล์หลอดไตเมื่อใส่สาร steviol เป็นเวลา 24 ชั่วโมง จากปริมาณ Brd U-labeled DNA ของเซลล์ที่มีการแบ่งตัวใหม่ (mean \pm SE, n=3, **P < 0.01 compared to control without 8-Br cAMP group, ***P < 0.01 compared to control with 8-Br cAMP group, ns; not significant)

จากนั้นทำการศึกษาผลของสาร steviol ต่อการตายของเซลล์แบบ apoptosis ในเซลล์หลอดไต MDCK ในการทดลองนี้วัดค่าดังกล่าวด้วยวิธี flow cytometry โดยใส่สาร steviol ที่ความเข้มขัน 200 µM ไปในน้ำเลี้ยงเซลล์ หลอดไต MDCK แบบ monolayer เป็นเวลา 24 ชั่วโมง จากนั้นย้อมเซลล์กับโปรตีน annexin V ซึ่งโปรตีนตัวนี้จะไป จับกับ phosphatidylserine ที่ผนังเซลล์ด้านใน เป็นการบ่งบอกว่าเซลล์เกิดการตายแบบ apoptosis การทดลองนี้ได้ใช้ สาร H2O2 ความเข้มขัน 1 M เป็น positive control เพื่อแสดงถึงเซลล์ที่มีการตายแบบ apoptosis จากผลการทดลอง พบว่า สาร steviol ที่ความเข้มขัน 200 µM ไม่มีผลต่อการตายของเซลล์แบบ apoptosis เมื่อเปรียบเทียบกับเซลล์ หลอดไต MDCK ในกลุ่มควบคุม ดังแสดงในรูปที่ 9

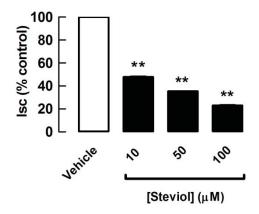

รูปที่ 9. ฤทธิ์ของสาร steviol ที่ความเข้มข้น 200 µM, และ H2O2 (1 M) ต่อการยับยั้งการตายของเซลล์ลอดไต MDCK แบบ apoptosis รูป ช่องสี่เหลี่ยมสี่ช่อง ข้างบน แสดงถึงกราฟจาก flow cytometry โดยช่องล่างซ้ายบ่งบอกถึงเซลล์ ปกติ ช่องล่างและบนขวาบ่งบอกถึงเซลล์ที่ตายแบบ early and late apoptosis และช่องบนซ้ายบ่งบอกว่าเซลล์ที่ตาย

แบบ necrosis รูปล่างแสดงถึงเปอร์เซ็นต์ของการตายของเซลล์แบบ apoptosis เมื่อใส่สาร steviol ที่เวลา 24 ชั่วโมง (mean ± SE, n = 4, **P < 0.01, ns; not significant)

2.2 ฤทธิ์ของสารอนุพันธ์ตัวที่ดีที่สุด (steviol) ต่อการหลั่งกระแสคลอไรด์จากเซลล์หลอดไต MDCK

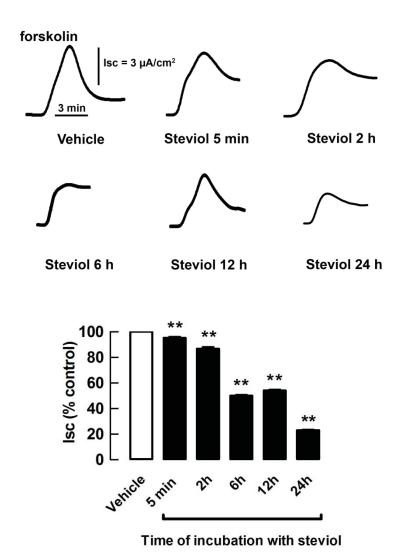

ทำการศึกษาผลของ steviol ในการยับยั้งการคัดหลั่งคลอไรด์ของเซลล์หลอดไตด้วยวิธีการวัดกระแสของคลอ ไรด์ไอออนโดยเทคนิค Ussing chamber experiment อันเป็นการบ่งบอกถึงการทำงานของ ช่องโปรตีนขนส่งคลอไรด์ (CFTR) โดยทำการศึกษาทั้งฤทธิ์แบบฉับพลัน (acute effect) และเรื้อรัง (chronic effect) หลัง incubation เซลล์กับ steviol เป็นเวลา 2, 6, 12, และ 24 ชั่วโมง

การทดลองแรกเป็นการศึกษาฤทธิ์แบบฉับพลันของ steviol ต่อการเคลื่อนที่ของคลอไรด์อิออนผ่านช่อง โปรตีนขนส่งคลอไรด์ที่อยู่ทางด้าน apical membrane ของเซลล์หลอดไต MDCK อย่างเดียว (apical chloride current) จึงทำการ permeabilized ผนังเซลล์ด้าน basolateral membrane ดังแสดงในรูปที่ 10 ซึ่งพบว่า สาร steviol ที่ความ เข้มขัน 50, 100, และ 200 µM ยับยั้งกระแสของคลอไรด์อิออนที่เคลื่อนที่ผ่าน apical membrane ในเซลล์ท่อไต MDCK ลงเหลือ 84.9 ± 1.6, 74.5 ± 5.8 และ 53.8 ± 11.2% ตามลำดับ เมื่อเทียบกับ 100% ของกลุ่มควบคุม (กระตุ้น ด้วย foskolin) ผลการทดลองแสดงว่า สาร steviol มีฤทธิ์แบบฉับพลันในการยับยั้งการหลั่งกระแสคลอไรด์ผ่านช่อง โปรตีนขนส่งคลอไรด์ CFTR ทาง apical membrane อย่างมีนัยสำคัญทางสถิติ



รูปที่ 10. ฤทธิ์แบบฉับพลันของ steviol ต่อการหลั่งของกระแสคลอไรด์โดยเซลล์หลอดไต MDCK ด้าน apical membrane ทดสอบที่ความเข้มข้น 50, 100, และ 200 μ M รูปซ้ายแสดงตัวอย่างของการหลั่งกระแสของคลอไรด์ที่วัด ได้ รูปด้านขวาคือกราฟแท่งแสดงผลการทดลองที่ได้ คำนวนเป็นเปอร์เซ็นต์ของกลุ่มควบคุม (กระตุ้นกระแสคลอไรด์ ด้วย forskolin) (mean of %control \pm SE, n > 3, *P < 0.05, **P < 0.01, ns; not significant)

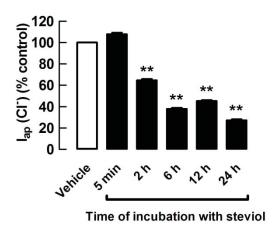
เนื่องจากการทดสอบฤทธิ์ของสาร steviol ต่อการยับยั้งการเจริญเติบโตของซีสต์ที่ผ่านมา ได้ทำการทดลอง โดย incubate สาร steviol กับซีสต์ เป็นเวลานานถึง 6 วัน ดังนั้นการที่ steviol ซะลอการเจริญเติบโตของซีสต์น่าจะมี ผลแบบเรื้อรังร่วมด้วย จึงทำการทดลองที่สองคือศึกษาฤทธิ์ของสาร steviol แบบเรื้อรังต่อการหลั่งกระแสคลอไรด์ของ เซลล์หลอดไต MDCK ใน intact cell โดยวัดกระแส short-circuit current measurement เมื่อ incubate เซลล์หลอดไต MDCK กับสาร steviol ที่ความเข้มขัน 10, 50, และ 100 µM เป็นเวลา 24 ชั่วโมง พบว่าสาร steviol สามารถลดการ หลั่งของกระแสคลอไรด์ที่กระตุ้นด้วย forskolin ลงเหลือ 47.8 ± 0.4, 35.4 ± 0.1, 23.1 ± 0.3 µA ตามลำดับ เมื่อ เปรียบเทียบกับ 100% ของกลุ่มควบคุม โดยค่าดังกล่าวมีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ดังแสดงในรูปที่ 11 และ 12 จากผลการทดลองนี้สรุปได้ว่า สาร steviol ที่ความเข้มขัน 100 µM สามารถลดการหลั่งกระแสคลอไรด์ใต้สูงสุด ในการทดลองต่อไป จึงได้เลือกความเข้มขันของสาร steviol สูงสุดที่ลดการคัดหลั่งคลอไรด์นั้นก็คือ ที่ความเข้มขัน 100 µM เพื่อทำการหาฤทธิ์ของสาร steviol ที่เวลาการ incubate กับเซลล์ท่อไต MDCK ที่เวลาแตกต่างกัน



รูปที่ 11. ผลของสาร steviol ที่ความเข้มขัน 50, 100, และ 200 µM ต่อการหลั่งของกะแสคลอไรด์ในเซลล์ท่อไต MDCK ที่กระตุ้นด้วย foskolin ในการทดลองนี้ incubate สาร steviol กับเซลล์เป็นเวลา 24 ชั่วโมงก่อนทำการวัด กระแสของคลอไรด์ (n = 3-10)

รูปที่ 12. สรุปผลของสาร steviol ที่ความเข้มข้น 10, 50, และ 100 µM ต่อการคัดหลั่งของคลอไรด์ไอออนในเซลล์ไต แบบ intact cell ที่กระตุ้นด้วย foskolin ในการทดลองนี้ incubate สาร steviol กับเซลล์เป็นเวลา 24 ชั่วโมงก่อนทำการ วัดกระแสของคลอไรด์ (mean of %control ± SE, n = 3-10, **P < 0.05)

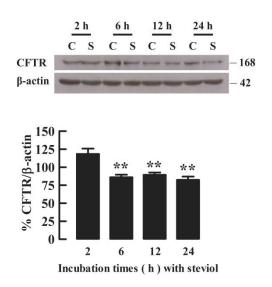
การทดลองที่สามคือการศึกษาฤทธิ์ของสาร steviol ต่อการยับยั้งการหลั่งกระแสคลอไรด์ที่เวลาแตกต่างกัน เพื่อดูกลไกการยับยั้งของสาร steviol ในเชิงลึก โดย incubate สาร steviol ที่ความเข้มขัน 100 μ M กับเซลล์หลอดไต MDCK ที่เป็น intact cell เป็นเวลา 5 นาที, 2, 6, 12, และ 24 ชั่วโมงตามลำดับ จากนั้นทำการวัดกระแสคลอไรด์ ด้วย short-circuit current measurement ผลการทดลองพบว่า ณ เวลา 5 นาที, 2, 6, 12, และ 24 ชั่วโมง สาร steviol ลด การหลั่งกระแสคลอไรด์เหลือ 95.2 \pm 0.8, 86.8 \pm 1.1, 50 \pm 0.7, 54.1 \pm 0.6, และ 23.1 \pm 0.3 ตามลำดับ เมื่อ เปรียบเทียบกับ 100% ของกลุ่มควบคุม พบว่ามีความแตกต่างอย่างมีนัยสำคัญทางสถิติ และที่เวลา 24 ชั่วโมง สาร steviol ออกฤทธิ์ยับยั้งได้มากที่สุด ดังแสดงในรูปที่ 13



รูปที่ 13. สรุปผลของสาร steviol ที่ความเข้มขัน 100 µM ต่อการหลั่งของกระแสคลอไรด์ในเซลล์หลอดไต MDCK ที่ เป็น intact cell ที่ถูกกระตุ้นด้วย forskolin รูปบนแสดงภาพการหลั่งกระแสคลอไรด์ ในการทดลองนี้ได้ incubate steviol กับเซลล์เป็นเวลา 5 นาที, 2, 6, 12, และ 24 ชั่วโมง และล้างเอา steviol ออก ก่อนนำเซลล์ไปวัดกระแสคลอไรด์ รูปล่างแสดงกราฟเปอร์เซ็นต์ของกระแสคลอไรด์เทียบกับกลุ่มควบคุม (mean ± SE, n = 7-16, **P < 0.05)

จากผลการทดลองข้างต้นสรุปว่า สาร steviol สามารถลดกระแสคลอไรด์ ในเซลล์ MDCK ที่ intact ทั้งตาม ความเข้มข้นของสาร (dose-dependent manner) และเวลาในการ incubate สาร (time-dependent manner) การ ทดลองต่อไปมีจุดประสงค์เพื่อยืนยันว่าสาร steviol สามารถลดการหลั่งกระแสคลอไรด์ทางด้าน apical side จริง จึงได้ ทำการ permeabilized เซลล์หลอดไตด้าน basolateral membrane ให้เหลือเฉพาะด้าน apical ที่ intact จากนั้น incubate กับ สาร steviol ที่ความเข้มข้น 100 µM ที่เวลา 5 นาที, 2, 6, 12, และ 24 ชั่วโมง แล้วจึงทำการวัดกระแส คลอไรด์ด้วย Ussing chamber experiment ผลปรากฏว่าการหลั่งกระแสคลอไรด์มีค่า 107.0 ± 1.4, 64.6 ± 1.2, 37.9 ± 1.0, 45.3 ± 0.8, และ 27.2 ± 0.9 % ตามลำดับ เมื่อเปรียบเทียบกับ 100% ของกลุ่มควบคุม และมีความแตกต่าง อย่างมีนัยสำคัญทางสถิติ ดังแสดงในรูปที่ 14 และ 15 ซึ่งการลดการหลั่งกระแสคลอไรด์โดย steviol ในเซลล์ MDCK ทั้งแบบ permeabilized cell และ intact cell สอดคล้องกัน โดยสาร steviol สามารถลดการหลั่งกระแสคลอไรด์ใด้เมื่อ เวลา 2 ชั่วโมงเป็นต้นไป และมีฤทธิในการยับยั้งมากที่สุดคือ ที่เวลา 24 ชั่วโมง การทดลองนี้สรุปได้ว่า ฤทธิในการ ยับยั้งการหลั่งกระแสคลอไรด์น่าจะมีการเกี่ยวข้องกับการเปลี่ยนแปลงปริมาณของช่องโปรตีนขนส่งคลอไรด์ด้าน apical side เมื่อดูจากระยะเวลาในการยับยั้งกระแสคลอไรด์ของ steviol

รูปที่ 14. แสดงกราฟ การยับยั้งการหลั่งของกระแสคลอไรด์ (apical chloride current) โดย steviol ที่ความเข้มข้น 100 µM ในเซลล์หลอดไต MDCK แบบ permeabilized cell ที่ถูกกระตุ้นด้วย foskolin ในการทดลองนี้ได้ incubate steviol กับเซลล์เป็นเวลา 5 นาที, 2, 6, 12, และ 24 ชั่วโมง ก่อนทำการวัดกระแสของคลอไรด์ (n = 5-11)

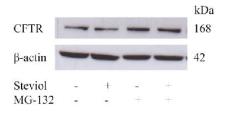

รูปที่ 15. สรุปผลของสาร steviol ที่ความเข้มข้น 100 µM ต่อการหลั่งของกระแสคลอไรด์ในเซลล์หลอดไต MDCK (permeabilized cell) ที่ถูกกระตุ้นด้วย foskolin ในการทดลองนี้ ได้ incubate สาร steviol กับเซลล์เป็นเวลา 5 นาที, 2, 6, 12, และ 24 ชั่วโมงและทำการล้างสาร steviol ออกไปจากเซลล์ ก่อนทำการวัดกระแสของคลอไรด์ (mean ± SE, n = 5-11, **P < 0.01)

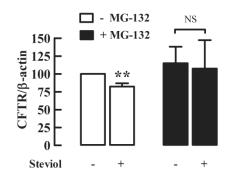
2.3 ฤทธิ์ของ steviol ต่อการแสดงออกของโปรตีน CFTR ในเซลล์หลอดไต MDCK

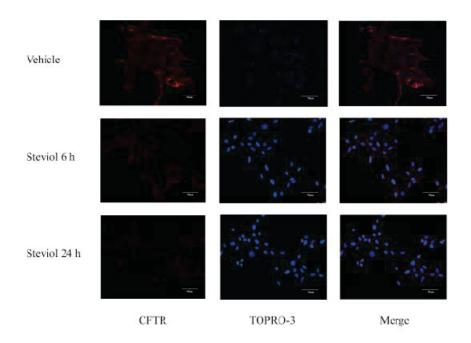
การศึกษาฤทธิ์ของ steviol ต่อการแสดงออกของช่องโปรตีนขนส่งคลอไรด์ CFTR ใน MDCK เซลล์ โดยการ วัดการแสดงออกของโปรตีนด้วยเทคนิค western blot analysis และ immunofluorescence ในการศึกษานี้ดูฤทธิ์ของ steviol ที่เวลาต่างๆ หรือTime-course study เพื่อศึกษาผลของการ steviol เมื่อ incubate กับเซลล์หลอดไต MDCK เป็นเวลา 2, 6, 12, และ 24 ชั่วโมง (chronic effect) ตามผลจาก Ussing chamber experiment ที่พบการลดลงของ กระแสคลอไรด์ ที่เวลาเหล่านี้ นอกจากนี้ยังทำการศึกษากลไกการออกฤทธิ์ของสาร steviol ในการยับยั้งการแสดงออก ของช่องโปรตีน CFTR ว่าผ่านขบวนการสลายโปรตีน CFTR (CFTR protein degradation) หรือไม่

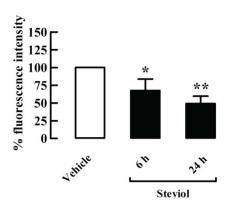
พบว่าสาร steviol ที่ความเข้มข้น 100 µM เมื่อ incubate กับเซลล์หลอดไต MDCK เป็นเวลา 2, 6, 12, และ 24 ชั่วโมง มีผลลดการแสดงออกของโปรตีนขนส่งคลอไรด์ซึ่งค่าที่วัดได้ ดังนี้ 118 ± 7.4, 86 ± 3.6, 89 ± 3.4, และ 82 ± 04.5 % ตามลำดับ เมื่อเปรียบเทียบกับ 100% ของกลุ่มควบคุม โดยปริมาณโปรตีนขนส่งคลอไรด์ CFTR ในเซลล์ที่ incubate กับสาร steviol เป็นเวลา 6-24 ชั่วโมง มีความแตกต่างอย่างมีนัยสำคัญทางสถิติจากกลุ่มควบคุม โดยมีฤทธิ์


ในการยับยั้งการแสดงออกของโปรตีนขนส่งคลอไรด์สูงสุดที่เวลา 6 ชั่วโมง ดังแสดงในรูปที่ 16 ผลการทดลองดังกล่าว สอดคล้องกับผลของที่ได้จากการศึกษาฤทธิ์ของสาร steviol ต่อการยับยั้งการหลั่งของกระแสคลอไรด์ที่ผ่านมา


รูปที่ 16. ผลของสาร steviol ที่ความเข้มข้น 100 µM ต่อการแสดงออกของช่องโปรตีนขนส่งคลอไรด์ CFTR ในเซลล์ หลอดไต MDCK ที่วัดด้วย western blot รูปบน แสดงปริมาณโปรตีนตามที่ระบุไว้ รูปล่าง แสดงร้อยละของโปรตีน ขนส่งคลอไรด์ CFTR เมื่อ incubate สาร steviol กับเซลล์เป็นเวลา 2, 6, 12, และ 24 ชั่วโมง เปรียบเทียบกับ 100% ของกลุ่มควบคุม (mean ± SE, n = 5-7, **P < 0.01)


ต่อจากนั้น ได้ทำการศึกษากลไกของ steviol ในการลดการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR จาก การทดลองข้างต้นพบว่า steviol มีฤทธิ์ในการลดการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR สูงสุดที่เวลา 6 ชั่วโมง ทำให้ตั้งสมมติฐานว่าฤทธิ์ดังกล่าวของ steviol น่าจะมีความเกี่ยวข้องกับขบวนการสร้าง-สลายโปรตีน ผู้วิจัยจึงทดสอบ สมมติฐานดังกล่าวด้วยการศึกษาผลของ steviol ต่อปริมาณโปรตีนขนส่งคลอไรด์ CFTR ในภาวะที่ incubate ร่วมกับ สาร MG-132 (50 µM) ซึ่งเป็นสารยับยั้งขบวนการสลายโปรตีนโดย proteasome จากการทดลองพบว่า สาร steviol ใม่สามารถลดการแสดงออกโปรตีนขนส่งคลอไรด์ CFTR เมื่อ incubate เซลล์กับ MG-132 เป็นเวลา 1 ชั่วโมงก่อน incubate กับ steviol ดังรูปที่ 17 (incubate กับ steviol เป็นเวลา 6 ชั่วโมง) และ 18 (incubate กับ steviol เป็นเวลา 24 ชั่วโมง) การทดลองนี้สรุปได้ว่า สาร steviol ลดการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR ผ่านกลไกการสลาย โปรตีนทาง proteasome pathway

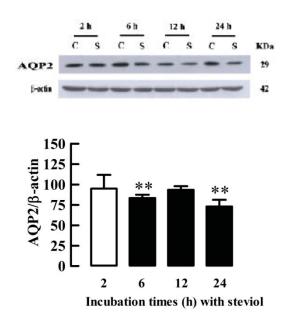

รูปที่ 17. สรุปผลของสาร steviol ที่ความเข้มข้น 100 µM ต่อการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR ในเซลล์ MDCK เมื่อ incubate เป็นเวลา 6 ชั่วโมง รูปบน แสดงผลของปริมาณโปรตีนตามที่ระบุไว้ ด้วยวิธี western blot รูป ล่าง แสดงร้อยละของโปรตีนขนส่งคลอไรด์ CFTR เมื่อยับยั้งขบวนการสลายโปรตีนของ proteasome ด้วยสาร MG-132 (50 µ) เป็นเวลา 1 ชั่วโมงก่อนใส่สาร steviol (mean ± SE, n = 5-7, **P < 0.01, ns; not significant)



รูปที่ 18. สรุปผลของสาร steviol ที่ความเข้มข้น 100 μ M ต่อการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR เมื่อ incubate กับเซลล์ เป็นเวลา 24 ชั่วโมง รูปบน แสดงผลของปริมาณโปรตีนตามที่ระบุไว้ รูปล่าง แสดงร้อยละของ โปรตีนขนส่งคลอไรด์ CFTR เมื่อยับยั้งการสลายโปรตีนของ proteasome ด้วยสาร MG-132 (50 μ M) เป็นเวลา 1 ชั่วโมงก่อน incubate กับ steviol (mean \pm SE, n=5-7, **P<0.01, ns; not significant)

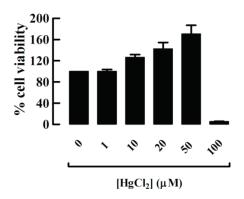
เนื่องจากการวัดการแสดงออกโปรตีน CFTR ด้วยวิธี Western blot analysis ค่าโปรตีนที่วัดได้เป็นปริมาณ ของโปรตีน CFTR ทั้งหมดของเซลล์หลอดไต MDCK (total CFTR) ดังนั้นเพื่อเป็นการยืนยันว่าสาร steviol มีฤทธิใน การยับยั้งการแสดงออกโปรตีนขนส่งคลอไรด์ที่ผิวเซลล์ จึงทำการทดลองหาปริมาณการแสดงออกของโปรตีนขนส่ง คลอไรด์ที่ผิวเซลล์ด้วยเทคนิค Immunofluorescence จากผลการทดลองพบว่า สาร steviol ที่ความเข้นขัน 100 µM ลดการแสดงออกของโปรตีนขนส่งคลอไรด์ที่ผิวเซลล์หลอดไต MDCK ณ เวลา 6 และ 24 ชั่วโมงของการ incubation โดยเริ่มเห็นการลดลงของโปรตีน CFTR ที่ผิวเซลล์ตั้งแต่ที่เวลา 6 ชั่วโมงและ ฤทธิ์ของ สาร steviol พบได้สูงสุดที่เวลา 24 ชั่วโมง ดังแสดงในรูปที่ 19 และ 20

รูปที่ 19. สรุปผลของสาร steviol ที่ความเข้มข้น 100 μ M ในการลดการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR ที่ ผิวเซลล์หลอดไต MDCK ด้วยวิธี t immunofluorescence รูปถ่ายการแสดงออกโปรตีนขนส่งคลอไรด์ CFTR ที่ผิวเซลล์ สีแดงแสดงถึงโปรตีน CFTR ส่วนสีน้ำเงินแสดงถึงนิวเคลียส ในการทดลองนี้ ได้ incubate สาร steviol กับเซลล์เป็น เวลา 6 และ 24 ชั่วโมง (n=3)

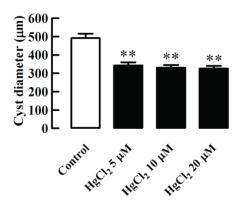


รูปที่ 20. สรุปผลของสาร steviol ที่ความเข้มข้น 100 μ M ต่อการลดการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR ที่ ผิวเซลล์หลอดไต MDCK ข้อมูลแสดงเป็นเปอร์เซ็นต์ความเข้มข้นของฟลูออเรสเซ็นต์ของ random region of interest (ROI = 35) ในการทดลองนี้ ได้ incubate กับสาร steviol กับเซลล์เป็นเวลา 6 และ 24 ชั่วโมง (mean \pm SE, n = 35, \star P < 0.05, \star *P < 0.01)

จากผลการทดลองที่กล่าวมาข้างต้น สามารถสรุปได้ว่า สาร steviol และอนุพันธ์ มีฤทธิ์ในการยับยั้งการ เจริญเติบโตและการเกิดของซีสต์ของเซลล์ MDCK โดยปราศจากฤทธิ์ในการฆ่าเซลล์ (cell viability) การลดการ แบ่งตัวของเซลล์ใหม่ (cell proliferation) หรือการกระตุ้นการตายของเซลล์แบบ apoptosis ในเซลล์ MDCK แต่เป็น การออกฤทธิ์ยับยั้งการการทำงานของช่องโปรตีนขนส่งคลอไรด์ CFTR และลดการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR ผ่านการกระตุ้นการสลายโปรตีนดังกล่าวทาง (proteasome-mediated CFTR degradation) ทำให้ลดการหลั่ง กระแสคลอไรด์ (cAMP-activated chloride secretion) ซึ่งผู้วิจัยได้ตีพิมพ์ผลงานข้างตันนี้ในวารสารวิชาการนานาชาติ (PLoS ONE; IF = 4.04) ไปเรียบร้อยแล้ว การศึกษามา ได้ทำการศึกษากลไกอื่นของสาร steviol ในการยับยั้งการ เจริญเติบโตของซีสต์จากเซลล์โมเดลถุงน้ำ MDCK และนำสาร steviol นี้ไปทดสอบฤทธิ์ในการชะลอการเจริญเติบโตของซีสต์ในหนูโมเดลโรคถุงน้ำ


2.4 ฤทธิ์ของสาร steviol ต่อการลดการแสดงออกของโปรตีนขนส่งน้ำ AQP2 ในเซลล์หลอดไต MDCK

จากการศึกษาที่ผ่านมาพบว่า การหลั่งของกระแสคลอไรด์ลงสู่โพรงของซีสต์ทำให้มีการดึงน้ำและโซเดียมอิ ออนผ่านเซลล์เยื่อบุซีสต์และช่องว่างระหว่างเซลล์ซีสต์ลงสู่ถุงซีสต์ด้วย ส่งผลให้ขนาดของซีสต์โตขึ้นและไปกดเบียด ทำลายเนื้อไตส่วนที่ดี การขนส่งของน้ำลงสู่ซีสต์นั้นอาจเกิดจากการขนส่งน้ำผ่านโปรตีนขนส่งน้ำ AQP2 ซึ่งแสดงออก ที่ผนังเซลล์หลอดไตด้าน apical ผู้วิจัยจึงได้ศึกษาฤทธิ์ของสาร steviol ต่อการแสดงออกของโปรตีนขนส่งน้ำ AQP2 ที่ แสดงออกในเซลล์ MDCK ด้วยวิธี western blot analysis พบว่า steviol ที่ความเข้มขัน 100 µM มีผลลดการ แสดงออกของโปรตีน AQP2 ในเซลล์ดังกล่าว ที่เวลา 6 และ 24 ชั่วโมง หลัง incubate เซลล์กับสาร steviol ดังแสดง ในรูปที่ 21

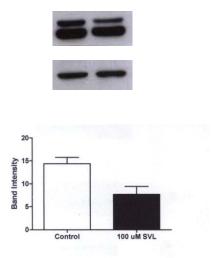

รูปที่ 21. ผลของสาร steviol ที่ความเข้มข้น 100 μ M ในการลดการแสดงออกของโปรตีนขนส่งน้ำ AQP2 ในเซลล์ MDCK ที่วิเคราะห์ด้วยวิธี western blot analysis รูปบน แสดงผลของปริมาณโปรตีนตามที่ระบุไว้ รูปล่าง แสดง เปอร์เซ็นต์ของโปรตีนขนส่งน้ำ AQP2 เมื่อ incubate เซลล์ กับสาร steviol กับเซลล์เป็นเวลา 2, 6, 12, และ 24 ชั่วโมง เปรียบเทียบกับ 100% ของกลุ่มควบคุม (mean \pm SE, n=4, **P<0.01)

จากการทดลองข้างต้นสรุปว่า สาร steviol มีฤทธิ์ลดการแสดงออกโปรตีนขนส่งน้ำ AQP2 ดังนั้น การทดลอง ต่อไป ผู้วิจัยจึงได้ศึกษาผลของ Mercury ซึ่งเป็นตัวยับยั้งการทำงานของโปรตีนขนส่งน้ำ AQP2 เป็น positive control เพื่อยืนยันว่าโปรตีนขนส่งน้ำ AQP2 มีส่วนในการเจริญเติบโตของซีสต์หรือไม่ นอกจากนี้ยังศึกษาฤทธิ์ของสาร steviol กับสาร Mercury ในซีสต์เพื่อดูว่า steviol ลดการเจริญเติบโตของซีสต์ผ่านการยับยั้งการทำงานของโปรตีนขนส่งน้ำ AQP2 ขั้นต้นทำการหาผลของตัวยับยั้งโปรตีนขนส่งน้ำ (Mercury) ต่อการฆ่าเซลล์ท่อไต เพื่อจะได้เลือกใช้ความ เข้มขันที่ไม่มีผลต่อการฆ่าเซลล์ มาทำการทดลองต่อไป โดยผลการทดลองพบว่าสาร mercury ยับยั้งการทำงานของ โปรตีนขนส่งน้ำที่ความเข้มขัน 1, 10, 20, 50 µM โดยไม่มีผลต่อการฆ่าเซลล์ ในขณะที่ สาร mercury ที่ความเข้มขัน 100 µM มีผลฆ่าเซลล์ เมื่อเปรียบเทียบกับกลุ่มควบคุม ดังแสดงในรูปที่ 22 ดังนั้น ผู้วิจัยจึงเลือกความเข้มขันของสาร mercury ที่ 5, 10, และ 20 µM มาใช้ในการทดลองการเลี้ยงซีสต์ต่อไป

