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Project Title: Models for fundamental problems in engineering mechanics with consideration 
of nano-scale influence 
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Engineering, Faculty of Engineering, Chulalongkorn University 
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Project Period: 3 years 

Abstract: In this research project, accurate and efficient techniques are developed for solving 
fundamental problems in solid mechanics with consideration of nano-scale influence. Three 
problems are considered in the present study, namely, elastic layer under surface loading, 
nano-indentation, and nano-sized cracks. The concept of surface elasticity, which has been 
widely employed in the investigation of nano-scale problems, is adopted to derive a suitable 
mathematical model capable of simulating the influence from surface energy that has been 
considered essential for nano-sized objects. In the present formulation, the classical theory of 
linear elasticity is utilized to establish the key governing equations of the bulk material 
whereas the well-known Gurtin-Murdoch surface elasticity model is employed to simulate 
responses of an infinitesimally thin layer of material adhered perfectly to the surface of the 
body. The governing equations for the surface and the bulk material are both formulated in an 
appropriate form for the solution sought, and properly coupled via appropriate interface 
conditions. Selected solution procedures are then implemented to efficiently and accurately 
determine solutions of the fully coupled governing equations. Once the proposed techniques 
are verified with available benchmark solutions, they are applied to investigate the size 
dependency of predicted solutions and nano-scale influence on the fundamental problems 
under consideration. Numerical results from an extensive parametric study confirm the fact 
that the presence of surface stresses is significant in the analysis of solid mechanics problems 
involving nano-scale influence and soft elastic materials where the surface energy effects are 
not negligible. 
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CHAPTER I 
 

INTRODUCTION 
 
 
1.1 Motivation and Significance 
 
Nowadays, Nanotechnology has become one of the most interesting research areas in various 
fields such as biology, chemistry, physics, medicine and engineering. Although nanotechnology 
deals only with extremely tiny objects with their length scale of few nanometers (where one 
nanometer is approximately about 50,000 times smaller than the average of a human hair), its 
applications tend to be substantial. For instance, nano-crystals are examples of a new invention at 
a nano-scale level. Metal nano-crystals can be incorporated into car bumpers, making the parts 
stronger, or into aluminum, making it more durable. Other applications of the metal nano-
crystals can be found in the production of bearings, new types of sensors and components for 
computers and electronic hardware. The nano-crystals of various metals have been shown to be 
100 percent, 200 percent and even as much as 300 percent harder than the same materials in the 
bulk form. Since the wear resistance is often dictated by the hardness of a metal, parts made from 
the nano-crystals might last significantly longer than conventional parts. In a field of medicine 
and healthcare, ones apply the nanotechnology to produce a nano-particulate-based synthetic 
bone. It is well known that the human bone is made of a calcium and phosphate composite called 
hydroxyapatite. By manipulating the calcium and phosphate at a molecular level, ones can create 
a patented material that is identical in structure and composition to the natural bone. This novel 
synthetic bone can be used in areas where the natural bone is damaged or removed, such as in the 
treatment of fractures and soft tissue injuries. For public utilities, nano-filters are capable of 
filtering the smallest particles of impurities. Such performance results directly from the nano-
sized alumina fiber attracting and retaining sub-micron and nano-sized particles. This disposable 
filter retains 99.9999 percentages of viruses at water flow rates several hundred times greater 
than virus-rated ultra-porous membranes. This product can be exploited to sterilize drinking 
water, allowing inhabitants in third-world countries to access the clean water. In a field of 
advanced materials, researches related to nano-science and nanotechnology such as nano-tubes, 
nano-wires, nano-composites and nano-films have grown rapidly and continuously. For 
examples, the carbon nano-tube, which was discovered by Iijima in 1991 (Iijima 1991, Iijima 
and Ichihashi 1993), has been known as an ideal material that possesses excellent mechanical 
properties. For instance, Young’s modulus, tensile strengths and failure strains of a defect-free 
single-walled carbon nano-tube are up to 1 TPa, greater than 100 GPa and about 15-30%, 
respectively (Peng et al. 2008). All above excellent products come from advanced researches 
conducted at the nano-scale level. What we have seen is just the beginning of a revolution, 
caused by the ability to work on the same scale as nature. The nanotechnology is going to affect 
every aspect of our life. It will become the next industrial revolution (Ratner and Ratner 2003). 
The nanotechnology can be compared to a dawn of the digital revolution that totally changes the 
face of technology and human life. Unlike the internet, the nanotechnology can equally be 
applied to old things and processes. It is about creating entirely new materials, products, and 
systems as well as making existing products faster, stronger and better. 

Due to enormous benefits that nanotechnology has brought out for the human, 
applications of nano-sized devices and nano-structured materials rapidly grow in various field. 
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The physical modeling and corresponding comprehensive analysis to gain an insight into the 
complex behavior of nano-sized devices and nano-structured materials become crucial aspects in 
the optimal design of nano-scale products. Besides the fundamental understanding of mechanical 
properties in the nano-scale level, failure/damage analysis and assessment has been found one of 
the essential steps that must be properly considered to ensure their safety and integrity in the 
design procedure.  

In the past three decades, various techniques have been developed and used extensively 
to investigate the nano-mechanical properties and characteristics of nano-sized structures. 
Several experimental researches have been found in the literature; for instance, Wong et al. 
(1997) utilized an atomic-force microscopy to determine the mechanical properties of isolated 
silicon carbide (SiC) nano-rods (NRs) and multi-wall carbon nano-tubes (MWNTs), Mao et al. 
(2003) employed the atomic-force microscope to investigate the hardness of both ZnO and SnO2 
nano-belts, and Poncharal et al. (1999) statically and dynamically measured the bending modulus 
of carbon nano-tubes in a transmission electron microscope. In addition, some researchers 
attempted to use the experimental approaches to explore the behavior of nano-sized cracks (e.g., 
Karimi et al. 2002, Sumomogi et al. 2002, Sundararajan and Bhushan 2002, Chen et al. 2008, 
Peng et al. 2008, Zhao and Xing 2008, Qin et al. 2009, Zhao and Xing 2010, Yan et al. 2011). It 
is generally acknowledged that experimental methods yield results reflecting real behavior. 
However, it is still found highly dependent on experimental environments and, more importantly, 
expensive due to the requirement of sophisticated equipments and high-precision testing 
procedures. As a result, the mathematical simulations and modeling has become an attractive 
alternative and been widely used to develop fundamental understanding and further predict 
complex phenomena. In addition, once integrating essential features and properly calibrated with 
data from basic experiments, mathematical models are found capable of simulating responses 
under various conditions. Within the context of modeling nano-scale influence of solids, two 
predominant mathematical models, one known as the molecular or atomistic models and the 
other corresponding to the modified or enhanced continuum-based models, have been commonly 
employed in the literature. The molecular-based simulations have been verified to yield accurate 
prediction of responses of interest due to their effectiveness in detailing of bonds or atoms (e.g., 
Buehler et al. 2003, Zhang et al. 2005, Buehler and Gao 2006, Rafii-Tabar et al. 2006, Pugno et 
al. 2008, Huang et al. 2009, Masuda-Jindo et al. 2009, Phan and Tippur 2009, Adnan and Sun 
2010), however, such simulations require enormous computational effort and resources to treat 
billions of atoms at a nano-scale. This therefore renders the discrete atomic-scale models 
impractical in various applications.  

As a result, modified or enhanced continuum-based models have become an attractive 
alternative due to their advantages of saving computational resources. Unlike macro-structures, 
in the case of nano-sized objects (e.g., thin films, quantum dots, nano-wires, nano-tubes and 
nano-composites), the surface to volume ratio is much higher and, as a direct consequence, the 
surface free energy often plays a crucial role in the mechanical behavior (Yakobson 2003). 
Therefore, the classical theory of continuum-based mechanics commonly used in the modeling 
of macroscopic bodies cannot be directly applied to accurately treat the problem of nano-scale 
structures and nano-sized cracks. While a conventional theory of linear elasticity has been well 
established and employed in the modeling of linear elastic uncracked and cracked bodies, the 
enhancement of classical models to incorporate the nano-scale influence is essentially required. 

Due to the rapid growth of interests and increasing applications of nano-technology, the 
investigation of mechanical behaviors and responses at a nano-scale level has gained significant 
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attention from many researchers and various sophisticated models have been proposed to study 
those phenomena. Problems of surface loadings and contacts, nano-indentations, nano-sized 
cracks are considered fundamental in nano-mechanics and have a wide range of applications 
including the investigation of mechanical properties such as hardness and elastic modulus. Work 
towards the modeling of near-surface fields under different surface loading conditions by using 
modified continuum-based models to characterize the surface energy effects has started gaining 
attention from several researchers in the past two decades since it offers computationally 
efficient techniques capable of reasonably predicting the behavior of materials at a nano-scale 
level. Similarly, nano-indentations have become a widely adopted technique to be used in the 
measurement of mechanical properties at the nano-scale. Unfortunately, the effect of surface 
elasticity during the indentation has been usually considered by experimental measurements and 
molecular dynamics/atomistic simulations which are generally very time-consuming and 
expensive. To minimize such limitations, modified continuum models accounted for the surface 
effects could be developed for nano-indentation problems, additionally, in order to clearly 
understand the nano-mechanical properties. It can be noted further that existing investigations 
using continuum-based theories to model defects/fractures at the nano-scale level have also been 
very limited. Most of them are restricted to situations where cracks can be treated either within 
the context of two-dimensional boundary value problems (e.g., Fu et al. 2008, Wang et al. 2008, 
Fang et al. 2009, Fu et al. 2010, Kim et al. 2010, Kim et al. 2011, Kim et al. 2011, Nan and 
Wang 2012, Kim et al. 2013, Nan and Wang 2013) or within the context of relatively simple 
three-dimensional problems (Intarit et al. 2012, Intarit 2013). However, bodies or components 
involved in practices are, in general, relatively complex in terms of geometries, loading 
conditions, and influences to be treated (e.g., surface free energy). Existing simplified 
mathematical models are therefore of limited capabilities and insufficient to be used in the 
prediction of responses in those practical cases. This, as a result, necessitates the development of 
a fully three-dimensional models supplemented by efficient and powerful numerical procedures. 
 

1.2 Background and Review 
 
In this section, an extensive literature survey including the existing work relevant to the current 
study and the sequence of historical background in this specific area is provided. In order to be 
systematic, results from such overview are separated into four parts regarding to their main 
focus. Firstly, the development of surface elasticity model is reviewed to observe how important 
of surface energy effects in the material characterization of nano-scale elements and soft elastic 
solids. Then, previous studies related to elastic media under surface loadings, indentation 
problems, and nano-sized cracks are summarized. 
 
1.2.1 Surface elasticity models 
 
Gibbs (1906), who originally formulated the most useful and powerful concepts in studying 
surface phenomena, defined the quantity γ to represent the excess free energy per unit area owing 
to the existence of a surface. Gibbs was the first who pointed out that, for solid-solid interfaces, 
there is another type of fundamental parameter called the surface stress that critically affects the 
behavior of surfaces, i.e. to elastically stretch a pre-existing surface. Simply saying that, to 
deform such a solid, excessive work is needed to stretch the surface in addition to straining the 
bulk. The larger partition of work done to surface, the more important the effect of surface stress 
(He and Lim, 2006). Comprehensive literature review on the surface energy effect and the 
Gibbsian formulation of the thermodynamics of surfaces can be found in general researches of 
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surface and interface stresses (Cammarata, 1994; Cammarata, 1997; Shuttleworth, 1950; Fischer 
et al., 2008). Especially, Cammarata (1994) gave an excellent explanation of the concept of the 
surface stress and also showed that the difference between the surface stress and the surface free 
energy γ is equal to the change in surface free energy per unit change in elastic strain of the 
surface. It should be noted that γ is a scalar quantity, while the surface stress is a second order 
tensor in the tangent plane of the surface and the strain normal to the surface is excluded. 
 A surface can be identified as a layer that an excess energy is attached and certain energy 
is usually termed as the surface energy γ (Fischer et al., 2008). Due to the different number of 
nearest neighbors between surface atoms and bulk atoms, it results in a corresponding 
redistribution of electronic charge and modifies layer spacing to be lesser at the surface, which 
deviates from the bulk value (Sander, 2003). As a result, the energy at a free surface will, in 
general, be different from that of the atoms in the bulk (Dingreville et al., 2005). The ratio of 
surface free energy γ (J/m2) and Young’s modulus E (J/m3), γ/E, is an inevitable parameter of 
materials (Yakobson, 2003). For usual metallic materials, the ratio is normally less than one 
Angstrom. For some soft solids, such as polymer gels and biological materials, however, the 
surface energy (or surface stress) is a little less than that of a metal, but the elastic modulus can 
be nearly 7-8 orders smaller than that of conventional solids. Therefore, the corresponding 
intrinsic length scale of soft solids is much larger, implying that the surface energy can play an 
important role on the properties of the materials, and thus the properties become size-dependent 
(He and Lim, 2006). As a consequence, the effects of surface stress should be incorporated into 
classical continuum models in order to study the behavior of soft materials or to obtain the 
correct response for nanoscale problems. 
 Many authors have developed continuum models that include surface energy effects, and 
one of them is Gurtin-Murdoch model. Gurtin and Murdoch (1975, 1978), and Gurtin et al. 
(1998) proposed a mathematical framework to study the mechanical behavior of material 
surfaces through a continuum model with the surface stress. An elastic surface is assumed to be 
very thin and modeled as a mathematical layer of zero thickness bonded to the bulk without 
slipping. Also, the elastic moduli of the surface can be different from the bulk. For an isotropic 
elastic surface, a linearized surface stress-strain constitutive relation is given by 
 

( ) ( ) ,2s s s s s s s s s suβα βα βα γγ βα β ασ τ δ µ τ ε λ τ ε δ τ= + − + + +                  (1.1) 
 

where the subscript ‘s’ denotes the quantities corresponding to the surface, µ s and λ s are surface 
Lamé constants and τ s is the residual surface tension under unstrained conditions, which is a 
constant. 
 In order to verify Gurtin-Murdoch model, Miller and Shenoy (2000) employed such a 
model to describe the size dependence of the stiffness of plates, bars and beams under either 
uniaxial tension or bending. Their results were compared with direct atomistic simulations of 
nanoscale structures using the embedded atom method for face-centered cubic aluminum and the 
Stillinger–Weber model for silicon. By neglecting the error induced from the effects of corners 
present in the modeling of beams, excellent agreement between the simulations and the model is 
observed. Shenoy (2002) completed a framework derived earlier by Miller and Shenoy (2000) by 
adding the torsional rigidities of nanosized structural elements and applied to the case of 
nanoscale bars in torsion. The theoretical results were compared with direct atomistic 
simulations for the torsion of square bars of various metals and found in good agreement. It is 
noted that the difference in theoretical values and simulation results mainly came from the 
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assumption that the surface energy depends only on the surface strain; however, it should also 
depend on the surface curvature strain. Dingreville et al. (2005) derived analytical expressions 
for an elastic modulus tensor of nanosized structural elements accounted for surface energy 
effects and showed that the overall elastic properties of nanosized particles, wires and films are 
size-dependent. The effective Young’s modulus of thin films of various thicknesses computed by 
using molecular static (MS) simulations and their proposed formulation are in excellent 
agreement. They also pointed out that results obtained from MS simulations were much more 
computationally intensive than the proposed formulation. This should confirm the benefit of 
employing such alternative continuum-based model to save the computational resources. 
Undoubtedly, Gurtin-Murdoch continuum model has been applied and widely used in nanoscale 
problems by several investigators, for example, to analyze the size dependent mechanical 
response of ultra-thin elastic films (He et al., 2004; Huang, 2008) and thin plates (Lu et al., 
2006). Recently, such a model has been employed to study the problems of nanoscale 
inhomogeneities. For instance, Sharma and Wheeler (2007) and Sharma et al. (2003) 
reformulated the size dependent elastic field of spherical and ellipsoidal nano-inclusions by 
applying this model. Duan et al. (2005) presented the interior and exterior Eshelby tensors for a 
spherical inhomogeneity subjected to arbitrary uniform eigenstrain under the surface/interface 
effects. Tian and Rajapakse (2006, 2007) derived the solution for a nanoscale circular and 
elliptical inhomogeneity in an infinite matrix under remote loading based on the Gurtin-Murdoch 
model. Moreover, Zhao and Rajapakse (2009) presented the analytical solution of the plane and 
axisymmetric problems for an elastic layer of finite thickness subjected to surface loading by 
using Fourier and Hankel Transform techniques. Numerical results indicated that the surface 
effects show significant influence on the vertical surface displacement of a layer and such 
influence on the stress field in the case of horizontal point load is more significant than that in 
the case of vertical point load. Intarit et al. (2010) recently confirmed the significance of the 
surface stress on very near the surface of both shear and opening dislocations, and also on buried 
vertical and horizontal loads in an elastic half-plane. They also found that the stress field has an 
asymptotic solution with increasing the characteristic length parameter. 
 It is obviously seen from (1.1) that, to employ Gurtin-Murdoch continuum model, surface 
elastic properties (i.e. surface energy, surface stress, and surface elastic stiffness) must be known 
a priori. In addition, these particular quantities are also strongly influenced on the overall 
mechanical behavior in nanostructures. Thus, many approaches have been proposed, based either 
on experimental measurements or atomistic simulations, to determine such properties. Among 
various experimental techniques, Jing et al. (2006) measured the elastic properties of the 
nanowires by using contact atomic force microscopy (C-AFM) and found that the Young’s 
modulus of the silver nanowire with consideration of the surface effect, surface modulus and 
surface stress are 56 GPa, 8.7 N/m, and 5.8 N/m respectively. Another method, rather 
computationally intensive, is atomistic simulations. Shenoy (2005) developed a fully nonlinear 
formulation of the surface elasticity and established a procedure for calculating surface elastic 
constants from atomistic simulations by adopting the embedded atom method. To reduce 
disadvantages of both experimental and atomistic approaches, Dingreville and Qu (2007) 
presented a semi-analytical method to compute a full set of data on surface elastic properties of 
crystalline materials. By applying this developed method, the surface elastic properties were 
formulated analytically and explicitly in terms of inter-atomic potentials, and a standard 
molecular simulation was used to obtain the relaxed positions of the atoms near the free surface 
in order to evaluate such analytical expressions. 
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1.2.2 Elastic layer under surface loadings  
 
Problems of surface loadings and contacts are considered essential in nano-mechanics since they 
have a wide range of applications including the investigation of mechanical properties such as 
hardness and elastic modulus. Work towards the modeling of near-surface fields under different 
surface loading conditions by using enhanced continuum-based models to characterize the 
surface energy effects has started gaining attentions from various researchers in the past two 
decades since it offers computationally efficient techniques capable of reasonably predicting the 
behavior of materials at a nano-scale level.  

For instance, Wang and Feng (2007) studied the responses of an elastic half-plane 
subjected to surface pressure by considering the influence of a constant residual surface tension 
but ignoring the surface elastic constants. Huang and Yu (2007) extended the work of Wang and 
Feng (2007) by incorporating the surface elastic constants. Recently, Zhao and Rajapakse (2009) 
studied the near-surface responses and size dependency of a two-dimensional and an 
axisymmetric three-dimensional infinite elastic layers under surface loads by using Fourier and 
Hankel integral transform techniques. It should be emphasized, however, that the Gurtin-
Murdoch model used in their study was still incomplete since the out-of-plane contribution of the 
residual surface tension was ignored in their formulation. Intarit et al. (2010) studied the effect of 
surface stresses on the near-surface responses of semi-infinite dislocations and buried loads in an 
elastic half-plane. Again, the contribution of out-of-plane terms was still not considered. Most 
recently, Intarit et al. (2011) generalized the work of Intarit et al. (2010) by integrating the 
influence of the residual surface tension in addition to the surface elastic constants to model a 
two-dimensional elastic layer under buried loading conditions. 
On the basis of an extensive literature survey, the study of near-surface responses of a three-
dimensional elastic layer using a complete version of Gurtin-Murdoch model has not been well 
recognized. In particular, an analytical solution of a three-dimensional elastic layer subjected to 
arbitrary axisymmetric surface loads by incorporating both in-plane and out-of-plane 
contribution of surface stresses is still not available in the literature and is the main focus of the 
present study. Results from this fundamental problem should not only shed some light on the 
nano-scale influence but also be potentially useful in the investigation of more complex 
boundary value problems such as nano-indentations. 
 
1.2.3 Nano-indentations 
 
It is understood that indentation techniques have been widely used for measuring mechanical 
properties on nanoscale such as hardness and elastic modulus. For example, the use of 
nanoindentation to measure the mechanical properties of ceramics (Hainsworth and Page, 1994), 
metals (Armstrong et al., 1995; Beegan et al., 2007) and polymers (Yang and Li, 1995; Yang and 
Li, 1997). By using depth-sensing indentation tests with either spherical or conical indenters, 
Young’s modulus can be calculated from the slope of the linear portion of the unloading curves 
in the load versus penetration depth while hardness can be calculated from data along the loading 
curves (Doerner and Nix, 1986; Oliver and Pharr, 1992). 
 Several authors have obtained the elastic solution of the indentation problems by using 
various mathematical methods. The classical problem of axisymmetric rigid punch indenting on 
an elastic half-space was first considered by Boussinesq (Boussinesq, 1885). According to the 
form of a solution, his numerical results were obtained only for a flat-ended cylindrical and a 
conical punch. Harding and Sneddon (1945) and Sneddon (1965) solved Boussinesq’s problem 
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under a punch of arbitrary profile by applying Hankel integral transform techniques. Clements 
(1971) later determined the stress fields produced from the rigid indentation on an anisotropic 
half-space by employing the theory of anisotropic elasticity developed by Eshelby et al. (1953) 
and Stroh (1958). Since the smart materials have recently gained significant interest from several 
researchers in the field of mechanics, the classical theory of elasticity becomes an important tool 
in studying their behavior from indentation techniques. Chen (2000) generalized the potential 
theory to analyze the piezoelastic contact problem of a punch pressed against a piezoelectric 
half-space. Giannakopoulos and Parmaklis (2007) examined the quasistatic contact problem of a 
circular rigid punch on piezomagnetic materials and confirmed their theoretical results by 
conducting an experiment on Terfenol-D. In addition, an elastic behavior of a nonhomogeneous 
transversely isotropic half-space was studied by Chaudhuri and Ray (2003) under the action of a 
smooth rigid axisymmetric indenter. 
 The indentation problems associated with an elastic layer perfectly bonded to an elastic 
half-space were also investigated. Lebedev and Ufliand (1958) considered a problem of a flat-
ended rigid cylindrical indenter on an elastic layer resting on a rigid foundation by using 
Papkovich-Neuber’s representation for the displacement vector. After reducing mixed boundary 
conditions to a pair of integral equations, Fredholm integral equation was obtained and solved 
numerically. By taking the Hankel transform technique, Dhaliwal and Rau (1970) reduced the 
axisymmetric Boussinesq problem of an elastic layer lying over an elastic half-space under a 
rigid punch of arbitrary profile to a Fredholm integral equation but no numerical result was 
presented in their study. Subsequently, Rau and Dhaliwal (1972) developed a numerical 
technique to solve the integral equation proposed by Dhaliwal and Rau (1970) and obtained the 
complete elastic field.  Yu et al. (1990) presented numerical results obtained from solving 
Fredholm integral equation of the second kind to demonstrate the effect of a substrate on the 
elastic properties of films and provided useful guidelines for the proper choice of an approximate 
layer thickness and substrate elastic properties to determine the elastic constants of the layer. 
Motivated by a recently developed multi-dimensional nanocontact system (Lucas et al., 2003), 
Gao et al. (2008) gave an analytical formulation by applying Green’s function in Fourier space to 
predict the effective elastic modulus of film-on-substrate systems under normal and tangential 
contact. In addition, Yang (1998) studied the problem of impressing a rigid flat-ended cylindrical 
indenter onto an incompressible elastic film by following a standard procedure such that the 
Hankel transformation was applied to the mixed boundary conditions and the Fredholm integral 
equation of the second kind was subsequently solved numerically. 
 The surface stress effect on mechanical responses of nanoindentation was recently 
studied based on the Gurtin-Murdoch continuum model by several researchers. Zhao (2009) 
derived an analytical solution of a classical indentation problem in the presence of the surface 
energy effect. By applying Gurtin-Murdoch continuum model, he obtained a solution for elastic 
fields within the half-space caused by flat-ended cylindrical, conical and spherical rigid 
indenters. Although Gurtin-Murdoch continuum model used in his formulation is not complete 
(e.g. no out-of-plane term), obtained numerical solutions still showed a size-dependent behavior 
due to the presence of surface energy effect, i.e. when the contact area becomes smaller, the 
material behaves stiffer. In addition, it is remarked that atomistic simulations (Sinnott et al., 
1997; Liu et al., 2007; Chen et al., 2008; Lu et al., 2009) can also be used to investigate the 
mechanism of an indentation process under different indenter shapes (i.e. spherical indenter and 
pyramidal indenter), sizes and indentation loads on the materials. In this approach, applied 
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molecular dynamics theory is employed to finally obtain the mechanical properties such as 
hardness and load-displacement curves. 

 As mentioned in the introduction and extensive review of existing works in this 
area, the influence of surface energy effects by using a complete set of Gurtin-Murdoch 
continuum model in order to capture the size-dependent behavior of nano-indention problems 
has not been investigated. This therefore requires profound exploration to further enhance the 
correct elastic fields accounted for surface effects. 
 
1.2.4 Nano-sized cracks 
 
Research focusing on the investigation of nano-sized defects and fractures has become of central 
interest in the past two decades. Basic approaches proposed in those investigations can be 
categorized into two groups, namely experimental methods and theoretical simulations. Some of 
previous studies in the first group can be briefly summarized as follows. Sumomogi et al. (2002) 
investigated both subsurface and surface cracks of single-crystal silicon by using a scanning 
force microscope (SFM) and a scanning laser microscope (SLM). Sundararajan and Bhushan 
(2002) evaluated the elastic modulus and bending strength, and estimated the fracture toughness 
of nanometer-scale fixed-end beam specimens made of single-crystal silicon and SiO2 by using a 
quasi-static bending test technique, which was developed by using an atomic force microscope. 
Karimi et al. (2002) combined a depth sensing nano-indentation and a nano-scratch testing along 
with the atomic force microscopy and electron microscopy observations to study mechanical 
properties and fracture behavior of a number of TiAlN(Si, C) hard thin films. Chen et al. (2008) 
carried out an experiment of the composite to examine the local mechanical and fracture 
behavior of an EPON 862 based-epoxy with 12 nm (primary) and 100 nm (secondary) fumed 
silica particles by using the atomic force microscopy/digital image correlation (AFM/DIC) 
method. Peng et al. (2008) conducted an experiment by using an in-situ transmission electron 
microscopy (TEM) method. They employed a MEMS material testing system that allows 
accurate measurement of both load and displacement along with the TEM imaging to measure a 
single shell failure for multiwalled carbon nano-tubes that display the fracture strengths of about 
100 GPa and also showed that fracture strains are very close to theoretical predictions. Zhao and 
Xing (2008, 2010) experimentally investigated a micro-crack in silicon by using high-resolution 
transmission electron microscopy (HRTEM) and a combination of geometric phase analysis 
(GPA), the numerical moiré method (NM) and the transmission electron microscopy (TEM). Qin 
et al. (2009) quantitatively investigated the effect of the density of nano-scale twin bundles on 
the tensile strength and fracture toughness. In their study, the fracture surface characteristics 
were elucidated by using scanning electron microscopy (SEM) and focused ion beam (FIB) 
microscopy analysis. The fracture toughness was measured by a conventional three-point 
bending test based on ASTM-E399. Most recently, Yan et al. (2011) experimentally investigated 
crack initiation and propagation along the Cu/Si interface in multilayered films (Si/Cu/SiN) with 
different thicknesses of the Cu layer (20 and 200 nm) by using a nano-cantilever and millimeter-
sized four-point bending specimens. Those experiments demonstrated that the elastic modulus, 
bending strength, and fracture toughness were size-dependent at the nano-scale. Values of 
mechanical properties had a tendency to be higher when compared to those obtained from 
experiments of macro-scale structures. The experimental approaches offer results reflecting the 
actual responses or behaviors, they are, however, highly dependent on experimental settings and, 
generally, expensive due to the requirement of high precision testing devices and procedures. 
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 Another alternative is based on the mathematical modeling and simulations. In this group, 
a set of governing physics and assumptions is chosen to construct a set of mathematical 
equations governing representative quantities of interest and a solution methodology is 
developed to obtain such representative solutions for describing the real behavior. The 
discrepancy between the real responses and the representative solutions depends primarily on the 
choice of governing physics and assumptions, and the accuracy of the solution strategy. Based on 
an extensive literature review, most of existing studies employed two different types of 
mathematical models, one employing discrete-based models whereas the other utilizing modified 
continuum-based models. 
 Within the context of modeling nano-sized cracks, several studies based on the discrete 
atomic-scale model have been recognized. For instance, Buehler et al. (2003), Zhang et al. 
(2005), Buehler and Gao (2006), Rafii-Tabar et al. (2006), Huang et al. (2009), Masuda-Jindo et 
al. (2009), Adnan and Sun (2010) and Sakib and Adnan (2012) investigated the crack by using 
molecular dynamics (MD) atomistic simulations. Phan and Tippur (2009) presented a numerical 
method to evaluate the quantized fracture mechanics (QFM) stress intensity factors (SIFs). 
Pugno et al. (2008) combined quantized fracture mechanics and molecular dynamics atomistic 
simulations to study atomistic fractures. While those proposed models have been verified to yield 
accurate prediction of responses of interest due to their effectiveness in detailing of bonds or 
atoms, such simulations require enormous computational effort and resources to treat billions of 
atoms at a nano-scale. This therefore renders the discrete atomic-scale models impractical in 
various applications. 
 Consequently, a group of approaches based upon continuum-based theories is considered 
attractive since it can substantially reduce both the computational cost and complexity of the 
governing physics. Work towards applying the surface elasticity model to simulate the nano-
scale influence of nano-sized fracture problems has become a subject of numerous 
investigations. Based upon the investigation of an elliptical void, Wu (1999) argued that 
presence of the surface stresses can effectively reduce an applied stress-intensity factor to a 
lower effective stress-intensity factor. Wu and Wang (2000), (2001) proposed the method using a 
pair of point forces, one at each crack tip, a uniformly distributed compressive load on the 
convex side of the crack, and a uniformly distributed tensile load on the concave side to study the 
influence of surface stress on two-dimensional crack problems and pointed out that the 
singularity of the crack-tip stress fields becomes 1/ r  instead of being 1/ r . Wang et al. (2007) 
explored the dependent relationship of crack-tip stresses on surface elastic parameters for both 
mode-I (opening mode) and mode-III (tearing mode) cracks based on the Gurtin Murdoch 
surface elasticity theory along with a local asymptotic approach. They found in their study, that 
the stress intensities in the vicinity of the crack tip are significantly affected by the surface 
energy when the curvature radius of a blunt crack front decreases to nanometers. Fu et al. (2008), 
(2010) incorporated the effect of surface elasticity into the finite element analysis (via ANSYS 
and ABAQUS) to study the influence of surface stresses on the mode-I (opening mode) and 
mode-II (sliding mode) crack tip fields. They found that when the curvature radius of the crack 
root decreases to micro-/nano-meters, the surface elasticity exhibits significant influence on 
stresses near the crack tip. Fang et al. (2009) investigated the influence of surface stresses on the 
dislocation emission from an elliptically blunt crack under mode-I and mode-II loading 
conditions and reported that the impact of the surface stresses on the critical stress intensity 
factors for dislocation emission becomes remarkable when the size of the blunted crack is very 
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small, typically of a nanometer scale. However, their results for stresses are valid only in the 
vicinity ahead the crack-tip of the blunt crack. 
 Use of a sharp crack-tip model has also been commonly employed in the modeling of 
nano-sized cracks. The fundamental problem of mode-I crack was elaborated by Oh et al. (2005) 
based upon an extension of continuum mechanics by incorporating effects of the nano-scale 
through the long-range intermolecular force obtained from atomistic simulations. They 
concluded that the fracture tip should be sharp rather than blunt and, unlike the classical case, 
there is no stress singularity at the fracture tip when considered at a nano-scale level. It is also 
important to remark that the surface energy is generally nonzero and a function of position on the 
fracture surface. Sendova and Walton (2010) examined mode-I crack in an infinite elastic 
medium using various models of surface energy effects (e.g., a model of constant surface tension 
and a model of curvature dependent surface tension). In their study, they proposed that the stress 
singularity at the crack tip was reduced to the logarithmic singularity in the case of the constant 
surface tension, whereas the finite stress at the crack tip was observed for the case of the 
curvature dependent surface tension. Kim et al. (2010) first examined a mode-III crack problem 
(i.e., anti-plane shear deformations of a linearly elastic solid) subjected to non-uniform surface 
tractions. Later, Kim et al. (2011) studied the plane deformations of a linearly elastic solid 
containing a crack under either mode-I or mode-II loading conditions. Kim et al. (2011) 
considered the contribution of the surface elasticity to the anti-plane deformations of a linearly 
elastic bi-material containing mode-III interface crack. For the above three studies, the 
continuum-based surface/interface model of Gurtin and Murdoch was employed in the 
formulation of the boundary value problem, and the complex variable techniques were applied in 
the solution procedure. They pointed out that the surface stresses result in elastic responses and 
corresponding stress fields being size-dependent and also argued that, in contrast to classical 
results from linear elastic fracture mechanics, their model yielded the finite stresses at the sharp 
crack-tips. Recently, Kim et al. (2013) examined the role of surface stresses on the singularity 
behavior of near-tip stress field. They showed that the necessary and sufficient conditions for 
bounded stresses at the crack tip cannot be satisfied with the first-order (curvature-independent) 
theory of surface effects, which leads, at most, to the reduction of the classical strong square-root 
singularity to the weaker logarithmic singularity. This finding agrees with the previous study of 
Sendova and Walton (2010) in the case of the constant surface tension. Nan and Wang (2012) 
considered the effect of the residual surface stress on the crack surface and obtained solutions of 
the crack opening displacement (COD) and the mode-I stress intensity factor (KI). Their 
obtained results demonstrated that the influence of the surface stresses on the crack deformation 
and crack-tip field is prominent at the nano-scale. Moreover, the COD and KI are influenced by 
the residual surface stress not only on the surface near the crack-tip region but also on the entire 
crack-face. Most recently, Nan and Wang (2013) investigated a problem of a nano-scale crack in 
piezoelectric nano-materials by considering the effect of the residual surface stress on the crack 
surface. They pointed out that the electromechanical coupling fracture behavior of the 
piezoelectric materials is influenced by the residual surface stress on the entire crack surface. 
 On the basis of an extensive literature survey, it can be said that work related to the 
modeling of defects/cracks at nano-scale level has been very limited. For most existing studies 
related to the analysis of nano-sized fractures, the corresponding boundary value problems were 
formulated within the context of two-dimensional settings, and most of them were solved by 
using analytical techniques such as complex variable techniques, complex potential method and 
Chebyshev polynomials technique. Due to limitations of both inherent simplified assumptions 
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and solution techniques, complex but more practical loading conditions and fracture geometries 
cannot readily be treated in those existing works. Recently, Intarit et al. (2012) and Intarit (2013) 
analytically investigated a nano-sized crack in a three-dimensional elastic media under a mode-I 
loading conditions. Although a complete Gurtin-Murdoch surface elasticity model was employed 
to model the effect of surface stresses, it was still limited to a crack of circular shape and 
axisymmetric loading conditions. However, bodies or components containing existing 
defects/flaws involved in practical applications are, in general, relatively complex in terms of 
geometries, loading conditions, and influences to be treated (e.g., surface free energy). The 
existing mathematical models are therefore of limited scope and insufficient for the prediction of 
responses in practical cases. This, as a result, necessitates the development of fully three-
dimensional models, supplemented by efficient and powerful numerical procedures. This current 
gap of knowledge is to be fully investigated in the present study.  
 

1.3 Objectives 
 
The key objectives of the current investigation are 

(1) to establish physically suitable, mathematical models for fundamental problems in 
solid mechanics with consideration of the nano-scale influence, and 

(2) to develop analytical procedures for investigating various basic boundary value 
problems that are fundamental in the area of solid mechanics, and 

(3) to establish the framework of powerful numerical procedures capable of solving a 
broader class of boundary value problems that are relatively complex and often 
encountered in engineering and industrial applications, and 

(4) to fully investigate the size-dependent behavior and nano-scale influence on various 
fundamental problems in solid mechanics and also compare results from continuum-
based simulations with existing molecular dynamics simulations and experimental 
measurements. 

 

1.4 Scope of Work 
 
Scope of the present study and assumptions relevant to the development are summarized as 
follows: 

(1) the boundary value problem considered in this investigation is linear and governed by 
the theory of local linear elasticity; 

(2) a body associated with the boundary value problem is three-dimensional with 
applications to infinite media, half-spaces, and thin layers; 

(3) a body is assumed to be free of a body force; 
(4) the influence of nano-scale in the local region near the boundary is modeled by 

properly incorporating the surface elasticity model (proposed by Gurtin and Murdoch 
(1975)) into classical continuum theory for solid mechanics; 

(5) analytical and semi-analytical solutions are constructed for boundary value problems 
involving simple geometry, loading conditions and boundary conditions (e.g., surface 
axisymmetric loadings in half-space, surface axisymmetric loadings on elastic thin 
layer, and indentation problems with axisymmetric profiles, etc.); and 

(6) a framework of numerical techniques (e.g., FEM, SGBEM, Coupling of FEM and 
SGBEM) capable of solving relatively complex boundary value problems induced by 
the presence of surface elasticity, embedded singularity such as cracks and 
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dislocations, complicated geometries, loadings and boundary conditions is developed. 
In-house computer codes using FORTRAN 90 are implemented to demonstrate 
accuracy and capabilities of the proposed technique. 

 

1.5 Methodology 
 
The present study consists of several main tasks with methodology, procedures, and involved 
fundamental theories for each task briefly summarized below. 

(1) Extensive literature survey is first conducted in related fields such as surface 
elasticity, modeling of size-dependent behavior, and nano-scale influence in various 
fundamental problems (such as cracks, surface loadings, indentations, etc.). Next, the 
fundamental theories in linear elasticity and surface elasticity crucial for the current 
development along with the relevant solution techniques such as the Hankel integral 
transform, potential-theory-based methods, finite element methods, and boundary 
integral equation methods are reviewed. Finally, the scope of work and the problem 
statement is clearly defined. 

(2) A domain decomposition technique is utilized to decompose the domain into two 
parts: a bulk material and a surface with zero thickness perfectly bonded to the bulk. 
The behavior of the surface is modeled by Gurtin-Murdoch surface elasticity model 
whereas that of the bulk material is governed by a classical theory of linear elasticity. 

(3) For an elastic layer under axisymmetric loadings, the governing equation for the bulk 
material is expressed in terms of Love’s strain potential whereas the governing 
equation of the surface is derived directly from the Gurtin-Murdoch surface elasticity 
model. A general solution for the bulk is derived by using Hankel integral transform 
and its inversions, and its final form is given in terms of arbitrary functions. The 
boundary conditions at the top and bottom surfaces of the bulk are enforced along 
with applying Hankel integral transform to determine all arbitrary functions. The 
elastic fields (i.e., displacement and stress fields) are expressed in terms of the Hankel 
integral inversion. An efficient numerical integration scheme is adopted to evaluate 
all involved integrals. Results of elastic fields for general axisymmetric loading 
conditions are then specialized to obtain results for the half-space and to construct 
fundamental solutions of a layer under special surface loading cases.  

(4) For axisymmetric indentation problem, a corresponding mixed boundary value 
problem is formulated and reduced to a set of dual integral equations by using Hankel 
integral transform. Such dual integral equations are further reduced to a Fredholm 
integral equation of the second kind by using a procedure based on Sonine’s integrals. 
Selected numerical techniques are adopted to solve the resulting Fredholm integral 
equation of the second kind. Once the solution of such governing equation is 
obtained, Hankel transform inversions are then employed to determine elastic fields 
and other interesting quantities such as contact pressure, indentation force, stresses, 
and displacements. 

(5) For nano-sized crack problem, the governing equations of the bulk part are 
established in terms of weakly singular boundary integral equations following the 
work of Rungamornrat and Mear (2008a) whereas those for the surface is established 
in a form of weak statement using standard weight residual approach. The weak-form 
equation of the surface part is discretized into a set of linear algebraic equations using 
standard finite element procedure and a set of weakly singular integral equations are 
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discretized into a set of linear algebraic equations using weakly singular SGBEM 
similar to that employed by Rungamornrat and Mear (2008b). Continuity conditions 
between the surface part and the bulk material are utilized to obtain a fully coupled 
system of linear algebraic equations and it is then solved by a selected linear solver. 
All field quantities within the bulk material can be obtained from a set of boundary 
integral relations proposed by Rungamornrat and Mear (2008a). Extensive numerical 
experiments are conducted and results are compared with available benchmark 
solutions to validate the proposed numerical technique. 

(6) Developed analytical and numerical techniques are employed to fully investigate the 
size-dependent behavior and nano-scale influence for various fundamental problems 
in solid mechanics such as nano-indentations, surface loadings on elastic half-space 
and thin layers, and nano-sized cracks. 

 

1.6 Contribution 
 
The present study offers a complete analytical solution of a three-dimensional, infinite elastic 
layer under the action of axisymmetric normal and tangential surface loading by taking surface 
energy effects into account. The integration of surface elasticity in the mathematical model 
provides an alternative, computationally cheap, continuum-based approach for investigating the 
influence of nano-scale on various responses of interest. As a result of using a complete Gurtin 
Murdoch constitutive relation for modeling the surface energy effects, proposed formulation can 
demonstrate the influence of the out-of-plane term resulting from residual surface tension on 
material stiffness. Furthermore, the solution of elastic fields are also specialized to construct 
fundamental solutions of a layer under a unit normal concentrated force, a unit normal ring force, 
and a unit tangential ring force. Such basic results constitute the essential basis for the 
development of boundary integral equations governing other related problems, e.g. nano-
indentations.  
 The current investigation proposes an application of continuum-based concepts in the 
analysis of indentation problems for nano-scale structures and soft elastic solids by incorporating 
surface energy effects into a classical continuum model. With use of complete Gurtin-Murdoch 
surface elasticity model, proposed formulation is applicable to perform the existence of an 
inevitable parameter of materials via size-dependent behavior and also to strongly demonstrate 
the influence of out-of-plane contribution of residual surface tension on material stiffness. When 
compared to molecular dynamics simulations, this modified continuum model is an alternative in 
terms of dramatically reduction in computational resources with an acceptable level of accuracy. 
Such attractive approach offers an alternative for studying the mechanical properties and 
mechanical deformation for indenters of arbitrary axisymmetric profiles. This fundamental 
development can have a direct impact on nano-indentation applications since the indentation 
techniques have been widely used for measuring mechanical properties in the nano-scale such as 
hardness and elastic modulus (e.g., Hainsworth and Page, 1994; Armstrong et al., 1995; Beegan 
et al., 2007; Yang and Li, 1995; Yang and Li, 1997). By using depth-sensing indentation tests 
with either spherical or conical indenters, Young’s modulus can be calculated from the slope of 
the linear portion of the unloading curves in the load versus penetration depth while hardness can 
be calculated from data along the loading curves (Doerner and Nix, 1986; Oliver and Pharr, 
1992). 

The developed numerical technique should enhance and strengthen the capability in the 
modeling of nano-sized crack problems using an alternative, computationally cheap continuum-
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based model along with the proper treatment of surface stress effects via Gurtin-Murdoch surface 
elasticity model. The developed mathematical model and the implemented numerical procedure 
allow more practical planar nano-sized fracture problems to be investigated, e.g. cracks of 
arbitrary shapes under general loading conditions. Availability of a computational tool of such 
high capability should be very significant in the parametric study to investigate and gain an 
insight into various crucial responses of interest in the nano-scale level such as the size-
dependent behavior of an elastic field and all other related quantities. 
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CHAPTER II 
 

ELASTIC LAYER UNDER SURFACE LOADING 
 
 
In this chapter, the complete solution of an axisymmetric problem for an infinite, rigid-based 
elastic layer under the action of surface loads and the surface energy effects is presented. The 
corresponding boundary value problem is formulated based on a classical theory of linear 
elasticity for the bulk and a complete Gurtin-Murdoch constitutive relation for modeling the 
surface energy effects. Love’s strain potential technique and Hankel integral transform are 
adopted to obtain the general solution for the bulk whereas the surface equations and conditions 
at the rigid based supply sufficient boundary conditions to determine all arbitrary constants. A 
selected numerical technique for efficiently and accurately evaluating all involved integrals is 
then outlined. After the technique is verified with available benchmark solutions, extensive 
studies for both cases of axisymmetric normal and axisymmetric tangential surface loads are 
investigated to understand the nano-scale influence through the surface stress effects 
(with/without the contribution of residual surface tension) and size dependent behaviors. 
Moreover, numerical results of a layer under a unit normal point load, a unit normal ring load 
and a unit tangential ring load, which are benefit for solving nano-indentations problem, are also 
demonstrated and fully discussed. 
 

2.1 Formulation 
 
 

 

 

 

 

 

Figure 2.1 A three-dimensional, infinite, rigid-based, elastic layer subjected to axisymmetric 
surface loading 

Consider a three-dimensional, infinite, rigid-based elastic layer of thickness h under the action of 
arbitrary axisymmetric surface loads as shown schematically in Figure 2.1. The reference 
cylindrical coordinate system is chosen such that the origin is located at the free surface and the 
positive z-axis directs downward whereas other axes follow the right-hand rule. The normal 
surface load and the tangential surface load are denoted by p = p(r) and q = q(r), respectively. In 
the modeling, the entire domain is treated as a body consisting of two different parts, the bulk 
which is homogeneous and isotropic and occupies a region defined by 0 < z ≤ h, and the zero-

p(r) 

h q(r) 

z 

r 
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thickness layer, which occupies the plane z = 0 and is perfectly bonded to the bulk. In the present 
study, the medium is assumed to be free of the body force and remote loadings. The primary 
objective is to determine the complete responses (e.g. the displacement and stress fields) within 
the bulk due to the arbitrary (axisymmetric) applied surface loads and the presence of the surface 
energy effects. 
 
