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ABSTRACT

Project Code: BRG5480006

Project Title: Models for fundamental problems in engineering mechanics with consideration
of nano-scale influence

Investigators: Teerapong Senjuntichai and Jaroon Rungamornrat, Department of Civil
Engineering, Faculty of Engineering, Chulalongkorn University

Email Address: Teerapong.S@chula.ac.th and Jaroon.r@chula.ac.th

Project Period: 3 years

Abstract: In this research project, accurate and efficient techniques are developed for solving
fundamental problems in solid mechanics with consideration of nano-scale influence. Three
problems are considered in the present study, namely, elastic layer under surface loading,
nano-indentation, and nano-sized cracks. The concept of surface elasticity, which has been
widely employed in the investigation of nano-scale problems, is adopted to derive a suitable
mathematical model capable of simulating the influence from surface energy that has been
considered essential for nano-sized objects. In the present formulation, the classical theory of
linear elasticity is utilized to establish the key governing equations of the bulk material
whereas the well-known Gurtin-Murdoch surface elasticity model is employed to simulate
responses of an infinitesimally thin layer of material adhered perfectly to the surface of the
body. The governing equations for the surface and the bulk material are both formulated in an
appropriate form for the solution sought, and properly coupled via appropriate interface
conditions. Selected solution procedures are then implemented to efficiently and accurately
determine solutions of the fully coupled governing equations. Once the proposed techniques
are verified with available benchmark solutions, they are applied to investigate the size
dependency of predicted solutions and nano-scale influence on the fundamental problems
under consideration. Numerical results from an extensive parametric study confirm the fact
that the presence of surface stresses is significant in the analysis of solid mechanics problems
involving nano-scale influence and soft elastic materials where the surface energy effects are
not negligible.

Keywords: cracks, nano-indentations, elastic layer, nano-scale influence, Gurtin-Murdoch,
surface stresses, SGBEM, FEM
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traction with different values of h/a, for E=107GPa, v =0.33,

A°=4.4939 N /m, residual surface tension 7° =0.6056 N /m: (a)
a, =1 and (b) a, =10 obtained by using mesh-3
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CHAPTER |
INTRODUCTION

1.1 Motivation and Significance

Nowadays, Nanotechnology has become one of the most interesting research areas in various
fields such as biology, chemistry, physics, medicine and engineering. Although nanotechnology
deals only with extremely tiny objects with their length scale of few nanometers (where one
nanometer is approximately about 50,000 times smaller than the average of a human hair), its
applications tend to be substantial. For instance, nano-crystals are examples of a new invention at
a nano-scale level. Metal nano-crystals can be incorporated into car bumpers, making the parts
stronger, or into aluminum, making it more durable. Other applications of the metal nano-
crystals can be found in the production of bearings, new types of sensors and components for
computers and electronic hardware. The nano-crystals of various metals have been shown to be
100 percent, 200 percent and even as much as 300 percent harder than the same materials in the
bulk form. Since the wear resistance is often dictated by the hardness of a metal, parts made from
the nano-crystals might last significantly longer than conventional parts. In a field of medicine
and healthcare, ones apply the nanotechnology to produce a nano-particulate-based synthetic
bone. It is well known that the human bone is made of a calcium and phosphate composite called
hydroxyapatite. By manipulating the calcium and phosphate at a molecular level, ones can create
a patented material that is identical in structure and composition to the natural bone. This novel
synthetic bone can be used in areas where the natural bone is damaged or removed, such as in the
treatment of fractures and soft tissue injuries. For public utilities, nano-filters are capable of
filtering the smallest particles of impurities. Such performance results directly from the nano-
sized alumina fiber attracting and retaining sub-micron and nano-sized particles. This disposable
filter retains 99.9999 percentages of viruses at water flow rates several hundred times greater
than virus-rated ultra-porous membranes. This product can be exploited to sterilize drinking
water, allowing inhabitants in third-world countries to access the clean water. In a field of
advanced materials, researches related to nano-science and nanotechnology such as nano-tubes,
nano-wires, nano-composites and nano-films have grown rapidly and continuously. For
examples, the carbon nano-tube, which was discovered by lijima in 1991 (lijima 1991, lijima
and Ichihashi 1993), has been known as an ideal material that possesses excellent mechanical
properties. For instance, Young’s modulus, tensile strengths and failure strains of a defect-free
single-walled carbon nano-tube are up to 1 TPa, greater than 100 GPa and about 15-30%,
respectively (Peng et al. 2008). All above excellent products come from advanced researches
conducted at the nano-scale level. What we have seen is just the beginning of a revolution,
caused by the ability to work on the same scale as nature. The nanotechnology is going to affect
every aspect of our life. It will become the next industrial revolution (Ratner and Ratner 2003).
The nanotechnology can be compared to a dawn of the digital revolution that totally changes the
face of technology and human life. Unlike the internet, the nanotechnology can equally be
applied to old things and processes. It is about creating entirely new materials, products, and
systems as well as making existing products faster, stronger and better.

Due to enormous benefits that nanotechnology has brought out for the human,
applications of nano-sized devices and nano-structured materials rapidly grow in various field.
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The physical modeling and corresponding comprehensive analysis to gain an insight into the
complex behavior of nano-sized devices and nano-structured materials become crucial aspects in
the optimal design of nano-scale products. Besides the fundamental understanding of mechanical
properties in the nano-scale level, failure/damage analysis and assessment has been found one of
the essential steps that must be properly considered to ensure their safety and integrity in the
design procedure.

In the past three decades, various techniques have been developed and used extensively
to investigate the nano-mechanical properties and characteristics of nano-sized structures.
Several experimental researches have been found in the literature; for instance, Wong et al.
(1997) utilized an atomic-force microscopy to determine the mechanical properties of isolated
silicon carbide (SiC) nano-rods (NRs) and multi-wall carbon nano-tubes (MWNTS), Mao et al.
(2003) employed the atomic-force microscope to investigate the hardness of both ZnO and SnO,
nano-belts, and Poncharal et al. (1999) statically and dynamically measured the bending modulus
of carbon nano-tubes in a transmission electron microscope. In addition, some researchers
attempted to use the experimental approaches to explore the behavior of nano-sized cracks (e.g.,
Karimi et al. 2002, Sumomaogi et al. 2002, Sundararajan and Bhushan 2002, Chen et al. 2008,
Peng et al. 2008, Zhao and Xing 2008, Qin et al. 2009, Zhao and Xing 2010, Yan et al. 2011). It
is generally acknowledged that experimental methods yield results reflecting real behavior.
However, it is still found highly dependent on experimental environments and, more importantly,
expensive due to the requirement of sophisticated equipments and high-precision testing
procedures. As a result, the mathematical simulations and modeling has become an attractive
alternative and been widely used to develop fundamental understanding and further predict
complex phenomena. In addition, once integrating essential features and properly calibrated with
data from basic experiments, mathematical models are found capable of simulating responses
under various conditions. Within the context of modeling nano-scale influence of solids, two
predominant mathematical models, one known as the molecular or atomistic models and the
other corresponding to the modified or enhanced continuum-based models, have been commonly
employed in the literature. The molecular-based simulations have been verified to yield accurate
prediction of responses of interest due to their effectiveness in detailing of bonds or atoms (e.g.,
Buehler et al. 2003, Zhang et al. 2005, Buehler and Gao 2006, Rafii-Tabar et al. 2006, Pugno et
al. 2008, Huang et al. 2009, Masuda-Jindo et al. 2009, Phan and Tippur 2009, Adnan and Sun
2010), however, such simulations require enormous computational effort and resources to treat
billions of atoms at a nano-scale. This therefore renders the discrete atomic-scale models
impractical in various applications.

As a result, modified or enhanced continuum-based models have become an attractive
alternative due to their advantages of saving computational resources. Unlike macro-structures,
in the case of nano-sized objects (e.g., thin films, quantum dots, nano-wires, nano-tubes and
nano-composites), the surface to volume ratio is much higher and, as a direct consequence, the
surface free energy often plays a crucial role in the mechanical behavior (Yakobson 2003).
Therefore, the classical theory of continuum-based mechanics commonly used in the modeling
of macroscopic bodies cannot be directly applied to accurately treat the problem of nano-scale
structures and nano-sized cracks. While a conventional theory of linear elasticity has been well
established and employed in the modeling of linear elastic uncracked and cracked bodies, the
enhancement of classical models to incorporate the nano-scale influence is essentially required.

Due to the rapid growth of interests and increasing applications of nano-technology, the
investigation of mechanical behaviors and responses at a nano-scale level has gained significant



attention from many researchers and various sophisticated models have been proposed to study
those phenomena. Problems of surface loadings and contacts, nano-indentations, nano-sized
cracks are considered fundamental in nano-mechanics and have a wide range of applications
including the investigation of mechanical properties such as hardness and elastic modulus. Work
towards the modeling of near-surface fields under different surface loading conditions by using
modified continuum-based models to characterize the surface energy effects has started gaining
attention from several researchers in the past two decades since it offers computationally
efficient techniques capable of reasonably predicting the behavior of materials at a nano-scale
level. Similarly, nano-indentations have become a widely adopted technique to be used in the
measurement of mechanical properties at the nano-scale. Unfortunately, the effect of surface
elasticity during the indentation has been usually considered by experimental measurements and
molecular dynamics/atomistic simulations which are generally very time-consuming and
expensive. To minimize such limitations, modified continuum models accounted for the surface
effects could be developed for nano-indentation problems, additionally, in order to clearly
understand the nano-mechanical properties. It can be noted further that existing investigations
using continuum-based theories to model defects/fractures at the nano-scale level have also been
very limited. Most of them are restricted to situations where cracks can be treated either within
the context of two-dimensional boundary value problems (e.g., Fu et al. 2008, Wang et al. 2008,
Fang et al. 2009, Fu et al. 2010, Kim et al. 2010, Kim et al. 2011, Kim et al. 2011, Nan and
Wang 2012, Kim et al. 2013, Nan and Wang 2013) or within the context of relatively simple
three-dimensional problems (Intarit et al. 2012, Intarit 2013). However, bodies or components
involved in practices are, in general, relatively complex in terms of geometries, loading
conditions, and influences to be treated (e.g., surface free energy). Existing simplified
mathematical models are therefore of limited capabilities and insufficient to be used in the
prediction of responses in those practical cases. This, as a result, necessitates the development of
a fully three-dimensional models supplemented by efficient and powerful numerical procedures.

1.2 Background and Review

In this section, an extensive literature survey including the existing work relevant to the current
study and the sequence of historical background in this specific area is provided. In order to be
systematic, results from such overview are separated into four parts regarding to their main
focus. Firstly, the development of surface elasticity model is reviewed to observe how important
of surface energy effects in the material characterization of nano-scale elements and soft elastic
solids. Then, previous studies related to elastic media under surface loadings, indentation
problems, and nano-sized cracks are summarized.

1.2.1 Surface elasticity models

Gibbs (1906), who originally formulated the most useful and powerful concepts in studying
surface phenomena, defined the quantity yto represent the excess free energy per unit area owing
to the existence of a surface. Gibbs was the first who pointed out that, for solid-solid interfaces,
there is another type of fundamental parameter called the surface stress that critically affects the
behavior of surfaces, i.e. to elastically stretch a pre-existing surface. Simply saying that, to
deform such a solid, excessive work is needed to stretch the surface in addition to straining the
bulk. The larger partition of work done to surface, the more important the effect of surface stress
(He and Lim, 2006). Comprehensive literature review on the surface energy effect and the
Gibbsian formulation of the thermodynamics of surfaces can be found in general researches of
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surface and interface stresses (Cammarata, 1994; Cammarata, 1997; Shuttleworth, 1950; Fischer
et al., 2008). Especially, Cammarata (1994) gave an excellent explanation of the concept of the
surface stress and also showed that the difference between the surface stress and the surface free
energy y is equal to the change in surface free energy per unit change in elastic strain of the
surface. It should be noted that y is a scalar quantity, while the surface stress is a second order
tensor in the tangent plane of the surface and the strain normal to the surface is excluded.

A surface can be identified as a layer that an excess energy is attached and certain energy
is usually termed as the surface energy y (Fischer et al., 2008). Due to the different number of
nearest neighbors between surface atoms and bulk atoms, it results in a corresponding
redistribution of electronic charge and modifies layer spacing to be lesser at the surface, which
deviates from the bulk value (Sander, 2003). As a result, the energy at a free surface will, in
general, be different from that of the atoms in the bulk (Dingreville et al., 2005). The ratio of
surface free energy y (J/m?) and Young’s modulus E (/m®), #E, is an inevitable parameter of
materials (Yakobson, 2003). For usual metallic materials, the ratio is normally less than one
Angstrom. For some soft solids, such as polymer gels and biological materials, however, the
surface energy (or surface stress) is a little less than that of a metal, but the elastic modulus can
be nearly 7-8 orders smaller than that of conventional solids. Therefore, the corresponding
intrinsic length scale of soft solids is much larger, implying that the surface energy can play an
important role on the properties of the materials, and thus the properties become size-dependent
(He and Lim, 2006). As a consequence, the effects of surface stress should be incorporated into
classical continuum models in order to study the behavior of soft materials or to obtain the
correct response for nanoscale problems.

Many authors have developed continuum models that include surface energy effects, and
one of them is Gurtin-Murdoch model. Gurtin and Murdoch (1975, 1978), and Gurtin et al.
(1998) proposed a mathematical framework to study the mechanical behavior of material
surfaces through a continuum model with the surface stress. An elastic surface is assumed to be
very thin and modeled as a mathematical layer of zero thickness bonded to the bulk without
slipping. Also, the elastic moduli of the surface can be different from the bulk. For an isotropic
elastic surface, a linearized surface stress-strain constitutive relation is given by
Chy =T 0, + 2(;15 —Ts)glf,a +(/15 +fs)g;5ﬂa +7°Uy (1.1)
where the subscript ‘s’ denotes the quantities corresponding to the surface, x°and A ° are surface
Lamé constants and 7 ° is the residual surface tension under unstrained conditions, which is a
constant.

In order to verify Gurtin-Murdoch model, Miller and Shenoy (2000) employed such a
model to describe the size dependence of the stiffness of plates, bars and beams under either
uniaxial tension or bending. Their results were compared with direct atomistic simulations of
nanoscale structures using the embedded atom method for face-centered cubic aluminum and the
Stillinger-Weber model for silicon. By neglecting the error induced from the effects of corners
present in the modeling of beams, excellent agreement between the simulations and the model is
observed. Shenoy (2002) completed a framework derived earlier by Miller and Shenoy (2000) by
adding the torsional rigidities of nanosized structural elements and applied to the case of
nanoscale bars in torsion. The theoretical results were compared with direct atomistic
simulations for the torsion of square bars of various metals and found in good agreement. It is
noted that the difference in theoretical values and simulation results mainly came from the



assumption that the surface energy depends only on the surface strain; however, it should also
depend on the surface curvature strain. Dingreville et al. (2005) derived analytical expressions
for an elastic modulus tensor of nanosized structural elements accounted for surface energy
effects and showed that the overall elastic properties of nanosized particles, wires and films are
size-dependent. The effective Young’s modulus of thin films of various thicknesses computed by
using molecular static (MS) simulations and their proposed formulation are in excellent
agreement. They also pointed out that results obtained from MS simulations were much more
computationally intensive than the proposed formulation. This should confirm the benefit of
employing such alternative continuum-based model to save the computational resources.
Undoubtedly, Gurtin-Murdoch continuum model has been applied and widely used in nanoscale
problems by several investigators, for example, to analyze the size dependent mechanical
response of ultra-thin elastic films (He et al., 2004; Huang, 2008) and thin plates (Lu et al.,
2006). Recently, such a model has been employed to study the problems of nanoscale
inhomogeneities. For instance, Sharma and Wheeler (2007) and Sharma et al. (2003)
reformulated the size dependent elastic field of spherical and ellipsoidal nano-inclusions by
applying this model. Duan et al. (2005) presented the interior and exterior Eshelby tensors for a
spherical inhomogeneity subjected to arbitrary uniform eigenstrain under the surface/interface
effects. Tian and Rajapakse (2006, 2007) derived the solution for a nanoscale circular and
elliptical inhomogeneity in an infinite matrix under remote loading based on the Gurtin-Murdoch
model. Moreover, Zhao and Rajapakse (2009) presented the analytical solution of the plane and
axisymmetric problems for an elastic layer of finite thickness subjected to surface loading by
using Fourier and Hankel Transform techniques. Numerical results indicated that the surface
effects show significant influence on the vertical surface displacement of a layer and such
influence on the stress field in the case of horizontal point load is more significant than that in
the case of vertical point load. Intarit et al. (2010) recently confirmed the significance of the
surface stress on very near the surface of both shear and opening dislocations, and also on buried
vertical and horizontal loads in an elastic half-plane. They also found that the stress field has an
asymptotic solution with increasing the characteristic length parameter.

It is obviously seen from (1.1) that, to employ Gurtin-Murdoch continuum model, surface
elastic properties (i.e. surface energy, surface stress, and surface elastic stiffness) must be known
a priori. In addition, these particular quantities are also strongly influenced on the overall
mechanical behavior in nanostructures. Thus, many approaches have been proposed, based either
on experimental measurements or atomistic simulations, to determine such properties. Among
various experimental techniques, Jing et al. (2006) measured the elastic properties of the
nanowires by using contact atomic force microscopy (C-AFM) and found that the Young’s
modulus of the silver nanowire with consideration of the surface effect, surface modulus and
surface stress are 56 GPa, 8.7 N/m, and 5.8 N/m respectively. Another method, rather
computationally intensive, is atomistic simulations. Shenoy (2005) developed a fully nonlinear
formulation of the surface elasticity and established a procedure for calculating surface elastic
constants from atomistic simulations by adopting the embedded atom method. To reduce
disadvantages of both experimental and atomistic approaches, Dingreville and Qu (2007)
presented a semi-analytical method to compute a full set of data on surface elastic properties of
crystalline materials. By applying this developed method, the surface elastic properties were
formulated analytically and explicitly in terms of inter-atomic potentials, and a standard
molecular simulation was used to obtain the relaxed positions of the atoms near the free surface
in order to evaluate such analytical expressions.



1.2.2 Elastic layer under surface loadings

Problems of surface loadings and contacts are considered essential in nano-mechanics since they
have a wide range of applications including the investigation of mechanical properties such as
hardness and elastic modulus. Work towards the modeling of near-surface fields under different
surface loading conditions by using enhanced continuum-based models to characterize the
surface energy effects has started gaining attentions from various researchers in the past two
decades since it offers computationally efficient techniques capable of reasonably predicting the
behavior of materials at a nano-scale level.

For instance, Wang and Feng (2007) studied the responses of an elastic half-plane

subjected to surface pressure by considering the influence of a constant residual surface tension
but ignoring the surface elastic constants. Huang and Yu (2007) extended the work of Wang and
Feng (2007) by incorporating the surface elastic constants. Recently, Zhao and Rajapakse (2009)
studied the near-surface responses and size dependency of a two-dimensional and an
axisymmetric three-dimensional infinite elastic layers under surface loads by using Fourier and
Hankel integral transform techniques. It should be emphasized, however, that the Gurtin-
Murdoch model used in their study was still incomplete since the out-of-plane contribution of the
residual surface tension was ignored in their formulation. Intarit et al. (2010) studied the effect of
surface stresses on the near-surface responses of semi-infinite dislocations and buried loads in an
elastic half-plane. Again, the contribution of out-of-plane terms was still not considered. Most
recently, Intarit et al. (2011) generalized the work of Intarit et al. (2010) by integrating the
influence of the residual surface tension in addition to the surface elastic constants to model a
two-dimensional elastic layer under buried loading conditions.
On the basis of an extensive literature survey, the study of near-surface responses of a three-
dimensional elastic layer using a complete version of Gurtin-Murdoch model has not been well
recognized. In particular, an analytical solution of a three-dimensional elastic layer subjected to
arbitrary axisymmetric surface loads by incorporating both in-plane and out-of-plane
contribution of surface stresses is still not available in the literature and is the main focus of the
present study. Results from this fundamental problem should not only shed some light on the
nano-scale influence but also be potentially useful in the investigation of more complex
boundary value problems such as nano-indentations.