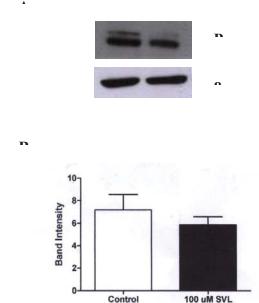
รูปที่ 22. ร้อยละการอยู่รอดของเซลล์หลอดไต MDCK เมื่อเลี้ยงกับสารยับยั้งการทำงานของโปรตีนขนส่งน้ำ AQP2 (mercury) ที่ความเข้มขัน 1, 10, 20, 50, และ 100 µM เป็นเวลา 72 ชั่วโมง (mean of % control ± SE, n = 3)

การทดลองต่อมา ผู้วิจัยได้ทำการทดลองเลี้ยงชีสต์จากเซลล์ MDCK แล้วใส่สาร mercury ยับยั้งการทำงาน ของโปรตีนขนส่งน้ำ (AQP2) ที่ความเข้มขัน 5, 10, และ 20 µM ในวันที่ 12 ขนาดของซีสต์ได้ถูกนำมาเปรียบเทียบ กับกลุ่มควบคุมพบว่า สาร mercury สามารถลดขนาดของซีสต์ได้ 30.27%, 32.74%, และ 33.78% ตามลำดับ ดัง แสดงในรูปที่ 23 จากการทดลองนี้พบว่า การทำงานของโปรตีนขนส่งน้ำมีส่วนเกี่ยวข้องในการเจริญเติบโตของซีสต์ใน เซลล์ MDCK ดังนั้นจึงมีความเป็นไปได้ว่าฤทธิในการลดการเจริญเติบโตของซีสต์ของ steviol อาจจะผ่านทางกลไก การยับยั้งการทำงานของโปรตีนขนส่งน้ำ AQP2 ร่วมด้วย

รูปที่ 23. ผลของสารยับยั้งการทำงานของโปรตีนขนส่งน้ำ (AQP2) โดย mercury ต่อขนาดของซีสต์จากเซลล์โมเดลถุง น้ำ MDCK โดยแสดงขนาดของซีสต์จากเซลล์ MDCK ในกลุ่มควบคุม (DMSO) กลุ่มที่ได้รับสาร mercury ที่ความ เข้มขัน 5, 10, และ 20 µM ตามลำดับ และวัดขนาดใน วันที่ 12 (mean ± SE, n > 30 cysts, **P < 0.01)


2.5 ฤทธิ์ของ steviol ต่อการเกิดซีสต์ใหม่ (cell proliferation in MDCK cyst growth and formation) ในเซลล์ โมเดลถุงน้ำ MDCK

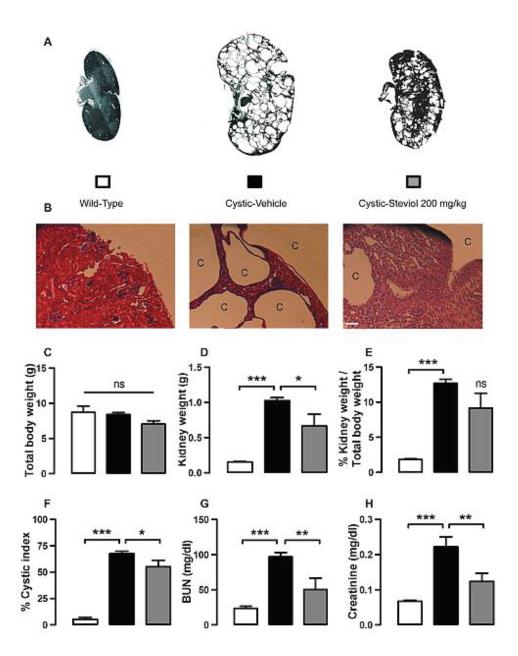
เนื่องจากกลไกการเจริญเติบโตของซีสต์สามารถเกิดจากการเพิ่มจำนวนของเซลล์หลอดไตในซีสต์ (cell proliferation) ได้ด้วย ซึ่งการ phosphorylation ที่โปรตีน ERK ก็มีส่วนสำคัญในการเพิ่มจำนวนของเซลล์ ดังนั้นเพื่อ ศึกษาว่า steviol สามารถลดขนาดของซีสต์โดยผ่านกระบวนการยับยั้งการ phosphorylation ของโปรตีน ERK ได้ หรือไม่ ผู้วิจัยได้ทำการศึกษากลไกของ steviol ในการยับยั้งการเพิ่มจำนวนของเซลล์หลอดไตในซีสต์ (cell proliferation) ในเซลล์ MDCK โดยการวัดการแสดงออกของโปรตีน phospho-ERK (p-ERK) ด้วยเทคนิค Western blot analysis ได้ทำการศึกษาผลของ steviol ต่อการแสดงออกของโปรตีน p-ERK ทั้งใน MDCK cyst growth model และ cyst formation model


สำหรับ MDCK cyst growth model นั้นได้เลี้ยงชีสต์จากเซลล์ MDCK ใน collagen gel เป็นเวลา 6 วัน จากนั้น incubate เซลล์กับสาร steviol ที่ความเข้มข้น 100 µM กับเป็นเวลา 6 วัน แล้วทำการสกัดโปรตีนจากซีสต์ ออกจาก collagen gel โดยการ incubate gel ใน type I collagenase solution ที่ความเข้มข้น 3 mg/ml อุณหภูมิ 37

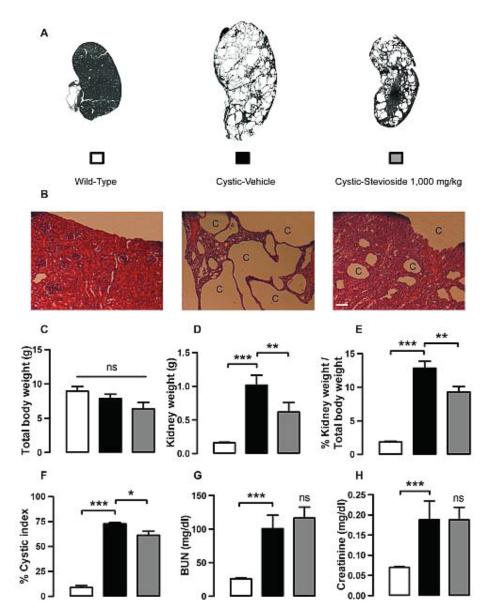
C เป็นเวลา 30 นาที หลังจากที่ collagen gel ถูกย่อยแล้ว นำ sample ไป centrifuge ที่ 12000 rpm เพื่อแยก protein ออกมา จากนั้นจึงนำ sample ไปวัดหาปริมาณโปรตีน p-ERK พบว่า steviol ที่ความเข้มข้น 100 µM สามารถ ลดการแสดงออกของโปรตีน p-ERK ใน MDCK cyst growth model เมื่อเปรียบเทียบกับกลุ่มควบคุม ดังแสดงในรูปที่ 24

ส่วนใน MDCK cyst formation model ได้ทำการเลี้ยงซีสต์จากเซลล์ MDCK ใน collagen gel โดย incubate สาร steviol ที่ความเข้มข้น 100 µM กับเซลล์ เป็นเวลา 12 วัน แล้วสกัดโปรตีนจากซีสต์ออกจาก collagen gel จากนั้น จึงนำ sample ไปวัดปริมาณโปรตีน p-ERK พบว่า steviol ที่ความเข้มข้น 100 µM ลดการแสดงออกของโปรตีน p-ERK ใน MDCK cyst model ได้เช่นกัน ดังแสดงในรูปที่ 25

รูปที่ 24. ผลของสาร steviol ที่ความเข้มขัน 100 µM ต่อการแสดงออกของโปรตีน phospho-ERK ของซีสต์จากเซลล์ โมเดลถุงน้ำ MDCK (MDCK cyst growth) ที่วัดด้วย western blot รูปบน แสดงผลของปริมาณโปรตีนตามที่ระบุไว้ (A) รูปล่าง กราฟแท่งแสดงร้อยละของโปรตีน phospho-ERK เมื่อ incubate สาร steviol กับเซลล์ซีสต์เป็นเวลา 6 วัน เปรียบเทียบกับ 100% ของกลุ่มควบคุม (B)

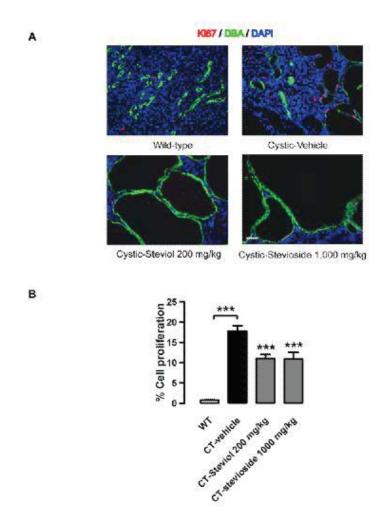


รูปที่ 25. ผลของสาร steviol ที่ความเข้มขัน 100 µM ต่อการแสดงออกของโปรดีน phospho-ERK ในซีสต์จากเซลล์ โมเดลถุงน้ำ MDCK (MDCK cyst formation) ที่วัดด้วย western blot รูปบน แสดงผลของปริมาณโปรตีนตามที่ระบุไว้ (A) รูปล่าง กราฟแสดงร้อยละของโปรตีน phospho-ERK เมื่อ incubate สาร Steviol กับเซลล์ซีสต์เป็นเวลา 12 วัน เปรียบเทียบกับ 100% ของกลุ่มควบคุม (B)


ตอนที่ 3 ศึกษาศักยภาพในการพัฒนาสารสกัดจากใบหญ้าหวานและสารอนุพันธ์ steviol ในการรักษาโรค polycystic kidney ในหนูโมเดลโรคถุงน้ำ (PKD mouse model)

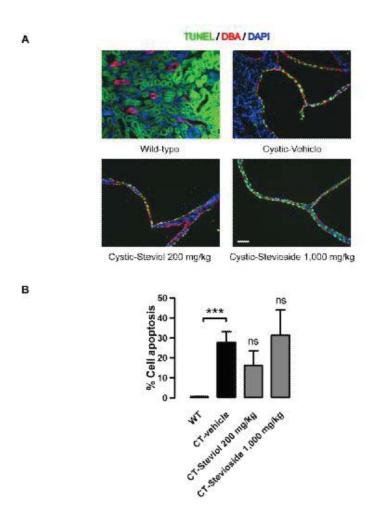
3.1 ฤทธิ์ของสารสกัดจากใบหญ้าหวาน (stevioside) และสารอนุพันธ์ (steviol) ในการรักษาโรคถุงน้ำในหนู โมเดลโรคถุงน้ำ (PKD mouse model)

จากการศึกษาที่ผ่านมาพบว่า steviol สามารถชะลอการเจริญเติบโตและยับยั้งการเกิดซีสต์จากเซลล์โมเดลถุง น้ำ MDCK ผ่านการยับยั้งการทำงานและกระตุ้นการทำลายของโปรตีนขนส่งคลอไรด์ CFTR ที่ผิวเซลล์ แต่ซีสต์จาก เซลล์โมเดลถุงน้ำ MDCK ไม่ได้มีพยาธิสภาพเหมือน หรือคล้ายกับ PKD ในคน ดังนั้นจึงจำเป็นอย่างยิ่งที่จะต้องศึกษา ฤทธิ์ของสาร steviol ในโมเดลหนูที่มีพยาธิสภาพของโรคใกล้เคียงกับโรคถุงน้ำในไตของมนุษย์ (human ADPKD) ผู้วิจัยใช้หนูโรคถุงน้ำในไต (ADPKD mouse model) ชนิด *PKD1^{flox/flox}:Pkhd1-Cre* หนูชนิดนี้เกิดจากการผสมพันธุ์ ระหว่างหนู PKD1^{flox/flox} กับหนู PKD1^{flox+}:Pkhd1-Cre โดยหนู PKD1^{flox/flox}:Pkhd1-Cre จึงไม่มีการแสดงออกของยืน PKD1 ที่ collecting duct ของเซลล์หลอดไต ซึ่ง *PKD1* เป็นยืนที่ควบคุมการแสดงออกของโปรตีน polycystin-1 เมื่อไม่ ้ มียืนนี้จะทำให้ไตมีการสร้างถุงน้ำและเพิ่มจำนวนพร้อมการขยายขนาดของซีสต์ที่ไตขึ้นเรื่อย ๆ จนเกิดภาวะไตวายและ หนูจะตายในที่สุด เนื่องจาก steviol เป็นสารที่เกิดจาก metabolism ของ stevioside ดังนั้นการทดลองนี้ใช้ทั้งสารสกัด จากใบหญ้าหวาน stevioside และสารอนุพันธ์ steviol มาทดสอบในหนู *PKD1^{flox/flox}:Pkhd1-Cre* โดยสาร stevioside จะให้หนูโดยวิธีการป้อน (gavage) ส่วนสาร steviol จะให้โดยวิธีการฉีดเข้าท้อง (intraperitoneal injection) ซึ่งสารทั้ง สองจะให้กับหนูอายุ 10 วันหลังคลอด จนถึงอายุ 23 วัน รวมระยะเวลาการให้สาร 14 ครั้ง 1 ครั้งต่อวัน เมื่อหนูมีอายุ 24 วัน จะทำการผ่าเอาไตหนูออกมา เพื่อวัดน้ำหนักไต (kidney weight) น้ำหนักตัว (body weight), เปอร์เซ็นต์ ระหว่างน้ำหนักไตและน้ำหนักตัว (% kidney weight/body weight) ขนาดพื้นที่ถุงน้ำในไต (cystic index), และค่าของ สารในเลือด ที่บ่งบอกถึงการทำงานของไต (BUN and creatinine) จากผลการทดลองพบว่าสาร stevioside สามารถ ชะลอการเจริญเติบโตของซีสต์เมื่อป้อนให้หนูที่ปริมาณ 1,000 mg/kg และ สาร steviol มีผลในการชะลอการ เจริญเติบโตของซีสต์เมื่อแดให้หนูที่ปริมาณ 200 mg/kg ดังนั้นพบว่าสารทั้งสองชนิดมีผลในการลดขนาดและน้ำหนักไต ลดเปอร์เซ็นต์ระหว่างน้ำหนักไตและน้ำหนักตัวของหนูที่เป็นโรคถุงน้ำในไตของกลุ่มที่ให้สาร เมื่อเทียบกับหนูที่เป็นโรค ถุงน้ำในไตของกลุ่มควบคุม อย่างมีนัยสำคัญทางสถิติ โดยพบการเปลี่ยนแปลงน้ำหนักตัวของหนูในกลุ่มที่ให้สารและ กลุ่มควบคุม อย่างไรก็ตาม เฉพาะสาร steviol เท่านั้นที่มีช่วยส่งเสริมการทำงานของไตให้มีค่าดีขึ้น โดยดูจากค่า BUN and creatinine ที่ต่ำลงเมื่อเทียบกับหนูโมเดลโรคถุงน้ำในกลุ่มควบคุม ในขณะที่สาร stevioside ไม่มีผลในการช่วยเพิ่ม การทำงานของไต


รูปที่ 25. ผลของสาร steviol ต่อการชะลอการเจริญเติบโตของซีสต์ในหนูโมเดลโรคถุงน้ำ รูปบน (A) แสดงขนาดของไต ตัดตามยาวของหนูอายุ 24 วัน ในกลุ่มหนูปกติ หนูโรคถุงน้ำกลุ่มควบคุม และหนูโรคถุงน้ำที่ให้สาร steviol รูปกลาง (B) แสดงรูปทาง histology ของเนื้อไตของหนูปกติ และหนูโรคถุงน้ำในกลุ่มควบคุมและกลุ่มที่ให้สาร steviol รูปล่าง กราฟแท่งแสดงค่าบ่งชี้ความรุนแรงของโรคถุงน้ำในไต คือ น้ำหนักตัวของหนู (C) น้ำหนักของไตหนู (D) เปอร์เซ็นต์ ระหว่างน้ำหนักไตหนูกับน้ำหนักตัวหนู (E) ค่าเปอร์เซ็นต์ของพื้นที่ซีสต์ในไตหนู (F) และกราฟแท่งแสดงค่าบ่งชี้การ ทำงานของไต คือ BUN (G) และ creatinine (H) (mean ± SE, n=4-6 mice, *P < 0.05, **P < 0.01, ***P < 0.001, ns; not significant)

รูปที่ 26. ผลของสาร stevioside ต่อการชะลอการเจริญเติบโตของชีสต์ในหนูโมเดลโรคถุงน้ำ รูปบน (A) แสดงขนาด ของไตตัดตามยาวของหนูอายุ 24 วัน ในกลุ่มหนูปกติ หนูโรคถุงน้ำกลุ่มควบคุม และหนูโรคถุงน้ำที่ให้สาร steviol รูป กลาง (B) แสดงรูปทาง histology ของเนื้อไตของหนูปกติ และหนูโรคถุงน้ำในกลุ่มควบคุมและกลุ่มที่ให้สาร steviol รูป ล่าง กราฟแท่งแสดงค่าบ่งชี้ความรุนแรงของโรคถุงน้ำในไต คือ น้ำหนักตัวของหนู (C) น้ำหนักของไตหนู (D) เปอร์เซ็นต์ระหว่างน้ำหนักไตหนูกับน้ำหนักตัวหนู (E), ค่าเปอร์เซ็นต์ของพื้นที่ชีสต์ในไตหนู (F), และกราฟแท่งแสดง ค่าบ่งชี้การทำงานของไต คือ BUN (G) และ creatinine (H) (mean ± SE, n=4-6 mice, *P < 0.05, **P < 0.01, ***P < 0.001, ns; not significant)

3.2 ฤทธิ์ของสารสกัดจากใบหญ้าหวาน (stevioside) และสารอนุพันธ์ (steviol) ต่อการยับยั้งการเพิ่มจำนวน เซลล์ (cell proliferation) และการตายของเซลล์แบบ apoptosis


เนื่องจากพยาธิสภาพของโรคถุงน้ำในไตเกิดจากการที่มีการกระตุ้นการสร้างเซลล์ใหม่ (cell proliferation) อยู่ ตลอดเวลา ในการทดลองนี้ทำการวัดค่า Ki67 ซึ่งเป็นดัชนีชี้วัดการแบ่งเซลล์ใหม่ของเซลล์หลอดไต (marker of proliferating cell) ด้วยวิธี immunohistochemistry โดยการทำเอาสไลด์ของไตหนูมาย้อมด้วย primary antibody ของ Ki67 แล้วทำการถ่ายรูปด้วยกล้อง inverted microscope (TE 2000-U, Nikon) จากนั้นทำการนับจำนวนเซลล์ที่ย้อมติด สีของ Ki67 (แดง) ที่อยู่บริเวณหลอดไตส่วน collecting duct (ย้อมติดสีเขียว) เปรียบเทียบกับจำนวนของเซลล์ทั้งหมด ที่อยู่บริเวณ collecting duct จากผลการทดลองพบว่า สาร stevioside และ steviol สามารถลดจำนวนเซลล์ที่แบ่งตัว ใหม่บริเวณหลอดไตเมื่อเปรียบเทียบกับหนูโมเดลโรคถุงน้ำในกลุ่มควบคุม ดังแสดงในรูปที่ 27

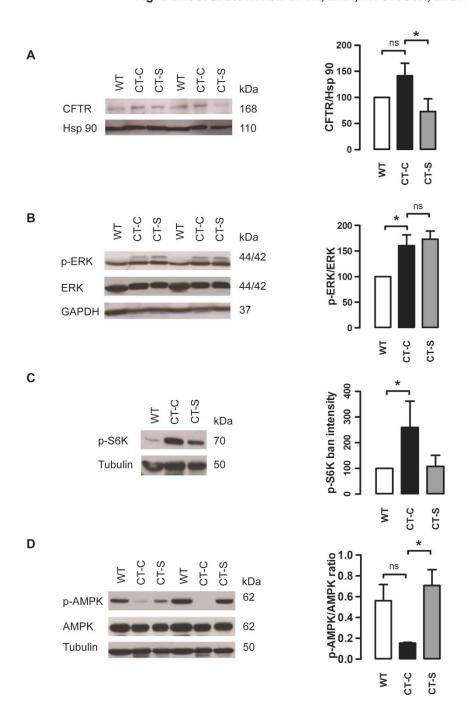
รูปที่ 27. ผลของสารสกัดจากใบหญ้าหวาน stevioside และสารอนุพันธ์ steviol ต่อการยับยั้งการแบ่งเซลล์ซีสต์ใหม่ (cell proliferation) สไลด์ของไตหนูปกติและหนูโมเดลโรคถุงน้ำในกลุ่มควบคุมและกลุ่มที่ได้รับสาร steviol และ

stevioside ถูกนำมาย้อมด้วย Ki67 (positive marker of proliferating cell) (สีแดง) DBA (สีเขียว) และ DAPI (สีน้ำ เงิน) ด้วยวิธี immunohistochemistry รูปบน (A) แสดงเซลล์ท่อไตหนูที่ย้อมติด Ki67 ในหนูทั้งสามกลุ่ม รูปล่าง (B) แสดงกราฟเปอร์เซ็นต์ของ cell proliferation ในหนูปกติ หนูโมเดลโรคถุงน้ำทั้งในกลุ่มควบคุมและกลุ่มที่ให้สาร steviol และ stevioside (mean ± SE, n = 4 kidneys, ***P < 0.001)

การทดลองต่อมา คือ การทดสอบผลของสารสกัดจากใบหญ้าหวาน stevioside และสารอนุพันธ์ steviol ต่อ การตายของเซลล์ท่อไตแบบ apoptosis โดยการนำสไลด์ของไตหนูไปย้อมสีเพื่อดูการตายของเซลล์แบบ apoptosis ด้วยวิธี TUNEL assay จากนั้นทำการถ่ายรูปและนับจำนวนเซลล์ที่ย้อมติด TUNEL (เขียว) ในบริเวณหลอดไต collecting duct (ย้อมติดสีแดง) ผลปรากฏว่า ทั้งสาร stevioside และ steviol ไม่มีผลต่อการตายของเซลล์แบบ apoptosis แต่อย่างใด จากการทดลองข้างต้นสรุปได้ว่า สาร stevioside และ steviol ซะลอการเจริญเติบโตของซีสต์ใน หนูโมเดลโรคถุงน้ำส่วนหนึ่งผ่านทางการยับยั้งการแบ่งเซลล์ซีสต์ใหม่ โดยไม่มีผลต่อการตายของเซลล์แบบ apoptosis

รูปที่ 28. ผลของสารสกัดจากใบหญ้าหวาน stevioside และสารอนุพันธ์ steviol ต่อการยับยั้งการตายของเซลล์แบบ apoptosis สไลด์ของไตหนูปกติและหนูโมเดลโรคถุงน้ำในกลุ่มควบคุมและกลุ่มที่ได้รับสาร steviol และ stevioside ถูก วิเคราะห์ด้วยวิธี TUNEL assay รูปบน (A) แสดงเซลล์ท่อไตหนูที่ย้อมด้วย TUNEL (cell apoptotic detection) (สี่ เขียว) DBA (สีแดง) และ DAPI (สีน้ำเงิน) ในหนูทั้งสามกลุ่ม รูปล่าง (B) แสดงกราฟเปอร์เซ็นต์ของ cell apoptosis ในหนูปกติ, หนูโมเดลโรคถุงน้ำทั้งในกลุ่มควบคุมและกลุ่มที่ให้สาร steviol และ stevioside (mean \pm SE, n=4 kidneys, ***P < 0.001, ns; not significant)

3.3 กลไกการออกฤทธิ์ของ steviol ในการชะลอการเจริญเติบโตของซีสต์ในหนูโมเดลโรคถุงน้ำ


จากผลการทดลองข้างต้นพบว่า สารสกัดจากใบหญ้าหวาน stevioside และสารอนุพันธ์ Steviol สามารถ ชะลอการเจริญเติบโตของซีสต์บริเวณหลอดไตในหนูโมเดลโรคถุงน้ำ แต่เฉพาะสาร steviol เท่านั้นที่ช่วยฟื้นฟูการ ทำงานของไตให้ดีขึ้น อีกทั้งยังมีผลในการลดการสร้างเซลล์ซีสต์ใหม่ ดังนั้นสาร steviol จึงถูกนำมาศึกษากลไกการ ออกฤทธิ์ในการลดการเจริญเติบโตของซีสต์โดยละเอียดต่อไป จากผลการทดลองที่ผ่านมาพบว่า steviol ลดการ เจริญเติบโตของซีสต์ในเซลล์โมเดลโรคถุงน้ำ MDCK ผ่านทางการยับยั้งการทำงานของโปรตีนขนส่งคลอไรด์ CFTR ผู้วิจัยจึงนำไตของหนูโมเดลโรคถุงน้ำในกลุ่มที่ฉีดด้วยสาร steviol และกลุ่มควบคุม รวมทั้งหนูปกติ มาวิเคราะห์หา โปรตีนโดย western blot analysis เพื่อดูการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR ในหลอดไตหนู ตามรูปที่ 29A พบว่า มีการแสดงออกของปริมาณโปรตีนขนส่งคลอไรด์ CFTR ที่มากขึ้นในหนูโมเดลของถุงน้ำ เปรียบเทียบกับหนู ปกติ และสาร steviol สามารถลดการแสดงออกของโปรตีนดังกล่าวอย่างมีนัยสำคัญทางสถิติ จึงทำให้สาร steviol สามารถลดการเจริญเติบโตของซีสต์ในหนูโมเดลโรคถุงน้ำได้ โดยส่วนหนึ่งผ่านทางการยับยั้งการแสดงออกของโปรตีน ขนส่งคลอไรด์ CFTR

ทั้งนี้กลไกการเกิดซีสต์ในโรคถุงน้ำในไตนอกจากจะเกิดจากการการหลั่งกระแสคลอไรด์ลงไปในโพรงซีสต์ (fluid secretion) แล้ว ยังมีการกระตุ้นการสร้างเซลล์ซีสต์ใหม่ (cell proliferation) ร่วมด้วย การศึกษาที่ผ่านมารายงาน ว่า phosphorylation ของโปรตีน ERK (P-ERK) ที่มากกว่าปกติมีส่วนสำคัญที่ทำให้เกิดการสร้างและเพิ่มจำนวนของ ซีสต์ ในโรคถุงน้ำในไต อีกทั้งสาร steviol มีผลในการลดโปรตีน p-ERK ในซีสต์ของเซลล์โมเดลถุงน้ำ MDCK ดังการ ทดลองข้างตัน ดังนั้นผู้วิจัยจึงศึกษาฤทธิ์ของ steviol ในการลดการแสดงออกของโปรตีน p-ERK ในไตของหนูที่เป็น โรคถุงน้ำในไต โปรตีนจากไตของหนูที่เป็นโรคถุงน้ำในไตถูกนำมาวัดการแสดงออกของโปรตีน p-ERK ด้วยวิธี western blot analysis ผลการทดลองพบว่าสาร steviol ไม่มีผลต่อการลดการแสดงออกของโปรตีน phospho-ERK1/2

ดังแสดงในรูปที่ 29B ที่น่าสนใจคือการกระตุ้นการทำงานของ mTOR pathway ซึ่งเป็นโปรตีนอีกตัวที่ควบคุมการแบ่ง เซลล์ใหม่ พบว่าทำงานมากในเซลล์ซีสต์ในไต จึงได้ทำการวัดการแสดงออกของโปรตีน phospho-S6K ซึ่งเป็นโปรตีน ในกลุ่มของ mTOR signaling ผลปรากฏว่า สาร steviol สามารถลดการแสดงออกของโปรตีน phospho-S6K เมื่อ เปรียบเทียบกับไตหนูโมเดลโรคถุงน้ำในกลุ่มควบคุม ดังแสดงในรูป 29C ดังนั้น สาร steviol ยับยั้งการแบ่งตัวใหม่ ของซีสต์ส่วนหนึ่ง ผ่านการยับยั้งโปรตีน mTOR/S6K signaling

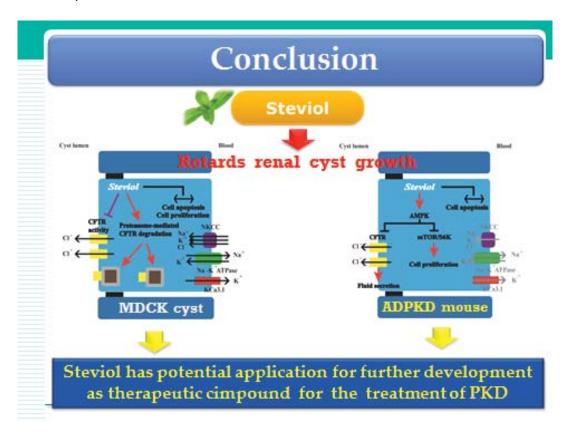

เนื่องจากการทำงานของโปรตีนขนส่งคลอไรด์ CFTR สามารถถูกควบคุมได้โดยโปรตีนที่มีชื่อว่า AMP-activated protein kinase (AMPK) ซึ่งการทำงานของโปรตีน AMPK จะมีผลยับยั้งการทำงานของโปรตีนขนส่งคลอไรด์ CFTR อีกทั้งยังยับยั้งการสร้างเซลล์ซีสต์ใหม่ (cell proliferation) จากการกระตุ้นของ mTOR pathway ดังนั้นผู้วิจัยได้ ทำการศึกษาผลของ steviol ต่อการแสดงออกของโปรตีน phospho-AMPK (p-AMPK) ด้วยวิธี western blot analysis จากผลการทดลองพบว่าสาร steviol มีผลกระตุ้นการทำงานของโปรตีน AMPK โดยเพิ่มการแสดงออกของโปรตีน p-AMPK ในหนูโมเดลโรคถุงน้ำเมื่อเทียบกับหนูโมเดลโรคถุงน้ำกลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ ดังแสดงในรูปที่ 29D ผลการทดลองนี้สอดคล้องกับฤทธิ์ของสาร steviol ในการยับยั้งการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR และโปรตีน phosphor-S6K จึงสรุปได้ว่า steviol ชะลอการเจริญเติบโตของซีสต์ในหนูโมเดลโรคถุงน้ำโดยการออกฤทธิ์ ยับยั้งการการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR และ mTOR/S6K signaling pathway ผ่านการกระตุ้นการ ทำงานของโปรตีน AMPK

Fig. 5 Effect of steviol on CFTR, ERK, mTOR/S6K, and AMPK

รูปที่ 29. กลไกการออกฤทธิ์ของสารอนุพันธ์ steviol ต่อการชะลอการเจริญเติบโตของซีสต์ในหนูโมเดลโรคถุงน้ำในไต นำเอาไตของหนูปกติ (WT), หนูโมเดลโรคถุงน้ำกลุ่มควบคุม (CT-C) และกลุ่มที่ให้สาร steviol ความเข้มขัน 200 mg/kg (CT-S) มาสกัดเอาโปรตีน จากนั้นนำมาวัดค่าการแสดงออกของโปรตีนที่สนใจด้วยวิธี western blot analysis รูปที่หนึ่ง (A) รูปซ้ายคือรูปการแสดงออกของโปรตีนขนส่งคลอไรด์ CFTR, Hsp90 รูปขวาเป็นกราฟแสดงปริมาณการ แสดงออกของโปรตีนขนส่งคลอไรด์ CFTR ในเซลล์ท่อไตหนูทั้งสามกลุ่ม (mean of %control \pm SE, n=4 kidneys, $^*P < 0.05$, ns; not significant) รูปที่สอง (B) รูปซ้ายคือรูปที่แสดงออกของโปรตีน phospho-ERK 1/2, total-ERK 1/2, and GAPDH ในเซลล์ท่อไตของหนูทั้งสามกลุ่ม รูปขวาคือกราฟแสดงปริมาณของโปรตีน p-ERK 1/2 / ERK (mean of %control \pm SE, n=4 kidneys, $^*P < 0.05$, ns; not significant) รูปที่สาม (C) รูปซ้ายคือรูปที่แสดงออกของโปรตีน phospho-S6K and tubulin ในเซลล์ท่อไตของหนูทั้งสามกลุ่ม รูปขวาคือกราฟแสดงปริมาณของโปรตีน p-S6K intensity (mean of %control \pm SE, n=4 kidneys, $^*P < 0.05$) รูปที่สี่ (D) รูปซ้ายคือรูปที่แสดงออกของโปรตีน phospho-AMPK, total-AMPK, and tubulin ในเซลล์ท่อไตของหนูทั้งสามกลุ่ม รูปขวาคือกราฟแสดงปริมาณของ โปรตีน p-AMPK / AMPK (mean \pm SE, n=4 kidneys, $^*P < 0.05$, ns; not significant)

ภาพสรุปกลไกการออกฤทธิ์ ของ steviol ในการยับยั้งการเจริญเติบโตของ ซีสต์

OUTPUT ที่ได้จากโครงการ

1. ผลิตนักศึกษาบัณฑิต

นักศึกษาระดับปริญญาเอก 2 คน คือ นายเชาวลิต ยั่วจิตร และ นางสาว พรหมพร รักษาเสรี ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

2. ผลงานตีพิมพ์ในวารสารนานาชาติ 3 เรื่อง คือ

- 1. Yuajit C, Homvisasevongsa S, Chatsudthipong L, Soodvilai S, Muanprasat C, Chatsudthipong V. Steviol Reduces MDCK Cyst Formation and Growth by Inhibiting CFTR Channel Activity and Promoting Proteasome-Mediated CFTR Degradation. PLoS ONE. 2013, 8(3): e58871. doi:10.1371/journal.pone.0058871 (IF = 4.04)
- 2. Muanprasat C, Chatsudthipong V. (2013) Cholera: pathophysiology and emerging therapeutic targets. Future Med Chem. 2013 May;5(7):781-98. Doi 10.4155/fmc.13.42. (IF = 3.31)
- 3. Raksaseri P, Chatsudthipong V, Muanprasat C, Soodvilai S. *Activation of liver X receptors reduces cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride transport in kidney collecting duct cells*. Am J Physiol Renal Physiol. 2013 May 29. [Epub ahead of print] (IF = 3.612).