2.1.1 Basic field equations 
 
For the bulk, the governing field equations follow directly the classical theory of linear isotropic 
elasticity (e.g. Barber, 1992; Timoshenko et al., 1951). In the absence of body forces and under 
axisymmetric deformation, the equilibrium equations, constitutive laws and strain-displacement 
relations expressed in terms of cylindrical coordinates are given by 
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where { , , , }rr zz rzθθσ σ σ σ

 
 are non-zero stress components;

 
{ , , , }rr zz rzθθε ε ε ε  are non-zero strain 

components; { , }r zu u  are non-zero displacement components; and µ  and λ  are Lamé constants 
of the bulk material. 
 For the surface, the equilibrium conditions on the surface in terms of the generalized 
Young-Laplace equation (Povestenko, 1993), a complete Gurtin-Murdoch constitutive relation 
(Gurtin-Murdoch 1975, 1978) and strain displacement relation are given, for the case of 
axisymmetry and flat surface, by 
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where the superscript ‘s’ is used to denote the quantities corresponding to the surface; µ s  and λ s    
are surface Lamé constants; and τ s  is the residual surface tension under unstrained conditions. 
By combining equations (2.4)-(2.7), it leads to two governing field equations for the surface in 
terms of the surface displacement as follows: 
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where various normalized quantities appearing in (2.8) and (2.9) are defined by /  s sτ τ µ= Λ , 
/s s
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( ) ( ) /q r q r µ= , ( ) ( ) /p r p r µ= , ( 2 ) / 2 ( )sκ λ µ µ λ µΛ = + + , and 2s
s sκ µ λ= + .  

 
2.1.2 General solution for bulk 
 
A general solution for the normalized displacement and normalized stress of a set of governing 
equations (2.1)-(2.3) can readily be obtained in terms of Love’s strain potential  Φ  as follows 
(e.g., Sneddon, 1951; Selvadurai, 2000): 
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/ 2( )rr rrσ σ λ µ= + , and / 2( )θθ θθσ σ λ µ= + . For the above field to be an elastic state, the 
Love’s strain potential Φ   must be bi-harmonic or, equivalently, satisfy the following equation 
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where ∇ = ∇ ⋅∇4 2 2 . Applying Hankel integral transform to the above equation yields 
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with ( )nJ ξ  denoting the Bessel function of the first kind of order n. A general solution of the 
homogeneous ordinary differential equation (2.12) is given by 
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where A, B, C, and D are arbitrary functions of ξ , and can be determined from boundary 
conditions. By employing Hankel integral transform inversion, equations (2.10a)-(2.10f) can be 
written as 
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∫ ∫                 (2.15c) 
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dz r dzdzθθ

λσ ξ ξ ξ ξ ξ ξ ξ
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+   
∫ ∫                          (2.15d) 
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λ λσ ξ ξ ξ ξ ξ
λ λ
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+ +  
∫                             (2.15f) 

 
Finally, by inserting the general solution for the function G given by (2.14), the displacement and 
stress fields can finally be expressed in terms of the four arbitrary functions A, B, C, and D as 
 

{ }ξ ξλ ξ ξ ξ ξ ξ ξ ξ
∞

−   = + − + − + + +   ∫ 2
1

0
( 1) (1 ) (1 ) ( )z z

ru A B z e C D z e J r d                              (2.16a) 
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∞
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∫ 2

0
0

2 2( 1) ( ) ( ) ( )
( 1) ( 1)

z z
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ξ ξλ λσ ξ ξ ξ ξ ξ ξ ξ
λ λ

∞
−       + + = − + − + + +       + +        
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                         (2.16c) 
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                            (2.16d)
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λ λ

∞
−       = + + + − + −       + +       
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z z
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−        = − − + + +       + +        

∫ 3
1

0
( )

1 1
z z

rz A B z e C D z e J r d                (2.16f) 

 
2.1.3 Solution of particular boundary value problem 
 
To obtain the complete solution of a particular boundary value problem, the four arbitrary 
functions A, B, C and D must be determined. This can be achieved by enforcing the boundary 
conditions at the top and bottom surfaces of the bulk (i.e. at z = 0 and z = h). By utilizing the 
surface equations (2.8) and (2.9) along with assuming that the residual surface tension sτ  is 
constant throughout, the normal and shear stress components zzσ  and rzσ  on the top surface of 
the bulk must satisfy the following relations:  
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                                         (2.17) 

ασ
λ λ=

 
= − + − − + + 

2

2 20

1 ( )
( 2) 2( 1)

r r r
rz z

d u du u q r
dr r dr r

                                  (2.18) 

 
where α

 
is equal to 1 if the surface effect is not considered, otherwise it is zero and β  is equal 

to 1 if the out-of-plane term is taken into account in the mathematical model, otherwise it is zero. 
The continuity of the displacement across the interface of the bulk and surface has also been 
employed, i.e. = s

r ru u  and = s
z zu u . Due to the fully fixed rigid-based condition, all components 

of the displacement vanish at =z h  where = Λ/h h , i.e.  
 

=
= 0r z h

u                                         (2.19) 

=
= 0z z h

u                                         (2.20) 
 
By taking Hankel integral transform of all four boundary conditions (2.17)-(2.20) along with 
exploiting the relations (2.16a)-(2.16f), it leads to a system of four linear algebraic equations for 
A, B, C and D 
 

( )2( 1) ( 1) 1
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s
sA Bτξ λ β ξ λ βτ ξ

 
+ + + + + 
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ξ
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                             (2.21) 

2 2
2( 1) ( 1)( 1)

2 2
A Bλ λλ ξ α ξ λ α ξ

λ λ

   + +
+ + + − −      + +   

 

2 2
2

2
( 1) ( 1) ( )( 1)

2 2 2
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                              (2.22) 

(1 ) (1 ) 0h hA B h e C D h eξ ξξ ξ ξ ξ−   − + − + + + =                                  (2.23) 
2 2 0

1 1
h hA B h e C D h eξ ξξ ξ ξ ξ

λ λ
−      + + + + − + =      + +      

                            (2.24) 

 
where the functions ( )Z ξ  and ( )R ξ  are given in terms of the surface loads ( )p r  and ( )q r  by 

 

( ) 0
0

( ) ( )Z p r J r rdrξ ξ
∞

= −∫                                                              (2.25) 

( ) 1
0

( ) ( )R q r J r rdrξ ξ
∞

= −∫                                                          (2.26) 
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Equations (2.21)-(2.24) are sufficient for uniquely determining A, B, C, and D as functions of the 
transform parameterξ  and the applied surface loads ( )Z ξ  and ( )R ξ  and the final explicit 
solution is given by 
 

0 1 0 1
3 3

1 ( ) 1 ( )
4 4

Z Z R RA A A AZ RA
F F
α βξ ξ

ξ ξ
+ +   

= +   
   

                             (2.27a)
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                            (2.27b) 
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                              (2.27c) 
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                            (2.27d) 

 
where 
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Once the functions A, B, C, and D are obtained from (2.27)-(2.28), both the displacement and 
stress at any point within the bulk can be computed from (2.16a)-(2.16f). Numerical evaluation 
of all involved integrals is briefly discussed in the next chapter. 

It is evident that by setting the parameters α and β  to zero, the solution obtained is 
identical to that of a classical problem of a three-dimensional, infinite elastic layer under surface 
loadings (Sneddon, 1951; Selvadurai, 2000). Furthermore, by setting β  to zero, the above 
results reduce to those presented by Zhao and Rajapakse (2009) and Zhao (2009). These two 
special benchmark solutions can be employed in the verification procedure. In addition, results 
for the special case of a half space can also be obtained by simply taking sufficiently large layer 
thickness h.  
 

2.2 Numerical Implementation 
 
Although all functions A, B, C, and D are obtained in a closed form in terms of the transform 
parameterξ , determination of the displacement and stress fields still requires the evaluation of 
integrals corresponding to Hankel transform inversion. It is apparent that all involved integrals 
contain relatively complex integrands and they cannot be directly integrated to obtain a closed 
form elastic field.  In this section, a selected numerical technique for efficiently and accurately 
evaluating those integrals is outlined below. 
 
2.2.1 Truncation 
 
It is evident that all integrals appearing in (2.16a)-(2.16f) are improper integrals with their lower 
and upper limits equal to zero and infinity, respectively. To evaluate such integrals numerically, 
it is common to truncate the domain of integration from [0, ∞ ) to [0, Rξ ] where Rξ  is a finite real 
number. The approximate displacement and stress fields in terms of the truncated integrals are 
given by  
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While the convergence of the above approximate solution to an analytical solution is ensured as 

Rξ  approaches infinity, it is standard, in the numerical calculation, to choose a sufficiently large 

number Rξ  such that the error from the approximation is less than a specified tolerance.  
 
2.2.2 Interval subdivision 
 
Due to the oscillating nature of their integrands, the numerical integration of involved integrals 
in (2.16a)-(2.16f) by using Gaussian quadrature over a single interval requires a large number of 
integrations points. To enhance the accuracy and computational efficiency, the interval [0, Rξ ] is 
first partitioned into N sub-intervals denoted by [ =0 0ξ , 1ξ ], [ 1ξ , 2ξ ], [ 2ξ , 3ξ ], …, [ −1Nξ , =N Rξ ξ

] and the integral over the interval [0, Rξ ] is obtained from the sum of all sub-integrals over each 
sub-interval as follows:  
 

1 2 1

0 0 1 2 10

( ) ( ) ( ) ... ( ) ( )
R N N R

N N

f d f d f d f d f d
ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ
−

= − −

=

= + + + +∫ ∫ ∫ ∫ ∫                 (2.30) 

 
where ( )f f ξ=  denotes any integrand. As the number of sub-intervals increases, the oscillating 
behavior of the integrand in each sub-interval should disappear, and they can accurately be 
integrated by using low-order Gaussian quadrature. 
 
2.2.3 Numerical quadrature 
 
By using the change of variable, the Gaussian quadrature formula for each sub-interval in (2.30) 
is given by  
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where −= − + +* *

1(1 ) / 2 (1 ) / 2i iξ ξ ξ ξ ξ , −− 1( )/ 2i iξ ξ  denotes the Jacobian of transformation, 
*
iξ  is the location of an integration point, wi is the corresponding weight, and n is the number of 

integration points. 
 
2.2.4 Convergence study 
 
In the present study, extensive numerical experiments are to be performed to investigate the 
influence of the truncation parameter Rξ , the number of sub-intervals N, and the number of 
integration points n on the accuracy of the numerical integration. Such three parameters must be 
chosen properly to ensure the accuracy of the numerical results while consuming reasonable 
computational time.  

Both the number of integration points and the number of sub-intervals have a direct 
impact on the accuracy of the numerical integration for a fixed truncation parameter Rξ . In 
general, by increasing the number of sub-intervals, each sub-integral over each sub-interval 
requires less number of integration points since the oscillating behavior of the integrand 
gradually disappears. In the present study, for a fixed truncation parameter Rξ , the number of 
sub-intervals N is increased until the integral can be integrated correctly (for a specified 
tolerance) by using a low order Gaussian quadrature over each sub-interval. The ratio /R Nξ  is 
then computed and used to indicate the size of the sub-interval over which the integrand is 
sufficiently well-behaved to be integrated using low order Gaussian quadrature. Finally, a proper 
choice of the truncation parameter Rξ  is obtained by increasing such upper limit until the value 
of the integral converges or remains unchanged (for a specified tolerance). It is important to 
remark that in such process, the number of sub-intervals must be increased accordingly in order 
to maintain the size of the sub-intervals ( /R Nξ ) to be sufficiently small to allow the integration 
by low-order Gaussian quadrature. 
 

2.3 Numerical Results 
 
Extensive studies for both cases of axisymmetric normal and axisymmetric tangential surface 
loads are investigated to understand the nano-scale influence through the surface stress effects 
(with/without the contribution of residual surface tension) and size dependent behaviors. 
Moreover, numerical results of a layer under a unit normal point load, a unit normal ring load 
and a unit tangential ring load, which are benefit for solving nano-indentations problem, are also 
demonstrated and fully discussed. 
 
2.3.1 Verification 
 
Numerical results obtained from the developed computer program are verified with various 
benchmark solutions. For examples, numerical solutions without surface energy effects of an 
elastic layer under normal concentrated load are compared with analytical solutions presented by 
Bumister (1943, 1945) and those of a half-space subjected to uniformly distributed vertical load 
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are verified with solutions of Ahlvin and Ulery (1962). Furthermore, numerical results with no 
surface energy effects and numerical results accounted for surface energy effects without the 
contribution of the out-of-plane term of an elastic layer under uniformly normal distributed load 
are compared with those proposed by Zhao (2009). As evident from results presented further 
below, numerical solutions obtained from the present study exhibit excellent agreement with the 
benchmark solutions. 
 
2.3.1.1 Infinite rigid-based elastic layer under normal point force 
 

Consider a normal point load µ= Λ2/pt ptP P  acting to the surface of a rigid-based layer with the 
normalized thickness 1.0h =  and the Poisson’s ratio 0.2υ =  as shown in Figure 2.2. Without 
consideration of surface energy effects, the analytical solution derived by Burmister (1943, 1945) 
and tabulated by Poulos (1967b) are employed to verify the accuracy of the present study. 
Numerical solutions for this classical case can readily be obtained in the present study by setting 

0α =  and 0β = . The radial and vertical displacements at the surface and non-zero stress 
components at 0.1z =  along the radial direction are reported in Tables 2.1-2.3. It is obvious that 
numerical results from the present study show good agreement with the analytical solutions 
given by Burmister (1943, 1945). 
 
 
 

 

 

 

 

 

Figure 2.2 Three-dimensional, infinite, rigid-based, elastic layer subjected to a normal point load 
 
2.3.1.2 Elastic half-space under uniformly distributed normal traction 
 
A three-dimensional, elastic half-space with Poisson’s ratio 0.2υ =   under the action of a 
uniformly distributed normal traction p0 over a circular area of normalized radius = Λ/a a  
shown in Figure 2.3 is considered (excluding the surface energy effects). In this case, the exact 
solution tabulated by Ahlvin and Ulery (1962) has been employed as a benchmark solution. 
Again, in the analysis, α and β are set to be zero in order to specialize the problem into the 
classical case and the normalized thickness h must be chosen to be sufficiently large to represent 
the elastic half-space. Results for non-zero displacement and stress components are reported in 
Table 2.4 along with those of Ahlvin and Ulery (1962). It is evident that solutions obtained from 
the current study are almost indistinguishable from the reference results. 

0.2υ =  1.0h =  

z  

r  

( )( ) ,   ( 0)
2pt
rp r P

r
δ ε ε

π
−

= →  
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Table 2.1 Normalized vertical and radial displacements of a three-dimensional, infinite, rigid-
based, elastic layer subjected to a normal point load 
 
   

r̅ 
r pt2πhEu / P  

z pt2πhEu / P  

Burmister 
(1943, 1945) Current study Burmister 

(1943, 1945) Current study 

0.05 -14.362 -14.344 35.921 35.310 
0.1 -7.124 -7.172 16.728 16.554 
0.2 -3.455 -3.477 7.162 7.195 
0.3 -2.184 -2.178 4.016 4.050 
0.4 -1.523 -1.512 2.478 2.473 
0.5 -1.064 -1.109 1.599 1.579 
0.6 -0.824 -0.830 1.048 1.048 
0.7 -0.62 -0.620 0.69 0.704 
0.8 -0.465 -0.461 0.45 0.458 

 
 
 
Table 2.2 Normalized vertical and radial stress components of a three-dimensional, infinite, 
rigid-based, elastic layer subjected to a normal point load 
 
 

r̅ 
2

zz pt4πh (λ 1)σ / P+  2
rr pt4πh (λ 1)σ / P+  

Burmister 
(1943, 1945) Current study Burmister 

(1943, 1945) 
Current 

study 
0 300 300 -30.71 -30.72 

0.1 53.08 53.06 34.75 34.75 
0.2 5.415 5.395 12.5 12.49 
0.3 0.994 0.974 3.347 3.344 
0.4 0.293 0.273 0.614 0.611 
0.5 0.124 0.103 -0.259 -0.262 
0.6 0.067 0.048 -0.528 -0.530 
0.7 0.041 0.025 -0.578 -0.579 
0.8 0.026 0.013 -0.544 -0.544 
0.9 0.016 0.006 -0.479 -0.478 
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Table 2.3 Normalized shear and hoop stress components of a three-dimensional, infinite, rigid-

based, elastic layer subjected to a normal point load 

r̅ 
2

rz pt4πh (λ 1)σ / P+  2
θθ pt4πh (λ 1)σ / P+  

Burmister 
(1943, 1945) Current study Burmister 

(1943, 1945) 
Current 

study 
0 0 0.000 -30.71 -30.720 

0.1 53 53.003 -4.342 -4.355 
0.2 10.68 10.676 2.237 2.224 
0.3 2.765 2.765 1.996 1.983 
0.4 0.909 0.908 1.349 1.337 
0.5 0.326 0.324 0.877 0.865 
0.6 0.102 0.099 0.566 0.554 
0.7 0.005 0.002 0.363 0.352 
0.8 -0.038 -0.043 0.231 0.221 
0.9 -0.056 -0.061 0.144 0.135 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 2.3 Three-dimensional, infinite, elastic half-space subjected to a uniformly distributed 
normal traction 
 
2.3.1.3 Infinite rigid-based elastic layer under uniformly distributed normal traction 
 
Consider an infinite rigid-based elastic layer under uniformly distributed normal traction p0 
acting over a circular area of normalized radius 10.0a =  and with the normalized layer thickness 

30h =  as shown in Figure 2.4. To allow a direct comparison of available results proposed by 
Zhao (2009), the same set of material constants obtained from atomistic simulation (Miller and 
Shenoy, 2000; Shenoy, 2005) is utilized, and they are summarized in Table 2.5. Results for the 
classical case and the case accounting for the surface energy effects but ignoring the out-of-plane 
term can be obtained by simply setting 0, 0α β= =  and 1, 0α β= = , respectively. By comparing 
results for the surface displacement and stresses at 0.1z =  along the radial direction with those 

z  

r  
a  

υ = 0.2  

= =0 0( ) /p r p p µ
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presented by Zhao (2009) for =/ 3h a , it is found that solutions obtained from the present study 
are in excellent agreement with the benchmark solutions as shown in Figures 2.5-2.7. 
 
Table 2.4 Normalized displacement and stress components of a three-dimensional, infinite, 
elastic half-space subjected to a uniformly distributed normal traction 
 

z̅/a̅ 

zz 02(λ 1)σ / p+  
rr 02(λ 1)σ / p+  

θθ 02(λ 1)σ / p+  z 0u / p  
Ahlvin 

and 
Ulery 
(1962) 

Current 
study 

Ahlvin 
and 

Ulery 
(1962) 

Current 
study 

Ahlvin 
and 

Ulery 
(1962) 

Current 
study 

Ahlvin 
and 

Ulery 
(1962) 

Current 
study 

0 1.000 0.993 0.700 0.695 0.700 0.695 0.800 0.800 
0.1 0.999 0.999 0.581 0.581 0.581 0.581 0.769 0.769 
0.2 0.992 0.992 0.468 0.468 0.468 0.468 0.736 0.736 
0.3 0.976 0.976 0.367 0.367 0.367 0.367 0.702 0.702 
0.4 0.949 0.949 0.280 0.280 0.280 0.280 0.667 0.667 
0.5 0.911 0.911 0.208 0.208 0.208 0.208 0.633 0.633 
0.6 0.864 0.864 0.151 0.151 0.151 0.151 0.599 0.599 
0.7 0.811 0.811 0.106 0.106 0.106 0.106 0.566 0.566 
0.8 0.756 0.756 0.072 0.072 0.072 0.072 0.535 0.535 
0.9 0.701 0.701 0.047 0.047 0.047 0.047 0.505 0.505 
1 0.646 0.646 0.028 0.028 0.028 0.028 0.478 0.478 

1.2 0.547 0.547 0.005 0.005 0.005 0.005 0.429 0.429 
1.5 0.424 0.424 -0.010 -0.010 -0.010 -0.010 0.368 0.368 
2 0.284 0.284 -0.016 -0.016 -0.016 -0.016 0.294 0.294 

2.5 0.200 0.200 -0.014 -0.014 -0.014 -0.014 0.243 0.243 
3 0.146 0.146 -0.012 -0.012 -0.012 -0.012 0.207 0.207 
4 0.087 0.087 -0.008 -0.008 -0.008 -0.008 0.158 0.158 
5 0.057 0.057 -0.005 -0.005 -0.005 -0.005 0.128 0.128 
6 0.040 0.040 -0.004 -0.004 -0.004 -0.004 0.107 0.107 
7 0.030 0.030 -0.003 -0.003 -0.003 -0.003 0.092 0.092 
8 0.023 0.023 -0.002 -0.002 -0.002 -0.002 0.081 0.081 

 
Table 2.5 Material properties used in numerical study 
 

Model Parameter Value (unit) 

λ 58.17x109 (N/m2) 

µ 26.13x109 (N/m2) 

λs 6.8511 (N/m) 

µ s -0.376 (N/m) 

τ s 1 (N/m) 
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Figure 2.4 Three-dimensional, infinite, rigid-based, elastic layer subjected to a uniformly 
distributed normal traction 
 
2.3.2 Layer under various surface loads 
 
After the formulation and numerical implementation are verified for both the classical case and 
the case accounting for the surface stress effects but ignoring the out-of-plane term, the proposed 
model (including the out-of-plane term) is then utilized to investigate the influence of the surface 
stress effects on elastic fields and demonstrate the significant role of the out-of-plane term in 
Gurtin-Murdoch surface elasticity model. By using material properties summarized in Table 2.5, 
numerical results and size-dependent behaviors for both normal and tangential directions of 
axisymmetric surface loads are illustrated and discussed. 
 
2.3.2.1 Uniformly distributed normal traction 
 
Consider an infinite, rigid-based elastic layer under uniform normal traction p0 acting on a 
circular region of radius a  as shown in Figure 2.4. Results for both radial and vertical 
displacements on the surface along the radial direction for = 10.0a  and various normalized 
thicknesses are shown in Figure 2.8(a)-(b), respectively. It is apparent from this set of results that 
a model incorporating the out-of-plane term predicts much lower surface displacement or, 
equivalently, renders materials stiffer while the solution obtained from a model excluding the 
out-of-plane term exhibits significant influence of the surface energy effects only in the case of 
the radial displacement. Hence, the influence of the out-of-plane term is significant and, in 
general, cannot be neglected. In addition, results for all cases show similar trend for various h . 
 For non-zero stress components, results are reported for = 10h  and = 1a  at three 
different normalized depths ( 0.25,   0.5,   1.0z z z= = = ). The variation of the normalized vertical 
stress 04 ( 1) /+ zzπ λ σ p in the radial direction is shown in Figure 2.9(a). Clearly, the vertical 
stresses for all cases reach their maximum at  0r =  and rapidly decrease to zero when r is near 
the edge of the surface loading, i.e. / 1r a = . Regarding to the presence of surface energy effects, 
values of the vertical stress are lesser within the surface loading region / 1.0r a ≤  and slightly 
higher for / 1.0r a > . Moreover, the influence of surface energy effects exhibits significant role 
in the region relatively close to the surface. It is interesting to point out that all such behaviors 
are more apparent in the current model, which integrates the out-of-plane contribution of the 
residual surface tension into the analysis. 

z  

= =0 0( ) /p r p p µ
 

h  

a  

r  
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    (a) 

 

       (b) 

Figure 2.5 Normalized displacement profiles of an elastic layer under a uniformly distrubuted 
normal traction: (a) radial displacement and (b) vertical displacement   
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(a) 

 

   (b) 

Figure 2.6 Normalized stress profiles of an elastic layer under a uniformly distrubuted normal 
traction: (a) vertical stress and (b) radial stress   
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     (a) 

 

     (b) 

Figure 2.7 Normalized stress profiles of an elastic layer under a uniformly distrubuted normal 
traction: (a) shear stress and (b) hoop stress   
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     (a) 

 

      (b) 

Figure 2.8 Normalized displacement profiles of an elastic layer under a uniformly distrubuted 
normal traction: (a) radial displacement and (b) vertical displacement   
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       (a) 

 

    (b) 

Figure 2.9 Normalized stress profiles of an elastic layer under a uniformly distrubuted normal 
traction: (a) vertical stress and (b) radial stress   
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       (a) 

 

       (b) 

Figure 2.10 Normalized stress profiles of an elastic layer under a uniformly distrubuted normal 
traction: (a) shear stress and (b) hoop stress   
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Results for the normalized shear stress 04 ( 1) /rzπ λ σ p+  are reported in Figure 2.10(a) for various 
depths. Behaviors of the shear stress for all three models along the radial direction exhibit the 
similar trend. In particular, the shear stress vanishes at 0r =  due to the symmetry, rapidly 
increases to reach its peak at the edge of the surface loading (i.e. / 1r a = ), and promptly 
decreases thereafter. It is worth noting that in the region very near the edge of surface loading the 
surface energy effects significantly lower the magnitude of shear stress, especially in a model 
including the out-of-plane contribution of the residual surface tension. As anticipated, the 
influence of surface stresses is quite large in a region near the surface and insignificant in a 
region far away from the surface. 

Variation along the radial direction of the normalized radial stress 04 ( 1) /rrπ λ σ p+  and 
normalized hoop stress 04 ( 1) /θθπ λ σ p+  are respectively presented for various depths in Figure 
2.9(b) and 2.10(b). Again, results obtained from all three models possess the similar trend, i.e., 
starting with their maximum value and gradually decreasing as r  increases. This observed 
behavior excludes the case of the radial stress at 1.0z =  since such stress starts at a certain value, 
gradually reaches its peak, and then slowly decays. However, the surface energy effects on these 
two stress components are similar to those on the vertical stress, i.e. lower stress within a region 
under the surface loading and slightly higher stress in the outside region. In addition, strong 
influence of the surface stresses is observed in the region near the surface. Through the proper 
normalization, solutions obtained by a model without the surface energy effects exhibit no size-
dependency. However, this is not true for results predicted by models incorporating the surface 
energy effects. The size-dependent behavior can be observed due to the presence of an intrinsic 
length scale associated with the presence of the surface stresses. In this study, the size-
dependency of all normalized stresses is investigated by varying the radius of surface loading 
while maintaining the ratio /h a .  Results are reported in Figures 2.11-2.14 for / 3h a = . In 
particular, Figures 2.11(a), 2.12(a), 2.13(a) and 2.14(a) show the variation along the radial 
direction of non-zero stress components at / 0.1z a =  for three different radius whereas Figures 
2.11(b), 2.12(b), 2.13(b) and 2.14(b) present the relationship between normalized stress 
components and the radius of surface loading for three various depths and / 0.5r a = . 

Unlike the classical solutions, the results from the two models accounting for surface 
energy effects depend strongly on the normalized radius a  for small a , and such dependence 
becomes negligible as a  increases. In particular, the results predicted by the model considering 
the out-of-plane contribution of residual surface tension exhibit much stronger size dependency 
than that excluding the out-of-plane term. In addition, this set of results confirms the necessity to 
consider the surface effects when responses in a region very close to the surface are of interest. 
 

2.3.2.2 Linearly distributed tangential traction 
 

Consider an infinite, rigid-based elastic layer subjected to a linearly distributed tangential 
traction in a circular region of radius a as shown in Figure 2.15. This traction is normalized such 
that = 0( ) /q r q r a  where =0 0 /q q µ , = Λ/a a , and  0q  is the maximum traction at the edge of 
surface loading. Results for radial and vertical displacements for different layer thicknesses are 
shown in Figures 2.16(a)-(b), respectively. It is obvious from these results that the presence of 
surface energy effects significantly lowers the magnitude of the displacement. However, the out-
of-plane contribution of residual surface tension has a strong influence only on the vertical 
displacement and becomes negligible for the radial displacement. Moreover, when varying the 
layer thickness, both radial and vertical displacements are higher as the layer thickness increases. 
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Figure 2.11 Normalized vertical stress of elastic layer under a uniformly distrubuted normal 
traction for 3h / a = : (a) profile along radial direction and (b) at  0 5r / a .=  
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Figure 2.12 Normalized radial stress of an elastic layer under a uniformly distrubuted normal 
traction for 3h / a = : (a) profile along radial direction and (b) at  0 5r / a .=  
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       (b) 

Figure 2.13 Normalized shear stress of an elastic layer under a uniformly distrubuted normal 
traction for 3h / a = : (a) profile along radial direction and (b) at  0 5r / a .=  

a = 1.0 
a = 5.0 
a = 10.0 
Classical solution  
No out-of-plane term 

Current study 

z / a 0.1=
z / a 0.3=
z / a 0.5=
 
Classical solution  
No out-of-plane term 

Current study 

rz

0

4π( λ 1)σ
p
+  

r / a  

rz

0

4π( λ 1)σ
p
+  

a  



40 
 

 

      (a) 

 

     (b) 

Figure 2.14 Normalized hoop stress of an elastic layer under a uniformly distrubuted normal 
traction for 3h / a = : (a) profile along radial direction and (b) at 0 5r / a .=   
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Figure 2.15 Three-dimensional, infinite, rigid-based, elastic layer subjected to a linearly 
distributed tangential traction 

 
The results for stress components are obtained for = 10h , = 1a , and three different 

normalized depths (i.e., 0.25,   0.5,   1.0z z z= = = ). Profiles of the normalized vertical stresses 

04 1 zzπ( λ )σ / q+ and the normalized radial stresses 04 1 rrπ( λ )σ / q+  along the radial direction 
are reported in Figure 2.17. At a small depth, the tensile stress is observed within a region of 
surface loading, and it gradually changes to the compressive stress when passing the edge of a 
loading region. The vertical stress and radial stress profiles also show the strong influence of the 
surface energy effects for the region relatively near the surface. Moreover, the discrepancy of the 
results predicted by the two models, with and without the out-of-plane contribution of residual 
surface tension, is more apparent for the vertical stress but negligible for the radial stress. 

Results for the normalized shear stress 04 1 rzπ( λ )σ / q+  are shown in Figure 2.18(a) for 
various depths. For this particular loading condition, the shear stress increases to reach its peak 
near the edge of loading region and then abruptly decreases to zero after passing the edge of 
loading region. Again, the influence of surface stresses on this shear stress component is more 
apparent for the region close to the surface. From the profiles of normalized hoop stress 

04 1 θθπ( λ )σ / q+  shown in Figure 2.18(b), the results obtained from the two models including 
the surface energy effects are significantly different from the classical solution, and such 
discrepancy increases when the depth decreases. It is worth noting that the contribution of the 
out-of-plane term is insignificant since the two models yield almost identical hoop stress.  

To demonstrate the size-dependent behavior of a layer subjected to a linearly distributed 
tangential load, a scheme similar to that used to study a layer subjected to uniformly distributed 
normal traction is employed. The layer thickness and the radius of loading region are varied 
while their ratios are fixed (i.e., 3h / a = ). The variation along the radial direction of non-zero 
stress components at / 0.1z a =  for three different radius are reported in Figures 2.19(a), 2.20(a), 
2.21(a) and 2.22(a) whereas the relationship between normalized stress components and the 
radius of loading region for three various depths and / 0.5r a =  are shown in Figures 2.19(b), 
2.20(b), 2.21(b) and 2.22(b). Unlike the case of uniformly distributed normal load, the out-of-
plane contribution of the residual surface tension has significant influences only on the vertical 
stress. However, the solutions obtained from the two models accounting for the surface energy 
effects still show the size-dependency. As the radius a  and the depth where the responses are 
determined decrease, the surface energy effects become more important. 
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       (b) 

Figure 2.16 Normalized displacement profiles of an elastic layer under a linearly distrubuted 
tangential load: (a) radial displacement and (b) vertical displacement   
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Figure 2.17 Normalized stress profiles of an elastic layer under a linearly distrubuted tangential 
load: (a) vertical stress and (b) radial stress   
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Figure 2.18 Normalized stress profiles of an elastic layer under a linearly distrubuted tangential 
load: (a) shear stress and (b) hoop stress   
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Figure 2.19 Normalized vertical stress of an elastic layer under a linearly distrubuted tangential 
load for 3h / a = : (a) profile along radial direction and (b) at  0 5r / a .=  
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Figure 2.20 Normalized radial stress of an elastic layer under a linearly distrubuted tangential 
load for 3h / a = : (a) profile along radial direction and (b) at  0 5r / a .=  
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Figure 2.21 Normalized shear stress of an elastic layer under a linearly distrubuted tangential 
load for 3h / a = : (a) profile along radial direction and (b) at  0 5r / a .=  
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Figure 2.22 Normalized hoop stress of an elastic layer under a linearly distrubuted tangential 
load for 3h / a = : (a) profile along radial direction and (b) at  0 5r / a .=  
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2.3.3 Fundamental solutions 
 
Since the formulation has been established for arbitrary axisymmetric surface loading, general 
results can be further specialized to construct certain useful fundamental solutions. For instance, 
the solutions associated with a layer subjected to a normal concentrated load at the origin, a 
normal ring load at any radius a  and a tangential ring load at any radius a  can readily be 
obtained. These fundamental solutions constitute the basis for solving other related boundary 
value problems such as nano-indentation problems. 
 
2.3.3.1 Layer under normal concentrated load 
 

 

 

 

 

 

 
Figure 2.23 Three-dimensional, infinite, rigid-based, elastic layer subjected to a normal 
concentrated load 
 
Consider a three-dimensional, infinite, rigid-based, elastic layer subjected to a normal 
concentrated load ptP  as shown in figure 2.23. The concentrated load ptP  is normalized such that

2/pt ptP P µ= Λ . Profiles of the normalized radial displacement 2 r ptπhEu / P  and the normalized 

vertical displacement 2 r ptπhEu / P  at the surface obtained by three different models are reported 
for four different layer thicknesses ( 0.5h = , 1.0h = , 2.0h = , and 3.0h = ) in Figure 2.24(a) and 
2.24(b), respectively. It is found that the normalized radial displacement is singular at 0r =  
except for the solution obtained from a model accounting for the out-of-plane contribution of 
residual surface stress. On the other hand, the results of normalized vertical displacement tend to 
be infinite under the concentrated load for all cases and reduce rapidly when r increases. In 
addition, the similar behavior is observed for all layer thicknesses under consideration, and the 
magnitude of the displacement is higher as the layer thickness increases.  

In order to clearly demonstrate the influence of surface energy effects on the stress field, 
the layer thickness is chosen to be sufficiently large (i.e. 10h = ). Numerical results of all 
normalized non-zero stress components are reported along the radial direction for various depths 
in Figures 2.25-2.26. Clearly, the normalized vertical stress 24 1 zz ptπh ( λ )σ / P+  reaches its peak 
at 0r = , and then decrease monotonically to zero as r  increases. The normalized radial stress  

24 1 rr ptπh ( λ )σ / P+   decreases from a positive value to a negative value for small  r  , and then 
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   (b) 

Figure 2.24 Normalized displacement profiles of an elastic layer under a normal concentrated 
load: (a) radial displacement and (b) vertical displacement   
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       (a) 

 

       (b) 

Figure 2.25 Normalized stress profiles of an elastic layer under a normal concentrated load: (a) 
vertical stress and (b) radial stress   

z = 0.25 
z = 0.5 
z = 1.0 

Classical solution  

No out-of-plane term 
Current study 

z = 0.25 
z = 0.5 
z = 1.0 

Classical solution  

No out-of-plane term 
Current study 

r  

2
zz

pt

4πh ( λ 1)σ
P

+  

r  

2
rr

pt

4πh ( λ 1)σ
P

+  



52 
 

 

       (a) 

  

       (b) 

Figure 2.26 Normalized stress profiles of an elastic layer under a normal concentrated load: (a) 
shear stress and (b) hoop stress   
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attains its maximum negative value in the range 0.2 0.5r< < . Thereafter, it magnitude gradually 
reduces to zero in the region further away from the concentrated load. Due to the symmetry, the 
normalized shear stress vanishes at 0r = , then rapidly increases to reach its peak, and gradually 
decreases to zero for a large r . It is obvious that presence of surface energy effects generally 
reduce the magnitude of all stress components when compared to their classical counterpart 
except for the normalized hoop stress, whose values predicted by the model accounting for 
surface energy effects but without the out-of-plane contribution of residual surface stress. In that 
case, the hoop stresses are much larger than those obtained from the classical model.  
 
2.3.3.2 Layer under normal ring load 

 

 

 

 

 

 

 

 

Figure 2.27 Three-dimensional, infinite, rigid-based, elastic layer subjected to a normal ring load 

 
Consider a three-dimensional, infinite, rigid-based, elastic layer subjected to a normal ring load 

rp  at the radius a   as shown in figure 2.27. The ring load and the radius a are normalized such 
that /r rp p µ= Λ  and /a a= Λ .  Results for the normalized radial displacement 4 r rπhu / p  and 
the normalized vertical displacement 4 z rπhu / p  at the surface are plotted along the radial 
direction as shown in Figure 2.28 for four different thicknesses ( 0.5h = , 1.0h = , 2.0h = , and 

3.0h = ) and 1a = . It is apparent from the obtained results in Figure 2.28(a) that the radial 
displacement for the classical case exhibits rapid variation at location of the applied ring load 
while those obtained from the other two models are finite and smooth, which are significantly 
different from the classical one. It can also be seen from Figure 2.28(b) that the vertical 
displacements predicted by the classical model and a model considering the surface energy effect 
without the out-of-plane term are slightly different, and singular at the location of applied load. 
On the other hand, the vertical displacements obtained from the model incorporating the out-of-
plane term are finite, which are quite different from the other two solutions.    

h  

a  

( ) ( )rp r p r aδ= −  

r
 

θ  
x

 

y  

z
 



54 
 

 

    (a) 

   

       (b) 
 
Figure 2.28 Normalized displacement profiles of an elastic layer under a normal ring load: (a) 
radial displacement and (b) vertical displacement   
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       (b) 

Figure 2.29 Normalized stress profiles of an elastic layer under a normal ring load: (a) vertical 
stress and (b) radial stress   
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       (a) 

 

       (b) 

Figure 2.30 Normalized stress profiles of an elastic layer under a normal ring load: (a) shear 
stress and (b) hoop stress   
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The numerical results for stresses within the bulk obtained from all three models are also 
reported for various depths and 10h =  in Figures 2.29-2.30. Similar to the previous observation, 
the influence of the surface stresses on the stress field within the bulk is more significant when 
the location to determine the responses is relatively close to the surface. 
 
2.3.3.3 Layer under tangential ring load 

 

 

 

 

 

 

 

Figure 2.31 Three-dimensional, infinite, rigid-based, elastic layer subjected to a tangential ring 
load 
 
Consider a three-dimensional, infinite, rigid-based, elastic layer subjected to a unit tangential 
ring load rq  at the radius a  as shown in figure 2.31. The ring load and the radius are normalized 
such that /r rq q µ= Λ  and /a a= Λ . Results for the normalized radial displacement  4 r rπhu / q  

and the normalized vertical displacement 4 z rπhu / q  at the surface are plotted along the radial 
direction as shown in Figures 2.32(a) and 2.32(b) for four different thicknesses ( 0.5h = , 1.0h = ,

2.0h = , and 3.0h = ) and 1a = . For this particular loading condition, both the radial and vertical 
displacements obtained from the classical model are singular at the location of the applied ring 
load whereas those obtained from the two models accounting for the surface energy effects are 
finite everywhere. While results obtained from the two models exhibit huge discrepancy from the 
classical solution, the contribution of out-of-plane term is insignificant especially for the radial 
displacement.  

Figures 2.33-2.34 demonstrate profiles of normalized stress components for a layer 
subjected to a tangential ring load for the layer thickness 10h =  and various depths. It is 
obviously seen that the presence of the surface energy effects reduces the magnitude of the 
stresses especially in the region closed to the surface. Moreover, for the normalized vertical 
stress and normalized shear stress, such behavior is more evident when the out-of-plane 
contribution of the residual surface stress is taken into account. 
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      (a) 

 

       (b) 

Figure 2.32 Normalized displacement profiles of an elastic layer under tangential ring load: (a) 
radial displacement and (b) vertical displacement   
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       (b) 

Figure 2.33 Normalized stress profiles of an elastic layer under tangential ring load: (a) vertical 
stress and (b) radial stress   
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Figure 2.34 Normalized stress profiles of an elastic layer under tangential ring load: (a) shear 
stress and (b) hoop stress  

z = 0.25 
z = 0.5 
z = 1.0 

Classical solution  

No out-of-plane term 
Current study 

z = 0.25 
z = 0.5 
z = 1.0 

Classical solution  

No out-of-plane term 
Current study 

rz

r

4πh( λ 1)σ
q

+  

r  

θθ

r

4πh( λ 1)σ
q
+  

r  



61 
 

2.3.3.4 Applications of fundamental solutions 
 
Results obtained above for three special loading conditions can be employed to construct Green 
functions useful for various boundary value problems. To demonstrate their vast applications, let 
us consider a three-dimensional, infinite, rigid-based, elastic layer subjected to any axisymmetric 
normal traction p(r) and tangential traction q(r). Once solutions of all field quantities due to both 
unit normal and unit tangential ring loads are determined, they can be utilized along with a 
method of superposition to obtain integral relations for both the displacement and stress on the 
surface and within the bulk due to the traction p(r) and q(r). For instance, the radial and 
tangential displacements at any distance r* on the surface are given by 
 

∞ ∞

= +∫ ∫
0 0

( *) ( *, ) ( ) ( *, ) ( )N T
r r ru r U r r p r dr U r r q r dr                                (2.32) 

∞ ∞

= +∫ ∫
0 0

( *) ( *, ) ( ) ( *, ) ( )N T
z z zu r U r r p r dr U r r q r dr                                (2.33) 

 
where ( *, )N

rU r r  and ( *, )N
zU r r  are radial and tangential displacements at any distance r* on the 

surface due to a unit normal ring load applied to the layer at the radius r and ( *, )T
rU r r  and 

( *, )T
zU r r  are radial and tangential displacements at any distance r* on the surface due to a unit 

tangential ring load applied to the layer at the radius r. Other field quantities at any point (r*, z*) 
within the bulk, denoted generically by ( *, *)R r z , can also be obtained in a similar fashion as  
 

∞ ∞

= +∫ ∫
0 0

( *, *) ( *, *, ) ( ) ( *, *, ) ( )N TR r z R r z r p r dr R r z r q r dr                                    (2.34) 

 
where, again, ( *, *, )NR r z r  and ( *, *, )TR r z r  are responses at any point (r*, z*) within the bulk due 
to a unit normal ring load and unit tangential ring load applied to the layer at the radius r, 
respectively. Clearly, for a problem where the surface traction p(r) and q(r) are fully prescribed, 
the integral relations (2.32)-(2.34) can be directly employed to determine all field quantities.  

For nano-indentation problems, both normal traction p(r) and tangential traction q(r) 
under the indenter are unknown a priori and they must be determined before the integral relation 
(2.34) can be used. For a special case of axisymmetric, rigid, frictionless nano-indentation 
problems, the tangential traction q(r) vanishes and vertical displacement under the indenter is 
fully prescribed via its known profile pv  and the prescribed indentation depth d. The integral 
relation (2.33) for any r* under the indenter becomes   

 

= = + ≤∫
0

( *) ( *, ) ( ) ( *)   ,    *
a

N p
z zu r U r r p r dr d v r r a                               (2.35) 

 
where a denotes the contact radius. The integral equation (2.35) can be solved to obtain the 
unknown contact pressure p(r). Once p(r) is determined, all other field quantities can readily be 
obtained from the integral relation (2.34). 
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For axisymmetric, rigid, fully bonded nano-indentation problems, the radial displacement 
under the indenter identically vanishes and the vertical displacement under the indenter is fully 
prescribed via its known profile pv  and the prescribed indentation depth d. The integral relations 
(2.32) and (2.33) for any r* under the indenter becomes  

  

= + = ≤∫ ∫
0 0

( *) ( *, ) ( ) ( *, ) ( ) 0   ,    *
a a

N T
r r ru r U r r p r dr U r r q r dr r a                              (2.36) 

= + = + ≤∫ ∫
0 0

( *) ( *, ) ( ) ( *, ) ( ) ( *)   ,    *
a a

N T p
z z zu r U r r p r dr U r r q r dr d v r r a                             (2.37) 

 
The two integral equations (2.36)-(2.37) are sufficient for solving the unknown traction p(r) and 
q(r). Once the traction is obtained, all other field quantities can be computed from the integral 
relation (2.34). 

For axisymmetric, rigid, rough nano-indentation problems, the tangential traction q(r) can 
be related to the normal traction p(r) via an appropriate friction model and, again, the vertical 
displacement under the indenter is fully prescribed via its known profile pv  and the prescribed 
indentation depth d. The integral relation (2.33) for any r* under the indenter becomes 

   

= + = + ≤∫ ∫
0 0

( *) ( *, ) ( ) ( *, ) ( ( )) ( *)   ,    *
a a

N T p
z z zu r U r r p r dr U r r f p r dr d v r r a                             (2.38) 

 
where a function f denotes the relation between p and q. The integral equation (2.38) can be 
employed to solve for the unknown normal traction p(r). Once p(r) is determined, the tangential 
traction can readily be obtained and all other field quantities are computed from the integral 
relation (2.34). 
 By following the same strategy, solutions of all field quantities due to a unit normal 
concentrated load applied to the surface of a layer can be utilized as Green functions to establish 
integral relations for field quantities due to arbitrary normal traction on the surface. In addition, 
the integral relation for the vertical displacement on the surface can be employed to form the 
integral equation governed the unknown pressure under the rigid, frictionless indenter of 
arbitrary profiles.  
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CHAPTER III 
 

NANO-INDENTATION 
 
 
In this chapter, the formulation of boundary value problem associated with an axisymmetric, 
frictionless, rigid punch acting on a half-space is first presented. The Hankel integral transform is 
then applied to reduce the corresponding mixed boundary conditions to a set of dual integral 
equations. These integral equations are further reduced to a Fredholm integral equation of the 
second kind that is well-suited for constructing numerical solutions. Due to the complexity of the 
key governing equation, numerical schemes are adopted to construct approximate solutions. 
Several components essential for numerical implementations such as the domain truncation, the 
discretization of the primary unknown function, the collocation scheme, linear solvers, and 
Hankel transform inversion are briefly summarized. The solution procedure is implemented to 
determine the complete elastic fields for indentors of both smooth and non-smooth contacts. The 
accuracy of the present numerical scheme is verified by comparing with analytical solutions of 
the classical case for both profiles. Once the method is fully tested, it is applied to solve more 
complex indentation problems accounted for surface stress effects in which analytical solutions 
do not exist. In the analysis, indentors with flat-ended and paraboloidal profiles are chosen to 
represent the non-smooth and smooth contacts respectively. Numerical results for three different 
models (i.e. classical solution with no surface stress effects and solutions accounted for surface 
stress effects with and without the out-of-plane contribution of the residual surface tension) are 
fully compared and discussed. 
 