1.2.3 Nano-indentations

It is understood that indentation techniques have been widely used for measuring mechanical
properties on nanoscale such as hardness and elastic modulus. For example, the use of
nanoindentation to measure the mechanical properties of ceramics (Hainsworth and Page, 1994),
metals (Armstrong et al., 1995; Beegan et al., 2007) and polymers (Yang and Li, 1995; Yang and
Li, 1997). By using depth-sensing indentation tests with either spherical or conical indenters,
Young’s modulus can be calculated from the slope of the linear portion of the unloading curves
in the load versus penetration depth while hardness can be calculated from data along the loading
curves (Doerner and Nix, 1986; Oliver and Pharr, 1992).

Several authors have obtained the elastic solution of the indentation problems by using
various mathematical methods. The classical problem of axisymmetric rigid punch indenting on
an elastic half-space was first considered by Boussinesq (Boussinesq, 1885). According to the
form of a solution, his numerical results were obtained only for a flat-ended cylindrical and a
conical punch. Harding and Sneddon (1945) and Sneddon (1965) solved Boussinesq’s problem



under a punch of arbitrary profile by applying Hankel integral transform techniques. Clements
(1971) later determined the stress fields produced from the rigid indentation on an anisotropic
half-space by employing the theory of anisotropic elasticity developed by Eshelby et al. (1953)
and Stroh (1958). Since the smart materials have recently gained significant interest from several
researchers in the field of mechanics, the classical theory of elasticity becomes an important tool
in studying their behavior from indentation techniques. Chen (2000) generalized the potential
theory to analyze the piezoelastic contact problem of a punch pressed against a piezoelectric
half-space. Giannakopoulos and Parmaklis (2007) examined the quasistatic contact problem of a
circular rigid punch on piezomagnetic materials and confirmed their theoretical results by
conducting an experiment on Terfenol-D. In addition, an elastic behavior of a nonhomogeneous
transversely isotropic half-space was studied by Chaudhuri and Ray (2003) under the action of a
smooth rigid axisymmetric indenter.

The indentation problems associated with an elastic layer perfectly bonded to an elastic
half-space were also investigated. Lebedev and Ufliand (1958) considered a problem of a flat-
ended rigid cylindrical indenter on an elastic layer resting on a rigid foundation by using
Papkovich-Neuber’s representation for the displacement vector. After reducing mixed boundary
conditions to a pair of integral equations, Fredholm integral equation was obtained and solved
numerically. By taking the Hankel transform technique, Dhaliwal and Rau (1970) reduced the
axisymmetric Boussinesq problem of an elastic layer lying over an elastic half-space under a
rigid punch of arbitrary profile to a Fredholm integral equation but no numerical result was
presented in their study. Subsequently, Rau and Dhaliwal (1972) developed a numerical
technique to solve the integral equation proposed by Dhaliwal and Rau (1970) and obtained the
complete elastic field. Yu et al. (1990) presented numerical results obtained from solving
Fredholm integral equation of the second kind to demonstrate the effect of a substrate on the
elastic properties of films and provided useful guidelines for the proper choice of an approximate
layer thickness and substrate elastic properties to determine the elastic constants of the layer.
Motivated by a recently developed multi-dimensional nanocontact system (Lucas et al., 2003),
Gao et al. (2008) gave an analytical formulation by applying Green’s function in Fourier space to
predict the effective elastic modulus of film-on-substrate systems under normal and tangential
contact. In addition, Yang (1998) studied the problem of impressing a rigid flat-ended cylindrical
indenter onto an incompressible elastic film by following a standard procedure such that the
Hankel transformation was applied to the mixed boundary conditions and the Fredholm integral
equation of the second kind was subsequently solved numerically.

The surface stress effect on mechanical responses of nanoindentation was recently
studied based on the Gurtin-Murdoch continuum model by several researchers. Zhao (2009)
derived an analytical solution of a classical indentation problem in the presence of the surface
energy effect. By applying Gurtin-Murdoch continuum model, he obtained a solution for elastic
fields within the half-space caused by flat-ended cylindrical, conical and spherical rigid
indenters. Although Gurtin-Murdoch continuum model used in his formulation is not complete
(e.g. no out-of-plane term), obtained numerical solutions still showed a size-dependent behavior
due to the presence of surface energy effect, i.e. when the contact area becomes smaller, the
material behaves stiffer. In addition, it is remarked that atomistic simulations (Sinnott et al.,
1997; Liu et al., 2007; Chen et al., 2008; Lu et al., 2009) can also be used to investigate the
mechanism of an indentation process under different indenter shapes (i.e. spherical indenter and
pyramidal indenter), sizes and indentation loads on the materials. In this approach, applied



molecular dynamics theory is employed to finally obtain the mechanical properties such as
hardness and load-displacement curves.

As mentioned in the introduction and extensive review of existing works in this
area, the influence of surface energy effects by using a complete set of Gurtin-Murdoch
continuum model in order to capture the size-dependent behavior of nano-indention problems
has not been investigated. This therefore requires profound exploration to further enhance the
correct elastic fields accounted for surface effects.

1.2.4 Nano-sized cracks

Research focusing on the investigation of nano-sized defects and fractures has become of central
interest in the past two decades. Basic approaches proposed in those investigations can be
categorized into two groups, namely experimental methods and theoretical simulations. Some of
previous studies in the first group can be briefly summarized as follows. Sumomogi et al. (2002)
investigated both subsurface and surface cracks of single-crystal silicon by using a scanning
force microscope (SFM) and a scanning laser microscope (SLM). Sundararajan and Bhushan
(2002) evaluated the elastic modulus and bending strength, and estimated the fracture toughness
of nanometer-scale fixed-end beam specimens made of single-crystal silicon and SiO, by using a
quasi-static bending test technique, which was developed by using an atomic force microscope.
Karimi et al. (2002) combined a depth sensing nano-indentation and a nano-scratch testing along
with the atomic force microscopy and electron microscopy observations to study mechanical
properties and fracture behavior of a number of TIAIN(Si, C) hard thin films. Chen et al. (2008)
carried out an experiment of the composite to examine the local mechanical and fracture
behavior of an EPON 862 based-epoxy with 12 nm (primary) and 100 nm (secondary) fumed
silica particles by using the atomic force microscopy/digital image correlation (AFM/DIC)
method. Peng et al. (2008) conducted an experiment by using an in-situ transmission electron
microscopy (TEM) method. They employed a MEMS material testing system that allows
accurate measurement of both load and displacement along with the TEM imaging to measure a
single shell failure for multiwalled carbon nano-tubes that display the fracture strengths of about
100 GPa and also showed that fracture strains are very close to theoretical predictions. Zhao and
Xing (2008, 2010) experimentally investigated a micro-crack in silicon by using high-resolution
transmission electron microscopy (HRTEM) and a combination of geometric phase analysis
(GPA), the numerical moiré method (NM) and the transmission electron microscopy (TEM). Qin
et al. (2009) quantitatively investigated the effect of the density of nano-scale twin bundles on
the tensile strength and fracture toughness. In their study, the fracture surface characteristics
were elucidated by using scanning electron microscopy (SEM) and focused ion beam (FIB)
microscopy analysis. The fracture toughness was measured by a conventional three-point
bending test based on ASTM-E399. Most recently, Yan et al. (2011) experimentally investigated
crack initiation and propagation along the Cu/Si interface in multilayered films (Si/Cu/SiN) with
different thicknesses of the Cu layer (20 and 200 nm) by using a nano-cantilever and millimeter-
sized four-point bending specimens. Those experiments demonstrated that the elastic modulus,
bending strength, and fracture toughness were size-dependent at the nano-scale. Values of
mechanical properties had a tendency to be higher when compared to those obtained from
experiments of macro-scale structures. The experimental approaches offer results reflecting the
actual responses or behaviors, they are, however, highly dependent on experimental settings and,
generally, expensive due to the requirement of high precision testing devices and procedures.



Another alternative is based on the mathematical modeling and simulations. In this group,
a set of governing physics and assumptions is chosen to construct a set of mathematical
equations governing representative quantities of interest and a solution methodology is
developed to obtain such representative solutions for describing the real behavior. The
discrepancy between the real responses and the representative solutions depends primarily on the
choice of governing physics and assumptions, and the accuracy of the solution strategy. Based on
an extensive literature review, most of existing studies employed two different types of
mathematical models, one employing discrete-based models whereas the other utilizing modified
continuum-based models.

Within the context of modeling nano-sized cracks, several studies based on the discrete
atomic-scale model have been recognized. For instance, Buehler et al. (2003), Zhang et al.
(2005), Buehler and Gao (2006), Rafii-Tabar et al. (2006), Huang et al. (2009), Masuda-Jindo et
al. (2009), Adnan and Sun (2010) and Sakib and Adnan (2012) investigated the crack by using
molecular dynamics (MD) atomistic simulations. Phan and Tippur (2009) presented a numerical
method to evaluate the quantized fracture mechanics (QFM) stress intensity factors (SIFs).
Pugno et al. (2008) combined quantized fracture mechanics and molecular dynamics atomistic
simulations to study atomistic fractures. While those proposed models have been verified to yield
accurate prediction of responses of interest due to their effectiveness in detailing of bonds or
atoms, such simulations require enormous computational effort and resources to treat billions of
atoms at a nano-scale. This therefore renders the discrete atomic-scale models impractical in
various applications.

Consequently, a group of approaches based upon continuum-based theories is considered
attractive since it can substantially reduce both the computational cost and complexity of the
governing physics. Work towards applying the surface elasticity model to simulate the nano-
scale influence of nano-sized fracture problems has become a subject of numerous
investigations. Based upon the investigation of an elliptical void, Wu (1999) argued that
presence of the surface stresses can effectively reduce an applied stress-intensity factor to a
lower effective stress-intensity factor. Wu and Wang (2000), (2001) proposed the method using a
pair of point forces, one at each crack tip, a uniformly distributed compressive load on the
convex side of the crack, and a uniformly distributed tensile load on the concave side to study the
influence of surface stress on two-dimensional crack problems and pointed out that the

singularity of the crack-tip stress fields becomes 1/r instead of being 1/ Jr. Wang et al. (2007)
explored the dependent relationship of crack-tip stresses on surface elastic parameters for both
mode-l (opening mode) and mode-1Il (tearing mode) cracks based on the Gurtin Murdoch
surface elasticity theory along with a local asymptotic approach. They found in their study, that
the stress intensities in the vicinity of the crack tip are significantly affected by the surface
energy when the curvature radius of a blunt crack front decreases to nanometers. Fu et al. (2008),
(2010) incorporated the effect of surface elasticity into the finite element analysis (via ANSYS®
and ABAQUS®) to study the influence of surface stresses on the mode-1 (opening mode) and
mode-I1 (sliding mode) crack tip fields. They found that when the curvature radius of the crack
root decreases to micro-/nano-meters, the surface elasticity exhibits significant influence on
stresses near the crack tip. Fang et al. (2009) investigated the influence of surface stresses on the
dislocation emission from an elliptically blunt crack under mode-1 and mode-1l loading
conditions and reported that the impact of the surface stresses on the critical stress intensity
factors for dislocation emission becomes remarkable when the size of the blunted crack is very



small, typically of a nanometer scale. However, their results for stresses are valid only in the
vicinity ahead the crack-tip of the blunt crack.

Use of a sharp crack-tip model has also been commonly employed in the modeling of
nano-sized cracks. The fundamental problem of mode-I crack was elaborated by Oh et al. (2005)
based upon an extension of continuum mechanics by incorporating effects of the nano-scale
through the long-range intermolecular force obtained from atomistic simulations. They
concluded that the fracture tip should be sharp rather than blunt and, unlike the classical case,
there is no stress singularity at the fracture tip when considered at a nano-scale level. It is also
important to remark that the surface energy is generally nonzero and a function of position on the
fracture surface. Sendova and Walton (2010) examined mode-I crack in an infinite elastic
medium using various models of surface energy effects (e.g., a model of constant surface tension
and a model of curvature dependent surface tension). In their study, they proposed that the stress
singularity at the crack tip was reduced to the logarithmic singularity in the case of the constant
surface tension, whereas the finite stress at the crack tip was observed for the case of the
curvature dependent surface tension. Kim et al. (2010) first examined a mode-IlI crack problem
(i.e., anti-plane shear deformations of a linearly elastic solid) subjected to non-uniform surface
tractions. Later, Kim et al. (2011) studied the plane deformations of a linearly elastic solid
containing a crack under either mode-I or mode-Il loading conditions. Kim et al. (2011)
considered the contribution of the surface elasticity to the anti-plane deformations of a linearly
elastic bi-material containing mode-1ll interface crack. For the above three studies, the
continuum-based surface/interface model of Gurtin and Murdoch was employed in the
formulation of the boundary value problem, and the complex variable techniques were applied in
the solution procedure. They pointed out that the surface stresses result in elastic responses and
corresponding stress fields being size-dependent and also argued that, in contrast to classical
results from linear elastic fracture mechanics, their model yielded the finite stresses at the sharp
crack-tips. Recently, Kim et al. (2013) examined the role of surface stresses on the singularity
behavior of near-tip stress field. They showed that the necessary and sufficient conditions for
bounded stresses at the crack tip cannot be satisfied with the first-order (curvature-independent)
theory of surface effects, which leads, at most, to the reduction of the classical strong square-root
singularity to the weaker logarithmic singularity. This finding agrees with the previous study of
Sendova and Walton (2010) in the case of the constant surface tension. Nan and Wang (2012)
considered the effect of the residual surface stress on the crack surface and obtained solutions of
the crack opening displacement (COD) and the mode-l stress intensity factor (K;). Their
obtained results demonstrated that the influence of the surface stresses on the crack deformation
and crack-tip field is prominent at the nano-scale. Moreover, the COD and K, are influenced by
the residual surface stress not only on the surface near the crack-tip region but also on the entire
crack-face. Most recently, Nan and Wang (2013) investigated a problem of a nano-scale crack in
piezoelectric nano-materials by considering the effect of the residual surface stress on the crack
surface. They pointed out that the electromechanical coupling fracture behavior of the
piezoelectric materials is influenced by the residual surface stress on the entire crack surface.

On the basis of an extensive literature survey, it can be said that work related to the
modeling of defects/cracks at nano-scale level has been very limited. For most existing studies
related to the analysis of nano-sized fractures, the corresponding boundary value problems were
formulated within the context of two-dimensional settings, and most of them were solved by
using analytical techniques such as complex variable techniques, complex potential method and
Chebyshev polynomials technique. Due to limitations of both inherent simplified assumptions
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and solution techniques, complex but more practical loading conditions and fracture geometries
cannot readily be treated in those existing works. Recently, Intarit et al. (2012) and Intarit (2013)
analytically investigated a nano-sized crack in a three-dimensional elastic media under a mode-I
loading conditions. Although a complete Gurtin-Murdoch surface elasticity model was employed
to model the effect of surface stresses, it was still limited to a crack of circular shape and
axisymmetric loading conditions. However, bodies or components containing existing
defects/flaws involved in practical applications are, in general, relatively complex in terms of
geometries, loading conditions, and influences to be treated (e.g., surface free energy). The
existing mathematical models are therefore of limited scope and insufficient for the prediction of
responses in practical cases. This, as a result, necessitates the development of fully three-
dimensional models, supplemented by efficient and powerful numerical procedures. This current
gap of knowledge is to be fully investigated in the present study.

1.3 Objectives

The key objectives of the current investigation are

(1) to establish physically suitable, mathematical models for fundamental problems in
solid mechanics with consideration of the nano-scale influence, and

(2) to develop analytical procedures for investigating various basic boundary value
problems that are fundamental in the area of solid mechanics, and

(3) to establish the framework of powerful numerical procedures capable of solving a
broader class of boundary value problems that are relatively complex and often
encountered in engineering and industrial applications, and

(4) to fully investigate the size-dependent behavior and nano-scale influence on various
fundamental problems in solid mechanics and also compare results from continuum-
based simulations with existing molecular dynamics simulations and experimental
measurements.

1.4 Scope of Work

Scope of the present study and assumptions relevant to the development are summarized as
follows:

(1) the boundary value problem considered in this investigation is linear and governed by
the theory of local linear elasticity;

(2) a body associated with the boundary value problem is three-dimensional with
applications to infinite media, half-spaces, and thin layers;

(3) a body is assumed to be free of a body force;

(4) the influence of nano-scale in the local region near the boundary is modeled by
properly incorporating the surface elasticity model (proposed by Gurtin and Murdoch
(1975)) into classical continuum theory for solid mechanics;

(5) analytical and semi-analytical solutions are constructed for boundary value problems
involving simple geometry, loading conditions and boundary conditions (e.g., surface
axisymmetric loadings in half-space, surface axisymmetric loadings on elastic thin
layer, and indentation problems with axisymmetric profiles, etc.); and

(6) a framework of numerical techniques (e.g., FEM, SGBEM, Coupling of FEM and
SGBEM) capable of solving relatively complex boundary value problems induced by
the presence of surface elasticity, embedded singularity such as cracks and
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dislocations, complicated geometries, loadings and boundary conditions is developed.
In-house computer codes using FORTRAN 90 are implemented to demonstrate
accuracy and capabilities of the proposed technique.

1.5 Methodology

The present study consists of several main tasks with methodology, procedures, and involved
fundamental theories for each task briefly summarized below.

(1) Extensive literature survey is first conducted in related fields such as surface
elasticity, modeling of size-dependent behavior, and nano-scale influence in various
fundamental problems (such as cracks, surface loadings, indentations, etc.). Next, the
fundamental theories in linear elasticity and surface elasticity crucial for the current
development along with the relevant solution techniques such as the Hankel integral
transform, potential-theory-based methods, finite element methods, and boundary
integral equation methods are reviewed. Finally, the scope of work and the problem
statement is clearly defined.

(2) A domain decomposition technique is utilized to decompose the domain into two
parts: a bulk material and a surface with zero thickness perfectly bonded to the bulk.
The behavior of the surface is modeled by Gurtin-Murdoch surface elasticity model
whereas that of the bulk material is governed by a classical theory of linear elasticity.

(3) For an elastic layer under axisymmetric loadings, the governing equation for the bulk
material is expressed in terms of Love’s strain potential whereas the governing
equation of the surface is derived directly from the Gurtin-Murdoch surface elasticity
model. A general solution for the bulk is derived by using Hankel integral transform
and its inversions, and its final form is given in terms of arbitrary functions. The
boundary conditions at the top and bottom surfaces of the bulk are enforced along
with applying Hankel integral transform to determine all arbitrary functions. The
elastic fields (i.e., displacement and stress fields) are expressed in terms of the Hankel
integral inversion. An efficient numerical integration scheme is adopted to evaluate
all involved integrals. Results of elastic fields for general axisymmetric loading
conditions are then specialized to obtain results for the half-space and to construct
fundamental solutions of a layer under special surface loading cases.