และได้ส่งตีพิมพ์อีก 1 เรื่อง ขณะนี้อยู่ระหว่างการรอผลพิจารณา คือ

1) Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease

4. นำเสนอผลงานวิจัยในการประชุมวิชาการ

1. ผลงานจากงานวิจัยในโครงการได้ถูกนำเสนอในรูปแบบโปสเตอร์ในงานประชุมในประเทศและต่างประเทศ ดังนี้

ปี 2554

2) The 40th Annual Scientific Meeting & International Conference of the Physiological Society of Thailand, May 2-4, 2011, Khon kaen, Thailand

หัวข้อ: Steviol, a derivative of natural sweetener stevioside, slows cyst enlargement in an *in vitro* model of polycystic kidney disease

ปี 2555

2) Experimental Biology 2012, April 21-25, San Diego Convention Center, San Diego, CA, USA หัวข้อ: Steviol, an aglycone of natural sweetener stevioside, slows MDCK cyst progression by reducing activity and expression of CFTR chloride channel

ปี 2556

2) Experiment Biology 2013, April 22-26, Boston Exhibition & Convention Center, Boston, MA, USA

หัวข้อ: Steviol retards cyst growth through inhibition of ERK and Wnt/β-catenin pathways

ภาคผนวก

1) Reprint และ manuscript ตามแนบ

2) กิจกรรมอื่น ๆที่เกี่ยวข้อง

- 2.1) มีความร่วมมือกับ Prof. Stefan Somlo, Director of Polycystic Kidney Disease Program and Chief, Section of Nephrology, Yale University โดยส่งนักศึกษาในโครงการไปทำการศึกษาวิจัยฤทธิ์ของสาร stevioside, steviol, และ steviol's derivative ในหนูที่เป็นโรคถุงน้ำในไตจากการ knockout PKD1 gene เพื่อ ยืนยันผลในการทดลดองในเซลล์ที่เหนี่ยวนำให้เกิดเป็น ซีสต์ ทั้งยังได้รับการอนุเคราะห์ ให้นำเซลล์หลอดไตปกติ และเซลล์หลอดไตที่เป็นโรค (Prkcsh wild-type & knockout cells) เนื่องจากขาด โปรตีน polycystin-1 มาใช้ศึกษา ต่อในเมืองไทย อันจะทำให้ได้ข้อมูลที่ลึกซึ้งมากขึ้น ขณะนี้การดำเนินงานได้ผลเป็นที่น่าพอใจ
- 2.2) มีความร่วมมือกับ Dr. David N. Sheppard, University of Bristol, Department of Physiology, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK ที่ได้ส่ง MDCK cell type I มาให้ใช้ในการศึกษาวิจัย เพื่อทำให้เกิด cyst model ในการศึกษาเบื้องต้น

3) รางวัลที่ได้รับ

- 3.1) ศาสตราจารย์ ดร. วรนุช ฉัตรสุทธิพงษ์ ได้รับการคัดเลือกเป็นศิษย์เก่าดีเด่น สาขาวิชาการ และวิจัยประจำปี 2555 จากสมาคมศิษย์เก่าบัณฑิตวิทยาลัย มหาวิทยาลัยมหิดล
- 3.2) ศาสตราจารย์ ดร. วรนุช ฉัตรสุทธิพงษ์ ได้รับการคัดเลือกเป็นJapanese Society for the Study of Xenobiotics (JSSX) fellow, Japan (2011)
- 3.3) ผู้ช่วยศาสตราจารย์ ดร.นพ. ฉัตรชัย เหมือนประสาท ได้รับรางวัลนักวิทยาศาสตร์รุ่นใหม่ประจำปี พ.ศ. 2556 จากมูลนิธิส่งเสริมวิทยาศาสตร์และเทคโนโลยีในพระบรมราชูปถัมภ์
- 3.4) นายเชาวลิต ยั่วจิตร ได้รับรางวัล Outstanding poster presentation จากการประชุม The 2nd Thailand National Research University Summit, วันที่ 7-8 พฤษภาคม พ.ศ. 2556

Steviol Reduces MDCK Cyst Formation and Growth by Inhibiting CFTR Channel Activity and Promoting Proteasome-Mediated CFTR Degradation

Chaowalit Yuajit¹, Sureeporn Homvisasevongsa², Lisa Chatsudthipong¹, Sunhapas Soodvilai^{1,3}, Chatchai Muanprasat^{1,3}, Varanuj Chatsudthipong^{1,3}*

1 Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand, 2 Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand, 3 Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand

Abstract

Cyst enlargement in polycystic kidney disease (PKD) involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK) cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM) reversibly inhibited cyst formation and cyst growth by 72.5±3.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h) with steviol (100 microM) also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h) with steviol (100 microM) markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.

Citation: Yuajit C, Homvisasevongsa S, Chatsudthipong L, Soodvilai S, Muanprasat C, et al. (2013) Steviol Reduces MDCK Cyst Formation and Growth by Inhibiting CFTR Channel Activity and Promoting Proteasome-Mediated CFTR Degradation. PLoS ONE 8(3): e58871. doi:10.1371/journal.pone.0058871

Editor: Eric Feraille, University of Geneva, Switzerland

Received October 30, 2012; Accepted February 7, 2013; Published March 11, 2013

Copyright: © 2013 Yuajit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Thailand Research Fund (grant BRG5380005 to VC), the program Strategic Scholarships for Frontier Research Network for the Join Ph.D. Program from The Office of the Higher Education Commission (to VC and CY), and the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative (Grant to VC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

1

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: varanuj.cha@mahidol.ac.th

Introduction

Polycystic kidney disease (PKD) is an inherited disorder characterized by the presence of enlarging fluid-filled cysts, which disrupt the normal renal parenchyma and eventually leads to end-stage renal failure [1,2]. Autosomal dominant polycystic kidney disease (ADPKD), the most common form of PKD, is caused by mutation of PKD1 or PKD2, which encode the proteins polycystin-1 or polycystin-2, respectively [3]. The majority of ADPKD patients require kidney replacement or renal hemodial-ysis [4]. Currently there is no specific pharmacotherapy for this disease.

Although the exact mechanism of ADPKD pathogenesis is not known, studies have shown that an increase in cAMP level within the renal epithelial cells lining the cyst plays a central role in PKD cystogenesis. The increase in intracellular cAMP level stimulates renal epithelial cell proliferation and raises transepithelial fluid secretion into the cyst lumen [2,5,6]. This fluid secretion is driven by cAMP-activated transepithelial chloride transport via the cystic

fibrosis transmembrane conductance regulator (CFTR) chloride channel located at apical membrane (facing the lumen) of the cells lining the cyst [7]. Intracystic accumulation of chloride draws sodium and water into the cyst cavity via a paracellular pathway [8]. Inhibition of CFTR chloride channel with CFTR inhibitors has been shown to slow down cystogenesis both in an *in vitro* Madin-Darby canine kidney (MDCK) cell culture model and an *in vivo* model of PKD [9,10]. Therefore, CFTR chloride channel has been proposed as a potential target for PKD intervention.

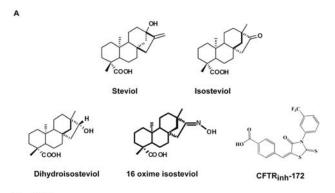
Stevioside, extracted from *Stevia rebuadiana*, is widely used as a noncaloric sweetener in food in several countries in Asia and South America [11]. The pharmacokinetics of stevioside show that it is first converted to the major metabolite steviol by intestinal microflora before being absorbed in the intestine and distributed by the blood to several organs, including intestine, liver, and kidney [12,13,14]. Previous studies reported that steviol underwent both phase I and phase II metabolism, with steviol glucuronide being detected as a major metabolite in the blood [11]. Most consumed stevioside is excreted as steviol glucoronide

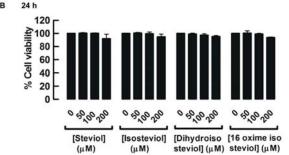
in urine [11]. The reported therapeutic properties of stevioside include anti-inflammatory [15], anti-hypertensive [16], anti-hyperglycemic [17], and anti-diarrheal effects [18]. In addition, steviol was found to interact with renal organic anion transporters, making it helpful in enhancing the therapeutic efficacy of drugs [19,20]. It is of interest to note that steviol and its derivative (dihydroisosteviol) inhibit cAMP-activated chloride secretion by targeting CFTR in a human colonic epithelial cell line [18]. Thus, it appeared possible that steviol and its derivatives could inhibit the CFTR chloride channel in PKD.

In the present study, we investigated the inhibitory effects and mechanism of action of steviol and its derivatives on cyst formation and enlargement in the MDCK cell model of PKD.

Materials and Methods

Cell culture


Type I MDCK epithelial cell line, kindly provided by Professor David N. Sheppard (University of Bristol, Bristol, UK), was cultured at 37 $^{\circ}\text{C}$ under a humidified atmosphere of 5% CO $_2/$ 95% O $_2$ in a 1:1 mixture of Dulbecco's modified Eagle medium (DMEM) and Ham's F-12 nutrient medium supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 µg/ml streptomycin, and 5 µg/ml insulin-transferin-selenium-X supplement [21]. The solvent used for preparing steviol was dimethyl sulfoxide (DMSO). Concentration of DMSO in all experiments was less than 0.5% v/v.


Chemicals and reagents

Steviol, isosteviol, dihydroisosteviol, and 16-oxime isosteviol were synthesized as described previously [18]. The purity of all compounds was checked by thin layer chromatography and nuclear magnetic resonance spectroscopy. Trypsin, FBS, penicillin, and streptomycin were purchased from HyClone (Waltham, MA, U.S.A.); amphotericin B, amiloride, forskolin, 8-Br cAMP, CFTR_{inh}-172, protease inhibitor cocktail, and DMEM/Ham F-12 from Sigma-Aldrich (St. Louis, MO, U.S.A.); GlyH-101 [22], MG-132, propidium iodide, and (BrdU) cell proliferation assay kit from Calbiochem (San Diego, CA, U.S.A.); collagen from PureCol, Inamed Biomaterials (Fremont, CA, USA); and Annexin V-fluorescein-conjugate from Beckman coulter (Marseille, France). Rabbit and mouse anti-CFTR antibodies for western blot and immunofluorescence experiments were from Cell Signaling (Beverly, MA, USA) and Abcam (Cambridge, MA, USA), respectively. The former CFTR antibodies recognize the amino acids near the N-terminus of first transmembrane domain of CFTR, while the latter recognize amino acid residues 113-117 in the first extracellular transmembrane domain of CFTR.

Cell viability assay

MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) assays were used to assess the effects of steviol and its derivatives on cell viability [23]. In brief, MDCK cells (1×10^4 cells/well), seeded in 96-well plate, were grown for 24 h, and then incubated with test compounds at various concentrations for 24 and 72 h, respectively. Adherent cells were treated with serum-free MDCK media containing 10% MTT solution for 4 h under humidified atmosphere at 37 °C. Following removal of media 100 μ l aliquot of DMSO was added and absorbance at 530 nm was measured. Cell viability was calculated as percent of the control group.

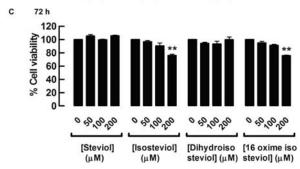
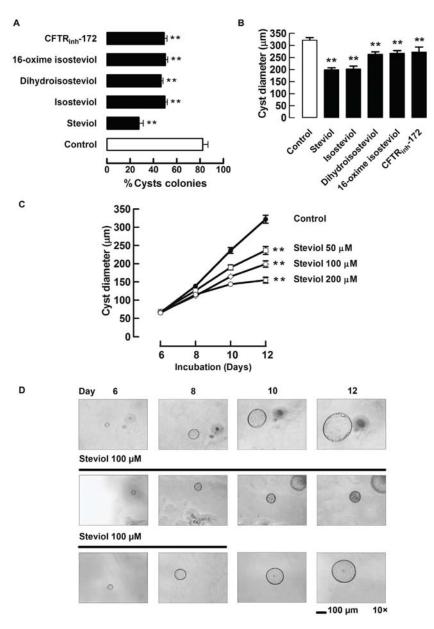
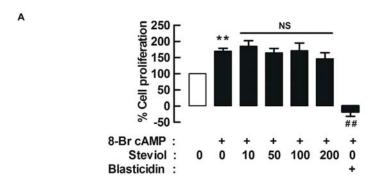



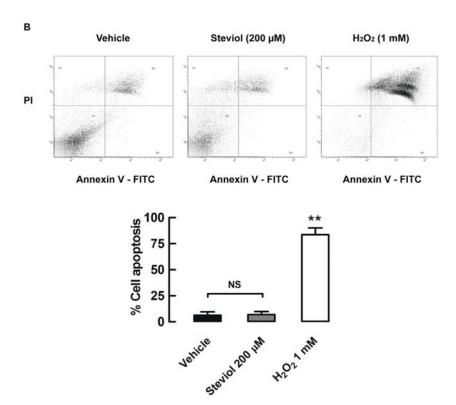
Figure 1. Cytotoxicity evaluation of steviol and derivatives. (A) The chemical structure of steviol, isosteviol, dihydroisosteviol, 16-oxime isosteviol, and CFTR_{inh}-172. MDCK cells were seeded in 96-well plates, and incubated with the indicated concentrations of steviol, isosteviol, dihydroisosteviol, and 16 oxime isosteviol. Cell viability was assessed by MTT assay after 24 h (B) and 72 h (C) of incubation. Results were expressed as mean of % control \pm SE (n = 3, **P<0.01). doi:10.1371/journal.pone.0058871.g001

MDCK cyst model

MDCK cells (800 cells/well) were suspended in 0.4 ml of 3.0 mg/ml ice-cold collagen supplemented with 10% 10X minimum essential medium (MEM), 10 mM HEPES, 27 mM NaHCO3, 100 U/ml penicillin, and 100 µg/ml streptomycin (pH 7.4) in a 24-well culture plate and incubated at 37 °C for 90 min in water bath to allow gelation of collagen. Then, a 1.5 ml aliquot of MDCK medium containing 10 µM forskolin was added to each well and the plate was maintained at 37 °C under humidified atmosphere of 5% CO2/95% O2. It has been well established that in the presence of forskolin in the culture medium, MDCK cells seeded onto collagen gels undergo a cAMP-dependent cell proliferation and fluid secretion as observed in ADPKD-derived cysts [24,25].

For cyst formation experiments, test compounds were added to MDCK cell cultures in the continued presence of 10 μ M forskolin from day 0. MDCK media containing forskolin and test




Figure 2. Effect of steviol and its derivatives on cyst progression in MDCK cyst model. (**A**) Inhibitory effect of steviol and its derivatives on MDCK cyst formation. MDCK cysts were incubated with 100 μM of steviol and its derivatives in media containing forskolin (10 μM) after cell seeding on day 0 onward. The graph represents percent of cyst colonies at day 6 after MDCK cell seeding in the absence (control) and presence of all compounds (mean±SE; n=4 wells/condition; **P<0.01 compared with control). (**B**) Inhibitory effect of steviol and its derivatives on MDCK cyst growth. The graph shows the outer cyst diameter at day 12 (mean±SE; n=32-77 cysts; **P<0.01 compared with control). (**C**) Dose-response of effect of steviol on MDCK cyst growth. After cell seeding in 3D collagen gel for 6 days, media containing forskolin and steviol at doses of 50, 100, and 200 μM were added to the MDCK cells from day 6 onward. Results were shown as mean value of cyst diameter at days 6, 8, 10, and 12 (n=43-77 cysts; **P<0.01 compared with control). (**D**) Representative light micrographs show MDCK cyst growth in 3D collagen gel after seeding of MDCK cells for 6 days. Three independent experiments were performed. Forskolin (10 μM) without (**2D, top**) or with steviol (100 μM) (**2D, middle, bottom**) was added to the culture medium at day 6. To test for reversibility, steviol was removed at day 9 (**2D, bottom**). Scale bar = 100 μm; magnification = ×10. doi:10.1371/journal.pone.0058871.g002

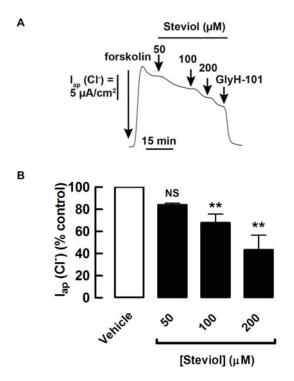
compounds were changed every two days. At day 6, the numbers of cysts (with diameters >50 μm) and non-cyst cell colonies were counted using an inverted phase contrast light microscope (Nikon TE 2000-S, Nikon Corporation, Tokyo, Japan) at $\times 10$ magnification. Four wells per culture condition were measured. For the index of cyst formation, percent of cyst colonies was calculated by multiplying the ratio of numbers of cyst colonies (diameter

 \geq 50 μ m) and the number of cyst plus non-cyst colonies (diameter <50 μ m) by 100. Total number of colonies (cyst and non-cyst) in various conditions was around 200–300.

For determination of cyst growth, the cysts at day 6 were incubated for another 6 consecutive days. Photographs of individual cysts (the same cyst in collagen gel identified by marking on the plate) were taken at every two days (day 6, 8, 10,

Figure 3. Effect of steviol on cell proliferation and apoptosis. (**A**) MDCK cell proliferation was assessed by BrdU cell proliferation assay. MDCK cells were seeded onto 96-well plates and grown for 24 h. The media containing 8-Br cAMP (100 μM) with or without steviol at doses of 10, 50, 100, and 200 μM was added and incubated for 24 h. BrdU was added at 18 h after addition of all compounds. The data represent percent of cell proliferation of MDCK cells treated with steviol at various concentrations. 20 μg/ml of blasticidin was used as positive control. Four independent experiments were done (mean of percent control±SE; n = 4, **P < 0.01 compared with group of no cAMP treatment; ## P < 0.01 compared with cAMP treated group). (**B**) MDCK cell apoptosis was analyzed by flow cytometry. (**3B, top**) MDCK cell were incubated with steviol at a concentration of 200 μM for 24 h. Cells were stained with annexin V or propidium iodide. Apoptotic cells were localized in the lower right (early apoptosis) and upper right (late apoptosis) quadrants of the dot-pot graph using propidium iodide vs annexin V. 1 mM of hydrogen peroxide (H₂O₂) was used as positive control. (**3B, bottom**) The bar graphs represented percent of MDCK cell apoptosis of four independent experiments (mean percent control±SE; n = 4; **P < 0.01 compared with control). doi:10.1371/journal.pone.0058871.g003

and 12) after seeding. To determine cyst size, the outer diameters of cysts were measured using Image J software. For inclusion in this study, each culture had to have at least 30 cysts with diameters ${>}50~\mu m.$


Cell proliferation assay

MDCK cells (8×10³cells/well) were seeded and grown for 24 h in a 96-well plate in DMEM/Ham's F-12 media supplemented with 10% FBS and insulin-transferrin-selenium X solution (ITS) under humidified atmosphere of 5% CO₂/95% O₂. Adherent cells

were incubated with incubation media containing 100 μ M 8-Br cAMP in 0.002% FBS without ITS in the presence or absence of 100 μ M steviol for 24 h. BrdU reagent solution was added at 18 h after addition of 8-Br cAMP. Absorbance at 450 nm was measured and cell proliferation is reported as percent of the OD₄₅₀ value of the control group [23].

Cell apoptosis assay

MDCK cells (2×10^5) were treated with vehicle (0.1% DMSO) or 100 μ M steviol for 24 h as described above. MDCK cells were

Figure 4. Inhibition by steviol of forskolin-stimulated apical chloride current. Under permeabilization conditions, MDCK cell monolayers were mounted in hemichambers filled with a chloride gradient buffer. (**A**) Representative currents of acute effect. Steviol at all doses was added to both apical and basolateral hemichambers after stimulation of the chloride current by forskolin (post-treatment) and the currents were recorded at 50, 100, and 200 μM of steviol. At the end of experiment, 50 μM of GlyH-101 was added. (**B**) Summary of the data for the acute effect of steviol on apical chloride current in basolaterally permeabilized MDCK cell monolayers. (4 separate experiments, mean±SE; n=4; **P<0.01 compared with controls) doi:10.1371/journal.pone.0058871.g004

suspended in 500 μ l of Annexin V binding buffer (100 mM HEPES-NaOH, pH 7.4, 1.5 M NaCl, 50 mM KCl, 10 mM MgCl₂, 18 mM CaCl₂ in distilled water) and incubated with 0.25 μ g/ml Annexin V-fluorescein conjugate and 5 μ g/ml propidium iodide for 15 min at 4 °C before flow cytometry analysis (BD Biosciences, San Jose, CA, USA) [26]. Cell apoptosis was quantified as the percent of the total cells undergoing apoptosis.

Ussing chamber experiment

MDCK cells (5×10^5 cells/well) were seeded on Snapwell inserts. MDCK media were changed every two days and transepithelial resistance (R_t) was measured using an epithelial voltohmmeter (World Precision Instruments, Sarasota, FL) as previously described [21]. On day 8, media from the apical side of MDCK cell monolayer were removed to form an air-liquid interface to enhance CFTR expression in MDCK epithelia [27]. On day 10, only MDCK polarized epithelia monolayers with resistance >2,000 Ohm.cm² were used for subsequent Ussing experiments.

For short-circuit current measurements, a Snapwell insert containing MDCK cells was mounted in the Ussing chamber. Both hemichambers were filled with a Krebs' buffer solution containing 120 mM NaCl, 25 mM NaHCO₃, 3.3 mM KH₂PO₄, 0.8 mM K₂HPO₄, 0.5 mM MgCl₂, 10 mM HEPES, and 10 mM

glucose (pH 7.4). The solution was continuously bubbled with 5% CO₂/95% O₂ gas mixture at 37 $^{\circ}\text{C}.$

For apical chloride current measurements, the basolateral membrane was permeabilized with amphoteric n B (250 μ g/ml) for 20 min. The hemichamber at the basolateral side was filled with a high chloride buffer solution containing 140 mM NaCl, 5 mM KCl, 0.36 mM K₂HPO₄, 0.44 mM KH₂PO₄, 1.3 mM CaCl₂, 0.5 mM MgCl₂, 10 mM HEPES, and 4.2 mM NaHCO₃, pH 7.2. The buffer solution facing the apical membrane had a composition similar to that of the basolateral bathing solution, except that 133.3 mM Na-gluconate, 2.5 mM NaCl, and 5 mM K-gluconate were included to generate a chloride concentration gradient from the basolateral to the apical side. Both hemichambers were connected via KCl Agar Bridge to voltage and current Ag/AgCl electrodes and clamped at 0 mV. Short-circuit current was recorded continuously using a DVC-1000 voltage clamp (World Precision Instruments, Sarasota, FL). Data were digitized using PowerLab data acquisition system (ADInstruments Inc. Colorado Springs, CO). Peak forskolin-stimulated current was recorded for analysis of steviol effect on CFTR-mediated chloride secretion.

Western blot analysis

Cells grown in 6-well plates were incubated with lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM NaF, 1 mM Na₃VO₄, 1 mM PMSF (phenylmethylsulfonyl fluoride), and protease inhibitor (PI) cocktail for 20 min at 4 °C. After centrifugation at 10,000 g for 20 min, supernatant proteins (30 μg) were separated by 12% SDS-polyacrylamide gel electrophoresis, transferred onto a nitrocellulose membrane and CFTR in MDCK cells was immunochemically detected using primary rabbit polyclonal anti-CFTR and secondary horseradish peroxidase-conjugated goat anti-rabbit IgG antibodies. The intensity of immunoreactive band is reported relative to that of β -actin (used to normalize gel loading).

Immunofluorescence experiment

MDCK cells were grown as non-polarized epithelia on glass slides and incubated with or without 100 μM steviol for 6 h and 24 h periods. Cells were fixed in 10% methanol and incubated with primary anti-CFTR mouse monoclonal (at 1:100 dilutions) and Alexa Fluor 568-conjugated goat anti-mouse secondary antibody (at 1:100 dilutions). Glass slides were fixed and nucleus were stained with TOPRO-3 (at 1:300 dilutions) and examined by a confocal laser microscopy (FV-1000; Olympus) at $\times 40$ magnification. The data were analyzed as percent fluorescence intensity of 35 random regions of interest (ROI).

Statistical analysis

Results of all experiments are shown as the mean \pm S.E.M. Statistical significance between control and treatment groups was calculated using student's unpaired t test, one-way ANOVA followed by Bonferroni's post hoc test or repeated measure ANOVA, where appropriate. A P-value of <0.05 is considered as statistically significant.

Results

Inhibitory effect of steviol and its derivatives on MDCK cyst formation and growth

Before proceeding with the assay of cyst formation and growth, MDCK cell viability was evaluated in the presence of 50, 100, and 200 μ M steviol and its derivatives, isosteviol, dihydroisosteviol, 16-oxime isosteviol (Fig. 1A) using MTT assay. After 24 h, none of

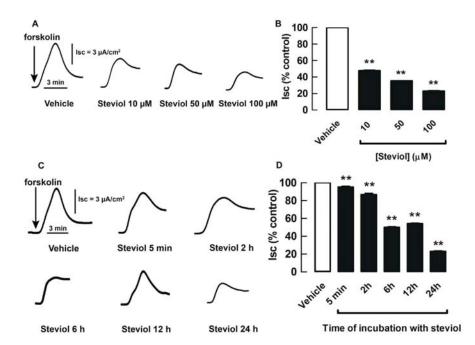
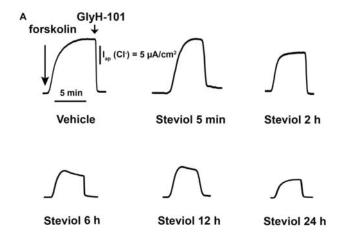


Figure 5. Inhibition by steviol of short-circuit current measurement in dose- and time-dependent manners. MDCK cell monolayer treated with steviol at the indicated concentrations or vehicle for 24 h were mounted in hemichambers filled with Krebs' buffer solution. After stimulation of current by forskolin, steviol inhibition was seen to have inhibited I_{sc} in a dose-dependent fashion. Representative tracings (**A**) and the summary of the data of 3–10 separate experiments (**B**) are shown (mean \pm SE; n=3-10; **p<0.01 compared with controls). (**C**) Representative time-response tracings of short-circuit current measurements. Monolayers were pretreated with 100 μ M of steviol for 5 minutes and 2, 6, 12, and 24 h. (**D**) Summary of the data from time-response experiments. (mean \pm SE; n=7-16 separate experiments; **p<0.01 compared with controls) doi:10.1371/journal.pone.0058871.g005

the compounds affected MDCK cell viability, but at 72 h isosteviol and 16-oxime isosteviol at the highest dose (200 μM) reduced cell viability by 23.9±1.8% and 24.2±0.8%, respectively (Fig. 1B and Fig. 1C). Thus, all subsequent experiments were conducted using steviol and derivatives at the concentration of 100 μM .

To determine the effects of steviol and derivatives (isosteviol, dihydroisosteviol and 16-oxime isosteviol) on cyst formation in an in vitro model of PKD, MDCK cells seeded in collagen gel were exposed to 100 µM steviol, its 3 derivatives and 10 µM CFTR_{inh}-172 (a CFTR inhibitor) [28] in the presence of 10 µM forskolincontaining media. At day 6, the number of cysts (outer diameter >50 μm) and non-cyst colonies were counted. The percent of cyst colonies in the control cell group was 82.2±4.5%, whereas the percents of cyst colonies in cells treated with steviol, isosteviol, dihydroisosteviol, 16-oxime isosteviol and CFTR_{inh}-172 were $27.5\pm3.6\%$, $49.8\pm1.9\%$, $46.5 \pm 1.6\%$ $50.2 \pm 1.9\%$ 49.2±2.4%, respectively (Fig. 2A). For determination of the inhibitory effect on cyst growth, steviol, the 3 derivatives (all at $100~\mu M)$ and CFTR $_{\rm inh}\text{-}172$ (at $10~\mu M)$ were added at day 6 to the forskolin-treated MDCK cells. At day 12, cyst diameters were measured and compared to those of the control group. The average cyst size was found to be decreased by 38.2%, 37.2%, 18.0%, 16.8%, and 15.3% with steviol, isosteviol, dihydroisosteviol, 16-oxime isosteviol and CFTR_{inh}-172 treatments, respectively (Fig. 2B). In short, the average cyst diameters at day 12 of all treatment groups were significantly smaller than that of the control group. Taken together, these results indicated that steviol and its derivatives inhibited both cyst formation and growth in the MDCK cyst model and, among the compounds tested, steviol had the greatest effect. Therefore, only steviol was selected for further studies.