3.1 Formulation 
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                                    (a)                                                                   (b) 

Figure 3.1 Indentation of half-space by axisymmetric rigid frictionless punch: smooth contact 
and (b) non-smooth contact 
 
Consider a homogeneous, isotropic, elastic half-space indented by an axisymmetric frictionless 
rigid punch as shown schematically in Figure 3.1. The profile of the punch, denoted by a 
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function δ = δ (r), is defined for convenience and without loss by choosing δ = 0 at r = 0. The 
radius of a contact region and the indentation depth resulting from a resultant force P at the 
center of the punch are denoted by a and d, respectively. In this study, the profile of the punch is 
assumed to be smooth (i.e. the unit normal vector to the surface of the punch or, equivalently, 
dδ/dr is well-defined) at any point within the contact region except along the boundary r = a 
where the profile is allowed to be non-smooth. A punch with well-defined dδ/dr for r ≤ a is 
termed a smooth-contact punch (see Figure 3.1(a)) whereas a punch with well-defined dδ/dr only 
for r < a is termed a non-smooth-contact punch (see Figure 3.1(b)). In the present study, the 
pressure distribution exerted by the punch and the complete elastic fields within the half-space 
accounted for surface energy effects are to be determined. 
 
3.1.1 Basic equations 
 
Behavior of the half-space (bulk) is governed by a classical theory of elasticity. In the absence of 
body force, the governing field equations (i.e. equilibrium equations, constitutive relations and 
strain-displacement relations) can be expressed as 
 

, 0ij jσ =                           (3.1) 
2ij ij ij kkσ µε λδ ε= +                                     (3.2) 

( ), ,
1
2ij i j j iu uε = +                                     (3.3) 

 
where iu , ijσ  and ijε  denote components of the displacement, stress and strain tensors, 
respectively; ijδ  is a Kronecker-delta symbol; and µ  and λ  are Lamé constants of a bulk 
material. Note that lower-case indices range from 1 to 3, and repeated indices imply the 
summation over their range. 

A surface of the half-space is regarded as a negligibly thin membrane adhered perfectly 
to the bulk without slipping and its behavior (which is different from the bulk) is modeled by 
Gurtin-Murdoch continuum model of surface elasticity. The equilibrium conditions on the 
surface in terms of the generalized Young-Laplace equation (Povestenko, 1993), surface 
constitutive relations and strain-displacement relationship, when specialized to this particular 
case, are given by (Gurtin and Murdoch, 1975; Gurtin and Murdoch, 1978; Gurtin et al., 1998) 

 
0

, 3 0s
i i itα ασ σ+ + =                                     (2.4) 

( ) ( ) ,2s s s s s s s s s suβα βα βα γγ βα β ασ τ δ µ τ ε λ τ ε δ τ= + − + + +  ,     3 3,
s s suα ασ τ=                              (2.5) 

( ), ,
1
2

s s su uαβ α β β αε = +                                     (2.6) 

 
where the superscript ‘s’ is used to denote the quantities corresponding to the surface; sµ  and sλ  
are surface Lamé constants; sτ  is the residual surface tension under unstrained conditions; and 

0
it  denotes the prescribed traction on the surface. It is important to emphasize here that Greek 

indices range from 1 to 2 and, once again, repeated indices imply the summation over their 
range. When specialized to an axisymmetric case, the corresponding elastic fields can be 
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obtained by solving, in a cylindrical coordinate system ( , , )r zθ , the following biharmonic 
equation (Sneddon, 1951; Selvadurai, 2000) 
 

4 0∇ Φ =                                      (3.7) 
 
where Φ  is Love’s strain potential. The displacement and stress fields are given in terms of Φ  
as follows: 
 

3
2

22( )rr z r z
∂Φ ∂ Φ = ∇ − + ∂ ∂ ∂ 

σ λ λ µ                                 (3.8a) 

2
2 2( )

z r r zθθ
λ µσ λ ∂Φ + ∂ Φ = ∇ − ∂ ∂ ∂ 

                                (3.8b) 

3
2

3(3 4 ) 2( )zz z z
∂Φ ∂ Φ = + ∇ − + ∂ ∂ 

σ λ µ λ µ                                (3.8c) 

( )
3

2
2( 2 ) 2( )rz r z r

∂ ∂ Φ
= + ∇ Φ − +

∂ ∂ ∂
σ λ µ λ µ                                (3.8d) 

2

ru
r z

+ ∂ Φ
= −

∂ ∂
λ µ

µ
                                  (3.8e) 

2
2

2

2
zu

z
+ + ∂ Φ

= ∇ Φ −
∂

λ µ λ µ
µ µ

                                 (3.8f) 

 
By applying Hankel integral transforms, the biharmonic equation (3.7) is reduced to 
 

( )
22

2
2 , 0d G z

dz
ξ ξ

 
− = 

 
                                   (3.9) 

 
where ( )nJ ξ  denotes the first order Bessel functions of order n and  
 

( ) ( )0
0

,G z r J r drξ ξ
∞

= Φ∫            (3.10) 

 
The general solution of (3.9) is given by 
 

( ) ( ) ( ), z zG z A Bz e C Dz eξ ξξ −= + + +                  (3.11) 
 
where A , B , C  and D  are arbitrary functions of ξ  that can be determined from boundary 
conditions. Accordingly, the general solutions for displacements and stresses can be transformed 
into the relations involving ( , )G zξ  and its derivatives with respect to z  by using Hankel 
inversion and the relations (3.8a)-(3.8f). Those solutions are expressed as 
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( ) ( ) ( ) ( )
3

2 2
0 13

0 0

2
2rr

d G dG dGJ r d J r d
dz dz r dz

λ µ
σ ξ λ λ µ ξ ξ ξ ξ ξ ξ

∞ ∞+ 
= + + − 

 
∫ ∫                        (3.12a) 
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3

2 2
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2d G dG dGJ r d J r d
dz dz r dzθθ

λ µ
σ λ ξ ξ ξ ξ ξ ξ ξ

∞ ∞+ 
= − + 

 
∫ ∫                           (3.12b) 
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2 3 4zz
d G dG J r d
dz dz

σ ξ λ µ λ µ ξ ξ ξ
∞  
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12
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2rz
d G G J r d
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( )
2

2
02

0
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z

d Gu G J r d
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µ

∞  +
= − 

 
∫                               (3.12f) 

 
Note that uθ , rθσ  and zθσ  vanish due to axisymmetric deformations, and all non-zero variables 
are independent of θ . By invoking the remote condition associated with the vanishing 
displacements and stresses as z → ∞ , C and D must vanish, and the function ( , )G zξ  reduces to 
 

( ) ( ), zG z A Bz e ξξ −= +                                  (3.13) 
 
Upon substituting (3.13) into (3.12), the expression for the components of stresses and 
displacements are then given in terms of A and B by 
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3.1.2 Formulation of indentation problem 
 
For the indentation problem shown in Figure 3.1, the domain boundary can be decomposed into 
a surface outside the contact region on which the traction identically vanishes and a surface 
inside the contact region on which the normal displacement is prescribed while, resulting from 
the frictionless assumption, the shear traction vanishes. These mixed boundary conditions can be 
expressed as 
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where 2s s sκ µ λ= +  is a surface material constant. Upon substituting (3.17) and (3.18) into the 
boundary condition (3.22), it leads to a relation between A and B: 
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                                (3.23) 

 
where 0 2sκ µΛ = . By enforcing the mixed boundary conditions (3.20) and (3.21) along with 
the relation (3.23), it yields a pair of integral equations: 
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The dual integral equations (3.24) and (3.25) constitute a complete set of equations for 
determining the unknown function ( )B B ξ= . By introducing two functions ( )=φ φ ξ  and 

( )w w= ξ  such that 
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the dual integral equations (3.24) and (3.25) can further be simplified to 
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where ( ) ( ) / [ ( )]f r f r a d rδ= = − − , ( ) ( ) /r r aδ δ= , /d d a= , aξ ξ= , /r r a= , and 

( ) ( ) / aφ φ ξ φ ξ= = . The function ( )φ φ ξ=  becomes the primary unknown of the dual integrals 

(3.28) and (3.29) whereas the function ( )w w ξ=  is known and can be obtained directly from 
(3.26) and (3.27) as 
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where /λ λ µ= , 0 0 / aΛ = Λ  and / ( )s s aτ τ µ= . It is evident from (3.30) that the function 

( )w w ξ=  possesses a limit equal to -1 as ξ → ∞ . 
The solution of dual integral equations of the type (3.28) and (3.29) has been extensively 

studied by Mandal (1988) and Sneddon (1966). Following their procedures, such a set of dual 
integral equations can be reduced to a Fredholm integral equation of the second kind as 
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∫ ∫ ∫                   (3.31) 

 
It can be seen from (3.31) that the function ( )f u  is merely related to the indenter profile and the 

function ( )w u  is related to the boundary conditions involving the surface energy parameters. 
This single integral equation (3.31) is in a form well-suited for constructing numerical solutions 
for ( )φ φ ξ= . Once the function ( )φ φ ξ=  is solved, the functions A  and B  can be 
subsequently determined from (3.23) and (3.26), respectively, and the complete elastic fields 
within the half-space can also be obtained from (3.14)-(3.19). In addition, the magnitude of the 
total indentation force P producing the indentation depth d can be obtained by integrating the 
contact pressure, i.e. the left hand side of Eq. (3.21), over the area of the contact region. 

In the absence of surface energy effects, above formulation can readily be specialized to a 
special case of a classical indentation problem by setting 0 0Λ =  and 0sτ = . The function 

( )w w ξ=  in (3.30) simply reduces to a constant w∗  given below: 
 

( )
2 1

2 1
w λ

λ
∗ +

= −
+

                                  (3.32) 



69 
 

The dual integral equations (3.24) and (3.25) now become 
 

( ) ( ) ( )1
0

0

J r d f rξ φ ξ ξ ξ
∞

− ∗=∫     ;   0 1r≤ ≤                            (3.33) 
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where ( ) ( ) /f r f r w∗ ∗= . A set of dual integral equations (3.33) and (3.34) was solved 
analytically by Sneddon (1965). 
 

3.2 Numerical Implementations 
 
Due to the complexity of the Fredholm integral equation of the second kind formulated in 
Chapter II, numerical schemes are necessarily adopted to construct approximate solutions. In this 
chapter, several components essential for such numerical implementation (e.g. domain 
truncation, discretization of the primary unknown function ( )φ φ ξ= , collocation, linear solvers, 
Hankel transform inversion, etc.) are briefly summarized. 
 
3.2.1 Domain truncation 
 
It is evident that the second integral of the Fredholm integral equation (3.31) is an improper 
integral with an infinite upper limit and the involved primary unknown function ( )φ φ ξ=  is 
defined on a semi-infinite interval [0, ∞). Before constructing an approximate solution for 

( )φ φ ξ= , the domain of integration of the improper integral is first truncated from [0, ∞) to [0, 

Rξ ] where Rξ  is a finite real number. The truncated Fredholm integral equation is given by 
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3.2.2 Discretization 
 

The unknown function ( )φ φ ξ=  over the entire truncated domain [0, Rξ ] can be discretized in 
the form 
 

1
( ) ( )

n

j j
j

φ ξ ξ α ψ ξ
=

= ∑                                   (3.36) 

 
where αj are unknown nodal quantities to be determined, ψj(ξ) are nodal basis functions, and n 
is the number of nodes resulting from the discretization. It is worth noting that the approximation 
(3.36) results from a special property of the function φ at the origin; more specifically, this 
function vanishes at the origin of order )(ξO . Note also that, in the present study, the nodal basis 
functions are systematically constructed in an element-wise fashion based on standard 
isoparametric, quadratic elements.  
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Upon inserting the approximation (3.36) into (3.35) and then dividing the entire equation by ξ , 
it leads to a discretized integral equation 
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where the integrals )(ξjM  and  )(ξF  are defined on the truncated domain [0, ξR] by 
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It can readily be verified that the kernel K(ξ , u) is regular for any pair of points (ξ , u) and, as a 
result, )(ξjM  involves only an regular integral for all [0, ]Rξ ξ∈ . The integral )(ξF  is given in 
terms of a double line integral whose inner integrand involves the prescribed profile of the punch 
and is only weakly singular at u = t. To obtain a better form well-suited for numerical 
integration, an integration by parts is performed along with applying a special variable 
transformation (i.e. u = tsinθ) to remove such singularity and this, finally, leads to 
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3.2.3 Collocation method 
 

To obtain a sufficient number of equations to solve for the unknown constants αj, a collocation-
based technique is utilized. In particular, the discretized integral equation (3.3) is collocated (or, 
equivalent, forced to be satisfied) at all nodes iξ ξ=  (for i = 1, 2, 3, ..., n), and this leads to a set 
of n linear algebraic equations governing the nodal quantities αj as follows 
 

FMα =                                               (3.42) 
 

where T
n},...,,{ 21 ααα=α  is vector of nodal quantities and entries of the coefficient matrix M 

and the prescribed vector F are given by 
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3.2.4 Construction of M and F 
 
It is evident from (3.43) and (3.44) that entries of the matrix M and the prescribed vector F 
involve only regular integrals. Thus, a standard Gaussian quadrature can be used to efficiently 
and accurately evaluate such integrals. While every entry of the matrix M is given in terms of a 
definite integral over the truncated domain [0, Rξ ], this matrix can be efficiently constructed in 
an element-wise fashion and the contribution from all elements to the global matrix M can 
readily be treated using a standard assembly procedure (e.g., Hughes, 2000). It is worth noting 
that for some special punch profiles, the integral )(ξF  admits an explicit expression and, as a 
result, construction of the corresponding vector F requires no numerical integration. For 
instance, the integral )(ξF  can be obtained for a flat-ended cylindrical indenter (i.e. ( ) 0rδ = ) 
and a paraboloidal indenter (i.e. 2( )r arδ α=  where α is a constant representing the slenderness 
of the punch profile) as 
 

Flat-ended cylindrical indenter: )sin(2)( ξ
ξπ

ξ d
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Paraboloidal indenter: { }2
3

2 4( ) sin( ) 2 cos( ) ( 2 )sin( )d aαξ ξ ξ ξ ξ ξ
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3.2.5 Linear solvers 
 
It is evident from equation (3.43) that the coefficient matrix M is non-symmetric and fully dense. 
To solve a system of linear equations (3.42), either a direct solver based on the LU-
decomposition method or an iterative solver adopted from the stabilized bi-conjugate gradient 
method is employed. Once the nodal quantities αj are known, the approximate solution for 

( )φ φ ξ=  can readily be obtained from (3.36) for any ξ in the truncated domain [0, Rξ ]. 
 
3.2.6 Determination of field quantities 
 

Once the numerical solution ( )φ φ ξ=  is obtained, functions 5( ) ( ) /A A A aξ ξ= =  and 
4( ) ( ) /B B B aξ ξ= =  can be obtained at any [0, ]Rξ ξ∈  by directly solving the relations (3.23) 

and (2.25) via proper normalization. The explicit formula for ( )A A ξ=  and ( )B B ξ=  in terms 
of ( )φ φ ξ=  is given by 
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The stress and displacement fields within the elastic half-space can then be obtained from the 
integrals (3.14)-(3.19) via proper normalization and with the upper limited being replaced by Rξ , 
i.e. 
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where /z z a= . To evaluate such truncated Hankel transform inversions for any pair of points 
( r , z ), standard Gaussian quadrature is again employed. It is important to point out that presence 
of the exponential term ze ξ−  in the integrand significantly increases the rate of decay of the 
unfavorable oscillated behavior arising from the Bessel functions Jn(ξ ) for z > 0 and, as a 
result, the associated integrals converges very rapidly with a relatively low Rξ . On the contrary, 
such exponential term becomes one on a free surface of the half-space (i.e. z  = 0) and, due to the 
slow rate of decay of the Bessel functions, it generally requires a sufficiently large Rξ  for those 
integrals associated with z  = 0 to achieve their converged value. 

Once the elastic fields within the half-space are obtained, other interesting quantities can 
also be computed. For instance, the normalized contact pressure under the punch, denoted by

)(rpp = , can readily be obtained from 
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It is remarked that the Laplacian of the normal displacement appearing on the right hand side of 
(3.55) can directly be evaluated using the prescribed boundary condition (3.20). The normalized 
indentation force P  can further be computed by integrating the contact pressure )(rpp =  over 
the contact region: 
 

2 1 1

2
0 0 0

( ) 2 ( )
2 ( )

PP p r rdrd p r rdr
a

π

θ π
λ µ

= = − = −
+ ∫ ∫ ∫                               (3.56) 

 
3.2.7 Determination of contact radius a for smooth-contact punch 
 
For a smooth-contact punch, the contact radius a is unknown a priori and must be determined 
first before other quantities of interest can be obtained. It is remarked first that once the contact 
radius a is known, there is no difference of a solution procedure for both smooth-contact and 
nonsmooth-contact punch. To solve for a final contact region a that corresponds to a given 
indentation depth d, a physically admissible condition associated with the continuity of the 
vertical stress at r = a is utilized. However, the explicit or close-form relationship between those 
two parameters (a and d) cannot be obtained due to the complexity of the boundary value 
problem accounted for the surface energy effects. 
 
3.2.8 Convergence study 
 
For the proposed numerical technique, three key factors that affect the accuracy of the 
approximate solutions are the truncation parameter Rξ , the number of elements employed in the 
discretization, and the number of integration points used in standard Gaussian quadrature. 
Extensive numerical experiments have been performed to choose a proper truncated domain, the 
level of mesh refinement and optimal quadrature to ensure the convergence and accuracy of 
numerical results. Such investigation is briefly discussed below. 

The number of Gauss points required in the numerical integration can be significant to 
accurately integrate oscillating and complex integrands (resulting from the Bessel functions, 

( )φ φ ξ= , the kernel K(ξ , u)). From numerical experiments, it is found that as the size of 
elements decreases (i.e. the number of elements in the discretization increases), it only requires 
few Gauss points to achieve highly accurate results since the integrand on each element exhibits 
milder variation without oscillating behavior. 

To investigate the level of mesh refinement required to obtain the converged results, we 
perform experiments for a given truncated domain [0, Rξ ]. A series of meshes on the fixed [0, 

Rξ ] is constructed and then used in the analysis. The number of elements (N) in the 
discretization is increased until a converged solution (for a specified tolerance) is obtained for a 
fixed Rξ . By repeating the analysis for various Rξ , a ratio N/ Rξ  (representing the level of mesh 
refinement) to ensure the good discretization is found approximately equal to 1. 

To obtain a proper truncated domain that optimizes the computational cost but, at the 
same time, yields accurate results, we next investigate the convergence of approximate solutions 
with respect to the truncated parameter Rξ . From such study, it can be concluded that the 
truncated parameter Rξ  to attain a converged results for the non-smooth contact punch is much 
larger than that for the smooth contact punch. This is due primarily to the singularity induced at 
the boundary of the contact region of the non-smooth contact punch. Suggested by various 
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experiments, the truncated parameter Rξ  in the analysis of non-smooth contact and smooth 
contact punches equal to 10,000 and 1,000 respectively. 
 

3.3 Numerical Results 
 
The solution procedure described in section 3.2 is implemented as an in-house computer code to 
determine the complete elastic fields for punches of both smooth and non-smooth contacts. The 
accuracy of the present numerical scheme is first verified by comparing with analytical solutions 
of the classical case (no surface energy effects) for both categories. Once the method is tested, it 
is then applied to solve more complex indentation problems accounted for surface stress effects 
in which analytical solutions do not exist. In the analysis, punches with flat-ended and 
paraboloidal profiles are chosen to represent the non-smooth and smooth contacts, respectively. 
Numerical results for three different models (i.e. classical solution with no surface stress effects 
and solutions accounted for surface stress effects with and without the out-of-plane contribution 
of the residual surface tension) are fully compared and discussed. 
 
3.3.1 Verification with analytical solutions 
 

Consider a rigid frictionless punch with a flat-ended cylindrical profile (i.e. δ(r) = 0) and a 
paraboloidal profile (i.e. δ(r) = α r2 where α is a constant) indented on an isotropic, elastic half-
space as shown schematically in Figure 3.2(a) and Figure 3.2(b) respectively. Note that for both 
punch profiles the total indentation depth at the tip of the punch d and the final radius of contact 
a are associated with the total indentation force P. With no surface surface effect, the analytical 
solutions derived by Sneddon (1965) are employed to validate the proposed formulation and 
numerical implementations. In numerical experiments, the present solution scheme is specialized 
to treat the classical case by setting 0 0Λ =  and 0sτ = . According to Sneddon (1965), the 
distribution of contact pressure under the punch pc, the shape of the deformed boundary uz(r, 0) 
and the total indentation force Pc required to produce the indentation depth d for flat-ended 
cylindrical and paraboloidal punches are summarized below. 
 
(a) Flat-ended Cylindrical Punch 
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(b) Paraboloidal Punch 
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Figure 3.2 Indentation of half-space by axisymmetric rigid frictionless punch: flat-ended 
cylindrical punch and (b) paraboloidal punch 
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Though the properties of elastic materials in the present study can be arbitrary, to simply 
compare some elastic quantities with those obtained by Zhao (2009), the same set of material 
properties is uitilized. Aluminum is used for the bulk material (Meyers and Chawla, 1999) 
whereas Al [1 1 1] is employed for the surface (Miller and Shenoy, 2000). All material constants 
are summarized in Table 3.1. In the numerical study, it is convenient to introduce following non-
dimensional quantities: r0 = r/Λ0; z0 = z/Λ0; a0 = a/Λ0; d0 = d/Λ0 and α0 = α Λ0. It is worth 
noting that although the classical solution is independent of Λ0, use of this parameter in the non-
dimensionalization allows a direct comparison between non-classical and classical solutions. 

In the case of flat-ended cylindrical punch with contact radius a0 = 0.5, comparisons 
betwen the cuurent solutions and the classical solutions for the contact pressure and the vertical 
displacement are presented in Figure 3.3(a) and Figure 3.3(b) respectively. It is evidently found 
that numerical results obtained from the present study are almost indistinguishable from the 
exact solutions proposed by Sneddon (1965). Another comparison is performed for the case of 
paraboloidal punch with α0 = 0.5. It can be obviously seen from Figure 3.4(a) and Figure 3.4(b) 
that two numerical solutions obtained from the present scheme, one is the contact pressure and 
the other is the vertical displacement at the free surface, once again exhibit excellent agreement 
with the corresponding analytical solutions. This additionally confirms the accuracy of the 
present technique. 
 
3.3.2 Punch with surface stress effects 
 
From the high accuracy of numerical solutions obtained for the classical case, the proposed 
scheme is now convincingly applied to investigate the indentation problems with the surface 
stress effects being incorporated. To allow comparisons with results obtained from Zhao (2009) 
and demonstrate the significant role of the surface residual tension sτ , Gurtin-Murdoch model 
without the out-of-plane contribution of sτ  is also considered. Selected numerical results are 
reported and dicussed for both punch profiles as follows. 
 
3.3.2.1 Flat-ended cylindrical punch 
 
The case of a flat-ended cylindrical punch indented on the half-space with a specified contact 
radius a and indentation depth d shown in Figure 3.2(a) is first examined. Note that this punch is 
an example of a non-smooth contact punch since dδ/dr is not well-defined at r = a. The 
corresponding elastic fields within the half-space are reported in Figures 3.5-3.8.  

It can be obviously seen from Figure 3.5 that the distribution of the contact pressure 
under the punch accounted for the surface effects possesses the same trend as that for the 
classical solution in which the singularity still exists at the boundary of the punch. Due to the 
integration of the out-of-plane contribution of the surface tension, the predicted contact pressure 
for this particular model is considerably less than those obtained from the other two models (i.e. 
the classical model and Gurtin-Murdoch model without the out-of-plane contribution of τ s). In 
the analysis, three values of the contact radii, a0 = 0.5, 1.0 and 1.5, are considered to study the 
size-dependent behavior and found that when the radius of a punch is smaller and in the same 
order as Λ0, the effects of surface stresses are comparatively larger. It is interesting to point out 
that when the contact pressure p has been normalized in a proper manner (i.e. normalized as 
πpa0/4µd0), size-dependent behavior due to the influence of surface energy effects is 
significantly demonstrated. This phenomenon cannot be certainly observed in the classical model 
(only one single dotted line is shown in spite of changing the contact radius a0). It implies that 
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the classical model ignores an inevitable material parameter (i.e. the intrinsic length Λ0) and, as a 
result, it predicts erroneous solutions when the radius of a punch is very small. However, the 
contact pressure under the larger punch (i.e. larger contact radius a0) for both models, accounted 
for the surface energy effects, converges monotonically to the classical solution. 

The variations of normalized vertical stresses, πσzz/4µd0, along the radial direction at 
four depths, z0 = 0.1, 0.5, 1.0 and 1.5, with contact radius a0 = 0.5 are shown in Figure 3.6. The 
vertical stress profiles indicate the strong influence of the surface energy effects for region 
relatively closed to the punch. In particular, at very small depth (i.e. z0 = 0.1), the vertical stress 
increases monotonically and reaches their peak values near r0/a0 = 1 and then starts to drop 
rapidly when r0 increases. At larger depths, the vertical stress reaches its maximum at r0 = 0 and 
decreases monotonically to zero at relatively large r0. It is evident that an ideal surface attached 
to the bulk of the current model distributes the localized indentation force to an area outside the 
contact region. As a direct consequence, the current model (i.e. Gurtin-Murdoch model with the 
out-of-plane contribution of τ s) predicts the lower vertical stress under the punch and higher 
vertical stress outside the contact region than those obtained from the other two models. 
However, such discrepancy becomes insignificant in the region far away from the punch. 

Numerical results of normalized shear stresses, πσrz/4µd0, and radial stresses, πσrr/4µd0, 
at various depths with contact radius a0 = 0.5 are also presented in Figure 3.7(a) and Figure 
3.7(b) respectively. Similar to the vertical stresses, the magnitudes of shear stresses along the 
radial direction  predicted by the current model are generally lower and higher respectively than 
those obtained from the other two models for regions inside and outside the contact area. The 
shear stress at any depth vanishes at r0 = 0 because of the axisymmetry, and it reaches its peak 
value near the edge of the punch (r0/a0 = 1) and, thereafter, decreases rapidly with r0. However, 
such behavior is not observed for the radial stress, for instance, the magnitude of radial stress at 
z0 = 0.5 obtained from the current model lies between those predicted by the other two models 
for a region inside the contact. As expected, the shear and radial stresses obtained from all three 
models for relatively large r0 possess the same trend and decay monotonically to zero. The 
inflence of surface energy effects is extremely small for z0 ≥ 1.5 as clearly demonstrated by 
small discrepancy between the solutions obtained from the current and classical models. 

According to results shown in Figure 3.8(a) for the normalized vertical displacement, 
uz/Λ0d0, along the radial direction at five depths, z0 = 0.0, 0.1, 0.5, 1.0 and 1.5, with contact 
radius a0 = 0.5, one predicted by the current model is comparatively higher than those obtained 
from the other two models due to the need of higher indentation force to produce the same 
indentation depth. Unlike the stress solutions, vertical displacements exhibit a slower decay rate 
as z0 increases while they still gradually converge to the classical solutions. As the final 
illustration of elastic fields for this particular punch, the normalized radial displacement, ur/Λ0d0, 
at four dfifferent depths, z0 = 0.1, 0.5, 1.0 and 1.5, with the same contact radius a0 = 0.5 is 
reported in Figure 3.8(b). Clearly, the radial displacement increases rapidly from zero at r0 = 0 to 
its peak value at relatively small r0  and then gradually decreases with r0. It should be noted that 
the surface energy effects only influence the magnitude of the radial displacement whereas its 
distribution along the radial direction predicted by all three models is quite similar. 
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                    (b) 

Figure 3.3 Comparisons of classical numerical solutions with exact solutions for flat-ended 
cylindrical punch: (a) normalized contact pressure and (b) normalized vertical displacement 
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Figure 3.4 Comparisons of classical numerical solutions with exact solutions for paraboloidal 
punch: (a) normalized contact pressure and (b) normalized vertical displacement 
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Figure 3.5 Distribution of normalized contact pressure under flat-ended cylindrical punch with 
various contact radii 
 
 

 

Figure 3.6 Normalized vertical stress profiles of flat-ended cylindrical punch with contact radius 
a0 = 0.5 at various depths 
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                    (b) 

Figure 3.7 Normalized stress profiles of flat-ended cylindrical punch with contact radius a0 = 
0.5 at various depths: (a) shear stress and (b) radial stress 
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                    (b) 

Figure 3.8 Normalized displacement profiles of flat-ended cylindrical punch with contact radius 
a0 = 0.5 at various depths: (a) vertical displacement and (b) radial displacement 
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3.3.2.2 Paraboloidal punch 
 

Consider next a paraboloidal punch with α0 = 0.5 acting on the half-space with the indentation 
depth d and final contact radius a as shown in Figure 3.2(b). This punch belongs to a class of 
smooth contact punches since dδ/dr is well-defined at r = a where a is unknown a priori. Note 
again that the final contact radius a is determined by enforcing the continuity condition of the 
vertical stress beneath the punch at r = a. Numerical results for elastic fields of this particular 
punch profile are reported in Figures 3.9-3.12, additionally, some interesting results 
demonstrating size-dependent behavior and material stiffness due to surface energy effects are 
finally shown in Figures 3.13-3.15 and all crucial remarks are summarized as follows. 

To demonstrate the size-dependency resulting from the influence of surface energy 
effects, the distribution of normalized contact pressure under a paraboloidal punch, πpa0/4µd0, is 
first presented in Figure 3.9 for three values of the contact radii, a0 = 0.5, 0.8 and 1.0. 
Interestingly, the contact pressure predicted by the current model becomes finite at the boundary 
while those obtained from the classical case and Zhao's model vanish at the boundary of the 
contact region. Unlike the results for the flat-ended cylindrical punch, the contact pressure 
obtained from the current model is significantly larger than those obtained from the other two 
models. However, such discrepancy becomes smaller when the contact radius is larger. Note that 
upon the proper normalization the distribution of the contact pressure for the classical case is 
obviously independent of the contact radius, and exhibits no size-dependency. 

Normalized vertical stress profiles for the paraboloidal punch with a fixed contact radius 
a0 = 0.5 at five depths, z0 = 0.0, 0.1, 0.5, 1.0 and 1.5, are reported in Figure 3.10. It is important 
to emphasize that due to the enforcement of continuity of the vertical stress at r = a, the 
singularity behavior at the boundary of the contact region disappears for this particular punch 
profile similar to what observed in the case of flat-ended punch. The maximum value of the 
vertical stress occurs at the origin and rapidly decays to zero as r0 increases. Clearly, the 
distribution of the vertical stress along the radial direction at a very small depth exhibits 
significant difference from the case of the flat-ended punch. Once again, the vertical stress close 
to the free surface predicted by the current model deviates from those obtained from the classical 
and Zhao’s models. This implies that the stress field depends significantly on the surface energy 
effects and the out-of-plane contribution of the residual surface tension. 

Figures 3.11(a) and 3.11(b) show the normalized shear and radial stresses along the radial 
direction with contact radius a0 = 0.5 at four different depths, z0 = 0.1, 0.5, 1.0 and 1.5. Similar 
to the case of flat-ended punch, the shear stress at each depth increases from zero at r0 = 0 to its 
peak value near the punch boundary (r0/a0 = 1) and then decays rapidly as r0 increases. On the 
other hand, the radial stress decreases monotonically from its maximum value at r0 = 0 as r0 
increases. Again, the surface energy exhibits significant influence on both shear and radial 
stresses only in a local region very near the punch, and its contribution becomes negligible at 
regions very far from the punch. The influence of surface energy on the vertical and radial 
displacements is also clearly demonstrated by the results shown in Figures 3.12(a) and 3.12(b). 
The vertical displacement predicted by the current model is comparatively higher with a slower 
decay rate when compared to those obtained from the other two models. This observed behavior 
is similar to the case of flat-ended punch.  

To further demonstrate the size-dependent behavior, the relationship between the ratio 
a0/ac (where ac denotes the contact radius for the classical case) and the contact radius a0 of a 
paraboloidal punch is investigated as shown in Figure 3.13. Due to the influence of surface 
energy effects, it is evident that the contact radius is smaller than that obtained from the classical 
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case for the same indentation depth. This implies that presence of the surface stress renders the 
material stiffer. In particular, the difference from the classical solution is less than 1% for Zhao’s 
model and up to 30% for the current model. It appears that the out-of-plane contribution of 
residual surface tension has a significant influence on material stiffness, and the surface energy 
effects play a prominent role in mechanical properties of materials. 

Another set of results that confirms the size-dependent behavior of predicted solutions 
when the surface energy effects are incorporated is associated with the relationship between the 
normalized indentation force, P/Pc, and the contact radius a0 for flat-ended cylindrical and 
paraboloidal punches as shown in Figure 3.14. It is obviously seen that when the radius of the 
punch becomes smaller the indentation force required to produce the same indentation depth is 
relatively higher due to the surface energy effects. The discrepancy is more pronounced for the 
results predicted by the current model when compared to Zhao’s solutions. This implies that the 
stiffness of materials characterized by the indentation experiment does not only depend on the 
penetration depth but also the radius of the punch. In particular, at the contact radius a0 = 0.1, 
results obtained from Zhao’s model are approximately 5% higher than the classical solution for 
both punch profiles whereas those predicted by a model accounted for the out-of-plane 
contribution of the residual surface tension are up to 120% and 160% higher than that obtained 
from the classical model for paraboloidal and flat-ended punches respectively. 

To clearly demonstrate the influence of surface energy effects on the material stiffness, 
the relationship between normalized indentation force, P/4µΛ0

2, and the indentation depth d0 for 
both punch profiles are presented in Figures 3.15(a) and 3.15(b). It can be concluded from these 
results that the indentation force for both punches predicted by the current model is significantly 
higher than those obtained from the classical model and Zhao’s model. This additionally 
confirms that materials become stiffer due to the presence of the surface stress effects and the 
out-of-plane contribution of the residual surface tension amplifies such influence. It is also 
important to emphasize that the discrepancy of results for the flat-ended cylindrical punch is 
more pronounced than that for the paraboloidal punch due to the non-smoothness of the punch 
profile and the singularity of stress field introduced at the boundary of the contact region.  

 
Table 3.1 Material properties used in numerical study 
 

 

Model Parameter Value (unit) 

λ 58.17x109 (N/m2) 

µ 26.13x109 (N/m2) 

Λ0 0.16707 (nm) 

λs 6.8511 (N/m) 

µ s -0.376 (N/m) 

τ s 1 (N/m) 
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Figure 3.9 Distribution of normalized contact pressure under paraboloidal punch with various 

contact radii 
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Figure 3.10 Normalized vertical stress profiles of paraboloidal punch with contact radius a0 = 
0.5 at various depths 
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                   (b) 

Figure 3.11 Normalized stress profiles of paraboloidal punch with contact radius a0 = 0.5 at 
various depths: (a) shear stress and (b) radial stress 
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                    (b) 

Figure 3.12 Normalized displacement profiles of paraboloidal punch with contact radius a0 = 0.5 
at various depths: (a) vertical displacement and (b) radial displacement 
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Figure 3.13 Variation of a0/ac versus contact radius a0. 
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Figure 3.14 Variation of normalized indentation force versus contact radius a0 
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Figure 3.15 Relationship between normalized indentation force and indentation depth d0: (a) 
flat-ended cylindrical punch and (b) paraboloidal punch 
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CHAPTER IV 
 

NANO-CRACKS 
 
 
This chapter begins with the clear problem description and essential assumptions for the 
formulation of boundary value problem related to nano-cracks in three-dimensional infinite 
elastic media. All basic field equations and the development of governing equations for both the 
bulk material and the crack surface are then presented. Next, the fully coupled system of weak-
form equations governing the primary unknowns on the crack surface is derived. Essential 
components required in the numerical implementation including the discretization and numerical 
integration are briefly discussed. In general, standard procedures for the weakly singular 
SGBEM (e.g., Li and Mear 1998, Li et al. 1998, Rungamornrat 2006, Rungamornrat and Mear 
2008) and those for the standard finite element method (e.g., Bathe 1990, Hughes 2000, 
Zienkiewicz and Taylor 2000) are utilized to form the discretized system of linear algebraic 
equations. To verify the formulation and numerical implementation of the proposed method for 
solving nano-sized cracks problems, a penny-shaped crack embedded in an isotropic, linearly 
elastic, unbounded domain under pure mode-I loading conditions is considered first. Results of 
the crack opening displacement and the vertical stress in the vicinity of the crack front are 
compared with existing benchmark solutions (Intarit et al. 2012, Intarit 2013). Once the 
technique is fully tested, the parametric study is performed for this particular problem to 
elucidate the influence of surface stresses and the size-dependent behaviors of the predicted 
solutions. Then, the same penny-shaped crack is investigated for mixed-mode loading 
conditions. To further demonstrate the capability of the current method in solving cracks of 
arbitrary shapes and multiple cracks, an elliptical crack under mode-I and mixed-mode loading 
conditions and two coplanar cracks under mode-I loading are considered respectively in the 
remaining of this chapter. 
 

4.1 Formulation 
 
 

 
 
 
 
 
 
 
 
 

 

          (a)          (b) 
Figure 4.1 (a) Schematic of three-dimensional infinite elastic medium containing an isolated 
crack and (b) prescribed traction on crack surfaces. 
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Consider a three-dimensional, linearly elastic, infinite medium Ω  containing an isolated, planar 
crack of arbitrary shape with a selected reference Cartesian coordinate system { }1 2 3; ; ;O x x x , as 
shown schematically in Figure 4.1(a). 
 The crack is represented by two geometrically identical surfaces, denoted by cS +  and cS − , 

with the corresponding outward unit normal vectors +n  and −n  oriented perpendicular to the x3-
axis for convenience in further development. In the present study, the medium is assumed free of 
body forces and remote loading, but subjected to prescribed, self-equilibrated, normal traction 

0+t and 0−t  on the crack surfaces cS +  and cS −  respectively (see Figure 4.1(b)). An infinitesimally 

thin layer on each crack surface possesses a constant residual surface tension sτ  (under 
unstrained conditions) and the surface Lamé constants sλ  and sµ , whereas the rest of the 
medium, termed the “bulk material”, is made of a homogeneous, isotropic, linearly elastic 
material with shear modulus µ  and Poisson’s ratio ν . 
 A clear problem statement of the present study is to determine the complete elastic field 
including the displacements and stresses within the bulk material by taking the influence of 
surface stresses into account. Fracture-related information such as the relative crack-face 
displacement and the local stress field in the vicinity of the crack front is also of primary interest. 
 
4.1.1 Domain decomposition 
 
In the formulation of the boundary value problem, the medium is decomposed into three parts: 
the bulk material, the zero-thickness layer cS +  and the zero-thickness layer cS −  as shown in 
Figure 4.2. The bulk material is simply the whole medium without the two infinitesimally thin 
layers on the crack surfaces. Since both layers have zero thickness, the geometry of the bulk 
material is therefore identical to that of the whole medium (i.e. it can also be completely 
described by the region Ω  and the two crack surfaces cS +  and cS − ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

     (a)           (b)      (c) 
 
Figure 4.2 Schematics of (a) the bulk material, (b) the zero-thickness layer cS +  and (c) the zero-
thickness layer cS − . 
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The key difference between the bulk material and the original medium is that the bulk material is 
homogeneous and the crack surfaces cS +  and cS −  in the bulk material part are subjected to 

unknown tractions (exerted directly by the two layers) b+t  and b−t , respectively. The layer cS +  is 

treated as a two-sided surface with one side subjected to the prescribed traction 0+t  and the other 
side subjected to the traction s+t  exerted by the bulk material (Figure 4.2(b)). Similarly, the layer 

cS −  is treated as a two-sided surface with one side subjected to the prescribed traction 0−t  and 

the other side subjected to the traction s−t  exerted by the bulk material (Figure 4.2(c)). In what 
follows, Greek subscripts denote field quantities associated with the surface and take the values 
1, 2 while the Latin subscripts take the values 1, 2, 3. It is remarked that, in the development to 
follow, it will suffice to make reference to the single crack surface c cS S +≡ . 
 
4.1.2 Governing equations of bulk material 
 
Since the bulk material is made of homogeneous, isotropic, linear elastic material, its behavior is 
governed by the classical theory of linear elasticity. From results developed in the work of 
Rungamornrat and Mear (2008a) and Rungamornrat and Senjuntichai (2009), the displacement 
and stress components at any interior point x , denoted respectively by ( )pu x  and ( )ijσ x , can be 

expressed in terms of the traction data b+t  and b−t  and the displacement data b+u  and b−u  on the 
crack surfaces cS +  and cS −  as 
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where ( ) ( ) /t tmj m jD nε ξ⋅ = ∂ ⋅ ∂  is a surface differential operator, b b b

j j jt t tΣ + −= + , b b b
j j ju u u∆ + −= − , irtε  

is the standard alternating symbol, the kernels { , , , }p p tk p
j mj mj ijU G C H  for isotropic elastic materials 

are given explicitly by 
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ξ ξ

δ
π µ

− − 
− = − + −  
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( )( )1( ) (1 2 )
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x x
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ε ε
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x x
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ξ ξµ δ δ δ δ δ δ δ

π
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4
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ij

x
H

r
ξ δ

π
−

− = −xξ  (4.6) 
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with || ||r = −ξ x , and ,v µ  are Poisson’s ratio and the shear modulus respectively. The boundary 
integral relations (3.1) and (3.2) allow the displacement and stress at any interior point to be 
determined once the data b+t , b−t , b+u  and b−u are known. To establish the boundary integral 
equations governing the unknown data b+t  , b−t , b+u  and b−u , the integral relations (4.1) and 
(4.2) are utilized along with the limiting process to any point on the crack surface and the 
standard integration by parts procedure using Stokes’ theorem to obtain the weak-form 
equations. The final weak-form, boundary integral equations are given by (see details of the 
development in Rungamornrat and Mear (2008a) and Rungamornrat and Senjuntichai (2009))  
 
1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

c c c

c c

c c
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p mj m jS S
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t u dS t U t dS dS

t G D u dS dS

t H n u dS dS

Σ Σ Σ Σ

Σ ∆

Σ ∆
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∫ ∫ ∫
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∫ ∫

y y y yξ y ξ ξ y

yξ y ξ ξ y

y yξ ξ ξ y

 
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 ξ

 (4.7) 
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2
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c c
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D u G t dS dS
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∆ Σ

∆ Σ
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y y y yξ y ξ ξ y

yξ y ξ ξ y
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 


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 (4.8) 

 
where b b b

j j ju u uΣ + −= + , b b b
j j jt t t∆ + −= − , and { , }p kt uΣ ∆   are sufficiently smooth test functions. The 

pair of equations (4.7) and (4.8) has been well recognized as the weak-form boundary integral 
equations for the sum of the displacement b

ju Σ  and the jump of the traction b
jt ∆  across the crack 

surface respectively. It is worth noting that both integral equations contain only weakly singular 
kernels { , , , }p p tk p

j mj mj ij jU G C H n  of (1 ).rO This positive feature renders all involved double surface 
integrals to exist in an ordinary sense, and their validity requires only C0- boundary data. 
 
4.1.3 Governing equations of two layers 
 

The two layers cS +  and cS −  shown in Figures 4.2(b) and 4.2(c) are considered as infinitesimally 
thin membranes adhered perfectly to the bulk material. The behavior of these two layers is 
modeled by the full version of Gurtin-Murdoch surface elasticity theory. The equilibrium 
equations, the surface constitutive relations and the strain-displacement relationship of the layers 

cS +  and cS −

 are therefore given by (Gurtin and Murdoch, 1975; Gurtin and Murdoch, 1978; 
Gurtin et al., 1998) 
 

, 0s s o
i i it tβ βσ + + =  (4.9) 

( ) ( ) ,2s s s s s s s s s suαβ αβ γγ αβ αβ α βσ τ δ λ τ ε δ µ τ ε τ= + + + − +    ,  3 3,
s s suβ βσ τ=  (4.10) 

( )1
, ,2

s s su uαβ α β β αε = +  (4.11) 
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where , ,s s s
i iuβ αβσ ε  represent stress, strain and displacement components within the layer. It is 

important to remark that, in this case, the full version of Gurtin-Murdoch surface elasticity theory 
including both the surface Lamé constants (or in-plane elastic constants), and the residual surface 
tension is considered. This model should suit the treatment of general loading conditions when 
both the normal and tangential traction can be applied simultaneously on the crack surfaces.  

To construct the weak-form equation, the equilibrium equation (4.9) is multiplied by a 
sufficiently smooth test function s

iu  and the result is integrated over the entire crack surface to 
obtain 
 

0
, 3 3 , 0

c c c c

s s s s s s s
i i i i

S S S S

u dS u dS u t dS u t dSα αβ β β βσ σ+ + + =∫ ∫ ∫ ∫     (4.12) 

 
By performing the integration by parts of the first term using the Gauss-divergence theorem, it 
leads to 
 

0
, 3, 3 3 3

c c c c c c

s s s s s s s s s s s
i i i i

S S S S S S
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∂ ∂
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(4.13) 

 
Substituting (4.10) into (4.13) finally yields 
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(4.14) 

 
Note that the weak-form equation (4.14) applies to both crack surfaces. In particular, the weak-
form equations for the surface cS +  and surface cS −  can be obtained explicitly by  
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 (4.15) 
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 (4.16) 

 
where the superscripts “+” and “–” are added to differentiate quantities defined on each crack 
surface. Since the boundary integral equations governing the bulk material are derived in terms 
of the unknown sum and jump of quantities across the crack surface, it is natural to establish the 
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weak-form equations governing the surface in terms of the same type of unknowns. This can be 
readily accomplished by forming two linear combinations of (4.15) and (4.16) as follows: (i) 
choosing s s s

i i iu u u+ − Σ= ≡    and then adding (4.15) to (4.16) and (ii) choosing s s s
i i iu u u+ − ∆= ≡    and 

then subtracting (4.15) from (4.16). Such pair of equivalent weak-form equations is given by 
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(4.17) 
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 (4.18) 

 
where superscripts “ Σ ” and “ ∆ ” indicate the sum and jump of quantities across the crack 
surface. It should be remarked further that since the jump of the displacement along the crack-
front vanishes identically, the test function s

iu ∆  is chosen to satisfy the homogeneous condition 
0s

iu ∆ =  on cS∂ . The weak-form equations (4.17) and (4.18) now take the form 
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(4.19) 
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 (4.20) 

 
Equations (4.19) and (4.20) constitute a set of weak-form equations governing the unknown 
quantities { , , , }s s s s

i i i iu t u tΣ Σ ∆ ∆ . 
 