(4) For axisymmetric indentation problem, a corresponding mixed boundary value
problem is formulated and reduced to a set of dual integral equations by using Hankel
integral transform. Such dual integral equations are further reduced to a Fredholm
integral equation of the second kind by using a procedure based on Sonine’s integrals.
Selected numerical techniques are adopted to solve the resulting Fredholm integral
equation of the second kind. Once the solution of such governing equation is
obtained, Hankel transform inversions are then employed to determine elastic fields
and other interesting quantities such as contact pressure, indentation force, stresses,
and displacements.

(5) For nano-sized crack problem, the governing equations of the bulk part are
established in terms of weakly singular boundary integral equations following the
work of Rungamornrat and Mear (2008a) whereas those for the surface is established
in a form of weak statement using standard weight residual approach. The weak-form
equation of the surface part is discretized into a set of linear algebraic equations using
standard finite element procedure and a set of weakly singular integral equations are
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discretized into a set of linear algebraic equations using weakly singular SGBEM
similar to that employed by Rungamornrat and Mear (2008b). Continuity conditions
between the surface part and the bulk material are utilized to obtain a fully coupled
system of linear algebraic equations and it is then solved by a selected linear solver.
All field quantities within the bulk material can be obtained from a set of boundary
integral relations proposed by Rungamornrat and Mear (2008a). Extensive numerical
experiments are conducted and results are compared with available benchmark
solutions to validate the proposed numerical technique.

(6) Developed analytical and numerical techniques are employed to fully investigate the
size-dependent behavior and nano-scale influence for various fundamental problems
in solid mechanics such as nano-indentations, surface loadings on elastic half-space
and thin layers, and nano-sized cracks.

1.6 Contribution

The present study offers a complete analytical solution of a three-dimensional, infinite elastic
layer under the action of axisymmetric normal and tangential surface loading by taking surface
energy effects into account. The integration of surface elasticity in the mathematical model
provides an alternative, computationally cheap, continuum-based approach for investigating the
influence of nano-scale on various responses of interest. As a result of using a complete Gurtin
Murdoch constitutive relation for modeling the surface energy effects, proposed formulation can
demonstrate the influence of the out-of-plane term resulting from residual surface tension on
material stiffness. Furthermore, the solution of elastic fields are also specialized to construct
fundamental solutions of a layer under a unit normal concentrated force, a unit normal ring force,
and a unit tangential ring force. Such basic results constitute the essential basis for the
development of boundary integral equations governing other related problems, e.g. nano-
indentations.

The current investigation proposes an application of continuum-based concepts in the
analysis of indentation problems for nano-scale structures and soft elastic solids by incorporating
surface energy effects into a classical continuum model. With use of complete Gurtin-Murdoch
surface elasticity model, proposed formulation is applicable to perform the existence of an
inevitable parameter of materials via size-dependent behavior and also to strongly demonstrate
the influence of out-of-plane contribution of residual surface tension on material stiffness. When
compared to molecular dynamics simulations, this modified continuum model is an alternative in
terms of dramatically reduction in computational resources with an acceptable level of accuracy.
Such attractive approach offers an alternative for studying the mechanical properties and
mechanical deformation for indenters of arbitrary axisymmetric profiles. This fundamental
development can have a direct impact on nano-indentation applications since the indentation
techniques have been widely used for measuring mechanical properties in the nano-scale such as
hardness and elastic modulus (e.g., Hainsworth and Page, 1994; Armstrong et al., 1995; Beegan
et al., 2007; Yang and Li, 1995; Yang and Li, 1997). By using depth-sensing indentation tests
with either spherical or conical indenters, Young’s modulus can be calculated from the slope of
the linear portion of the unloading curves in the load versus penetration depth while hardness can
be calculated from data along the loading curves (Doerner and Nix, 1986; Oliver and Pharr,
1992).

The developed numerical technique should enhance and strengthen the capability in the
modeling of nano-sized crack problems using an alternative, computationally cheap continuum-
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based model along with the proper treatment of surface stress effects via Gurtin-Murdoch surface
elasticity model. The developed mathematical model and the implemented numerical procedure
allow more practical planar nano-sized fracture problems to be investigated, e.g. cracks of
arbitrary shapes under general loading conditions. Availability of a computational tool of such
high capability should be very significant in the parametric study to investigate and gain an
insight into various crucial responses of interest in the nano-scale level such as the size-
dependent behavior of an elastic field and all other related quantities.
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CHAPTER II
ELASTIC LAYER UNDER SURFACE LOADING

In this chapter, the complete solution of an axisymmetric problem for an infinite, rigid-based
elastic layer under the action of surface loads and the surface energy effects is presented. The
corresponding boundary value problem is formulated based on a classical theory of linear
elasticity for the bulk and a complete Gurtin-Murdoch constitutive relation for modeling the
surface energy effects. Love’s strain potential technique and Hankel integral transform are
adopted to obtain the general solution for the bulk whereas the surface equations and conditions
at the rigid based supply sufficient boundary conditions to determine all arbitrary constants. A
selected numerical technique for efficiently and accurately evaluating all involved integrals is
then outlined. After the technique is verified with available benchmark solutions, extensive
studies for both cases of axisymmetric normal and axisymmetric tangential surface loads are
investigated to understand the nano-scale influence through the surface stress effects
(with/without the contribution of residual surface tension) and size dependent behaviors.
Moreover, numerical results of a layer under a unit normal point load, a unit normal ring load
and a unit tangential ring load, which are benefit for solving nano-indentations problem, are also
demonstrated and fully discussed.

2.1 Formulation

Z
v

Figure 2.1 A three-dimensional, infinite, rigid-based, elastic layer subjected to axisymmetric
surface loading

Consider a three-dimensional, infinite, rigid-based elastic layer of thickness h under the action of
arbitrary axisymmetric surface loads as shown schematically in Figure 2.1. The reference
cylindrical coordinate system is chosen such that the origin is located at the free surface and the
positive z-axis directs downward whereas other axes follow the right-hand rule. The normal
surface load and the tangential surface load are denoted by p = p(r) and g = q(r), respectively. In
the modeling, the entire domain is treated as a body consisting of two different parts, the bulk
which is homogeneous and isotropic and occupies a region defined by 0 < z < h, and the zero-
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thickness layer, which occupies the plane z = 0 and is perfectly bonded to the bulk. In the present
study, the medium is assumed to be free of the body force and remote loadings. The primary
objective is to determine the complete responses (e.g. the displacement and stress fields) within
the bulk due to the arbitrary (axisymmetric) applied surface loads and the presence of the surface
energy effects.

2.1.1 Basic field equations

For the bulk, the governing field equations follow directly the classical theory of linear isotropic
elasticity (e.g. Barber, 1992; Timoshenko et al., 1951). In the absence of body forces and under
axisymmetric deformation, the equilibrium equations, constitutive laws and strain-displacement
relations expressed in terms of cylindrical coordinates are given by

0o, 00, O, —0,

o 2o =0 (2.1a)
or (674 r
00y, 00y  On _g (2.1b)
o oL r
o, =(A+2u)s, + e, + s, (2.2a)
Oy = A&, +(A+2u)e,, + s, (2.2b)
0, =&, +Ag,, +(A+2u)¢, (2.2c)
o, = Zlugrz (22d)
ou
&y =— 2.3a
"o (2.33)
£, = UT (2.3b)
ou
&, =—" 2.3
2= (2.3¢)
£y =&y = LA +%) (2.3d)
2 071 or
where {o,,,0,,,0,,0,} are non-zero stress components; {¢,,&,,&,,&,} are non-zero strain

components; {u,,u,} are non-zero displacement components; and x and A are Lamé constants

of the bulk material.

For the surface, the equilibrium conditions on the surface in terms of the generalized
Young-Laplace equation (Povestenko, 1993), a complete Gurtin-Murdoch constitutive relation
(Gurtin-Murdoch 1975, 1978) and strain displacement relation are given, for the case of
axisymmetry and flat surface, by

dO'rr +(7rr_5049 +Grz| _0+q(r)=o (2.42)
dr r =
do: o

rz + rz + + r :0 24b
dr r O-ZZ|Z:0 p( ) ( )
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on =T +Qu +1%)e, +(A°+1°)g,, (2.5a)

O =T +2u + 1), +(A°+7°)e;, (2.5h)
o, =1° du, (2.5¢)
dr
du’

85 = r 26
rr dr ( )
s U

899 :T (27)

where the superscript ‘s’ is used to denote the quantities corresponding to the surface; #° and A°

are surface Lamé constants; and z° is the residual surface tension under unstrained conditions.
By combining equations (2.4)-(2.7), it leads to two governing field equations for the surface in
terms of the surface displacement as follows:

dzs(, U°) 2(1+1) (d%m 1dT T — L

1+ |+ = oL 2(A+D)5, | r)=0 2.8
dr[+rj+ A+2 a(derrr ar T T DT ) (28)
d(_,dt) z2di® - .._ P
d_T[T d—rJ'F? dT +2(/1 +1)O-ZZ o + p(l‘) =0 (29)

where various normalized quantities appearing in (2.8) and (2.9) are defined by 7° =7°/ uA |
T =U/A, T=u/A, T=t/2A+u), T =t0/20A+u), A=Alu, T=rIA, T=1/A,
ar)=a(r)/ u, p(F)=p(r)/ u, A=x*(A+2u) 1 2u(2+ ), and &° =2uq + .

2.1.2 General solution for bulk

A general solution for the normalized displacement and normalized stress of a set of governing
equations (2.1)-(2.3) can readily be obtained in terms of Love’s strain potential ® as follows
(e.g., Sneddon, 1951; Selvadurai, 2000):

2
0 =—(T+1) ;;I; (2.10a)
- 2 - 0D
0, -(T+2V'o-(T+) 2 (2.10b)
a 3
5 -ty (aﬁj—aTq’ (2.100)
20+ \az ) artez
a7 2
5, ——2 v (aﬁj—éa—q’ (2.10d)
2(2+1) \az) vorar
7 3
5, =3t g (aipj— oo (2.108)
2(2+1) \az) o7
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where V* =——+——+—is the axisymmetric Laplace’s operator, U, =u, /A, U, =u, /A,
o ror ozt

O =0y [ 2(A+ ), and Gy =0yy / 2(A+ ). For the above field to be an elastic state, the
Love’s strain potential ® must be bi-harmonic or, equivalently, satisfy the following equation

Vi =0 (2.11)

where V* =v2.v2 . Applying Hankel integral transform to the above equation yields

a2 L,V
[df_z-ng G(E,7)=0 (2.12)
where
G(,7)= T@(r, 7)J,(ET)dF (2.13)
0

with J, (&) denoting the Bessel function of the first kind of order n. A general solution of the
homogeneous ordinary differential equation (2.12) is given by

G(Z,7)=(A+Bz2)e *7 +(C + Dz)es? (2.14)

where A, B, C, and D are arbitrary functions of &, and can be determined from boundary

conditions. By employing Hankel integral transform inversion, equations (2.10a)-(2.10f) can be
written as

= +1)j52dG J(ET)dE (2.15)
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Finally, by inserting the general solution for the function G given by (2.14), the displacement and
stress fields can finally be expressed in terms of the four arbitrary functions A, B, C, and D as

I =(1 +1)j52{[ AE +B(1-E2) e 7 +[CE+D(1+E7)]e 52}]1(§r)d§ (2.162)
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2.1.3 Solution of particular boundary value problem

To obtain the complete solution of a particular boundary value problem, the four arbitrary
functions A, B, C and D must be determined. This can be achieved by enforcing the boundary
conditions at the top and bottom surfaces of the bulk (i.e. at z = 0 and z = h). By utilizing the

surface equations (2.8) and (2.9) along with assuming that the residual surface tension z° is
constant throughout, the normal and shear stress components &,, and &,, on the top surface of

the bulk must satisfy the following relations:
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where « is equal to 1 if the surface effect is not considered, otherwise it is zero and g is equal

to 1 if the out-of-plane term is taken into account in the mathematical model, otherwise it is zero.
The continuity of the displacement across the interface of the bulk and surface has also been

employed, i.e. u =u’ and u, =u; . Due to the fully fixed rigid-based condition, all components
of the displacement vanish atz =h whereh=h/ A, i.e.

=l

0 (2.19)
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By taking Hankel integral transform of all four boundary conditions (2.17)-(2.20) along with
exploiting the relations (2.16a)-(2.16f), it leads to a system of four linear algebraic equations for
A /B,Cand D
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where the functions Z(&) and R(&) are given in terms of the surface loads p(7) and g(7) by
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0
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Equations (2.21)-(2.24) are sufficient for uniquely determining A, B, C, and D as functions of the
transform parameter& and the applied surface loads Z(&) and R(£) and the final explicit

solution is given by
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Once the functions A, B, C, and D are obtained from (2.27)-(2.28), both the displacement and
stress at any point within the bulk can be computed from (2.16a)-(2.16f). Numerical evaluation
of all involved integrals is briefly discussed in the next chapter.

It is evident that by setting the parameters o and g to zero, the solution obtained is
identical to that of a classical problem of a three-dimensional, infinite elastic layer under surface
loadings (Sneddon, 1951; Selvadurai, 2000). Furthermore, by setting g to zero, the above
results reduce to those presented by Zhao and Rajapakse (2009) and Zhao (2009). These two
special benchmark solutions can be employed in the verification procedure. In addition, results
for the special case of a half space can also be obtained by simply taking sufficiently large layer
thickness h.

2.2 Numerical Implementation

Although all functions A, B, C, and D are obtained in a closed form in terms of the transform
parameter £, determination of the displacement and stress fields still requires the evaluation of

integrals corresponding to Hankel transform inversion. It is apparent that all involved integrals
contain relatively complex integrands and they cannot be directly integrated to obtain a closed
form elastic field. In this section, a selected numerical technique for efficiently and accurately
evaluating those integrals is outlined below.

2.2.1 Truncation

It is evident that all integrals appearing in (2.16a)-(2.16f) are improper integrals with their lower
and upper limits equal to zero and infinity, respectively. To evaluate such integrals numerically,

it is common to truncate the domain of integration from [0, ) to [0, £, ] where &, is a finite real

number. The approximate displacement and stress fields in terms of the truncated integrals are
given by
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0
g
T, =~(1+1) | 82| AF + B2t E7) |57 4| CE D=2~ E7) |57 | J,(EFIIE (22
i, (/1+1)£§ {{A§+B((Z+1)+§Z)}e {cg D((Z+1) 52)} }jo(gr)dg (2.29b)

22



g _
F =3 22+1 —_\| 7% = 2 — | =5 o
g,.=|¢ { AE + B( é‘zﬂe fu[cg +D[ -~ zﬂe‘fZ}] (EF)dE
g { A+1 A+ 0
ER £ — — A — —
—% [ &7 ([—AE +B(1-£7)]e™" +[CE + D1+ &7) |e” ) J1(EF)déE (2.29¢)
0
— E - _ o
099_2’1 | & {Be*‘fzweﬂ} Jo(EF)dE
0
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I 1 -\ = - y AR | [ R
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0 i A+1 A+1 ] 1

While the convergence of the above approximate solution to an analytical solution is ensured as
&, approaches infinity, it is standard, in the numerical calculation, to choose a sufficiently large

number &, such that the error from the approximation is less than a specified tolerance.

2.2.2 Interval subdivision

Due to the oscillating nature of their integrands, the numerical integration of involved integrals
in (2.16a)-(2.16f) by using Gaussian quadrature over a single interval requires a large number of
integrations points. To enhance the accuracy and computational efficiency, the interval [0, &, ] is
first partitioned into N sub-intervals denoted by [£,=0,&,1, [£,,&,1, [, &1 - [Eyy, &y =&

] and the integral over the interval [0, &, ] is obtained from the sum of all sub-integrals over each
sub-interval as follows:

vt v =Sk

j f(&)dE = j F(E)E + j FEWE +...+ j F(E)E + j f(E)E (2.30)

where f = f(&) denotes any integrand. As the number of sub-intervals increases, the oscillating

behavior of the integrand in each sub-interval should disappear, and they can accurately be
integrated by using low-order Gaussian quadrature.

2.2.3 Numerical quadrature

By using the change of variable, the Gaussian quadrature formula for each sub-interval in (2.30)
is given by
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where 5:(1—{)5,._1 /2+(1+§*)Ei /2, (Ei —E,._l)/z denotes the Jacobian of transformation,

.f,.* is the location of an integration point, w; is the corresponding weight, and n is the number of
integration points.

2.2.4 Convergence study

In the present study, extensive numerical experiments are to be performed to investigate the
influence of the truncation parameter &,, the number of sub-intervals N, and the number of

integration points n on the accuracy of the numerical integration. Such three parameters must be
chosen properly to ensure the accuracy of the numerical results while consuming reasonable

computational time.
Both the number of integration points and the number of sub-intervals have a direct

impact on the accuracy of the numerical integration for a fixed truncation parameterER. In
general, by increasing the number of sub-intervals, each sub-integral over each sub-interval
requires less number of integration points since the oscillating behavior of the integrand
gradually disappears. In the present study, for a fixed truncation parameterER, the number of
sub-intervals N is increased until the integral can be integrated correctly (for a specified
tolerance) by using a low order Gaussian quadrature over each sub-interval. The ratio ER /N is
then computed and used to indicate the size of the sub-interval over which the integrand is
sufficiently well-behaved to be integrated using low order Gaussian quadrature. Finally, a proper
choice of the truncation parameter ER is obtained by increasing such upper limit until the value
of the integral converges or remains unchanged (for a specified tolerance). It is important to
remark that in such process, the number of sub-intervals must be increased accordingly in order
to maintain the size of the sub-intervals (ER / N ) to be sufficiently small to allow the integration
by low-order Gaussian quadrature.

2.3 Numerical Results

Extensive studies for both cases of axisymmetric normal and axisymmetric tangential surface
loads are investigated to understand the nano-scale influence through the surface stress effects
(with/without the contribution of residual surface tension) and size dependent behaviors.
Moreover, numerical results of a layer under a unit normal point load, a unit normal ring load
and a unit tangential ring load, which are benefit for solving nano-indentations problem, are also
demonstrated and fully discussed.

2.3.1 Verification

Numerical results obtained from the developed computer program are verified with various
benchmark solutions. For examples, numerical solutions without surface energy effects of an
elastic layer under normal concentrated load are compared with analytical solutions presented by
Bumister (1943, 1945) and those of a half-space subjected to uniformly distributed vertical load
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are verified with solutions of Ahlvin and Ulery (1962). Furthermore, numerical results with no
surface energy effects and numerical results accounted for surface energy effects without the
contribution of the out-of-plane term of an elastic layer under uniformly normal distributed load
are compared with those proposed by Zhao (2009). As evident from results presented further
below, numerical solutions obtained from the present study exhibit excellent agreement with the
benchmark solutions.

2.3.1.1 Infinite rigid-based elastic layer under normal point force

Consider a normal point load 13p =P/ 1A acting to the surface of a rigid-based layer with the

normalized thickness h=1.0 and the Poisson’s ratio v=0.2 as shown in Figure 2.2. Without
consideration of surface energy effects, the analytical solution derived by Burmister (1943, 1945)
and tabulated by Poulos (1967b) are employed to verify the accuracy of the present study.
Numerical solutions for this classical case can readily be obtained in the present study by setting
a=0 and gB=0. The radial and vertical displacements at the surface and non-zero stress
components at z =0.1 along the radial direction are reported in Tables 2.1-2.3. It is obvious that
numerical results from the present study show good agreement with the analytical solutions
given by Burmister (1943, 1945).