The inhibitory effect of steviol on cyst growth showed dose-dependency over the concentration range of 50 to 200 μM (Fig. 2C). The reversibility of the effect of steviol (100 μm) was examined by removing it from the cyst culture at day 9 (Fig. 2D). The inhibitory effect of steviol on cyst growth appeared to be abolished following its removal (Fig. 2D).


Effect of steviol on cell proliferation and apoptosis

The inhibitory effect of steviol on MDCK cyst growth could involve suppression of cell proliferation or induction of apoptosis. Using a BrdU cell proliferation assay, we found that treatment with 8-Br cAMP (100 μM) for 24 hours stimulated MDCK cell proliferation and this was not affected by the presence of steviol (10, 50, 100, and 200 μM) (Fig. 3A). Similarly, steviol over the same concentration range did not induce apoptosis of MDCK cells as assessed using a flow cytometry assay (Fig. 3B). Therefore, inhibitory effect of steviol on cyst formation may result from inhibition of chloride secretion.

Effect of steviol on chloride transport in MDCK cell monolayer

The acute effect of steviol on cAMP-activated chloride secretion of MDCK cells was determined by measuring apical chloride current in basolaterally permeabilized MDCK cells. Steviol (at concentrations of 50, 100, and 200 μM), when added to both apical and basolateral hemichambers after 15 min of forskolin (20 μM) stimulation, reduced the forskolin-stimulated apical chloride current in a dose-dependent manner, reaching 46.2±11.2% of the control current at 200 μM (Fig. 4).

The time response and the prolonged effect of steviol on cAMPactivated chloride secretion were investigated using short-circuit current measurements in MDCK cell monolayers. Incubation of

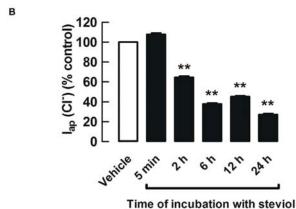


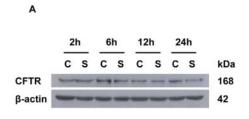
Figure 6. Steviol inhibits forskolin-stimulated apical chloride current in a time-dependent manner. After permeabilization of the basolateral membrane with amphotericin B, MDCK cell monolayers were mounted in hemichambers filled with a chloride gradient buffer. 20 μM of forskolin was added to stimulate apical chloride current. (A) Representative tracings of chronic effect (pretreatment with steviol for 5 minutes, 2, 6, 12, and 24 h) were shown. At the end of the experiment, 50 μM of Gly-H101 was added. (B) Summary of the data for the chronic effect of steviol on apical chloride current in permeabilized MDCK cell monolayers (mean \pm SE; n=5-11 separate experiments; $^{**P}{<}$ 0.01 compared with controls) doi:10.1371/journal.pone.0058871.g006

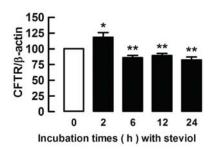
the cells for 24 h with 10–100 μM steviol resulted in reduction in short-circuit current (I_{sc}) in a dose-dependent manner (Fig. 5A and 5B). When MDCK cell monolayers were treated with 100 μM steviol at various durations from 5 min up to 24 h, the significant reduction in I_{sc} was observed after 2 h of incubation. The effect became more pronounced at longer periods of incubation (Fig. 5C and 5D). Similar results were obtained for the apical chloride current measured in MDCK cell monolayers with amphotericin-B-permeabilized basolateral membranes in the presence of a basolateral-to-apical chloride gradient (Fig. 6). These sets of experiments suggested that steviol reduced CFTR expression in MDCK cells.

Effect of steviol on CFTR protein expression in MDCK cells

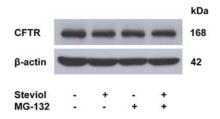
To confirm that steviol reduced CFTR expression level in MDCK cells, MDCK cells were cultured in the presence of 100 μM steviol for 2–24 h and the levels of CFTR were determined using western blotting. Reduction in total CFTR

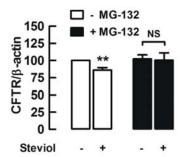
content in MDCK cells was significantly reduced by $14.1\pm3.6\%$ compared to control at 6 h of exposure to steviol and by $17.7\pm4.5\%$ after 24 h (Fig. 7A). Previous studies have shown that a decrease in CFTR level could be via proteasome degradation pathway [29,30]. In order to demonstrate that steviol employs this mechanism to reduce CFTR expression in MDCK cells, confluent MDCK cells were incubated with 50 μ M proteasome inhibitor, MG-132, for 1 h before treatment with 100 μ M steviol for 6 and 24 h, respectively. The results showed that an inhibitory effect of steviol on CFTR levels was abolished by treatment with MG-132 (Fig. 7B and Fig. 7C).

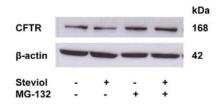

In addition, determination of CFTR localization by immunofluorescence in intact cells indicated that 100 μM steviol decreased CFTR membrane expression by 32.4±16.0% and 50.8±10.4% compared to control at 6 h and 24 h of incubation, respectively (Fig. 8A and 8B). These findings are in agreement with those of the western blot analysis.


Discussion

Cyst enlargement in PKD involves two pathogenic mechanisms, namely, increased epithelial cell proliferation and enhanced transepithelial fluid secretion [2,4]. An increase in intracellular cAMP has been shown to stimulate cell proliferation through the MEK/ERK pathway and to activate CFTR-mediated chloride and fluid secretion into the cyst lumen [6,7,31]. Accumulation and expansion of cysts disrupt the normal function of renal parenchyma. Inhibition of CFTR by small molecule CFTR inhibitors, such as thiazolidinone and hydrazide-containing compounds, has been shown to slow cyst progression in both *in vitro* and *in vivo* models of PKD [21,32].


The present study clearly demonstrated that the plant-derived sweetener steviol and its derivatives, isosteviol, dihydroisosteviol, 16-oxime isosteviol, at non-toxic levels (100 µM) were able to retard both cyst formation and enlargement in an in vitro MDCK cell model of PKD. From the chemical structures of steviol and three types of isosteviol studied, we can conclude that core structure of steviol rather than isosteviol with the presence of OH group on C-13 position may be associated with good inhibitory effect on renal cyst growth. The underlying mechanism was, in part, by direct inhibition of CFTR chloride channel activity and through reduction of CFTR expression via proteasome-mediated degradation. This notion was supported by the observation that the thiazolidinone CFTR_{inh}-172, an allosteric blocker of the CFTR chloride channel, exerted inhibitory effects on MDCK cyst formation and growth (Fig. 2 and [21]). Moreover, previous studies revealed that the commonest cystic fibrosis mutation F508del, which prevents the plasma membrane expression of CFTR, slowed MDCK cyst enlargement by inhibiting CFTRmediated fluid accumulation within the cyst lumen [33]. In addition, pioglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist inhibited vasopressin-induced chloride secretion through reducing CFTR mRNA levels in MDCK-C7 cell line [34] and suppressed cyst progression by decreasing apical CFTR expression in PCK rodent model of PKD [35].


Our previous study showed that 100 μM steviol inhibits apical chloride current in human colonic epithelial cells (T84 cells) by $\sim\!50\%$ [18], whereas in the present study it could only reduced forskolin-induced apical chloride current by 25% in MDCK cell monolayer. Based on the fact that dihydroisosteivol, a steviol derivative, inhibited CPT-cAMP-activated apical chloride current in basolaterally permeabilized T84 cells without the effects on intracellular cAMP levels [18] and steviol also inhibited forskolin-stimulated apical chloride current in the present study (Fig. 4), we



B Incubation time for 6 h with steviol

C Incubation time for 24 h with steviol

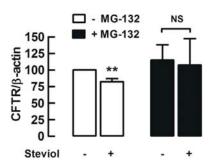


Figure 7. Steviol inhibits CFTR protein expression through proteasome pathway in MDCK cells. (A) MDCK cells were seeded in 6-well plates and grown for 48 h. They were incubated with either DMSO (C) or 100 μM of steviol (S) for 2, 6, 12, or 24 h and were blotted with antibodies to CFTR or β-actin. (**7A**, **left**) Band intensity of indicated protein expression. (**7A**, **right**) Densitometric analysis of the bands. CFTR expression is normalized to β-actin shown as bar graphs (mean percent of control \pm SE; n = 5 - 7 independent experiments; **P < 0.01 compared with control). For proteasome pathway determination, western blots of MDCK cells were incubated with or without 50 μM of MG-132 for 1 h before treatment with DMSO (control) or 100 μM of steviol (experimental) for 6 h (**7B**, **left**) and 24 h (**7C**, **left**). For densitometric analysis, the values are represented as the ratio of CFTR/β-actin for 6 h (**7B**, **right**) and 24 h (**7C**, **right**) normalized to 100% of control group (mean percent of control \pm SE; n = 6 - 7 independent experiments; **P < 0.01 compared with control). doi:10.1371/journal.pone.0058871.g007

speculate that steviol might inhibit CFTR directly as well. Therefore, one explanation for discrepancy between CFTR inhibition potencies in T84 and MDCK cells is the differences in steviol's binding sites between human CFTR expressed in T84 cells and canine CFTR expressed in MDCK cells. In support of this notion, the amino acid sequences in the membrane-spanning domains of CFTR in human, mouse, rat, and dog, are different [36,37]. CFTR inhibitors, such as CFTR_{inh}-172, glibenclamide and GlyH-101 have been found to exert their inhibitory effects differently on several CFTR orthologs because of differences in inhibitor-binding sites for each compound [38].

CFTR expressed at the plasma membrane has a short half-life, approximately 12 to 24 h [39], and hence an increase in the rate of CFTR degradation would have a significant effect on apical chloride secretion. Degradation of CFTR can occur via two different processes: an ER-associated degradation (ERAD) process

involving a ubiquitin-proteasome pathway that degrades immature CFTR protein during biosynthesis, and a lysosomal pathway that destroys mature CFTR [40]. It has been shown that a cysteine string protein, a J-domain-containing protein involved in stimulated exocytosis, plays an important role in promoting proteasomal degradation of immature CFTR by increasing the interaction of immature CFTR with the c terminus of heat shock protein-70-interacting protein and thereby enhancing CFTR ubiquitylation [41].

We found that steviol effect on total CFTR protein expression was observed at 6 h, and such effect was sustained at the same level at later time points (12 h and 24 h). This finding suggests that steviol induced the reduction in CFTR protein expression via mechanisms involving modulation of CFTR trafficking and/or CFTR degradation. Besides, we found that pretreatment of the MDCK cells with MG-132 prior to exposure to steviol could

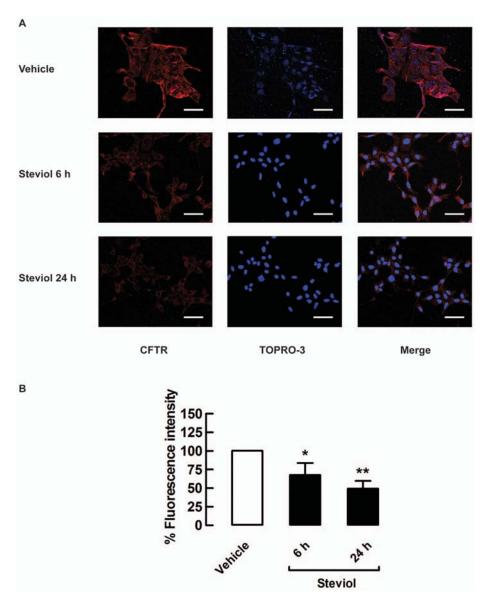


Figure 8. Steviol inhibition of CFTR membrane protein expression in MDCK cells. (A) Representative immunofluorescence images of CFTR (red), TOPRO-3-lebeled nuclei (blue) and merged images (n = 3). Scale bar = 50 μm; magnification = ×40. (B) Mean fluorescence intensity in MDCK cell after treatment with DMSO (vehicle) or 100 μM steviol (experimental) for 6 h and 24 h. The values are shown as percent fluorescence intensity (35 random regions of interest; mean percent of control±SE, *P<0.05, **P<0.01 compared with control). doi:10.1371/journal.pone.0058871.g008

completely prevent steviol-reduced CFTR expression, indicating that steviol reduces CFTR expression by promoting proteasome-mediated degradation of immature CFTR. However, it should be mentioned that MG-132 not only inhibits proteasomal activity, but also produces reactive oxygen species (ROS). Previous studies showed that prolonged treatment (24 h) of MG-132 at dose of 1–30 μM induces apoptosis via formation of ROS in several cancer cell types [42,43]. It was also reported that incubation with 25 μM of MG-132 for 4 h prevented misfolded CFTR degradation in CHO cells expressing GFP tagged F508del-CFTR [44]. In addition, inhibition of proteasome-mediated CFTR degradation by MG-132 (10 $\mu M,$ 1 h incubation) could prevent internalization and increased apical stability of mutant CFTR in human airway epithelial cells [45]. These studies indicate that prolonged incubation of MG-132 caused ROS production, whereas a short

period of MG-132 treatment could inhibit CFTR degradation in bronchial cell lines. Therefore, incubation with 50 μM MG-132 for 1 h in our study was likely to inhibit proteasomal activity in MDCK cells without enhancing ROS. However, it should be cautioned that oxidative stress might interfere with the result obtained in the studies using MG-132. In addition, we found that steviol reduced the amount of CFTR protein expressed in the plasma membrane of MDCK cells by $\sim\!32\%$, an extent which was much higher than its effect on total CFTR protein observed by western blot analysis (14% at 6 h after incubation with 100 μM steviol. Therefore, our results indicate that, in addition to its direct effect on CFTR channel activity, steviol reduces CFTR-mediated chloride transport in MDCK monolayers by promoting degradation of immature CFTR proteins and modulating plasma membrane turnover of CFTR. Steviol may also target CFTR

maturation. However, further studies are needed to provide insight into the detailed mechanisms by which steviol reduces CFTR expression.

The inhibitory effects of steviol and its three derivatives on cyst progression in the MDCK cyst model correlate well with previous studies using other compounds (viz. thiazolidinone and hydrazidecontaining CFTR inhibitors) in a mouse model of PKD [32]. Therefore, our results from MDCK cyst model suggested the possibility of using steviol to inhibit cyst expansion in an in vivo PKD models. Nonetheless, future studies using rodent models of PKD are required to evaluate the therapeutic potential of steviol and its derivatives in the treatment of PKD. Interestingly, it is estimated that administration of 5 mg/kg BW per day of stevioside results in a plasma concentration level of steviol of approximately 20 µM if stevioside is completely converted to steviol [46]. This plasma concentration is lower than the minimum concentration (50 µM) required to inhibit MDCK cyst growth. Pharmacokinetic studies of stevioside have indicated that a major metabolite of stevioside consumption (steviol glucuronide) is removed from the body by urinary excretion [47]. Thus, it is possible that steviol could reach cystic lesions in the kidney. However, stevioside consumption would have to be higher than 5 mg/kg BW per day to obtain enough steviol for therapeutic purposes. The Joint FAO/

References

- Torres VE, Harris PC (2006) Mechanisms of Disease: autosomal dominant and recessive polycystic kidney diseases. Nat Clin Pract Nephrol 2: 40–55.
- 2. Wallace DP (2011) Cyclic AMP-mediated cyst expansion. Biochim Biophys Acta 1812: 1291–1300.
- Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13: 2384–2398.
- Torres VE, Harris PG (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76: 149–168.
- Terryn S, Ho A, Beauwens R, Devuyst O (2011) Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1812: 1314–1321.
- Belibi FA, Reif G, Wallace DP, Yamaguchi T, Olsen L, et al. (2004) Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int 66: 964–973.
- Davidow CJ, Maser RL, Rome LA, Calvet JP, Grantham JJ (1996) The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int 50: 208–218.
- Sullivan LP, Wallace DP, Grantham JJ (1998) Epithelial transport in polycystic kidney disease. Physiol Rev 78: 1165–1191.
- Verkman AS, Galietta LJ (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8: 153–171.
- Li H, Sheppard DN (2009) Therapeutic potential of cystic fibrosis transmembrane conductance regulator (CFTR) inhibitors in polycystic kidney disease. BioDrugs 23: 203–216.
- Chatsudthipong V, Muanprasat C (2009) Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther 121: 41–54.
- Cardoso VN, Barbosa MF, Muramoto E, Mesquita CH, Almeida MA (1996) Pharmacokinetic studies of 131I-stevioside and its metabolites. Nucl Med Biol 23: 97–100.
- Gardana C, Simonetti P, Canzi E, Zanchi R, Pietta P (2003) Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J Agric Food Chem 51: 6618–6622.
- 14. Geuns JM (2003) Stevioside. Phytochemistry 64: 913–921.
- Boonkaewwan C, Toskulkao C, Vongsakul M (2006) Anti-Inflammatory and Immunomodulatory Activities of Stevioside and Its Metabolite Steviol on THP-1 Cells. J Agric Food Chem 54: 785–789.
- Lee CN, Wong KL, Liu JC, Chen YJ, Cheng JT, et al. (2001) Inhibitory effect of stevioside on calcium influx to produce antihypertension. Planta Med 67: 796– 799.
- 17. Jeppesen PB, Dyrskog SE, Agger A, Gregersen S, Colombo M, et al. (2006) Can stevioside in combination with a soy-based dietary supplement be a new useful treatment of type 2 diabetes? An in vivo study in the diabetic goto-kakizaki rat. Rev Diabet Stud 3: 189–199.
- Pariwat P, Homvisasevongsa S, Muanprasat C, Chatsudthipong V (2008) A natural plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion. J Pharmacol Exp Ther 324: 798–805.
- Chatsudthipong V, Jutabha P (2001) Effect of steviol on para-aminohippurate transport by isolated perfused rabbit renal proximal tubule. J Pharmacol Exp Ther 298: 1120–1127.

WHO Expert Committee on Food Additives has recommended that stevioside is safe and has no adverse effect when taken at doses of 4 mg/kg BW per day [48].

Conclusions

In summary, we found that pharmacological concentrations of steviol retarded cyst progression in an *in vitro* MDCK cell model, in part, by reducing CFTR expression levels via proteasomemediated CFTR degradation. These results indicate that steviol and related compounds represent promising natural plant-based drug candidates for treatment of polycystic kidney disease.

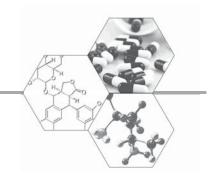
Acknowledgments

We gratefully thank Prof. William H. Dantzler, University of Arizona, USA for his valuable comments and corrections of the manuscript.

Author Contributions

Conceived and designed the experiments: CY CM VC. Performed the experiments: CY SH CM LC. Analyzed the data: CY CM VC SS. Contributed reagents/materials/analysis tools: SH VC CM. Wrote the paper: CY CM VC.

- Srimaroeng C, Jutabha P, Pritchard JB, Endou H, Chatsudthipong V (2005) Interactions of stevioside and steviol with renal organic anion transporters in S2 cells and mouse renal cortical slices. Pharm Res 22: 858–866.
- Li H, Findlay IA, Sheppard DN (2004) The relationship between cell proliferation, Cl- secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int 66: 1926–1938.
- Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, et al. (2004)
 Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol 124: 125–137.
- Gao J, Zhou H, Lei T, Zhou L, Li W, et al. (2011) Curcumin inhibits renal cyst formation and enlargement in vitro by regulating intracellular signaling pathways. Eur J Pharmacol 654: 92–99.
- Mangoo-Karim R, Uchic M, Lechene C, Grantham JJ (1989) Renal epithelial cyst formation and enlargement in vitro: dependence on cAMP. Proc Natl Acad Sci U S A 86: 6007–6011.
- Taide M, Kanda S, Igawa T, Eguchi J, Kanetake H, et al. (1996) Human simple renal cyst fluid contains a cyst formation-promoting activity for Madin-Darby canine kidney cells cultured in collagen gel. Eur J Clin Invest 26: 506–513.
- canine kidney cells cultured in collagen gel. Eur J Clin Invest 26: 506–513.


 26. Zhang Y, Yu G, Wang D, Hu Y, Lei W (2011) ERK1/2 activation plays important roles in the opposite effects of Trichostatin A in non-cancer and cancer cells. Toxicon 57: 932–937.
- Bebok Z, Tousson A, Schwiebert LM, Venglarik CJ (2001) Improved oxygenation promotes CFTR maturation and trafficking in MDCK monolayers. Am J Physiol Cell Physiol 280: C135–145.
- Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, et al. (2002)
 Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 110: 1651–1658.
- Matsumura Y, David LL, Skach WR (2011) Role of Hsc70 binding cycle in CFTR folding and endoplasmic reticulum-associated degradation. Mol Biol Cell 22: 2797–2809.
- Nakagawa H, Toyoda Y, Wakabayashi-Nakao K, Tamaki H, Osumi M, et al. (2011) Ubiquitin-mediated proteasomal degradation of ABC transporters: a new aspect of genetic polymorphisms and clinical impacts. J Pharm Sci 100: 3602– 3619.
- Yamaguchi T, Nagao S, Wallace DP, Belibi FA, Cowley BD, et al. (2003) Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 63: 1983–1994.
- Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS (2008) Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol 19: 1300–1310.
- Li H, Yang W, Mendes F, Amaral MD, Sheppard DN (2012) Impact of the cystic fibrosis mutation F508del-CFTR on renal cyst formation and growth. Am J Physiol Renal Physiol 303: F1176–1186.
- Nofziger C, Brown KK, Smith CD, Harrington W, Murray D, et al. (2009)
 PPARgamma agonists inhibit vasopressin-mediated anion transport in the MDCK-C7 cell line. Am J Physiol Renal Physiol 297: F55–62.
- Blazer-Yost BL, Haydon J, Eggleston-Gulyas T, Chen JH, Wang X, et al. (2010)
 Pioglitazone Attenuates Cystic Burden in the PCK Rodent Model of Polycystic Kidney Disease. PPAR Res 2010: 274376.

- Spadafora D, Hawkins EC, Murphy KE, Clark LA, Ballard ST (2010) Naturally occurring mutations in the canine CFTR gene. Physiol Genomics 42: 480–485.
- Ostedgaard LS, Rogers CS, Dong Q, Randak CO, Vermeer DW, et al. (2007) Processing and function of CFTR-DeltaF508 are species-dependent. Proc Natl Acad Sci U S A 104: 15370–15375.
- Stahl M, Stahl K, Brubacher MB, Forrest JN Jr (2012) Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101. Am J Physiol Cell Physiol 302: C67–76.
- Ward CL, Kopito RR (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 269: 25710–25718.
 Rogan MP, Stoltz DA, Hornick DB (2011) Cystic fibrosis transmembrane
- Rogan MP, Stoltz DA, Hornick DB (2011) Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment. Chest 139: 1480–1490.
- Schmidt BZ, Watts RJ, Aridor M, Frizzell RA (2009) Cysteine string protein promotes proteasomal degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) by increasing its interaction with the C terminus of Hsp70-interacting protein and promoting CFTR ubiquitylation. J Biol Chem 284: 4168–4178.
- Fan WH, Hou Y, Meng FK, Wang XF, Luo YN, et al. (2011) Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress. Acta Pharmacol Sin 32: 619–625.

- 43. You BR, Park WH (2011) Proteasome inhibition by MG132 induces growth inhibition and death of human pulmonary fibroblast cells in a caspaseindependent manner. Oncol Rep 25: 1705–1712.
- Gelman MS, Kannegaard ES, Kopito RR (2002) A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator. J Biol Chem 277: 11709–11714.
- Cholon DM, O'Neal WK, Randell SH, Riordan JR, Gentzsch M (2010) Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures. Am J Physiol Lung Cell Mol Physiol 298: L304–314.
- JECFA (2006) Evaluation of certain food additives. World Health Organ Tech Rep Ser 934: 1–145.
- Wheeler A, Boileau AC, Winkler PC, Compton JC, Prakash I, et al. (2008) Pharmacokinetics of rebaudioside A and stevioside after single oral doses in healthy men. Food Chem Toxicol 46 Suppl 7: S54–60.
- JECFÁ (2008) Evaluation of certain food additive: Sixty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives (Steviol glycosides). World Health Organ Tech Rep Ser 952: 50–55.

For reprint orders, please contact reprints@future-science.com

Cholera: pathophysiology and emerging therapeutic targets

Cholera is a diarrheal disease that remains an important global health problem with several hundreds of thousands of reported cases each year. This disease is caused by intestinal infection with Vibrio cholerae, which is a highly motile gram-negative bacterium with a single-sheathed flagellum. In the course of cholera pathogenesis, V. cholerae expresses a transcriptional activator ToxT, which subsequently transactivates expressions of two crucial virulence factors: toxin-coregulated pilus and cholera toxin (CT). These factors are responsible for intestinal colonization of V. cholerae and induction of fluid secretion, respectively. In intestinal epithelial cells, CT binds to GMI ganglioside receptors on the apical membrane and undergoes retrograde vesicular trafficking to endoplasmic reticulum, where it exploits endoplasmic reticulum-associated protein degradation systems to release a catalytic AI subunit of CT (CT AI) into cytoplasm. CT AI, in turn, catalyzes ADP ribosylation of α subunits of stimulatory G proteins, leading to a persistent activation of adenylate cyclase and an elevation of intracellular cAMP. Increased intracellular cAMP in human intestinal epithelial cells accounts for pathogenesis of profuse diarrhea and severe fluid loss in cholera. This review provides an overview of the pathophysiology of cholera diarrhea and discusses emerging drug targets for cholera, which include V. cholerae virulence factors, V. cholerae motility, CT binding to GMI receptor, CT internalization and intoxication, as well as cAMP metabolism and transport proteins involved in cAMP-activated Cl⁻ secretion. Future directions and perspectives of research on drug discovery and development for cholera are discussed.

Cholera is a life-threatening infectious disease caused by intestinal infection with Vibrio cholera. The vast majority of cholera is caused by the cholera toxin (CT)-producing V. cholerae strains of O1 and O139 serogroups [1,2]. The characteristic symptoms of cholera patients are severe rice-water diarrhea and vomiting [1]. The volume of diarrheal fluid may be as high as 1 l/h. Both vomiting and severe diarrhea put patients at high risk of having severe dehydration and hypovolemic shock, which may result in fatality unless appropriate treatment is provided. The mainstay therapy of cholera is an oral rehydration solution (ORS), which effectively improves hydration and reduces mortality rate from approximately 50 to 1% in cholera patients [1]. However, there are some limitations in the use of ORS, such as its inability to reduce stool output, lack of clean water supplies in epidemic areas and its ineffectiveness in cases with severe diarrhea (which constitutes approximately 20% of all cholera cases). On the other hand, antibiotic treatments are recommended only in moderate and severe cases. Indeed, treatments with antibiotics have been demonstrated to reduce the duration of diarrhea and stool volume by 50%, decrease the amount of intravenous fluid required to restore hydration and

to shorten the period of V. cholerae excretion from more than 5 days to 1–2 days [3]. However, the use of antibiotics may not be a sustainable therapeutic option for cholera due to the continued emergence of antibiotic-resistant V. cholerae. In recent years, a considerable effort has been made to develop novel cholera therapeutics that can reduce diarrheal fluid loss by targeting the components of V. cholerae or intestinal epithelial cells. This review provides an overview of pathophysiology of diarrhea in cholera and a comprehensive update on emerging drug targets for cholera.

Global burden of cholera

According to the report of the WHO, in the past few years there is an increased trend in cholera outbreaks. In 2011, approximately 600,000 cases of cholera and 8000 deaths were reported to WHO, which are nearly double of those in 2010. In addition, the areas with cholera outbreaks have recently been shifted from Africa to the Americas. Specifically, during 1996-2009 the major proportions of cholera cases were from Africa, while in 2010-2011 they were from the Americas, especially Central FUTURE and South Americas. The increase in cholera case numbers and the shift of areas of cholera

Chatchai Muanprasat* & Varanuj Chatsudthipong

Research Center of Transport Protein for Medical Innovation & Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd, Rajathevi, Bangkok 10400, Thailand *Author for correspondence:

Tel.: +66 2 201 5615 Fax: +66 2 354 7154

E-mail: chatchai.mua@mahidol.ac.th

Key Terms

Cholera toxin: Enterotoxin causing watery diarrhea in cholera. After binding to GMI ganglioside receptors on the apical membrane of enterocytes, cholera toxin (CT) is endocytosed and retrogradely transported to ER, where the CT Al subunit is liberated and retrotranslocated into the cytoplasm. CT AI causes an elevation of intracellular cAMP, resulting in an activation of transepithelial Cl- secretion and an inhibition of Na⁺ absorption by Na+-H+ exchangers. Both of these effects of CT are responsible for intestinal fluid loss in cholera patients.

Toxin-coregulated pilus: Encoded by tcpA genes, toxin-coregulated pilus (TCP) is type IV pilus located in the cell membrane of Vibrio cholerae. TCP is a self-interacting structure that plays an important role in V. cholerae colonization by mediating bacterial microcolony formation, bacterial attachment to intestinal epithelial cell surface and secretion of a soluble bacterial colonizing factor TcpF.

outbreaks are thought to be attributable to global warming. It is evidenced that global warming causes changes in sea-surface temperature, sea-surface height, El Niño-southern oscillation and rainfall patterns. All of these environmental factors promote multiplications of ecological hosts of *V. cholerae* including zooplankton, shellfish and aquatic plants, which, therefore, enhance V. cholerae transmission and cholera endemics, especially in the areas with poor sanitation or where clean drinking water is not available (e.g., during a flood or earthquake) [4,5]. Interestingly, using a model of cholera burden in Tanzania, it was predicted that for an increase in 1°C of temperature, an incidence of cholera outbreak increases by 15-29%. In addition, the size of cholera outbreaks is expected to gradually increase due to the global warming and lower immunity of human and, by 2030, national expenses attributable to cholera will be 0.32-1.4% of GDP [6]. With persistent global warming, cholera is speculated to continue to pose an adverse health impact on world populations.