4.1.3.1 Special case with only residual surface tension 
 
It has been pointed out by various investigators that the influence of the surface Lamé constants 
on the out-of-plane responses in the local region very near the surface is negligibly weak (Intarit 
et al. 2012, Nan and Wang 2012, Intarit 2013, Pinyochotiwong et al. 2013). The simplified 
version of the Gurtin-Murdoch model without the in-plane surface elasticity is therefore 
considered suitable for modeling planar cracks subjected to pure mode-I loading conditions. By 
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simply setting the surface Lamé constants sλ  and sµ  to zero in the constitutive relation for the 
surface (4.10), it leads to 
 

,2s s s s s s s suαβ αβ γγ αβ αβ α βσ τ δ τ ε δ τ ε τ= + − +    ,  3 3,
s s suβ βσ τ=  (4.21) 

 
Since the same equilibrium equation and strain-displacement relation as those employed in the 
general case (i.e. equations (4.9) and (4.11)) are also considered, the model is not restricted 
mathematically to applied traction normal to the crack surface although it is physically suitable 
for treating pure mode-I loading conditions. Due to the vanishing of the term ,

s
αβ βσ , which can 

readily be verified by the relation (4.21), the equilibrium equation (4.9) then implies that the 
applied shear traction is transmitted directly to the crack surface of the bulk medium. To 
construct the weak-form statement for this particular case, the procedure similar to that employed 
in the previous section is adopted. The final weak-form equations of the two layers take the 
following form: 
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3, 3, 3 3
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u u dS u t dS u t dSβ βτ ∆ ∆ ∆ ∆ ∆ ∆− =∫ ∫ ∫            (4.23) 

 
4.1.3.2 Special case with only in-plane surface elasticity 
 
Another simplified version of the Gurtin-Murdoch model considered in the present study is the 
one with only the effect of the in-plane surface elasticity being treated. The simplified 
constitutive relation of the layers cS +  and cS −  is obtained by substituting the residual surface 
tension sτ  to zero in (4.10), and this results in 
 

2s s s s s
αβ γγ αβ αβσ λ ε δ µ ε= +    ,  3 0s

βσ =  (4.24) 
 
It is evident from (4.24) that this simplified model always predicts zero out-of-plane shear 
stresses and this result, when combined with the equilibrium equation (4.9), dictates that the 
applied normal traction is transmitted directly to the crack surface of the bulk material. Similar to 
the previous special case, this simplified model is still applicable to general loading conditions 
on the crack surface. To obtain the weak-form statement for this particular case, the procedure 
similar to that employed in the general case is utilized and the resulting weak-form equations are 
given by 
 

( )( )

( )( )

, , , , , ,

0
, , ,

2

2

c c c

c c c

s
s s s s s s s s s

i i
S S S

s
s s s s s s s s

i i
S S S

u u dS u u u u dS u t dS

u n u d u n u n u u d u t dS

α α γ γ α β β α α β β α

α α γ γ α β β α α β β α

µλ

µλ

Σ Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ Σ

∂ ∂

+ + + − =

Γ + + + Γ +

∫ ∫ ∫

∫ ∫ ∫

   

   

 

(4.25) 
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u u dS u u u u dS u t dS u t dSα α γ γ α β β α α β β α
µλ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆+ + + − =∫ ∫ ∫ ∫          (4.26) 

 
4.1.4 Governing equations of whole medium 
 

Since the two layers cS +  and cS −  are adhered perfectly to the bulk material, the displacements 
and traction along the interface of the two layers and the bulk material must be continuous. This 
yields the following continuity conditions: 
 

s b
i i iu u u∆ ∆ ∆= ≡   (4.27) 
s b
i i iu u uΣ Σ Σ= ≡   (4.28) 
s b
i i it t t∆ ∆ ∆= − ≡ −  (4.29) 
s b
i i it t tΣ Σ Σ= − ≡ −  (4.30) 

 
Substituting (4.27) - (4.30) into (4.7), (4.8), (4.19) and (4.20), leads to a system of four equations 
involving four unknown functions { , , , }i i i iu t u tΣ Σ ∆ ∆  as follows: 
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(4.33) 
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It is obvious from (4.32) and (4.34) that terms involving the unknown jump of the traction it

∆  are 
similar and, by choosing s

i iu u∆ ∆=  , the two equations can be combined and those terms 
containing it

∆  can be eliminated. The above system (4.31)-(4.34) now becomes a system of three 
equations involving three unknown functions { , , }i i iu t uΣ Σ ∆ given by 
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where the bilinear integral operators , , , ,A B C D E  are defined by  
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and the linear integral operators 1 2{ , }R R  are defined, in terms of prescribed data 0Σt  and 0∆t , 
by  
 

0
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0
2

1( ) ( ) ( ) ( )
2

c
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X t dS∆= ∫X y y yR   (4.43) 

 
4.1.4.1 Special case with only residual surface tension 
 
For the special case when only the residual surface tension is considered, the fully coupled 
system of governing equations (4.35) can readily be simplified by ignoring the surface elastic 
constants, and they can be expressed as 
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( , )  ( , )                       ( )

( , )   ( , )   ( , ) 0
                      ( , )   ( , ) ( )

s s sΣ Σ Σ Σ Σ

Σ Σ Σ Σ Σ ∆

Σ ∆ ∆ ∆ ∆

+ =

+ + =
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u u u t u
t u t t t u

t u u u u

  

  

  

A B R

B C D

D E R

  (4.44) 

 
where the additional bilinear integral operators A  and E  are defined by  
 

3, 3, 3 3,( , )
2 2

c c

s s

S S

X Y dS X Y n dβ β β β
τ τ

∂

= − Γ∫ ∫X YA  (4.45) 

( , ) ( ) ( ) ( ) ( ) ( ) ( , )
c c

tk
t k mj m jS S

D X C D Y dS dS= − − +∫ ∫X Y y y y X YE Fξ ξ ξ   (4.46) 

3, 3,( , )
2

c

s

S

X Y dSβ β
τ

= ∫X YF
 

 (4.47) 

 
It is remarked that the system (4.44) still contains three equations and involves three unknown 
functions { , , }i i iu t uΣ Σ ∆ . 
 
4.1.4.2 Special case with only in-plane surface elasticity 
 
For the special case when only the in-plane surface elasticity is considered, the fully coupled 
system of governing equations can readily be obtained by setting the residual surface tension to 
zero in (4.35), and the final result is given by 
 

1
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( , )   ( , )   ( , ) 0
ˆ                      ( , )   ( , ) ( )

s s sΣ Σ Σ Σ Σ
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u u u t u
t u t t t u

t u u u u

  

  

  

A B R

B C D

D E R

  (4.48) 

 
where the additional bilinear integral operators ˆA  and ˆE  are defined by  
 

( )( )

( )( )

, , , , , ,

, , ,

ˆ( , )
2 4

              
2 4

c c

c c

s s

S S

s s

S S

X Y dS X X Y Y dS

X n Y d X n X n Y Y d

α α γ γ α β β α α β β α

α α γ γ α β β α α β β α

λ µ

λ µ

∂ ∂

= + + +

− Γ − + + Γ

∫ ∫

∫ ∫

X YA

 (4.49) 

ˆˆ( , ) ( ) ( ) ( ) ( ) ( ) ( , )
c c

tk
t k mj m jS S

D X C D Y dS dS= − − +∫ ∫X Y y y y X YE Fξ ξ ξ   (4.50) 

( )( ), , , , , ,
ˆ( , )

2 4
c c

s s

S S

X Y dS X X Y Y dSα α β β α β β α α β β α
λ µ

= + + +∫ ∫X YF   (4.51) 

 
Again, the system (4.48) still contains three equations and involves the same three unknown 
functions { , , }i i iu t uΣ Σ ∆ . 
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4.2 Numerical Implementations 
 
In this section, essential components required in the numerical implementation including the 
discretization and numerical integration are briefly discussed. In general, standard procedures for 
the weakly singular SGBEM (e.g., Li and Mear 1998, Li et al. 1998, Rungamornrat 2006, 
Rungamornrat and Mear 2008) and those for the standard finite element method (e.g., Bathe 
1990, Hughes 2000, Zienkiewicz and Taylor 2000) are utilized to form the discretized system of 
linear algebraic equations. 
 
4.2.1 Discretization 
 
Standard Galerkin approximation is employed in the discretization of the system of governing 
equations (4.35), (4.44), and (4.48). Since all involved boundary integrals governing the bulk 
material contain only weakly singular kernels of (1 )rO , continuous (C0) interpolation functions 
are utilized everywhere in the approximation of both trial and test functions. In particular, the 
following approximation for the test functions and the trial functions is introduced: 
 

3( 1)
1

N
s s
i p i p

p
u UΣ Σ

− +
=

= Φ∑  ;   3( 1)
1

N

i q i q
q

u UΣ Σ
− +

=

= Φ∑   (4.52) 

3( 1)
1

N

i p i p
p

u U∆
− +

=

= Φ∑  ;   3( 1)
1

N

i q i q
q

u U∆ ∆
− +

=

= Φ∑   (4.53) 

3( 1)
1

N

i p i p
p

t TΣ
− +

=

= Φ∑  ;   3( 1)
1

N

i q i q
q

t TΣ Σ
− +

=

= Φ∑   (4.54) 

 
where N  is the number of nodal points; pΦ  is nodal basis functions at the node p ; qΦ  is nodal 

basis functions at the node q ; 3( 1)q iU Σ
− + , 3( 1)q iU ∆

− + , and 3( 1)q iT Σ
− +  are nodal degrees of freedom 

associated with the sum of the displacement, the jump of the displacement and the sum of the 
traction across the crack surfaces, respectively; and 3( 1)

s
p iU Σ

− +
 , 3( 1)p iU − +

 , and 3( 1)p iT − +
  are arbitrary 

nodal quantities.  
 
4.2.1.1 General case 
 

Substituting (4.52)-(4.54) into (4.35) along with using the arbitrariness of 3( 1)
s

p iU Σ
− +

 , 3( 1)p iU − +
 , and 

3( 1)p iT − +
 , leads to a system of linear algebraic equations as 

 

1

2

T

T

Σ

Σ

∆

    
     =             

A B 0 U R
B C D T 0
0 D E U R

  (4.55) 

 
where the sub-matrices , , , ,A B C D E  are associated with the bilinear operators 

, , , ,A B C D E ; sub-vectors 1 2,R R  correspond to the linear operators 1 2,R R ; ΣU  is a vector 
of nodal quantities of the sum of the displacement;

 

∆U  is a vector of nodal quantities of the 
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jump of the displacement; and ΣT  is a vector of nodal quantities of the sum of the traction. The 
sub-matrices , , , ,A B C D E  and sub-vectors 1 2,R R  are given explicitly by 
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2
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p i q j ij p q
S
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p i q j p j q

S S
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S S
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3( 1) 3,3( 1) 3 , ,[ ] ( ) ( ) ( )
2

c

s

p q p q
S

dSγ γ
τ

− + − + = Φ Φ∫F
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0
1 3( 1)

1[ ] ( ) ( ) ( )
2

c

p i p i
S

t dSΣ
− + = Φ∫R

  
y y y ;  0

2 3( 1)
1[ ] ( ) ( ) ( )
2

c

p i p i
S

t dS∆
− + = Φ∫R

  
y y y  (4.64) 

3( 1) 3( 1)[ ] q i q iUΣ Σ
− + − +=U ;  3( 1) 3( 1)[ ] q i q iU∆ ∆

− + − +=U ;  3( 1) 3( 1)[ ] q i q iTΣ Σ
− + − +=T  (4.65) 

 
4.2.1.2 Special case with only residual surface tension 
 
By applying the same procedure as that employed in the general case to (4.44), it leads to a 
system of linear algebraic equations as follows: 
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where the sub-matrices , , , ,A B C D E  are associated with the bilinear operators 
, , , ,A B C D E ; sub-vectors 1 2,R R  correspond to the linear operators 1 2,R R ; ΣU  is a vector 

of nodal quantities of the sum of the displacement; ∆U  is a vector of nodal quantities of the 
jump of the displacement; and ΣT  is a vector of nodal quantities of the sum of the traction. The 
additional sub-matrices A  and E  are given explicitly by  
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3( 1) ,3( 1)[ ] 0p qα β− + − + =F  (4.70) 
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4.2.1.3 Special case with only in-plane surface elasticity 
 
The discretized system of linear algebraic equations of the governing equations (4.48) can also 
be obtained in the same manner and the final result is given by 
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where the sub-matrices ˆ ˆ, , , ,A B C D E  are associated with the bilinear operators 
ˆ ˆ, , , ,A B C D E ; sub-vectors 1 2,R R  correspond to the linear operators 1 2,R R ; ΣU  is a vector 

of nodal quantities of the sum of the displacement; ∆U  is a vector of nodal quantities of the 
jump of the displacement; and ΣT  is a vector of nodal quantities of the sum of the traction. The 
additional sub-matrices Â  and Ê  are given explicitly by  
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3( 1) 3,3( 1) 3
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3( 1) 3,3( 1) 3
ˆ[ ] 0p q− + − + =F  (4.77) 

 
 
4.2.2 Numerical integration 
 

To evaluate the sub-matrices ˆ ˆ, , , , , , ,  ,  A A A B C D E E E

 

and sub-vectors 1 2,R R numerically, 
the single and double surface integrals must be properly treated. All single surface integrals 
contain regular integrands, and can be efficiently and accurately integrated using standard 
Gaussian quadrature. Unlike single surface integrals, double surface integrals can be categorized 
into three types depending on a pair of elements resulting from the discretization of the surface

cS .  
The first type is termed a regular double surface integral since its integrand is not singular 

with only mild variation. This type of integral arises when both elements in a pair are relatively 
remote in comparison with their characteristic size. Similar to the single surface integral, all 
regular double surface integrals can be accurately integrated by Gaussian quadrature. The second 
type, termed weakly singular double surface integrals, arises when both elements in a pair are 
identical and, therefore, the integrand is weakly singular due to the involved kernels. Although 
these integrals exist in an ordinary sense (sense of Riemann), it was pointed out by Xiao (1998) 
that they cannot be accurately integrated by standard Gaussian quadrature. To circumvent such 
difficulty, similar techniques based on integrand regularization via a series of transformations 
proposed by Li et al. (1985), Hayami and Brebbia (1988) and Xiao (1998) are employed. The 
last type of double surface integrals, which are considered most challenging, is a nearly singular 
integral. The integrand of these integrals is nearly singular since both elements in a pair are 
relatively close in comparison with their characteristic size and this renders the kernels appearing 
in those integrals nearly singular and exhibiting rapid variation. Similar to the weakly singular 
integrals, Gaussian quadrature cannot be used to integrate nearly singular integrals efficiently. 
Special techniques proposed by Hayami (1992), Hayami and Matsumoto (1994) and Xiao (1998) 
are adopted to perform the numerical integration. 
 
4.2.3 Shape functions 
 
As clearly discussed in the literature review, the singularity of the stress along the crack front of 
nano-sized cracks with the presence of surface stresses is still unclear. Some investigators 
pointed out that the stress along the crack front of nano-sized crack should be finite (e.g., Kim et 
al., 2010; Kim et al., 2011; Kim et al., 2011; Nan and Wang, 2012). Other studies have 
concluded in the opposite direction that the stress along crack front of nano-sized crack is still 
singular; however the order of singularity reduces from square-root singularity to logarithmic 



104 
 

singularity (e.g., Sendova and Walton, 2010; Kim et al. 2013). In the current study, it is 
postulated that the singularity of the stress along the crack front disappears when the surface 
stresses is taken into account. As a result, standard isoparametric C0 elements are employed 
everywhere to approximate all test and trial functions appearing in the governing equations of 
nano-sized crack problems. However, for some special cases when the influence of the surface 
stresses is ignored in certain directions, the special crack-tip shape functions proposed by Li et 
al. (1998) to accurately capture the right behavior of the near tip field are still required. The 
standard isoparametric shape functions can be easily found in Bathe (1990), Hughes (2000) and 
Zienkiewicz and Taylor (2000). The special crack-tip shape functions can be referred to the work 
of Li et al. (1998). The usage of the shape functions (standard shape functions or special crack-
tip shape functions) in the present study can be summarized as follows: 

- For the general case, when the full version of Gurtin-Murdoch model is considered, the 
standard shape functions are used in the approximation of all components of primary 
unknowns. 

- For the special case, when the simplified version of Gurtin-Murdoch model without the 
surface elastic constants is considered, the special crack-tip shape functions are employed 
to approximate the in-plane components of u∆


 and  u∆


 whereas the standard shape 

functions are utilized to discretize all remaining quantities. 
For the special case, when the simplified version of Gurtin-Murdoch model without the residual 
surface tension is considered, the special crack-tip shape functions are employed to approximate 
the out-of-plane components of u∆


 and  u∆


 whereas the standard shape functions are adopted to 

discretize all remaining quantities. 
 

4.3 Numerical Results 
 
In the analysis, three different levels of mesh refinement are adopted to examine the convergence 
of numerical results. Nine-node isoparametric elements are used to discretize the entire crack 
front, whereas the rest of the crack surface is discretized by eight-node and six-node 
isoparametric elements. Young’s modulus and Poisson’s ratio for the bulk material are taken as 

107E GPa=  and 0.33ν = , respectively, and the surface elastic constants and the residual 
surface tension are chosen identical to those utilized by Intarit et al. (2012) and Intarit (2013) 
(i.e. 4.4939 / ,s N mλ = 2.7779 /s N mµ = , 0.6056 /s N mτ = ). These above material 
properties are used for all following numerical examples in this chapter. For convenience in the 
numerical analysis, all quantities involved in the key governing equations are properly 
normalized. For instance, the unknown sum of the traction and the prescribed traction on the top 
surface of the two-thickness layers are normalized by the shear modulus µ  (i.e. 0t t µΣ Σ=  and 

0
0i iσ σ µ= ); the unknown sum and jump of the displacement across the crack surface are 

normalized by a special length scale 0.24983s nmκ µΛ = =  (i.e. 0u u∆ ∆= Λ  and 0u uΣ Σ= Λ ) 

where 2s s sκ λ µ= + ; and all characteristic lengths representing the geometry of the crack such 
as the crack radius a , the semi-major axis a , and the semi-minor axis b  used in following 
examples are normalized by the length scale Λ  (i.e. 0a a= Λ  and 0b b= Λ ). 
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4.3.1 Penny-shaped crack under pure mode-I loading 
 
As a means for verifying the current technique, the problem of a penny-shaped crack of radius a 
embedded in an isotropic, linear elastic infinite medium is considered (Figure 4.3(a)). The crack 
is subjected to self-equilibrated, uniformly distributed normal traction 3 3 0t t σ+ −= − = . The three 
meshes of the crack surface used in the numerical study are shown in Figure 4.3(b).  

(a) 

 

 

(b) 

Mesh 1 Mesh 2 Mesh 3 

Figure 4.3 (a) Schematic of a penny-shaped crack of radius a  embedded in an isotropic, linear 
elastic infinite medium subjected to uniformly distributed normal traction 3 3 0t t σ+ −= − = ; (b) 
Meshes adopted in the analysis. Mesh 1: 20 elements and 77 nodes. Mesh 2: 88 elements and 
297 nodes. Mesh 3: 216 elements and 665 nodes. 
 
4.3.1.1 Verification 
 
This problem has been previously solved by Intarit et al. (2012) and Intarit (2013) using Hankel 
integral transforms along with a solution technique for dual integral equations, and their results 
are used as the benchmark solution to validate the proposed FEM-SGBEM technique. In this 
numerical example, results for mode-I loading conditions are presented for three different 
models. The model-1 represents the classical case without the surface stress effects. It should be 
noted that, for this particular case, the classical solution of the crack opening displacement and 
the stress in the vicinity of crack front can be found in Tada et al. (2000) and Kachanov et al. 
(2004) respectively. The model-2 is associated with a simplified version of Gurtin-Murdoch 
surface elasticity model (the first special case), in which the residual surface tension ( sτ ) is only 
considered. The model-3 corresponds a full version of Gurtin-Murdoch surface elasticity model 

x3

x2

x1

σ0

      

a

x3

x2
σ0
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where both the surface elastic constants ( ,s sλ µ ) and the residual surface tension ( sτ ) are 
included. 

The normalized crack opening displacement and the normalized vertical stresses near the 
crack front, when the influence of surface stresses is taken into account, are reported in Figures 
4.4-4.5 along with the benchmark solution generated by a technique proposed by Intarit et al. 
(2012) and Intarit (2013). It is seen that the numerical results are slightly mesh dependent and 
that they are highly accurate and almost indistinguishable from the analytical solution for both 
the crack opening displacement and near-tip vertical stresses 33σ  for the model-2 and model-3. It 
can also be pointed out from the results shown in Figure 4.4 that the two models incorporating 
the surface stresses with (model-3) and without (model-2) the influence of the in-plane surface 
elasticity yield results significantly different from those predicted by the classical model (model-
1). While both the residual surface tension and the in-plane surface elasticity contribute to such 
discrepancy, the influence of the residual surface tension seems more significant in the case of 
mode-I loading conditions. The medium tends to be much stiffer than the classical case, when 
the full version of the surface stress model is considered in the analysis. 
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Figure 4.4 Comparison of the normalized crack opening displacements of a penny-shaped crack 
under uniformly distributed normal traction obtained from three different models for 

107E GPa= , 0.33ν = , 4.4939 / ,s N mλ = 2.7779 /s N mµ =  and 0.6056 /s N mτ =  
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Figure 4.5 Normalized vertical stresses 33 0/σ σ  in the vicinity of the crack-front of a penny-
shaped crack under uniformly distributed normal traction for 107E GPa= , 0.33ν = , 

4.4939 / ,s N mλ = 2.7779 /s N mµ =  and 0.6056 /s N mτ = : results for (a) model-3 and (b) 
model-2. 
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4.3.1.2 Parametric study 
 

To further examine the influence of the residual surface tension ( sτ ) on the predicted solution of 
mode-I crack problems, the normalized crack opening displacement and the normalized vertical 
stress 33σ  for different values of the residual surface tension sτ  ranging from 0.1 to 1.0 N/m 
(with the surface elastic constants and the bulk material properties remaining fixed) are shown in 
Figure 4.6. It can be concluded that the residual surface tension exhibits significant role on the 
crack opening displacement and the vertical stress 33σ  for mode-I loading conditions. In 
particular, as sτ  becomes larger, the deviation of results from the classical case (without the 
surface stresses) significantly increases and, clearly, it renders the elastic medium much stiffer. 

The investigation of the influence of the surface elasticity constants ( ,s sλ µ ) on the 
solution of cracks under mode-I loading conditions is also considered. The normalized crack 
opening displacement and the normalized vertical stress 33σ  in the vicinity of the crack front for 
different values of the surface elasticity constants ( ,s sλ µ ) ranging from 0, 0.1, 1 and 10 times of 
their initial value (with the residual surface tension and the bulk material properties remaining 
fixed) are reported in Figure 4.7. This numerical study is performed only for the model-3 where 
the full version of Gurtin-Murdoch surface elasticity is considered. It can be concluded from this 
set of results that the surface elasticity constants exhibit a little influence on the crack opening 
displacement but negligible influence on the vertical stress for mode-I loading conditions. 
However, as the surface elasticity constants become larger, the deviation of results from those 
predicted by the model-2, slightly, increases and, it clearly makes the bulk material a little stiffer. 

To demonstrate the size-dependent behavior of results due to the presence of the surface 
stresses, the crack opening displacements and the near-tip vertical stresses are illustrated in 
Figure 4.8 for all three models. It is evident that the predicted solutions apparently exhibit size-
dependent behavior by including the surface stress effects in the mathematical model. In 
particular, the normalized crack opening displacements and the normalized vertical stresses in 
the vicinity of the crack front of the model-2 and model-3 depend significantly on the crack size. 
On the contrary, the normalized crack opening displacements and normalized vertical stresses of 
model-1 are independent of the crack radius upon the proper normalization. 
 
4.3.2 Penny-shaped crack under mixed mode loading 
 
In this section, a penny-shaped crack in an unbounded medium under mixed-mode loading 
conditions (i.e. mode-II and mode-III loading conditions) is investigated to demonstrate the 
capability of the proposed FEM-SGBEM coupling in the analysis of nano-sized crack problems. 
This numerical example should provide the complete information with insight of the influence of 
surface stresses on elastic responses and fracture data within the context of three-dimensional 
problems. In the Gurtin-Murdoch surface elasticity model, the surface elastic constants are 
related to the in-plane terms in the governing equations of the surface and should significantly 
affects the in-plane behavior of cracks under mixed-mode loading conditions. Therefore, similar 
to the previous problem, three different models are considered in this case. The model-1 is the 
classical model when the surface stresses are ignored. The classical solution of the crack sliding 
displacements and stresses in the vicinity of the crack front can be found in Kachanov et al. 
(2004). The model-2 is associated with a simplified version of Gurtin-Murdoch surface elasticity 
model where the in-plane surface elasticity is only treated. The last model, the model-3, once 
again corresponds to the full version of Gurtin-Murdoch model. 
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Figure 4.6 Penny-shaped crack under uniformly distributed normal traction for different residual 
surface tension sτ  ranging from 0.1 to 1 N/m; 107E GPa= , 0.33ν = , 4.4939 / ,s N mλ =

2.7779 /s N mµ = : (a) normalized crack opening displacements and (b) normalized near-tip 
vertical stresses 33 0/σ σ  obtained by using mesh-3 
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Figure 4.7 Penny-shaped crack under uniformly distributed normal traction, for different surface 
elasticity constants ( , )s sλ µ  ranging from 0; 0.1; 1 and 10 times of their initial value (

4.4939 / ,s N mλ = 2.7779 /s N mµ = ); 107E GPa= , 0.33ν = , 0.6056 /s N mτ = : (a) 
normalized crack opening displacements and (b) normalized near-tip vertical stresses obtained 
by using mesh-3 
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Figure 4.8 Penny-shaped crack under uniformly distributed normal traction, for three different 
crack radii 0 0.5, 1.0, 10a a= Λ = , and for 107E GPa= , 0.33ν = , 4.4939 / ,s N mλ =

2.7779 /s N mµ = , 0.6056 /s N mτ = : (a) normalized crack opening displacements and (b) 
normalized near-tip vertical stresses obtained by using mesh-3 
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Consider a penny-shaped crack of radius a  embedded in an isotropic, linear elastic 
infinite medium as shown in Figure 4.9(a). The crack is subjected to the self-equilibrated, 
uniformly distributed shear traction 1 1 0t t τ+ −= − = . Three meshes, adopted as depicted in Figure 
4.9(b), are employed in the analysis. 

Numerical results for the crack sliding displacements (CSD) and the stresses in the 
vicinity of the crack front along the x1-direction (the direction of the applied shear traction) are 
presented in Figure 4.10. It is seen that numerical solutions exhibit very good convergence for 
both the CSD and the near-tip stresses. It can be pointed out from the results in Figure 4.10(a) 
that the CSD depend significantly on the surface stresses. In addition, the CSD, predicted by the 
model-2 and the model-3, are virtually the same. As a result, it can be concluded that the in-plane 
elastic constants prominently affect the CSD of cracks under in-plane loading conditions whereas 
the influence of the residual surface tension on the CSD is insignificant. It also can be argued 
from Figure 4.10(b) that the shear stress 13σ  near the crack front is strongly influenced by the 
surface stresses. The magnitude of the predicted stresses near the crack front reduces 
considerably from the classical solution when the surface stresses are present. In particular, the 
in-plane elastic constants affect substantially the in-plane quantities for cracks under in-plane 
loadings in comparison with the residual surface tension.      

To further understand the role of each parameter in the Gurtin-Murdoch model on the 
predicted solutions of mixed-mode crack problems, the following four cases obtained by varying 
the value of the in-plane elastic constants and the residual surface tension are considered:  

 
- Case 1: Both the in-plane elastic constants ( ,s sλ µ ) are varied from 0, 1, 5 and 10 times 

of their initial value ( 4.4939 /s N mλ = , 2.7779 /s N mµ = ) whereas the residual 
surface tension remains fixed.  

- Case 2: The residual surface tension ( sτ ) is ranged from 0, 1, 5 and 10 times of its initial 
value ( 0.6056 /s N mτ = ) whereas the in-plane elastic constants remain fixed.  

- Case 3: Only the parameter sλ  is varied from 0, 1, 5 and 10 times of its initial value (
4.4939 /s N mλ = ) whereas all remaining parameters remain fixed.  

- Case 4: Only the parameter sµ  is varied from 0, 1, 5 and 10 times of its initial value ( 
2.7779 /s N mµ = ) whereas all remaining parameters remain fixed.  

 
The normalized CSD and the normalized shear stresses in the vicinity of the crack front along the 
x1-direction are reported in Figures 4.11-4.12 for all four cases. It can be seen that the surface 
elastic constants ( ,s sλ µ ) in the Gurtin-Murdoch model significantly reduce the CSD and the 
shear stresses near the crack front, whereas the residual surface tension practically has no 
influence on the predicted solution of mixed-mode crack problems. It can be also pointed out that 
the parameter sµ  in the Gurtin-Murdoch model exhibits more prominent effect on the CSD and 
the near-tip shear stresses when compared to the parameter sλ  (see Figure 4.11(c)-(d) and 
Figure 4.12(c)-(d)). To investigate the size-dependent behavior of the solution of mixed-mode 
crack problems due to the presence of the surface stresses, the CSD and the shear stresses in the 
vicinity of the crack-front for different crack radii 0 0.5, 1.0, 10a =  are considered. Results of the 
crack sliding displacement and the shear stresses along the x1-direction are shown in Figure 4.13. 
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It can be seen from Figure 4.13 that the normalized CSD and the normalized shear stresses in the 
vicinity of the crack front along the x1-direction obtained from the model-2 and model-3 are 
apparently size-dependent. This finding agrees with the case of mode-I loading conditions. When 
the crack-size decreases, the influence of the surface stresses on elastic responses of cracks 
subjected to mixed-mode loading conditions becomes more significant in the sense that the 
medium is stiffer. 
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Figure 4.9: (a) Schematic of a penny-shaped crack of radius a  embedded in an isotropic, linear 
elastic infinite medium subjected to uniformly distributed shear traction 1 1 0t t τ+ −= − = ; (b) 
meshes adopted in the analysis. Mesh 1: 20 elements and 77 nodes. Mesh 2: 88 elements and 297 
nodes. Mesh 3: 216 elements and 665 nodes. 
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Figure 4.10: A penny-shaped crack under uniformly distributed shear traction, for 107E GPa= , 
0.33ν = , 4.4939 /s N mλ = ,  2.7779 /s N mµ = , 0.6056 /s N mτ = : (a) normalized crack 

sliding displacements and (b) normalized near-tip shear stress along the x1-direction. 
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Figure 4.11 Normalized crack sliding displacements of a penny-shaped crack under uniformly 
distributed shear traction for 107E GPa= , 0.33ν =  in four cases: (a) different values of ( ,s sλ µ
) with 0.6056 /s N mτ = ; (b) different values of sτ  with 4.4939 /s N mλ = , 2.7779 /s N mµ =
; (c) different values of sλ  with 2.7779 /s N mµ = , 0.6056 /s N mτ =  and (d) different values 
of sµ  with 4.4939 /s N mλ = , 0.6056 /s N mτ =  obtained by using mesh-3 
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Figure 4.12 Normalized near-tip shear stresses of a penny-shaped crack under uniformly 
distributed shear traction for 107E GPa= ,  0.33ν =  in four cases: (a) different values of ( ,s sλ µ
); (b) different values of sτ ; (c) different values of sλ  and (d) different values of sµ  obtained 
by using mesh-3 
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Figure 4.13 A penny-shaped crack under uniformly distributed shear traction, for different crack 
radii 0 / 0.5, 1.0, 10a a= Λ = , for 107E GPa= , 0.33ν = , 4.4939 / ,s N mλ = 2.7779 /s N mµ =  

and 0.6056 /s N mτ = : (a) normalized crack sliding displacements and (b) normalized near-tip 
shear stresses obtained by using mesh-3. 
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4.3.3 Elliptical crack 
 
To demonstrate the capability of the proposed FEM-SGBEM coupling technique for treating 
crack problems of arbitrary shapes with consideration of the surface stress effects, an elliptical 
crack embedded in an isotropic, linear elastic infinite domain is considered (see Figure 4.14(a)). 
The material in which the crack is embedded is Si [100] where properties of the bulk material are 

107E GPa= , 0.33ν =  and the surface elastic constants and the residual surface tension are 
obtained from Miller and Shenoy (2000). The crack-front is parameterized in terms the angle θ  
by 
 

[ ]1 2 3cos , sin , 0; 0,2x a x b xθ θ θ π= = = ∈  (4.78) 
 
where a  and b  are the major and minor semi-axes of the crack, respectively. In this numerical 
example, two loading conditions are investigated. The first case is associated with the crack 
subjected to the self-equilibrated, uniformly distributed normal traction 3 3 0t t σ+ −= − =  (see Figure 
4.14(b)) whereas the other case corresponds to the crack subjected to the self-equilibrated, 
uniformly distributed shear traction 2 2 0t t τ+ −= − =  (see Figure 4.14(c)). Numerical results are 
presented for three different aspect ratios 1, 2,3a b = , and three meshes shown in Figure 4.14(d) 
are adopted to model the elliptical crack (Mesh 1 has 20 elements and 77 nodes; Mesh 2 has 88 
elements and 297 nodes and Mesh 3 has 216 elements and 665 nodes). 
 
4.3.3.1 Normal traction 
 
For this particular loading condition, results obtained from three different models indicated 
below are presented and compared:  

- Model-1 represents the classical model without the influence of the surface stresses. The 
classical solution of the crack opening displacements and the vertical stresses in the 
vicinity of crack front can be found in Zeng-shen (1982) and Kassir and Sih (1975), 
respectively. 

- Model-2 is associated with the simplified version of Gurtin-Murdoch model without the 
contribution of surface elastic constants. 

- Model-3 is the full version of Gurtin-Murdoch model where the surface elastic constants 
( ,s sλ µ ) and the residual surface tension ( sτ ) are included. 

The convergence study of the normalized crack opening displacement (COD) and the normalized 
vertical stress along the minor axis for the aspect ratio 2a b =  using the model-2 and model-3 
are reported in Figure 4.15. As observed from this figure, the predicted solutions for COD and 
the vertical stresses near the crack front show good convergence. The normalized CODs and the 
normalized vertical stresses 33 0/σ σ  along the minor axis of the crack are also presented in 
Figure 4.16 for the aspect ratios 1, 2,3a b =  and all three models. It can be seen from Figure 4.16 
that the influence of the surface stresses on the CODs and the near-tip vertical stresses decreases 
when the aspect ratio a b  increases. It can also be remarked that for the mode-I crack problem, 
the difference between solutions predicted by the full version and simplified version of Gurtin-
Murdoch model is insignificant. As a result, the simplified version of Gurtin-Murdoch model can 
be utilized to investigate the nano-scale influence of mode-I crack problems to simplify the 
calculation.  
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In order to investigate the role of the residual surface tension on responses of cracks 
under the mode-I loading conditions, the normalized CODs and the normalized vertical stresses 

33 0σ σ  are computed for different values of the residual surface tension sτ  ranging from 0.1 to 
1.0 N/m. Solutions obtained from the model-3 are illustrated in Figure 4.17 for the aspect ratio 

2a b = . It can be concluded from this set of results that the influence of the residual surface 
tension is also significant and the medium becomes much stiffer when sτ  increases. 

To examine the size-dependent behavior of predicted results due to the presence of the 
residual surface tension, the CODs and the near-tip vertical stresses for 0 0.5, 1.0, 10b =  and the 
aspect ratio 2a b =  are shown in Figure 4.18. As can be seen in Figure 4.18, the normalized 
CODs and normalized vertical stresses are clearly size-dependent. This is in contrast with the 
classical case (i.e. without the surface stress effects) where the solutions are size-independent. In 
particular, when the crack-size or the aspect ratio decreases, the influence of the surface stresses 
becomes more significant in the sense that the medium becomes stiffer. 
 
4.3.3.2 Shear traction 
 

Consider, next, an elliptical crack subjected to uniform shear traction 0τ  as shown in Figure 
4.14(c). The direction of the applied shear traction is taken in the x2-direction as shown 
schematically in Figure 4.14(c). As a consequence of the anti-symmetric nature of the applied 
load, only mode-II (sliding mode) and mode-III (tearing mode) responses are investigated. Once 
again, the following three different models are considered in the numerical study: 

- Model-1 is associated with the classical model where the surface stresses are not 
included. It is remarked that the classical solution of the crack sliding displacement and 
the shear stresses in the vicinity of the crack front was  given by Kassir and Sih (1975).  

- Model-2 corresponds to the simplified version of Gurtin-Murdoch model where only the 
in-plane elastic constants are considered.  

- Model-3 represents the full version of Gurtin-Murdoch model where both the in-plane 
elastic constants and the residual surface tension are considered.  

The numerical results are obtained using the three meshes as indicated in Figure 4.14(d) to 
confirm the convergence of numerical solutions. The convergence study of the crack sliding 
displacement (CSD) and the shear stress 23σ  in the vicinity of the crack front along the minor-
axis are reported in Figure 4.19. It can be observed from these results that the proposed technique 
yields converged solutions for both the CSD and the shear stress. 

The Normalized CSDs and the normalized shear stresses 23 0σ τ  near the crack front 
along the minor-axis are presented in Figure 4.20 for three aspect ratios 1, 2, 3a b =  and for 
three models to show the influence of the surface stresses on responses of mixed-mode cracks. 
Numerical results shown in Figure 4.20(a) indicate that solutions of the CSDs predicted by 
model-2 and model-3 are almost identical, whereas solutions of shear stresses 23σ  for this 
particular case (see Figure 4.20(b)) are slightly different. When compared to the classical 
solution (model-1), it can be easily recognized that the surface stresses (especially the in-plane 
elasticity constants) significantly reduce the CSDs and the shear stresses in the neighborhood of 
the crack front. This confirms that presence of the surface stresses renders the medium much 
stiffer. To further examine the influence of the in-plane elastic constants ( ,s sλ µ ), these 
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parameters are varied from 0, 0.1, 0.5 and 1 times of their initial value ( 4.4939 /s N mλ = , 
2.7779 /s N mµ = ) while the residual surface tension remains the same. The numerical study is 

conducted only for two aspect ratios of 2, 3a b =  and the model-3. The normalized CSDs and 
the shear stresses 23σ  in the vicinity of the crack front along the minor-axis are presented in 

Figures 4.21. It can be seen that the surface elastic constants ( sλ , sµ ) in Gurtin-Murdoch 
surface elasticity theory significantly reduce the CSD and the near-tip shear stresses, whereas the 
residual surface tension virtually has no influence on the solution of mixed-mode crack 
problems. To investigate the size-dependent behavior of the solution of mixed-mode crack 
problems due to the presence of the surface stresses, the elliptical crack of the aspect ratio 

2a b =  is examined for different sizes of the minor semi-axis 0 0.5, 1.0, 10b = . Results of the 
CSDs and the shear stresses in the vicinity of the crack-front along the minor-axis are shown in 
Figure 4.22. It can be seen that the normalized CSDs and the normalized shear stresses along the 
minor-axis predicted by model-2 and model-3 are size-dependent. Once again, this is in contrast 
with the classical case (i.e., without the surface stress effects) where the solutions are essentially 
size-independent upon proper normalization. When the crack-size decreases, the influence of 
surface stresses on the predicted responses becomes more significant. 
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Figure 4.14 (a) Schematic of an elliptical crack embedded in an isotropic, linear elastic infinite 
medium; (b) both surfaces of the crack subjected to uniformly distributed normal traction 

3 3 0t t σ+ −= − = ; (c) both surfaces of the crack subjected to uniformly distributed shear traction 

2 2 0t t τ+ −= − = ; (d) meshes used in the analysis 
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Figure 4.15 Convergence study of an elliptical crack under uniformly distributed normal traction 
for three different models and the aspect ratio 2a b = , for 107E GPa= , 0.33ν = , 

4.4939 / ,s N mλ = 2.7779 /s N mµ =  and 0.6056 /s N mτ = : (a) normalized crack opening 
displacements along minor-axis and (b) normalized near-tip vertical stresses along the minor-
axis 
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Figure 4.16 Comparison of results of an elliptical crack under uniformly distributed normal 
traction for three different models and three different aspect ratios 1, 2, 3a b = , for 107E GPa=

, 0.33ν = , 4.4939 / ,s N mλ = 2.7779 /s N mµ =  and 0.6056 /s N mτ = : (a) normalized CODs 
along minor-axis and (b) normalized near-tip vertical stresses along minor-axis obtained by using 
mesh-3 
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Figure 4.17 Elliptical crack under uniformly distributed normal traction for the model-3 with the 
aspect ratio 2a b =  and different values of the residual surface tension sτ , for 107E GPa= , 

0.33ν = , 4.4939 / ,s N mλ = 2.7779 /s N mµ = : (a) normalized CODs along the minor axis and 
(b) normalized near-tip vertical stresses along the minor axis obtained by using mesh-3 
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Figure 4.18 Elliptical crack under uniformly distributed normal traction for three different 
models with different minor semi-axes 0 / 0.5, 1.0, 10b b= Λ =  and the aspect ratio 2a b = , for 

107E GPa= , 0.33ν = , 4.4939 / ,s N mλ = 2.7779 /s N mµ =  and 0.6056 /s N mτ = : (a) 
normalized CODs along the minor axis and (b) normalized near-tip vertical stresses along the 
minor-axis obtained by using mesh-3 
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Figure 4.19 Convergence study of an elliptical crack under uniformly distributed shear traction 
in the x2-direction with the aspect ratio 2a b = , for 107E GPa= , 0.33ν = , 4.4939 / ,s N mλ =

2.7779 /s N mµ =  and 0.6056 /s N mτ = , for three different models: (a) normalized CSDs 
along the minor axis and (b) normalized near-tip shear stresses 23σ  along the minor-axis 
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Figure 4.20 Elliptical crack under uniformly distributed shear traction in the x2-direction with 
the aspect ratio 1, 2, 3a b = , for 107E GPa= , 0.33ν = , 4.4939 / ,s N mλ = 2.7779 /s N mµ = , 

0.6056 /s N mτ = and for model-1, model-2, model-3: (a) normalized CSDs along the minor-
axis and (b) normalized near-tip shear stresses 23σ  along the minor-axis obtained by using mesh-
3 
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Figure 4.21 Elliptical crack under uniformly distributed shear traction in the x2-direction for the 
model-3, the aspect ratios 2, 3a b =  and different values of  ( ,s sλ µ ) ranging from 0 to 1 time 
their initial values ( 4.4939 / ,s N mλ = 2.7779 /s N mµ = ), for 107E GPa= , 0.33ν = , 

0.6056 /s N mτ = : (a) normalized CSDs along the minor-axis and (b) normalized near-tip shear 
stresses 23σ  along the minor-axis obtained by using mesh-3 



128 
 

(a) 
 

r0/b0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Model-3
Model-1
b0 = 0.5
b0 = 1.0
b0 = 10

2u∆

Λ

 

(b) 
 

r0/b0

1.00 1.02 1.04 1.06 1.08 1.10
0.0

2.0

4.0

6.0

8.0

10.0

Model-3
Model-1
b0 = 0.5
b0 = 1.0
b0 = 1023

0

σ
τ

 
 
Figure 4.22 Elliptical crack under uniformly distributed shear traction in the x2-direction for 

2a b = , 0 / 0.5, 1.0, 10b b= Λ = , for 107E GPa= , 0.33ν = , 4.4939 / ,s N mλ =

2.7779 /s N mµ = , 0.6056 /s N mτ = and model-1, model-3: (a) normalized CSDs along the 
minor-axis and (b) normalized near-tip shear stresses 23σ  along the minor-axis obtained by using 
mesh-3 
4.3.4 Two co-planar penny-shaped cracks 



129 
 

 
Finally, to demonstrate another feature of the proposed FEM-SGBEM technique in modeling 
multiple cracks, a problem of two interacting penny-shaped cracks embedded in an unbounded 
domain with consideration of the surface stress effects is investigated in this section.  

Consider a pair of co-planar, identical penny-shaped cracks of radius a  embedded in an 
isotropic, linear elastic unbounded domain as shown in Figure 4.23(a). The distance between the 
centers of the two cracks is denoted by h . Both cracks are subjected to the self-equilibrated, 
uniformly distributed normal traction 3 3 0 .t t σ+ −= − =  Young’s modulus and Poisson’s ratio for the 
bulk material are taken as 107E GPa=  and 0.33ν =  respectively. The influence of the 
interaction between the two cracks on the maximum crack opening displacement (COD) and on 
the stress in the vicinity of the crack front at a particular point A (see Figure 4.23(a)) is 
investigated. To investigate the size-dependent behavior, two values of the normalized radius of 
the crack, 0 1a a= Λ =  and 10  are considered. Three meshes shown in Figure 4.23(b) are used to 
test the convergence of numerical solutions. For this particular problem, the surface stress effects 
are modeled by the simplified version of Gurtin-Murdoch surface elasticity model with only the 
residual surface tension ( 0.6056 /s N mτ = ) being treated. 

(a) 

 

 

(b) 

Mesh 1 Mesh 2 Mesh 3 
 
Figure 4.23 (a) Schematic of a pair of penny-shaped cracks of radius a  embedded in an 
isotropic, linear elastic infinite medium subjected to uniformly distributed normal traction 

3 3 0t t σ+ −= − =  and (b) meshes adopted for each crack. Mesh-1: 20 elements and 77 nodes. Mesh-
2: 88 elements and 297 nodes. Mesh-3: 216 elements and 665 nodes. 
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To examine the convergence of the numerical solutions, the normalized CODs and the vertical 
stresses in the vicinity of the crack front of one of the penny shaped cracks (crack 1) with the 
normalized radius 0 1a =  are obtained for the three meshes and results are reported in Figure 4.24 
for 2.2h a = . The results also are compared with classical solutions, which can be found in 
Fabrikant (1989). It is seen that converged results of the normalized CODs and the near-tip 
vertical stresses are obtained. The residual surface tension significantly lowers the crack opening 
displacement and the near-tip vertical stresses.  