=

=1.0

Figure 2.2 Three-dimensional, infinite, rigid-based, elastic layer subjected to a normal point load

2.3.1.2 Elastic half-space under uniformly distributed normal traction

A three-dimensional, elastic half-space with Poisson’s ratio v=0.2 under the action of a
uniformly distributed normal traction po over a circular area of normalized radius a=a/A
shown in Figure 2.3 is considered (excluding the surface energy effects). In this case, the exact
solution tabulated by Ahlvin and Ulery (1962) has been employed as a benchmark solution.
Again, in the analysis, « and pare set to be zero in order to specialize the problem into the

classical case and the normalized thickness h must be chosen to be sufficiently large to represent
the elastic half-space. Results for non-zero displacement and stress components are reported in
Table 2.4 along with those of Ahlvin and Ulery (1962). It is evident that solutions obtained from
the current study are almost indistinguishable from the reference results.

25



Table 2.1 Normalized vertical and radial displacements of a three-dimensional, infinite, rigid-
based, elastic layer subjected to a normal point load

2nhEu, /P, 2nhEu, /P,
r - "
(1Bgu4ng1lls§;cjg) Current study (1Bgu4r3r,nllsgzg) Current study
0.05 -14.362 -14.344 35.921 35.310
0.1 -7.124 -7.172 16.728 16.554
0.2 -3.455 -3.477 7.162 7.195
0.3 -2.184 -2.178 4.016 4.050
0.4 -1.523 -1.512 2.478 2473
0.5 -1.064 -1.109 1.599 1.579
0.6 -0.824 -0.830 1.048 1.048
0.7 -0.62 -0.620 0.69 0.704
0.8 -0.465 -0.461 0.45 0.458

Table 2.2 Normalized vertical and radial stress components of a three-dimensional, infinite,

rigid-based, elastic layer subjected to a normal point load

4mh’(L+1)5,, /P, 4mh’(L+1)5,, /P,

r Burmister Current stud Burmister Current
(1943, 1945) Y1 (1943, 1945) study
0 300 300 -30.71 -30.72
0.1 53.08 53.06 34.75 34.75
0.2 5.415 5.395 125 12.49
0.3 0.994 0.974 3.347 3.344
0.4 0.293 0.273 0.614 0.611
05 0.124 0.103 -0.259 -0.262
0.6 0.067 0.048 -0.528 -0.530
0.7 0.041 0.025 -0.578 -0.579
0.8 0.026 0.013 -0.544 -0.544
0.9 0.016 0.006 -0.479 -0.478
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Table 2.3 Normalized shear and hoop stress components of a three-dimensional, infinite, rigid-

based, elastic layer subjected to a normal point load

4mh’(L+1)5,, / P, 4mh’(L+1)5,, /P,

r Burmister current stud Burmister Current
(1943, 1945) Y1 (1943, 1945) study

0 0 0.000 -30.71 -30.720
0.1 53 53.003 -4.342 -4.355
0.2 10.68 10.676 2.237 2.224
0.3 2.765 2.765 1.996 1.983
0.4 0.909 0.908 1.349 1.337
0.5 0.326 0.324 0.877 0.865
0.6 0.102 0.099 0.566 0.554
0.7 0.005 0.002 0.363 0.352
0.8 -0.038 -0.043 0.231 0.221
0.9 -0.056 -0.061 0.144 0.135

p(r)=p,=p,/u

\ 4
!

1

Figure 2.3 Three-dimensional, infinite, elastic half-space subjected to a uniformly distributed
normal traction

2.3.1.3 Infinite rigid-based elastic layer under uniformly distributed normal traction

Consider an infinite rigid-based elastic layer under uniformly distributed normal traction po
acting over a circular area of normalized radius a =10.0 and with the normalized layer thickness
h =30 as shown in Figure 2.4. To allow a direct comparison of available results proposed by
Zhao (2009), the same set of material constants obtained from atomistic simulation (Miller and
Shenoy, 2000; Shenoy, 2005) is utilized, and they are summarized in Table 2.5. Results for the
classical case and the case accounting for the surface energy effects but ignoring the out-of-plane
term can be obtained by simply setting « =0,5=0 and « =1, =0, respectively. By comparing
results for the surface displacement and stresses at z =0.1 along the radial direction with those
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presented by Zhao (2009) for h /a =3, it is found that solutions obtained from the present study
are in excellent agreement with the benchmark solutions as shown in Figures 2.5-2.7.

Table 2.4 Normalized displacement and stress components of a three-dimensional, infinite,
elastic half-space subjected to a uniformly distributed normal traction

2. +1)5,, /P, 20+, /p, 2L +1)5,,/p, U, /P,
Ahlvin Ahlvin Ahlvin Ahlvin
zla and | Current| and |Current| and |Current| and | Current
Ulery | study | Ulery | study | Ulery | study Ulery study
(1962) (1962) (1962) (1962)

0 1.000 0.993 0.700 0.695 0.700 0.695 0.800 0.800
0.1 0.999 0.999 0.581 0.581 0.581 0.581 0.769 0.769
0.2 0.992 0.992 0.468 0.468 0.468 0.468 0.736 0.736
0.3 0.976 0.976 0.367 0.367 0.367 0.367 0.702 0.702
0.4 0.949 0.949 0.280 0.280 0.280 0.280 0.667 0.667
0.5 0.911 0.911 0.208 0.208 0.208 0.208 0.633 0.633
0.6 0.864 0.864 0.151 0.151 0.151 0.151 0.599 0.599
0.7 0.811 0.811 0.106 0.106 0.106 0.106 0.566 0.566
0.8 0.756 0.756 0.072 0.072 0.072 0.072 0.535 0.535
0.9 0.701 0.701 0.047 0.047 0.047 0.047 0.505 0.505

1 0.646 0.646 0.028 0.028 0.028 0.028 0.478 0.478
1.2 0.547 0.547 0.005 0.005 0.005 0.005 0.429 0.429
15 0.424 0.424 -0.010 | -0.010 | -0.010 | -0.010 0.368 0.368

2 0.284 0.284 -0.016 | -0.016 | -0.016 | -0.016 0.294 0.294
2.5 0.200 0.200 -0.014 | -0.014 | -0.014 | -0.014 0.243 0.243
0.146 0.146 -0.012 | -0.012 -0.012 | -0.012 0.207 0.207
0.087 0.087 -0.008 | -0.008 | -0.008 | -0.008 0.158 0.158
0.057 0.057 -0.005 | -0.005 | -0.005 | -0.005 0.128 0.128
0.040 0.040 -0.004 | -0.004 | -0.004 | -0.004 0.107 0.107
0.030 0.030 -0.003 | -0.003 | -0.003 | -0.003 0.092 0.092
0.023 0.023 -0.002 | -0.002 | -0.002 | -0.002 0.081 0.081

0N |O1 B~ W

Table 2.5 Material properties used in numerical study

Model Parameter Value (unit)
y) 58.17x10° (N/m?)
u 26.13x10° (N/m?)
2 6.8511 (N/m)
u® -0.376 (N/m)
z° 1 (N/m)
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Figure 2.4 Three-dimensional, infinite, rigid-based, elastic layer subjected to a uniformly
distributed normal traction

2.3.2 Layer under various surface loads

After the formulation and numerical implementation are verified for both the classical case and
the case accounting for the surface stress effects but ignoring the out-of-plane term, the proposed
model (including the out-of-plane term) is then utilized to investigate the influence of the surface
stress effects on elastic fields and demonstrate the significant role of the out-of-plane term in
Gurtin-Murdoch surface elasticity model. By using material properties summarized in Table 2.5,
numerical results and size-dependent behaviors for both normal and tangential directions of
axisymmetric surface loads are illustrated and discussed.

2.3.2.1 Uniformly distributed normal traction

Consider an infinite, rigid-based elastic layer under uniform normal traction poy acting on a
circular region of radius a as shown in Figure 2.4. Results for both radial and vertical
displacements on the surface along the radial direction for a =10.0 and various normalized
thicknesses are shown in Figure 2.8(a)-(b), respectively. It is apparent from this set of results that
a model incorporating the out-of-plane term predicts much lower surface displacement or,
equivalently, renders materials stiffer while the solution obtained from a model excluding the
out-of-plane term exhibits significant influence of the surface energy effects only in the case of
the radial displacement. Hence, the influence of the out-of-plane term is significant and, in

general, cannot be neglected. In addition, results for all cases show similar trend for varioush .

For non-zero stress components, results are reported for h=10 and a=1 at three
different normalized depths (7 =0.25, 7=0.5, 7=1.0). The variation of the normalized vertical

stress 47r(,T+1)EZZ/ﬁoin the radial direction is shown in Figure 2.9(a). Clearly, the vertical

stresses for all cases reach their maximum at T =0 and rapidly decrease to zero when T is near
the edge of the surface loading, i.e. T /a =1. Regarding to the presence of surface energy effects,
values of the vertical stress are lesser within the surface loading region 7/a <1.0 and slightly
higher for r/a >1.0. Moreover, the influence of surface energy effects exhibits significant role
in the region relatively close to the surface. It is interesting to point out that all such behaviors
are more apparent in the current model, which integrates the out-of-plane contribution of the
residual surface tension into the analysis.
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Figure 2.5 Normalized displacement profiles of an elastic layer under a uniformly distrubuted
normal traction: (a) radial displacement and (b) vertical displacement
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Figure 2.6 Normalized stress profiles of an elastic layer under a uniformly distrubuted normal
traction: (a) vertical stress and (b) radial stress
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Figure 2.8 Normalized displacement profiles of an elastic layer under a uniformly distrubuted
normal traction: (a) radial displacement and (b) vertical displacement
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Results for the normalized shear stress 4z (4 +1)a,, / p, are reported in Figure 2.10(a) for various

depths. Behaviors of the shear stress for all three models along the radial direction exhibit the
similar trend. In particular, the shear stress vanishes at T=0 due to the symmetry, rapidly
increases to reach its peak at the edge of the surface loading (i.e. T/a=1), and promptly
decreases thereafter. It is worth noting that in the region very near the edge of surface loading the
surface energy effects significantly lower the magnitude of shear stress, especially in a model
including the out-of-plane contribution of the residual surface tension. As anticipated, the
influence of surface stresses is quite large in a region near the surface and insignificant in a
region far away from the surface.

Variation along the radial direction of the normalized radial stress 4z (1 +1)z, / p, and

normalized hoop stress 4z(A +1)a,, / p, are respectively presented for various depths in Figure
2.9(b) and 2.10(b). Again, results obtained from all three models possess the similar trend, i.e.,

starting with their maximum value and gradually decreasing as T increases. This observed
behavior excludes the case of the radial stress at Z =1.0 since such stress starts at a certain value,
gradually reaches its peak, and then slowly decays. However, the surface energy effects on these
two stress components are similar to those on the vertical stress, i.e. lower stress within a region
under the surface loading and slightly higher stress in the outside region. In addition, strong
influence of the surface stresses is observed in the region near the surface. Through the proper
normalization, solutions obtained by a model without the surface energy effects exhibit no size-
dependency. However, this is not true for results predicted by models incorporating the surface
energy effects. The size-dependent behavior can be observed due to the presence of an intrinsic
length scale associated with the presence of the surface stresses. In this study, the size-
dependency of all normalized stresses is investigated by varying the radius of surface loading
while maintaining the ratio h/a. Results are reported in Figures 2.11-2.14 for h/a=3. In
particular, Figures 2.11(a), 2.12(a), 2.13(a) and 2.14(a) show the variation along the radial
direction of non-zero stress components at Z/a =0.1 for three different radius whereas Figures
2.11(b), 2.12(b), 2.13(b) and 2.14(b) present the relationship between normalized stress
components and the radius of surface loading for three various depths and 7/a =0.5.

Unlike the classical solutions, the results from the two models accounting for surface
energy effects depend strongly on the normalized radius a for small a, and such dependence
becomes negligible as a increases. In particular, the results predicted by the model considering
the out-of-plane contribution of residual surface tension exhibit much stronger size dependency
than that excluding the out-of-plane term. In addition, this set of results confirms the necessity to
consider the surface effects when responses in a region very close to the surface are of interest.

2.3.2.2 Linearly distributed tangential traction

Consider an infinite, rigid-based elastic layer subjected to a linearly distributed tangential
traction in a circular region of radius a as shown in Figure 2.15. This traction is normalized such
that g(r)=q,r /a where q,=q,/¢, a=a/A,and g, is the maximum traction at the edge of

surface loading. Results for radial and vertical displacements for different layer thicknesses are
shown in Figures 2.16(a)-(b), respectively. It is obvious from these results that the presence of
surface energy effects significantly lowers the magnitude of the displacement. However, the out-
of-plane contribution of residual surface tension has a strong influence only on the vertical
displacement and becomes negligible for the radial displacement. Moreover, when varying the
layer thickness, both radial and vertical displacements are higher as the layer thickness increases.
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Figure 2.11 Normalized vertical stress of elastic layer under a uniformly distrubuted normal
traction for h / @ =3: (a) profile along radial direction and (b) at ¥/ a=0.5
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Figure 2.12 Normalized radial stress of an elastic layer under a uniformly distrubuted normal

traction for h / @ =3: (a) profile along radial direction and (b) at ¥/ a=0.5
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Figure 2.13 Normalized shear stress of an elastic layer under a uniformly distrubuted normal
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Figure 2.14 Normalized hoop stress of an elastic layer under a uniformly distrubuted normal
traction for h / @ =3: (a) profile along radial direction and (b) at ¥/ @ =0.5
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Figure 2.15 Three-dimensional, infinite, rigid-based, elastic layer subjected to a linearly
distributed tangential traction

The results for stress components are obtained for h=10, a=1, and three different
normalized depths (i.e., 7=0.257=0.5,7=1.0). Profiles of the normalized vertical stresses

4z() +1)z, / g,and the normalized radial stresses 4z(1+1)a, /g, along the radial direction

are reported in Figure 2.17. At a small depth, the tensile stress is observed within a region of
surface loading, and it gradually changes to the compressive stress when passing the edge of a
loading region. The vertical stress and radial stress profiles also show the strong influence of the
surface energy effects for the region relatively near the surface. Moreover, the discrepancy of the
results predicted by the two models, with and without the out-of-plane contribution of residual
surface tension, is more apparent for the vertical stress but negligible for the radial stress.

Results for the normalized shear stress 4z(1 +1)z,, / g, are shown in Figure 2.18(a) for

various depths. For this particular loading condition, the shear stress increases to reach its peak
near the edge of loading region and then abruptly decreases to zero after passing the edge of
loading region. Again, the influence of surface stresses on this shear stress component is more
apparent for the region close to the surface. From the profiles of normalized hoop stress

4r() +1)z,, /g, shown in Figure 2.18(b), the results obtained from the two models including

the surface energy effects are significantly different from the classical solution, and such
discrepancy increases when the depth decreases. It is worth noting that the contribution of the
out-of-plane term is insignificant since the two models yield almost identical hoop stress.

To demonstrate the size-dependent behavior of a layer subjected to a linearly distributed
tangential load, a scheme similar to that used to study a layer subjected to uniformly distributed
normal traction is employed. The layer thickness and the radius of loading region are varied

while their ratios are fixed (i.e., h / a=3). The variation along the radial direction of non-zero
stress components at z/a =0.1 for three different radius are reported in Figures 2.19(a), 2.20(a),
2.21(a) and 2.22(a) whereas the relationship between normalized stress components and the
radius of loading region for three various depths and r/a=0.5 are shown in Figures 2.19(b),
2.20(b), 2.21(b) and 2.22(b). Unlike the case of uniformly distributed normal load, the out-of-
plane contribution of the residual surface tension has significant influences only on the vertical
stress. However, the solutions obtained from the two models accounting for the surface energy

effects still show the size-dependency. As the radius a and the depth where the responses are
determined decrease, the surface energy effects become more important.
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Figure 2.16 Normalized displacement profiles of an elastic layer under a linearly distrubuted
tangential load: (a) radial displacement and (b) vertical displacement
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Figure 2.17 Normalized stress profiles of an elastic layer under a linearly distrubuted tangential
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43

25



7=10.25
04 - ':E : 7=05
: 7=10
iy A ------------ Classical solution
: ; L. No out-of-plane term
Current study
-0.8 4
T T T ! '
0 05 1 15 2 25 3
r/a
(a)
4 =
7=10.25
7 L 7=10
------------ Classical solution
------ No out-of-plane term
A (/T +1 )599 , Current study
®%  {

Figure 2.18 Normalized stress profiles of an elastic layer under a linearly distrubuted tangential
load: (a) shear stress and (b) hoop stress
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Figure 2.19 Normalized vertical stress of an elastic layer under a linearly distrubuted tangential
load for h / a =3: (a) profile along radial directionand (b)at ¥/a=0.5
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Figure 2.20 Normalized radial stress of an elastic layer under a linearly distrubuted tangential
load for h / a =3: (a) profile along radial directionand (b)at ¥/a=0.5
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Figure 2.22 Normalized hoop stress of an elastic layer under a linearly distrubuted tangential
load for h / @ =3: (a) profile along radial direction and (b) at ¥/ a=0.5
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2.3.3 Fundamental solutions

Since the formulation has been established for arbitrary axisymmetric surface loading, general
results can be further specialized to construct certain useful fundamental solutions. For instance,
the solutions associated with a layer subjected to a normal concentrated load at the origin, a
normal ring load at any radius a and a tangential ring load at any radius a can readily be
obtained. These fundamental solutions constitute the basis for solving other related boundary
value problems such as nano-indentation problems.

2.3.3.1 Layer under normal concentrated load

=

v Z

Figure 2.23 Three-dimensional, infinite, rigid-based, elastic layer subjected to a normal
concentrated load

Consider a three-dimensional, infinite, rigid-based, elastic layer subjected to a normal
concentrated load P, as shown in figure 2.23. The concentrated load P, is normalized such that

P, =P,/ uA’. Profiles of the normalized radial displacement 27Ei / P, and the normalized
vertical displacement 2ziEu; /15pt at the surface obtained by three different models are reported

for four different layer thicknesses (h=0.5,h=1.0, h=2.0, and h=3.0) in Figure 2.24(a) and
2.24(b), respectively. It is found that the normalized radial displacement is singular at =0
except for the solution obtained from a model accounting for the out-of-plane contribution of
residual surface stress. On the other hand, the results of normalized vertical displacement tend to
be infinite under the concentrated load for all cases and reduce rapidly when T increases. In
addition, the similar behavior is observed for all layer thicknesses under consideration, and the
magnitude of the displacement is higher as the layer thickness increases.

In order to clearly demonstrate the influence of surface energy effects on the stress field,
the layer thickness is chosen to be sufficiently large (i.e. h=10). Numerical results of all
normalized non-zero stress components are reported along the radial direction for various depths

in Figures 2.25-2.26. Clearly, the normalized vertical stress 4z/%(1 +1 )G, /13’3t reaches its peak

at ¥=0, and then decrease monotonically to zero as ¥ increases. The normalized radial stress
Arh’ (A +1)5,, /[3pt decreases from a positive value to a negative value for small 1 , and then
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Figure 2.24 Normalized displacement profiles of an elastic layer under a normal concentrated
load: (a) radial displacement and (b) vertical displacement
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Figure 2.25 Normalized stress profiles of an elastic layer under a normal concentrated load: (a)
vertical stress and (b) radial stress
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Figure 2.26 Normalized stress profiles of an elastic layer under a normal concentrated load: (a)
shear stress and (b) hoop stress
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attains its maximum negative value in the range 0.2 < T < 0.5. Thereafter, it magnitude gradually
reduces to zero in the region further away from the concentrated load. Due to the symmetry, the
normalized shear stress vanishes at 7 =0, then rapidly increases to reach its peak, and gradually
decreases to zero for a large 1. It is obvious that presence of surface energy effects generally
reduce the magnitude of all stress components when compared to their classical counterpart
except for the normalized hoop stress, whose values predicted by the model accounting for
surface energy effects but without the out-of-plane contribution of residual surface stress. In that
case, the hoop stresses are much larger than those obtained from the classical model.