Current management of cholera

As mentioned above, the mainstay therapy of cholera is the use of an ORS. The principal compositions of ORS are NaCl and sugar, which are absorbed together with water in the small intestine, thereby replenishing body fluid loss, alleviating dehydration and effectively saving the life of cholera patients. However, ORS is ineffective in 20% of cholera patients who have severe diarrhea [7]. Dehydration in this group of patients rapidly progresses to hypovolemic shock and death unless an intravenous fluid replacement is appropriately given. This group of patients comprises the major proportions of cholera deaths [7]. In addition to ORS, the use of antibiotic drugs is recommended for patients with moderate to severe dehydration [7]. Treatment with antibiotics has been shown to reduce the duration of diarrhea and lower the amount of fluid replacement required in cholera patients. In spite of the effectiveness of these treatment maneuvers, the overall case fatality rate of cholera is still high especially in the resource-limited settings, such as during large cholera outbreaks and natural disasters, and in rural or remote areas where transportation to hospitals is difficult [7,8].

Vaccination represents a promising approach for prevention of cholera. Oral killed vaccines have been demonstrated to be safe and immunogenic. The overall protective efficacy of these vaccines is 60-85% for 2-3 years, despite a shorter duration of protection among children [9-15]. Recent updates on vaccines against cholera have been reviewed elsewhere [16,17].

Pathophysiology of cholera

Upon being ingested, V. cholerae passes through stomach and colonizes mainly in small intestine. Figure I provides a comprehensive view of cholera pathogenesis. Pathogenesis of cholera requires regulated expressions by V. cholerae of several virulence factors, of which the two most important factors are toxin-coregulated pilus (TCP) and CT [18]. TCP, a membrane-spanning type IV pilus encoded from tcpA operon of V. cholerae, is required for intestinal colonization of *V. cholerae*. The specific roles of TCP in establishing V. cholerae colonization are to allow formation of bacterial microcolony, mediate bacterial attachment to intestinal epithelial cells and to secrete colonization factor TcpF [19]. CT, a type of AB5 toxin encoded by ctxAB genes of V. cholerae, accounts for severe diarrhea symptoms in this disease [8,20]. An expression of these two important virulence factors is regulated by a transcription regulatory network involving ToxR, TcpP and ToxT [21]. Being a key transcription factor regulating pathogenic potential of V. cholerae, ToxT (a transcriptional activator encoded from *toxT* operons) concomitantly activates transcription of both ctxA and tcpA operons [22]. ToxT expression is transcriptionally stimulated by two transcription activators including TcpP and ToxR, whose activities depend on environmental conditions such as pH, osmolarity, nutrient composition, and bacterial density [22,23]. In addition to the two virulence factors, motility of V. cholerae plays a crucial role in cholera pathogenesis [24]. It enables V. cholerae to colonize and spread along the small intestine as well as to transmit to new hosts. *V. cholerae* motility is provided by the motor function of its single polar flagellum, which is energized by the electrochemical Na⁺ gradients generated by Na+-pumping NADH: quinone oxidoreductase [25]. Functional flagellum needs expressions of many genes including FlaA, alternative RNA polymerase sigma subunits σ^{54} and σ^{28} , and multiple transcriptional regulators [26]. Interestingly, a disruption of flagellar motility was demonstrated to decrease expressions of CT and TCP, suggesting that flagellar motor plays a role in determining V. cholerae virulence and may serve as a drug target for cholera therapy [27-29].

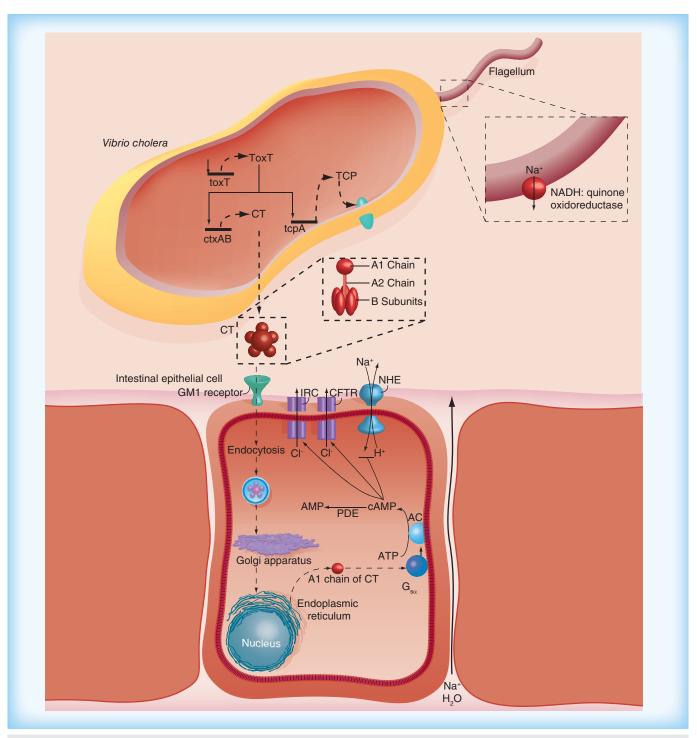


Figure 1. Overview of pathogenesis of cholera. Vibrio cholerae expresses two important virulence factors, CT and TCP, in a ToxT-dependent manner. Encoded by toxT gene, ToxT transactivates expression of ctxAB and tcpA genes, which are encoded for CT and TCP, respectively. TCP is localized to the bacterial cell membrane and required for intestinal colonization of *V. cholerae*. In addition, V. cholerae possesses a Na+motive force-driven single-sheathed flagellum, making them highly motile. CT is endocytosed into intestinal epithelial cells and transported retrogradely to the endoplasmic reticulum, where CT A1 subunit is released and dislocated into cytoplasm. In the cytoplasm, CT A1 subunit activates $G_{s\alpha}$, leading to activation of AC and elevation of intracellular cAMP. Increased intracellular cAMP then causes stimulation of cystic fibrosis transmembrane conductance regulator and/or inwardly rectifying Cl channel-dependent CI secretion and inhibition of Na+ absorption through NHE, resulting in effluxes of Na+ and water and, hence, secretory diarrhea.

CFTR: Cystic fibrosis transmembrane conductance regulator; CT: Cholera toxin; IRC: Inwardly rectifying CI⁻ channel; NHE: Na⁺-H⁺ exchanger; TCP: Toxin-coregulated pilus.

fsg future science group

Key Term

Cystic fibrosis transmembrane conductance regulator:

cAMP-activated CI- channel expressed in the apical membrane of epithelial cells in many organs including lung, intestine, kidney, pancreas and testis. A loss-of-function mutation of cystic fibrosis transmembrane conductance regulator genes causes cystic fibrosis, which is the most common genetic disease in Caucasians and characterized by recurrent pulmonary infection with deterioration of lung function, pancreatic insufficiency and intestinal obstruction.

Profuse diarrhea in cholera results from the effects of enterotoxins produced by *V. cholerae* on intestinal ion transport. The most important enterotoxin implicated in the pathogenesis of diarrhea in cholera is CT [30]. CT is composed of an A subunit and five binding B subunits. A subunit is composed of an enzymatic A1 chain and an A2 connecting chain, which links the A1 chain to the B subunits. After binding to GM1 receptor on intestinal epithelial cells via its B subunits, CT is endocytosed and cleaved to release A1 chain, which catalyzes ADP ribosylation of stimulatory G protein alpha subunit (G_{sq}), resulting in constant activation of AC activity and increased intracellular cAMP levels in intestinal epithelial cells [30]. An increase in intracellular cAMP levels, in turn, activates transepithelial Cl- secretion, which provides a driving force for movement of Na⁺ and H₂O into intestinal lumen causing net fluid secretion. In addition, increased cAMP levels cause an inhibition of Na+-H+ exchangers, which mediate Na+ absorption in the distal small intestine and proximal colon [30]. Outpouring of Cl-driven intestinal fluid in the small intestine together with impaired fluid absorption capability in distal small intestine and proximal colon account for excessive diarrhea and lethal volume loss in cholera (FIGURE I). FIGURE 2 depicts transport proteins involved

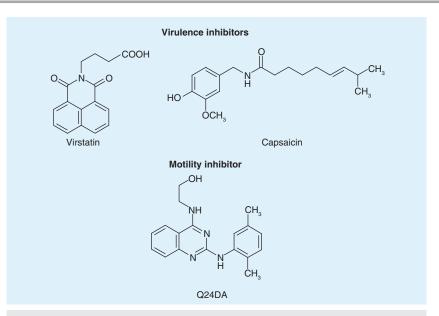
Na+-K+ ATPase Epac1-IRC NKCC1 Nat cAMP 2Cl Cl **CFTR** K+ channel PKA

Figure 2. Transport proteins involved in cAMP-activated Cl⁻ secretion by enterocytes. An increase in intracellular cAMP stimulates two apical Cl- channels, CFTR and IRC, via PKA and exchange protein directly activated by cAMP1 (Epac1)mediated pathways, respectively. Cl⁻ is taken up via NKCC1. Na⁺ and K⁺ entering into the cells via NKCC1 are recycled back to the serosa by Na⁺–K⁺ ATPase and cAMP-activated K+ channel, respectively.

CFTR: Cystic fibrosis transmembrane conductance regulator; IRC: Inwardly rectifying Cl⁻ channel; NKCC1: Na⁺–K⁺–2Cl⁻ cotransporter 1.

in cAMP-activated transepithelial Cl- secretion across intestinal epithelial cells. Briefly, Cl- is taken up across the basolateral membrane by isoform 1 of Na+-K+-2Cl cotransporters (NKCC1) and secreted into luminal side via apical chloride channels, namely the cystic fibrosis transmembrane conductance regulator (CFTR) and inwardly rectifying Clchannel (IRC). The latter is activated by cAMP via Epac1-Rap 2-PLC-[Ca2+], pathways. In addition, Na+-K+ pumps and K+ channels, which are located in the basolateral membrane, are involved in mediating the recycle of Na+ and K+ back to the serosa, respectively. A specific type of K+ channel associated with cAMPactivated Cl- secretion is a KCNQ1/KCNE3 channel [31,32].

Therapeutic targets of cholera


■ Targeting bacterial virulence Expression of virulence factors

Most of current antibiotics exert bactericidal or bacteriostatic effects by targeting genes/ their products essential for bacterial survival or growth. Antibiotic treatment, thus, serves as an environmental pressure contributing to emergence of antibiotic-resistant bacteria. Due to the evolving resistance of V. cholerae to traditional antibiotics and better understanding of V. cholerae virulence regulation, recent development of antimicrobial therapy against V. cholerae has focused on pharmacological inhibition of bacterial virulence. It has been known that virulence factors required for pathogenicity of V. cholerae are CT and TCP [21]. Gene expression analysis of V. cholerae in the small intestine of infant mice demonstrated that expression of TCP precedes that of CT [33]. Expressions of these two virulence factors are regulated by a transcription activator ToxT. High-throughput screening of 50,000 small molecules using assays of ctxAB promoter activity led to identification of virstatin (4-[N-(1,8naphthalimide)]-n-butyric acid) as an inhibitor of ToxT-induced virulence expression (FIGURE 3) [34]. Various experimental strategies confirmed that the inhibition of V. cholerae virulence factor expression by virstatin is post-translational [34]. In addition, administrations of virstatin at the same time with *V. cholerae* inoculation or after establishment of V. cholerae colonization (12 h after inoculation) were equally effective in preventing colonization of a TCP-dependent V. cholerae strains, but not TCP-independent V. cholerae strains in infant mice [34]. Efficacy of post-colonization treatment suggests therapeutic utility of virstatin or other inhibitors of bacterial virulence in the treatment of cholera, in which bacterial colonization is already established at the time of cholera case management. Subsequently, Shakhnovich and colleagues demonstrated that ToxT transcription activation of CT and TCP requires ToxT dimerization through an interaction of its N-terminal [35]. They further demonstrated that virstatin suppressed expressions of CT and TCP by disrupting ToxT dimerization [35]. Interestingly, studies from the same research group demonstrated that colonization of some strains of non-O1/non-O139 serotypes of V. cholerae was resistant to virstatin because their colonization requires TCP-independent mechanisms and/or uses virstatin-resistant ToxT [29,36]. Nonetheless, due to the widespread and high pandemic potential of V. cholerae O1 strains, virstatin may be of significant benefit in the treatment of endemic cholera.

Some natural compounds were also reported to possess inhibitory effect on V. cholerae virulence expression. Chatterjee et al. demonstrated that a methanol extract of red chili, containing capsaicin as a main active ingredient, inhibited CT expression in V. cholerae (Figure 3) [37]. It was also observed that capsaicin suppressed the expressions of toxT, ctxAB and tcpA genes in several epidemic strains of *V. cholerae* [37]. The mechanism of virulence inhibition by capsaicin was proposed to involve upregulation of hns gene expression [37]. The hns genes are encoded for H-NS, which downregulates several virulence genes including toxT, ctxAB and tcpA [37]. Recently, it has been demonstrated that the mechanism for H-NS-induced transcriptional repression of ctxAB and tcpA genes involves direct binding of H-NS to the promoters of ctxAB and tcpA genes [38]. Future studies should be performed to investigate the effect of capsaicin on V. cholerae colonization and diarrhea illness using in vivo models of V. cholerae infection.

Motility of V. cholerae

Motility of *V. cholerae* is crucial for both pathogenesis of cholera and *V. cholerae* transmission. *V. cholerae* is highly motile due to the function of its single-sheathed polar flagellum, whose rotary motion is driven by a transmembrane Na⁺ gradient (Na⁺ bioenergetics) generated by Na⁺-pumping NADH:quinone oxidoreductases and Na⁺—H⁺ exchangers [25,39]. Motility

Figure 3. Inhibitors of *Vibrio cholerae* **virulence expression and motility.** Virstatin and capsaicin are inhibitors of ToxT-induced virulence expression, and Q24DA is an inhibitor of *Vibrio cholerae* motility.

enables V. cholerae to form biofilms on chitinous surface in aquatic environment, establish its colonization in the small intestine, detach and distribute along the GI tract, and to return to the environment. In addition, several studies suggested that flagellar motility may play roles in the regulation of expression of *V. cholerae* virulence factors including TCP and CT [28,29,40]. Based on this background, motility is recognized as one of the attractive drug target for treatment of cholera. High-throughput screening of approximately 8000 small molecules using modified soft agar bacterial-motility assays, whose readout could differentiate between antimotility and bactericidal compounds, revealed that quinazoline-2,4-diamino analogs are a novel class of V. cholerae motility inhibitors [41]. A lead compound Q24DA was demonstrated to suppress the motility of the Na*-driven flagellum motor of V. cholerae by targeting the Na+-driven membrane transport system without affecting flagellum formation and H⁺-driven flagellum motor used by other types of motile bacteria such as Escherichia coli and Salmonella typhimurium (Figure 3) [41]. Furthermore, it was demonstrated that Q24DA reduced V. cholerae biofilm formation and expressions of TCP and CT, and inhibited intestinal fluid accumulation in rabbit models of *V. cholerae*-inoculated ileal loops [41]. Due to their ability to inhibit V. cholerae virulence expression, this class of compounds may be

785

used as a chemical genetics tool for exploring a complex link between flagellum motility and regulation of virulence factor gene expression, which are largely unknown at present.

■ Targeting CT binding & processing in intestinal epithelial cells

Massive diarrhea in cholera results from prosecretory effects of CT upon intestinal epithelial cells. After binding to apical membrane-facing ganglioside GM1 receptors, CT is endocytosed into intestinal epithelial cells and subsequently processed to release catalytic A1 chain into the cytosol, where it induces intracellular cAMP elevation causing net intestinal fluid secretion. Inhibition of CT binding to GM1 receptors and intracellular processing of CT are regarded as potential prophylactic/therapeutic approaches for cholera. These pharmacological strategies may overcome issues of drug resistance and heterogeneity of V. cholerae virulence mechanisms as found with drugs acting directly upon V. cholerae.

CT binding to ganglioside GMI receptors

As mentioned earlier, CT binds to ganglioside GM1 receptors via their pentameric B subunits before being internalized into enterocytes and inducing subsequent cellular intoxication. Since the elucidation of the high-resolution structure of unbound CT and GM1-bound CT [42], structure-based designs have yielded a number of CT-GM1-receptor binding inhibitors, most of which were designed to bind to GM1 receptor binding sites on the surface of the B subunits of CT. As it is known that CT B subunit binds to galactose moieties of GM1 receptors, an early effort to develop CT-binding inhibitors was focused on structural modifications of galactose. This approach led to identification of *m*-nitrophenyl-α-D-galactopyranoside (MNPG), which has approximately 100-fold higher potency for inhibiting CT-GM1 receptor binding than the parent compound galactose (Figure 4) [43]. Subsequent structure-based synthesis of MNPG analogs (so called 'anchorbased design') with MNPG serving as CT binding 'anchor' provided several CT binding antagonists with improved inhibition potency (FIGURE 4) [44-46]. Interestingly, a considerable improvement in potency of CT-binding inhibitors was accomplished through a multivalent approach. In this approach, pentameric or decameric ligands consisting of CT-binding moieties, linkers and cores were designed based

on pentameric structure of CT B subunits (FIGURE 4) [47,48]. It was demonstrated that the potency of these penta- and deca-meric ligands was improved by approximately five-six orders of magnitude [47,48]. Their CT-binding inhibition potency was determined by the length of linkers and the affinity of individual binding moieties [47,48]. Recently, the cubic mesophase containing ganglioside GM1 and the synthetic surfactant phytantriol were developed and demonstrated to be polyvalent CT-binding inhibitors with an IC₅₀ of approximately 100-270 nM [49]. The potency of this mesophase containing GM1 ganglioside largely depends on the internal surface area of the inverse cubic phase and the matching of GM1 orientation with its binding pockets on the surface of CT [49]. Since both penta- and deca-valent galactosebased ligands and polyvalent GM1-containing cubic mesophase debilitate the binding capacity of CT, they are speculated to be of particular benefit for prophylactic utility during cholera outbreaks [49]. However, the therapeutic values of these CT-binding blockers are currently unknown and, thus, need to be evaluated in future studies using animal models of cholera, in which these compounds are given after the onset of diarrhea.

Intracellular processing of CT in intestinal epithelial cells

After binding to GM1 receptors, CT is internalized into intestinal epithelial cells by endocytosis and transported retrogradely through early/sorting endosome compartment, trans-Golgi network and endoplasmic reticulum (ER), respectively (FIGURE 5) [50]. In the ER, a catalytic A1 chain is dissociated from the A2 chain and B subunits via mechanisms requiring PDI and Ero1p [51]. The unfolded A1 chain then interacts with ERdj3 and BiP [52], before being retro-translocated into cytosol with the aid of proteins in ER associated degradation (ERAD) pathway TorsinA, gp78/Hrd1 and Derlin-1 [53-61]. In the cytosol, A1 chain is rapidly refolded by Hsp90, thereby escaping proteasome-mediated degradation and proceeding to catalyze ADP ribosylation of G_{eq} [62]. Many sites along the CT retrograde transport processes have been proposed as potential drug targets to prevent CT toxicity.

Lipid rafts, a microdomain of plasma membrane comprising sphingomyelin and cholesterol, have been suggested to act as a platform for CT-GM1 receptor endocytosis and might

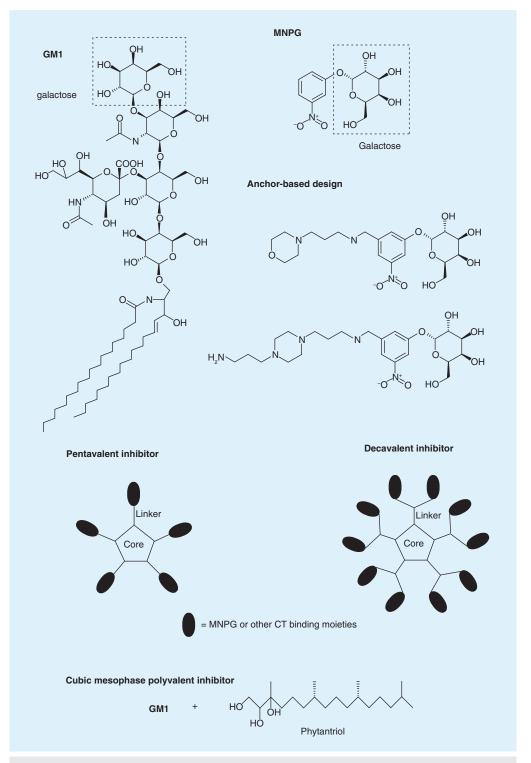


Figure 4. GM1 and cholera toxin binding inhibitors. GM1, MNPG, and anchor-based, pentavalent, decavalent and cubic mesophase polyvalent cholera toxin binding inhibitors. CT: Cholera toxin; MNPG: m-nitrophenyl- α -D-galactopyranoside.

be the target sites of anti-CT toxicity therapy (FIGURE 5) [63]. Saslowsky and Lencer demonstrated that conversion of sphingomyelin in lipid rafts, in apical membrane to ceramide

by bacterial sphingomyelinase, reduced CTinduced Cl⁻ secretion in T84 cell monolayers by up to approximately 50% [64]. They also found that sphingomyelinase treatment significantly

fsg future science group

787 www.future-science.com

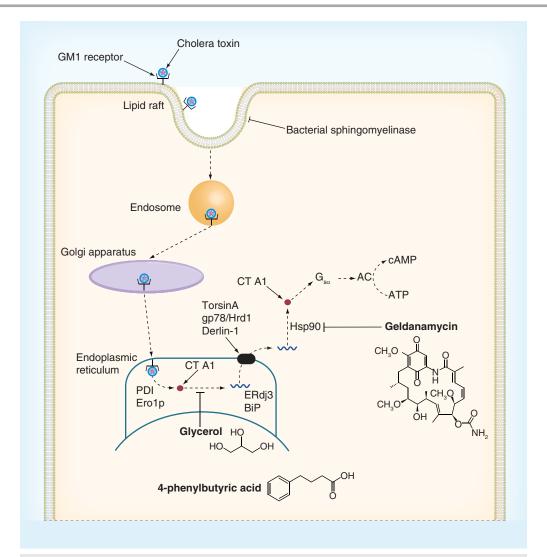


Figure 5. Intracellular processing of cholera toxin in intestinal epithelial cells. After binding to GM1 receptor in lipid rafts, CT is endocytosed and transported through endosomes, Golgi and endoplasmic reticulum, respectively. In the endoplasmic reticulum, CT A1 is dissociated from CT A2 and B subunits by PDI and Ero1p. Then, the dissociated CT A1 unfolds spontaneously and interacts with ERdj3 and BiP. With the aid of Torsin A, gp78/Hrd1 and Derlin-1, unfolded CT A1 is retrotranslocated into the cytoplasm, where it is refolded by Hsp90. CT A1 then causes cAMP elevation and consequent diarrhea. Glycerol and 4-phenylbutyric acid inhibit unfolding of CT A1 and its relocalization into cytoplasm, whereas geldanamycin inhibits Hsp90, thereby preventing refolding of CT A1 in the cytosol. CT: Cholera toxin

impaired CT endocytosis despite intact CT trafficking to ER [64]. It was, therefore, suggested that sphingomyelinase-induced inhibition of CT toxicity resulted from diminished ERADmediated retrotranslocation of CT A1 subunit into the cytosol [64].

In addition to lipid rafts, CT A1 chain unfolding (in ER) and refolding (in cytosol) have been considered as promising drug targets, whose inhibition was found to prevent CT intoxication. It is known that CT A1 chain unfolds spontaneously in ER due to its thermal

instability [65]. Unfolded CT A1 chain is able to hijack ERAD system for its ER-to-cytosol translocation. Massey et al. demonstrated that thermal stabilization of the tertiary structure of a CT A1 subunit with 10% glycerol inhibited CT A1 retrotranslocation into the cytosol, and thereby prevented CT intoxication (FIGURE 5) [66]. However, glycerol is not a practical therapeutic option for the treatment of cholera due to its possible serious side effects such as headache, nausea, vomiting, diarrhea and hemolysis. To implement this strategy into the therapy of cholera, it is, therefore, of particular importance to identify other chemical and pharmacological chaperones that stabilize CT A1 chain in ER without producing undesirable adverse effects. Interestingly, 4-phenylbutyric acid (PBA), a chemical chaperone approved by the US FDA for the treatment of urea-cycle disorders, has recently been found to potently inhibit CT A1 unfolding and ER-to-cytosol exit by inducing thermal stability of both secondary and tertiary structures of CT A1 [67]. Detailed mechanistic analysis indicated that PBA directly binds to CT A1 chain (K_D ~9 nM), possibly at the C-terminal A13 subdomain of CT A1, in which temperature-induced loss of CT A1 structure begins [68]. It was also found that PBA had no effect on CT trafficking to ER, CT A1 dissociation from CT A2 and B subunits, and activities of ERAD system [67]. Importantly, it was found that PBA suppressed CT-induced cAMP elevation in HeLa cells in a dose-dependent manner [67]. In models of rat ileal loop, PBA administered into either peritoneum (prior to CT injection) or ileal loops (co-injection with CT) reduced CT-induced intestinal fluid secretion by approximately 75% [67]. This result indicated that PBA represents potential drugs for preventing diarrhea in cholera. Future investigations are required to determine the therapeutic efficacy of PBA in animal models of cholera, to which PBA is administered after the onset of CT-induced diarrhea.

Since CT-induced cellular intoxication requires Hsp90-mediated cytosolic refolding of CT A1, Hsp90, therefore, represents another promising target for cholera therapy (FIGURE 5). A recent study by Taylor et al. demonstrated that cytosolic Hsp90 binds to CT A1 [62]. In addition to inhibiting CT A1 refolding in the cytoplasm, it was also demonstrated that an Hsp90 inhibitor, geldanamycin, prevented CT A1 retrotranslocation into the cytosol as well as CT intoxication in both cell cultures and rat ileal loops [62]. Accordingly, it was suggested that Hsp90-mediated cytosolic refolding of CT A1 provides the driving force for dislocation of CT A1 from ER to cytosol [62]. Hsp90, therefore, represents another attractive target for preventing CT intoxication and intestinal fluid loss in cholera.

Of particular interest, natural compounds, including plant polyphenols and resveratrol, have been demonstrated to disrupt host–CT interactions. Resveratrol was found to inhibit CT-induced cAMP accumulation in Vero cells

by inhibiting endocytosis, intracellular trafficking and enzymatic activity of CT [69]. Likewise, apple and hop-bract extract polyphenols were found to inhibit CT intoxication in Vero cells by suppressing CT binding to cell surface, and inhibiting internalization and enzymatic activity of CT [70,71]. Natural phenolic compounds, thus, hold therapeutic potential in the treatment of cholera due to their ability to disrupt host—CT interactions via multiple mechanisms.

■ Targeting signaling & transport proteins in host cells

Intracellular cAMP signaling

ADP ribosylation of G_{sa} by CT causes a constant activation of membrane-bound AC, leading to increased intracellular cAMP and consequent secretion of water and electrolytes by enterocytes. Modulation of cAMP signaling is, therefore, regarded as a promising therapeutic approach to reduce intestinal fluid loss in cholera (Figure 6). Levels of intracellular cAMP are determined by activities of AC and PDE. The former enzyme generates cAMP in response to G_{sc} activation, while the latter enzyme catalyzes degradation of cAMP into AMP. In addition, stimulation of certain membrane receptors such as calcium-sensing receptor (CaSR) and type 2 lysophosphatidic acid receptor (LPA₂) were shown to suppress intracellular cAMP levels via mechanisms involving PDE activation and AC inhibition, respectively [72,73]. Therefore, AC, PDE, CaSR and LPA, receptors represent therapeutic targets for antisecretory therapy of cholera.

By screening a compound library using E. coli heat-stable toxin (STa)-stimulated cGMP accumulation assays, Kots et al. identified 5-(3-bromophenyl)-1,3-dimethyl-5,11-dihydro-1*H*-indeno[2',1':5,6]pyrido[2,3-*d*] pyrimidine-2,4,6-trione (BPIPP) as an inhibitor of both AC and guanylyl cyclase in several types of cells including human intestinal epithelial cells (Figure 6) [74]. Of particular interest, BPIPP was found to inhibit CT-induced cAMP accumulation in lung fibroblast RFL-6 cells, CT-induced chloride transport in T84 human intestinal epithelial cells and STa-induced intestinal fluid secretion in rabbit ileal loop models [74]. Furthermore, it was suggested that the mechanisms by which BPIPP inhibits the cyclic-nucleotide synthesis are indirect on AC and guanylyl cyclase, and may involve PLC and tyrosine-specific phosphorylation [74]. Future studies are required to identify specific targets of this compound, which

789

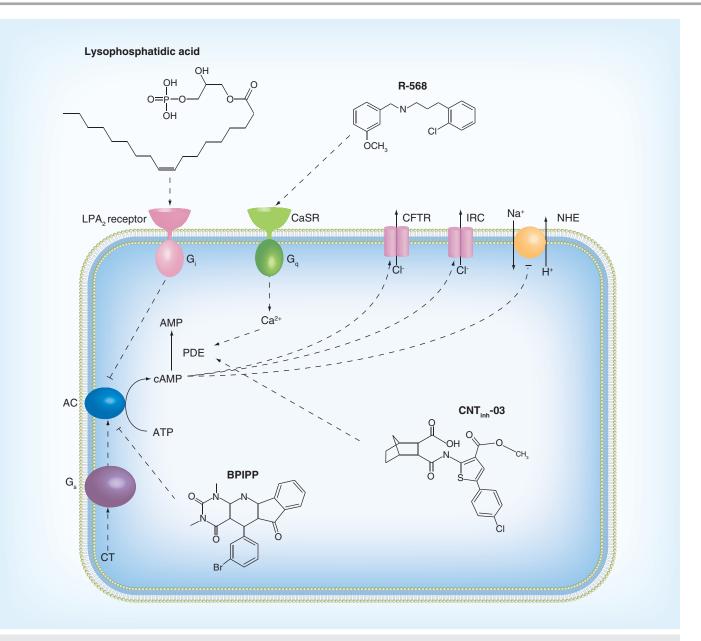


Figure 6. Targets at cAMP metabolism in intestinal epithelial cells. CT activates AC, which, in turn, increases intracellular cAMP levels. Intracellular cAMP is degraded by PDE. An elevation of intracellular cAMP induces CI secretion via the CFTR and IRC, and inhibits Na+ absorption via NHE. Stimulation of LPA, receptor by lysophosphatidic acid and CaSR by R-568 abrogates CT-induced increases in intracellular cAMP via inhibition of AC and stimulation of Ca²⁺-sensitive PDE, respectively. Suppression of intracellular cAMP is also achieved by BPIPP and CNT_{inh}-03, which inhibits AC and stimulates PDE, respectively. BPIPP: 5-(3-bromophenyl)-1,3-dimethyl-5,11-dihydro-1*H*-indeno[2′,1′:5,6]pyrido[2,3-*d*] pyrimidine-2,4,6-trione; CaSR: Ca²⁺-sensing receptor; CFTR: Cystic fibrosis transmembrane conductance regulator; CT: Cholera toxin; IRC: Inwardly rectifying CI- channel; NHE: Na+-H+ exchanger.

may allow for the identification of novel pathways regulating intracellular cyclic-nucleotide synthesis, as well as provide scientific basis for therapeutic use of this compound in secretory diarrhea including cholera.