To study the interaction between the two coplanar cracks, the normalized maximum COD 
and the normalized vertical stress at the point A are plotted for different values of h a  in Figures 
4.25-4.26 for two cases of radius 0 1a a= Λ =  and 10  with three values of the residual surface 

tension 0sτ =  (classical solution), 0.6056 /s N mτ = , and 1 /s N mτ = . It can be seen in Figure 
4.25(a) that the maximum CODs and the vertical stresses in the neighborhood of the crack front 
decreases when the residual surface tension increases similar to what observed from other 
examples. The bulk medium becomes much stiffer with the presence of the residual surface 
tension for cracks under mode-I loading conditions. It can also be seen from Figures 4.25 and 
4.26 that the interaction between the two cracks for the classical case is size-independent (i.e. 
solutions of the two cracks converge asymptotically to that of the single crack in the identical 
manner). On the contrary, when the residual surface tension is incorporated in the mathematical 
model, the size-dependent behavior can be clearly observed by comparing the results in Figures 
4.25(a), (b) with the results in Figures 4.26(a), (b) respectively. The decrease in the crack size 
also reduces the interaction between the two cracks. 
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Figure 4.24 A pair of coplanar identical penny-shaped cracks with radius 0 1a =  and 2.2h a =  

under uniformly distributed normal traction, for 107E GPa= , 0.33ν = , 4.4939 / ,s N mλ =  and 
residual surface tension 0.6056 /s N mτ = : (a) normalized CODs of crack 1 and (b) normalized 
near-tip vertical stresses of crack 1 
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Figure 4.25 Normalized maximum crack opening displacements for a pair of coplanar identical 
penny-shaped cracks under uniformly distributed normal traction with different values of /h a , 
for 107E GPa= , 0.33ν = , 4.4939 / ,s N mλ =  and residual surface tension 0.6056 /s N mτ = : 
(a) 0 1a =  and (b) 0 10a =  obtained by using mesh-3 
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- Figure 4.26 Normalized vertical stress at the point A for a pair of coplanar identical 
penny-shaped cracks under uniformly distributed normal traction with different values of 

/h a , for 107E GPa= , 0.33ν = , 4.4939 / ,s N mλ =  and residual surface tension 
0.6056 /s N mτ = : (a) 0 1a =  and (b) 0 10a =  obtained by using mesh-3 
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CHAPTER V 
 

CONCLUSIONS AND REMARKS 
 
 
This chapter summarizes both analytical and numerical techniques established in the present 
investigation for solving fundamental problems in solid mechanics (e.g., elastic layers under 
surface loading, nano-indentations, and nano-sized cracks) with consideration of the nano-scale 
influence. Major findings regarding to both computational performance of the developed 
techniques and extensive parametric study on the influence of the surface stresses and size-
dependency of the predicted solutions are presented. Limitations of the current development and 
the possible extensions for each particular problem are also indicated.  
 

5.1 Elastic Layer under Surface Loading 
 
A complete analytical solution of a three-dimensional, infinite elastic layer under the action of 
axisymmetric normal and tangential surface loadings with consideration of the surface energy 
effect has been derived. A novel feature of the present study is the use of a complete version of 
Gurtin-Murdoch constitutive relation to model the free surface of the layer. In solution 
procedure, Love’s strain potential technique along with Hankel integral transform are applied to 
obtain the general solution for the bulk whereas the surface equations and conditions at the rigid 
base supply sufficient boundary conditions to determine all arbitrary constants. The displacement 
and stress fields within the bulk have been obtained via a selected efficient numerical quadrature. 
Once the obtained general solutions were verified by comparing with available benchmark 
solutions, extensive parametric study has been carried out to gain insights into the nano-scale 
influence and investigate the size dependency. Moreover, the three fundamental solutions 
corresponding to normal concentrated load, normal ring load, and tangential ring load, which 
constitute the basis for solving nano-indentations problems, have been constructed. 

Results from extensive parametric studies have confirmed the significance of surface 
energy effects and the necessity to properly treat such influence in the continuum-based model. 
In the region close to the surface, the presence of the surface stresses exhibits very strong 
influence on both the displacement and stress fields. Magnitudes of field quantities obtained 
from models accounting for the surface energy effects are generally less than those obtained 
from the classical model. The presence of the surface energy renders the layer much stiffer than 
that of the classical case. This is due to the fact that not the entire loading that transfers directly 
into the bulk but part of it is carried by the surface through the equilibrium of the surface and the 
membrane-like action. Such influence also depends on the length scale of the problem, i.e. the 
influence of surface stresses becomes significant when the length scale is comparable to the 
intrinsic length of the surface. Moreover, it is worth pointing out that such behavior of the out-of-
plane responses due to the normal traction are more apparent in the model that integrates the out-
of-plane contribution of the residual surface tension into the analysis. This additionally confirms 
the necessity to treat such crucial contribution in the modeling of soft elastic solids and nano-
scale problems. 

In addition, the radial and vertical surface displacements of a layer under either a normal 
ring load or a tangential ring load, predicted by a model employed in the present study (i.e. the 
complete Gurtin-Murdoch surface elasticity model that includes the out-of-plane contribution of 
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the residual surface tension), are finite everywhere. If the out-of-plane term is neglected, the 
predicted vertical displacement due to the normal ring load is still singular at the location where 
the load is applied. For the case of a normal concentrated load acting to the origin, the vertical 
displacement obtained from both classical model and model incorporating the surface stress 
effects is singular at the applied load location whereas only the radial displacement obtained 
from a model accounting for the out-of-plane term is finite.  

Due to the three fundamental solutions derived in the present study, frictionless 
indentation problems with arbitrary indentor profiles, axisymmetric frictionless indentation 
problems, axisymmetric indentation problems with the presence of friction, and axisymmetric, 
fully-bonded indentation problems can now be fully investigated. In addition, the formulation 
can further be generalized to treat the following two cases, namely, multiple layers under 
axisymmetric surface loading and a single layer under non-axisymmetric surface loading. 
 

5.2 Nano-indentation Problem 
 
The complete solutions of an axisymmetric rigid frictionless indentation acting on an isotropic, 
elastic half-space with consideration of surface energy effects by employing a complete version 
of Gurtin-Murdoch surface elasticity model have been fully investigated. Based on the 
axisymmetric solutions in term's of Love's strain potential together with the application of 
Hankel integral transform technique, the mixed boundary conditions on the surface of a half-
space both inside and outside the contact region can be reduced to a set of dual integral 
equations, which can be further equivalently transformed into a single Fredholm integral 
equation of the second kind. To obtain the solution of this single integral equation, various 
numerical schemes have been employed in the present study to enhance both the accuracy and 
computational efficiency of the solutions. First, standard approximation of a solution form and a 
collocation technique are adopted to discretize the Fredholm integral equation. After a system of 
linear algebraic equations with non-symmetric, dense coeffient matrix is obtained from the 
discretization, either LU-decomposition or stabilized bi-conjugate gradient method has been 
applied to solve such a system. Finally, complete elastic fields within the half-space are obtained 
by applying the Hankel innversion along with employing standard Gaussian quadrature. For 
smooth-contact punches, a physically admissible condition associated with the continuity of 
vertical stress at the contact boundary is employed to determine the unknown contact radius for a 
given indentation depth. 

The numerical procedures have been implemented as an in-house computer code to 
determine the complete elastic fields of both non-smooth contact and smooth contact punches. 
The validity of the current formulation and accuracy of the numerical implementations have been 
confirmed by comparing with the classical case in which exact solutions exist. As anticipated, 
obtained numerical results have demonstrated that the influence of surface energy effects 
becomes larger when the size of the punch is smaller especially in the region very near the 
punch. In addition, material behaves stiffer due to such effects. It is interestingly remarked that 
the distribution of contact pressure for two punch profiles (i.e. flat-ended and paraboloidal 
punches) obtained from the current model exhibits significant discrepancy. In particular, the 
contact pressure obtained from the current model for the flat-ended punch is considerable lower 
than the classical case and that by Zhao (2009) whereas, for the paraboloidal punch, the current 
model predicts much higher contact pressure than the other two models. However, for both types 
of contacts, elastic fields obtained from the current model indicate strong influence of the surface 
free energy for region relatively close to the punch. Such influence decays rapidly for the vertical 
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stresses but, for the vertical displacements, it exhibits slower decay as the depth increases. Still, 
the sigularity at the boundary has been observed for the case of a non-smooth contact. Size-
dependent behavior has also been presented to confirm the essence of accounting surface energy 
effects on analysis of material properties at nanoscale and soft elastic solids due to their high 
surface to volume ratio.  

The boundary value problem considered in the present study is restricted only to the 
axisymmetric indentation on an isotropic, elastic half-space. In addition, the punch is also 
assumed to be rigid with no friction. The generalization to alleviate all these limitations should 
be potentially useful to enhance the understanding of nano-mechanics and the mechanics of soft 
solids in a broader context. For instance, 

(1) a punch profile can be generalized to non-axisymmetric one and an elastic half-
space can also be replaced by a more general film/substrate system; 

(2) A constitutive model for an elastic half-space can be generalized to treat both 
anisotropic linearly elastic and inelastic materials. The ability to treat material 
anisotropy and nonlinear material behavior will enhance the modeling capability for 
simulating more practical problems associated with characterization of material 
properties using nano-indentations.  

A proper friction model can also be incorporated to treat the interaction between a punch and an 
elastic half-space. It is known that frictionless contact is very idealistic and can hardly be found 
in practices. 
 

5.3 Nano-crack Problem 
 
A computationally efficient numerical technique capable of modeling planar cracks in three-
dimensional, linearly elastic media incorporating the influence of surface stresses has been 
established. In the formulation of the boundary value problem, the domain decomposition 
technique has been adopted to separate a cracked body into three parts: (i) an infinitesimally thin 
layer of materials on the upper crack surface, (ii) an infinitesimally thin layer of materials on the 
lower crack surface, and (iii) the remaining bulk medium with those two layers being removed. 
The classical theory of isotropic linear elasticity has been employed to form a system of 
governing equations of the bulk cracked medium in terms of weakly singular, weak-form 
boundary integral equations for the sum of the displacement and the jump of the traction across 
the crack surface of the bulk. Such governing equations possess several desirable features such 
as the weakly singular nature, simplicity to treat an infinite body and remote loading condition, 
and applicability to model cracks of arbitrary shapes and under general loading conditions. For 
both thin layers, they have been modeled as zero-thickness, two-sided surfaces with their 
behavior being described by Gurtin-Murdoch surface elasticity theory. In the present study the 
full version of Gurtin-Murdoch model including the in-plane surface elasticity, and the residual 
surface tension and its simplified versions without either the in-plane surface elasticity or the 
residual surface tension, are both considered. The weight residual technique has been applied to 
derive the final weak-form statement for the surface part in terms of the same types of primary 
unknowns as those appearing in the bulk equations. The strong continuity condition of the 
displacement and traction on the interface of the surface and the bulk medium has been enforced 
to obtain the fully-coupled system of equations governing the whole medium. 

Standard FEM-SGBEM coupling procedure has been implemented to construct 
numerical solutions of the final coupled system of governing equations. In the discretization, 
continuous element-based interpolation functions have been employed everywhere in the 
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approximation of trial and test functions. In the present study, it has been postulated based on the 
physical evidence and previous investigations that the presence of surface stresses renders the 
stress along the crack front of the bulk medium finite. As the direct consequence, standard C0-
elements have been employed everywhere in the discretization of all primary unknowns on the 
crack surface when the full version of Gurtin-Murdoch model has been considered. For the 
special cases, when the simplified version of Gurtin-Murdoch model without either the residual 
surface tension or the in-plane surface elasticity has been applied, standard C0-elements have 
been employed everywhere in the discretization except in a local region along the crack front 
where either the jump of the out-of-plane displacement or the jump of the in-plane displacement 
is discretized by special crack-tip elements respectively to enhance the capability of the 
technique to capture the near-tip field. In the construction of a coefficient matrix, standard 
Gaussian quadrature has been adopted to evaluate all involved regular integrals whereas such 
quadrature supplemented by a family of suitable transformation has been employed to efficiently 
compute both weakly singular and nearly singular integrals. The final system of linear algebraic 
equations has been solved by an efficient linear solver. 

Extensive numerical experiments have been conducted and obtained results have been 
compared with available benchmark solutions to validate both formulation and numerical 
implementations of the proposed technique. From a convergence study of numerical solutions, it 
has been found that the FEM-SGBEM coupling technique yields converged solutions with only 
weak dependence on the mesh refinement. In addition, the capability and the robustness of the 
proposed method to model relatively complicated fracture problems with the treatment of the 
nano-scale influence have been confirmed via various examples involving mixed-mode loading 
conditions and interacting cracks.   

From an extensive numerical study aiming to examine the influence of the surface 
stresses present at the crack surface on elastic responses of the bulk cracked medium, it has been 
found that the residual surface tension and the in-plane surface elasticity appearing in Gurtin-
Murdoch model both play a vital role on the prediction of field responses, and can substantially 
deviate results from the classical solutions. In general, the results from the simulations using 
either the full or simplified version of Gurtin-Murdoch have indicated that the surface stresses 
tend to increase the local material stiffness in the vicinity of the crack, in particular, the predicted 
relative crack-face displacements and near-tip stresses are significantly lower than those obtained 
by the classical model without the contribution of the surface effects. In addition, the size-
dependent behavior of the elastic responses predicted by models incorporating either the full or 
simplified version of Gurtin-Murdoch has been observed. In particular, as the characteristic size 
of the crack reduces to the intrinsic length scale of materials (in the range of nano-scale for 
metals), the influence of both the residual surface tension and the in-plane surface elasticity 
becomes more prominent.  

Results from the investigation of pure mode-I crack problems have indicated that the 
residual surface tension plays an important role on the reduction of the crack-opening 
displacement and the vertical stress in the vicinity of the crack front from the classical solution 
whereas the in-plane surface elasticity exhibits insignificant effect on such quantities. This 
finding suggests that the simplified version of Gurtin-Murdoch model with only the residual 
surface tension being treated can be used sufficiently in the modeling of mode-I crack problems 
to simplify the calculations. On the contrary, for cracks subjected to pure in-plane loading 
conditions (i.e. mode-II and mode-III loading conditions), the influence of the in-plane surface 
elasticity on major in-plane quantities such as the crack sliding displacement and the mode-II and 
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mode-III shearing stresses is much more prominent than that of the residual surface tension. As a 
result, the simplified version of Gurtin-Murdoch model without the residual surface tension 
yields, in general, similar results to those predicted by a full model incorporating both the 
residual surface tension and the surface elastic constants. However, for cracks under full mixed-
mode loadings, both the residual surface tension and the in-plane surface elasticity can play a 
crucial role on the predicted responses, and the full version of Gurtin-Murdoch model is 
required. 

The present study has provided an alternative computational tool based primarily on an 
enhanced continuum-based model that can be used to explore the fundamental behavior of nano-
scale fractures. Nevertheless, the proposed numerical technique has been developed within the 
context where the fractures must be modeled as isolated planar cracks embedded in a 
homogeneous, isotropic, linear elastic, infinite bulk medium. To further enhance the modeling 
capability of the developed technique for solving a wide range of problems and obtaining more 
interesting fracture data, the following potential extensions are suggested: 

(1) the governing equations of the surface part can be extended to treat non-planar 
cracks; 

(2) the formulation can be generalized to treat embedded, near-surface, and surface-
breaking cracks in half-space or finite bodies; and 

(3) the constitutive model for bulk materials can be extended to treat material 
anisotropy, non-uniformity, and multi-field material behavior such as 
piezoelectricity; and 

(4) the computation of crucial fracture data such as the T-stress along the crack front 
can be added. 
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This paper proposes an application of continuum-based concepts in the analysis of an axi-
symmetric rigid frictionless indentor acting on an isotropic, linearly elastic half-space
accounted for surface energy effects. The influence of surface stresses is considered by
employing a complete Gurtin–Murdoch continuum model for surface elasticity. With use
of standard Love’s representation and Hankel integral transform, such boundary value
problem is reduced to a set of dual integral equations that can be further transformed into
an equivalent Fredholm integral equation of the second kind. Selected numerical proce-
dures based on the solution discretization and standard collocation technique are then
implemented to construct its solution numerically. Obtained numerical results for elastic
fields within the bulk are shown and compared for indentors of different profiles and con-
tact radii at various depths. It is found that the influence of surface free energy on bulk
stresses and displacements and the size-dependency of solutions become more apparent
in a region very near the free surface. The significant contribution of the residual surface
tension on predicted responses is obviously observed in comparison with existing results.
The proposed mathematical model not only offers an alternative for specifically studying
both mechanical properties and elastic fields for indentors of arbitrary axisymmetric pro-
files but also provides, in general, a crucial basis for further investigations in the area of
nano-mechanics.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, it is undeniable that a wide range of engineering and industrial sectors has benefited greatly from vast appli-
cations of nanotechnology. Many new nano-materials have been developed by utilizing the fact that, at a nano-scale, mate-
rials begin to exhibit unique properties (i.e., optical, electrical, chemical and mechanical properties), which significantly
differ from those at a larger scale. To take most advantages of these novel properties on the development of powerful
nano-devices, profound understanding on their behavior and characterization of material properties at such very small scale
is essential for various researchers.

Mechanical behavior of nano-structured materials and nano-sized elements can be investigated by two basic approaches,
namely, experimental methods and theoretical simulations. The former approach basically yields results reflecting the real
behaviors but it has been found highly dependent on experimental settings and, generally, expensive due to the requirement
of high precision testing devices and procedures. For the latter approach, though existing molecular simulations offer
advantages in precise response prediction according to proper underlying governing physics, they require simultaneously
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intensive computational resources associated with the modeling of a large number of degrees of freedom at a nano-scale.
Due to such highly demanding requirement, applications of those techniques to modeling practical problems have been
quite limited. The continuum-based approach is therefore considered as an attractive alternative since the use of simplified
governing physics dramatically reduces the computational cost. Nevertheless, the classical continuum theory generally ne-
glects the presence of intrinsic size and thus seems incapable of demonstrating the size-dependent behavior which truly ex-
ists in nano-materials and soft elastic solids, e.g., polymer gels. The size dependency of material behaviors at a nano-scale has
been well recognized due to their relatively high surface-to-volume ratio whereas, in the case of soft elastic materials, the
intrinsic length scale, which is defined as the ratio of surface free energy and Young’s modulus (Yakobson, 2003), is much
larger than that of conventional solids and becomes comparable to the characteristic length of the material element in prac-
tical situations (He & Lim, 2006). As a consequence, the influence of free surfaces should be properly incorporated into clas-
sical continuum-based models in order to obtain ones that are capable of capturing real responses to the level of complexity
involved with predicted results of sufficiently high accuracy.

The concept of surface phenomena (i.e., the thermodynamics of solid surfaces) was noticed for more than a century ago
by Gibbs (1906). Comprehensive literature review on the surface energy effects and the Gibbsian formulation of the thermo-
dynamics of surfaces can be found in many researches on surface and interface stresses (Cammarata, 1994; Cammarata,
1997; Fischer, Waitz, Vollath, & Simha, 2008). To study the mechanical behavior of an immediate neighborhood of material
surfaces through a continuum-based model, Gurtin and his co-workers (Gurtin & Murdoch, 1975; Gurtin & Murdoch, 1978;
Gurtin, Weissmüller, & Larché, 1998) developed a mathematical framework, known as the theory of surface elasticity, to ac-
count for the influence of surface free energy. In their model, the existing surface is simply represented by an infinitesimally
thin layer (or, mathematically, a layer of zero thickness) bonded perfectly to the bulk (i.e., an interior of the body) and its
behavior is governed by a constitutive law different from that of the bulk. In the study of nano-scale problems, all material
constants appearing in that constitutive model were commonly calibrated with data obtained from either experimental
measurements (Jing et al., 2006) or atomistic simulations (Miller & Shenoy, 2000; Shenoy, 2005). Upon various verifications
and comparisons with results predicted by atomistic and molecular static simulations (Dingreville, Qu, & Cherkaoui, 2005;
Miller & Shenoy, 2000; Shenoy, 2005), Gurtin–Murdoch surface elasticity model has proven promising and attractive for
modeling a variety of nano-scale problems to account for the influence of free surfaces. The model has gained rapid recog-
nition from various researchers and been widely used in the investigation of mechanical responses of nano-structures, e.g.
ultra-thin elastic films (He, Lim, & Wu, 2004; Huang, 2008), thin plates (Lu, He, Lee, & Lu, 2006), nano-scale inhomogeneities
(Sharma, Ganti, & Bhate, 2003; Duan, Wang, Huang, & Karihaloo, 2005; Sharma & Wheeler, 2007; Tian & Rajapakse, 2007),
dislocations (Intarit, Senjuntichai, & Rajapakse, 2010) and nano-scale elastic layers (Intarit, Senjuntichai, Rungamornrat, &
Rajapakse, 2011; Zhao & Rajapakse, 2009). This should additionally confirm the benefit of employing such alternative con-
tinuum-based model to save the computational resources with an acceptable level of accuracy gained.

Indentation techniques have been extensively employed by many researchers in the study of material properties such as
hardness and elastic modulus. For instance, by using depth-sensing indentation tests with either spherical or conical inden-
tors, Young’s modulus can be calculated from the slope of the linear regime of the unloading curve in the load versus pen-
etration depth while hardness can be obtained from data along the loading curve (Doerner & Nix, 1986; Oliver & Pharr,
1992). In nano-applications, such techniques were also applied to measure the mechanical properties of ceramics (Hains-
worth & Page, 1994), metals (Armstrong, Shin, & Ruff, 1995; Beegan, Chowdhury, & Laugier, 2007) and polymers (Yang &
Li, 1995; Yang & Li, 1997). Besides those experimental studies, modeling of indentation problems via the use of suitable
mathematical models has been also of interest for more than a century and offered an attractive candidate for investigating
various aspects and gaining fundamental insight of material properties. The classical problem of an axisymmetric rigid
punch indenting on an elastic half-space seems to be first considered by Boussinesq (1885) and, in that work, results were
presented only for flat-ended cylindrical and conical punches. Harding and Sneddon (1945) and Sneddon (1965) resolved
Boussinesq’s problem for a punch of an arbitrary profile by applying the Hankel integral transform technique. The indenta-
tion problems associated with an elastic layer perfectly bonded to an elastic half-space have also been investigated. For in-
stance, Lebedev and Ufliand (1958) studied a problem of a flat-ended rigid cylindrical indentor on an elastic layer resting on a
rigid foundation by using Papkovich–Neuber’s representation for the displacement vector. After reducing mixed boundary
conditions to a pair of integral equations, a Fredholm integral equation was obtained and solved numerically. By applying
the Hankel integral transform technique, Dhaliwal and Rau (1970) derived a Fredholm integral equation governing a prob-
lem of an elastic layer lying over an elastic half-space under an axisymmetric rigid punch of arbitrary profile. Subsequently,
Rau and Dhaliwal (1972) developed a numerical technique to solve the integral equation developed by Dhaliwal and Rau
(1970) and obtained the complete elastic field. Yu, Sanday, and Rath (1990) presented numerical results obtained from solv-
ing Fredholm integral equation of the second kind to demonstrate the effect of a substrate on the elastic properties of films
and provided useful guidelines for the proper choice of an approximate layer thickness and substrate elastic properties to
determine the elastic constants of the layer. Motivated by a recently developed multi-dimensional nano-contact system (Lu-
cas, Hay, & Oliver, 2003), Gao, Xu, Oliver, and Pharr (2008) gave an analytical formulation by applying Green’s function in
Fourier space to predict the effective elastic modulus of film-on-substrate systems under normal and tangential contacts.
In addition, Yang (1998) applied the Hankel integral transform to investigate the problem of compressing an incompressible
elastic film by a rigid flat-ended cylindrical indentor. While analysis of indentation problems have been carried out exten-
sively within the context of classical linear elasticity, on the basis of a careful literature survey, works towards the treatment
of surface stresses to model nano-scale influences are still relatively few. Recently, Zhao (2009) proposed a continuum-based
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model to study the influence of surface stresses on mechanical responses of an elastic half-space compressed by an axisym-
metric, rigid, frictionless nano-indentor. In the analysis, a method of Hankel integral transform was utilized to construct an
analytical solution and results were reported for certain indentor profiles. Although Zhao’s model can successfully capture
the size-dependency behavior of solutions and contribution of the surface stresses, Gurtin–Murdoch constitutive relation
used in his formulation is still not complete (i.e., the out-of-plane contribution of the residual surface tension was ignored).
Lack of such term can significantly alter predicted responses such as the pressure profile beneath the indentor and normal
components of elastic fields in the vicinity of the indentor.

The primary objective of the present study is to generalize the work of Zhao (2009) to investigate mechanical responses of
an elastic half-space compressed by an axisymmetric, rigid, frictionless indentor by using a complete Gurtin–Murdoch sur-
face elasticity model to account for the influence of surface stresses. It is vital to emphasize here that the generalization to
include the out-of-plane contribution of the residual surface tension becomes theoretically and computationally non-trivial
since presence of such extra term requires very distinct solution procedure from that employed by Zhao (2009). In the fol-
lowing sections, a problem description is addressed first and a formulation of the boundary value problem using Love’ strain
representation and Hankel integral transform is then outlined. A technique to form the final, single governing equation in
terms of Fredholm integral equation of the second kind is clearly demonstrated. Next, a selected numerical procedure to
determine the primary unknown and all related field quantities is fully discussed. Finally, selected numerical results and
findings from extensive parametric studies are reported to demonstrate the size-dependency and influence of surface stres-
ses for different indentor profiles and indentation depths.

2. Problem description

Consider a half-space X compressed by an axisymmetric, frictionless, rigid indentor as shown schematically in Fig. 1. A
top surface of the half-space possesses a constant residual surface tension ss under unstrained conditions and surface Lame’s
constants ls and ks whereas the remaining majority of the medium is made of a homogeneous, isotropic, linearly elastic
material with Lame’s constants l and k. For convenience, a reference Cartesian coordinate system (x,y,z) is chosen such that
its origin is located at the center of the indentor and the z-axis directs downward, and the corresponding cylindrical coor-
dinate system used in the formulation presented further below is denoted by (r,h,z). A profile of the indentor is completely
described by a function d = d(r) which represents the distance from the reference datum at the center of the indentor to its
surface, i.e., d(0) = 0. The radius of a contact region and the indentation depth resulting from a resultant force P at the center
d

P

a
r, x1

x2
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δ(r)
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Fig. 1. Elastic half-space compressed by axisymmetric rigid frictionless indentor: (a) smooth contact profile and (b) non-smooth contact profile.
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of the indentor are denoted by a and d, respectively. In the present study, the profile of the indentor is assumed to be smooth
at any interior point of the contact region (i.e., the unit normal vector to the surface of the indentor or, equivalently, dd/dr is
well-defined for r < a) whereas, along the boundary r = a, the profile is allowed to be non-smooth. For brevity in further ref-
erence, an indentor with the well-defined dd/dr for r 6 a is termed here a smooth-contact indentor (see Fig. 1(a)) whereas that
possessing the well-defined dd/dr only for r < a is termed a non-smooth-contact indentor (see Fig. 1(b)).

The problem statement is to determine the pressure distribution exerted by the indentor and the complete elastic
fields (e.g., displacements and stresses) within the half-space accounted for the influence of surface stresses. The size-depen-
dency behavior of the predicted solutions and the contribution of the surface stresses to those solutions are to be fully
investigated.

3. Formulation of indentation problem

In the formulation of a boundary value problem, the given half-space X is first decomposed into two parts: a bulk denoted
by Xb and a surface denoted by S. A surface S is defined as a layer of zero thickness located at the top boundary of X and the
bulk Xb is simply the original half-space X with the surface S being removed. Since the surface S is modeled as a zero-
thickness layer, the geometry of the bulk Xb (which is treated as a homogeneous half-space) is identical to that of X. The
boundary of the bulk is subjected to the unknown traction tb exerted directly by the surface S whereas S is treated as a
two-sided surface with the top side compressed by the indentor and the bottom side subjected to the traction ts exerted
by the bulk.

3.1. Basic equations

In the present study, behavior of the bulk Xb is modeled by a classical theory of linear elasticity. In the absence of a body
force, the governing field equations (i.e., equilibrium equations, constitutive laws and strain–displacement relations) can be
expressed in a standard indicial form as
rij;j ¼ 0 ð1Þ
rij ¼ 2leij þ kdijekk ð2Þ

eij ¼
1
2
ðui;j þ uj;iÞ ð3Þ
where ui, rij and eij denote components of the displacement vector, stress and strain tensors, respectively, and dij is a Kro-
necker-delta symbol. Note that lower-case indices range from 1 to 3 and repeated indices imply the summation over their
range.

Behavior of the surface S is treated differently by Gurtin–Murdoch surface elasticity model. The equilibrium conditions on
the surface, surface constitutive relations and strain–displacement relationship, when specialized to the flat surface, are gi-
ven by Gurtin and Murdoch (1975), Gurtin and Murdoch (1978), Gurtin et al. (1998)
rs
ia;a þ ts

i þ t0
i ¼ 0 ð4Þ

rs
ba ¼ ssdba þ 2ðls � ssÞes

ba þ ðk
s þ ssÞes

ccdba þ ssus
b;a; rs

3a ¼ ssus
3;a ð5Þ

es
ab ¼

1
2

us
a;b þ us

b;a

� �
ð6Þ
where the superscript ‘s’ is used to denote the quantities corresponding to the surface and t0 denotes the traction exerted on
the top side of the surface. It is important to emphasize here that appearing Greek indices range from 1 to 2 and, again, re-
peated indices imply the summation over their range. By substituting (5) and (6) into (4), it leads to the in-plane and out-of-
plane equilibrium equations of the surface in terms of the surface displacement as shown below
lsus
b;aa þ ðls þ ksÞus

a;ab þ ts
b þ t0

b ¼ 0 ð7Þ
ssus

3;aa þ ts
3 þ t0

3 ¼ 0 ð8Þ
3.2. Boundary and continuity conditions

Since the surface S is adhered perfectly to the bulk Xb without slipping, the displacement and traction along the interface
of the surface and the bulk must be continuous. This renders the following continuity conditions:
us
i ¼ uijz¼0; ts

i þ tb
i ¼ 0 ð9Þ
The traction tb can be related to the stress components within the bulk by
tb
i ¼ �ri3jz¼0 ð10Þ



Y. Pinyochotiwong et al. / International Journal of Engineering Science 71 (2013) 15–35 19
From the frictionless condition of the indentor and its prescribed profile, the traction t0 on the top side of the surface S iden-
tically vanishes outside the contact region whereas, within the contact region, the tangential components of t0 vanish and
the normal displacement is prescribed in terms of the indentation depth d and the indentor profile d(r), i.e.,
t0
i ¼ 0 for r > a

t0
a ¼ 0;us

3 ¼ d� dðrÞ for r 6 a
ð11Þ
3.3. General solution for bulk

A general solution for stress and displacement fields within the bulk Xb, for an axisymmetric case, can readily be obtained
in terms of the Love’s strain potential U = U(r,z) in the cylindrical coordinate system (r,h,z) as follows (Sneddon, 1951; Sel-
vadurai, 2000)
rrr ¼ kr2 @U
@z

� �
� 2ðkþ lÞ @

3U
@r2@z

ð12aÞ

rhh ¼ kr2 @U
@z

� �
� 2ðkþ lÞ

r
@2U
@r@z

ð12bÞ

rzz ¼ ð3kþ 4lÞr2 @U
@z

� �
� 2ðkþ lÞ @

3U
@z3 ð12cÞ

rrz ¼ ðkþ 2lÞ @
@r
ðr2UÞ � 2ðkþ lÞ @

3U
@z2@r

ð12dÞ

ur ¼ �
kþ l

l
@2U
@r@z

ð12eÞ

uz ¼
kþ 2l

l
r2U� kþ l

l
@2U
@z2 ð12fÞ
where U is governed by a bi-harmonic equation r2(r2U) = 0 with r2 ¼ @2

@r2 þ 1
r
@
@r þ @2

@z2 denoting an axisymmetric Laplace
operator. By applying Hankel integral transforms, the bi-harmonic equation can be reduced to
d2

dz2 � n2

 !2

Gðn; zÞ ¼ 0 ð13Þ
where Gðn; zÞ ¼
R1

0 rUJ0ðnrÞdr and Jn(n) denotes the first order Bessel functions of order n. The general solution of (13) is given
by
Gðn; zÞ ¼ ðAþ BzÞe�nz þ ðC þ DzÞenz ð14Þ
where A, B, C and D are arbitrary functions of n that can be determined from boundary conditions.
The general solution for the displacements and stresses can be subsequently transformed into relations involving G(n,z)

and its derivatives with respect to z by using Hankel transform inversion and the relations (12a)–(12f). Final results are given
by
rrr ¼
Z 1

0
n k

d3G

dz3 þ ðkþ 2lÞn2 dG
dz

" #
J0ðnrÞdn� 2ðkþ lÞ

r

Z 1

0
n2 dG

dz
J1ðnrÞdn ð15aÞ

rhh ¼ k
Z 1

0
n

d3G

dz3 � n2 dG
dz

" #
J0ðnrÞdnþ 2ðkþ lÞ

r

Z 1

0
n2 dG

dz
J1 nrð Þdn ð15bÞ

rzz ¼
Z 1

0
n ðkþ 2lÞd

3G

dz3 � ð3kþ 4lÞn2 dG
dz

" #
J0ðnrÞdn ð15cÞ

rrz ¼
Z 1

0
n2 k

d2G

dz2 þ ðkþ 2lÞn2G

" #
J1ðnrÞdn ð15dÞ

ur ¼
kþ l

l

Z 1

0
n2 dG

dz
J1ðnrÞdn ð15eÞ

uz ¼
Z 1

0
n

d2G

dz2 �
kþ 2l

l
n2G

" #
J0ðnrÞdn ð15fÞ
Note that uh, rrh and rzh vanish due to the symmetry and all non-zero field variables are obviously independent of h. By
invoking the remote condition that the displacements and stresses approach zero as z ?1, C and D must vanish and the
function G(n,z) therefore reduces to
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Gðn; zÞ ¼ ðAþ BzÞe�nz ð16Þ
Upon substituting (16) into (15), components of stresses and displacements can be expressed in terms of A and B by
rrr

2ðkþ lÞ ¼
Z 1

0
n3 �nAþ 2kþ l

kþ l
� nz

� �
B

� �
e�nzJ0ðnrÞdn� 1

r

Z 1

0
n2½�nAþ ð1� nzÞB�e�nzJ1ðnrÞdn ð17Þ

rhh

2ðkþ lÞ ¼
k

kþ l

Z 1

0
n3Be�nzJ0ðnrÞdnþ 1

r

Z 1

0
n2½�nAþ ð1� nzÞB�e�nzJ1ðnrÞdn ð18Þ

rzz

2ðkþ lÞ ¼
Z 1

0
n3 nAþ l

kþ l
þ nz

� �
B

� �
e�nzJ0ðnrÞdn ð19Þ

rrz

2ðkþ lÞ ¼
Z 1

0
n3 nA� k

kþ l
� nz

� �
B

� �
e�nzJ1ðnrÞdn ð20Þ

ur ¼
kþ l

l

Z 1

0
n2½�nAþ ð1� nzÞB�e�nzJ1ðnrÞdn ð21Þ

uz ¼ �
kþ l

l

Z 1

0
n2 nAþ 2l

kþ l
þ nz

� �
B

� �
e�nzJ0ðnrÞdn ð22Þ
3.4. Governing equation for A and B

For an axisymmetric case, the in-plane equilibrium equations (7) and the out-of-plane equilibrium equation (8) simply
reduce to the following equilibrium equations in the radial direction and z-direction, respectively:
js d2us
r

dr2 þ
1
r

dus
r

dr
� us

r

r2

 !
þ ts

r þ t0
r ¼ 0 ð23Þ

ss d2us
z

dr2 þ
1
r

dus
z

dr

 !
þ ts

z þ t0
z ¼ 0 ð24Þ
where js is a material constant defined by js = 2ls + ks; us
r and us

z denote the displacement of the surface in the radial and z-
directions; ts

r and ts
z denote components of the traction ts in the radial and z-directions; and t0

r and t0
z denote components of

the traction t0 in the radial and z-directions. By using the continuity conditions (9) and the relation (10) for the axisymmetric
case (i.e., us

r ¼ urjz¼0, us
z ¼ uzjz¼0, ts

r ¼ �tb
r ¼ rrzjz¼0, ts

z ¼ �tb
z ¼ rzzjz¼0), Eqs. (23) and (24) can be rewritten in terms of the dis-

placement and traction on the surface of the bulk as
js d2ur

dr2 þ
1
r

dur

dr
� ur

r2

 !�����
z¼0

þ rrzjz¼0 þ t0
r ¼ 0 ð25Þ

ss d2uz

dr2 þ
1
r

duz

dr

 !�����
z¼0

þ rzzjz¼0 þ t0
z ¼ 0 ð26Þ
By enforcing the boundary conditions (11) along with the continuity condition us
z ¼ uzjz¼0 and the relations (25) and (26), it

leads to a set of mixed boundary conditions for the bulk Xb as
uzjz¼0 ¼ d� dðrÞ; 0 6 r 6 a ð27Þ

rzzjz¼0 þ ss d2uz

dr2 þ
1
r

duz

dr

 !�����
z¼0

¼ 0; a < r <1 ð28Þ

rrzjz¼0 þ js d2ur

dr2 þ
1
r

dur

dr
� ur

r2

 !�����
z¼0

¼ 0; 0 6 r <1 ð29Þ
Upon substituting (20) and (21) into the boundary condition (29), it yields a relation between A and B:
Anð1þK0nÞ ¼
k

kþ l
þK0n

� �
B ð30Þ
where K0 = js/2l. By enforcing the mixed boundary conditions (27) and (28) along with the relation (30), we obtain a pair of
integral equations:
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�
Z 1

0
n2 ðkþ 2lÞ þ ðkþ 3lÞK0n

lð1þK0nÞ

� �
BJ0 nrð Þdn ¼ d� dðrÞ; 0 6 r 6 a ð31ÞZ 1

0
n3 2l ðkþ lÞ þ ðkþ 2lÞK0n½ � þ ssn ðkþ 2lÞ þ ðkþ 3lÞK0n½ �

l2ð1þK0nÞ

	 

BJ0ðnrÞdn ¼ 0; a < r <1 ð32Þ
The dual integral equations (31) and (32) constitute a complete set of equations for determining the unknown function
B = B(n) for n 2 [0,1). By introducing two functions / = /(n) and w = w(n) such that
/ðnÞ ¼ n3 2l ðkþ lÞ þ ðkþ 2lÞK0n½ � þ ssn½ðkþ 2lÞ þ ðkþ 3lÞK0n�
l2ð1þK0nÞ

	 

B ð33Þ

n�1/ðnÞ½1þwðnÞ� ¼ n2 ðkþ 2lÞ þ ðkþ 3lÞK0n
lð1þK0nÞ

� �
B ð34Þ
the integral equations (31) and (32) can be further simplified to
Z 1

0

�n�1 �/ð�nÞ½1þwð�nÞ�J0ð�n�rÞd�n ¼ �f ð�rÞ; 0 6 �r 6 1 ð35ÞZ 1

0

�/ð�nÞJ0ð�n�rÞd�n ¼ 0; 1 < �r <1 ð36Þ
where �f ð�rÞ ¼ f ð�rÞ=a ¼ �½�d� �dð�rÞ�, �dð�rÞ ¼ dð�rÞ=a, �d ¼ d=a, �n ¼ na, �r ¼ r=a, and �/ ¼ �/ð�nÞ ¼ /ð�nÞ=a. The function �/ ¼ �/ð�nÞ be-
comes the primary unknown of the dual integrals (35) and (36) while the function w ¼ wð�nÞ can be obtained directly from
(33) and (34) as
wð�nÞ ¼ ð�kþ 2Þ þ ð�kþ 3ÞK0
�n

2½ð�kþ 1Þ þ ð�kþ 2ÞK0
�n� þ ss�n½ð�kþ 2Þ þ ð�kþ 3ÞK0

�n�
� 1 ð37Þ
where �k ¼ k=l, K0 ¼ K0=a and ss ¼ ss=ðlaÞ. It is evident from (37) that the function w ¼ wð�nÞ possesses a limit equal to –1 as
�n!1. This condition renders the technique employed by Zhao (2009) inapplicable to determine the unknown function
�/ ¼ �/ð�nÞ.

To construct a solution of the dual integral equations of the type (35) and (36), a technique proposed by Sneddon (1966)
and Mandal (1988) is adopted. By following their procedures, the dual integral equations (35) and (36) can be reduced to a
Fredholm integral equation of the second kind of the form
�/ð�nÞ ¼ 2�n
p

Z 1

0
cosð�ntÞdt

d
dt

Z t

0

uf ðuÞduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � u2
p �

�n
p

Z 1

0

wðuÞ�/ðuÞ
u

sinðuþ �nÞ
uþ �n

þ sinðu� �nÞ
u� �n

	 

du ð38Þ
It can be seen from (38) that the function f (u) is merely related to the indentor profile and the function w(u) is related to the
boundary conditions involving the surface stress parameters. This single integral equation (38) is in a form well-suited for
constructing the numerical solution for �/ ¼ �/ð�nÞ. Once the function �/ ¼ �/ð�nÞ is solved, the functions A and B can be subse-
quently determined from (30) and (33), respectively, and the complete elastic fields within the half-space can also be ob-
tained from (17)–(22). In addition, the magnitude of the total indentation force P producing the indentation depth d can
be obtained by integrating the contact pressure, i.e., the same quantity as that appears on left hand side of Eq. (28) with
the negative sign, over the area of the contact region.

It is worth noting that in the absence of surface energy effects, the above formulation can be readily specialized to a clas-
sical indentation problem by setting K0 ¼ 0 and ss ¼ 0. The function w ¼ wð�nÞ in (37) simply reduces to a constant w⁄ given
below:
w� ¼
�kþ 2

2ð�kþ 1Þ
� 1 ð39Þ
The dual integral equations (35) and (36) for this special case become
Z 1

0

�n�1 �/ð�nÞJ0ð�n�rÞd�n ¼ f �ð�rÞ; 0 6 �r 6 1 ð40ÞZ 1

0

�/ð�nÞJ0ð�n�rÞd�n ¼ 0; 1 < �r <1 ð41Þ
where f �ð�rÞ ¼ �f ð�rÞ=ð1þw�Þ. A set of dual integral equations (40) and (41) was solved analytically by Sneddon (1965).

4. Numerical implementation

Due to the complexity of the Fredholm integral equation of the second kind formulated in the previous section, a numer-
ical procedure must be employed to construct an approximate solution for �/ ¼ �/ð�nÞ. Essential ingredients for such numerical
implementation including the convergence study are briefly summarized below.
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4.1. Solution approximation

It is evident that the second integral of the Fredholm integral equation (38) is an improper integral with an infinite upper
limit and the involved primary unknown function �/ ¼ �/ð�nÞ is defined on a semi-infinite interval [0,1). Before constructing
an approximate solution for �/ ¼ �/ð�nÞ, the domain of integration of the improper integral is first truncated from [0,1) to
½0; �nR� where �nR is a finite real number. The truncated Fredholm integral equation is given by
�/ð�nÞ ¼ 2�n
p

Z 1

0
cosð�ntÞdt

d
dt

Z t

0

uf ðuÞduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � u2
p �

�n
p

Z �nR

0

wðuÞ�/ðuÞ
u

sinðuþ �nÞ
uþ �n

þ sinðu� �nÞ
u� �n

	 

du ð42Þ
The unknown function �/ ¼ �/ð�nÞ over the entire truncated domain ½0; �nR� can be approximated by
�/ð�nÞ ¼ �n
Xn

j¼1

ajwjð�nÞ ð43Þ
where aj are unknown nodal quantities to be determined, wjð�nÞ are nodal basis functions, and n is the number of nodes
resulting from the discretization. It is worth noting that the approximation (43) results from a special property of the func-
tion / at the origin, more specifically, this function vanishes at the origin of order Oð�nÞ. In addition, in the present study, the
nodal basis functions wjð�nÞ are constructed systematically in an element-wise fashion based on standard isoparametric, qua-
dratic elements.