2.3.3.2 Layer under normal ring load

p(r) = pyo(r-a)

=

Figure 2.27 Three-dimensional, infinite, rigid-based, elastic layer subjected to a normal ring load

Consider a three-dimensional, infinite, rigid-based, elastic layer subjected to a normal ring load
p, atthe radius a as shown in figure 2.27. The ring load and the radius a are normalized such

that p, = p, / uA and a=a/A. Results for the normalized radial displacement 47”701 /P, and
the normalized vertical displacement 47r;7172 /p, a the surface are plotted along the radial

direction as shown in Figure 2.28 for four different thicknesses (h=0.5,h =1.0,h =2.0, and
h=30) and a=1. It is apparent from the obtained results in Figure 2.28(a) that the radial
displacement for the classical case exhibits rapid variation at location of the applied ring load
while those obtained from the other two models are finite and smooth, which are significantly
different from the classical one. It can also be seen from Figure 2.28(b) that the vertical
displacements predicted by the classical model and a model considering the surface energy effect
without the out-of-plane term are slightly different, and singular at the location of applied load.
On the other hand, the vertical displacements obtained from the model incorporating the out-of-
plane term are finite, which are quite different from the other two solutions.

53



drhit,

Figure 2.28 Normalized displacement profiles of an elastic layer under a normal ring load: ()
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Figure 2.29 Normalized stress profiles of an elastic layer under a normal ring load: (a) vertical
stress and (b) radial stress
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The numerical results for stresses within the bulk obtained from all three models are also
reported for various depths and h =10 in Figures 2.29-2.30. Similar to the previous observation,
the influence of the surface stresses on the stress field within the bulk is more significant when
the location to determine the responses is relatively close to the surface.

2.3.3.3 Layer under tangential ring load

=

Figure 2.31 Three-dimensional, infinite, rigid-based, elastic layer subjected to a tangential ring
load

Consider a three-dimensional, infinite, rigid-based, elastic layer subjected to a unit tangential
ring load g, at the radius a as shown in figure 2.31. The ring load and the radius are normalized

such that @, =q, / #A and a=a/A. Results for the normalized radial displacement 47”77% /q.
and the normalized vertical displacement 4;@72 /q. at the surface are plotted along the radial

direction as shown in Figures 2.32(a) and 2.32(b) for four different thicknesses (h =0.5,h =1.0,
h=20,and h=3.0) and a=1. For this particular loading condition, both the radial and vertical
displacements obtained from the classical model are singular at the location of the applied ring
load whereas those obtained from the two models accounting for the surface energy effects are
finite everywhere. While results obtained from the two models exhibit huge discrepancy from the
classical solution, the contribution of out-of-plane term is insignificant especially for the radial
displacement.

Figures 2.33-2.34 demonstrate profiles of normalized stress components for a layer
subjected to a tangential ring load for the layer thickness h =10 and various depths. It is
obviously seen that the presence of the surface energy effects reduces the magnitude of the
stresses especially in the region closed to the surface. Moreover, for the normalized vertical
stress and normalized shear stress, such behavior is more evident when the out-of-plane
contribution of the residual surface stress is taken into account.
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2.3.3.4 Applications of fundamental solutions

Results obtained above for three special loading conditions can be employed to construct Green
functions useful for various boundary value problems. To demonstrate their vast applications, let
us consider a three-dimensional, infinite, rigid-based, elastic layer subjected to any axisymmetric
normal traction p(r) and tangential traction q(r). Once solutions of all field quantities due to both
unit normal and unit tangential ring loads are determined, they can be utilized along with a
method of superposition to obtain integral relations for both the displacement and stress on the
surface and within the bulk due to the traction p(r) and q(r). For instance, the radial and
tangential displacements at any distance r* on the surface are given by

u (r*)= TU;V (r*,r)p(r)dr + TUrT (r*,r)q(r)dr (2.32)

u,(r*)= TU?’ (r*,r)p(r)dr + ‘TUZT (r*,r)q(r)dr (2.33)

where UY(r*r) and UY(r*r) are radial and tangential displacements at any distance r* on the
surface due to a unit normal ring load applied to the layer at the radius r and U’(r*r) and

Ul (r*r) are radial and tangential displacements at any distance r* on the surface due to a unit

tangential ring load applied to the layer at the radius r. Other field quantities at any point (r*, z*)
within the bulk, denoted generically by R(r*,z*), can also be obtained in a similar fashion as

R(r*,z*)= .TRN (r*,z*,r)p(r)dr + TRT (r*,z*r)q(r)dr (2.34)

where, again, R"(r* z*r) and R’ (r* z*r) are responses at any point (r*, z*) within the bulk due
to a unit normal ring load and unit tangential ring load applied to the layer at the radius r,
respectively. Clearly, for a problem where the surface traction p(r) and q(r) are fully prescribed,
the integral relations (2.32)-(2.34) can be directly employed to determine all field quantities.

For nano-indentation problems, both normal traction p(r) and tangential traction q(r)
under the indenter are unknown a priori and they must be determined before the integral relation
(2.34) can be used. For a special case of axisymmetric, rigid, frictionless nano-indentation
problems, the tangential traction q(r) vanishes and vertical displacement under the indenter is

fully prescribed via its known profile v’ and the prescribed indentation depth d. The integral
relation (2.33) for any r* under the indenter becomes

u (r*)= j.U;V (r*,r)p(rydr=d+v*(r*) , r*<a (2.35)

where a denotes the contact radius. The integral equation (2.35) can be solved to obtain the
unknown contact pressure p(r). Once p(r) is determined, all other field quantities can readily be
obtained from the integral relation (2.34).
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For axisymmetric, rigid, fully bonded nano-indentation problems, the radial displacement
under the indenter identically vanishes and the vertical displacement under the indenter is fully

prescribed via its known profile v” and the prescribed indentation depth d. The integral relations
(2.32) and (2.33) for any r* under the indenter becomes

u (r¥)= j-Uf' (r*,r)p(r)dr + jUrT (r*,r)q(r)dr=0 , r*<a (2.36)
u (r*)= .TU;V (r*,r)p(r)dr + TUZT (r*,r)q(r)dr=d +v’(r*) , r*<a (2.37)

The two integral equations (2.36)-(2.37) are sufficient for solving the unknown traction p(r) and
g(r). Once the traction is obtained, all other field quantities can be computed from the integral
relation (2.34).

For axisymmetric, rigid, rough nano-indentation problems, the tangential traction q(r) can
be related to the normal traction p(r) via an appropriate friction model and, again, the vertical

displacement under the indenter is fully prescribed via its known profile v* and the prescribed
indentation depth d. The integral relation (2.33) for any r* under the indenter becomes

u (r¥)= .TU;V (r*,r)p(r)dr+ j.UZT (r*r)f(p(r))dr=d+v°(r*) , r*<a (2.38)

where a function f denotes the relation between p and g. The integral equation (2.38) can be
employed to solve for the unknown normal traction p(r). Once p(r) is determined, the tangential
traction can readily be obtained and all other field quantities are computed from the integral
relation (2.34).

By following the same strategy, solutions of all field quantities due to a unit normal
concentrated load applied to the surface of a layer can be utilized as Green functions to establish
integral relations for field quantities due to arbitrary normal traction on the surface. In addition,
the integral relation for the vertical displacement on the surface can be employed to form the
integral equation governed the unknown pressure under the rigid, frictionless indenter of
arbitrary profiles.
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CHAPTER IlI
NANO-INDENTATION

In this chapter, the formulation of boundary value problem associated with an axisymmetric,
frictionless, rigid punch acting on a half-space is first presented. The Hankel integral transform is
then applied to reduce the corresponding mixed boundary conditions to a set of dual integral
equations. These integral equations are further reduced to a Fredholm integral equation of the
second kind that is well-suited for constructing numerical solutions. Due to the complexity of the
key governing equation, numerical schemes are adopted to construct approximate solutions.
Several components essential for numerical implementations such as the domain truncation, the
discretization of the primary unknown function, the collocation scheme, linear solvers, and
Hankel transform inversion are briefly summarized. The solution procedure is implemented to
determine the complete elastic fields for indentors of both smooth and non-smooth contacts. The
accuracy of the present numerical scheme is verified by comparing with analytical solutions of
the classical case for both profiles. Once the method is fully tested, it is applied to solve more
complex indentation problems accounted for surface stress effects in which analytical solutions
do not exist. In the analysis, indentors with flat-ended and paraboloidal profiles are chosen to
represent the non-smooth and smooth contacts respectively. Numerical results for three different
models (i.e. classical solution with no surface stress effects and solutions accounted for surface
stress effects with and without the out-of-plane contribution of the residual surface tension) are
fully compared and discussed.

3.1 Formulation

r, X1 r, Xy

Z,X3

(a) (b)

Figure 3.1 Indentation of half-space by axisymmetric rigid frictionless punch: smooth contact
and (b) non-smooth contact

Consider a homogeneous, isotropic, elastic half-space indented by an axisymmetric frictionless
rigid punch as shown schematically in Figure 3.1. The profile of the punch, denoted by a
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function 6 = & (r), is defined for convenience and without loss by choosing 6= 0 atr = 0. The
radius of a contact region and the indentation depth resulting from a resultant force P at the
center of the punch are denoted by a and d, respectively. In this study, the profile of the punch is
assumed to be smooth (i.e. the unit normal vector to the surface of the punch or, equivalently,
doldr is well-defined) at any point within the contact region except along the boundary r = a
where the profile is allowed to be non-smooth. A punch with well-defined ddo/dr for r < a is
termed a smooth-contact punch (see Figure 3.1(a)) whereas a punch with well-defined d&/dr only
for r < a is termed a non-smooth-contact punch (see Figure 3.1(b)). In the present study, the
pressure distribution exerted by the punch and the complete elastic fields within the half-space
accounted for surface energy effects are to be determined.

3.1.1 Basic equations

Behavior of the half-space (bulk) is governed by a classical theory of elasticity. In the absence of
body force, the governing field equations (i.e. equilibrium equations, constitutive relations and
strain-displacement relations) can be expressed as

;=0 (3.1)

Oy = 2ug; + A6 €, (3.2)
1

& :E(“u +uy) (33)

where u;, o; and &; denote components of the displacement, stress and strain tensors,
respectively; ¢ is a Kronecker-delta symbol; and x and A are Lamé constants of a bulk

material. Note that lower-case indices range from 1 to 3, and repeated indices imply the
summation over their range.

A surface of the half-space is regarded as a negligibly thin membrane adhered perfectly
to the bulk without slipping and its behavior (which is different from the bulk) is modeled by
Gurtin-Murdoch continuum model of surface elasticity. The equilibrium conditions on the
surface in terms of the generalized Young-Laplace equation (Povestenko, 1993), surface
constitutive relations and strain-displacement relationship, when specialized to this particular
case, are given by (Gurtin and Murdoch, 1975; Gurtin and Murdoch, 1978; Gurtin et al., 1998)

O-isa,a + 033 +ti0 =0 (2.4)

Cpy =T 0, + 2(/15 —Z'S)é‘;a +(/15 +r5)gjy5ﬂa +uy, , 05, =TU;, (2.5)
S 1 S S

Ep :E(u“‘ﬂ +uM) (2.6)

where the superscript ‘s’ is used to denote the quantities corresponding to the surface; #° and A°
are surface Lamé constants; z° is the residual surface tension under unstrained conditions; and
t° denotes the prescribed traction on the surface. It is important to emphasize here that Greek

indices range from 1 to 2 and, once again, repeated indices imply the summation over their
range. When specialized to an axisymmetric case, the corresponding elastic fields can be
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obtained by solving, in a cylindrical coordinate system (r,8,z), the following biharmonic
equation (Sneddon, 1951; Selvadurai, 2000)

Vo =0 (3.7)

where @ is Love’s strain potential. The displacement and stress fields are given in terms of @
as follows:

oD 0°D
= AV’ — |-2(1+ 3.8a
o (azj (A ) —— (3.82)
2
G,y = AV? (@]_M@_@ (3.8b)
0z r oroz
3
o, = (34 +4u)V? (ai’j—z(m )2 (3.80)
0z 0z
0 O*®
=(A+2u)—(V?D)-2(1+ 3.8d
0 = (2+2) = (V'O) =200+ 1) (3.8d)
2
g = LHH TP (3.8¢)
MU Oroz
2
Z:/1+2,uvzq)_/1+,u8q2) (38f)
H uo oz

By applying Hankel integral transforms, the biharmonic equation (3.7) is reduced to

Y

— &% G(&,2)=0 3.9
St 69
where J, (&) denotes the first order Bessel functions of order n and
G(¢, z)=jrcDJo(§r)dr (3.10)

0

The general solution of (3.9) is given by
G(&,z)=(A+Bz)e** +(C+Dz)e™ (3.11)

where A, B, C and D are arbitrary functions of & that can be determined from boundary

conditions. Accordingly, the general solutions for displacements and stresses can be transformed
into the relations involving G(&,z) and its derivatives with respect to z by using Hankel
inversion and the relations (3.8a)-(3.8f). Those solutions are expressed as
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© 3 ﬁ )
o= Je| 15+ 102 2 Py a2 FZ “, @120

Op=A[& ‘jjzf—gzz—e} o (&) d§+ j (3.12b)

azzzig{(mzﬂ) 3 —(32+4y)§za}\]0(§r)d§ (3.120)

arzzfg{z 2 +(ﬁv+2,u)§2G:|Jl(§l’)d§ (3.12d)
_Atug » dG

u, = P !e; dZJl(gr)dg (3.12¢)

u, = jghﬁ —%526}10 (ér)de (3.12f)

Note that u,, o,, and o,, vanish due to axisymmetric deformations, and all non-zero variables
are independent of &. By invoking the remote condition associated with the vanishing

displacements and stresses as z — o, C and D must vanish, and the function G(&, z) reduces to

G(&z)=(A+Bz)e™ (3.13)

Upon substituting (3.13) into (3.12), the expression for the components of stresses and
displacements are then given in terms of A and B by

e

(3.14)
——Ifz[—§A+(1—§z)B]e"fle(fr)dg
O
% jg Be *J, (£r)dé
2(/1+,u) A+ (3.15)
+?J'§2[—§A+(1—§z)B}e’fZJl(gr)dg
_w —¢éz
2(/1+ﬂ _F [§A+[l ﬂ+§zj8}e Jo(&r)dé (3.16)
0, _w 3 _ —&1
2(/1+ﬂ)_£§ {QEA (/%L,u jB} J,(&r)de (3.17)
u, =’1+”T§2 [—EA+(1-¢£2)Be ¥, (ér)d¢ (3.18)
H %
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3.1.2 Formulation of indentation problem

+§sz}e‘§ZJo(§r)d§ (3.19)

For the indentation problem shown in Figure 3.1, the domain boundary can be decomposed into
a surface outside the contact region on which the traction identically vanishes and a surface
inside the contact region on which the normal displacement is prescribed while, resulting from
the frictionless assumption, the shear traction vanishes. These mixed boundary conditions can be
expressed as

u, |, o =d-5(r) . 0<r<a (3.20)

o,|,,+t° VU, =0 ; a<r<o (3.21)

S P . 0<r<w (3.22)
dr®> rdr r o

where x° =24° + A° is a surface material constant. Upon substituting (3.17) and (3.18) into the
boundary condition (3.22), it leads to a relation between A and B:

AE(L+AgE) = {li,u +A0§j B (3.23)

where A, = K'S/Z/,l. By enforcing the mixed boundary conditions (3.20) and (3.21) along with
the relation (3.23), it yields a pair of integral equations:

T V+2y (A+3p) A
ul+A8)

2 o 2u[(A+ p)+(A+2u) A& |+ T°E[(A+2p) +(A+3u) AyE |

J¢ 2

5 Y7 (1+AO§)

}BJO(gr)dgzd—é(r) ; 0<r<a (3.24)

0

}BJO(ér)dgzo
; a<r<o (3.25)

The dual integral equations (3.24) and (3.25) constitute a complete set of equations for
determining the unknown function B=B(¢£). By introducing two functions ¢=¢(¢£) and

w=w(¢) such that

5(5)- 53{2#[(/1+ﬂ)+(ﬂ+2u)/\;§(]1trrj\fg/l+ 2u)+(4 +3,u)AO§]} o .26)
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the dual integral equations (3.24) and (3.25) can further be simplified to
E’%(E)[HW(E)JJO(_F)dE:T(T) ;. 0<T<1 (3.28)

#(€)3,(éT)dE =0 L 1<T<w (3.29)

Ot 8 O—=§

where f(F)=f(F)/a=-[d-5(F)], 6(F)=06(F)/a, d=d/a, E=¢fa, F=r/a, and
$=9¢(&)=¢(&)/a. The function ¢ =g¢(&) becomes the primary unknown of the dual integrals

(3.28) and (3.29) whereas the function W=W(g?) is known and can be obtained directly from
(3.26) and (3.27) as

2\ (A+2) +(A+3)AoE 1 230
w(s) 2[(Z+1)+(Z+2)X05]+153[(Z+2)+<Z+3)Xo§j (530
where Zz/il,u, KO:AO/a and F:rsl(ya). It is evident from (3.30) that the function
w=w(&) possesses a limit equal to -1 as & — oo,

The solution of dual integral equations of the type (3.28) and (3.29) has been extensively
studied by Mandal (1988) and Sneddon (1966). Following their procedures, such a set of dual
integral equations can be reduced to a Fredholm integral equation of the second kind as

_ _79&@ %.:[uf(u)du _ézw(u)mu){sinu(li??) sinu(u _)}du (3.31)

It can be seen from (3.31) that the function f (u) is merely related to the indenter profile and the

function W(u) is related to the boundary conditions involving the surface energy parameters.
This single integral equation (3.31) is in a form well-suited for constructing numerical solutions
for ¢=¢(Z). Once the function $=g¢(Z) is solved, the functions A and B can be
subsequently determined from (3.23) and (3.26), respectively, and the complete elastic fields
within the half-space can also be obtained from (3.14)-(3.19). In addition, the magnitude of the
total indentation force P producing the indentation depth d can be obtained by integrating the
contact pressure, i.e. the left hand side of Eq. (3.21), over the area of the contact region.

In the absence of surface energy effects, above formulation can readily be specialized to a
special case of a classical indentation problem by setting Ao =0 and z°=0. The function
w=w(&) in (3.30) simply reduces to a constant w* given below:
w=2*2 4 (3.32)

2(4+1)
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The dual integral equations (3.24) and (3.25) now become
EP(E),(ET)dE = £7(T) ; 0<F<1 (3.33)

#(EN,(ET)dE =0 L 1<T<w (3.34)

where f*(F)=f (T)/w'. A set of dual integral equations (3.33) and (3.34) was solved
analytically by Sneddon (1965).