Another class of cyclic-nucleotide suppressors with therapeutic utility in cholera are the thiophenecarboxylates, which were identified from

high-throughput screening of 50,000 small molecules using 'Pathway' assays in Fisher rat thyroid cells stably expressing the vasopressin-2 receptors, halide-sensitive yellow fluorescent proteins and human CFTR chloride channels (Figure 6) [75]. In this Pathway assay, a vasopressin-induced increase in CFTR conductance was used as a read-out for vasopressin-stimulated intracellular cAMP elevation [75]. CNT_{inh}-03, a representative analog of 2-(acylamino)-3-thiophenecarboxylates, was identified from primary screening and subjected to subsequent investigations of its mechanism of action and potential therapeutic applications in secretory diarrhea and polycystic kidney disease (PKD) [75]. PKD is a genetic disease characterized by enlarging renal cysts, whose growth is driven by a high intracellular cAMP level. It was found that CNT_{inh}-03 suppressed elevations of intracellular cAMP and cGMP induced by various agonists, possibly via PDE activation mechanisms [75]. In addition, this compound inhibited CT- and STa-induced transepithelial Cl⁻ secretion across T84 cell monolayers and abrogated CT- and STa-induced intestinal fluid secretion in mouse closed-loop models without affecting fluid absorption [75]. In vitro renal cyst models using Madin-Darby canine kidney cells demonstrated that CNT_{inh} -03 suppressed both cyst formation and growth activated by forskolin, an AC activator [75]. This class of PDE activators, therefore, holds promise for therapeutic uses in both cholera and PKD.

CaSR has also been recognized as a promising therapeutic target for cholera (FIGURE 6). CaSR was found to express in both apical and basolateral membranes of intestinal epithelial cells, in which it senses concentration of extracellular Ca2+ as a primary messenger and triggers PLC/IP₃-dependent release of intracellular Ca²⁺ store [76]. It was found that both extracellular Ca2+ and small-molecule CaSR agonist, R-568, inhibited CT-induced fluid secretion and reversed CT-induced inhibition of fluid absorption in rat perfused crypts by stimulating PLC-dependent activation of PDE [72]. Since the principal function of PLC is to liberate membrane phospholipid-derived IP, thereby releasing intracellular Ca2+ stores, Ca2+-calmodulindependent isoforms of PDE, such as PDE1, are likely to be involved in CaSR-mediated cyclic nucleotide degradation [21].

Recently, LPA₂ receptor agonists have also been proposed to hold therapeutic potential in the treatment of cholera (Figure 6). LPA₂ receptor is a G_i-coupled receptor that is responsive to lysophosphatidic acid (LPA) enriched in hen egg yolk and white, and in (LPA-enriched) soy lipid extract. LPA₂ receptors are expressed in the CFTR-containing macromolecular complex in the apical membrane, in which LPA₂ receptors and CFTR are held together through PSD95–Dlg–ZO-1 interaction with NHERF2 [73,77]. LPA

was found to inhibit CFTR-mediated Cl⁻ secretion in both isolated mouse intestine and monolayers of epithelial cell lines in a compartmentalized manner [73]. The mechanism by which LPA inhibits CFTR-mediated Cl⁻ current has been demonstrated to involve G_i-mediated inhibition of AC activity [73]. Importantly, LPA administration markedly reduced CT-induced intestinal fluid accumulation in both open- and closed-loop mouse models [73]. These findings indicated that LPA₂ receptor represents another viable target for development of cholera pharmacotherapy.

Ion transport proteins

Massive intestinal fluid loss in cholera results from the effects of CT to induce cAMPactivated Cl- secretion by enterocytes, which, in turn, drives fluxes of Na⁺ and water into intestinal lumen. The transport proteins involved in cAMP-activated Cl- secretion include cAMPactivated apical Cl- channels (i.e., CFTR and IRC), cAMP-activated basolateral K⁺ channels (i.e., KCNQ1/KCNE3), Na+-K+ ATPases and Na⁺-K⁺-2Cl⁻ cotransporters (i.e., isoform 1 or NKCC1) [78]. Therefore, these transport proteins serve as potential drug targets for cholera, except Na+-K+ ATPases due to their ubiquitous expression in mammalian cells and fundamental roles in cell functions. Developing antisecretory therapy by targeting CFTR has progressed far beyond other transport proteins. This is partly due to the aid of high-throughput screening technology, the need for CFTR inhibitors to study pathogenesis of cystic fibrosis, the role of CFTR as a rate-limiting step in transepithelial fluid secretion in enterocytes and possible serious side effects caused by inhibition of NKCC1 (such as deafness; NKCC1 is involved in establishing high concentration of K+ in the endolymph of cochlea) and KCNQ1/KCNE3 K+ channels (such as cardiac arrhythmia; KCNQ1/ KCNE3 plays a role in repolarization of cardiac action potential). As CFTR serves as the most favorable drug target for cholera, we will review CFTR inhibitors that have been identified to date with emphases on their discovery and pharmacological properties especially potency, mechanism of action and antidiarrheal efficacy.

CFTR inhibitors originated from high-throughput screening

Several new classes of CFTR inhibitors with potential utility in cholera have been identified by high-throughput screening of a smallmolecule library using cell-based assays of

791

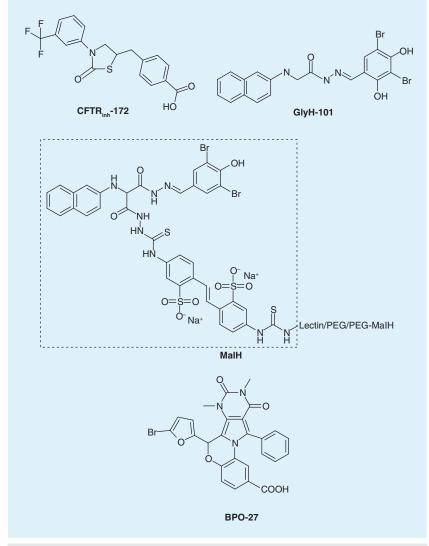


Figure 7. Cystic fibrosis transmembrane conductance regulator inhibitors identified by high-throughput screening.

GlyH: Glycine hydrazides; MalH: Malonic acid hydrazides.

CFTR conductance developed by Verkman and colleagues [79]. These inhibitors include chemical classes of thiazolidinone, glycine and malonic acid hydrazides (MalH), and quinoxalinedione (FIGURE 7). Mechanistic studies indicated that thiazolidinone and quinoxalinedione CFTR inhibitors bind to the intracellular surface of CFTR, while glycine and MalH occlude CFTR pores at extracellular surface [80-83]. The most potent thiazolidinone and quinoxalinedione CFTR inhibitors are CFTR inh-172 and benzopyrimido-pyrrolo-oxazine-dione (BPO-27), respectively, both of which have submicromolar potency (CFTR $_{inh}$ -172, IC $_{50}$ ~200 nM; BPO-27, IC₅₀ ~8 nM) [82]. Both classes of CFTR inhibitors were found to be metabolically stable in hepatic microsomes [84]. However,

at physiologic pH, the potency of CFTR_{inh}-172 in inhibiting CFTR-mediated Cl- secretion in intact T84 cell monolayers is drastically reduced by approximately tenfold (IC $_{50}$ ~2 μM) due to intracellular negativity that impedes intracellular accumulation of the negatively chargecontaining CFTR_{inh}-172 [83]. Compared with the two aforementioned classes of CFTR inhibitors, glycine and malonic acid hydrazide, CFTR inhibitors are less potent. Their potency are in micromolar ranges (MalH-2, IC_{50} ~2–3 μM). However, MalH has some favorable characteristics including high water solubility (>5 mM), impermeability through intestinal epithelial cells and effectiveness in reducing intestinal fluid secretion when administered into intestinal lumen [80,81]. The latter two properties provide rationale for developing MalH CFTR inhibitors to be nonabsorbable antidiarrheal therapeutics.

In order to optimize hydrazide-containing CFTR inhibitors for antidiarrheal applications, several synthetic strategies have been applied to improve their CFTR inhibition potency. Interestingly, the potency of malonic hydrazide CFTR inhibitors has been dramatically improved to submicromolar ranges using two synthetic strategies aiming to accumulate the inhibitors in the extracellular vicinity of the plasma membrane CFTR. The first strategy was the synthesis of divalent MalH (Mal-PEG-MalH) (FIGURE 7) [80]. Enhancement of CFTR inhibition potency of the divalent MalH results from increased probability of its binding to CFTR (two CFTR-binding moieties/one molecule of the compound), allowing accumulation of divalent MalH at the external surface of CFTR [80]. The second strategy was the conjugation of MalH with lectin, which binds to extracellular glycocalyx (Figure 7) [81]. Tethering of MalHlectin to extracellular glycocalyx leads to accumulation of the compound at the extracellular surface as well as reduction in MalH-CFTR dissociation. Another advantage of MalH-lectin is its resistance to convective washout caused by fluid secretion from intestinal crypt during cholera diarrhea.

Thiazolidinone and hydrazide-containing CFTR inhibitors have been extensively studied for their antidiarrheal efficacy in various in vivo models of cholera. Intraperitoneal administration of thiazolidinone CFTR_{inb}-172 reduced CT-induced fluid accumulation in mouse closed-loop models [82]. Equally effective in reducing CT-induced intestinal fluid

accumulation was an oral administration of CFTR_{inh}-172 in mouse open-loop models [82,83]. Pharmacokinetics analysis using 14C-labeled CFTR_{inh}-172 demonstrated that CFTR_{inh}-172 underwent enterohepatic recirculation and was primarily excreted into urine [83,84]. Likewise, hydrazide-containing CFTR inhibitors were effective in blocking CT-induced intestinal fluid secretion in mouse closed-loop models and reducing mortality in CT-fed infant mice [81,85]. It is noteworthy that quinoxalinedione CFTR inhibitors have not yet been tested in animal models of cholera. Therefore, future investigations should be performed to compare the efficacy of these two classes of CFTR inhibitors, that is, thiazolidinone- and hydrazide-containing compounds, together

with quinoxalinedione CFTR inhibitors in more suitable cholera models, in which diarrhea is induced by *V. cholerae* with no disruption of fecal flow by intestinal ligations.

CFTR inhibitors based on natural compounds

Several classes of natural compounds have been found to inhibit CFTR and hold therapeutic potential in cholera. Many of these compounds contain phenolic groups in their chemical structures including condensed tannin (e.g., oligomeric proanthocyanidin), hydrolyzable tannin, flavonoid, chalcone and xanthone (FIGURE 8). Initially, SP303, a mixture of condensed tannin proanthocyanidin oligomers derived from the latex of the South American plant *Croton lechleri*, was found to inhibit

Figure 8. Natural product-based cystic fibrosis transmembrane conductance regulator inhibitors.

fsg future science group

www.future-science.com 793

CFTR-mediated Cl⁻ secretion in T84 cells and reduce CT-induced intestinal fluid secretion in mouse closed-loop models [86]. In addition, hydrolyzable tannin was also shown to inhibit CFTR activity in both CFTR-transfected cells and T84 cells, and reduce CT-induced intestinal fluid accumulation in mouse closed-loop models [87]. It was believed that both condense and hydrolyzable tannins block CFTR by binding to the extracellular surface of CFTR due to their molecular bulkiness, which make them impermeant to cell membrane.

Small-molecule phenol-containing CFTR inhibitors derived from natural products were also shown to possess a potential benefit in the treatment of cholera. Studies of structural determinants for CFTR modulation by apigenin indicated that flavonoids could either stimulate or inhibit CFTR channel activity depending on their chemical structure, the presence of hydroxyl group in its 4' position being crucial for its CFTR inhibition effect [88]. Subsequently, several others flavonoids isolated from cocoa such as epicatechin, catechin, quercetin, luteolin, baicalein and morin were also demonstrated to inhibit CFTR-mediated Cl- current across T84 cell monolayers [89]. Interestingly, isoliquiritigenin, a plant-derived phenolic compound classified as chalcone, was found to inhibit CFTR (IC₅₀ \sim 20 μ M) without affecting other apical Cl-channels expressed in T84 cells, namely Ca2+-activated Cl- channel and cAMPactivated IRC [90]. Isoliquiritigenin inhibited both CT-induced intestinal fluid accumulation in vivo and slowed renal cyst progression in an in vitro model of PKD [90]. Recently, hydroxyxanthones, a class of natural compounds abundantly found in plants of Garcinia family, were demonstrated to be inhibitors of both CFTR and IRC, the two principal apical Cl-channels responsible for Cl⁻ efflux during cAMP stimulation [91]. A representative hydroxyxanthone, 1,3,6-trihydroxyxanthone, was found to inhibit CFTR-mediated Cl⁻ current in T84 cells with IC₅₀ of approximately 100 μM [91]. Significantly, this compound prevented CT-induced intestinal fluid secretion in mice.

Steviol and their derivatives derived from stevioside, a natural sweetener isolated from Stevia Rebaudiana Bertoni, represent another chemical class of natural product-based CFTR inhibitors with a potential antidiarrheal application [92]. Among steviol derivatives, dihydroisosteviol was found to be the most potent in inhibiting CFTR-mediated Cl- current in T84

cells with IC_{50} of approximately 9.6 μM [93]. Its CFTR inhibitory effect was reversible and not associated with changes in cAMP levels and cytotoxicity [93]. Furthermore, intraluminal injection of dihydroisosteviol reduced intestinal fluid secretion by approximately 90% in mouse closed-loop models of cholera [93].

Future perpective

Although ORS and antibiotics are proven effective in saving the lives of cholera patients, novel specific therapies are needed to fill the gap in the management of patients with cholera. Several therapeutic approaches targeting at either the components of *V. cholerae* or the effect of its major virulence factor (CT) on intestinal epithelial cells have been introduced and proved to be of potential utility in animal models of CT-induced intestinal fluid secretion. However, none of these inhibitors have been evaluated for antidiarrheal efficacy in human cholera or animal models of cholera induced by live *V. cholerae*. In recent decades, a growing body of evidence has revealed that V. cholerae expresses many non-CT virulence factors, which may participate in pathogenesis of cholera [94-101]. Therefore, future investigations should be carried out in animal models of cholera induced by live V. cholerae to accurately assess true benefits of these therapeutic approaches. In addition, based on the current knowledge of cholera pathogenesis, there are still other possible drug targets that await validation for their therapeutic values in the treatment of

Acknowledgement

The authors would like to thank C Pholpramool for critical reading of this review.

Financial & competing interests disclosure

Supported by grants from Mahidol University, the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative, and grant MRG5380125 from Thailand Research Fund, the Office of the Higher Education Commission and Mahidol University to C Muanprasat. A grant BRG5380005 from Thailand Research Fund to V Chatsudthipong is also gratefully acknowledged. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Executive summary

Pathophysiology of cholera

Cholera toxin (CT) is believed to be a principal virulence factor responsible for pathogenesis of diarrhea in cholera. CT induces cAMP-activated CI secretion, followed by Na+ and water flux into the intestinal lumen. In addition, CT-induced cAMP elevation inhibits Na+ absorption through Na+H+ exchangers. These two effects of CT result in lethal intestinal fluid loss in cholera.

Emerging therapeutic targets of cholera

- Targeting bacterial virulence and motility:
- These targets include determinants of its virulence factor expression and motility. ToxT is a transcriptional activator that induces expression of two important virulence factors, CT and toxin-coregulated pilus (TCP). Virstatin and capsaicin were identified as inhibitors of Vibrio cholerae virulence factor expression. Virstatin inhibits ToxT dimerization, which is a process required for ToxT transcription activation of genes encoded for CT and TCP. Capsaicin reduces CT and TCP expression by suppressing the expression of ToxT. High-throughput screening identified quinazoline-2,4-diamino analog as an inhibitor of V. cholerae motility. Rabbit ileal loop models of cholera demonstrated that quinazoline-2,4-diamino analog was effective in reducing intestinal fluid accumulation in cholera.
- Targeting CT binding and processing in intestinal epithelial cells
 - After CT binding to GM1 receptor on the apical membrane of enterocytes, CT is internalized and transported retrogradely to endoplasmic reticulum (ER). In ER, CT hijacks ER-associated protein degradation system to retro-translocated CT A1 subunit back to cytoplasm. CT binding and intracellular trafficking represent another attractive therapeutic targets of cholera therapy. Compounds that were previously shown to potently block CT binding include m-nitrophenyl-α-δ-galactopyranoside, multivalent m-nitrophenyl-α-δ-galactopyranoside-based compounds, and GM1-containing cubic mesophase. Pharmacological strategies that were shown to prevent CT intoxication include modulation of plasma membrane lipid rafts by bacterial sphingomyelinase, disruption of CT A1 unfolding in ER by glycerol and 4-phenylbutyric acid, and inhibition of Hsp90-mediated CT A1 refolding in the cytoplasm by geldanamycin.
- Targeting signaling and transport proteins in host cells
 - Cellular determinants of intracellular cAMP levels and ion transport proteins involved in cAMP-activated Cl⁻ secretion are adopted as promising drug targets for cholera. Approaches to lowering intracellular cAMP elevation are inhibition of AC activity (by 5-(3-bromophenyl)-1,3-dimethyl-5,11-dihydro-1H-indeno[2′,1′:5,6]pyrido[2,3-d] pyrimidine-2,4,6-trione and agonists of LPA₂ G_i-coupled receptor) and stimulation of PDE activity (by thiophenecarboxylates and agonists of calcium-sensing receptor). Among transport proteins involved in intestinal Cl⁻ secretion, cystic fibrosis transmembrane conductance regulator (CFTR) represents the most promising therapeutic target for cholera. High-throughput screening yielded three classes of small-molecule CFTR inhibitors including thiazolidinones, glycine and malonic acid hydrazides and quinoxalinediones. These compounds were found to inhibit CFTR with nanomolar (BPO-27) or low micromolar potency and block CT-induced fluid secretion *in vivo*. Furthermore, several classes of natural product-based compounds were demonstrated to exhibit CFTR inhibitory effect and *in vivo* antidiarrheal efficacy. These classes of compounds include condensed tannins, hydrolyzable tannins, flavonoids, chalcones and xanthones. They were shown to inhibit CFTR with micromolar potency and effective in preventing CT-induced intestinal fluid accumulation in mice.

References

- Sack DA, Sack RB, Nair GB, Siddique AK.
 Cholera. *Lancet* 363(9404), 223–233 (2004).
- 2 Griffith DC, Kelly-Hope LA, Miller MA. Review of reported cholera outbreaks worldwide, 1995–2005. Am. J. Trop. Med. Hyg. 75(5), 973–977 (2006).
- 3 Nelson EJ, Nelson DS, Salam MA, Sack DA. Antibiotics for both moderate and severe cholera. N. Engl. J. Med. 364(1), 5–7 (2011).
- 4 Rodo X, Pascual M, Fuchs G, Faruque AS. ENSO and cholera: a nonstationary link related to climate change? *Proc. Natl Acad. Sci.* USA 99(20), 12901–12906 (2002).
- 5 Constantin De Magny G, Murtugudde R, Sapiano MR et al. Environmental signatures associated with cholera epidemics. Proc. Natl Acad. Sci. USA 105(46), 17676–17681 (2008).
- Traerup SL, Ortiz RA, Markandya A. The costs of climate change: a study of cholera in Tanzania. *Int. J. Environ. Res. Public Health* 8(12), 4386–4405 (2011).

- 7 Sack DA, Sack RB, Chaignat CL. Getting serious about cholera. N. Engl. J. Med. 355(7), 649–651 (2006).
- De Hostos EL, Choy RK, Nguyen T. Developing novel antisecretory drugs to treat infectious diarrhea. *Future Med. Chem.* 3(10), 1317–1325 (2011).
- 9 Sur D, Lopez AL, Kanungo S et al. Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: an interim analysis of a cluster-randomised, double-blind, placebo-controlled trial. *Lancet* 374(9702), 1694–1702 (2009).
- 10 Van Loon FP, Clemens JD, Chakraborty J et al. Field trial of inactivated oral cholera vaccines in Bangladesh: results from 5 years of follow-up. Vaccine 14(2), 162–166 (1996).
- 11 Clemens JD, Sack DA, Harris JR et al. Impact of B subunit killed whole-cell and killed whole-cell-only oral vaccines against cholera upon treated diarrhoeal illness and

- mortality in an area endemic for cholera. *Lancet* 1(8599), 1375–1379 (1988).
- 12 Lucas ME, Deen JL, Von Seidlein L et al. Effectiveness of mass oral cholera vaccination in Beira, Mozambique. N. Engl. J. Med. 352(8), 757–767 (2005).
- Mahalanabis D, Lopez AL, Sur D et al. A randomized, placebo-controlled trial of the bivalent killed, whole-cell, oral cholera vaccine in adults and children in a cholera endemic area in Kolkata, India. PLoS ONE 3(6), e2323 (2008).
- 14 Trach DD, Clemens JD, Ke NT et al. Field trial of a locally produced, killed, oral cholera vaccine in Vietnam. Lancet 349 (9047), 231–235 (1997).
- Thiem VD, Deen JL, von Seidlein L et al. Long-term effectiveness against cholera of oral killed whole-cell vaccine produced in Vietnam. Vaccine 24(20), 4297–4303 (2006)

fsg future science group

REVIEW | Muanprasat & Chatsudthipong

- 16 Harris JB, Larocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. Lancet 379 (9835), 2466-2476 (2012).
- Clemens J, Shin S, Sur D, Nair GB, Holmgren J. New-generation vaccines against cholera. Nat. Rev. Gastroenterol. Hepatol. (NY) 8(12), 701-710 (2011).
- 18 Hodges K, Gill R. Infectious diarrhea: cellular and molecular mechanisms. Gut Microbes 1(1), 4-21 (2010).
- Krebs SJ, Taylor RK. Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model. J. Bacteriol. 193(19), 5260-5270 (2011).
- Sanchez J, Holmgren J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol. Life Sci. 65(9), 1347-1360 (2008).
- Fazil MH, Singh DV. Vibrio cholerae infection, novel drug targets and phage therapy. Future Microbiol. 6(10), 1199-1208 (2011).
- 22 Childers BM, Klose KE. Regulation of virulence in Vibrio cholerae: the ToxR regulon. Future Microbiol. 2(3), 335-344 (2007).
- Ritchie JM, Waldor MK. Vibrio cholerae interactions with the gastrointestinal tract: lessons from animal studies. Curr. Top Microbiol. Immunol. 337, 37-59 (2009).
- Krukonis ES, Dirita VJ. From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr. Opin. Microbiol. 6(2), 186-190 (2003).
- Juarez O, Morgan JE, Nilges MJ, Barquera B. Energy transducing redox steps of the Na+pumping NADH:quinone oxidoreductase from Vibrio cholerae. Proc. Natl Acad. Sci. USA 107(28), 12505-12510 (2010).
- Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol. Mol. Biol. Rev. 69(4), 527-543 (2005).
- Hase CC. Analysis of the role of flagellar activity in virulence gene expression in Vibrio cholerae. Microbiology 147(Pt 4), 831-837 (2001).
- Hase CC, Mekalanos JJ. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA 96(6), 3183-3187 (1999).
- Syed KA, Beyhan S, Correa N et al. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J. Bacteriol. 191(21), 6555-6570 (2009).
- Field M. Intestinal ion transport and the pathophysiology of diarrhea. J. Clin. Invest. 111(7), 931-943 (2003).

- 31 Preston P, Wartosch L, Gunzel D et al. Disruption of the K+ channel beta-subunit KCNE3 reveals an important role in intestinal and tracheal Cl- transport. J. Biol. Chem. 285(10), 7165-7175 (2010).
- Vallon V, Grahammer F, Volkl H et al. KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc. Natl Acad. Sci. USA 102(49), 17864-17869 (2005).
- Lee SH, Hava DL, Waldor MK, Camilli A. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99(6), 625-634 (1999).
- Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310 (5748), 670-674
- Shakhnovich EA, Hung DT, Pierson E, Lee K, Mekalanos JJ. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc. Natl Acad. Sci. USA 104(7), 2372-2377 (2007).
- 36 Shakhnovich EA, Sturtevant D, Mekalanos JJ. Molecular mechanisms of virstatin resistance by non-O1/non-O139 strains of Vibrio cholerae. Mol. Microbiol. 66(6), 1331-1341 (2007).
- Chatterjee S, Asakura M, Chowdhury N et al. Capsaicin, a potential inhibitor of cholera toxin production in Vibrio cholerae. FEMS Microbiol. Lett. 306(1), 54-60 (2010).
- Stonehouse EA, Hulbert RR, Nye MB, Skorupski K, Taylor RK. H-NS binding and repression of the ctx promoter in Vibrio cholerae. J. Bacteriol. 193(4), 979-988
- Juarez O, Shea ME, Makhatadze GI, Barquera B. The role and specificity of the catalytic and regulatory cation-binding sites of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J. Biol. Chem. 286(30), 26383-26390 (2011).
- Hase CC, Mekalanos JJ. TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA 95(2), 730–734 (1998).
- Rasmussen L, White EL, Pathak A et al. A high-throughput screening assay for inhibitors of bacterial motility identifies a novel inhibitor of the Na+-driven flagellar motor and virulence gene expression in Vibrio cholerae. Antimicrob. Agents Chemother. 55(9), 4134-4143 (2011).
- 42 Merritt EA, Sarfaty S, Van Den Akker F, L'Hoir C, Martial JA, Hol WG. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3(2), 166-175 (1994).

- 43 Minke WE, Roach C, Hol WG, Verlinde CL. Structure-based exploration of the ganglioside GM1 binding sites of Escherichia coli heatlabile enterotoxin and cholera toxin for the discovery of receptor antagonists. Biochemistry 38(18), 5684–5692 (1999).
- Pickens JC, Merritt EA, Ahn M, Verlinde CL, Hol WG, Fan E. Anchor-based design of improved cholera toxin and E. coli heat-labile enterotoxin receptor binding antagonists that display multiple binding modes. Chem. Biol. 9(2), 215-224 (2002).
- Mitchell DD, Pickens JC, Korotkov K, Fan E, 45 Hol WG. 3,5-substituted phenyl galactosides as leads in designing effective cholera toxin antagonists; synthesis and crystallographic studies. Bioorg. Med. Chem. 12(5), 907-920 (2004).
- 46 Pickens JC, Mitchell DD, Liu J et al. Nonspanning bivalent ligands as improved surface receptor binding inhibitors of the cholera toxin B pentamer. Chem. Biol. 11(9), 1205-1215 (2004).
- Merritt EA, Zhang Z, Pickens JC, Ahn M, Hol WG, Fan E. Characterization and crystal structure of a high-affinity pentavalent receptor-binding inhibitor for cholera toxin and E. coli heat-labile enterotoxin. J. Am. Chem. Soc. 124(30), 8818-8824 (2002).
- Zhang Z, Merritt EA, Ahn M et al. Solution and crystallographic studies of branched multivalent ligands that inhibit the receptorbinding of cholera toxin. J. Am. Chem. Soc. 124(44), 12991–12998 (2002).
- Polyzos A, Alderton MR, Dawson RM, Hartley PG. Biofunctionalized surfactant mesophases as polyvalent inhibitors of cholera toxin. Bioconjug. Chem. 18(5), 1442-1449 (2007).
- Chinnapen DJ, Chinnapen H, Saslowsky D, Lencer WI. Rafting with cholera toxin: endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol. Lett. 266(2), 129-137 (2007).
- Tsai B, Rodighiero C, Lencer WI, Rapoport TA. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104(6), 937-948 (2001).
- Winkeler A, Godderz D, Herzog V, Schmitz A. BiP-dependent export of cholera toxin from endoplasmic reticulum-derived microsomes. FEBS Lett. 554(3), 439-442 (2003).
- Cho JA, Chinnapen DJ, Aamar E, Te Welscher YM, Lencer WI, Massol R. Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins. Front. Cell Infect. Microbiol. 2, 51 (2012).
- Nishikawa S, Brodsky JL, Nakatsukasa K. Roles of molecular chaperones in endoplasmic

- reticulum (ER) quality control and ER-associated degradation (ERAD). *J. Biochem.* 137(5), 551–555 (2005).
- 55 Massey S, Burress H, Taylor M et al. Structural and functional interactions between the cholera toxin A1 subunit and ERdj3/HEDJ, a chaperone of the endoplasmic reticulum. *Infect. Immun.* 79(11), 4739–4747 (2011).
- 56 Bernardi KM, Williams JM, Kikkert M et al. The E3 ubiquitin ligases Hrd1 and gp78 bind to and promote cholera toxin retrotranslocation. Mol. Biol. Cell 21(1), 140–151 (2010).
- 57 Smith MH, Ploegh HL, Weissman JS. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. *Science* 334(6059), 1086–1090 (2011).
- 58 Carvalho P, Stanley AM, Rapoport TA. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. *Cell* 143(4), 579–591 (2010).
- 59 Nery FC, Armata IA, Farley JE et al. TorsinA participates in endoplasmic reticulumassociated degradation. Nat. Commun. 2, 393 (2011).
- 60 Dixit G, Mikoryak C, Hayslett T, Bhat A, Draper RK. Cholera toxin up-regulates endoplasmic reticulum proteins that correlate with sensitivity to the toxin. Exp. Biol. Med. (Maywood) 233(2), 163–175 (2008).
- 61 Bernardi KM, Forster ML, Lencer WI, Tsai B. Derlin-1 facilitates the retro-translocation of cholera toxin. *Mol. Biol. Cell* 19(3), 877–884 (2008).
- 62 Taylor M, Navarro-Garcia F, Huerta J et al. Hsp90 is required for transfer of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J. Biol. Chem. 285(41), 31261–31267 (2010).
- 63 Fujinaga Y, Wolf AA, Rodighiero C et al. Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulm. Mol. Biol. Cell 14(12), 4783–4793 (2003).
- 64 Saslowsky DE, Lencer WI. Conversion of apical plasma membrane sphingomyelin to ceramide attenuates the intoxication of host cells by cholera toxin. *Cell. Microbiol.* 10(1), 67–80 (2008).
- 65 Pande AH, Scaglione P, Taylor M et al. Conformational instability of the cholera toxin A1 polypeptide. J. Mol. Biol. 374(4), 1114–1128 (2007).
- 66 Massey S, Banerjee T, Pande AH, Taylor M, Tatulian SA, Teter K. Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular

- intoxication. *J. Mol. Biol.* 393(5), 1083–1096 (2009).
- 67 Taylor M, Banerjee T, Navarro-Garcia F *et al.* A therapeutic chemical chaperone inhibits cholera intoxication and unfolding/ translocation of the cholera toxin A1 subunit. *PLoS ONE* 6(4), e18825 (2011).
- 68 Banerjee T, Pande A, Jobling MG *et al.*Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit. *Biochemistry* 49(41), 8839–8846
- 69 Morinaga N, Yahiro K, Noda M. Resveratrol, a natural polyphenolic compound, inhibits cholera toxin-induced cyclic AMP accumulation in Vero cells. *Toxicon* 56(1), 29–35 (2010).
- Morinaga N, Iwamaru Y, Yahiro K, Tagashira M, Moss J, Noda M. Differential activities of plant polyphenols on the binding and internalization of cholera toxin in Vero cells. J. Biol. Chem. 280(24), 23303–23309 (2005).
- 71 Saito T, Miyake M, Toba M, Okamatsu H, Shimizu S, Noda M. Inhibition by apple polyphenols of ADP-ribosyltransferase activity of cholera toxin and toxin-induced fluid accumulation in mice. *Microbiol*. *Immunol*. 46(4), 249–255 (2002).
- 72 Geibel J, Sritharan K, Geibel R et al. Calcium-sensing receptor abrogates secretagogue-induced increases in intestinal net fluid secretion by enhancing cyclic nucleotide destruction. Proc. Natl Acad. Sci. USA 103(25), 9390–9397 (2006).
- 73 Li C, Dandridge KS, Di A et al. Lysophosphatidic acid inhibits cholera toxininduced secretory diarrhea through CFTRdependent protein interactions. J. Exp. Med. 202(7), 975–986 (2005).
- 74 Kots AY, Choi BK, Estrella-Jimenez ME et al. Pyridopyrimidine derivatives as inhibitors of cyclic nucleotide synthesis: application for treatment of diarrhea. Proc. Natl Acad. Sci. USA 105(24), 8440–8445 (2008).
- 75 Tradtrantip L, Yangthara B, Padmawar P, Morrison C, Verkman AS. Thiophenecarboxylate suppressor of cyclic nucleotides discovered in a small-molecule screen blocks toxin-induced intestinal fluid secretion. *Mol. Pharmacol.* 75(1), 134–142 (2009).
- 76 Cheng SX, Okuda M, Hall AE, Geibel JP, Hebert SC. Expression of calcium-sensing receptor in rat colonic epithelium: evidence for modulation of fluid secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 283(1), G240–G250 (2002).
- 77 Li C, Naren AP. Macromolecular complexes of cystic fibrosis transmembrane conductance

- regulator and its interacting partners. *Pharmacol. Ther.* 108(2), 208–223 (2005).
- 78 Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. *Physiol. Rev.* 82(1), 245–289 (2002).
- 79 Galietta LV, Jayaraman S, Verkman AS. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am. J. Physiol. Cell Physiol. 281(5), C1734–C1742 (2001).
- 80 Sonawane ND, Zhao D, Zegarra-Moran O, Galietta LJ, Verkman AS. Nanomolar CFTR inhibition by pore-occluding divalent polyethylene glycol-malonic acid hydrazides. *Chem. Biol.* 15(7), 718–728 (2008).
- 81 Sonawane ND, Zhao D, Zegarra-Moran O, Galietta LJ, Verkman AS. Lectin conjugates as potent, nonabsorbable CFTR inhibitors for reducing intestinal fluid secretion in cholera. Gastroenterology 132(4), 1234–1244 (2007).
- 82 Ma T, Thiagarajah JR, Yang H et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J. Clin. Invest. 110(11), 1651–1658 (2002).
- 83 Thiagarajah JR, Broadbent T, Hsieh E, Verkman AS. Prevention of toxin-induced intestinal ion and fluid secretion by a smallmolecule CFTR inhibitor. *Gastroenterology* 126(2), 511–519 (2004).
- 84 Sonawane ND, Muanprasat C, Nagatani R Jr, Song Y, Verkman AS. *In vivo* pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR inhibitor in rodents. *J. Pharm. Sci.* 94(1), 134–143 (2005).
- Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structureactivity analysis, and in vivo efficacy. J. Gen. Physiol. 124(2), 125–137 (2004).
- 86 Gabriel SE, Davenport SE, Steagall RJ, Vimal V, Carlson T, Rozhon EJ. A novel plantderived inhibitor of cAMP-mediated fluid and chloride secretion. Am. J. Physiol. 276(1Pt 1), G58–G63 (1999).
- 87 Wongsamitkul N, Sirianant L, Muanprasat C, Chatsudthipong V. A plant-derived hydrolyzable tannin inhibits CFTR chloride channel: a potential treatment of diarrhea. *Pharm. Res.* 27(3), 490–497 (2010).
- 88 Illek B, Lizarzaburu ME, Lee V, Nantz MH, Kurth MJ, Fischer H. Structural determinants for activation and block of CFTR-mediated chloride currents by apigenin. Am. J. Physiol. Cell Physiol. 279(6), C1838–C1846 (2000).
- 89 Schuier M, Sies H, Illek B, Fischer H. Cocoarelated flavonoids inhibit CFTR-mediated

fsg future science group

REVIEW | Muanprasat & Chatsudthipong

- chloride transport across T84 human colon epithelia. J. Nutr. 135(10), 2320-2325 (2005).
- Muanprasat C, Sirianant L, Soodvilai S, Chokchaisiri R, Suksamrarn A, Chatsudthipong V. Novel action of the chalcone isoliquiritigenin as a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor: potential therapy for cholera and polycystic kidney disease. J. Pharmacol. Sci. 118(1), 82-91 (2012).
- Luerang W, Khammee T, Kumpum W, Suksamrarn S, Chatsudthipong V, Muanprasat C. Hydroxyxanthone as an inhibitor of cAMP-activated apical chloride channel in human intestinal epithelial cell. Life Sci. 90(25-26), 988-994 (2012).
- Chatsudthipong V, Muanprasat C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol. Ther. 121(1), 41-54 (2009).
- Pariwat P, Homvisasevongsa S, Muanprasat C, Chatsudthipong V. A natural plant-derived dihydroisosteviol prevents cholera toxin-

- induced intestinal fluid secretion. J. Pharmacol. Exp. Ther. 324(2), 798-805
- Debellis L, Diana A, Arcidiacono D et al. The Vibrio cholerae cytolysin promotes chloride secretion from intact human intestinal mucosa. PLoS ONE 4(3), e5074 (2009).
- Mccardell BA, Kothary MH, Hall RH, Sathyamoorthy V. Identification of a CHO cell-elongating factor produced by Vibrio cholerae O1. Microb. Pathog. 29(1), 1-8
- Olivier V, Haines GK 3rd, Tan Y, Satchell KJ. Hemolysin and the multifunctional autoprocessing RTX toxin are virulence factors during intestinal infection of mice with Vibrio cholerae El Tor O1 strains. Infect. Immun. 75(10), 5035-5042 (2007).
- Trucksis M, Conn TL, Wasserman SS, Sears CL. Vibrio cholerae ACE stimulates Ca(2+)dependent Cl(-)/HCO(,)(-) secretion in T84 cells in vitro. Am. J. Physiol. Cell Physiol. 279(3), C567-C577 (2000).

- 98 Goldblum SE, Rai U, Tripathi A et al. The active Zot domain (aa 288-293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J. 25(1), 144-158 (2011).
- Bhattacharya SK, Bhattacharya MK, 99 Ramamurthy T et al. Acute secretory travellers' diarrhoea caused by Vibrio cholerae non-01 which does not produce cholera-like or heat-stable enterotoxins. J. Diarrhoeal Dis. Res. 10(3), 161-163 (1992).
- 100 Trucksis M, Galen JE, Michalski J, Fasano A, Kaper JB. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc. Natl Acad. Sci. USA 90(11), 5267-5271 (1993).
- 101 Saha PK, Koley H, Mukhopadhyay AK et al. Nontoxigenic Vibrio cholerae 01 serotype Inaba biotype El Tor associated with a cluster of cases of cholera in southern India. J. Clin. Microbiol. 34(5), 1114-1117 (1996).

Activation of liver X receptors reduces CFTR-mediated Cl⁻ transport in kidney collecting duct cells

Promporn Raksaseri,¹ Varanuj Chatsudthipong,^{1,2} Chatchai Muanprasat,^{1,2} and Sunhapas Soodvilai^{1,2}

¹Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; and ²Research Center of Transport Proteins for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand

Submitted 9 October 2012; accepted in final form 28 May 2013

Raksaseri P, Chatsudthipong V, Muanprasat C, Soodvilai S. Activation of liver X receptors reduces CFTR-mediated Cl- transport in kidney collecting duct cells. Am J Physiol Renal Physiol 305: F583-F591, 2013. First published May 29, 2013; doi:10.1152/ajprenal.00579.2012.—Liver X receptors (LXRs) are transcription factors belonging to the nuclear receptor super family, which act as regulators of lipid and glucose metabolism. However, LXRs have been shown to regulate the function of transporters in the kidney, including the Na-P_i cotransporter, organic anion transporter, and epithelial Na+ channel. In this report, we demonstrated the ability of LXR ligands, both endogenous [22 (R)-hydroxycholesterol] and synthetic (T0901317 and GW3965), to reduce CFTR-mediated Cl⁻ secretion in a type I Madin-Darby canine kidney (MDCK) cell line and in murine primary inner medullary collecting duct (IMCD) cells, based on measurements of [Arg8]vasopressin-induced Cl⁻ current. However, treatment of MDCK cell monolayers with 5 µM T0901317 for 24 h did not alter ouabainsenstive current or Na^+ - K^+ -ATPase- α protein content. Furthermore, basolateral membranes permeabilization of MDCK cell monolayers still resulted in a decrease in apical Cl- current stimulated by both [Arg8]-vasopressin and 8-cholorophenyl-thio-cAMP, indicating that the factor(s) encoded by the target gene(s) of agonist-activated LXRs might be located at the apical membrane. Western blot analysis revealed that inhibition of Cl- secretion occurred via a decrease in CFTR protein, which was not due to downregulation of its mRNA expression. In addition, both synthetic LXR agonists significantly retarded the growth of forskolin-induced cysts formed in MDCK cells cultured in collagen gel. This is the first evidence showing that ligand-activated LXRs are capable of downregulating CFTR-mediated C1- secretion of kidney cells and of retarding cyst growth in a MDCK cell model.

vasopressin; polycystic kidney disease; regulation; nuclear receptors; cystic fibrosis transmembrane conductance regulator

CYSTIC FIBROSIS (CF) transmembrane conductance regulator (CFTR) is a cAMP-regulated Cl⁻ channel glycoprotein belonging to ATP-binding cassette (ABC) transporter subfamily 7 (ABCC7) (29). Mutation of the ABCC7 gene impairs CFTR function, leading to autosomal recessive CF (28, 36). CF patients ultimately succumb to respiratory failure due to blockage of the airway stemming from the secretion of abnormally viscous fluid. On the other hand, in polycystic kidney disease (PKD), an increase in CFTR-mediated Cl⁻ secretion of renal tubular epithelial cells enhances cyst expansion (4, 16). CFTR is localized at the epithelial cell apical plasma membrane of the airway epithelia, small intestine, pancreas, bile duct, epididymis, and kidney (9, 28). In the latter organ, CFTR mRNA is expressed in nephron segments, where it is involved in Cl⁻ secretion of principal cells of cortical and medullary collecting

Address for reprint requests and other correspondence: S. Soodvilai, Dept. of Physiology, Faculty of Science, Mahidol Univ., Rama VI Road, Bangkok 10400, Thailand (e-mail: sunhapas.soo@mahidol.ac.th).

ducts (21). The opening of CFTR Cl⁻ channel requires phosphorylation of the regulatory (R) domain by PKA and ATP hydrolysis by nucleotide-binding domains (25).

Liver X receptors (LXRs) are ligand-activated transcription factors belonging to the superfamily of nuclear receptors, consisting of two isoforms, LXRα and LXRβ (11). LXRα is synthesized in the liver, spleen, adipose tissue, intestine, lung, and kidney, whereas LXR β is present in all tissues so far examined (1, 37). LXRs function as sensors of intracellular cholesterol and glucose (7, 19, 27, 39). LXRα and LXRβ form heterodimers with the retinoic X receptor, which then bind to promoters of target genes, thereby modulating their expression (12, 41). To maintain intracellular cholesterol homeostasis, LXRs stimulate cholesterol efflux by upregulating expression of ABC transporter A1 in the liver and ABC transporters G5 and G8 in the intestine (24, 27). A recent study has reported that activation of sterol regulatory element-binding protein (SREBP)-1c expression by insulin requires LXRs, indicating that the action of insulin on energy metabolism may require a function of LXRs (8).

Although LXRs are present throughout the nephron (13, 22, 40), their role in the regulation of kidney function is still largely unknown. Recent studies have shown that LXRs regulate renal transporters and ion channels, including the Na-Pi cotransporter, organic anion transporter (OAT)1, and epithelial Na+ channel (ENaC) (5, 13, 31). Taken together, these results suggest that LXRs have a role in the regulation of renal electrolyte transport. In the present study, we provide evidence of a previously unreported role of LXRs in the inhibition of CFTR-mediated Cl- secretion in both murine primary collecting duct and Madin-Darby canine kidney (MDCK) cells. In addition, we show that activated LXRs retard cyst growth in a MDCK cell model.

MATERIALS AND METHODS

Animals. Male C57BL6 mice (7–8 wk old, National Laboratory Animal Center, Mahidol University, Bangkok, Thailand) were maintained on a 12:12-h light-dark cycle with ad libitum access to standard laboratory pellet containing 1.0% calcium and 0.9% phosphorus (CP) and distilled water. All animal experimental procedures were approved by the Laboratory Animal Ethical Committee of the Faculty of Science, Mahidol University, Bangkok, Thailand.

Chemicals. Amphotericin B, amiloride, 8-cholorophenyl-thio-cAMP (CPT-cAMP), cycloheximide, forskolin, GW3965, 22(R)-hydroxycholesterol [22(R)-HC], hyaluronidase, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), ouabain, and T0901317 were purchased from Sigma-Aldrich. Collagenase type I was from Worthington Biochemical, [Arg⁸]-vasopressin (AVP) was from Calbiochem, protease inhibitor cocktail was from Roche Diagnostics (Mannheim, Germany), and EZ-Link Sulfo-NHS-SS-Biotin and streptavidin-agarose resins were from Pierce. Polyclonal rabbit anti-

CFTR antibody, monoclonal mouse anti- β -actin, and goat horseradish peroxidase (HRP)-conjugated anti-rabbit IgG antibodies were obtained from Cell Signaling Technology. Mouse anti-SREBP-1c and mouse anti-Na⁺-K⁺ ATPase- α monoclonal antibodies from Novus Biologicals. Mouse polyclonal anti-CFTR and rabbit polyclonal anti-LXR α and anti-LXR β antibodies were from Abcam. All other chemicals used were of analytic grade.

Cell culture. The type I MDCK cell line was a generous gift from Dr. David N. Sheppard (University of Bristol, Bristol, UK). Cells were grown in DMEM-F-12 medium supplemented with 10% FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin and insulin-transferrin-selenium at 37°C in a humidified incubator under an atmosphere of 5% CO₂. Cells were seeded on Snapwell insert (Corning Life Sciences) at a density of 5×10^5 cells/well. Medium was replaced every other day. The transepithelial resistance (TER) of confluent cells was measured using an EVOM2 epithelial volt-ohmmeter (World Precision Instruments). Confluent monolayers that achieved a high resistance phenotype (TER $> 1,000 \ \Omega \cdot \text{cm}^2$) were polarized by removal of the culture medium to form an air-liquid interface to enhance the expression of CFTR at the MDCK apical membrane (2). To test the effects of LXR agonists, monolayers were placed in serum-free medium without phenol red for 12 h to eliminate any effect from serum.

Primary culture of mouse renal inner medullary collecting duct cells. Primary culture of mouse renal inner medullary collecting duct (IMCD) cells was established as previously described (32). In brief, the renal medulla was dissected, minced, and digested for 1 h in 10 ml DMEM containing 0.2% collagenase type I, 0.2% hyaluronidase, and 0.25% trypsin-EDTA at 37°C. Osmotic shock (100 mosmol/kg $\rm H_2O)$ was induced by the addition of 20 ml sterile distilled water into the medium and an incubation for 20 min to eliminate noncollecting duct cells. Cells were then sedimented at 1,500 rpm for 5 min, resuspended in fresh DMEM containing 10% FBS, 20 ng/ml EGF, and 100 U/ml penicillin-streptomycin, and plated onto a Snapwell insert. Confluent primary IMCD monolayers that generated TER > 500 Ω cm² were used for further experiments.

Electrophysiological analysis. Short-circuit current (I_{sc}) was used to monitor net ion flux across monolayers of MDCK cells and primary cultures of IMCD cells. Confluent monolayers with high resistance (as described above) were transferred to an Ussing chamber, and the spontaneous potential difference across the monolayer was clamped at 0 mV. I_{sc} was recorded continuously using a VC600 voltage clamp (Physiologic Instruments) with Ag/AgCl electrodes and a 3 M KCl agar bridge. Apical and basolateral sides of the monolayer were exposed to physiological solution [containing (in mM) 117 NaCl, 25 NaHCO₃, 4.7 KCl, 1.2 MgSO₄, 2.5 CaCl₂, 1.2 KH₂PO₄, and 11 D-glucose] at 37°C and bubbled with a gas mixture of 95% $O_2\text{-}5\%$ CO_2 to maintain pH of the solution at 7.4. Positive I_{sc} indicates active transport of a cation (Na+) from the apical to basolateral side of the monolayer or transport of an anion (Cl⁻) from the basolateral to apical side (32). To measure Cl⁻ current (I_{Cl}), Na⁺ current, which primarily is transported through ENaCs, was inhibited by the addition of amiloride (100 μM) into the apical bathing solution, and the positive $I_{\rm sc}$ measured under this condition was that of Cl⁻ transport. To stimulate CFTR-mediated Cl⁻ secretion, AVP (20 nM) or CPTcAMP was added to the basolateral side after the addition of amiloride.

Apical Cl^- transport measurement. Confluent MDCK cell monolayers were mounted into an Ussing chamber and bathed asymmetrically with physiological buffer [containing (in mM) 130 NaCl, 2.7 KCl, 1.5 KH₂PO₄, 1 CaCl₂, 0.5 MgCl₂, 10 Na-HEPES (pH 7.3), and 10 glucose] for the basolateral hemichamber, whereas the apical hemichamber was filled with physiological buffer in which 65 mM NaCl was replaced with 65 mM sodium gluconate to establish a Cl⁻ gradient. To measure apical $I_{\rm Cl}$, the basolateral membrane of the MDCK cell monolayer was permeabilized using amphotericin B (250 μ g/ml) for 30 min (26) followed by the addition of 100 μ M amiloride

to the apical side to inhibit ENaC-mediated Na⁺ flux. After $I_{\rm sc}$ was stable, Cl⁻ secretion was stimulated by the addition of AVP (20 nM) or CPT-cAMP (100 μ M) to the basolateral chamber.

Measurement of Na⁺-K⁺-ATPase transport activity. Na⁺-K⁺-ATPase activity was determined by ouabain-sensitive current measurement in the Ussing chamber as previously described (23, 31). Briefly, confluent cell monolayers grown on Snapwell filters were mounted in a chamber bathed symmetrically with physiological medium. The apical membrane of the monolayers was permeabilized by 250 μg/ml amphotericin B for 30 min to allow the free transport of ions from the apical side into the cell. Positive I_{sc} was established because Na⁺-K⁺-ATPase produced a net positive charge at the basolateral side of the cell monolayer (3 Na⁺ were extruded while 2 K⁺ were uptaken into the cells). After positive I_{sc} became stable, 1 mM ouabain, an inhibitor of Na⁺-K⁺-ATPase, was added to the basolateral side of monolayers. The change in I_{sc} after the addition of ouabain reflected the activity of Na⁺-K⁺-ATPase.

Cell viability assay. Cell viability was determined using an MTT assay (33). In brief, MDCK cells were seeded in a 96-well plate at a density of 2×10^4 cells/well. After growth for 24 h in a humidified incubator at $37^{\circ}C$ under an atmosphere of 5% CO $_2$, cells were incubated further for 24 or 96 h in serum-free medium containing vehicle (0.01% DMSO) or LXR agonists (T0901317 and GW3965) at the indicated concentrations. The medium was then removed, and cells were incubated with 20 μ l MTT (5 mg/ml) for 4 h at $37^{\circ}C$. After removal of the medium, a 100- μ l aliquot of 100% DMSO was added, and absorbance at 590 nm was measured (BMG spectrophotometer, LABTECH).

RT-PCR. Total RNA was extracted from MDCK and primary IMCD cells using TRIzol reagent (Invitrogen) according the manufacturer's instructions. The amount and quality of RNA were determined using a Nanodrop 2000 spectrophotometer (Thermo Scientific). RT-PCR was performed using the iScript Select cDNA synthesis kit (Bio-Rad Laboratories) and Fast-Start Taq kit (Roche Diagnostics). Primers specific for LXRα and LXRβ mRNA were designed (Biodesign) based on sequences in the National Center for Biotechnology Information database. Canine LXRα primers were (forward) 5'-GTCAG-CAGCGCTTTGCCCAC-3' and (reverse) 5'-CTAGGAAGCAGCCAG-GTGCC-3' (predicted amplicon of 649 bp), canine LXRB primers were (forward) 5'-GGCCATGAGCTGTGCCGTGT-3' and (reverse) 5'-GTGGGCAAAACGCTGCTGGC-3' (predicted amplicon of 552 bp), murine LXRα primers were (forward) 5'-TCCATCAACCACCCCAC-GAC-3' and (reverse) 5'-CAGCCAGAAAACACCCAACCT-3' (predicted product size of 328 bp), and murine LXRβ primers were (forward) 5'-GCTCAGGAGCTGATGATCCA-3' and (reverse) 5'-GCGCTT-GATCCTCGTGTAG-3' (predicted amplicon of 567 bp). The following thermocycling conditions were used: 95°C for 5 min, 95°C for 1 min, 30 cycles of 58.5°C for 1 min (for canine) or 60°C for 30 s (for murine) and 72°C for 60 s, and a 10-min final heating at 72°C. Amplicons were separated by 2% agarose gel electrophoresis and visualized by staining with ethidium bromide.

Quantitative PCR. Total RNA from mouse IMCD cells was extracted using TRIzol reagent (Invitrogen) and cDNA synthesized using the iScript cDNA synthesis kit (Bio-Rad). Primers used for amplification of mouse CFTR cDNA were (forward) 5′-GCTTTATCTC-CAAACTCTTCTCA-3′ and (reverse) 5′-GCTTGTTCTCTGTC-CCATTCTC-3′, primers for mouse β-actin (as an internal standard) were (forward) 5′-TGTGGATCAGCAAGCAGGAGT-3′ and (reverse) 5′-AAACGCAGCTCAGTAACAGTCC-3′, primers used for canine CFTR cDNA were (forward) 5′-GGAAAGAGAATGGGACAG-AGA-3′ and (reverse) 5′-CCAAGTAAGAGAGGCTGGATTG-3′, and primers used for canine β-actin (as an internal standard) were (forward) 5′-GATTCTCTAGAGGCTGGCAAG-3′ and (reverse) 5′-TTGGG-TAAGACAGGAAAGTGG-3′. Quantitative PCR of the mouse CFTR mRNA expression level was performed using KAPA SYBR FAST master mix (KAPA Biosystem) in ABI Prism 7500 Sequence Detection

System (Applied Biosystems), and relative quantification was determined using the $2^{-\Delta\Delta C_T}$ method (where C_T is threshold cycle) (17).

Western blot analysis. MDCK and primary IMCD cells grown in six-well plates were lysed in ice-cold Triton X-100 lysis buffer [50 mM Tris·HCl (pH 7.4), 150 mM NaCl, 1 mM NaF, 1mM EDTA, 1 mM sodium orthovanadate, 100 µM PMSF, protease inhibitor cocktail, and 1% Triton X-100] for 20 min at 4°C. After centrifugation at 12,000 rpm for 20 min at 4°C, 50 µg of supernatant cell lysate protein were separated by 10% SDS-PAGE and transferred to a Hybond-ECL nitrocellulose membrane (Amersham Biosciences). The membrane was incubated in 5% nonfat dry milk for 1 h and then with rabbit polyclonal antibodies against CFTR (1:1,000 dilution), mouse monoclonal antibodies against SREBP-1c (2 µg/ml), mouse monoclonal antibodies against Na⁺-K⁺-ATPase-α (1:1,000 dilution), rabbit polyclonal antibodies against LXRα and LXRβ (1:1,000 dilution), or β-actin (1:2,000 dilution) overnight at 4°C followed by an incubation with secondary HRP-conjugated goat anti-rabbit IgG (1:4,000 dilution) or HRP-conjugated goat anti-mouse IgG (1:2,000 dilution) for 1 h at room temperature. Immunoreactive bands were detected by chemiluminescence, recorded on hyperfilm using a Western lightning plus-ECL detection kit (Perkin-Elmer), and quantified using ImageJ analysis software.

Cell surface expression of CFTR protein. CFTR in the cell membrane was isolated by membrane-impermeable biotinylation reagents. MDCK cells were incubated on ice with EZ-Link Sulfo-NHS-SS-Biotin (Pierce) for 30 min followed by a wash with 3 ml of PBS-Ca²⁺-Mg²⁺ containing 0.1 M glycine buffer. Cells were further incubated on ice with the same solution for 20 min to ensure complete quenching of the unchanged EZ-Link Sulfo-NHS-SS-Biotin. They were then harvested by the addition of buffer containing (in mM) 10 Tris·HCl (pH 7.5), 150 NaCl, 1 EDTA, 0.1% SDS, and 1% Triton X-100 with protease inhibitor cocktail for 20 min at 4°C. Samples were centrifuged at 12,000 rpm for 20 min, and supernatants were collected and incubated with 150 µl streptavidin-agarose beads (Pierce) overnight at 4°C. Beads were then washed three times with lysis buffer and once with PBS. Proteins were released from the beads by an incubation with buffer containing 100 mM DTT for 30 min at room temperature. Membrane expression of CFTR was detected by Western blot analysis.

MDCK model of cyst formation and growth. MDCK cells were cultured in collagen gel in the presence of forskolin (cAMP activator) to stimulate cyst formation using the method of McAteer et al. (18). In brief, each well of a 24-well plate was incubated with 0.4 ml of ice-cold collagen solution (3.0 mg/ml) supplemented with 10% of 10× minimum essential medium, 10 mM HEPES (pH 7.4), 27 mM NaHCO₃, 100 U/ml penicillin, and 100 g/ml streptomycin. After

collagen solution was added into the 24-well plate, the collagen was allowed to form a semisolid gel for 10 min. Medium containing the cell suspension (800 cells) was added into the semisolid gel. This technique prevents dropping of the cells into the bottom of the well and, therefore, allows MDCK cells to be embedded in the collagen gel layer. The cell embedded-collagen gel was further incubated at 37°C for 90 min in a humidified incubator under an atmosphere of 5% CO₂ to allow gel polymerization. In addition, medium containing forskolin was added on top of the gel to stimulate cyst formation. The medium (with forskolin) was replaced every day. The presence of cysts from day 6 was detected using a phase-contrast microscope (×100 magnification). To test the effect of LXR agonists on cyst growth, 0.01% DMSO (control) and LXR agonists (5 μ M T0901317 and 2 μ M GW3965) were added into culture medium from day 6 onward, and fresh media containing the test compounds were replaced every day. At least 30 cysts with a diameter of >50 μm (photographed using ImageJ software) were selected for each experimental condition. Photographs of individual cysts were taken every other day from day 6 to day 12, and cyst size was compared between vehicle- and LXR agonist-treated groups.

Statistical analysis. Results are presented as means \pm SE. Statistical differences between control and treatment were determined using a Student's unpaired *t*-test or one-way ANOVA followed by the Tukey test. Differences were considered statistically significant when P < 0.05.

RESULTS

Expression of LXRα and LXRβ in MDCK cells. We first verified whether the MDCK cells used in this study express LXRs. Expression of mRNA and protein of LXRα and LXRβ isoforms in MDCK cells was determined using RT-PCR and Western blot analysis, respectively. We found that both mRNA and protein of LXR α and LXR β isoforms were detected in these cells (Fig. 1A). LXR activation in MDCK cells after treatments with LXR agonists was confirmed by the detection of SREBP-1c protein, a product of the LXR target gene. Western blot analysis revealed that 5 μ M T0901317 and 2 μ M GW3965 increased the expression of SREBP-1c protein (Fig. 1B). These results indicate that T0901317 and GW3965 exerted LXR activation in MDCK cells. In addition, CFTRmediated Cl⁻ transport induced by AVP and cAMP in MDCK cells was verified using an inhibitor of CFTR, glycine hydrazide-101. The results demonstrated that the addition of 50 μ M

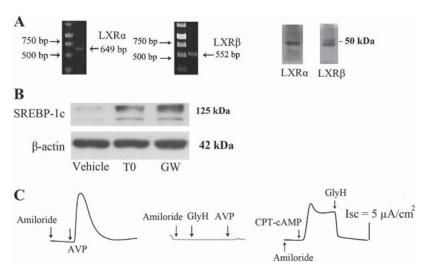


Fig. 1. mRNA and protein expression of liver X receptors (LXRs) and activation of the target protein in Madin-Darby canine kidney (MDCK) cells. A: mRNA and protein expression of LXRs in MDCK cells. Left: representative images showing RT-PCR products of LXR α (649 bp) and LXR β (552 bp) cDNA amplicons; right: Western blots showing the expression of LXR α and LXR β . B: activation of sterol regulatory element-binding protein (SREBP)-1c after incubation with LXR agonists. Western blots show the expression of SREBP-1c in vehicle- and LXR agonist-treated cells [5 μ M T0901317 (T0) and 2 μ M GW3965 (GW) for 24 h]. C: representative tracings showing CFTR-mediated [Arg8]vasopressin (AVP)- and 8-cholorophenyl-thio-cAMP (CPT-cAMP)-induced Cl⁻ current (ICl). GlyH, glycine hydrazide-101; Isc, short-circuit current.

glycine hydrazide-101 abolished the stimulatory effect of AVP and CPT-cAMP (Fig. 1*C*). Taken together, our results support the notion that CFTR mediates AVP- and cAMP-induced Cl⁻ transport in MDCK cells.

Effect of LXR agonists on AVP-induced Cl⁻ secretion in MDCK cells. Confluent MDCK cell monolayers were preincubated with various concentrations of LXR agonists (T0901317 and GW3965) for 24 h and then placed in the Ussing chamber for a 30-min equilibration period followed by the addition of 100 μ M amiloride to inhibit ENaC-mediated Na⁺ transport. I_{Cl} was measured after the addition of 20 nM AVP into the basolateral hemichamber. Incubation with LXR agonists for 24 h led to a decrease in AVP-stimulated I_{C1} in a dose-dependent manner (Fig. 2A). In addition, after an incubation of MDCK cell monolayers for 24 h with 50 µM 22(R)-HC, an endogenous LXR ligand, AVP-induced C1⁻ secretion was reduced to $65.2 \pm 10.3\%$ of the vehicle-treated monolayer. The inhibitory effect of T0901317 on I_{Cl} was observed after 12 h of treatment, but that of GW3965 required a longer exposure, i.e., for 24 h (Fig. 2B). However, an extension of the incubation time did not lead to a further decrease in I_{C1} .