Upon inserting the approximation (43) into (42) and then dividing the entire equation by �n, it leads to a discretized inte-
gral equation
Xn

j¼1

Mjð�nÞaj ¼ F ð�nÞ ð44Þ
where the integrals Mjð�nÞ and F ð�nÞ are defined on the truncated domain ½0; �nR� by
Mjð�nÞ ¼ wjð�nÞ þ
Z �nR

0
wjðuÞKð�n;uÞdu ð45Þ

F ð�nÞ ¼ 2
p

Z 1

0
cosð�ntÞdt

d
dt

Z t

0

uf ðuÞduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � u2
p ð46Þ

Kð�n;uÞ ¼ wðuÞ
p

sinðuþ �nÞ
uþ �n

þ sinðu� �nÞ
u� �n

	 

ð47Þ
It can readily be verified that the kernel Kð�n;uÞ is regular for any pair of points ð�n;uÞ and, as a result, Mjð�nÞ involves only an
regular integral for all �n 2 ½0; �nR�. The integral F ð�nÞ is given in terms of a double line integral whose inner integrand involves
the prescribed profile of the indentor and is only weakly singular at u = t. To obtain a better form well-suited for numerical
integration, an integration by parts is performed along with applying a special variable transformation (i.e., u = tsinh) to re-
move such singularity and this, finally, leads to
F ð�nÞ ¼ 2�n
p

Z 1

0
sinð�ntÞ

Z p=2

0
uf ðuÞju¼t sin hdhdt þ 2 cosð�nÞ

p

Z p=2

0
uf ðuÞju¼sin hdh ð48Þ
To obtain a sufficient number of equations to solve for the unknown constants aj, a collocation-based technique is utilized. In
particular, the discretized integral equation (44) is collocated (or, equivalently, forced to be satisfied) at all nodes �n ¼ �ni (for
i = 1,2,3, . . . ,n) and this leads to a set of n linear algebraic equations governing the nodal quantities aj as follows
Ma ¼ F ð49Þ
where a = {a1,a2, . . . ,an}T is vector of nodal quantities and entries of the coefficient matrix M and the prescribed vector F are
given by
½M�ij ¼Mjð�niÞ ¼ wjð�niÞ þ
Z �nR

0
wjðuÞKð�ni; uÞdu ð50Þ

½F�i ¼ F ð�niÞ ¼
2�ni

p

Z 1

0
sinð�nitÞ

Z p=2

0
uf ðuÞju¼t sin hdhdt þ 2 cosð�niÞ

p

Z p=2

0
uf ðuÞju¼sin hdh ð51Þ
It is evident from (50) and (51) that entries of the matrix M and the prescribed vector F involve only regular integrals. Thus, a
standard Gaussian quadrature can be applied to efficiently and accurately evaluate such integrals. Note also that, for some
special indentor profiles, the integral F ð�nÞ admits an explicit expression and, as a result, construction of the corresponding
vector F requires no numerical integration. For instance, the integral Fð�nÞ can be obtained for a flat-ended cylindrical inden-
tor (i.e., �dð�rÞ ¼ 0) and a paraboloidal indentor (i.e., �dð�rÞ ¼ aa�r2 where a is a constant representing the slenderness of the
indentor profile) as
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Flat-ended cylindrical indentor : F ð�nÞ ¼ � 2�d
p�n

sinð�nÞ ð52Þ

Paraboloidal indentor : Fð�nÞ ¼ � 2�d
p�n

sinð�nÞ þ 4aa
p�n3
f2�n cosð�nÞ þ ð�2þ �n2Þ sinð�nÞg ð53Þ
Once the nodal quantities aj are obtained by solving a system of linear equations (49), the approximate solution for �/ ¼ �/ð�nÞ
can readily be computed from (43) for any �n in the truncated domain ½0; �nR� and then functions A ¼ Að�nÞ ¼ Að�nÞ=a5 and
B ¼ Bð�nÞ ¼ Bð�nÞ=a4 can be determined at any �n 2 ½0; �nR� by directly solving the relations (30) and (33) with the proper normal-
ization. The explicit formulae for A ¼ Að�nÞ and B ¼ Bð�nÞ in terms of �/ ¼ �/ð�nÞ are given respectively by
Að�nÞ ¼
�k

�kþ1þK0
�n

� �
�/ð�nÞ

�n4 2½ð�kþ 1Þ þ ð�kþ 2ÞK0
�n� þ ss�n½ð�kþ 2Þ þ ð�kþ 3ÞK0

�n�
n o ð54Þ

Bð�nÞ ¼ ð1þK0
�nÞ�/ð�nÞ

�n3 2 ð�kþ 1Þ þ ð�kþ 2ÞK0
�n

h i
þ ss�n½ð�kþ 2Þ þ ð�kþ 3ÞK0

�n�
n o ð55Þ
The normalized stress and displacement fields within the bulk can then be approximated by the integral relations
(17)–(22) with their upper limit being replaced by �nR, i.e.,
�rrrð�r;�zÞ ¼
rrr

2ðkþ lÞ ¼
Z �nR

0

�n3 ��nAþ 2�kþ 1
�kþ 1

� �n�z
� �

B
� �

e��n�zJ0ð�n�rÞd�n� 1
�r

Z nR

0

�n2½��nAþ ð1� �n�zÞB�e��n�zJ1ð�n�rÞd�n ð56Þ

�rhhð�r;�zÞ ¼
rhh

2ðkþ lÞ ¼
�k

�kþ 1

Z �nR

0

�n3Be��n�zJ0ð�n�rÞd�nþ 1
�r

Z nR

0

�n2½��nAþ ð1� �n�zÞB�e��n�zJ1ð�n�rÞd�n ð57Þ

�rzzð�r;�zÞ ¼
rzz

2 kþ lð Þ ¼
Z �nR

0

�n3 �nAþ 1
�kþ 1

þ �n�z
� �

B
� �

e��n�zJ0ð�n�rÞd�n ð58Þ

�rrzð�r;�zÞ ¼
rrz

2 kþ lð Þ ¼
Z �nR

0

�n3 �nA�
�k

�kþ 1
� �n�z

� �
B

� �
e��n�zJ1ð�n�rÞd�n ð59Þ

�urð�r;�zÞ ¼
ur

a
¼ ð�kþ 1Þ

Z �nR

0

�n2 ��nAþ ð1� �n�zÞB
h i

e��n�zJ1ð�n�rÞd�n ð60Þ

�uzð�r;�zÞ ¼
uz

a
¼ �ð�kþ 1Þ

Z �nR

0

�n2 �nAþ 2
�kþ 1

þ �n�z
� �

B
� �

e��n�zJ0ð�n�rÞd�n ð61Þ
where �z ¼ z=a. To evaluate truncated Hankel transform inversions appearing in (56)–(61) for any pair of points ð�r;�zÞ, stan-
dard Gaussian quadrature is again employed. It is important to point out that presence of the exponential term e��n�z in the
integrand significantly increases the rate of decay of the unfavorable oscillated behavior arising from the Bessel functions
Jnð�nÞ for �z > 0 and, as a result, the associated integrals converges very rapidly with a relatively low �nR. On the contrary, such
exponential term becomes unity on a surface of the bulk (i.e., �z ¼ 0) and, due to the slow rate of decay of the Bessel functions,
it generally requires a sufficiently large �nR for those integrals associated with �z ¼ 0 to achieve their converged value.

Once the elastic fields within the bulk are obtained, other interesting quantities can also be computed. For instance, the
normalized contact pressure under the indentor, denoted by �p ¼ �pð�rÞ, can readily be obtained from
�pð�rÞ ¼ p
2ðkþ lÞ ¼ �

�rzzð�r;�z ¼ 0Þ þ ssr̂2�uzð�r;�z ¼ 0Þ
2ð�kþ 1Þ

" #
; 0 6 �r 6 1 ð62Þ
where r̂2 ¼ d2

dr2 þ 1
r

d
dr. It is remarked that the Laplacian of the normal displacement appearing on the right hand side of (62)

can directly be evaluated using the prescribed boundary condition (27). The normalized indentation force P can further be
computed by integrating the contact pressure �p ¼ �pð�rÞ over the contact region as follows
�P ¼ P
2a2ðkþ lÞ ¼

Z 2p

0

Z 1

0
�pð�rÞ�rd�rdh ¼ 2p

Z 1

0
�pð�rÞ�rd�r ð63Þ
4.2. Determination of contact radius for smooth-contact indentor

For a smooth-contact indentor, the contact radius a is unknown a priori and must be determined first before other quan-
tities of interest can be obtained. It is remarked that once the contact radius a is known, there is no difference between a
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solution procedure for both smooth-contact and nonsmooth-contact indentors. To solve for a final contact radius a that cor-
responds to a given indentation depth d, a physically admissible condition associated with the continuity of the vertical
stress at r = a is utilized. However, the explicit or closed-form relationship between those two parameters (a and d) cannot
be obtained due to the complexity of the boundary value problem accounted for the surface energy effects.

4.3. Convergence study

For the proposed numerical technique, three key factors that affect the accuracy of the approximate solutions are the
truncated parameter �nR, the number of elements employed in the discretization, and the number of integration points used
in standard Gaussian quadrature. Extensive numerical experiments have been performed to choose a proper truncated do-
main, the level of mesh refinement and optimal quadrature to ensure the convergence and accuracy of numerical results.
Such investigation is briefly discussed below.

The number of Gauss points required in the numerical integration can be significant to accurately integrate oscillating
and complex integrands (resulting from the Bessel functions, �/ ¼ �/ð�nÞ, and the kernel Kð�n;uÞ). From numerical experiments,
it is found that as the size of elements decreases (i.e., the number of elements in the discretization increases), it only requires
few Gauss points to achieve highly accurate results since the integrand on each element exhibits milder variation without
oscillating behavior.

To investigate the level of mesh refinement required to obtain the converged results, we perform experiments for a given
truncated domain ½0; �nR�. A series of meshes for the fixed interval ½0; �nR� is constructed and then used in the analysis. The
number of elements in the discretization (N) is increased until a converged solution (for a specified tolerance) is attained
for a fixed �nR. By repeating the analysis for various values of �nR, a ratio N=�nR (representing the level of mesh refinement)
greater than or equal to 1 is found to yield sufficiently fine meshes.

To obtain a proper truncated domain that optimizes the computational cost but, at the same time, yields accurate results,
we next investigate the convergence of approximate solutions with respect to the truncated parameter �nR. From such study,
it can be concluded that the truncated parameter �nR to obtain converged results for the non-smooth contact indentor is much
larger than that for the smooth contact one. This is due primarily to the singularity induced at the boundary of the contact
region of the non-smooth contact indentor. On the basis of extensive numerical experiments, the suggested values of the
truncated parameter �nR in the analysis of non-smooth contact and smooth contact indentors are approximately equal to
10,000 and 1,000, respectively. These values of �nR are therefore employed along with N=�nR ¼ 1 to obtain all numerical results
presented further below.

5. Numerical results and discussion

Accuracy of the proposed numerical scheme is first verified by comparing computed results with available analytical
solutions of the classical case (without the influence of surface stresses) for both smooth-contact and non-smooth-contact
indentors. In the analysis, indentors with flat-ended and paraboloidal profiles are chosen to represent the non-smooth and
smooth contacts, respectively. Results for both elastic fields and pressure beneath the indentor predicted by three different
models (i.e., a model based on classical linear elasticity and two models accounted for surface stress effects with and without
the out-of-plane contribution of the residual surface tension) are fully investigated and compared. In addition, some crucial
findings are addressed.

5.1. Verification with analytical solutions

Consider an elastic half-space compressed by a rigid frictionless indentor with either a flat-ended cylindrical profile de-
scribed by d(r) = 0 or a paraboloidal profile described by d(r) = ar2 where a is a constant. It is remarked that for both cases, the
indentation depth d and the final radius of contact a are associated with the indentation force P. Without the influence of
surface stresses, the analytical solutions derived by Sneddon (1965) are employed to validate the proposed formulation
and numerical implementations.

In numerical experiments, the proposed solution scheme is specialized to treat the classical case by setting K0 ¼ 0 and
ss ¼ 0. Though the properties of elastic materials in the current formulation can be chosen arbitrarily, to allow the compar-
ison with results obtained by Zhao (2009) when the influence of surface stresses is considered, the same set of material prop-
erties is uitilized. Aluminum is used for the bulk material (Meyers & Chawla, 2009) whereas Al [1 1 1] is employed for the
surface (Miller & Shenoy, 2000). The corresponding material constants are given by k = 58.17 � 109 N/m2, l = 26.13 � 109 N/
m2, K0 = 0.16707 nm, ks = 6.8511 N/m, ls = �0.376 N/m, ss = 1 N/m. For convenience in the numerical study, following non-
dimensional quantities: r0 = r/K0, z0 = z/K0, a0 = a/K0, d0 = d/K0 and a0 = aK0 are introduced. It is worth noting that although
the classical solution is independent of K0, use of this parameter in the normalization allows a direct comparison between
non-classical and classical solutions.

In the case of a flat-ended cylindrical indentor with the contact radius a0 = 0.5, comparisons between numerical solutions
for the contact pressure and vertical displacement and the benchmark solutions are reported in Fig. 2(a) and (b), respectively.
It is evidently found that results obtained from the present study are nearly indistinguishable from the analytical solutions
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Fig. 2. Comparisons of classical numerical solutions with analytical solutions for flat-ended cylindrical indentor: (a) normalized contact pressure and (b)
normalized vertical displacement.
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proposed by Sneddon (1965). Another comparison is performed for the case of a paraboloidal indentor with a0 = 0.5. It can be
obviously seen from Fig. 3(a) and (b) that two numerical solutions obtained from the present scheme, one is the contact pres-
sure and the other is the vertical displacement at the free surface, again exhibit excellent agreement with the corresponding
reference solutions. This additionally confirms the accuracy of the proposed technique.

5.2. Results of indentor with surface stress effects

From the high accuracy of numerical solutions obtained in the classical case, the proposed scheme is now convincingly
applied to investigate the indentation problems with the influence of surface stress being incorporated. To allow compari-
sons with results obtained from Zhao (2009) and demonstrate the significant role of the residual surface tension ss, Gurtin–
Murdoch model without the out-of-plane contribution of ss is also considered. Selected numerical results are reported and
dicussed for both indentor profiles as follows.

5.2.1. Flat-ended cylindrical indentor
The case of an elastic half-space indented by a flat-ended cylindrical indentor with a specified contact radius a and inden-

tation depth d is first examined. Note that this particular indentor is an example of a non-smooth-contact indentor since dd/
dr is not well-defined at r = a. Numerical results for elastic fields within the bulk are reported in Figs. 4–7.
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Fig. 3. Comparisons of classical numerical solutions with analytical solutions for paraboloidal indentor: (a) normalized contact pressure and (b) normalized
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It can be apparently seen from Fig. 4 that the distribution of the contact pressure under the indentor accounted for the
surface stress effects possesses the same trend as that for the classical solution in which the singularity still exists at the edge
of the indentor. Due to the integration of the out-of-plane contribution of the residual surface tension, the predicted contact
pressure for this particular model is considerably less than those obtained from the other two models (i.e., the classical mod-
el and Gurtin–Murdoch model without the out-of-plane contribution of ss). In the analysis, three values of the normalized
contact radius, a0 = 0.5, 1.0 and 1.5, are considered to study the size-dependent behavior. It is found that when the radius of
the indentor becomes smaller, the influence of surface stresses is comparatively larger. It is interesting to point out that
when the contact pressure p has been normalized in a proper manner (e.g., normalized as ppa0/4ld0), size-dependent behav-
ior due to the influence of surface stresses is significantly apparent and this phenomenon cannot be certainly observed from
the solution predicted by the classical model (only one single dotted line is shown in spite of changing the contact radius a0).
It implies that the classical model completely ignores an inevitable material parameter (i.e., the intrinsic length K0) and, as a
result, it cannot capture the size-dependent behvior and yields a solution significantly different from those predicated by the
other two models when the radius of the indentor becomes relatively small. However, the contact pressure under the larger
indentor (i.e., larger contact radius a0) for both models accounted for the surface stress effects converges monotonically to
the classical solution.

The variations of the normalized vertical stress, przz/4l d0, along the radial direction at four depths z0 = 0.1, 0.5, 1.0 and
1.5 and for the contact radius a0 = 0.5 are shown in Fig. 5. The vertical stress profiles indicate the strong influence of the sur-
face stresses for a region relatively close to the indentor. In particular, at very small depth (i.e., z0 = 0.1), the vertical stress
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increases monotonically and reaches their peak values near r0/a0 = 1 and then starts to drop rapidly when r0 increases. At
larger depths, the vertical stress reaches its maximum at r0 = 0 and decreases monotonically to zero as r0 increases. It is evi-
dent that an ideal surface attached to the bulk of the current model distributes the localized indentation force to an area
outside the contact region. As a direct consequence, the current model (i.e., Gurtin–Murdoch model with the out-of-plane
contribution of ss) predicts the lower vertical stress under the indentor and higher vertical stress outside the contact region
than those obtained from the other two models. However, such discrepancy becomes insignificant in the region far away
from the indentor.

Numerical results for the normalized shear stress, prrz/4ld0, and the radial stress, prrr/4ld0, at various depths and for the
contact radius a0 = 0.5 are also presented in Fig. 6(a) and (b), respectively. Similar to the vertical stress, the magnitude of
shear stresses along the radial direction predicted by the current model is generally lower than and higher than those ob-
tained from the other two models for regions inside and outside the contact, respectively. The shear stress at any depth van-
ishes at r0 = 0 due to the axisymmetry, reaches its peak value near the edge of the indentor (r0/a0 = 1), and starts to decay to
zero for sufficiently large r0. Nevertheless, such behavior is significantly different from that of the radial stress; for instance,
the magnitude of the radial stress at z0 = 0.5 obtained from the current model lies between those predicted by the other two
models for a region inside the contact. As anticipated, the shear and radial stresses obtained from all three models for rel-
atively large r0 possess the same trend and decay monotonically to zero. The inflence of surface stresses is extremely small
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for z0 P 1.5 as clearly demonstrated by insignificant discrepancy between solutions obtained from the current and classical
models.

According to results shown in Fig. 7(a) for the normalized vertical displacement, uz/K0d0, along the radial direction at five
different depths, z0 = 0.0, 0.1, 0.5, 1.0 and 1.5, and for contact radius a0 = 0.5, the one predicted by the current model is com-
paratively higher than those obtained from the other two models due to the fact that higher indentation force is required to
produce the same indentation depth resulting in the half-space Xb in the current model subjected to larger surface traction
than the other two half-spaces. Unlike the solution for stresses, the vertical displacement from the present study exhibits a
slower rate of decay for larger value of z0, and it gradually converges to the other two solutions as r0 increases. As a final set
of results for this particular indentor, the normalized radial displacement, ur/K0d0, at four dfifferent depths, z0 = 0.1, 0.5, 1.0
and 1.5, and for the same contact radius a0 = 0.5 is reported in Fig. 7(b). Clearly, the radial displacement increases rapidly
from zero at r0 = 0 to its peak value at relatively small r0, and then gradually decreases as r0 increases. It should be noted
that the surface stresses only influence the magnitude of the radial displacement while its distribution along the radial direc-
tion predicted by all three models is quite similar.

5.2.2. Paraboloidal indentor
Consider, next, a paraboloidal indentor with a0 = 0.5 acting on the elastic half-space with the indentation depth d and fi-

nal contact radius a. This particular indentor belongs to a class of smooth-contact indentors since dd/dr is well-defined at
r = a where a is unknown a priori. Note again that the final contact radius a is determined by enforcing the continuity
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condition of the vertical stress beneath the indentor at r = a. Numerical results for elastic fields of this particular case are
reported in Figs. 8–11 and those demonstrating the size-dependent behavior and increase of material stiffness due to the
presence of surface stresses are shown in Figs. 12–14. All crucial findings and remarks are summarized as follows.

To demonstrate the size-dependency resulting from the influence of surface stresses, the distribution of the normalized
contact pressure under a paraboloidal indentor, ppa0/4ld0, is first presented in Fig. 8 for three different values of the contact
radius, a0 = 0.5, 0.8 and 1.0. Interestingly, the contact pressure predicted by the current model becomes finite at the bound-
ary of the contact region while that obtained from the classical case and Zhao’s model vanishes at that boundary. Unlike the
results for the flat-ended cylindrical indentor, the contact pressure obtained from the current model is significantly larger
than those obtained from the other two models. However, such discrepancy becomes smaller when the contact radius in-
creases. Note in addition that, upon the proper normalization, the distribution of the contact pressure for the classical case
is obviously independent of the contact radius and exhibits no size-dependency.

Normalized vertical stress profiles for the paraboloidal indentor for a fixed contact radius a0 = 0.5 and five different
depths, z0 = 0.0, 0.1, 0.5, 1.0 and 1.5, are reported in Fig. 9. It is important to emphasize that due to the enforcement of con-
tinuity of the vertical stress at r = a, the singularity behavior at the boundary of the contact region observed in the case of the
flat-ended indentor disappears for this particular indentor profile. The maximum value of the vertical stress occurs at r = 0
and rapidly decays to zero as r0 increases. Clearly, the distribution of the vertical stress along the radial direction at a very
small depth exhibits significant difference from the case of the flat-ended indentor. Again, the vertical stress in a region very
near the free surface predicted by the current model deviates from those obtained from the classical and Zhao’s models
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indicating the significant influence of the surface stresses and the out-of-plane contribution of the residual surface tension. It
is also worth pointing out that the contact pressure shown in Fig. 8 is clearly identical to the negative value of the vertical
stress at z0 = 0 shown in Fig. 9 for both classical and Zhao’s models (when a0 = 0.5 is brought into the normalization) whereas
the significant discrepancy of those two quantities is observed in the current model. This is due primarily to the out-of-plane
contribution of the residual surface tension as indicated by the relation (62).

Fig. 10(a) and (b) show the normalized shear and radial stresses along the radial direction for the contact radius a0 = 0.5
and four different depths z0 = 0.1, 0.5, 1.0 and 1.5. Similar to the case of the flat-ended indentor, the shear stress at each depth
increases from zero at r0 = 0 to its peak value near the indentor boundary (r0/a0 = 1) and then decays rapidly as r0 increases
whereas the radial stress decreases monotonically from its maximum value at r0 = 0 as r0 increases. Again, the surface stres-
ses exhibits significant influence on both shear and radial stresses only in a local region very close to the indentor, and its
contribution becomes negligible at a region very far from the indentor. The influence of surface stresses on the vertical and
radial displacements is also clearly demonstrated by the results shown in Fig. 11(a) and (b) respectively. The vertical dis-
placement predicted by the current model is comparatively higher with a slower decay rate when compared to those ob-
tained from the other two models. In addition, the magnitude of the radial displacement depends significantly on the
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surface stresses whereas the radial distributions predicted by all three models are rather similar. These behaviors are similar
to what observed in the case of the flat-ended indentor.

To further demonstrate the size-dependent behavior, the relationship between the ratio a0/ac (where ac denotes the con-
tact radius for the classical case) and the contact radius a0 of the paraboloidal indentor is investigated and results are re-
ported in Fig. 12. Due to the influence of surface stresses, it is evident that the contact radius is smaller than that
obtained from the classical case for the same indentation depth. This implies that presence of the surface stress render
the material stiffer. In particular, the difference in comparison with the classical solution is less than 1% for Zhao’s model
and up to 30% for the current model. It appears that the out-of-plane contribution of the residual surface tension strongly
affects the material stiffness and the surface stresses play a prominent role in mechanical responses and properties of mate-
rials in the nano-scale.

Another set of results that confirms the size-dependent behavior of predicted solutions, when the influence of surface
stresses is incorporated, is associated with the relationship between the normalized indentation force, P/Pc (where Pc denotes
the indentation force for the classical case), and the contact radius a0 for the flat-ended cylindrical and paraboloidal inden-
tors as shown in Fig. 13. It is obviously seen that, when the radius of the indentor becomes smaller, the indentation force
required to produce the same indentation depth is relatively higher due to the surface stresses effect. The discrepancy is
more pronounced for the results predicted by the current model when compared with Zhao’s solutions. This implies that
the stiffness of materials characterized by the indentation experiment depends not only on the penetration depth but also
on the contact radius of the indentor. In particular, at the contact radius a0 = 0.1, results obtained from Zhao’s model are
approximately 5% higher than the classical solution for both indentor profiles whereas those predicted by the current model
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accounted for the out-of-plane contribution of the residual surface tension are up to 120% and 160% higher than that ob-
tained from the classical model for paraboloidal and flat-ended indentors, respectively.

To clearly demonstrate the influence of surface stresses on the material stiffness, the relationship between the normalized
indentation force, P=4lK2

0, and the indentation depth d0 for both indentor profiles is presented in Fig. 14(a) and (b). It can be
concluded from this set of results that the indentation force for both indentors predicted by the current model is significantly
higher than that obtained from the classical and Zhao’s models. This additionally confirms that materials become stiffer due
to the presence of the surface stresses and the out-of-plane contribution of the residual surface tension amplifies such influ-
ence. It is also important to emphasize that the discrepancy of results for the flat-ended cylindrical indentor is more pro-
nounced than that for the paraboloidal indentor due to the non-smoothness of the indentor profile and the singularity of
stress field introduced at the boundary of the contact region.

6. Conclusion and remark

The complete solutions of elastic fields and related quantities for a linear elastic half-space compressed by an axisymmet-
ric, rigid, frictionless indentor with integration of the influence of surface stresses have been fully investigated. In the
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modeling of surface behavior, a complete version of Gurtin–Murdoch surface elasticity model has been used. By employing
the solution representation in terms of Love’s strain potential together with the application of Hankel integral transform
technique, the associated boundary value problem has been reduced to a set of dual integral equations which can be further
transformed into an equivalent Fredholm integral equation of the second kind. Various numerical schemes have been ap-
plied to enhance both the solution accuracy and computational efficiency of the proposed technique. For smooth-contact
indentors, a physically admissible condition associated with the continuity of the vertical stress at the boundary of the con-
tact region is enforced to determine the unknown contact radius for a given indentation depth. The validity of the current
formulation and accuracy of the numerical implementations have been confirmed by comparing computed results with
existing analytical solutions in the classical case for both smooth and non-smooth contacts.

As anticipated, obtained numerical results from extensive numerical experiments have demonstrated that the influence
of surface stresses becomes more significant when the size of the indentor is smaller especially in the region very near the
indentor. In addition, material behaves stiffer due to the presence of such effect. It is interesting to remark that the distri-
bution of the contact pressure for two indentor profiles (i.e., flat-ended and paraboloidal indentors) predicted by the current
model exhibits significant discrepancy from those obtained from the classical model and the model accounted for the surface
stresses but without out-of-plane contribution of the residual surface tension. The singularity of the contact pressure and
vertical stress at the boundary of the contact region is still observed in the current model for the case of non-smooth-contact
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indentors whereas such blow-up behavior completely disappears in the case of smooth-contact indentors. Size-dependent
behavior has been also presented to confirm the essence of integrating the influence of surface stresses into the mathemat-
ical model in order to accurately capture mechanical responses and properties of materials at a nano-scale and soft elastic
solids.

It is important to emphasize that the boundary value problem considered in the present study is restricted mainly to an
indentation problem with axisymmetric data and rigid, frictionless indentors. The generalization of the current work to alle-
viate all those limitations (e.g., treatment of indentors of non-axisymmetric profiles and non-frictionless contact) should be
potentially useful to enhance understanding of nano-mechanics and mechanics of soft solids in a broader context.
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Abstract  

A computationally efficient numerical technique capable of modeling mode-I planar cracks in three-

dimensional linear elastic media by taking the influence of the residual surface tension into account, 

is presented in this paper. The elastic medium (i.e., the bulk material) is modeled by the classical 

theory of linear elasticity, whereas the crack surface is treated as a zero-thickness layer perfectly 

bonded to the bulk material with its behavior governed by the special case of Gurtin-Murdoch 

surface elasticity model. Governing equations of the bulk material are formulated in terms of 

weakly singular, weak-form boundary integral equations, whereas those of the surface are cast in a 

weak form using a weighted residual technique. The solution of the final coupled system of 

governing equations is subsequently accomplished by using a numerical procedure based primarily 

on a coupling between standard finite element technique and a weakly singular, symmetric Galerkin 

boundary element method. Extensive numerical simulations are conducted and the results are 

compared with available benchmark solutions to verify the formulation and numerical 

implementation. Applications of the technique to the analysis of nano-crack problems are presented 

for some selected cases, to study nano-scale influence and size-dependency behavior.  

Keywords: Crack opening displacement, Gurtin-Murdoch model, Nano-cracks, Residual surface 

tension, SGBEM, Surface elasticity  

1. Introduction 

Due to the rapid growth of the application of nano-sized devices and nano-structured materials in 

various fields, the physical modeling and corresponding comprehensive analysis to gain an insight 

into their complex behavior become important aspects in the optimal design of nano-scale products. 

Failure/damage analysis and assessment is one of the essential steps that must be properly 

considered to ensure their safety and integrity in the design procedure. To aid such crucial tasks, a 

classical approach based on the stress analysis of a body containing pre-existing defects or cracks is 

usually considered. While conventional linear elastic fracture mechanics has been well established 
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and employed in the modeling of cracks in linear elastic media, an enhancement of the classical 

model to incorporate the nano-scale influence is still required. Studies using atomistic calculations 

have pointed out that atoms near the free surface of solids behave differently from their bulk. In that 

sense, the whole body is not completely homogeneous, but when its size is in the range of 

micrometers or larger, the surface free energy effect can be neglected due to its insignificant 

influence on overall material properties. Unlike macro-structures, in the case of nano-sized objects 

(e.g., thin films, quantum dots, nano-wires, nano-tubes and nano-composites), the surface to volume 

ratio is much higher and, as a direct consequence, the surface free energy effect often plays a crucial 

role in the mechanical behavior [1]. Therefore, the classical theory of continuum-based mechanics 

commonly used in the modeling of macroscopic bodies cannot be directly applied to treat the 

problem of nano-sized cracks.  

 To be capable of capturing the surface free energy effect, a model that properly takes into 

account the surface free energy must be utilized. The most widely used continuum-based models 

which incorporate surface free energy effects are those using Gurtin-Murdoch surface elasticity 

theory. Gurtin and Murdoch [2, 3] proposed a mathematical framework to study the mechanical 

behavior of material surfaces through a continuum-based model which includes surface stresses. 

The elastic surface is assumed to be very thin and modeled as a mathematical layer of zero 

thickness that is perfectly bonded to the bulk material. In addition, such an idealized surface has 

different elastic moduli from those of the bulk material.  

 The Gurtin-Murdoch model has been widely used to study various size-dependent, nano-

scale problems. For instance, He et al. [4], Dingreville et al. [5] and Huang [6] employed the 

Gurtin-Murdoch surface elasticity model to clearly elucidate the size-dependent elastic properties of 

nano-structured elements such as wires and films, while Tian and Rajapakse [7, 8, 9] applied such 

model to demonstrate the influence of surface stresses on elastic fields of nano-inhomogeneity 

problems. More recently, Pinyochotiwong et al. [10] investigated the effects of surface energy in 

the analysis of an axisymmetric rigid frictionless indentor acting on an isotropic, linearly elastic 

half-space by using the complete version of the Gurtin-Murdoch model. 

 The continuum-based surface/interface model of Gurtin and Murdoch has also been 

employed in the modeling of nano-sized cracks. Based upon an investigation of an elliptical void, 

Wu [11] argued that the presence of the surface stress has the capability of containing the severity 

of deformations of a blunt crack. Wang et al. [12] studied the surface stress effect on near-tip 

stresses for both mode-I and mode-III blunt cracks and found that when the curvature radius of the 

crack front decreases to nanometers, surface energy significantly affects the stress intensities near 
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the crack tip. Fu et al. [13, 14] incorporated the surface elasticity model into the finite element 

method (via ANSYS and ABAQUS) to study the influence of surface stresses on the mode-I and 

mode-II crack-tip fields and concluded that when the curvature radius of the blunt crack root 

decreases to micro-/nano-meters, surface elasticity exhibits significant influence on the stresses near 

the crack tip. Fang et al. [15] analyzed the influence of surface effects on dislocation emission from 

an elliptically blunt crack under mode-I and mode-II loading conditions and showed that the impact 

of surface stresses on the critical stress intensity factors for dislocation emission becomes 

remarkable when the size of the blunt crack is very small, typically of a nanometer scale. Kim et al. 

[16, 17, 18] examined mode-I, mode-II and mode-III crack problems including surface stress effects 

which assumed that the stresses at the sharp crack-tip are finite. Recently, Nan and Wang [19] 

considered the effect of the residual surface tension on the crack surface, to investigate the mode-I 

crack problem and demonstrated that the surface effect on the crack deformation and crack-tip field 

are prominent at nanoscale. Moreover, the results are influenced by the residual surface tension not 

only on the surface near the crack-tip region but also on the entire crack-face. Intarit et al. [20, 21] 

analytically investigated a nano-sized, penny-shaped crack in three-dimensional, linear elastic 

media under mode-I loading conditions. 

 On the basis of an extensive literature survey, it can be said that work related to the 

modeling of defects/cracks at nano-scale level has been very limited. Most of the studies are 

restricted to situations where cracks can be treated either within the context of two-dimensional 

boundary value problems [11-19] or within the context of relatively simple three-dimensional 

problems [20, 21]. However, bodies or components containing existing defects/flaws involved in 

practical applications are, in general, relatively complex in terms of geometries, loading conditions, 

and influences to be treated (e.g., surface free energy). The existing mathematical models are 

therefore of limited scope and insufficient for the prediction of responses in practical cases. This, as 

a result, necessitates the development of fully three-dimensional mathematical models, along with 

efficient and powerful numerical procedures to construct their solutions. 

 Numerical techniques based on boundary integral equations have been well-established and 

proven powerful for both two-dimensional and three-dimensional fracture analysis (e.g., [22-27]). 

The techniques possess attractive characteristics, such as governing equations with spatially reduced 

dimensions and simplicity of treating remote boundaries and infinite bodies, rendering them 

computationally efficient and convenient for modeling crack problems. The weakly singular, 

symmetric Galerkin boundary element method (SGBEM), which is a principal numerical technique 

proposed to model the cracks in the present study, is a particular boundary integral equation method 
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that has been continuously developed and widely adopted by various investigators in the past four 

decades. This special numerical technique has been widely and successfully employed to solve both 

linear elasticity and linear elastic fracture problems [28-38], since it has several important features. 

For instance, the governing integral equations contain only weakly singular kernels (of (1 )rO ); the 

technique is applicable for modeling cracks with arbitrary configurations and under general loading 

conditions and for treating an infinite body efficiently; and the formulation is established in a 

symmetric weak-form such that it gives rise to a system of linear equations with a symmetric 

coefficient matrix. The first feature renders that all involved integrals exist in an ordinary sense and 

their validity requires only the continuity of the boundary data; i.e., in the numerical 

implementation, it is possible to employ standard C0 elements in the approximation of all primary 

unknowns and to apply existing quadrature schemes to numerically evaluate all involved integrals 

(e.g., [31, 32, 37, 38]). In addition, the last feature also allows the SGBEM to be conveniently 

coupled with the standard finite element procedure to enhance its computational efficiency and 

capability (e.g., [39, 40]). Extensive review of the weakly singular SGBEM can be found in Bonnet 

et al. [41], in Rungamornrat and Mear [37] and Rungamornrat and Senjuntichai [38] for its 

application to three-dimensional fracture analysis, in Rungamornrat and Mear [40] for its coupling 

with the standard FEM. It should be remarked that, on the basis of an extensive literature survey, 

applications of the SGBEM-FEM technique to the analysis of nano-size cracks has not been well 

recognized. Efficiency and capability of such technique, when applied to this particular class of 

problems, still requires full investigations.   

 In this paper, a computationally efficient numerical technique capable of modeling planar 

cracks in three-dimensional isotropic, linear elastic media including the influence of residual 

surface tension is presented. The residual surface tension effects are modeled using the well-known 

Gurtin-Murdoch theory of surface elasticity. A numerical procedure based primarily on the coupling 

of a standard finite element method (FEM) and a weakly singular, symmetric Galerkin boundary 

element method is employed. The former technique is mainly utilized to efficiently handle the 

governing equation of the surface. While the proposed technique follows, in principle, the standard 

coupling procedure, novelty of the current work should be reflected through its recent applications 

to the modeling of cracks with nano-scale influence. Extensive numerical simulations are conducted 

and the results are compared with available benchmark solutions to verify both the formulation and 

the numerical implementation. Applications of the technique to the analysis of mode-I, nano-sized, 

crack problems are presented for some selected cases, to study nano-scale influence and size-

dependency behavior.  
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2. Formulation 

This section begins with the clear description and essential assumptions of the boundary value 

problem that is the focus of the present study. All basic field equations and the development of key 

governing equations for both the bulk material and the crack surface are then briefly presented. 

Finally, the coupled system of weak-form equations governing the primary unknowns on the crack 

surface is derived.        

2.1. Problem description 

 

 

 

 

 

 

(a) (b) 
 

Fig. 1. (a) Schematic of three-dimensional infinite elastic medium containing an isolated crack;  

(b) prescribed traction on crack surfaces. 

Consider a three-dimensional, infinite, elastic medium  containing an isolated, planar crack as 

shown schematically in Fig. 1(a). The reference Cartesian coordinate system 1 2 3{ ; , , }O x x x  is also 

shown. The bulk material is made of a homogeneous, isotropic, linearly elastic material with shear 

modulus   and Poisson’s ratio . The crack surfaces which are geometrically identical are 

represented by cS   and cS   with corresponding outward unit normal n  and n , respectively. The 

medium is assumed to be free of body forces and remote loading but subjected to prescribed 

tractions 0t  and 0t  on cS   and cS  , respectively (Fig. 1(b)). In addition, infinitesimally thin layers 

on the crack surfaces (mathematically modeled by zero-thickness layers perfectly bonded to the 

crack surfaces) possess the constant residual surface tension under unstrained conditions which is 

denoted by s . 

 In the formulation of the boundary value problem, the medium is decomposed into three 

parts: the bulk material, the zero-thickness layer cS   and the zero-thickness layer cS   as shown in 

Fig. 2. The bulk material is simply the whole medium without the two infinitesimally thin layers on 

3x

2x
1x

cS   

cS   n

O  

  

n cS   

cS   
2x

3x

0t

0t
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the crack surfaces. Since both layers have zero thickness, the geometry of the bulk material is 

therefore identical to that of the whole medium (i.e., it can also be completely described by the 

region  and the two crack surfaces cS   and cS  ). 

The key difference between the bulk material and the original medium is that the bulk 

material is homogeneous and the crack surfaces cS   and cS   in the bulk part are subjected to 

unknown tractions (exerted directly by the two layers) bt  and bt , respectively. The layer cS   is 

treated as a two-sided surface with one side subjected to the prescribed traction 0t  and the other 

side subjected to the traction st  exerted by the bulk material (Fig. 2(b)). Similarly, the layer cS   is 

treated as a two-sided surface with one side subjected to the prescribed traction 0t  and the other 

side subjected to the traction st  exerted by the bulk material (Fig. 2(c)). In what follows, Greek 

subscripts denote field quantities associated with the surface and take the values 1, 2 while the Latin 

subscripts take the values 1, 2, 3. We remark that, in the development to follow, it will suffice to 

make reference to the single crack surface .c cS S   
 

 

 

 

 

 

 

  (a) (b) (c) 

Fig. 2. Schematics of (a) the bulk material, (b) the zero-thickness layer cS  and (c) the zero-

thickness layer .cS  

2.2. Governing equations for bulk material 

Since the bulk material is made of homogeneous, isotropic, linearly elastic material, its behavior is 

governed by the classical theory of linear elasticity. From results developed in the work of 

Rungamornrat and Mear [36] and Rungamornrat and Senjuntichai [38], the displacement and stress 

components at any interior point x , denoted respectively by ( )pu x  and ( )ij x , can be expressed in 

terms of the traction data bt  and bt  and the displacement data bu  and bu  on the crack surfaces 

cS   and cS   as 

2x

3x

cS   

cS   bt

bt
cS   

0t  

st  

cS   
0t  

st  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
c

c c

p b
p j jS

p b p b
mj m j ij i jS S

u U t dS

G D u dS H n u dS



 

 

   


 

x ξ x ξ ξ

ξ x ξ ξ ξ x ξ ξ ξ
  (1)

    
,

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
c

c c

tj b
ij irt lk r l kS

p b p b
irt tj r p ij pS S

C D u dS

G t dS H t dS

 





 

 

   


 

x ξ x ξ ξ

ξ x ξ ξ ξ x ξ ξ
  (2)

  

where ( ) ( ) /t tmj m jD n       is a surface differential operator, b b b
j j jt t t    , b b b

j j ju u u    , irt  is 

the standard alternating symbol, the kernels { , , , }p p tk p
j mj mj ijU G C H  for isotropic elastic materials are 

given by 
 

2
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      

x   (4) 

2

( )( )
( ) (1 ) 2

4 (1 )
k k j jtk

mj tk mj km tj kj tm tm

x x
C v v

v r r
        


  

        
x  (5) 

3

( )
( )

4
i i jpp

ij

x
H

r
 




  x   (6) 

 

with || ||r  ξ x and ,ij ijk   are standard Kronecker delta and alternating symbols, respectively. The 

boundary integral relations (1) and (2) allow the displacement and stress at any interior point to be 

determined once the data bt  , bt , bu  and bu are known. To establish the integral equations 

governing the unknown data bt  , bt , bu  and bu , the integral relations (1) and (2) are utilized 

along with the process of taking limit to any point on the crack surface and the standard procedure 

using Stokes’ theorem in the development of the weak-form equations. The final weak-form, 

boundary integral equations are given by (see details of the development in Rungamornrat and Mear 

[36] and Rungamornrat and Senjuntichai [38])   

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

c c c

c c

c c

b p b
p p p j jS S S

p b
p mj m jS S

p b
p ij i jS S

t u dS t U t dS dS

t G D u dS dS

t H n u dS dS

   

 

 

 

 

 

  
 
 

y y y y ξ y ξ ξ y

y ξ y ξ ξ y

y y ξ ξ ξ y

 



 ξ

 (7) 
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1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

c c c

c c

c c

b tk b
k k t k mj m jS S S

j b
t k tk jS S

j b
k lk l jS S

u t dS D u C D u dS dS

D u G t dS dS

u H n t dS dS

   

 

 

  

 

 

  
 
 

y y y y ξ y ξ ξ y

y ξ y ξ ξ y

y ξ y y ξ ξ y

 





 (8) 

 

where b b b
j j ju u u    , b b b

j j jt t t    , and { , }p kt u    are sufficiently smooth test functions. The pair of 

equations (7) and (8) has been well recognized as the weak-form boundary integral equations for 

the sum of the displacement b
ju   and the jump of the traction b

jt   across the crack surface, 

respectively. It is worth noting that both integral equations contain only weakly singular kernels 

{ , , , }p p tk p
j mj mj ij jU G C H n  of (1 )rO . This positive feature renders the existence of all involved double 

surface integrals in an ordinary sense and their validity requires only C0- boundary data.    

2.3. Governing equations for two layers 

The two layers cS   and cS  shown in Figs. 2(b) and 2(c) are considered as infinitesimally thin 

membranes adhered perfectly to the bulk material. The behavior of these two layers is modeled by 

Gurtin-Murdoch surface elasticity theory by ignoring terms associated with the surface elastic 

constants. It has been pointed out by various investigations that the influence of the surface elastic 

constants on the out-of-plane responses in the region very near the surface is negligibly weak [10, 

19-21]. The simplified version of the Gurtin-Murdoch model is therefore considered suitable for 

modeling planar crack problems especially when mode-I behavior is of primary interest.  

 The equilibrium equations, the surface constitutive relations and the strain-displacement 

relationship of the layers cS   and cS 

 are therefore given by [2, 3] 
 

, 0s s o
i i it t       (9) 

 ,(1 )s s s su             ,  3 3,
s s su     (10) 

 , ,
1
2

s s su u         (11) 

 

where , ,s s s
i iu    represent stress, strain and displacement components within the layer. 

 To construct the weak-form equation, we multiply the equilibrium equation (9) with a 

sufficiently smooth test function s
iu  and then integrate the result over the entire crack surface to 

obtain 
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0
, 0

c c c

s s s s s
i i i i i i

S S S

u dS u t dS u t dS           (12) 

By using the fact that s  is spatially independent, it can be readily verified that , 0s
   . With 

such condition along with carrying out the integration by parts of the first term using the Gauss-

divergence theorem, it leads to 

0
3, 3 3 3

c c c c

s s s s s s s
i i i i

S S S S

u dS u t dS u n dS u t dS    


           (13) 

 

Substituting (10) into (13) finally yields 
 

0
3, 3, 3 3

c c c c

s s s s s s s s
i i i i

S S S S

u u dS u t dS u n dS u t dS    


          (14) 

Note that the weak-form equation (14) applies to both crack surfaces. For instance, the weak-form 

equations for the surface cS   and the surface cS   can be obtained explicitly by  
 

0
3, 3, 3 3

c c c c

s s s s s s s s
i i i i

S S S S

u u dS u t dS u n dS u t dS           



          (15) 

0
3, 3, 3 3

c c c c

s s s s s s s s
i i i i

S S S S

u u dS u t dS u n dS u t dS           



          (16) 

 

where superscripts “+” and “–” are added to differentiate quantities defined on each crack surface. 

Since the integral equations governing the bulk material are derived in terms of the unknown sum 

and jump of quantities across the crack surface, it is natural to establish the weak-form equations 

governing the surface containing the same type of unknowns. This can be readily accomplished by 

forming two linear combinations of (15) and (16) as follows: (i) choosing s s s
i i iu u u       and then 

adding (15) to (16) and (ii) choosing s s s
i i iu u u       and then subtracting (15) from (16). Such pair 

of equivalent weak-form equations is given by 
 

0
3, 3, 3 3

c c c c

s s s s s s s s
i i i i

S S S S

u u dS u t dS u n dS u t dS           



          (17) 

0
3, 3, 3 3

c c c c

s s s s s s s s
i i i i

S S S S

u u dS u t dS u n dS u t dS           



          (18) 

 

where superscripts “ ” and “ ” indicate the sum and jump of quantities across the crack surface. It 

should be remarked further that since the jump of the displacement along the crack front vanishes 

identically, the test function s
iu   is chosen to satisfy the homogeneous condition 0s

iu    on cS . In 

addition, the traction boundary conditions 3 0s n     on cS  are assumed. The weak-form equations 

(17) and (18) finally become 
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0
3, 3,

c c c

s s s s s s
i i i i

S S S

u u dS u t dS u t dS               (19) 

0
3, 3,

c c c

s s s s s s
i i i i

S S S

u u dS u t dS u t dS               (20) 

Equations (19) and (20) constitute a set of weak-form equations governing the unknown quantities 

{ , , , }s s s s
i i i iu t u t    . It is worth noting that the formulation presented above is clearly not restricted 

only to applied normal traction to the crack surface, although the mathematical model of the surface 

is physically suitable for pure mode-I loading. Due to the vanishing ,
s
  , the equilibrium equation 

(9) indicates that the applied shear traction is transmitted directly to the crack surface of the bulk 

material.   

2.4. Governing equations for whole medium 

Since the two layers cS   and cS   are adhered perfectly to the bulk material, the displacements and 

tractions along the interface of the two layers and the bulk material must be continuous. This yields 

the following continuity conditions: 

s b
i i iu u u       (21) 

s b
i i iu u u       (22) 

s b
i i it t t        (23) 

s b
i i it t t        (24) 

 

Substituting (21)-(24) into (7), (8), (19) and (20), leads to a system of four equations involving four 

unknown functions { , , , }i i i iu t u t    . By choosing appropriate test functions, (8) and (20) can be 

combined and the unknown it
  can be eliminated. The final system of three equations involving 

three unknown functions { , , }i i iu u t    is given by 
 

1

2

( , )  ( , )                       ( )

( , )   ( , )   ( , ) 0
                      ( , )   ( , ) ( )

s s s    

     

    

 

  

 

u u u t u
t u t t t u

t u u u u

  
  

  

A B R

B C D

D E R

 (25) 

where the bilinear integral operators , , , ,A B C D E  are defined by  
 

3, 3,( , ) ( ) ( ) ( )
2 c

s

S
X Y dS 


 X Y y y yA   (26) 
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1( , ) ( ) ( ) ( )
2 c

p pS
X Y dS X Y y y yB   (27) 

( , ) ( ) ( ) ( ) ( ) ( )
c c

p
p j jS S

X U Y dS dS   X Y y y yC     (28) 

( , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
c c

c c

p
p mj m jS S

p
p ij i jS S

X G D Y dS dS

X H n Y dS dS

  

 

 
 

X Y y y y

y y y

D   

   
 (29) 

( , ) ( ) ( ) ( ) ( ) ( ) ( , )
c c

tk
t k mj m jS S

D X C D Y dS dS    X Y y y y X YE A    (30) 

 

and the linear integral operators 1 2{ , }R R  are defined, in terms of prescribed data 0t  and 0t , by  

 

0
1

1( ) ( ) ( ) ( )
2 c

l lS
X t dS X y y yR   (31) 

0
2

1( ) ( ) ( ) ( )
2 c

l lS
X t dS X y y yR   (32) 

 

3. Numerical implementation 

In this section, all numerical treatments including the discretization and numerical integration are 

briefly discussed. In general, standard procedures for the weakly singular SGBEM (e.g., [31, 32, 35, 

37]) and those for the standard finite element method (e.g., [42-44]) are utilized to form the 

discretized system of linear algebraic equations.   