3.2 Numerical Implementations

Due to the complexity of the Fredholm integral equation of the second kind formulated in
Chapter Il, numerical schemes are necessarily adopted to construct approximate solutions. In this
chapter, several components essential for such numerical implementation (e.g. domain

truncation, discretization of the primary unknown function ¢ = ¢(&), collocation, linear solvers,
Hankel transform inversion, etc.) are briefly summarized.

3.2.1 Domain truncation

It is evident that the second integral of the Fredholm integral equation (3.31) is an |mproper
integral with an infinite upper limit and the involved primary unknown function ¢ ¢(§) IS
defined on a semi-infinite interval [0, o). Before constructing an approximate solution for
5: ;(5 ), the domain of integration of the improper integral is first truncated from [0, o) to [0,

E. 1 where &, is a finite real number. The truncated Fredholm integral equation is given by

- 28 oo druf(udu & w(u)¢(u) sin(u+&) sm(u—E)
#(&) = - !cos(;t)dtdt ! N j { e E }du (3.35)

3.2.2 Discretization

The unknown function ¢ =¢(&) over the entire truncated domain [0, £.] can be discretized in
the form

%(5)=Eia,-w,- &) (3.36)

where ¢; are unknown nodal quantities to be determined, y;($) are nodal basis functions, and n
is the number of nodes resulting from the discretization. It is worth noting that the approximation
(3.36) results from a special property of the function ¢ at the origin; more specifically, this
function vanishes at the origin of order ¢(¢). Note also that, in the present study, the nodal basis

functions are systematically constructed in an element-wise fashion based on standard
isoparametric, quadratic elements.
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Upon inserting the approximation (3.36) into (3.35) and then dividing the entire equation by & ,
it leads to a discretized integral equation

> @), = 5E) (337)

where the integrals J(, (£) and F(&) are defined on the truncated domain [0, £r] by

&
M(E)=w,(E)+ j v (WK (E, u)du (3.38)
- tdt— uf (w)du 3.39
j cos(Zt) j e (3.39)
KE, u)_W(u){sm(u+§) sm(u—_g)} (3.40)
u+é u-<¢&

It can readily be verified that the kernel K(& , u) is regular for any pair of points (£ , u) and, as a
result, (&) involves only an regular integral for all & [0, &]. The integral (&) is given in

terms of a double line integral whose inner integrand involves the prescribed profile of the punch
and is only weakly singular at u = t. To obtain a better form well-suited for numerical
integration, an integration by parts is performed along with applying a special variable
transformation (i.e. u = tsiné) to remove such singularity and this, finally, leads to

72 7l2

5@ =% j sin(Zt) j uf (), .. d ZCOS@) j uf (u) (3.41)

u= smH

3.2.3 Collocation method

To obtain a sufficient number of equations to solve for the unknown constants ¢;, a collocation-
based technique is utilized. In particular, the discretized integral equation (3.3) is collocated (or,

equivalent, forced to be satisfied) at all nodes & =& (fori=1, 2,3, ..., n), and this leads to a set
of n linear algebraic equations governing the nodal quantities ¢; as follows

Ma =F (3.42)

where o ={a,,a,,..,a,} is vector of nodal quantities and entries of the coefficient matrix M
and the prescribed vector F are given by

§R
[M]; =, (E) =y () + j v (WK(E,u)du (3.43)
[F], = 5(Z) = 2 j Sln(ft)ﬂf uf (U)], g ZCOS("E)HJ uf (U)] g, @ (3.44)
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3.2.4 Construction of M and F

It is evident from (3.43) and (3.44) that entries of the matrix M and the prescribed vector F
involve only regular integrals. Thus, a standard Gaussian quadrature can be used to efficiently
and accurately evaluate such integrals. While every entry of the matrix M is given in terms of a

definite integral over the truncated domain [0, &, ], this matrix can be efficiently constructed in

an element-wise fashion and the contribution from all elements to the global matrix M can
readily be treated using a standard assembly procedure (e.g., Hughes, 2000). It is worth noting

that for some special punch profiles, the integral $(&) admits an explicit expression and, as a
result, construction of the corresponding vector F requires no numerical integration. For
instance, the integral $(&) can be obtained for a flat-ended cylindrical indenter (i.e. 5(F)=0)
and a paraboloidal indenter (i.e. 5(F)=cafF? where « is a constant representing the slenderness
of the punch profile) as

Flat-ended cylindrical indenter: (&) = —%sin(f) (3.45)
TT
Paraboloidal indenter: $(&) = —ﬂsin(E) + 4@? {28 cos(&) +(-2+E7)sin(&)} (3.46)
S S

3.2.5 Linear solvers

It is evident from equation (3.43) that the coefficient matrix M is non-symmetric and fully dense.
To solve a system of linear equations (3.42), either a direct solver based on the LU-
decomposition method or an iterative solver adopted from the stabilized bi-conjugate gradient
method is employed. Once the nodal quantities ¢; are known, the approximate solution for

¢ =¢(&) can readily be obtained from (3.36) for any & in the truncated domain [0, &,].
3.2.6 Determination of field quantities

Once the numerical solution ¢=¢(Z) is obtained, functions A=A(Z)=A(&)/a’ and
B=B(&)=B(Z)/a’ can be obtained at any & €[0, Z,] by directly solving the relations (3.23)
and (2.25) via proper normalization. The explicit formula for A= A(Z) and B =B(&) in terms
of ¢ =¢(&) is given by

A&) = (;HJOEF(E) (3.47)
_f“{2[(I+1)+(Z+2)Xo§j+_f[(1+2)+(Z+3)Xoc_§?}} .

B(Z) = (L 22 )9 (£) 3.48

©) 33{2[(Z+1)+(Z+2)Ko§}+?§[(%+2)+(Z+3)Xo§]} (349
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The stress and displacement fields within the elastic half-space can then be obtained from the
integrals (3.14)-(3.19) via proper normalization and with the upper limited being replaced by &,
e

I T (R e
arr(r,z)_z(mﬂ)_!g {—§A+ — ¢ jB}e J,(&T)dE
_ (3.49)
—ETEZ | -EA+(1-E2)Be 7y, (ET)aE
T '
ow(F,2) w__ A T?_e-fu (67)déE
R S 2(A+u) A+l ’
- (3.50)
+2 | B2 [-FA+(1-F2)B e 0, (ET)aE
_ 7z _ER 3| E A 1 5 1p |a-22 E+\A £
azz(r,z)_z(mﬂ)_ig {gm(m%zjs}e J,(&7)dé (3.51)
- S e [ e i A
arz(r,z)—2(§+u)= !5 {éA—(m—ﬂJB}e “13,(¢7)dg (352)
% ]
ur (F,2) :%f: (A+1)| 22 [—EL(1-§E)E}e-fZJl(‘r)dE (3.53)
Z ]
Gz(r,E)z%z:—(Zu)jg‘z [EK+(%+E§)§}e‘5ZJO(ET)dE (3.54)

where z=z/a. To evaluate such truncated Hankel transform inversions for any pair of points
(T, 7), standard Gaussian quadrature is again employed. It is important to point out that presence
of the exponential term e " in the integrand significantly increases the rate of decay of the
unfavorable oscillated behavior arising from the Bessel functions J,(&) for z> 0 and, as a

result, the associated integrals converges very rapidly with a relatively low &, . On the contrary,
such exponential term becomes one on a free surface of the half-space (i.e. Z =0) and, due to the
slow rate of decay of the Bessel functions, it generally requires a sufficiently large &, for those

integrals associated with zZ = 0 to achieve their converged value.

Once the elastic fields within the half-space are obtained, other interesting quantities can
also be computed. For instance, the normalized contact pressure under the punch, denoted by
p = p(F), can readily be obtained from

V20, (F,z = 0)
2(A+1)

P =—L = | Gu(r,2=0)+

= ; 0<T<1 (3.55)
2(A+ p)
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It is remarked that the Laplacian of the normal displacement appearing on the right hand side of
(3.55) can directly be evaluated using the prescribed boundary condition (3.20). The normalized

indentation force P can further be computed by integrating the contact pressure p = p(F) over
the contact region:

p- % - ! ! (PO =27 ! p(F)FdF (3.56)

3.2.7 Determination of contact radius a for smooth-contact punch

For a smooth-contact punch, the contact radius a is unknown a priori and must be determined
first before other quantities of interest can be obtained. It is remarked first that once the contact
radius a is known, there is no difference of a solution procedure for both smooth-contact and
nonsmooth-contact punch. To solve for a final contact region a that corresponds to a given
indentation depth d, a physically admissible condition associated with the continuity of the
vertical stress at r = a is utilized. However, the explicit or close-form relationship between those
two parameters (a and d) cannot be obtained due to the complexity of the boundary value
problem accounted for the surface energy effects.

3.2.8 Convergence study

For the proposed numerical technique, three key factors that affect the accuracy of the
approximate solutions are the truncation parameter &, , the number of elements employed in the

discretization, and the number of integration points used in standard Gaussian quadrature.
Extensive numerical experiments have been performed to choose a proper truncated domain, the
level of mesh refinement and optimal quadrature to ensure the convergence and accuracy of
numerical results. Such investigation is briefly discussed below.

The number of Gauss points required in the numerical integration can be significant to
accurately integrate oscillating and complex integrands (resulting from the Bessel functions,
¢=¢(&), the kernel K(&, u)). From numerical experiments, it is found that as the size of

elements decreases (i.e. the number of elements in the discretization increases), it only requires
few Gauss points to achieve highly accurate results since the integrand on each element exhibits
milder variation without oscillating behavior.

To investigate the level of mesh refinement required to obtain the converged results, we

perform experiments for a given truncated domain [0, &,]. A series of meshes on the fixed [0,

&1 is constructed and then used in the analysis. The number of elements (N) in the
discretization is increased until a converged solution (for a specified tolerance) is obtained for a
fixed &, . By repeating the analysis for various &, a ratio N/ &, (representing the level of mesh

refinement) to ensure the good discretization is found approximately equal to 1.
To obtain a proper truncated domain that optimizes the computational cost but, at the
same time, yields accurate results, we next investigate the convergence of approximate solutions

with respect to the truncated parameter &,. From such study, it can be concluded that the
truncated parameter &, to attain a converged results for the non-smooth contact punch is much

larger than that for the smooth contact punch. This is due primarily to the singularity induced at
the boundary of the contact region of the non-smooth contact punch. Suggested by various
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experiments, the truncated parameter &, in the analysis of non-smooth contact and smooth
contact punches equal to 10,000 and 1,000 respectively.

3.3 Numerical Results

The solution procedure described in section 3.2 is implemented as an in-house computer code to
determine the complete elastic fields for punches of both smooth and non-smooth contacts. The
accuracy of the present numerical scheme is first verified by comparing with analytical solutions
of the classical case (no surface energy effects) for both categories. Once the method is tested, it
is then applied to solve more complex indentation problems accounted for surface stress effects
in which analytical solutions do not exist. In the analysis, punches with flat-ended and
paraboloidal profiles are chosen to represent the non-smooth and smooth contacts, respectively.
Numerical results for three different models (i.e. classical solution with no surface stress effects
and solutions accounted for surface stress effects with and without the out-of-plane contribution
of the residual surface tension) are fully compared and discussed.

3.3.1 Verification with analytical solutions

Consider a rigid frictionless punch with a flat-ended cylindrical profile (i.e. &Ar) = 0) and a
paraboloidal profile (i.e. &r) = « r* where « is a constant) indented on an isotropic, elastic half-
space as shown schematically in Figure 3.2(a) and Figure 3.2(b) respectively. Note that for both
punch profiles the total indentation depth at the tip of the punch d and the final radius of contact
a are associated with the total indentation force P. With no surface surface effect, the analytical
solutions derived by Sneddon (1965) are employed to validate the proposed formulation and
numerical implementations. In numerical experiments, the present solution scheme is specialized

to treat the classical case by setting Ao=0 and z°=0. According to Sneddon (1965), the
distribution of contact pressure under the punch p., the shape of the deformed boundary u,(r, 0)
and the total indentation force P required to produce the indentation depth d for flat-ended
cylindrical and paraboloidal punches are summarized below.

(a) Flat-ended Cylindrical Punch

4u(irpd 1

.= ; 0<r<a (3.57)
z(A+2p)a 1 (r | a)?
uz(r,O):ﬁsin‘l(a/r) ; r>a (3.58)
T
p - 8uldra) (3.59)
A+2u
(b) Paraboloidal Punch
d
a’=— 3.60
T (3.60)
C:M 1—(r/a)? ; 0<r<a (3.61)
ra(A+2u)
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uz(r,O):g{(Z—(r/a)z)sin1(a/r)+£«/1—(a/r)2} ; r>a (3.62)

p- B2u(At+ ) o3 (3.63)
3(1+2.)
P
/\lo

Z, X3

Z, X3

(b)

Figure 3.2 Indentation of half-space by axisymmetric rigid frictionless punch: flat-ended
cylindrical punch and (b) paraboloidal punch
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Though the properties of elastic materials in the present study can be arbitrary, to simply
compare some elastic quantities with those obtained by Zhao (2009), the same set of material
properties is uitilized. Aluminum is used for the bulk material (Meyers and Chawla, 1999)
whereas Al [1 1 1] is employed for the surface (Miller and Shenoy, 2000). All material constants
are summarized in Table 3.1. In the numerical study, it is convenient to introduce following non-
dimensional quantities: ro = r/dg; zo = Z/do; ag = aldg; do = d/4p and ap = a Ap. It is worth
noting that although the classical solution is independent of A4, use of this parameter in the non-
dimensionalization allows a direct comparison between non-classical and classical solutions.

In the case of flat-ended cylindrical punch with contact radius ap = 0.5, comparisons
betwen the cuurent solutions and the classical solutions for the contact pressure and the vertical
displacement are presented in Figure 3.3(a) and Figure 3.3(b) respectively. It is evidently found
that numerical results obtained from the present study are almost indistinguishable from the
exact solutions proposed by Sneddon (1965). Another comparison is performed for the case of
paraboloidal punch with ap = 0.5. It can be obviously seen from Figure 3.4(a) and Figure 3.4(b)
that two numerical solutions obtained from the present scheme, one is the contact pressure and
the other is the vertical displacement at the free surface, once again exhibit excellent agreement
with the corresponding analytical solutions. This additionally confirms the accuracy of the
present technique.

3.3.2 Punch with surface stress effects

From the high accuracy of numerical solutions obtained for the classical case, the proposed
scheme is now convincingly applied to investigate the indentation problems with the surface
stress effects being incorporated. To allow comparisons with results obtained from Zhao (2009)

and demonstrate the significant role of the surface residual tension z°, Gurtin-Murdoch model

without the out-of-plane contribution of z° is also considered. Selected numerical results are
reported and dicussed for both punch profiles as follows.

3.3.2.1 Flat-ended cylindrical punch

The case of a flat-ended cylindrical punch indented on the half-space with a specified contact
radius a and indentation depth d shown in Figure 3.2(a) is first examined. Note that this punch is
an example of a non-smooth contact punch since dd/dr is not well-defined at r = a. The
corresponding elastic fields within the half-space are reported in Figures 3.5-3.8.

It can be obviously seen from Figure 3.5 that the distribution of the contact pressure
under the punch accounted for the surface effects possesses the same trend as that for the
classical solution in which the singularity still exists at the boundary of the punch. Due to the
integration of the out-of-plane contribution of the surface tension, the predicted contact pressure
for this particular model is considerably less than those obtained from the other two models (i.e.
the classical model and Gurtin-Murdoch model without the out-of-plane contribution of z°). In
the analysis, three values of the contact radii, ap = 0.5, 1.0 and 1.5, are considered to study the
size-dependent behavior and found that when the radius of a punch is smaller and in the same
order as Ay, the effects of surface stresses are comparatively larger. It is interesting to point out
that when the contact pressure p has been normalized in a proper manner (i.e. normalized as
zpaog/dudy), size-dependent behavior due to the influence of surface energy effects is
significantly demonstrated. This phenomenon cannot be certainly observed in the classical model
(only one single dotted line is shown in spite of changing the contact radius ap). It implies that
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the classical model ignores an inevitable material parameter (i.e. the intrinsic length 4,) and, as a
result, it predicts erroneous solutions when the radius of a punch is very small. However, the
contact pressure under the larger punch (i.e. larger contact radius ap) for both models, accounted
for the surface energy effects, converges monotonically to the classical solution.

The variations of normalized vertical stresses, 7oy /4udo, along the radial direction at
four depths, zo = 0.1, 0.5, 1.0 and 1.5, with contact radius ap = 0.5 are shown in Figure 3.6. The
vertical stress profiles indicate the strong influence of the surface energy effects for region
relatively closed to the punch. In particular, at very small depth (i.e. zo = 0.1), the vertical stress
increases monotonically and reaches their peak values near ro/ap = 1 and then starts to drop
rapidly when rg increases. At larger depths, the vertical stress reaches its maximum at ro = 0 and
decreases monotonically to zero at relatively large ro. It is evident that an ideal surface attached
to the bulk of the current model distributes the localized indentation force to an area outside the
contact region. As a direct consequence, the current model (i.e. Gurtin-Murdoch model with the
out-of-plane contribution of 7 °) predicts the lower vertical stress under the punch and higher
vertical stress outside the contact region than those obtained from the other two models.
However, such discrepancy becomes insignificant in the region far away from the punch.

Numerical results of normalized shear stresses, 7oy, /4udo, and radial stresses, 7oy /4udo,
at various depths with contact radius ap = 0.5 are also presented in Figure 3.7(a) and Figure
3.7(b) respectively. Similar to the vertical stresses, the magnitudes of shear stresses along the
radial direction predicted by the current model are generally lower and higher respectively than
those obtained from the other two models for regions inside and outside the contact area. The
shear stress at any depth vanishes at ro = 0 because of the axisymmetry, and it reaches its peak
value near the edge of the punch (ro/ap = 1) and, thereafter, decreases rapidly with ro. However,
such behavior is not observed for the radial stress, for instance, the magnitude of radial stress at
Zo = 0.5 obtained from the current model lies between those predicted by the other two models
for a region inside the contact. As expected, the shear and radial stresses obtained from all three
models for relatively large ro possess the same trend and decay monotonically to zero. The
inflence of surface energy effects is extremely small for zo > 1.5 as clearly demonstrated by
small discrepancy between the solutions obtained from the current and classical models.