Effect of LXR agonists on cell viability. To determine whether the inhibitory effects of LXR agonists on AVP-

induced Cl $^-$ secretion in MDCK cells were due to their cytotoxicity, cell viability was assessed using a MTT assay and measurement of TER. Incubation with 5 μ M T0901317 or 2 μ M GW3965 for 24 h did not significantly decrease the cell viability of MDCK cells compared with the vehicle-treated control. Similarly, TER obtained from T0901317- and GW3965-treated monolayers was not significantly different from that of the vehicle-treated monolayer (Fig. 3).

Effect of LXR agonist on apical I_{Cl} in MDCK cell monolayers. The inhibitory effect of LXR agonists on AVP-induced Cl⁻ transport could occur at either the basolateral membrane, intracellular signaling cascades, or the apical membrane. The contribution of the basolateral membrane on the inhibitory effect of LXR was, therefore, determined. The basolateral membrane of MDCK cell monolayers was permeabilized by 250 μg/ml amphotericin B for 30 min followed by the addition of AVP (20 nM) or CPT-cAMP (100 μM) to stimulate I_{Cl} . AVP- and CPT-cAMP-induced apical I_{Cl} of MDCK cell monolayers treated with T0901317 were significantly lower than that of the vehicle-treated control cell monolayer (Fig. 4). These data suggest that the protein(s) encoded by target gene(s) of activated LXR is not located at the basolateral

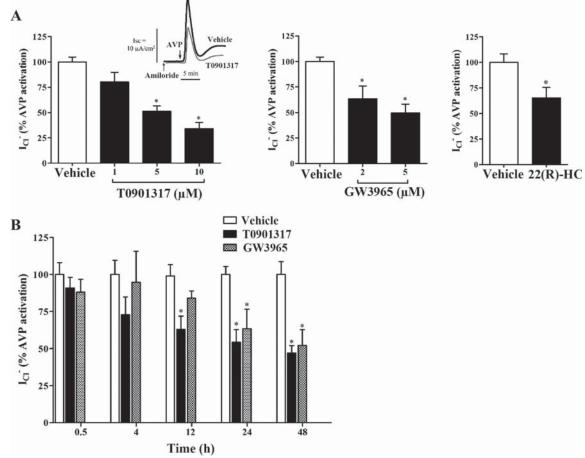


Fig. 2. Effect of LXR agonists on AVP-induced Cl⁻ secretion in MDCK cells. *A*: MDCK cell monolayers were treated with the indicated concentrations of synthetic agonists of LXR, including T0901317 and GW3965, or with 50 μ M 22(R)-hydroxycholesterol [22(R)-HC; physiological agonist] for 24 h. *B*: time-course effect of 5 μ M T0901317 and 2 μ M GW3965 on Cl⁻ secretion. Cl⁻ secretion is represented as I_{Cl} after stimulation with 20 nM AVP after 100 μ M amiloride administration. Data are shown as means \pm SE of percentages of AVP-induced I_{Cl} for 15–20 monolayers (5 independent experiments). * $P \le 0.05$, significantly different from vehicle-treated monolayers.

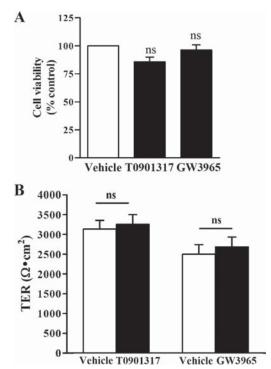


Fig. 3. Effect of LXR agonists on cell viability as measured by MTT assay (A) and transepithelial resistance (TER; B). MDCK cells were treated with 0.01% DMSO (vehicle), 5 μ M T0901317, and 2 μ M GW3965 for 24 h. Cell viability data are expressed as means \pm SE of percentages of control from 3 independent experiments for the MTT assay (A) and 8–15 monolayers for TER measurements (B). ns, not significantly different.

membrane of the MDCK cell monolayer and probably functions downstream of the cAMP-dependent processes.

Effect of LXR agonist on Na^+ - K^+ -ATP as transport activity and protein expression in MDCK cells. To confirm that the basolateral membrane was not a target of LXR activation, the effect of LXR activation on Na+-K+-ATPase activity, a pump responsible for transepithelial Cl⁻ transport, was determined. MDCK cell monolayers were mounted and incubated with physiological buffer in the Ussing chamber. Na+-K+-ATPase activity was measured by permeabilization of the apical membrane using amphotericin B followed by the addition of 1 mM ouabain. The change in I_{sc} after the addition of ouabain represents the activity of Na⁺-K⁺-ATPase. It was found that there was no change in ouabain-sensitive current in the treated monolayer compared with the untreated control (Fig. 5A). This result was consistent with the Western blot analysis, showing that T0901317 treatment did not alter protein expression of the Na^+ - K^+ -ATPase α -subunit (Fig. 5*B*).

Effect of LXR agonist on mRNA and protein expression of CFTR in MDCK cells. To elucidate the mechanism underlying the decrease in Cl $^-$ secretion induced by agonist-activated LXRs, the expression of mRNA and protein of CFTR during LXR activation was determined in MDCK cells. mRNA expression of CFTR after treatment with 5 μ M T0901317 was not significantly different compared with the vehicle-treated cell monolayer (Fig. 6A). In contrast to mRNA expression, exposure of the cell monolayer to 5 μ M T0901317 resulted in decreases in both total and membrane CFTR protein expression levels (Fig. 6B).

Effect of LXR agonist on CFTR-mediated Cl $^-$ transport during inhibition of protein synthesis in MDCK cells. To investigate whether an inhibition of protein synthesis affects the action of LXR on CFTR-mediated Cl $^-$ secretion, we examined the effect of cycloheximide, an inhibitor of protein synthesis, on AVP-induced Cl $^-$ secretion. Confluent MDCK cell monolayers were preincubated for 12 h with vehicle or 100 nM cycloheximide. At the end of the preincubation period, vehicle-treated cells monolayers were further incubated for 24 h with vehicle or 5 μ M T0901317, whereas cycloheximide-treated cell monolayers were further incubated with cycloheximide alone or cycloheximide plus 5 μ M T0901317 for 24 h. At the end of the incubation, AVP-induced Cl $^-$ secretion was measured by $I_{\rm Cl}$. As shown in Fig. 7, cycloheximide or

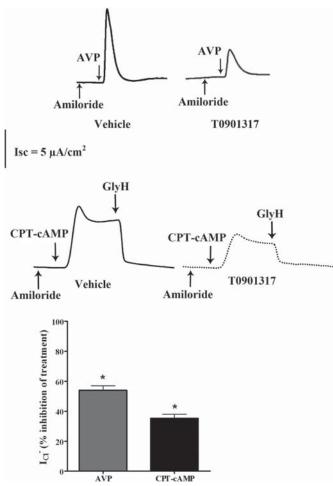


Fig. 4. Effect of LXR agonists on AVP- and CPT-cAMP-induced apical Cl–secretion of MDCK cells. Cell monolayers treated with vehicle (0.01% DMSO) or 5 μ M T0901317 were mounted in an Ussing chamber and asymmetrically bathed with physiological buffer in which 65 mM NaCl was replaced with 65 mM sodium gluconate to generate a Cl $^-$ gradient between the intracellular compartment and apical side. Before measurements of $I_{\rm Cl}$, the basolateral membrane was permeabilized with 250 μ g/ml amphotericin B for 30 min followed by the addition of 100 μ M amiloride. Stimulation of Cl $^-$ secretion was performed by the administration of 20 nM AVP or 100 μ M CPT-cAMP to the basolateral side of the monolayers. After $I_{\rm Cl}$ was stable after treatment with CPT-cAMP, the CFTR inhibitor GlyH was added into the apical side to measure CFTR transport function. Values are means \pm SE of 3 experiments (6–9 monolayers/experiment). *P \leq 0.05 compared with the vehicle-treated control.

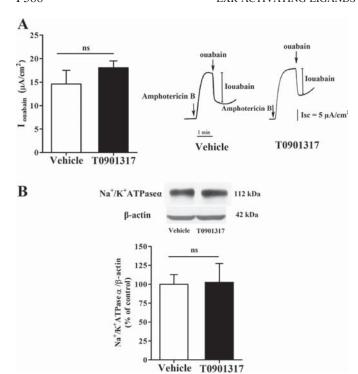


Fig. 5. Effect of T0901317 on Na⁺-K⁺-ATPase protein expression and activity in MDCK cells. A: effect of T0 on Na⁺-K⁺-ATPase transport function. Na⁺-K⁺-ATPase activity was measured by permeabilization of the apical membrane with amphotericin B for 30 min followed by the addition of 1 mM ouabain, an inhibitor of Na⁺-K⁺-ATPase. The net positive charge at he assolateral side (3 Na⁺ were transported across basolateral membrane while 2 K⁺ were uptaken into the cell) was produced and measured. The physiological buffer (equal concentrations of ions) was added to each hemichamber to prevent the contribution of K⁺ flux across the basolateral membrane. I_{ouabain} , change in I_{sc} after the addition of ouabain. Values are means \pm SE of 6 monolayers. B: Western blot analysis of Na⁺-K⁺-ATPase-α in MDCK cells. MDCK cells were incubated with 5 μM T0901317 for 24 h before measurements of Na⁺-K⁺-ATPase-α content by Western blot analysis. Representative bands (top) and densitometry analysis (bottom) from 3 independent experiments are shown.

T0901317 alone caused a significant inhibition of AVP-induced $I_{\rm Cl}$. Interestingly, the inhibitory effect of both T0901317 and cycloheximide was not additive. These results indicate that the target responsible for the inhibitory effect of LXRs might be at translational levels.

Effect of LXR agonist on Cl^- secretion in primary IMCD cells. Primary IMCD cells were found to express both mRNA and protein of LXRα and LXRβ (Fig. 8A). As shown in Fig. 8B, incubation of primary IMCD cell monolayers with 5 μM T0901317 for 24 h led to a significant decrease in I_{Cl} compared with the untreated control cell monolayer. This reduction was related to a change in CFTR protein expression but not in mRNA expression (Fig. 8C).

Effect of LXR agonists on MDCK cyst enlargement. As CFTR has been reported to mediate renal cyst growth (16), the effect of LXR agonists on cyst growth generated from MDCK cells grown in collagen gel was investigated. Cysts (on day 6 of culture containing 10 μ M forskolin) were exposed to 5 μ M T0901317 or 2 μ M GW3965. The size of the vehicle-treated control cysts continuously increased, but the presence of T0901317 or GW3965 significantly retarded cyst size after day 10 of culture (Fig. 9, A and B). In addition, exposure of MDCK

cells to LXR agonists for 4 days did not alter cell viability. These data indicate that the inhibitory effect of LXR agonists on cyst enlargement was not caused by cytotoxicity.

DISCUSSION

The role of LXRs in cellular energy metabolism is well documented (34), but little is known regarding their effects in fluid and electrolyte metabolism. Therefore, we investigated the function of LXRs in renal Cl $^-$ secretion in both an immortalized renal principal cell model (MDCK cells) and primary cultures of mouse IMCD cells expressing both LXR α and LXR β . MDCK cells were used in this study because they show characteristics of renal principal cells (15), namely, they endogenously express CFTR (20), respond to AVP (26), forskolin (38), and cAMP (23), and secrete Cl $^-$ and form cysts in collagen support (16, 35).

This study demonstrated a novel role of LXR in the down-regulation of $\rm Cl^-$ transport in renal collecting duct cells. Electrophysiological experiments revealed LXR activation in MDCK cell monolayers by both synthetic (T0901317 and GW3965) and physiological [22($\it R$)-HC] ligands, leading to inhibition of AVP-stimulated $\it I_{\rm Cl}$ mediated by CFTR. As the

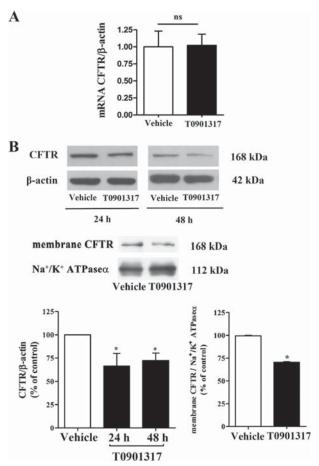


Fig. 6. Effect of LXR agonist on the expression of CFTR in MDCK cells. MDCK cells were treated with vehicle or 5 μ M T0901317 followed by measurements of CFTR mRNA expression (*A*) and protein expression (*B*). mRNA and protein expressions were determined by real-time PCR and Western analysis, respectively (see details in text). Values are means \pm SE of 3 independent experiments. * $P \leq 0.05$ compared with the vehicle-treated control.

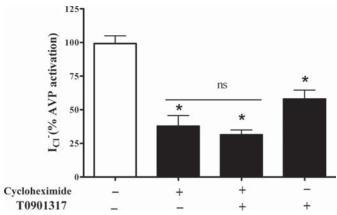


Fig. 7. Effect of T0901371 on transport function and protein expression of CFTR during inhibition of new protein synthesis in MDCK cells. Confluent cell monolayers were preincubated with vehicle or 100 nM cycloheximide overnight (12 h). Vehicle-treated cell monolayers were incubated with vehicle or 5 μ M T0901317 alone for 24 h. Cyclohximide-treated cell monolayers were treated with cycloheximide alone or cycloheximide plus 5 μ M T0901317 for a further 24 h. After the incubation period, monolayers were then analyzed for AVP-induced $I_{\rm Cl}$ (n=8 monolayers). * $P \le 0.05$ compared with the vehicle-treated control.

transport properties of a cell line could be different from those of normal cells, we validated the effects of LXR agonists in primary cultures of collecting duct cells. The inhibition of Cl⁻ secretion observed was not the result of cytotoxicity of the LXR agonists used or their ability to act as CFTR channel blockers. Because the inhibitory effects of LXR agonists were

not manifested during the acute incubation period (1–4 h) but after 12–24 h of incubation, these data indicate a slow mode of action of LXRs.

In renal collecting duct cells, AVP stimulates CFTR-mediated Cl⁻ secretion involved in the transport of Cl⁻ from the interstitial fluid into cells followed by transport across the apical membrane via CFTR (26, 35). An increase in intracellular Cl⁻ concentration is established through the functions of Na⁺-K⁺-2Cl⁻ cotransporters, Na⁺-K⁺-ATPase, and K⁺ channels located at the basolateral membrane (30). Changes in the activity of these channels or transporters will result in a decrease in total Cl⁻ secretion. Therefore, one of several possible explanations for the reduction in Cl⁻ secretion in collecting duct cells induced by activated LXR is modulation of basolateral Cl- transport. To test this notion, the contribution of basolateral transport of Cl in LXR-activated MDCK cell monolayers was investigated. Permeabilization of the basolateral membrane to eliminate the contribution from Na+-K⁺-ATPase, Na⁺-K⁺-2Cl⁻ cotransporters, and K⁺ channels in mediating the entry of Cl- into cells for further secretion (26) had no effect on the ability of LXR activation in Clsecretion. To confirm that basolateral transport processes did not account for the action of LXR activation on Cl⁻ secretion, Na⁺-K⁺-ATPase-α expression and ouabain-sensitive current, an indicator of Na⁺-K⁺-ATPase activity, were determined. LXR activation did not alter either transport function or protein expression of Na⁺-K⁺-ATPase-α. Indeed, other studies (6, 31) have also shown that LXR activation did not affect Na⁺-K⁺-ATPase activity in renal cortical collecting duct cells (M1

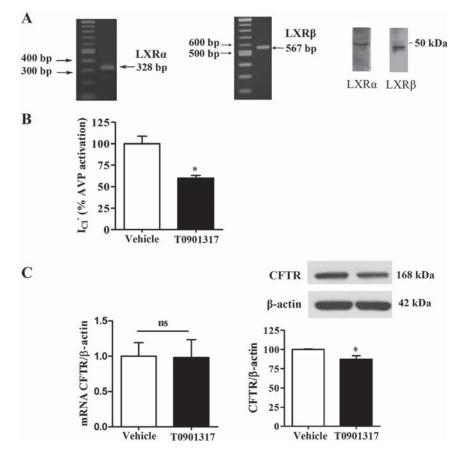


Fig. 8. Effect of T0901317 on Cl^- secretion and CFTR expression in mouse primary inner medullary collecting duct (IMCD) cells. A: expression of LXRα and LXRβ mRNA and protein in mouse primary IMCD cells. B: primary cultures of mouse IMCD monolayer cells were treated with 5 µM T0 for 24 h followed by measurements of AVP-induced ICI. Data are expressed as means ± SE of 6 monolayers (3 independent experiments). C: quantitative PCR of CFTR mRNA and protein expression in primary IMCD monolayer cells after treatment with vehicle or 5 μM T0901317 for 24 h. Each bar graph represents the relative expression of mRNA (fold change of β-actin mRNA) and protein (densitometry of CFTR/β-actin band). Values are means ± SE of each treatment conducted in 3 independent experiments.

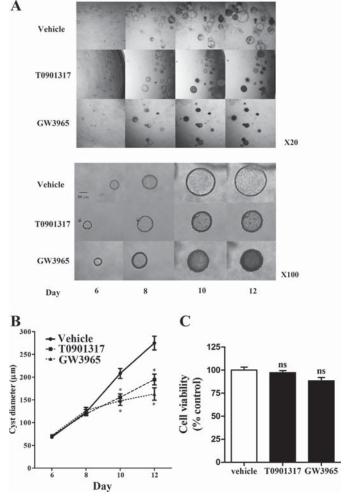


Fig. 9. Effect of LXR agonists on MDCK cyst growth. *A*: representative light micrographs of MDCK cell cysts in collagen gel. MDCK cells were continuously exposed to 10 μ M forskolin to stimulate cyst formation. After MDCK cyst generation (established on *day* 6), they were further treated with vehicle, 5 μ M T0901317, or 2 μ M GW3965 in 10 μ M forskolin-containing media from *day* 6 to *day* 12. *B*: effect of LXR agonists on cyst growth. The size of individual cysts was observed and monitored under a phase-contrast light microscope and photographed on *days* 6, 8, 10, and 12. Data are shown as means \pm SE of 3 independent experiments (30 cysts for each experiment). *C*: viability of MDCK cells after exposure to vehicle or LXR agonists for 96 h (n=3). * $P \le 0.05$ compared with the vehicle-treated control.

cells) and neural cells. In addition, our unpublished data showed that mRNA expression of Na⁺-K⁺-2Cl⁻ cotransporters in collecting duct cells (M1 cells and primary IMCD cells) was not altered by T0901317 treatment. Taken together, these data indicate that the target of activated LXRs is not at the basolateral membrane but apparently downstream of the cAMP-dependent process since a cAMP analog produced a similar result as that obtained from AVP treatment.

The transport function of CFTR is dependent on membrane expression and the open probability of the channel. Our data demonstrated that LXR activation decreased both total and membrane protein expression but not mRNA expression of CFTR, indicating that LXR activation downregulated CFTR expression at the posttranscriptional level. However, we cannot rule out the possibility that a change in the open probability of the CFTR channel may account for the inhibition induced by

LXR activation. A previous study (13) in the renal proximal tubule S2 cell line expressing human (h)OAT1 has shown that LXR activation downregulates hOAT1 protein levels without altering hOAT1 gene transcription. Recently, Caldas et al. (5) reported that the LXR agonists T0901317 and N,N-dimethyl-3β-hydroxycholenamide inhibited the function of Na⁺ gradient-dependent phosphate transporters by decreasing Pit-2 protein and had no effect on its mRNA level. Thus, an inhibition of translation and/or a decrease in CFTR stability may account for the decrease in the activity of CFTR. Inhibition of new CFTR protein synthesis by cycloheximide abolished the inhibitory effect of LXR on CFTR-mediated Cl⁻ transport. These data indicate that the processes downstream of CFTR protein translation, such as CFTR protein stability and trafficking, may not be the targets of LXR activation. Therefore, the possible mechanism responsible for LXR-induced inhibition of CFTR may be at the translational process, resulting in a decrease in CFTR expression and a subsequent reduction of CFTR membrane expression and transport function.

Several studies (4, 16) have demonstrated that CFTR plays a crucial role in cyst enlargement in PKD. It has previously been reported that cystic cells express LXR (14); therefore, an inhibition of CFTR function by LXR activation would retard cyst enlargement. Indeed, our results showed that both T0901317 and GW3965 retarded cyst enlargement compared with the untreated control. This phenomenon could be mediated, at least in part, by the decrease in CFTR content resulting in reduced fluid accumulation. Recently, peroxisome proliferator-activated receptor (PPAR)-γ, a member of the nuclear receptor superfamily, was shown to inhibit CFTR-mediated Cl⁻ secretion in kidney collecting duct cells (26) and to attenuate the severity of PKD (3, 10). An activation of LXRs alone or together with PPAR-γ may have therapeutic potential in PKD treatment.

In summary, we have demonstrated that activated LXRs inhibited CFTR-mediated Cl⁻ secretion, in part, by downregulating CFTR protein but not mRNA transcription expression levels. This may also account for the ability of LXR agonists, both endogenous and synthetic, to retard the enlargement of cysts formed from collecting duct cells. This hitherto undescribed function of activated LXRs has the potential to be further developed for the therapeutic treatment of PKD in the future.

ACKNOWLEDGMENTS

The authors thank Dr. David N. Sheppard (University of Bristol, Bristol, UK) for providing MDCK cells. The authors express great appreciation to Prof. Prapon Wilairat and Prof. Chumpol Pholpramool for valuable comments on this manuscript.

GRANTS

This work was supported by National Science and Technology Development Agency Grant P-12-01460 (to S. Soodvilai) and the Faculty of Science, Mahidol University (to S. Soodvilai), Mahidol University, the Program Strategic Scholarships for Frontier Research Network for the Joint Ph.D. Program from the Office of the High Education Commission (to P. Raksaseri), and Thailand Research Fund Grant BRG 5380005 (to V. Chatsudthipong).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: P.R., V.C., and S.S. conception and design of research; P.R. and S.S. performed experiments; P.R., C.M., and S.S. analyzed

data; P.R. and S.S. interpreted results of experiments; P.R. and S.S. prepared figures; V.C. and S.S. drafted manuscript; V.C., C.M., and S.S. edited and revised manuscript; S.S. approved final version of manuscript.

REFERENCES

- Baranowski M. Biological role of liver X receptors. J Physiol Pharmacol 59, Suppl 7: 31–55, 2008.
- Bebok Z, Tousson A, Schwiebert LM, Venglarik CJ. Improved oxygenation promotes CFTR maturation and trafficking in MDCK monolayers. Am J Physiol Cell Physiol 280: C135–C145, 2001.
- Blazer-Yost BL, Haydon J, Eggleston-Gulyas T, Chen JH, Wang X, Gattone V, Torres VE. Pioglitazone attenuates cystic burden in the PCK rodent model of polycystic kidney disease. PPAR Res 2010: 274376, 2010.
- Brill SR, Ross KE, Davidow CJ, Ye M, Grantham JJ, Caplan MJ. Immunolocalization of ion transport proteins in human autosomal dominant polycystic kidney epithelial cells. *Proc Natl Acad Sci USA* 93: 10206–10211, 1996.
- Caldas YA, Giral H, Cortazar MA, Sutherland E, Okamura K, Blaine J, Sorribas V, Koepsell H, Levi M. Liver X receptor-activating ligands modulate renal and intestinal sodium-phosphate transporters. *Kidney Int* 80: 535–544, 2011.
- Cermenati G, Giatti S, Cavaletti G, Bianchi R, Maschi O, Pesaresi M, Abbiati F, Volonterio A, Saez E, Caruso D, Melcangi RC, Mitro N. Activation of the liver X receptor increases neuroactive steroid levels and protects from diabetes-induced peripheral neuropathy. *J Neurosci* 30: 11896–11901, 2010.
- Cha JY, Repa JJ. The liver X receptor (LXR) and hepatic lipogenesis.
 The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem 282: 743–751, 2007.
- Chen G, Liang G, Ou J, Goldstein JL, Brown MS. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. *Proc Natl Acad Sci USA* 101: 11245–11250, 2004.
- Crawford I, Maloney PC, Zeitlin PL, Guggino WB, Hyde SC, Turley H, Gatter KC, Harris A, Higgins CF. Immunocytochemical localization of the cystic fibrosis gene product CFTR. *Proc Natl Acad Sci USA* 88: 9262–9266, 1991.
- Dai B, Liu Y, Mei C, Fu L, Xiong X, Zhang Y, Shen X, Hua Z. Rosiglitazone attenuates development of polycystic kidney disease and prolongs survival in Han:SPRD rats. Clin Sci (Lond) 119: 323–333, 2010.
- Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383: 728–731, 1996.
- Kaneko E, Matsuda M, Yamada Y, Tachibana Y, Shimomura I, Makishima M. Induction of intestinal ATP-binding cassette transporters by a phytosterol-derived liver X receptor agonist. *J Biol Chem* 278: 36091–36098, 2003.
- Kittayaruksakul S, Soodvilai S, Asavapanumas N, Muanprasat C, Chatsudthipong V. Liver X receptor activation downregulates organic anion transporter 1 (OAT1) in the renal proximal tubule. Am J Physiol Renal Physiol 302: F552–F560, 2012.
- 14. Kugita M, Nishii K, Morita M, Yoshihara D, Kowa-Sugiyama H, Yamada K, Yamaguchi T, Wallace DP, Calvet JP, Kurahashi H, Nagao S. Global gene expression profiling in early-stage polycystic kidney disease in the Han:SPRD Cy rat identifies a role for RXR signaling. Am J Physiol Renal Physiol 300: F177–F188, 2011.
- Lahr TF, Record RD, Hoover DK, Hughes CL, Blazer-Yost BL. Characterization of the ion transport responses to ADH in the MDCK-C7 cell line. *Pflügers Arch* 439: 610–617, 2000.
- Li H, Findlay IA, Sheppard DN. The relationship between cell proliferation, Cl⁻ secretion, and renal cyst growth: a study using CFTR inhibitors. *Kidney Int* 66: 1926–1938, 2004.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC_T) method. *Methods* 25: 402–408, 2001.
- McAteer JA, Evan AP, Gardner KD. Morphogenetic clonal growth of kidney epithelial cell line MDCK. Anat Rec 217: 229–239, 1987.
- Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, Kreusch A, Saez E. The nuclear receptor LXR is a glucose sensor. *Nature* 445: 219–223, 2007.

- Mohamed A, Ferguson D, Seibert FS, Cai HM, Kartner N, Grinstein S, Riordan JR, Lukacs GL. Functional expression and apical localization of the cystic fibrosis transmembrane conductance regulator in MDCK I cells. *Biochem J* 322: 259–265, 1997.
- Morales MM, Falkenstein D, Lopes AG. The cystic fibrosis transmembrane regulator (CFTR) in the kidney. An Acad Bras Cienc 72: 399–406, 2000.
- 22. Morello F, de Boer RA, Steffensen KR, Gnecchi M, Chisholm JW, Boomsma F, Anderson LM, Lawn RM, Gustafsson JA, Lopez-Ilasaca M, Pratt RE, Dzau VJ. Liver X receptors α and β regulate renin expression in vivo. J Clin Invest 115: 1913–1922, 2005.
- Moyer BD, Loffing-Cueni D, Loffing J, Reynolds D, Stanton BA. Butyrate increases apical membrane CFTR but reduces chloride secretion in MDCK cells. Am J Physiol Renal Physiol 277: F271–F276, 1999.
- Naik SU, Wang X, Da Silva JS, Jaye M, Macphee CH, Reilly MP, Billheimer JT, Rothblat GH, Rader DJ. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. *Circulation* 113: 90–97, 2006.
- Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand 177: 119–147, 2003.
- 26. Nofziger C, Brown KK, Smith CD, Harrington W, Murray D, Bisi J, Ashton TT, Maurio FP, Kalsi K, West TA, Baines D, Blazer-Yost BL. PPARγ agonists inhibit vasopressin-mediated anion transport in the MDCK-C7 cell line. Am J Physiol Renal Physiol 297: F55–F62, 2009.
- 27. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangels-dorf DJ. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β. J Biol Chem 277: 18793–18800, 2002.
- Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. *Science* 245: 1066–1073, 1989.
- Seia M, Cantu-Rajnoldi A, Ambrosioni A, Fiori S, Bassotti A, Pizzamiglio G, Giunta A, Padoan R. A novel stop mutation in exon 18 (W1145X) of the CFTR (ABCC7) gene in an adult CF patient. *Hum Mutat* 16: 532–533, 2000.
- Simmons NL. Renal epithelial Cl⁻ secretion. Exp Physiol 78: 117–137, 1993.
- Soodvilai S, Jia Z, Fongsupa S, Chatsudthipong V, Yang T. Liver X receptor agonists decrease ENaC-mediated sodium transport in collecting duct cells. *Am J Physiol Renal Physiol* 303: F1610–F1616, 2012.
- Soodvilai S, Jia Z, Yang T. Hydrogen peroxide stimulates chloride secretion in primary inner medullary collecting duct cells via mPGES-1derived PGE₂. Am J Physiol Renal Physiol 293: F1571–F1576, 2007.
- Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V. Renal organic cation transporters mediated cadmium-induced nephrotoxicity. *Toxicol Lett* 204: 38–42, 2011.
- Steffensen KR, Gustafsson JA. Putative metabolic effects of the liver X receptor (LXR). *Diabetes* 53, Suppl 1: S36–S42, 2004.
- Sullivan LP, Wallace DP, Grantham JJ. Chloride and fluid secretion in polycystic kidney disease. J Am Soc Nephrol 9: 903–916, 1998.
- Voter KZ, Ren CL. Diagnosis of cystic fibrosis. Clin Rev Allergy Immunol 35: 100–106, 2008.
- Wu J, Zhang Y, Wang N, Davis L, Yang G, Wang X, Zhu Y, Breyer MD, Guan Y. Liver X receptor-alpha mediates cholesterol efflux in glomerular mesangial cells. *Am J Physiol Renal Physiol* 287: F886–F895, 2004
- Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS. Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. *J Am Soc Nephrol* 19: 1300–1310, 2008.
- 39. Yoshikawa T, Shimano H, Amemiya-Kudo M, Yahagi N, Hasty AH, Matsuzaka T, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga J, Harada K, Gotoda T, Kimura S, Ishibashi S, Yamada N. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol 21: 2991–3000. 2001.
- 40. Zhang Y, Zhang X, Chen L, Wu J, Su D, Lu WJ, Hwang MT, Yang G, Li S, Wei M, Davis L, Breyer MD, Guan Y. Liver X receptor agonist TO-901317 upregulates SCD1 expression in renal proximal straight tubule. Am J Physiol Renal Physiol 290: F1065–F1073, 2006.
- Zhao C, Dahlman-Wright K. Liver X receptor in cholesterol metabolism. J Endocrinol 204: 233–240, 2010.