3.1. Discretization 

Standard Galerkin approximation is employed in the discretization of the system of governing 

equations (25). Since all involved boundary integrals contain only weakly singular kernels of 

(1 )rO , standard C0 interpolation functions are utilized in the approximation of both trial and test 

functions. In particular, the following approximation for the test functions and the trial functions is 

introduced: 
 

3( 1)
1

N
s s
i p i p

p
u U 

 


   ;  3( 1)
1

N

i q i q
q

u U 
 



     (33) 

3( 1)
1

N

i p i p
p

u U
 



   ;  3( 1)
1

N

i q i q
q

u U 
 



     (34) 
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3( 1)
1

N

i p i p
p

t T
 



   ;  3( 1)
1

N

i q i q
q

t T 
 



     (35) 

 

where N  is the number of nodal points; q  is the nodal basis function at node q; 3( 1)q iU 
  , 3( 1)q iU 

  , 

and 3( 1)q iT 
   are nodal degrees of freedom associated with the sum of the displacement, the jump of 

the displacement and the sum of the traction across the crack surfaces, respectively; and 3( 1)
s

p iU 
 

 , 

3( 1)p iU  
 , and 3( 1)p iT  

  are arbitrary nodal quantities. Substituting (33)-(35) into (25) along with using 

the arbitrariness of 3( 1)
s

p iU 
 

 , 3( 1)p iU  
 , and 3( 1)p iT  

 , leads to a symmetric system of linear algebraic 

equations 
 

1

2

T

T







    
         
        

A B 0 U R
B C D T 0
0 D E U R

   (36) 

 

where the sub-matrices , , , ,A B C D E  are associated with the bilinear operators , , , ,A B C D E ; sub-

vectors 1 2,R R  correspond to the linear operators 1 2,R R ; U  is a vector of nodal quantities of the 

sum of the displacement;

 

U  is a vector of nodal quantities of the jump of the displacement and T  

is a vector of nodal quantities of the sum of the traction. The sub-matrices , , , ,A B C D E  and sub-

vectors 1 2,R R  are given explicitly by  

3( 1) 3,3( 1) 3 , ,[ ] ( ) ( ) ( )
2 c

s

p q p qS
dS 


      A y y y    (37) 

3( 1) ,3( 1)
1[ ] ( ) ( ) ( )
2 c

p i q j ij p qS
dS      B y y y    (38)

 

3( 1) ,3( 1)[ ] ( ) ( ) ( ) ( ) ( )
c c

i
p i q j p j qS S

U dS dS           C y y y  (39) 

3( 1) ,3( 1)[ ] ( ) ( ) ( ) ( ) ( )

                            ( ) ( ) ( ) ( ) ( ) ( )
c c

c c

i
p i q j p mj m qS S

i
p mj m qS S

G D dS dS

H n dS dS

        

   

 
 

D y y y

y y y

  

   
 (40) 

3( 1) ,3( 1) 3( 1) ,3( 1)[ ] ( ) ( ) ( ) ( ) ( ) [ ]
c c

ti
p i q j t p mj m q p i q jS S

D C D dS dS             E Ay y y    (41) 

0
1 3( 1)

1[ ] ( ) ( ) ( )
2 c

p i p iS
t dS

   R y y y ;  0
2 3( 1)

1[ ] ( ) ( ) ( )
2 c

p i p iS
t dS

   R y y y  (42) 

3( 1) 3( 1)[ ] q i q iU 
   U ;  3( 1) 3( 1)[ ] q i q iU 

   U ;  3( 1) 3( 1)[ ] q i q iT 
   T  (43) 
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3.2. Numerical integration 

To evaluate the sub-matrices , , , ,A B C D E

 

and sub-vectors 1 2,R R numerically, the single and 

double surface integrals must be properly treated. All single surface integrals contain regular 

integrands and can be efficiently and accurately integrated using standard Gaussian quadrature. 

Unlike single surface integrals, double surface integrals can be categorized into three types 

depending on a pair of elements resulting from the discretization of the surface cS . The first type is 

termed a regular double surface integral since its integrand is not singular with only mild variation. 

This type of integral arises when both elements in a pair are relatively remote in comparison with 

their characteristic size. Similar to the single surface integral, all regular double surface integrals 

can be accurately integrated by Gaussian quadrature. The second type, termed weakly singular 

double surface integrals, arises when both elements in a pair are identical and their integrand is 

therefore weakly singular due to the involved kernels. Although these integrals exist in the sense of 

Riemann, it was pointed out by Xiao [45] that they cannot be efficiently integrated by standard 

Gaussian quadrature. To circumvent such difficulty, similar techniques based on integrand 

regularization via a series of transformations proposed by Li and Han [46], Hayami and Brebbia 

[47] and Xiao [45] are employed. The last type of double surface integrals, which are considered 

most challenging, is a nearly singular integral. The integrand of these integrals is nearly singular 

since both elements in a pair are relatively close in comparison with their characteristic size and this 

renders the kernels contained in those integrals not only nearly singular but also exhibiting rapid 

variation. Similar to the weakly singular integrals, Gaussian quadrature cannot be used to integrate 

nearly singular integrals efficiently. Special techniques proposed by Hayami [48], Hayami and 

Matsumoto [49], and Xiao [45] are systematically adopted to perform the numerical integration of 

this type of integrals. 

4. Numerical results 

First, to verify the formulation and numerical implementations, a penny-shaped crack in an 

unbounded domain is considered, to compare results with existing benchmark solutions. Next the 

elliptical crack and two interacting penny-shaped cracks in an unbounded domain are fully 

investigated. 

In the analysis, three meshes with different levels of refinement are utilized to investigate 

the convergence of numerical solutions. Nine-node isoparametric elements are used to discretize the 

entire crack front while the other parts of the crack surfaces are discretized by eight-node and six-

node isoparametric elements. The material Si [100] is used for all of numerical examples, where 
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0t

0t

properties of the bulk material and the residual surface tension 107 ,E GPa 0.33  and 

0.6056 /s N m   are obtained from Miller and Shenoy [50]. For convenience in the handling of 

numerical analysis, presentation of results, and demonstration of the influence of residual surface 

tension, all involved quantities are normalized in a proper fashion. For instance, the unknown sum 

of the traction is normalized by the shear modulus   (i.e., 0t t   ); the unknown sum and jump 

of the crack-face displacement are normalized by a special length scale 0.01506s nm     

(i.e., 0u u    and 0u u   ); all characteristic lengths representing the geometry of the crack 

such as the crack radius a, the semi-major axis a, and the semi-minor axis b used in following 

examples are normalized by the length scale   (e.g., 0a a   and 0b b  ); and the prescribed 

traction on the crack surface is normalized by the shear modulus   (i.e., 0
0i it t  ) . 

4.1. Penny-shaped crack in an unbounded domain 

As a means for verifying the proposed technique, the problem of a penny-shaped crack of radius a 

embedded in an isotropic, linear elastic infinite medium is considered (Fig. 3(a)). The crack is 

subjected to self-equilibrated, uniformly distributed normal traction 0
3 3t t t    . This problem has 

been previously solved analytically by [20, 21] using Hankel integral transforms and a special 

technique for solving dual integral equations and their results are employed as the benchmark 

solutions to validate the proposed FEM-SGBEM technique. The three meshes of the crack surface 

used in the numerical study are shown in Fig. 3(b). 

   

 

                                                                                                                 
 
 
 
 
 
 

   

  (a) (b) 

Fig. 3. (a) Schematic of a penny-shaped crack of radius a embedded in an isotropic, linear elastic 

infinite medium subjected to uniformly distributed normal traction 0
3 3t t t    ; (b) Meshes 

adopted in the analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105 nodes. 

Mesh-3: 128 elements and 401 nodes. 

 

 Mesh-1 Mesh-2 Mesh-3

2x

3x



15 
 

 The normalized crack opening displacement and normalized stresses in the vicinity of the 

crack front, when the influence of the residual surface tension is taken into account, are shown in  

Fig. 4. Results are compared with those obtained by an analytical technique [20, 21]. It is seen that 

the current technique yields solutions that agree very well with the benchmark solutions for both 

crack opening displacement and stresses 11, 22, 33 in the vicinity of the crack front. To further 

examine the influence of the residual surface tension, the normalized crack opening displacement 

and the normalized vertical stress 33 in the vicinity of the crack front with different values of 

residual surface tension s ranging from 0 to 1.0 N/m are reported in Fig. 5. It can be concluded that 

the residual surface tension exhibits significant influence on the crack opening displacement and the 

vertical stress. In particular, as s  becomes larger, the deviation of results from the classical case 

(i.e., without the residual surface tension) significantly increases and, clearly, it makes the elastic 

medium much stiffer. 

 To demonstrate the size-dependent behavior of results due to the presence of residual surface 

tension, the crack opening displacement and the vertical stress in the vicinity of the crack front are 

shown in Fig. 6 for both the classical case and the present study. It is evident that, by including the 

residual surface tension effects in the mathematical model, the solutions exhibit size-dependent 

behavior. In particular, the normalized crack opening displacement and vertical stress in the vicinity 

of crack front depend significantly on the crack size and this is in contrast with the classical case 

where the normalized crack opening displacement and normalized vertical stress are independent of 

crack radius. 

4.2. Elliptical crack in infinite domain 

To demonstrate the capability of the proposed technique for treating mode-I cracks of arbitrary 

shape, an elliptical crack embedded in an isotropic, linear elastic infinite domain is considered (see 

Fig. 7(a)). The crack front is parameterized in terms of a parameter t  by 
 

 1 2 3cos , sin , 0; 0,2x a t x b t x t       (44) 
 

where a and b are the major and minor semi-axes of the crack, respectively. The crack is subjected 

to a self-equilibrated, uniformly distributed normal traction 0
3 3t t t    . Numerical results are 

presented for the aspect ratio 1,2,3a b   and three meshes shown in Fig. 7(b) are used to model the 

elliptical crack. 

 The normalized crack opening displacement and the normalized stress 0
33 t  along the 

minor axis, when the influence of the residual surface tension is included, are presented in Fig. 8 for 
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aspect ratio 1,2,3.a b   Clearly, converged results of the crack opening displacement are obtained 

with Mesh-2 and Mesh-3 for all three aspect ratios (see Fig. 8(a)). It can be seen in Fig. 8 that when 

the aspect ratio a b  increases, the influence of the residual surface tension on the crack opening 

displacement and the stresses near the crack decreases. 
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Fig. 4. Penny-shaped crack under uniformly distributed normal traction, for 107 , 0.33E GPa    

and residual surface tension 0.6056 /s N m  : (a) Normalized crack opening displacement, (b) 

Normalized stress 0
11 / t  in the vicinity of the crack front, (c) Normalized stress 0

22 / t  in the 

vicinity of the crack front, and (d) Normalized stress 0
33 / t  in the vicinity of the crack front. 



17 
 

r0/a0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

u
3

/ 
t0

0.0

0.2

0.4

0.6

0.8

1.0

1.2
s=0.00 N/m
s=0.05 N/m
s=0.10 N/m
s=0.50 N/m
s=1.00 N/m

r0/a0

(b)

1.00 1.02 1.04 1.06 1.08 1.10

 3
3/t

0

0

2

4

6

8
s=0.00 N/m
s=0.05 N/m
s=0.10 N/m
s=0.50 N/m
s=1.00 N/m

 
 

Fig. 5. Penny-shaped crack under uniformly distributed normal traction, for 107 , 0.33E GPa    

for different residual surface tension s : (a) Normalized crack opening displacement and (b) 

Normalized stress 0
33 / t  in the vicinity of the crack front. 
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Fig. 6. Penny-shaped crack under uniformly distributed normal traction, for different crack radii 

0 / 0.5,1.0,5.0a a   for 107 , 0.33E GPa   , 0.6056 /s N m  : (a) Normalized crack 

opening displacement and (b) Normalized stress 0
33 / t  in the vicinity of the crack front. 
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  (a) (b) 
 

Fig. 7. (a) Schematics of an elliptical crack embedded in an isotropic, linear elastic infinite medium 

subjected to uniformly distributed normal traction 0
3 3t t t     and (b) Meshes adopted in the 

analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105 nodes. Mesh-3: 128 

elements and 401 nodes. 
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Fig. 8. Elliptical crack under uniformly distributed normal traction, for different aspect ratios 

/ 1,2,3a b   for 107 , 0.33E GPa   , 0.6056 /s N m  : (a) Normalized crack opening 

displacement along minor axis and (b) Normalized stress 0
33 / t  in the vicinity of the crack front 

along the minor axis. 
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In order to demonstrate the influence of the residual surface tension, the normalized crack 

opening displacement and the normalized vertical stress 33 in the vicinity of crack front with 

different values residual surface tension s ranging from 0 to 1.0 N/m are reported in Fig. 9. Two 

aspect ratios, 2,3a b  , are considered in this particular case. As shown in Fig. 9, the influence of 

the residual surface tension is also significant and the medium is stiffer when the residual surface 

tension increases.  

 To examine the size-dependent behavior of results due to the influence of residual surface 

tension, the crack opening displacement and the vertical stress in the vicinity of the crack front for 

0 0.5, 1.0, 5.0a   and two aspect ratios 2,3a b   are shown in Fig. 10. As can be seen in Fig. 10, 

the normalized crack opening displacement and normalized stresses in the vicinity of the crack front 

are size-dependent. It is contrary to the classical case (i.e., without the residual surface tension) that 

the solutions are size-independent. When either the crack-size or the aspect ratio decreases, the 

influence of the residual surface tension becomes significant; in particular, it renders the medium 

stiffer. 
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Fig. 9. Elliptical crack under uniformly distributed normal traction for different residual surface 

tension s  , for 107 , 0.33E GPa   , for different aspect ratios / 2,3a b  : (a) Normalized crack 

opening displacement along the minor axis and (b) Normalized stress 0
33 / t  in the vicinity of the 

crack front along the minor axis. 
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Fig. 10. Elliptical crack under uniformly distributed normal traction for different crack radii 

0 / 0.5,1.0,5.0a a   for 107 , 0.33E GPa   , 0.6056 /s N m  , for different aspect ratios 

/ 2,3a b  : (a) Normalized crack opening displacement along the minor axis and (b) Normalized 

stress 0
33 / t  in the vicinity of the crack front along the minor axis. 

 

4.3. Two interacting penny-shaped cracks in an unbounded domain 

As a final example, we demonstrate another feature of the current technique, viz. modeling multiple 

cracks, by considering a pair of identical penny-shaped cracks of radius a embedded in an isotropic, 

linear elastic unbounded domain as shown in Fig. 11(a). The distance between the centers of the 

two cracks is denoted by h. Both cracks are subjected to a self-equilibrated, uniformly distributed 

normal traction 0
3 3t t t    . Here, the influence of the interaction between the two cracks on the 

maximum crack opening displacement is considered. To investigate the size-dependent behavior, 

two cases are considered where the normalized radii of the identical penny-shaped cracks are taken 

as 0 1a   and 10.  The three meshes shown in Fig. 11(b) are used to test the convergence of 

numerical solutions. 

 The normalized crack opening displacement of one of the penny-shaped cracks with radius 

0 10a   is shown in Fig. 12 for 2.4h a  . It is seen that converged results of the normalized crack 

opening displacement are obtained and the residual surface tension has a significant influence on 

the predicted crack opening displacement.  
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 To study the interaction between the two cracks, the normalized maximum crack opening 

displacement is plotted for different values of h a  in Fig. 13. It can be observed in Fig. 13 that, in 

agreement with the previous examples of a penny-shaped crack and an elliptical crack, the 

maximum crack opening displacement decreases when the residual surface tension increases. The 

medium becomes much stiffer when the residual surface tension is taken into account. 
 

 
 
 
 
 
 
 

(a) (b) 

Fig. 11. (a) Schematic of a pair of penny-shaped cracks of radius a embedded in an isotropic, linear 

elastic infinite medium subjected to uniformly distributed normal traction 0
3 3t t t     and (b) 

Meshes adopted for each crack. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105 

nodes. Mesh-3: 128 elements and 401 nodes. 
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Fig. 12. Normalized crack opening displacement for a pair of penny-shaped cracks with radius 

0 10a   and 2.4h a   under uniformly distributed normal traction, for 107 ,E GPa 0.33   and 

0.6056 /s N m  . 
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It can also be observed from Figs. 13(a), 13(b) and 13(c) that results for the case of two 

interacting cracks converge very fast to those of a single crack when the residual surface tension 

increases. In particular, as the value of h a  is greater than 8, 5 and 3.5 for the classical case, 

0.6056 /s N m  , and 1 /s N m  , respectively, the normalized maximum crack opening 

displacement of the two interacting crack and that of the single crack are nearly identical. This not 

only implies the significant reduction of the interaction between the two cracks due to the presence 

of the residual surface tension but also provides the applicable range of the aspect ratio h a  to 

allow the replacement of the two-crack model by the single crack model. In addition, as clearly 

indicated in Figs. 13(a) and 13(d), the interaction between the two cracks for the classical case is 

size-independent (i.e., solutions of the two cracks converge asymptotically to that of the single 

crack in the identical manner). On the contrary, when the residual surface tension is incorporated in 

the mathematical model, the size-dependent behavior can be clearly observed by comparing results 

in Figs. 13(b), 13(e) and results in Figs. 13(c), 13(f), respectively. The decrease in the crack size 

also lowers the interaction between the two cracks. 
 

5. Conclusions 

A computationally efficient numerical technique capable of modeling mode-I planar cracks in three-

dimensional, linearly elastic media incorporating the influence of residual surface tension has been 

established. The governing equations have been formulated based on the classical theory of linear 

elasticity for the bulk medium and the Gurtin-Murdoch surface elasticity model for the 

infinitesimally thin layers on the crack surfaces. The fully coupled system of governing equations 

has been solved numerically by using the FEM-SGBEM coupling procedure. Numerical results for 

the penny-shaped crack problem have been compared with the analytical solution to validate the 

formulation and the proposed FEM-SGBEM method. By solving both the elliptical crack and two 

interacting cracks problems, the current technique has been found computationally promising to 

treat mode-I planar cracks including residual surface tension effects, for arbitrary shaped cracks and 

multiple cracks in three-dimensional isotropic linear elastic media. It has also been shown that the 

residual surface tension has a significant influence on the crack opening displacement and stresses 

in the vicinity of the crack front. Consideration of the surface stresses in the mathematical model 

not only renders the material stiffer but also introduces the size-dependency behavior of the solution. 

The presence of the residual surface tension also tends to weaken the interaction among cracks. 

 



23 
 

h/a
(a)

2 3 4 5 6 7 8

 u
3m

ax
/

t0

0.85

0.86

0.87

0.88

0.89

0.90

0.91
Two coplanar cracks radius
a0=1, s=0 (classical case)
Single crack

         
h/a
(d)

2 3 4 5 6 7 8

u
3m

ax
/ 

t0

0.85

0.86

0.87

0.88

0.89

0.90

0.91
Two coplanar cracks radius
 a0=10, s=0 (classical case)
Single crack

 

h/a
(b)

2 3 4 5 6 7 8

u
3m

ax
/

t0

0.31

0.32

0.33

0.34

0.35

0.36

0.37
Two coplanar cracks radius
a0=1, s=0.6056 N/m
Single crack

        
h/a
(e)

2 3 4 5 6 7 8

u
3m

ax
/

t0

0.72

0.73

0.74

0.75

0.76

0.77

0.78
Two coplanar cracks radius 
a0=10, s=0.6056 N/m
Single crack

 

h/a
(c)

2 3 4 5 6 7 8

u
3m

ax
/

t0

0.22

0.23

0.24

0.25

0.26

0.27

0.28
Two coplanar cracks radius
a0=1, s=1 N/m
Single crack

        
h/a
(f)

2 3 4 5 6 7 8

u
3m

ax
/

t0

0.66

0.67

0.68

0.69

0.70

0.71

0.72
Two coplanar cracks radius
a0=10, s=1 N/m
Single crack

 

Fig. 13. Normalized maximum crack opening displacement for a pair of identical penny-shaped 

cracks under uniformly distributed normal traction, for 107 , 0.33E GPa   : (a)-(c) 0 1a   and 

(d)-(f) 0 10a  . 
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Abstract 

An efficient numerical procedure for modeling planar cracks in a three-dimensional, linear elastic, 
infinite medium which accounts for the influence of surface stresses is presented in this paper. The 
concept of surface stresses, which has been widely employed in the investigation of nano-scale 
problems, is considered in the present study to derive a suitable mathematical model capable of 
simulating nano-sized cracks. An infinitesimally thin layer of material on the crack surface is 
modeled by a zero-thickness surface perfectly bonded to the bulk material, with its behavior 
governed by the Gurtin-Murdoch constitutive relation. In the formulation, the classical theory of 
isotropic linear elasticity is utilized to establish the governing equation of the bulk material in terms 
of completely regularized boundary integral equations for the displacement and traction on the 
crack surface. For the zero-thickness layer, the final governing equation incorporating the surface 
stress effect is obtained in a weak form following the standard weighted residual technique. The 
fully coupled system of equations is then solved by the FEM-SGBEM coupling numerical 
procedure. Due to the weakly singular feature of all involved boundary integral equations, standard 
continuous interpolation functions can be employed everywhere in the approximation of crack-face 
data and only special quadrature for evaluating nearly singular and weakly singular integrals is 
required. Once the implemented numerical scheme is validated with available benchmark solutions, 
it is applied to investigate the nano-scale influence of nano-sized cracks. Results from an extensive 
parametric study reveal that, the presence of surface stresses not only increases the near-surface 
material stiffness but also introduces size dependent behavior of solutions and the reduction of 
stresses in the region ahead of the crack front. 

Keywords: FEM-SGBEM Coupling, Gurtin-Murdoch Model, Nano-sized Cracks, Size 
Dependency, Surface Stresses. 

Introduction 
Nano-structured materials such as nano-belts, nano-springs, nano-wires, nano-tubes, and 
nano-composites have received much attention in various fields in recent years due to their 
desirable and unique features. One obvious example of their vast applications is the 
invention of nano-scale components and devices. In the design procedure, analysis and 
assessment of failure/damage have been found to be an essential step that must be properly 
considered to ensure the safety and integrity throughout their lifespan. While conventional 
linear elastic fracture mechanics has been well established and successfully employed as a 
tool in the modeling of existing defects/flaws in linear elastic media at a macroscopic 
scale, those hypothetical models have failed to simulate the problem of nano-sized cracks 
due to the limitation of their underlying governing physics and simplified assumptions. 
The enhancement of classical continuum-based fracture models to properly incorporate the 
nano-scale influence is, therefore, required in order to accurately capture inherent physical 
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characteristics at such a small scale. Atomistic and molecular dynamics simulations have 
demonstrated that atoms in the vicinity of the free surface behave differently from those 
within the bulk material and effects of the surface free energy on the mechanical behavior 
can be very important at the nano-scale level. This near-surface phenomenon is one of the 
most important factors rendering the difference between macroscopic and nano-scale 
structures and must be properly integrated into the continuum-based models.  
 Gurtin and Murdoch [1] and Gurtin et al. [2] proposed a well-known, surface elasticity, 
continuum-based theory to enhance the modeling capability to capture the effects of 
surface free energy in solid materials. In their model, the surface is assumed to be elastic 
and very thin, which can be mathematically modeled as a layer of zero thickness perfectly 
bonded to the bulk material. The behavior of such an idealized surface is governed by a 
linear constitutive law involving surface material parameters different from those of the 
bulk material. In the past two decades, the Gurtin-Murdoch surface elasticity theory has 
been widely used to investigate various nano-scale problems (e.g., nano-scale elastic films 
[3-5], nano-sized particles and wires [4], nano-scale inhomogeneities [6-8], nano-
indentations [9], etc.) and has also been validated because results predicted by this 
continuum-based model exhibit reasonably good agreement with those from atomistic and 
molecular dynamics simulations [4,10-12]. 
 The Gurtin-Murdoch surface elasticity model has also been utilized in the investigation 
of nano-sized cracks; however, on the basis of an extensive literature survey, most existing 
studies are still limited to certain problem settings, formulations and solution techniques. 
For instance, studies of nano-sized cracks under various loading conditions using either the 
two-dimensional, blunt-crack or classical sharp-crack models can be extensively found in 
[12-16] and [17-21], respectively. In those studies, analytical, semi-analytical or numerical 
techniques were proposed to solve the associated boundary value problem. It should be 
remarked that while use of two-dimensional models in the simulation significantly reduces 
both theoretical and computational efforts, it, at the same time, poses several drawbacks 
including the loss of out-of-plane information and limited capability to treat cracks of 
general geometry. Recently, Intarit et al. [22] and Intarit [23] successfully developed an 
analytical technique based on Hankel integral transforms to investigate the influence of 
surface stresses on the behavior of three-dimensional, nano-sized cracks. Nevertheless, due 
to the limitation of their solution technique, only penny-shaped cracks under axisymmetric 
loading can be considered. In practical situations, nano-sized crack problems can be very 
complex in terms of geometries, loading conditions, and influences to be treated (e.g., 
surface free energy and residual surface tension). As a result, the development of a fully 
three-dimensional model and an efficient and powerful numerical procedure to enhance the 
capability of existing techniques is essential and still requires rigorous investigations. Most 
recently, Nguyen et al. [24] developed a computational procedure based on the coupling of 
the finite element technique and the boundary integral equation method to model nano-
sized planar cracks in an infinite elastic medium. While their technique is applicable to 
planar cracks of arbitrary shapes, the formulation is still restricted to a limited version of 
Gurtin-Murdoch model accounting only for the residual surface tension and the 
implementation was carried out within the context of pure mode-I loading conditions.      
 The present study directly generalizes the work of Nguyen et al. [24] to incorporate the 
full Gurtin-Murdoch surface elasticity model including both surface elasticity and residual 
surface tension in modeling the zero-thickness layer. The incorporation of in-plane 
elasticity of the surface renders the mathematical model more complete and well-suited for 
studying the influence of in-plane surface stress on essential fracture data such as relative 
crack-face displacement and near-tip field, and the size-dependent behavior of the 
predicted solution.    
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Problem Formulation 
In this section, the description of the boundary value problem considered in the present 
study is clearly stated and then the formulation of the key governing equations for both the 
bulk material and the zero-thickness layer on the crack surface are briefly summarized. The 
fully coupled system of governing equations resulting from the enforcement of interfacial 
conditions is finally presented.  

Problem Description 
Consider a three-dimensional, linearly elastic, infinite medium   containing an isolated, 
planar crack of arbitrary shape with a selected reference Cartesian coordinate system {O; 
x1, x2, x3}, as shown schematically in Figure 1(a). The crack is represented by two 
geometrically identical surfaces, denoted by cS   and cS   with the corresponding outward 
unit normal vectors n  and n , and, for convenience in further development, is oriented 
perpendicular to the x3-axis. In the present study, the medium is assumed free of body 
forces and remote loading, but subjected to prescribed, self-equilibrated, normal tractions 

0t and 0t  on the crack surfaces cS   and cS  , respectively (see Figure 1(b)). An 
infinitesimally thin layer on each crack surface possesses a constant residual surface 
tension s  (under unstrained conditions) and the surface Lamé constants s  and s , 
whereas the rest of the medium, termed the “bulk material”, is made of a homogeneous, 
isotropic, linearly elastic material with shear modulus  and Poisson’s ratio .  
 A clear problem statement of the present study is, to determine the complete elastic 
field including the displacements and stresses within the bulk material by taking the 
influence of surface stresses into account. Fracture related information such as relative 
crack-face displacement and local stress field in the vicinity of the crack front is also of 
primary interest.   
 
 

 

 

 

 

 

 

 

  (a) (b) 

Figure 1: (a) Schematic of a planar crack embedded in a three-dimensional, linearly elastic, 
infinite medium and (b) prescribed normal traction on crack surfaces. 

Governing Equations 
In the formulation of the boundary value problem, the whole medium is first decomposed 
into three parts: the bulk, a layer of zero thickness on the surface cS  , and a layer of zero 
thickness on the surface cS  . Both the zero-thickness layers are assumed to be perfectly 
bonded to the bulk material. 
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 Since the bulk material is made of a homogeneous, isotropic, linearly elastic material, 
the classical theory of isotropic linear elasticity is used to describe its behavior. For 
convenience in the treatment of an infinite body containing cracks, the final governing 
equations are given in terms of boundary integral equations for the sum of the 
displacement and the jump of the tractions across the crack surface as (see details in 
Rungamornrat and Mear [28] and Rungamornrat and Senjuntichai [30]),  
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where c cS S  ; ( ) ( ) /t tmj m jD n       is a surface differential operator with tmj  denoting 

the standard alternating symbol; b b b
j j ju u u     and b b b

j j ju u u     are the sum and the 

jump of the displacement across the crack surface; b b b
j j jt t t     and b b b

j j jt t t     are the 

sum and the jump of the traction across the crack surface; { , }p kt u    are sufficiently smooth 

test functions; and the singular kernels { , , , }p p tk p
j mj mj ijU G C H  are defined for isotropic linearly 

elastic materials by, 
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where ij  is the Kronecker delta symbol and || ||r  ξ y . The boundary integral equations 
(1) and (2) are formulated in a weak form and contain only weakly singular kernels of 

(1 )rO  and, in addition, involve only unknowns on the crack surface.  
 The behavior of the two zero-thickness layers is governed by the full version of Gurtin-
Murdoch surface elasticity model, including the influence of both surface elasticity and 
residual surface tension. The equilibrium equations, surface constitutive relations, and 
strain-displacement relationship of the zero-thickness layers cS   and cS 

 are of the same 
form and given by (see also [1, 2]), 
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where , ,s s s

i iu    represent stress, strain and displacement components of each layer;  
0t denotes prescribed traction on the top of each layer; and st denotes the unknown traction 

exerted on the interface of each layer by the bulk material. It is noted that the superscript 
“s” is utilized to emphasize that those quantities are associated with the two layers and 
Greek subscripts take the values 1, 2 (instead of 1, 2, and 3 as the Latin subscripts). The 
weak statement of (7)-(9) for both layers cS   and cS 

  can readily be established following 
a standard procedure based on the weighted residual technique and the final results are 
given by (see also the development of weak statement for the special case of Gurtin-
Murdoch model in the work of Nguyen et al. [24]),  
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where superscripts “ ” and “ ” indicate the sum and jump of quantities across the crack 
surfaces and su

  and su
  are sufficiently smooth test functions. It is worth noting that the 

test function su
  satisfies the homogeneous condition on the boundary of the crack surface 

similar to the relative crack-face displacement su
 , i.e., 0s su u 

    on cS . By enforcing 
the continuity of the displacements and tractions along the interface of the two layers and 
the bulk material (i.e., s b
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the governing equations of the bulk material (1)-(2) and those of the surfaces (10)-(11) can 
be combined to obtain a final system of governing equations for the entire medium as, 
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where the bilinear integral operators , , ,A B C D  and E  are defined by, 
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and the linear integral operators 1R  and 2R  are defined, in terms of the prescribed traction 
data 0t  and 0t , by,  
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It is remarked in particular that the last equation of (12) is obtained by combining 
equations (2) and (11), along with choosing the test functions satisfying s

i iu u   . 

Numerical Implementation 
Standard procedures for the weakly singular SGBEM (e.g., [25-27, 29]) and for the 
standard finite element method (e.g., [31-33]) are employed to form the discretized system 
of linear algebraic equations of (12). Since all involved boundary integrals in the governing 
equation of the bulk material contain only weakly singular kernels of (1 )rO , standard C0 
interpolation functions are utilized everywhere in the approximation of both trial and test 
functions.  
 The construction of the coefficient matrix of the discretized system requires the 
numerical integration of two different types of integrals viz. the single and double surface 
integrals. The former which contains the regular and well-behaved integrand can be 
integrated accurately and efficiently by standard, low-order Gaussian quadrature, whereas 
the numerical integration of the latter type (appearing in the boundary integral equations 
for the bulk material) is more challenging, depending primarily on the behavior of the 
integrand. Due to the presence of the singular kernels { , , , }p p tk p

j mj mj ij iU G C H n , the integrand 
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becomes weakly singular, nearly singular, and regular when two elements involved in the 
double surface integral are identical, relatively close, and sufficiently remote, respectively. 
The transformation technique and integration rule proposed by Xiao [34] and Li and Han 
[35] are utilized to treat such double surface integrals. Once the system of linear algebraic 
equations is solved by a selected efficient linear solver, all the primary unknowns on the 
crack surface i.e.,{ , , }i i iu u t  

 are obtained and other quantities within the bulk material 
(e.g., the displacements and stresses) can then be obtained by using integral relations 
proposed by Rungamornrat and Mear [28]. 

Results and Discussions 
In this section, results for a penny-shaped crack embedded in an infinite medium are first 
presented, to verify both the formulation and the numerical implementation of the 
proposed technique with available benchmark solutions. Then, an elliptical crack 
embedded in an unbounded domain is further investigated, to demonstrate the capability of 
the proposed numerical technique. 
 In the analysis, three different levels of mesh refinement are adopted to examine the 
convergence of numerical results. Nine-node isoparametric elements are used to discretize 
the entire crack front, whereas the rest of the crack surface is discretized by eight-node and 
six-node isoparametric elements. Young’s modulus and Poisson’s ratio for the bulk 
material are taken as 107E GPa  and 0.33  , respectively, and the surface elastic 
constants and the residual surface tension are chosen identical to those utilized by [22, 23] 
(i.e., 4.4939 / ,s N m  2.7779 /s N m  , 0.6056 /s N m  ). For convenience in the 
numerical analysis, all quantities involved in the key governing equation are properly 
normalized. For instance, the unknown sum of the traction and the prescribed traction on 
the top surface of the two-thickness layers are normalized by the shear modulus   (i.e., 

0t t    and 0
0i i   ); the unknown sum and jump of the relative crack-face 

displacement are normalized by a special length scale 0.24983s nm     (i.e., 

0u u    and 0u u   ) where 2s s s    ; and all characteristic lengths 
representing the geometry of the crack such as the crack radius a, the semi-major axis a, 
and the semi-minor axis b used in following examples are normalized by the length scale 
  (e.g., 0a a   and 0b b  ). 

Penny-shaped Crack in an Elastic Infinite Medium 
In order to verify the proposed numerical technique, the problem of a penny-shaped crack 
of radius a embedded in a homogeneous, isotropic, linearly elastic infinite medium (see 
Figure 2(a)) is investigated. The crack is subjected to self-equilibrated, uniformly 
distributed traction  0  normal to its surface. This boundary value problem was previously 
studied by Intarit et al. [22] and Intarit [23] using Hankel integral transforms along with a 
solution technique for the dual integral equations, and their results are taken as the 
benchmark solutions. 
 The normalized crack opening displacement and vertical stress in the vicinity of the 
crack front obtained from the proposed numerical technique for the three meshes shown in 
Figure 2(b) are presented in Figure 3 along with the benchmark solution generated by [22, 
23]. It is seen that the numerical results are slightly mesh dependent and that they are 
highly accurate and almost indistinguishable from the analytical solution. It can also be 
pointed out from the results shown in Figure 3 that the two models incorporating the 
surface stresses with and without the influence of in-plane surface elasticity yield results 
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significantly different from those predicted by the classical model (i.e., without the surface 
stress effects). While both the residual surface tension and the in-plane surface elasticity 
contribute to such discrepancy, the influence of the residual surface tension seems more 
significant. Similar to previous findings (e.g., [9, 22]), the medium tends to be much stiffer 
than the classical case, when the full version of the surface stress model is considered in 
the analysis. 
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Figure 2: (a) Schematic of a penny-shaped crack of radius a embedded in a three-
dimensional, isotropic, linear elastic infinite medium under self-equilibrated, uniformly 
distributed, normal traction and (b) three meshes adopted in the analysis. 
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Figure 3: Results for penny-shaped crack under uniformly distributed normal traction;  
(a) normalized crack opening displacement and (b) normalized vertical stress along the  
x1-axis where 0 1r x  . 
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Figure 4: Results for penny-shaped crack under uniformly distributed normal traction for 
different residual surface tension s  varied from 0 to 1 N/m and 107E GPa , 0.33  , 

4.4939 /s N m  , 2.7779 /s N m  ; (a) normalized crack opening displacement and  
(b) normalized vertical stress along the x1-axis where 0 1r x  . 
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Figure 5: Results for penny-shaped crack under uniformly distributed normal traction for 
different crack radii 0 {0.5, 1.0, 10.0}a   and 107E GPa , 0.33  , 4.4939 /s N m  , 

2.7779 /s N m  , 0.6056 /s N m  ; (a) normalized crack opening displacement and  
(b) normalized vertical stress along the x1-axis where 0 1r x  . 

 To further examine the influence of residual surface tension on the normalized crack 
opening displacement and vertical stress in the vicinity of the crack front when the surface 
elasticity is included, results are presented in Figure 4 for various values of the residual 
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surface tension s ranging from 0 to 1.0 N/m with the surface elastic constants remaining 
fixed. It is evident that the residual surface tension exhibits significant influence on both 
the crack opening displacement and the vertical stress in the vicinity of the crack front. As 

s  becomes larger, the deviation of results from the classical case (i.e., without the surface 
stresses) increases significantly.  
 To demonstrate the size-dependent behavior of results due to the presence of surface 
stresses, the normalized crack opening displacement and vertical stress in the vicinity of 
the crack front obtained from three different models (i.e., the classical model without the 
surface stresses, the model incorporating only the residual surface tension [24], and the 
current model) are shown in Figure 5 for three different crack radii 

0 / {0.5, 1.0, 10.0}a a  .  It is evident from this particular set of results that solutions 
predicted by the two models including surface stresses clearly exhibit size-dependent 
behavior, whereas those predicted by the classical model are size-independent. 
Furthermore, as the crack radius decreases, the influence of surface stresses is more 
significant, especially when the surface elastic constants are included. 
 In addition, the incorporation of in-plane surface elasticity further reduces the crack 
opening displacement (see Figure 4(a) and Figure 5(a)). However, the existence of such 
surface elastic constants does not significantly influence the vertical stress in the vicinity of 
the crack front. The discrepancy of predicted vertical stress in the vicinity of the crack 
front from the two models with and without the surface elastic constants is barely 
recognizable (see Figure 4(b) and Figure 5(b)). 

Elliptical Crack in an Elastic Infinite Medium 
To demonstrate the capability of the proposed numerical technique of treating cracks of 
arbitrary shape, an elliptical crack embedded in an isotropic, linear elastic unbounded 
domain is considered (see Figure 6(a)). The crack front is parameterized in terms of a 
parameter t by, 
 

 1 2 3cos , sin , 0; 0, 2x a t x b t x t      (21) 
 
where a and b denote the major and minor semi-axes of the crack, respectively. The crack 
is subjected to a self-equilibrated, uniformly distributed normal traction 0 . Numerical 
results are presented for three different aspect ratios {1, 2, 3}a b  and three meshes 
shown in Figure 6(b) are adopted in the numerical study. 

 The normalized crack opening displacement and vertical stress along the minor axis, 
with the influence of the surface stresses, are presented in Figure 7 for all three aspect 
ratios considered. It can be seen from results in Figure 7, that when the aspect ratio a b  
increases, the influence of the surface stresses on the crack opening displacement and the 
near-tip vertical stresses decreases. To further examine the size-dependent behavior of 
results due to the presence of the surface stresses, the crack opening displacement and the 
vertical stress in the vicinity of the crack front for 0 / {0.5, 1.0, 10.0}b b   and for the 
aspect ratio 2a b   are shown in Figure 8. It can be observed from these results that the 
normalized crack opening displacement and the vertical stress in the vicinity of the crack 
front are apparently size-dependent. This is in contrast to the classical model (i.e., without 
the surface stresses) whose predicted solutions are size-independent. When the crack-size 
decreases, the influence of surface stresses becomes significant; in particular, it renders the 
medium much stiffer. Additionally, in agreement with the previous example, it can also be 
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observed that in-plane surface elasticity further reduced the crack opening displacement. 
However, it has negligible influence on the vertical stress in the vicinity of the crack front. 
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Figure 6: (a) Schematic of an elliptical crack embedded in a three-dimensional, isotropic, 
linear elastic infinite medium under self-equilibrated, uniformly distributed, normal 
traction and (b) three meshes adopted in the analysis. 
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Figure 7: Results for elliptical crack under uniformly distributed normal traction and for 
different aspect ratios {1, 2, 3}a b ; (a) normalized crack opening displacement along the 
minor axis and (b) normalized vertical stress in the vicinity of the crack front along the 
minor axis. 
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Figure 8: Results for elliptical crack under uniformly distributed normal traction for 
different crack radii 0 {0.5, 1.0, 10.0}b   and / 2a b  ; (a) normalized crack opening 
displacement along the minor axis and (b) normalized vertical stress in the vicinity of the 
crack front along the minor axis. 

Conclusions 
A numerical technique capable of modeling planar cracks in three-dimensional, linear 
elastic media including the surface stress effect has been established. The governing 
equations have been formulated using the classical theory of isotropic linear elasticity for 
the bulk medium and the full version of the Gurtin-Murdoch surface elasticity model for 
the infinitesimally thin layers on the crack surfaces. The full coupled system of governing 
equations has been solved numerically by using the FEM-SGBEM coupling procedure. 
The numerical results for a penny-shaped crack problem have been benchmarked with the 
available analytical solution, to verify the formulation and the proposed FEM-SGBEM 
technique. Results for an elliptical crack have also been investigated, to demonstrate the 
capability of the proposed computational procedure to treat cracks of arbitrary shape. The 
numerical technique developed in the present study has been found computationally 
promising and capable of modeling planar nano-sized cracks with arbitrary shape. 
Although results are presented only for the single crack problem for the sake of brevity, the 
formulation and implementation are definitely applicable to problems of multiple cracks. 
From an extensive numerical study, the significant role of surface stresses and the size-
dependent behavior of the predicted solutions are confirmed. In particular, a model 
including both in-plane elasticity of the surface and residual surface tension, significantly 
increases the near-surface material stiffness and predicts a much lower crack opening 
displacement and near-tip vertical stress, in comparison with the classical solution. 
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ABSTRACT 

This paper presents the analysis of an infinite, rigid based elastic layer under the action of 

axisymmetric surface loads by taking the surface energy effects into account. The 

corresponding boundary value problems for the bulk and the surface are formulated based on 

a classical theory of linear elasticity and a complete Gurtin-Murdoch constitutive relation. An 

analytical technique using Love‟s representation and Hankel integral transform is adopted to 

derive an explicit integral-form solution for both the displacement and stress fields. A 

selected numerical quadrature is subsequently applied to efficiently evaluate all involved 

integrals. After conducting an extensive parametric study, the surface stresses show strong 

influence on responses in the region relatively close to the surface and also when a length 

scale of the problem is comparable to the intrinsic length of the surface. Such influence is 

more evident when the contribution of the residual surface tension is taken into account. 

Results for general axisymmetric surface loads are then used to derive fundamental solutions 

for a unit normal concentrated load, a unit normal ring load and a unit tangential ring load. 

Such basic results constitute the essential basis for the development of boundary integral 

equations governing other related problems such as contact and nano-indentation problems. 

Keywords: Elastic layer, Gurtin-Murdoch model, Hankel integral transform, Nano-scale 

influence, Surface stresses  

1. INTRODUCTION 

Nowadays, nanotechnology gains remarkable recognition in various disciplines including 

biology, chemistry, physics, medicines, material sciences, and also engineering. This is due to 

the fact that materials in the nano-scale level exhibit desirable physical, mechanical, and 

other crucial properties very different from those of a larger scale and this, therefore, enables 

their unique applications in various fields. For instance, nano-crystals are employed in 

household lightings to convert electricity into light instead of wasting away into heat; a newly 
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invented device, called nano-shell, is used in the medical applications to destroy a tumor after 

activated by a laser beam without any harm to contiguous cells; and nano-crystalline silicon 

carbide is found in the hard protective coatings of cutting tools and computer hard disks. To 

aid the optimal design and development of those newly invented, nano-scale devices, 

advanced material researches related to nano-scale and nano-structured materials are essential 

for profoundly understanding their fundamental properties and behaviors.  

Various sophisticated techniques and physically suitable mathematical models have 

been proposed continuously, in the past three decades, to investigate the behavior and 

properties of nano-scale and nano-structured materials. Experimental methods have been 

widely employed in the characterization of mechanical properties of materials in nano-scale 

due to their advantages of perceiving the actual behavior. For instance, Wong et al. [1] 

utilized an atomic-force microscope to determine the mechanical properties of isolated silicon 

carbide nano-rods (SiC-NRs) and multi-wall carbon nano-tubes (MWNTs); Mao et al. [2] 

also employed the atomic-force microscope to investigate the hardness of both ZnO and SnO2 

nano-belts; and Poncharal et al. [3] statically and dynamically measured the bending modulus 

of carbon nano-tubes in a transmission electron microscope. Although experimental 

investigations have boosted significant progress in the area, obtained results and findings are, 

in general, highly dependent on testing conditions and, in addition, sophisticated testing 

devices and high-precision testing procedures are required. 

Due to the significant breakthrough of numerical analysis and computational devices, 

mathematical modeling and simulations have become an attractive candidate and been widely 

used in the study of nano-scale problems. Once integrating essential inherent features via 

selected governing physics and properly calibrated with data from basic experiments, 

mathematical models have been found capable of simulating responses under various 

conditions and yielding sufficiently accurate results (e.g., [4-13]). Among existing 

techniques, the molecular dynamics or atomistic calculations are robust and generally yield 

highly accurate response prediction (e.g. [6, 7, 10-11]). However, those techniques still 

possess a major drawback associated with the requirement of tremendous computational 

resources in the solution procedure. As a result, continuum-based models enhanced by 

incorporating the nano-scale influence have been increasingly proposed due to their 

simplified governing physics and computational efficiency (e.g., [4, 8-9, 12-13]). 