According to results shown in Figure 3.8(a) for the normalized vertical displacement,
u,/4o,do, along the radial direction at five depths, zo = 0.0, 0.1, 0.5, 1.0 and 1.5, with contact
radius ap = 0.5, one predicted by the current model is comparatively higher than those obtained
from the other two models due to the need of higher indentation force to produce the same
indentation depth. Unlike the stress solutions, vertical displacements exhibit a slower decay rate
as zp increases while they still gradually converge to the classical solutions. As the final
illustration of elastic fields for this particular punch, the normalized radial displacement, u,/4,do,
at four dfifferent depths, zo = 0.1, 0.5, 1.0 and 1.5, with the same contact radius ap = 0.5 is
reported in Figure 3.8(b). Clearly, the radial displacement increases rapidly from zero at ro =0 to
its peak value at relatively small ro and then gradually decreases with ry. It should be noted that
the surface energy effects only influence the magnitude of the radial displacement whereas its
distribution along the radial direction predicted by all three models is quite similar.
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Figure 3.3 Comparisons of classical numerical solutions with exact solutions for flat-ended
cylindrical punch: (a) normalized contact pressure and (b) normalized vertical displacement
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Figure 3.4 Comparisons of classical numerical solutions with exact solutions for paraboloidal
punch: (a) normalized contact pressure and (b) normalized vertical displacement
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0.5 at various depths: (a) shear stress and (b) radial stress

81



0.0

0.2 4

0.4 =
'OD 4
< 0.6 - ®
B ] o 7,=01
._—_—’: ..... [ ] Zo=0.5
0.8-_ A 7,=10
X 7,=15
Lo B e Classical solution
o -— Zhao's solution
—— Current study
’2+——t1r————fr
0.0 0.5 1.0 15 2.0 25 3.0
r./a,
(@)
0.10
© 7,=01
s 2,=05
A 7,=10
x 7,=15

------- Classical solution
: T -— Zhao's solution
o 7 —— Current study

0 2 4 6 8 10

(b)

Figure 3.8 Normalized displacement profiles of flat-ended cylindrical punch with contact radius
ao = 0.5 at various depths: (a) vertical displacement and (b) radial displacement

82



3.3.2.2 Paraboloidal punch

Consider next a paraboloidal punch with ¢y = 0.5 acting on the half-space with the indentation
depth d and final contact radius a as shown in Figure 3.2(b). This punch belongs to a class of
smooth contact punches since dd/dr is well-defined at r = a where a is unknown a priori. Note
again that the final contact radius a is determined by enforcing the continuity condition of the
vertical stress beneath the punch at r = a. Numerical results for elastic fields of this particular
punch profile are reported in Figures 3.9-3.12, additionally, some interesting results
demonstrating size-dependent behavior and material stiffness due to surface energy effects are
finally shown in Figures 3.13-3.15 and all crucial remarks are summarized as follows.

To demonstrate the size-dependency resulting from the influence of surface energy
effects, the distribution of normalized contact pressure under a paraboloidal punch, zpao/4udo, is
first presented in Figure 3.9 for three values of the contact radii, ap = 0.5, 0.8 and 1.0.
Interestingly, the contact pressure predicted by the current model becomes finite at the boundary
while those obtained from the classical case and Zhao's model vanish at the boundary of the
contact region. Unlike the results for the flat-ended cylindrical punch, the contact pressure
obtained from the current model is significantly larger than those obtained from the other two
models. However, such discrepancy becomes smaller when the contact radius is larger. Note that
upon the proper normalization the distribution of the contact pressure for the classical case is
obviously independent of the contact radius, and exhibits no size-dependency.

Normalized vertical stress profiles for the paraboloidal punch with a fixed contact radius
ao = 0.5 at five depths, zo = 0.0, 0.1, 0.5, 1.0 and 1.5, are reported in Figure 3.10. It is important
to emphasize that due to the enforcement of continuity of the vertical stress at r = a, the
singularity behavior at the boundary of the contact region disappears for this particular punch
profile similar to what observed in the case of flat-ended punch. The maximum value of the
vertical stress occurs at the origin and rapidly decays to zero as ro increases. Clearly, the
distribution of the vertical stress along the radial direction at a very small depth exhibits
significant difference from the case of the flat-ended punch. Once again, the vertical stress close
to the free surface predicted by the current model deviates from those obtained from the classical
and Zhao’s models. This implies that the stress field depends significantly on the surface energy
effects and the out-of-plane contribution of the residual surface tension.

Figures 3.11(a) and 3.11(b) show the normalized shear and radial stresses along the radial
direction with contact radius ap = 0.5 at four different depths, zo = 0.1, 0.5, 1.0 and 1.5. Similar
to the case of flat-ended punch, the shear stress at each depth increases from zero at ro = 0 to its
peak value near the punch boundary (ro/ap = 1) and then decays rapidly as rq increases. On the
other hand, the radial stress decreases monotonically from its maximum value at ro = 0 as ro
increases. Again, the surface energy exhibits significant influence on both shear and radial
stresses only in a local region very near the punch, and its contribution becomes negligible at
regions very far from the punch. The influence of surface energy on the vertical and radial
displacements is also clearly demonstrated by the results shown in Figures 3.12(a) and 3.12(b).
The vertical displacement predicted by the current model is comparatively higher with a slower
decay rate when compared to those obtained from the other two models. This observed behavior
is similar to the case of flat-ended punch.

To further demonstrate the size-dependent behavior, the relationship between the ratio
ao/a. (where a; denotes the contact radius for the classical case) and the contact radius ao of a
paraboloidal punch is investigated as shown in Figure 3.13. Due to the influence of surface
energy effects, it is evident that the contact radius is smaller than that obtained from the classical
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case for the same indentation depth. This implies that presence of the surface stress renders the
material stiffer. In particular, the difference from the classical solution is less than 1% for Zhao’s
model and up to 30% for the current model. It appears that the out-of-plane contribution of
residual surface tension has a significant influence on material stiffness, and the surface energy
effects play a prominent role in mechanical properties of materials.

Another set of results that confirms the size-dependent behavior of predicted solutions
when the surface energy effects are incorporated is associated with the relationship between the
normalized indentation force, P/P., and the contact radius ao for flat-ended cylindrical and
paraboloidal punches as shown in Figure 3.14. It is obviously seen that when the radius of the
punch becomes smaller the indentation force required to produce the same indentation depth is
relatively higher due to the surface energy effects. The discrepancy is more pronounced for the
results predicted by the current model when compared to Zhao’s solutions. This implies that the
stiffness of materials characterized by the indentation experiment does not only depend on the
penetration depth but also the radius of the punch. In particular, at the contact radius ap = 0.1,
results obtained from Zhao’s model are approximately 5% higher than the classical solution for
both punch profiles whereas those predicted by a model accounted for the out-of-plane
contribution of the residual surface tension are up to 120% and 160% higher than that obtained
from the classical model for paraboloidal and flat-ended punches respectively.

To clearly demonstrate the influence of surface energy effects on the material stiffness,
the relationship between normalized indentation force, P/4.,%, and the indentation depth d for
both punch profiles are presented in Figures 3.15(a) and 3.15(b). It can be concluded from these
results that the indentation force for both punches predicted by the current model is significantly
higher than those obtained from the classical model and Zhao’s model. This additionally
confirms that materials become stiffer due to the presence of the surface stress effects and the
out-of-plane contribution of the residual surface tension amplifies such influence. It is also
important to emphasize that the discrepancy of results for the flat-ended cylindrical punch is
more pronounced than that for the paraboloidal punch due to the non-smoothness of the punch
profile and the singularity of stress field introduced at the boundary of the contact region.

Table 3.1 Material properties used in numerical study

Model Parameter Value (unit)
A 58.17x10° (N/m?)
u 26.13x10° (N/m?)
Ag 0.16707 (nm)
2 6.8511 (N/m)
u’ -0.376 (N/m)
s 1 (N/m)
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CHAPTER IV
NANO-CRACKS

This chapter begins with the clear problem description and essential assumptions for the
formulation of boundary value problem related to nano-cracks in three-dimensional infinite
elastic media. All basic field equations and the development of governing equations for both the
bulk material and the crack surface are then presented. Next, the fully coupled system of weak-
form equations governing the primary unknowns on the crack surface is derived. Essential
components required in the numerical implementation including the discretization and numerical
integration are briefly discussed. In general, standard procedures for the weakly singular
SGBEM (e.g., Li and Mear 1998, Li et al. 1998, Rungamornrat 2006, Rungamornrat and Mear
2008) and those for the standard finite element method (e.g., Bathe 1990, Hughes 2000,
Zienkiewicz and Taylor 2000) are utilized to form the discretized system of linear algebraic
equations. To verify the formulation and numerical implementation of the proposed method for
solving nano-sized cracks problems, a penny-shaped crack embedded in an isotropic, linearly
elastic, unbounded domain under pure mode-I loading conditions is considered first. Results of
the crack opening displacement and the vertical stress in the vicinity of the crack front are
compared with existing benchmark solutions (Intarit et al. 2012, Intarit 2013). Once the
technique is fully tested, the parametric study is performed for this particular problem to
elucidate the influence of surface stresses and the size-dependent behaviors of the predicted
solutions. Then, the same penny-shaped crack is investigated for mixed-mode loading
conditions. To further demonstrate the capability of the current method in solving cracks of
arbitrary shapes and multiple cracks, an elliptical crack under mode-1 and mixed-mode loading
conditions and two coplanar cracks under mode-1 loading are considered respectively in the
remaining of this chapter.

4.1 Formulation

(@) (b)
Figure 4.1 (a) Schematic of three-dimensional infinite elastic medium containing an isolated
crack and (b) prescribed traction on crack surfaces.
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Consider a three-dimensional, linearly elastic, infinite medium Q containing an isolated, planar
crack of arbitrary shape with a selected reference Cartesian coordinate system {O; X;; X,; X} , as
shown schematically in Figure 4.1(a).

The crack is represented by two geometrically identical surfaces, denoted by S; and S_,
with the corresponding outward unit normal vectors n* and N~ oriented perpendicular to the x3-

axis for convenience in further development. In the present study, the medium is assumed free of
body forces and remote loading, but subjected to prescribed, self-equilibrated, normal traction

t* and t° on the crack surfaces S. and S_ respectively (see Figure 4.1(b)). An infinitesimally

thin layer on each crack surface possesses a constant residual surface tension z° (under
unstrained conditions) and the surface Lamé constants A° and «°, whereas the rest of the

medium, termed the “bulk material”, is made of a homogeneous, isotropic, linearly elastic
material with shear modulus x and Poisson’s ratio v.

A clear problem statement of the present study is to determine the complete elastic field
including the displacements and stresses within the bulk material by taking the influence of
surface stresses into account. Fracture-related information such as the relative crack-face
displacement and the local stress field in the vicinity of the crack front is also of primary interest.

4.1.1 Domain decomposition

In the formulation of the boundary value problem, the medium is decomposed into three parts:
the bulk material, the zero-thickness layer S; and the zero-thickness layer S_ as shown in

Figure 4.2. The bulk material is simply the whole medium without the two infinitesimally thin
layers on the crack surfaces. Since both layers have zero thickness, the geometry of the bulk
material is therefore identical to that of the whole medium (i.e. it can also be completely

described by the region Q and the two crack surfaces S and S_).

X3
St +b +$ _
c t t t0
¢ L X S+ S— m“ AA ’%
IR > c ‘A\ c IVYY
Sg t—b t+0 \j t_s
(a) (b) (©

Figure 4.2 Schematics of (a) the bulk material, (b) the zero-thickness layer S. and (c) the zero-
thickness layer S; .
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The key difference between the bulk material and the original medium is that the bulk material is
homogeneous and the crack surfaces S and S_ in the bulk material part are subjected to

unknown tractions (exerted directly by the two layers) t** and t™°, respectively. The layer S, is

treated as a two-sided surface with one side subjected to the prescribed traction t*° and the other
side subjected to the traction t*° exerted by the bulk material (Figure 4.2(b)). Similarly, the layer
S, is treated as a two-sided surface with one side subjected to the prescribed traction t° and

c

the other side subjected to the traction t° exerted by the bulk material (Figure 4.2(c)). In what
follows, Greek subscripts denote field quantities associated with the surface and take the values
1, 2 while the Latin subscripts take the values 1, 2, 3. It is remarked that, in the development to

follow, it will suffice to make reference to the single crack surfaceS, =S_ .

4.1.2 Governing equations of bulk material

Since the bulk material is made of homogeneous, isotropic, linear elastic material, its behavior is
governed by the classical theory of linear elasticity. From results developed in the work of
Rungamornrat and Mear (2008a) and Rungamornrat and Senjuntichai (2009), the displacement

and stress components at any interior point x, denoted respectively by u (x) and o;(x), can be

expressed in terms of the traction data t* and t™ and the displacement data u*™ and u™ on the
crack surfaces S/ and S_ as

Up (= USE — 3t ()as( )

+[, GAE-0D,U(©)ASE) - [, HYE-0n, (Quf* (©)dS(E)
oy (§=§ & CLE — 9D ( )ds( )

+], &GP &0 (©)dSE) - [ H (€- 0t ()dS(E)

(4.1)

(4.2)

tbz = t.+b +t.‘b ut.’A = u*b —u’, ¢

where D, () = &,,;n,0(-)/ 9, is a surface differential operator, i Ein

is the standard alternating symbol, the kernels {U?,G; ck

mi+ Cmio Hi p} for isotropic elastic materials
are given explicitly by

e o1 [ (&, - x,)(E,— X))

Us(E X)_lGn(l—v)yr{(B 4v)o,; + = } (4.3)

e o1 X))

ij(g X)_87Z'(1—V) |:(1 2V) mp] rz gajm:| (44)

C¥ (£ -x) = L{(l—v)@kém,- 28,5, — 8,0, — XX @m} (45)
Az(l-v)r r

-3 =850 “5)
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with r=||§—x||, and v,z are Poisson’s ratio and the shear modulus respectively. The boundary
integral relations (3.1) and (3.2) allow the displacement and stress at any interior point to be
determined once the data t™, t™®, u™ and uare known. To establish the boundary integral

equations governing the unknown data t™ , t™, u™ and u™, the integral relations (4.1) and
(4.2) are utilized along with the limiting process to any point on the crack surface and the
standard integration by parts procedure using Stokes’ theorem to obtain the weak-form
equations. The final weak-form, boundary integral equations are given by (see details of the
development in Rungamornrat and Mear (2008a) and Rungamornrat and Senjuntichai (2009))

% J, EOUEESyE], By U - )t )ds()ds( )
+], GO B4 - D,UE()d§()dS( ) 4.7)
~J, OV H& —yan, (i ()ds( )ds( )
—% LC G (Y)t" &y)dS(y) =L§Dtaﬁiy)jsc;cﬁg( — )D,uP( )dS( )dS( )
+f, DA, B & TE)AS()ds( ) (4.8)
+], O8], Hl (- Ot ()dB( )ds( )

where ul* =u®+u®, =t —t;°, and {{;, G’} are sufficiently smooth test functions. The
pair of equations (4.7) and (4.8) has been well recognized as the weak-form boundary integral

equations for the sum of the displacement u?z and the jump of the traction t?A across the crack
surface respectively. It is worth noting that both integral equations contain only weakly singular
kernels {Uf,Grﬁj,Crﬁ:‘j, H/n,} of O(1/r).This positive feature renders all involved double surface

integrals to exist in an ordinary sense, and their validity requires only C°- boundary data.

4.1.3 Governing equations of two layers

The two layers S and S_ shown in Figures 4.2(b) and 4.2(c) are considered as infinitesimally

thin membranes adhered perfectly to the bulk material. The behavior of these two layers is
modeled by the full version of Gurtin-Murdoch surface elasticity theory. The equilibrium
equations, the surface constitutive relations and the strain-displacement relationship of the layers
S, and S, are therefore given by (Gurtin and Murdoch, 1975; Gurtin and Murdoch, 1978;

Gurtin et al., 1998)

ol s+t +17 =0 (4.9)
C.p =170, +(/15 +TS)€;5W + 2(,uS —TS)EZﬂ +TU; 5, 05, =T0Us (4.10)
fp =3(Uip +U3) (4.11)
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where o7, ¢,,, U7 represent stress, strain and displacement components within the layer. It is

important to remark that, in this case, the full version of Gurtin-Murdoch surface elasticity theory
including both the surface Lameé constants (or in-plane elastic constants), and the residual surface
tension is considered. This model should suit the treatment of general loading conditions when
both the normal and tangential traction can be applied simultaneously on the crack surfaces.

To construct the weak-form equation, the equilibrium equation (4.9) is multiplied by a
sufficiently smooth test function G’ and the result is integrated over the entire crack surface to

obtain

o

j o, S + j 0303, ,0S + [ GE7dS + [ G7t’dS =0 (4.12)

c SC SC

By performing the integration by parts of the first term using the Gauss-divergence theorem, it
leads to

j G 0t ,dS + j G ,0%,dS — j G°tdS = j Gos,n,dS + j 0503,n,dS + [ G7t'dS (4.13)

c C c C SC

Substituting (4.10) into (4.13) finally yields

lsj Uy dS + %SJ(U;/} +05, )(u;ﬂ +u;a)d8 +7° I a3 ,u; ,dS — I a°t’dS =
Se Sc Se

(4.14)

a a"y,y

ﬂff nu’ dF+ﬂSI uan +uﬂna)(uw+uﬁa)dl“+r juu3ﬁnﬂdF+JUisti"dS
oS,

Note that the weak-form equation (4.14) applies to both crack surfaces. In particular, the weak-
form equations for the surface S; and surface S_ can be obtained explicitly by

A j 05 U dS + % Sj o) (uz, +uy, )ds + 0 j AT j Gt dS =
(4.15)
isjﬂ“nauj*ydlw?J'(u N, +05n, )(ust, +us, JdT+7° I”“ iy ﬁdF+jUS*t°+dS
oS, Sc Se
15j~;-auwd5+—j e (Ui, +us, )dS +2° juw 5,08 - jaSt “dS =
* * (4.16)

Sc
isjas‘nauwdlwﬂ J' @ n, +05n, )(us, +us, )d0+2° Ius‘uw ﬂdF+IUS t-dS

0S¢

where the superscripts “+” and “~” are added to differentiate quantities defined on each crack
surface. Since the boundary integral equations governing the bulk material are derived in terms
of the unknown sum and jump of quantities across the crack surface, it is natural to establish the
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weak-form equations governing the surface in terms of the same type of unknowns. This can be
readily accomplished by forming two linear combinations of (4.15) and (4.16) as follows: (i)

choosing U’ =0’ =0 and then adding (4.15) to (4.16) and (ii) choosing G’ =0’ =0 and
then subtracting (4.15) from (4.16). Such pair of equivalent weak-form equations is given by

2 j 0% u™ ds ”7 Sj )(u, +uz, )dS +7 j 05U, dS - j tdS =

> E (4.17)
ﬂsj'ajfnaufydl“+ _[ u n, +0;n, (ujfﬁ )dF+r j~sz o5 ﬁdF+IUSEt°2dS
A j 052 us dS + £ j +05, (U, +us, )dS + 7 j 05%,us%,dS — j Gt dS =

b ® (4.18)
ﬂsj'ajfnaujjdl“+ I u *n, +0; na)(ujfﬂ )dF+r IUSA us’n dF+IuSAt°AdS

a5, S

where superscripts “X” and “A” indicate the sum and jump of quantities across the crack

surface. It should be remarked further that since the jump of the displacement along the crack-
front vanishes identically, the test function G** is chosen to satisfy the homogeneous condition

=0 on 0S,. The weak-form equations (4.17) and (4.18) now take the form

o, }/}/

2 j G % dS + %J(Ufﬁﬂ—aia )(uE, +u, )ds +° j 03u%,dS — [ 0t™dS =

‘ % (4.19)
2 j 0s*n,u™ dr + %OSE(UZEHﬂ+U;zna)(UZZﬂ L)dT+7° p! ug, ﬂdF+J;GSZt°ZdS
A j 1%, U dS + % Sj (022, +03, )(u, +uss, )dS +7 j 3403, dS — j 0*t%dS =
: 5 5, (4.20)
[ ds
S

Equations (4.19) and (4.20) constitute a set of weak-form equations governing the unknown
quantities { u™, t™,u™, t}.