Resulting from atomistic simulations, it was discovered that the energy at the free 

surface is generally different from that of atoms in the bulk material (e.g., [5]). The intrinsic 
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length scale, which is defined as the ratio of surface free energy and Young‟s modulus is an 

inevitable material parameter [14] because it becomes comparable to the characteristic length 

of the material at a nano-scale. For this particular situation, the surface free energy plays an 

important role on the properties of materials and they, therefore, become size-dependent (e.g., 

[4]). As a result, the effect of surface stresses should be integrated into the classical 

continuum models to be capable of capturing the mechanical behavior of nano-scale 

materials. The concepts of surface energy and surface stress were originally introduced by 

Gibbs [15]. Gibbsian thermodynamics, one of the most useful tools for studying various 

surface phenomena, can be found in several studies of surface stresses (e.g., [16-18]). Gurtin-

Murdoch‟s surface elasticity model, one that incorporates the influence of the surface free 

energy into the classical continuum-based theory, proposed by Gurtin and his co-workers 

[19-21] has been extensively employed. The surface, which has its own constitutive law, is 

assumed to be very thin and modeled as a mathematical layer with zero thickness and 

perfectly bonded to the bulk. Material parameters contained in the constitutive relation were 

generally obtained from atomistic simulation is utilized [7, 22].  

The validity of the Gurtin-Murdoch model has been extensively examined and verified 

in various investigations (e.g., [5, 7, 22-23]). For instance, Miller and Shenoy [22] and 

Shenoy [23] applied the Gurtin-Murdoch constitutive relation to investigate the behavior of 

nano-scale bars, beams and plates under uniaxial tension, bending, and torsion. Results from 

their study were compared with those from atomistic simulations and good agreement among 

those results was concluded. Dingreville et al. [5] studied the size-dependency of elastic 

properties of nano-sized particles, wires, and films by using an analytical technique. The 

effective Young‟s modulus of thin films of various thicknesses in their analytical study was 

found in excellent agreement with results generated by molecular static (MS) simulations. 

Moreover, they also pointed out that their proposed formulation was much more 

computationally efficient than the MS simulations. According to the accuracy of predicted 

responses and computational efficiency of related solution procedures, Gurtin-Murdoch 

continuum-based model has gained significant popularity and been widely used in the study 

of nano-scale problems such as ultra-thin elastic films [24-25], nano-inclusions [26-27], 

nano-scale inhomogeneities [8-9], and nano-scale indentations [13, 28].  

Problems of surface loadings and contacts are considered fundamental in nano-

mechanics and have a wide range of applications including the investigation of mechanical 

properties such as hardness and elastic modulus. Work towards the modeling of near-surface 



 4 

fields under different surface loading conditions by using enhanced continuum-based models 

to characterize the surface energy effects has started gaining attention from various 

researchers in the past two decades since it offers computationally efficient techniques 

capable of reasonably predicting the behavior of materials at a nano-scale level. For instance, 

Wang and Feng [29] studied the responses of an elastic half-plane subjected to surface 

pressure by considering the influence of a constant residual surface tension but ignoring the 

surface elastic constants. Huang and Yu [30] extended the work of Wang and Feng [29] by 

incorporating the surface elastic constants. Recently, Zhao and Rajapakse [31] studied the 

near-surface responses and size dependency of a two-dimensional and an axisymmetric three-

dimensional infinite elastic layers under surface loads by using Fourier and Hankel integral 

transform techniques. It should be emphasized, however, that the Gurtin-Murdoch model 

used in their study was still incomplete since the out-of-plane contribution of the residual 

surface tension was ignored in their formulation. Intarit et al. [32] studied the effect of 

surface stresses on the near-surface responses of semi-infinite dislocations and buried loads in 

an elastic half-plane. Again, the contribution of out-of-plane terms was still not considered. 

Most recently, Intarit et al. [33] generalized the work of Intarit et al. [32] by integrating the 

influence of the residual surface tension in addition to the surface elastic constants to model a 

two-dimensional elastic layer under buried loading conditions.  

On the basis of an extensive literature survey, the study of near-surface responses of a 

three-dimensional elastic layer using a complete version of Gurtin-Murdoch model has not 

been well recognized. In particular, an analytical solution of a three-dimensional elastic layer 

subjected to arbitrary axisymmetric surface loads by incorporating both in-plane and out-of-

plane contribution of surface stresses is still not available in the literature and is the main 

focus of the present study. Results from this fundamental problem should not only shed some 

light on the nano-scale influence but also be potentially useful in the investigation of more 

complex boundary value problems such as nano-indentations. 

2. PROBLEM FORMULATION 

This section begins with the clear description and essential assumptions of the boundary 

value problem considered in the present study. All basic field equations for the bulk material 

and the surface are then briefly summarized. A solution technique to determine the general 

solution of elastic fields within the bulk is also outlined with the final results. Finally, the 

boundary conditions derived from the surface equations are enforced to determine a complete 
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solution of the given boundary value problem.    

2.1 Problem Description 

Consider a three-dimensional, infinite, elastic layer of constant thickness h subjected to 

arbitrary axisymmetric surface loads with its base fully restrained against the movement as 

shown schematically in Fig. 1. The reference cylindrical coordinate system is chosen such 

that the origin is located at the free surface and the positive z-axis directs downward whereas 

other axes follow the standard right-hand rule. The entire domain is treated as a body 

consisting of two different parts, the bulk material occupying a three-dimensional region 

defined by 0 < z ≤ h and the zero-thickness layer occupying the plane z = 0 and perfectly 

bonded to the bulk material. The former is made of a homogeneous, isotropic, linear elastic 

material with Lamé constants {, } whereas the latter possesses the surface Lamé constants 

{s, s} and the residual surface tension s. The normal and tangential loads acting on the 

surface (i.e., the top side of the zero-thickness layer) are denoted by p = p(r) and q = q(r), 

respectively. In the presence study, the bulk part is assumed to be free of the body force and 

remote loadings. For brevity, in what follows, the term “surface” is utilized throughout to 

signify the zero-thickness layer unless stated otherwise. The statement of the problem is to 

determine the complete elastic fields (e.g., the displacement and stress fields) within the bulk 

due to the arbitrary (axisymmetric) applied surface loads p(r) and q(r) and the influence of 

surface stresses.  

2.2 Basic Equations 

Basic field equations for the bulk follow directly the classical theory of isotropic, linear 

elasticity [34, 35]. In the absence of the body force and under axisymmetric deformation, 

equilibrium equations, constitutive laws, and strain-displacement relations (referring to the 

cylindrical coordinate system) are given by 

0 ,  0rrrr rz rz zz rz

r z r r z r
        

     
   

       (1) 

( 2 ) ,    ( 2 )
( 2 ) ,    2

rr rr zz rr zz

zz rr zz rz rz

  



           

       

       

    
      (2) 

1, , , ( )
2

r r z r z
rr zz rz zr

u u u u u
r r z z r    

   
     
   

       (3)  

where { , , , }rr zz rz     are non-zero stress components; { , , , }rr zz rz zr      are non-zero 

strain components; and { , }r zu u  are non-zero displacement components.  
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For the surface (i.e., the zero-thickness layer), the equilibrium conditions on the surface 

in terms of the generalized Young-Laplace equation [36], Gurtin-Murdoch constitutive 

relation (e.g., [19, 20]), and strain-displacement relation are given, for the axisymmetric case 

and the undeformed flat surface, by 

( ) 0 ,  ( ) 0
s ss s s

s srrrr rz rz
r z

d dt q r t p r
dr r dr r

   
               (4) 

(2 ) ( ) ,   (2 ) ( ) ,   
s

s s s s s s s s s s s s s s s s s s z
rr rr rr rz

du
dr                                (5) 

,
s s

s sr r
rr

du u
dr r               (6)  

where the superscript „s‟ is used to denote quantities corresponding to the surface and st  
denote the traction exerted on the bottom side of the surface by the bulk material. It is worth 

noting that the out-of-plane contribution of the residual surface tension indicated by the third 

equations of (5) is generally ignored in several earlier studies (e.g., [31, 32]) but it was 

pointed out by certain investigators that the influence of such out-of-plane stress on elastic 

responses can become significant (e.g., [13, 33]). By combining equations (4)-(6), it leads to 

two governing field equations for the surface in terms of the surface displacement{ , }s s
r zu u : 

2

2 2
2( 1) 11 2( 1) ( ) 0

2

s s s ss
sr r r r

r
u d u du ud t q r

dr r dr r dr r
 




   
          

   
     (7) 

2 ( 1) ( ) 0
s ss

s sz z
z

du dud t p r
dr dr r dr


 
 

     
 

        (8)  

where various normalized quantities appearing in (7) and (8) are defined as follows: 

/  s s    , /s s
r ru u  , /s s

z zu u  , / 2( )s s
r rt t    , / 2( )s s

z zt t    , /   , 

/r r  , /z z  , ( ) ( ) /q r q r  , ( ) ( ) /p r p r  , ( 2 ) / 2 ( )s         , and 

2s
s s    .   

2.3 Boundary Conditions for Bulk 

Due to the movement restraint at the base of the elastic layer, all components of the 

displacement must vanish at /z h h   , i.e., 

0r z hu


                                        (9) 
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0z z hu


                                      (10) 

where /r ru u   and /z zu u  . Since the surface is perfectly bonded to the bulk material, 

the normalized displacements { , }s s
r zu u  and the normalized tractions { , }s s

r zt t  on the surface 

can be related directly to the displacement and stress within bulk by    

0
s
r r zu u


 , 0

s
z z zu u


                               (11) 

0 0s
r rz zt 


  , 0 0s

z zz zt 


                               (12) 

where / 2( )rz rz      and / 2( )zz zz     . By employing (7), (8) and (11), and 

assuming that  s is spatially independent, the relations (12) can be further expressed as 

2

0 2
1 ( )

2( 1) 2( 1)

s
z z

zz z
d u du p r

r drdr



 

 
       

                           (13) 

2

0 2 2
1 ( )

( 2) 2( 1)
r r r

rz z
d u du u q r

r drdr r



 

 
        

                  (14) 

where constants 
 
and   are introduced only to differentiate among models with and 

without the consideration of the surface stress effects and the out-of-plane contribution of the 

residual surface tension; in particular, 1  if the surface stresses are taken into account 

otherwise 0  , and 1   if the out-of-plane contribution is taken into account otherwise 

0  . It is evident that for the special case of 0   , (13) and (14) simply reduce to 

traction boundary conditions for the classical case (without the influence of surface stresses). 

The relations (9)-(10) and (13)-(14) constitute a sufficient set of mixed boundary conditions 

for the bulk material.  

2.4 General Solution of Field Quantities within Bulk 

A form of the general solution for the normalized displacement and normalized stress within 

the bulk material can be obtained by following a standard procedure via Love‟s strain 

potential representation and the Hankel integral transform technique (see more details in [37, 

38]). The final expressions are given explicitly by 

2
1

0
( 1) ( )r

dGu J r d
dz

   


                                   (15) 
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2
2

02
0

( 2) ( )z
d Gu G J r d
dz

    
  

   
  

                             (16) 

3
2 2

0 13
0 0

2 1( ) ( )
2( 1) 2( 1)rr

dG d G dGJ r d J r d
z r dzdz

 
       

 

   
    
      
              (17) 

 

3
2 2

0 13
0 0

1( ) ( )
2 1

d G dG dGJ r d J r d
dz r dzdz


       



  
   

   
               (18) 

 
   

3
2

03
0

2 (3 4) ( )
2 1 2 1zz

d G dG J r d
dzdz

 
    

 

   
   

   
                (19) 

   

2
2 2

12
0

( 2) ( , ) ( )
2 1 2 1rz

d G G z J r d
dz

 
     

 

  
   

   
                (20) 

where ( )nJ   denotes the Bessel function of the first kind of order n, and  is the Hankel 

transform parameter. In addition, ( , )G G z  is a solution of the bi-harmonic equation in the 

Hankel transform domain, i.e., the function G satisfies 

22
2

2 ( , ) 0d G z
dz

 
 

   
 

                   (21) 

A general solution of the homogeneous ordinary differential equation (21) is given by 

( , ) ( ) ( )z zG z A Bz e C Dz e                       (22) 

where A, B, C, and D are unknown functions of   and can be determined by employing 

appropriate boundary conditions. 

2.5 Determination of A, B, C and D 

To obtain the complete solution of a particular boundary value problem, the four unknown 

functions A, B, C and D must be determined. This can be achieved by enforcing the boundary 

conditions at the top and bottom surfaces of the bulk (i.e., at 0z   and z h ). By taking 

Hankel integral transform of all four boundary conditions (9)-(10) and (13)-(14) along with 

exploiting the relations (15)-(16) and (19)-(20), it leads to a system of four linear algebraic 

equations in terms of A, B, C and D: 



 9 

2

2

( )
1 1 1 1

2
1 1

( )
(1 ) (1 ) 2

2 2 0
1 1 0

s s

h h h h

h h h h

Z
A
B R

e h e e h e C
De h e e h e

   

   


       


       


 

 

 
 

 

 

 
         
                           

   
                          

     (23) 

where 2( 1) / ( 2)     , ( 1) / 2s    , and the functions ( )Z   and ( )R   are given 

in terms of the surface loads ( )p r  and ( )q r  by 

  0
0

( ) ( )Z p r J r rdr 


                                                 (24) 

  1
0

( ) ( )R q r J r rdr 


                                             (25) 

A system of equations (23) is sufficient for uniquely determining A, B, C, and D as functions 

of   and the applied surface loads ( )Z  and ( )R  , and the final explicit solution is given by 

0 1 0 1
3 3

1 ( ) 1 ( )
4 4

Z Z R RA A A AZ RA
F F
  

 

    
    

   
                (26)

 

0 1 0 1
2 2

1 ( ) 1 ( )
4 4

Z Z R RB B B BZ RB
F F
  

 

    
    

   
                (27) 

0 1 0 1
3 3

1 ( ) 1 ( )
4 4

Z Z R RC C C CZ RC
F F
  

 

    
    

   
                 (28) 

0 1 0 1
2 2

1 ( ) 1 ( )
4 4

Z Z R RD D D DZ RD
F F
  

 

    
    

   
               (29) 

where 0 0 1 1{ , , , }Z R Z RA A A A , 0 0 1 1{ , , , }Z R Z RB B B B , 0 0 1 1{ , , , }Z R Z RC C C C , 0 0 1 1{ , , , }Z R Z RD D D D  

and F are given by 

 

2
2 2 2

0 2 2

2
1

2 2 2
0 2 2

2 2 2
1 2

( 3) 2 3 42
1( 1) ( 1)

( 3)( 1) 2 ( 1)( 1)
2

3 3 5 2 2
1( 1) ( 1)

2( 3) 4( 1) 2
2 1( 1)

h
Z

h
Z

h
R

s
h

R

hA e h

A e h h

hA e h

hA e h









     


 


   



  


 

   




  
   

 

     


 
   

 

  
    

  

               (30) 
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 2 2
0 1

2 2
0 1

3(1 2 ) ,   ( 1)( 3) 2 ( 1)
1 2

3 3(1 2 ) ,   (1 ) 2
1 2 1

h h
Z Z

s
h h

R R

B h e B e h

B h e B e h

 

 

 
   

 

   
 

 


       

 

  
       

  

            (31) 

 

2
2 2 2

0 2 2

2
1

2 2 2
0 2 2

2 2 2
1 2

( 3) 2 3 42
1( 1) ( 1)

( 3)( 1) 2 (1 )( 1)
2

3 3 5 2 2
1( 1) ( 1)

2( 3) 4( 1) 2
2 1( 1)

h
Z

h
Z

h
R

s
h

R

hC e h

C e h h

hC e h

hC e h









     


 


   


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                        (34) 

Once the functions A, B, C, and D are solved, the displacement and stress within the bulk 

material can then be obtained by using the relations (15)-(20) along with (22). 

3. NUMERICAL INTEGRATION 

Although all functions A, B, C, and D are obtained in a closed form in terms of the transform 

parameter   and applied surface loads, determination of the displacement and stress fields 

within the bulk material still requires evaluation of various integrals arising from the Hankel 

transform inversion. Due to the complexity of integrands, the direct integration procedure is 

not suitable and, in the present study, an efficient numerical quadrature is utilized. 

It is evident that all integrals appearing in (15)-(20) are improper with the upper limit 

equal to infinity. To evaluate such integrals numerically, it is common to truncate the domain 
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of integration from (0, ) to (0, R ) where R  is a finite real number. The approximate 

displacement and stress fields in terms of A, B, C, and D and truncation parameter R  are 

therefore given by  
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While the convergence of above approximate integrals to an analytical solution is ensured 

mathematically as R  approaches infinity, in the numerical calculations, it suffices to choose 

a relatively large R  such that the error from the approximation is less than a specified 

tolerance since all integrands possess a desirable rate of decay at infinity. However, due to 

the oscillating nature of their integrands introduced by Bessel functions 0( )J r  and 1( )J r , 

the numerical evaluation of all truncated integrals appearing in (35)-(40) by standard 

Gaussian quadrature over a single interval generally requires a large number of integrations 

points. To enhance the computation efficiency, the integral over the interval [0, R ] is first 

divided into N sub-integrals and Gaussian quadrature is then applied to each sub-integral. As 

N increases, the oscillating behavior of the integrand in each sub-integral essentially 
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disappears and they can, therefore, be integrated accurately by using low-order Gaussian 

quadrature. 

In the present study, the suitable truncated parameter ( R ), number of sub-integrals 

(N), and number of integration points (n) utilized in the numerical integration are fully 

investigated to ensure the accuracy of numerical results while still consuming reasonable 

computational time. Both n and N have the direct influence on the accuracy of the numerical 

integration for a fixed truncation parameter R . In general, by increasing N, each sub-integral 

requires less number of integration points since the oscillating behavior of the integrand 

gradually disappears. In the numerical experiment, for a fixed R , N is increased until the 

value of the integral converges (for a specified tolerance) by using a low order Gaussian 

quadrature for each sub-integral. The ratio /R N  is then recorded and used to indicate the 

size of the sub-interval over which the integrand is sufficiently well-behaved to be integrated 

using low order Gaussian quadrature. Finally, a proper choice of the truncation parameter R  

is obtained by increasing such upper limit until the value of the integral converges (for a 

specified tolerance). It is important to remark that in such process, the number of sub-

integrals must be increased accordingly in order to maintain the size of the sub-intervals 

( /R N ) sufficiently small to allow the use of low-order Gaussian quadrature.  

4. NUMERICAL RESULTS AND DISCUSSION 

To verify both the formulation and numerical integration scheme, obtained results are first 

compared with available benchmark solutions. Once the proposed technique is fully tested, 

extensive studies for a layer under both axisymmetric normal and axisymmetric tangential 

surface loads are investigated to understand the nano-scale influence and size-dependent 

behaviors through the surface stress effects (with/without the contribution of the residual 

surface tension). Moreover, fundamental results of an elastic layer under a unit normal point 

load, a unit normal ring load, and a unit tangential ring load are also demonstrated and fully 

discussed. 

4.1 Verification 

In this sub-section, results obtained in the present study are verified with three available 

benchmark solutions. Without the integration of surface stresses in the mathematical model, 

the present numerical results are verified with the classical solutions of an elastic layer 
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proposed by Burmister [39-40] and an elastic half space reported by Ahlvin and Ulery [41], 

respectively. Moreover, obtained results are also compared with the solution proposed by 

Zhao [28] for the case that the influence of surface stresses is taken into account without the 

out-of-plane contribution of the residual surface tension. 

4.1.1 Infinite rigid-based elastic layer under normal point force 

Consider a point load ptP , normalized such that 2/pt ptP P   , acting normal to the surface 

of a rigid-based layer with the normalized thickness 1.0h   and Poisson‟s ratio 0.2   as 

shown in Fig. 2(a). Results for this particular case without the influence of surface stresses 

can readily be obtained by setting 0   and 0  . The radial and vertical displacements at 

the surface and non-zero stress components at 0.1z   along the radial direction are reported 

and compared with analytical solutions proposed by Bumister [39-40], which were tabulated 

by Poulos [42], in Tables 1-3. It is obvious from this set of results that solutions obtained 

from the present study show very good agreement with the benchmark solution. 

4.1.2 Elastic half-space under uniformly distributed normal traction 

A three-dimensional, elastic half-space with Poisson‟s ratio 0.2  and subjected to 

uniformly distributed normal traction p0 over a circular area of normalized radius /a a   

shown in Fig. 2(b) is considered without the surface stress effects. To treat this classical case, 

 and   are taken to be zero and the normalized thickness h  is chosen to be sufficiently 

large in the analysis to represent the half-space. Results for non-zero displacement and stress 

components are reported in Table 4 along with those reported by Ahlvin and Ulery [41]. 

Similar to the previous case, solutions obtained from the current study are almost 

indistinguishable from the reference results. 

4.1.3 Infinite rigid-based elastic layer under uniformly distributed normal traction 

Consider, next, an infinite, rigid-based, elastic layer with the normalized thickness 30h   

and subjected to uniformly distributed normal traction p0, normalized such that 0 0 /p p  , 

over a circular area of normalized radius / 10a a    as shown in Fig. 2(c). To allow a 

direct comparison with available results proposed by Zhao [28], the same set of material 

constants obtained from atomistic simulation [7, 22] is utilized (i.e.,  = 58.17x109 N/m2,  = 

26.13x109 N/m2, s = 6.8511 N/m,  s = -0.376 N/m,  s = 1 N/m). Note that this particular set 

of material properties is also employed for the rest of numerical study presented hereafter. 

Results for the classical case, and the case accounting for the surface stress effects without 
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the out-of-plane contribution of the residual surface tension can be obtained by simply setting 

0, 0   , and 1, 0   , respectively. By comparing results for the surface 

displacement and stresses at 0.1z   along the radial direction with those presented by Zhao 

[28] for / 3h a   as shown in Figs. 3 and 4, it is found that solutions obtained from the 

present study are in excellent agreement with the benchmark solutions. 

4.2 Influence of Surface Stresses 

After the proposed solution and numerical scheme are verified, extensive parametric studies 

are performed to demonstrate the influence of surface stresses, the significant contribution of 

the residual surface tension, and the size-dependent behavior of the elastic field of the layer 

under normal and tangential axisymmetric surface loads. 

4.2.1 Infinite rigid-based elastic layer under uniformly distributed normal traction 

Consider an infinite, rigid-based, elastic layer subjected to uniformly distributed normal 

traction p0 over a circular area of normalized radius a  as shown in Fig. 2(c). Results for both 

radial and vertical surface displacements along the radial direction for 10a   and various 

values of the normalized thickness h  are reported in Fig. 5. It is apparent from this set of 

results that a model incorporating the out-of-plane component of the surface stresses (i.e., the 

third equation of (5)) predicts much lower surface displacement or, equivalently, renders 

materials stiffer whereas the solution obtained from a model excluding the out-of-plane 

contribution exhibits significant influence of the surface stresses only in the case of the radial 

displacement. This implies that the out-of-plane contribution of the residual surface tension is 

significant and, in general, cannot be neglected. In addition, results for all cases show similar 

trend for all values of h  considered; in particular, the magnitude of the displacement is larger 

as the normalized thickness of the layer increases. 

For non-zero stress components, results are obtained for 10h  , 1a  , and three 

different normalized depths {0.25,0.5,1.0}z  . The variation of the normalized vertical stress 

in the radial direction is reported in Fig. 6(a). Clearly, the vertical stresses for all cases reach 

the maximum value at 0r   and decay monotonically and rapidly to zero as r  increases. 

Due to the presence of surface stresses, values of the vertical stress are lesser within the 

region under the surface loads ( / 1.0r a  ) and insignificantly higher for / 1.0r a   in 

comparison with the classical solution. It can also be concluded from this set of results that 

the influence of surface stresses is more significant in the region relatively close to the 
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surface. In addition, such behavior becomes more apparent if the model incorporating the 

out-of-plane contribution of the residual surface tension is utilized in the analysis. 

Results for the normalized shear stress rzσ  are also reported in Fig. 6(c) for various 

normalized depths. The shear stress along the radial direction predicted by three different 

models exhibit the similar trend. In particular, the shear stress vanishes at 0r   due to the 

symmetry, rapidly increases and reaches its peak near the edge of the loading area (i.e., 

/ 1r a  ), and promptly decay after reaching the peak. It is worth noting that, in the region 

very near the edge of the loading area, the surface stresses especially in a model including the 

out-of-plane contribution of the residual surface tension significantly lower the magnitude of 

the shear stress. As anticipated, the influence of surface stresses is quite large in a region near 

the surface and becomes negligible in a region far away from the surface. The variation of the 

normalized radial stress rrσ  and normalized hoop stress θθσ  along the radial direction are also 

presented for various depths in Figs. 6(b) and 6(d), respectively. While all three different 

models yield qualitatively similar stress profiles, presence of the surface stresses generally 

lowers the magnitude of stresses and the discrepancy from the classical solution is magnified 

when the out-of-plane component is included.   

Through the proper normalization, solutions obtained by a classical case without the 

surface stress effects exhibit no size-dependency. However, this is different for results 

predicted by the other two models integrating the surface stresses with/without the out-of-

plane term. The size-dependent behavior can be observed due to the existence of an intrinsic 

length scale associated with the presence of the surface stresses. In this study, the size-

dependency of all normalized stresses is investigated by varying the radius of the loading 

region while maintaining the ratio /h a .  Results for / 3h a   and / 0.5r a   of three 

different depths are reported in Fig. 7. Unlike the classical solutions, results obtained from 

the two models accounting for surface stresses depend strongly on the normalized radius a  

for relatively small a  and such dependence gradually disappear as a  increases. It is worth 

emphasizing that results predicted by the model taking the out-of-plane contribution of the 

residual surface tension exhibit much stronger size-dependency than that excluding the out-

of-plane term. 

4.2.2 Infinite rigid-based elastic layer under linearly distributed tangential traction 

For this particular case, the infinite, rigid-based elastic layer subjected to linearly distributed, 

tangential traction 0( ) /q r q r a  over a circular area of normalized radius a  as shown in Fig. 
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2(d) is investigated. The prescribed traction is normalized such that 0( ) /q r q r a   where 

0 0 /q q   and 0q  is the maximum traction at the edge of the loading region. Results for the 

normalized radial and vertical displacements for different thicknesses of the layer are 

reported in Fig. 8. It is evident from these results that the presence of surface stresses 

significantly lowers the magnitude of the displacement. However, the out-of-plane surface 

stress has a very strong influence on the vertical displacement and becomes negligible for the 

radial displacement. Moreover, when the thickness of the layer increases, both the radial and 

vertical displacements increase.  

For non-zero stress components, results are obtained for 10h  , 1a  , and three 

different normalized depths {0.25,0.5,1.0}z  . Profiles of the normalized vertical stresses zzσ  

along the radial direction are reported in Fig. 9(a). At a relatively small depth, the tensile 

stress is observed within a region under the loading area and it gradually changes to the 

compressive stress when passing the edge of the loading area. The vertical stress profiles also 

show the strong influence of the surface stresses for the region relatively near the surface. 

Moreover, the discrepancy of results predicted by the two models with/without the out-of-

plane contribution of the residual surface tension is more apparent for the vertical stress but 

insignificant for the radial stresses rrσ  and the hoop stresses θθσ  (see Figs. 9(b) and 9(d)). 

Results for the normalized shear stress rzσ  are also reported in Fig. 9(c) for various depths. 

For this particular loading condition, the shear stress increases to reach its peak near the edge 

of the loading region and then abruptly decreases to zero after passing the edge of the loading 

area. Again, the influence of the surface stresses on this shear stress component is more 

apparent for the region close to the surface.  

To demonstrate the size-dependent behavior of solutions for a layer subjected to the 

linearly distributed tangential traction, a scheme similar to that used to study a layer under 

uniformly distributed normal traction is employed. The layer thickness and the radius of the 

loading region are varied while their ratio is fixed with 3h / a  . The relationship between 

the normalized stress components and the normalized radius of the loading region for three 

different depths and / 0.5r a   are reported in Fig. 10. Unlike the case of uniformly 

distributed normal load, the out-of-plane contribution of the residual surface tension has very 

strong influences only on the vertical stress whereas, for other stress components, such 

contribution becomes negligible. However, solutions obtained from the two models 

accounting for the surface stresses still show the size-dependency. In particular, as the 
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normalized radius a  and the normalized depth z  decrease, the surface stress effects become 

more significant and the size-dependency of the predicted solution is obvious. 

4.3 Fundamental Solutions 

Since the formulation has been established for arbitrarily distributed, axisymmetric surface 

loads, general results can be further specialized to construct certain fundamental solutions. 

Here, solutions of an infinite, rigid-based, elastic layer subjected to three special loading 

conditions including a normal concentrated load at the origin, a normal ring load, and a 

tangential ring load are obtained. Although only results for the surface displacement are 

reported and discussed for the sake of brevity, other field quantities such as the displacement 

and stress at any location within the bulk can also be determined in a similar fashion. 

4.3.1 Infinite rigid-based elastic layer under normal concentrated load at origin 

Consider an infinite, rigid-based, elastic layer subjected to a normal concentrated load ptP  

(with the normalized load 2/pt ptP P   ) as shown in Fig. 2(a). Profiles of the normalized 

radial displacement ru  and the normalized vertical displacement zu  at the surface obtained by 

three different models are reported in Fig. 11 for four different layer thicknesses 

{0.5,1.0,2.0,3.0}h . It is found that the normalized radial displacement is singular at 0r   

except the solution obtained from a model accounting for the out-of-plane contribution of the 

residual surface stress. On the other hand, results of the normalized vertical displacement 

tend to be infinite under the concentrated load for all cases and reduce rapidly when r  

increases. In addition, the similar behavior is observed for all layer thicknesses considered 

and the magnitude of the displacement is higher as the layer thickness increases. 

4.3.2 Infinite rigid-based elastic layer under normal ring load 

Consider, next, an infinite, rigid-based, elastic layer subjected to a normal ring load at the 

radius a, i.e., ( ) ( )rp r p r a   where rp  is a prescribed constant. The prescribed ring load 

is normalized such that ( ) ( )rp r p r a   where /r rp p   .  Results for the normalized 

radial displacement ru  and the normalized vertical displacement zu  at the surface are plotted 

along the radial direction as shown in Fig. 12 for four different layer thicknesses 

{0.5,1.0,2.0,3.0}h and 1a  . It is apparent from this set of results that the radial 

displacement for the classical case exhibits rapid variation at the location of the applied ring 

load while those obtained from the other two models are finite, smooth, and significantly 
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different from the classical solution. On the contrary, the vertical displacements predicted by 

the classical model and a model accounting for the surface stresses without the out-of-plane 

term are slightly different and singular at the location of applied load whereas that obtained 

from a model incorporating the out-of-plane term is finite and significantly different from the 

other two solutions. 

4.3.3 Infinite rigid-based elastic layer under tangential ring load 

Finally, consider an infinite, rigid-based, elastic layer subjected to a tangential ring load at the 

radius a, i.e., ( ) ( )rq r q r a   where rq  is a prescribed constant. Such applied load is 

normalized such that ( ) ( )rq r q r a   where /r rq q  . Results for the normalized 

radial displacement ru  and the normalized vertical displacement zu  at the surface along the 

radial direction are reported in Fig. 13, once again, for four different layer thicknesses 

{0.5,1.0,2.0,3.0}h and 1a  . For this particular loading condition, both the radial and 

vertical surface displacements obtained from the classical model are singular at the location 

of the applied ring load whereas those obtained from the two models accounting for the 

surface stresses are finite everywhere. While the results obtained from the two models exhibit 

huge discrepancy from the classical solution, the contribution of the out-of-plane surface 

stress is insignificant especially for the surface radial displacement.  

5. APPLICATIONS OF FUNDAMENTAL SOLUTIONS 

Results obtained in sub-section 4.3 for three fundamental loading conditions can be employed 

to construct Green‟s function for both the displacements and stresses. Such Green‟s functions 

possess vast applications such as in the calculation of an elastic field of the layer under 

arbitrarily distributed, axisymmetric surface loads and in the development of governing 

integral equations for contact and indentation problems.  

To clearly demonstrate their applications, let us consider a three-dimensional, infinite, 

rigid-based, elastic layer subjected to arbitrarily distributed, axisymmetric normal traction 

p(r) and tangential traction q(r). Once solutions of all field quantities due to both unit normal 

and unit tangential ring loads are determined, they can be utilized along with a method of 

superposition to obtain the integral relations for both the displacement and stress on the 

surface and within the bulk material due to the tractions p(r) and q(r). For instance, the radial 

and vertical displacements at any distance r̂  on the surface are given by 
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0 0

ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( )N T
r r ru r U r r p r dr U r r q r dr

 

                     (41) 

0 0

ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( )N T
z z zu r U r r p r dr U r r q r dr

 

                     (42) 

where ˆ( , )N
rU r r  and ˆ( , )N

zU r r  are radial and vertical displacements at any distance r̂  on the 

surface due to a unit normal ring load acting on the surface of the layer at the radius r, 

respectively, and ˆ( , )T
rU r r  and ˆ( , )T

zU r r   are radial and vertical displacements at any distance 

r̂  on the surface due to a unit tangential ring load acting on the surface of the layer at the 

radius r. Other field quantities at any point ( r̂ , ẑ ) within the bulk material, denoted 

generically by ˆ ˆ( , )r zR , can also be obtained in a similar fashion as  

0 0

ˆ ˆ ˆˆ ˆ ˆ( , ) ( , ; ) ( ) ( , ; ) ( )N Tr z r z r p r dr r z r q r dr
 

  R R R                  (43) 

where ˆ ˆ( , ; )N r z rR  and ˆ ˆ( , ; )T r z rR  are corresponding responses at any point ( r̂ , ẑ ) within the 

bulk material due to the unit normal ring load and unit tangential ring load acting on the 

surface of the layer at the radius r, respectively. Clearly, for a problem where the surface 

traction p(r) and q(r) are fully prescribed, the integral relations (41)-(43) can be directly 

employed to determine all field quantities.  

For contact and nano-indentation problems, the traction p(r) and q(r) under an 

indentor are unknown a priori and they must be determined before the integral relation (43) 

can be used. For a special case of an axisymmetric, rigid, frictionless, nano-indentation 

problem, the tangential traction q(r) vanishes and the vertical displacement under the indentor 

is fully prescribed in terms of the known indentor profile pv   and the prescribed indentation 

depth d. The integral relation (42) for any r̂  under the indentor becomes   

0

ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( )   ,    
a

N p
z zu r U r r p r dr d v r r a                     (44) 

where a denotes the contact radius. The integral equation (44) can be solved to obtain the 

unknown contact pressure p(r). Once p(r) is determined, all other field quantities can readily 

be obtained from the integral relation (43) with q(r) = 0. 
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For an axisymmetric, rigid, fully bonded, nano-indentation problem, the radial 

displacement under the indentor identically vanishes and the vertical displacement under the 

indentor is fully prescribed in terms of the known indentor profile pv   and the prescribed 

indentation depth d. The integral relations (41) and (42) for any r̂  under the indentor become   

0 0

ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( ) 0   ,    
a a

N T
r r ru r U r r p r dr U r r q r dr r a                     (45) 

0 0

ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( ) ( )   ,    
a a

N T p
z z zu r U r r p r dr U r r q r dr d v r r a                    (46) 

The two integral equations (45)-(46) are sufficient for solving the unknown traction p(r) and 

q(r). Once the unknown traction is obtained, all other field quantities can be computed, again, 

from the integral relation (43). 

For an axisymmetric, rigid, rough, nano-indentation problem, the tangential traction 

q(r) can be related to the normal traction p(r) via a selected friction model and, once again, 

the vertical displacement under the indentor is fully prescribed in terms of the known 

indentor profile pv   and the prescribed indentation depth d. The integral relation (42) for any 

r̂  under the indentor becomes   

0 0

ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( ( )) ( )   ,    
a a

N T p
z z zu r U r r p r dr U r r f p r dr d v r r a                    (47) 

where a prescribed function f denotes the relation between p and q via the friction model. The 

integral equation (47) can be employed to solve for the unknown normal traction p(r). Once 

p(r) is determined, the tangential traction q(r) can readily be obtained from the function f and 

all other field quantities can be computed from the integral relation (43). 

 By following the same strategy, solutions of all field quantities due to a unit normal 

concentrated load applied to the surface of a layer can also be utilized as Green‟s functions to 

establish integral relations for field quantities due to arbitrary distributed, normal traction on 

the surface. In addition, the integral relation for the vertical displacement on the surface can 

be employed to form the integral equation governing the unknown pressure under the rigid, 

frictionless indentor of arbitrary profiles. 

 While the formulation of the integral equations sufficient for solving the indentation 

problems is already established here, it still requires non-trivial and challenging tasks 
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regarding to various computational issues such as the efficiency and accuracy of the 

numerical procedure and approximate solutions, and this should deserve further investigation. 

6. CONCLUSIONS AND REMARKS 

A complete solution of a three-dimensional, infinite, rigid-based, elastic layer under 

axisymmetric normal and tangential surface loads with consideration of the surface stresses 

has been derived. A novel feature of the present study is the use of a complete version of 

Gurtin-Murdoch constitutive relation to model the free surface of the elastic layer. In the 

solution procedure, Love‟s strain potential representation along with Hankel integral 

transform technique has been applied to obtain the general solution for the bulk material 

whereas the surface equations and conditions at the rigid base supply sufficient boundary 

conditions to determine all arbitrary constants. The displacement and stress fields within the 

bulk material have been obtained via a selected efficient numerical quadrature. Once the 

obtained solutions were verified by comparing with available benchmark solutions, extensive 

parametric study has been carried out to gain insight into the nano-scale influence and also 

fully investigate the size-dependent behavior. Moreover, fundamental solutions 

corresponding to normal concentrated load, normal ring load, and tangential ring load have 

also been constructed. 

Results from extensive parametric studies have confirmed the significance of the 

surface stresses and the necessity to properly treat such influence in the continuum-based 

model. In the region relatively close to the surface, the presence of the surface stresses 

exhibits very strong influence on both the displacement and stress fields. Magnitudes of field 

quantities obtained from models accounting for the surface effects are generally less than 

those obtained from the classical model. This is due to the fact that the applied surface loads 

do not entirely transfer into the bulk but part of them is carried by the surface through the 

equilibrium of the surface and the membrane-like action. Such influences also depend 

primarily on the length scale of the problem; the influence of the surface stresses becomes 

significant when the length scale is comparable to the intrinsic length of the surface. 

Moreover, it is worth pointing out that such behavior of the out-of-plane responses under the 

normal traction is more apparent in the model that integrates the out-of-plane contribution of 

the residual surface tension. This additionally confirms the necessity to treat such crucial 

contribution in the modeling of soft elastic solids and nano-scale problems. 
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In addition, the surface radial and vertical displacements of a layer under either a 

normal ring load or a tangential ring load predicted by a model employed in the present study 

are finite everywhere. If the out-of-plane component of the surface stresses is neglected, the 

predicted vertical displacement due to the normal ring load is still singular at the location 

where the load is applied. For the case of a normal concentrated load, the vertical 

displacement obtained from both the classical model and the model incorporating the surface 

stresses is singular at the location of the applied load and only the radial displacement 

obtained from a model accounting for the out-of-plane term is finite.  
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Fig.1 A three-dimensional, infinite, elastic layer subjected to axisymmetric surface loads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (a) Three-dimensional, infinite, rigid-based, elastic layer subjected to a normal point 

load; (b) an elastic half-space subjected to uniformly distributed normal traction; (c) three-

dimensional, infinite, rigid-based, elastic layer subjected to uniformly distributed normal 

traction; and (d) three-dimensional, infinite, rigid-based, elastic layer subjected to linearly 

distributed tangential traction. 
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                                  (a)                  (b) 

Fig. 3 Normalized displacement profiles of an infinite elastic layer under uniformly 

distrubuted normal traction: (a) radial displacement and (b) vertical displacement.   
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                                  (c)                  (d) 

Fig. 4 Normalized stress profiles of an infinite elastic layer under uniformly distrubuted 

normal traction: (a) vertical stress, (b) radial stress, (c) shear stress, and (d) hoop stress.  
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                                  (a)                  (b) 

Fig. 5 Normalized displacement profiles of an infinite elastic layer under uniformly 

distrubuted normal traction: (a) radial displacement and (b) vertical displacement. 
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Fig. 6 Normalized stress profiles of an infinite elastic layer under uniformly distrubuted 

normal traction for 10h   and 1a  : (a) vertical stress, (b) radial stress, (c) shear stress, and 

(d) hoop stress. 
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 Fig. 7 Normalized stresses of an infinite elastic layer under uniformly distrubuted normal 

traction for 3h / a  and 0 5r / a . : (a) vertical stress, (b) radial stress, (c) shear stress, and 

(d) hoop stress. 
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                                  (a)                  (b) 

Fig. 8 Normalized displacement profiles of an infinite elastic layer under linearly distrubuted 

tangential load: (a) radial displacement, and (b) vertical displacement. 
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Fig. 9 Normalized stress profiles of an infinite elastic layer under linearly distrubuted 

tangential load for 10h   and 1a  : (a) vertical stress, (b) radial stress, (c) shear stress, and 

(d) hoop stress. 
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                                   (c)                 (d) 

Fig. 10 Normalized stresses of an infinite elastic layer under linearly distrubuted tangential 

load for 3h / a  and 0 5r / a . : (a) vertical stress, (b) radial stress, (c) shear stress, and   

(d) hoop stress. 
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                                 (a)                 (b) 

Fig.11 Normalized displacement profiles of an infinite elastic layer under normal 

concentrated load: (a) radial displacement and (b) vertical displacement.   
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Fig.12 Normalized displacement profiles of an infinite elastic layer under normal ring load: 

(a) radial displacement and (b) vertical displacement.  
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                                  (a)                 (b) 

Fig. 13 Normalized displacement profiles of an infinite elastic layer under tangential ring 

load: (a) radial displacement and (b) vertical displacement. 
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Table 1 Normalized vertical and radial displacements of a three-dimensional, infinite, rigid-

based, elastic layer subjected to a normal point load 

 

r   
r pt2πhEu / P  z pt2πhEu / P  

Burmister 
[39, 40] Present study Burmister 

[39, 40] Present study 

0.05 -14.362 -14.344 35.921 35.310 
0.1 -7.124 -7.172 16.728 16.554 
0.2 -3.455 -3.477 7.162 7.195 
0.3 -2.184 -2.178 4.016 4.050 
0.4 -1.523 -1.512 2.478 2.473 
0.5 -1.064 -1.109 1.599 1.579 
0.6 -0.824 -0.830 1.048 1.048 
0.7 -0.62 -0.620 0.69 0.704 
0.8 -0.465 -0.461 0.45 0.458 

 

Table 2 Normalized vertical and radial stress components of a three-dimensional, infinite, 

rigid-based, elastic layer subjected to a normal point load 

 

r   
( 1)2

zz pt4πh λ σ / P  ( 1)2
rr pt4πh λ σ / P  

Burmister 
[39, 40] Present study Burmister 

[39, 40] Present study 

0 300 300 -30.71 -30.72 
0.1 53.08 53.06 34.75 34.75 
0.2 5.415 5.395 12.5 12.49 
0.3 0.994 0.974 3.347 3.344 
0.4 0.293 0.273 0.614 0.611 
0.5 0.124 0.103 -0.259 -0.262 
0.6 0.067 0.048 -0.528 -0.530 
0.7 0.041 0.025 -0.578 -0.579 
0.8 0.026 0.013 -0.544 -0.544 
0.9 0.016 0.006 -0.479 -0.478 
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Table 3 Normalized shear and hoop stress components of a three-dimensional, infinite, rigid-

based, elastic layer subjected to a normal point load 

r   
( 1)2

rz pt4πh λ σ / P  ( 1)2
θθ pt4πh λ σ / P  

Burmister 
[39, 40] Present study Burmister 

[39, 40] Present study 

0 0 0.000 -30.71 -30.720 
0.1 53 53.003 -4.342 -4.355 
0.2 10.68 10.676 2.237 2.224 
0.3 2.765 2.765 1.996 1.983 
0.4 0.909 0.908 1.349 1.337 
0.5 0.326 0.324 0.877 0.865 
0.6 0.102 0.099 0.566 0.554 
0.7 0.005 0.002 0.363 0.352 
0.8 -0.038 -0.043 0.231 0.221 
0.9 -0.056 -0.061 0.144 0.135 

Table 4 Normalized displacement and stress components of a three-dimensional, infinite, 

elastic half-space subjected to a uniformly distributed normal traction 

z  /a  

( 1) zz 02 λ σ / p  ( 1) rr 02 λ σ / p  ( 1) θθ 02 λ σ / p  z 0u / p  
Ahlvin 

and 
Ulery 
[41] 

Present 
study 

Ahlvin 
and 

Ulery 
[41] 

Present 
study 

Ahlvin 
and 

Ulery 
[41] 

Present 
study 

Ahlvin 
and 

Ulery 
[41] 

Present 
study 

0 1.000 0.993 0.700 0.695 0.700 0.695 0.800 0.800 
0.1 0.999 0.999 0.581 0.581 0.581 0.581 0.769 0.769 
0.2 0.992 0.992 0.468 0.468 0.468 0.468 0.736 0.736 
0.3 0.976 0.976 0.367 0.367 0.367 0.367 0.702 0.702 
0.4 0.949 0.949 0.280 0.280 0.280 0.280 0.667 0.667 
0.5 0.911 0.911 0.208 0.208 0.208 0.208 0.633 0.633 
0.6 0.864 0.864 0.151 0.151 0.151 0.151 0.599 0.599 
0.7 0.811 0.811 0.106 0.106 0.106 0.106 0.566 0.566 
0.8 0.756 0.756 0.072 0.072 0.072 0.072 0.535 0.535 
0.9 0.701 0.701 0.047 0.047 0.047 0.047 0.505 0.505 
1 0.646 0.646 0.028 0.028 0.028 0.028 0.478 0.478 

1.2 0.547 0.547 0.005 0.005 0.005 0.005 0.429 0.429 
1.5 0.424 0.424 -0.010 -0.010 -0.010 -0.010 0.368 0.368 
2 0.284 0.284 -0.016 -0.016 -0.016 -0.016 0.294 0.294 

2.5 0.200 0.200 -0.014 -0.014 -0.014 -0.014 0.243 0.243 
3 0.146 0.146 -0.012 -0.012 -0.012 -0.012 0.207 0.207 
4 0.087 0.087 -0.008 -0.008 -0.008 -0.008 0.158 0.158 
5 0.057 0.057 -0.005 -0.005 -0.005 -0.005 0.128 0.128 
6 0.040 0.040 -0.004 -0.004 -0.004 -0.004 0.107 0.107 
7 0.030 0.030 -0.003 -0.003 -0.003 -0.003 0.092 0.092 
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