4.1.3.1 Special case with only residual surface tension

It has been pointed out by various investigators that the influence of the surface Lamé constants
on the out-of-plane responses in the local region very near the surface is negligibly weak (Intarit
et al. 2012, Nan and Wang 2012, Intarit 2013, Pinyochotiwong et al. 2013). The simplified
version of the Gurtin-Murdoch model without the in-plane surface elasticity is therefore
considered suitable for modeling planar cracks subjected to pure mode-I loading conditions. By
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simply setting the surface Lamé constants A° and x° to zero in the constitutive relation for the
surface (4.10), it leads to

S .S S;,S
Oy =10, +7°€,0,,—2T€,5+T°U, 5, O35 =7l , (4.21)

Since the same equilibrium equation and strain-displacement relation as those employed in the
general case (i.e. equations (4.9) and (4.11)) are also considered, the model is not restricted
mathematically to applied traction normal to the crack surface although it is physically suitable

for treating pure mode-I loading conditions. Due to the vanishing of the term o, ,, which can

readily be verified by the relation (4.21), the equilibrium equation (4.9) then implies that the
applied shear traction is transmitted directly to the crack surface of the bulk medium. To
construct the weak-form statement for this particular case, the procedure similar to that employed
in the previous section is adopted. The final weak-form equations of the two layers take the
following form:

jasfusZ ds — j 0t2dS = j 0o ﬂd3+j 0°t°%dS (4.22)

J‘~sA us dS J' sAtsAds J'GsAtOAdS (423)
S

c

4.1.3.2 Special case with only in-plane surface elasticity

Another simplified version of the Gurtin-Murdoch model considered in the present study is the
one with only the effect of the in-plane surface elasticity being treated. The simplified

constitutive relation of the layers S’ and S_ is obtained by substituting the residual surface
tension z° to zero in (4.10), and this results in

s, =Ae, 0, +2ue,, , 05,=0 (4.24)
It is evident from (4.24) that this simplified model always predicts zero out-of-plane shear
stresses and this result, when combined with the equilibrium equation (4.9), dictates that the
applied normal traction is transmitted directly to the crack surface of the bulk material. Similar to
the previous special case, this simplified model is still applicable to general loading conditions
on the crack surface. To obtain the weak-form statement for this particular case, the procedure
similar to that employed in the general case is utilized and the resulting weak-form equations are
given by

U 05005, 0, o[

a,ayyy
S S

(4.25)

a a=yy
0S, oS,

28 j @n u%lﬁ7 j (anﬁﬂijfna)(ufﬂ+ujfa)d1“+§[0fzti°2d8
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a,a ;/;/ aﬂ

ﬁ*SJ‘ G Ut ds + ,u?é" s » +USA ust +UZA’a)dS _J.l]iSAtiSAdS = .[l]iSAtiOAdS (426)

Se Se
4.1.4 Governing equations of whole medium

Since the two layers S and S_ are adhered perfectly to the bulk material, the displacements

and traction along the interface of the two layers and the bulk material must be continuous. This
yields the following continuity conditions:

U = =y (4.27)
u= =u”=u (4.28)
£ = _tibA = ¢ (4.29)
= " = (4.30)

Substituting (4.27) - (4.30) into (4.7), (4.8), (4 19) and (4.20), leads to a system of four equations
involving four unknown functions {u”, t*,u®, t*} as follows:

% J, SOy By UT( - )t ()ds()ds( )
+], © O8], B4 ( -~ 9D, ()d§( )ds( ) (431)
-], Ok HEE-9n (3uf()ds()ds( )
j 0 (Y)t @38 (v) =] EDILY) [, oy ( = )Du( )dS( )ds( )
+], DO (3], B (& E()dF()ds( ) (4.32)
+, Uﬁ(véjschli(% )8 ()G ()dB( )ds( )

2 j 05 u* dS + ”7 (0, +0%, )(uZ, +uz,)dS+7 j G52 ,dS + j 05 =
" (4.33)
A° I an,u> dI+ % (@n, +a5n, )(us ,+uj, )dl+2° J' a5*u nﬂdl“+.[l]fzti°zd8
a5, S,
2 j 05 u? dS + “7 sj (022, + 8, (s, +us, )dS +7° j a5 u2 ,dS + j Gt2dS = j EM0NdS  (4.34)

c c C c

It is obvious from (4.32) and (4.34) that terms involving the unknown jump of the traction t* are

similar and, by choosing U™ =U0", the two equations can be combined and those terms

containing t* can be eliminated. The above system (4 31)-(4.34) now becomes a system of three

equations involving three unknown functions {u”, t*,u’*}given by
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d(ﬂsz1u2) +‘Z)(052,t2) :‘@(GSZ)
B({,u*) +EC(Tt°) +2(tuY) =0 (4.35)
D(t°,0%) +&£@uY) =B

where the bilinear integral operators &, #, €, 2, & are defined by

d(x,Y):%ij Y dS+ ”Tssj(xawxﬂﬁ)(vaﬁwﬁ )dS+ jxsﬁv ds

S o (4.36)

- ’%j X“n“Y”d”Ta! (Xuny + X0, ) (Yo s+ )T + 5 jx Y, sn,dl
BXY)=2 j X, ()Y, (¥)dS(y) (4.37)
e(X,Y)=- j X, () j UP(E-Y)Y, (§)dS(E)dS(y) (4.38)

D(X,Y) =~ jx ) j GY (E-Y)D,Y, (£)dS(E)dS(y)

+Sf xp<y)} HP E-y)n, (B)Y; ()dS(E)dS(y) .
EX,Y) =~ j DX, () j Cri (E-Y)D,Y, (B)dS(E)AS(Y)+ F(X,Y) (4.40)
jxwYMds ”Tssj(xaﬂxm)(vaﬁw )ds +<- jxwY ds (4.41)

and the linear integral operators {%, %} are defined, in terms of prescribed data t* and t**,
by

RX) = [ X D (1)ds () (4.42)

A= [ X, D ()dS() @.43)

4.1.4.1 Special case with only residual surface tension

For the special case when only the residual surface tension is considered, the fully coupled
system of governing equations (4.35) can readily be simplified by ignoring the surface elastic
constants, and they can be expressed as
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d—(ﬂsz,uz) +‘7)’(Gsz,t2) :ya(usz)
Bt uY) +et ) +2(FuY) =0 (4.44)
D(°,0%) +&(@uY) =2(@")

where the additional bilinear integral operators @ and & are defined by

a(X,Y)=" jxwY ds - jx Y, ;,dT (4.45)
E(XY)= j DX, ()], Cri(&-Y)D,Y; ()dSE)dS(y) +F (X.Y) (4.46)
Z(XY) jx3 Y 408 (4.47)

It is remarked that the system (4.44) still contains three equations and involves three unknown
functions {u”, t*,u’}.

4.1.4.2 Special case with only in-plane surface elasticity

For the special case when only the in-plane surface elasticity is considered, the fully coupled
system of governing equations can readily be obtained by setting the residual surface tension to
zero in (4.35), and the final result is given by

é(USZ,UE) +‘/‘?(Usz,t2) 2‘7%(052)
BEW) +e@. ) +2F,uY) =0 (4.48)
D(,0Y) +E@uY) =B®0)

where the additional bilinear integral operators & and & are defined by

a(x, Y)_—j X,,Y,dS +Tj(xaﬁ+xﬂ,a )Y, +Y,,)dS

N (4.49)
__j xanaYNdF—T (xanﬁ+xﬂna)(vaﬁ+vﬁﬂ)dr
£X ) =], Dtxk(y>j Co (& y)D Y, (€)dS(E)dS(y)+ £ (X, Y) (4.50)
/IS
:7S[X““Y”ds+ j )(Y,p+Y,,)dS (4.51)

Again, the system (4.48) still contains three equations and involves the same three unknown
functions {u”, t*,u"}.
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4.2 Numerical Implementations

In this section, essential components required in the numerical implementation including the
discretization and numerical integration are briefly discussed. In general, standard procedures for
the weakly singular SGBEM (e.g., Li and Mear 1998, Li et al. 1998, Rungamornrat 2006,
Rungamornrat and Mear 2008) and those for the standard finite element method (e.g., Bathe
1990, Hughes 2000, Zienkiewicz and Taylor 2000) are utilized to form the discretized system of
linear algebraic equations.

4.2.1 Discretization

Standard Galerkin approximation is employed in the discretization of the system of governing
equations (4.35), (4.44), and (4.48). Since all involved boundary integrals governing the bulk
material contain only weakly singular kernels of ¢(1/r), continuous (C°% interpolation functions

are utilized everywhere in the approximation of both trial and test functions. In particular, the
following approximation for the test functions and the trial functions is introduced:

- ZU3(9 1)+| ! U = ZUB(q 1)+| (452)

N
Z 3(p-1)+iPp ; u = ZU3(q 4P (4.53)

Mz

(p 1)+I ! Z 3(q- 1)+| (4-54)

where N is the number of nodal points; @ is nodal basis functions at the node p; @, is nodal

basis functions at the node q; U3Z(q_1)+i, Usig.i» @nd T . are nodal degrees of freedom

associated with the sum of the displacement, the jump of the displacement and the sum of the
traction across the crack surfaces, respectively; and U3(p i Ug(pfl)”, and 'fs(pfl)“ are arbitrary
nodal quantities.

4.2.1.1 General case

Substituting (4.52)-(4.54) into (4.35) along with using the arbitrariness of U7, ,,,;, Uy, 1., and
'Izg(p_l)q , leads to a system of linear algebraic equations as

A B 0](u*] (R
BT C DT !={0 (4.55)
o D' E|lU*| |R

where the sub-matrices A, B,C,D,E are associated with the bilinear operators
a, 7B, C, P, & ; sub-vectors R, R, correspond to the linear operators &, % ; U* is a vector
of nodal quantities of the sum of the displacement; U” is a vector of nodal quantities of the
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jump of the displacement; and T* is a vector of nodal quantities of the sum of the traction. The
sub-matrices A, B, C, D, E and sub-vectors R,, R, are given explicitly by

[ALp1)eas@nis = .[CDp (NP, 5 (y)dS(y)—— I @, (y)D, ,;(y)n,dI(y)

oS,

+”7(I ()P, (YAS(y)+3,, | CDp,y(y)@q,y(y)dS(y)j (4.56)

SC

‘%SU (NP0 (AT 43, | CDp(y)CDq,y(y)nde(y)]

c

(Al 155 02 = J ®py(y)d>q7(y)d8(y>—— j O, ()@, (Y)n,dT(y) (4.57)
[Blap-yeiaanei = j L0, (V)P (y)dS(y) (4.58)
[Clip-syuiss = j @, (y) j Uj (& - )@, (£)dS(£)ds(y) (4.59)

[Dlp-1yrisaj = ICD (Y)I ij (&- y)D (f)dS(é‘)dS(y)

(4.60)
* j @, (y) j Hiy (€ = )N, (), (£)dS (£)dS (y)
[ELipyris-00) = j D® (y) j Chi (€= y)D, @, (£)dS(E)dS(Y) + [Flap sri5a1- (4.61)
Fhipsecstrs = 5| @ (104, (13 ()
:’° (4.62)
| [0, (D@ (YS() +3,, | ﬂDp,y(y)CDq,y(y)dS(y)j
[F]3(p—1)+3,3(q—1)+3 = % '[ O (Y)q)q,y(Y)dS(Y) (4.63)
[Rils(pi Z%Jq)p(y)tioz(}’)ds()’); L TP %Iq’p(y)ti‘m(y)ds(y) (4.64)
[Uz]S(q—l)Jri :U?:Z(q—l)ﬂ ; [UA]E(q—1)+i :U3A(q—1)+i; [T2]3(q71)+l _T3?q ~1)+i (4.65)

4.2.1.2 Special case with only residual surface tension

By applying the same procedure as that employed in the general case to (4.44), it leads to a
system of linear algebraic equations as follows:
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A B 0/[[U] (R,
BT C DHHT*!={0 (4.66)
0 D' E||U R

where the sub-matrices A, B,C,D,E are associated with the bilinear operators
a,B, C, P, E ;sub-vectors R,, R, correspond to the linear operators £, % ; U is a vector
of nodal quantities of the sum of the displacement; U* is a vector of nodal quantities of the

jump of the displacement; and T* is a vector of nodal quantities of the sum of the traction. The
additional sub-matrices A and E are given explicitly by

Rlu-000 =0 (67)
Rl ssrs =3 [, 00, (900, (0)= 5 [ 9,0, (9n97() (469
Bl s =, D20, ChE - YD ESESW Pl ey 659)
P00 =0 (@70
Fhissns =5 | 05, (000, (998) @)

4.2.1.3 Special case with only in-plane surface elasticity

The discretized system of linear algebraic equations of the governing equations (4.48) can also
be obtained in the same manner and the final result is given by

A B 0|fu*] (R,
BT ¢ pl{T:l=l0 (4.72)
o D E||U R,

where the sub-matrices A, B, C,D,E are associated with the bilinear operators
d, B, C, D, E; sub-vectors R,, R, correspond to the linear operators &, 4 ; U” is a vector

of nodal quantities of the sum of the displacement; U* is a vector of nodal quantities of the
jump of the dlsplacement and T~ is a vector of nodal quantities of the sum of the traction. The
additional sub- matrlces A and E are given epr|C|tIy by

[A]a(p—1)+a3 1) Iq)pa(Y)(D ﬁ(y)dS(y)——J.q) ()P, ,(y)n,dr(y)
+%U CDp,ﬂ(y)CI)q,a(Y)dS(}’)+5aﬂICDp'y(pch'y(pds(Yq (4.73)

_%S(jd) (NP, ()N, dr(y)+5a,,jcp (Y@, (y)n, dl“(y)}

0S
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[Als(p-1):333-275 =0 (4.74)
[ELsp syt nes ==, D@ (Y] Coi (€= Y)D, P (E)IS(E)AS(Y) + [Flyip 1ysisa sy (4.75)

~ A8
(Flipteaston =5 [ ©oa (NP, (Y)AS(Y)
S

c

S (4.76)
L [0, (1), (IS +3, | ®p,y<y>d>q,y<y>ds<y>j

[Flsp-:356-9:3 =0 4.77)

4.2.2 Numerical integration

To evaluate the sub-matrices A, A, A, B, C, D, E, E, E and sub-vectors R,, R, numerically,

the single and double surface integrals must be properly treated. All single surface integrals
contain regular integrands, and can be efficiently and accurately integrated using standard
Gaussian quadrature. Unlike single surface integrals, double surface integrals can be categorized
into three types depending on a pair of elements resulting from the discretization of the surface

S.-

The first type is termed a regular double surface integral since its integrand is not singular
with only mild variation. This type of integral arises when both elements in a pair are relatively
remote in comparison with their characteristic size. Similar to the single surface integral, all
regular double surface integrals can be accurately integrated by Gaussian quadrature. The second
type, termed weakly singular double surface integrals, arises when both elements in a pair are
identical and, therefore, the integrand is weakly singular due to the involved kernels. Although
these integrals exist in an ordinary sense (sense of Riemann), it was pointed out by Xiao (1998)
that they cannot be accurately integrated by standard Gaussian quadrature. To circumvent such
difficulty, similar techniques based on integrand regularization via a series of transformations
proposed by Li et al. (1985), Hayami and Brebbia (1988) and Xiao (1998) are employed. The
last type of double surface integrals, which are considered most challenging, is a nearly singular
integral. The integrand of these integrals is nearly singular since both elements in a pair are
relatively close in comparison with their characteristic size and this renders the kernels appearing
in those integrals nearly singular and exhibiting rapid variation. Similar to the weakly singular
integrals, Gaussian quadrature cannot be used to integrate nearly singular integrals efficiently.
Special techniques proposed by Hayami (1992), Hayami and Matsumoto (1994) and Xiao (1998)
are adopted to perform the numerical integration.

4.2.3 Shape functions

As clearly discussed in the literature review, the singularity of the stress along the crack front of
nano-sized cracks with the presence of surface stresses is still unclear. Some investigators
pointed out that the stress along the crack front of nano-sized crack should be finite (e.g., Kim et
al., 2010; Kim et al.,, 2011; Kim et al., 2011; Nan and Wang, 2012). Other studies have
concluded in the opposite direction that the stress along crack front of nano-sized crack is still
singular; however the order of singularity reduces from square-root singularity to logarithmic

103



singularity (e.g., Sendova and Walton, 2010; Kim et al. 2013). In the current study, it is
postulated that the singularity of the stress along the crack front disappears when the surface
stresses is taken into account. As a result, standard isoparametric C° elements are employed
everywhere to approximate all test and trial functions appearing in the governing equations of
nano-sized crack problems. However, for some special cases when the influence of the surface
stresses is ignored in certain directions, the special crack-tip shape functions proposed by Li et
al. (1998) to accurately capture the right behavior of the near tip field are still required. The
standard isoparametric shape functions can be easily found in Bathe (1990), Hughes (2000) and
Zienkiewicz and Taylor (2000). The special crack-tip shape functions can be referred to the work
of Li et al. (1998). The usage of the shape functions (standard shape functions or special crack-
tip shape functions) in the present study can be summarized as follows:

For the general case, when the full version of Gurtin-Murdoch model is considered, the

standard shape functions are used in the approximation of all components of primary

unknowns.

For the special case, when the simplified version of Gurtin-Murdoch model without the

surface elastic constants is considered, the special crack-tip shape functions are employed
to approximate the in-plane components of u® and 0" whereas the standard shape

functions are utilized to discretize all remaining quantities.
For the special case, when the simplified version of Gurtin-Murdoch model without the residual
surface tension is considered, the special crack-tip shape functions are employed to approximate

the out-of-plane components of u® and 0* whereas the standard shape functions are adopted to
discretize all remaining quantities.

4.3 Numerical Results

In the analysis, three different levels of mesh refinement are adopted to examine the convergence
of numerical results. Nine-node isoparametric elements are used to discretize the entire crack
front, whereas the rest of the crack surface is discretized by eight-node and six-node
isoparametric elements. Young’s modulus and Poisson’s ratio for the bulk material are taken as
E =107 GPa and v =0.33, respectively, and the surface elastic constants and the residual

surface tension are chosen identical to those utilized by Intarit et al. (2012) and Intarit (2013)
(i,e. A°=44939N/m, x°=27779 N/m, 7°=0.6056 N/m). These above material

properties are used for all following numerical examples in this chapter. For convenience in the
numerical analysis, all quantities involved in the key governing equations are properly
normalized. For instance, the unknown sum of the traction and the prescribed traction on the top

surface of the two-thickness layers are normalized by the shear modulus # (i.e. t; :tz/ 4 and
[ :aio/y); the unknown sum and jump of the displacement across the crack surface are
normalized by a special length scale A =x°/u=0.24983 nm (i.e. u; =u*/A and u} =u*/A)

where «° =

as the crack radius a, the semi-major axis a, and the semi-minor axis b used in following
examples are normalized by the length scale A (i.e. a,=a/A and b, =b/A).
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4.3.1 Penny-shaped crack under pure mode-I loading

As a means for verifying the current technique, the problem of a penny-shaped crack of radius a
embedded in an isotropic, linear elastic infinite medium is considered (Figure 4.3(a)). The crack

is subjected to self-equilibrated, uniformly distributed normal traction t; =—t; = g,. The three
meshes of the crack surface used in the numerical study are shown in Figure 4.3(b).

(@)

t—{ ]
t—{ ]
lt— —]
lt— —]
t—{ ]
lt—{ ]
Rl |

(b)

e
pS

Mesh 1

NS=%

Figure 4.3 (a) Schematic of a penny-shaped crack of radius a embedded in an isotropic, linear
elastic infinite medium subjected to uniformly distributed normal traction t; =-t; =o,; (b)

Meshes adopted in the analysis. Mesh 1: 20 elements and 77 nodes. Mesh 2: 88 elements and
297 nodes. Mesh 3: 216 elements and 665 nodes.

4.3.1.1 Verification

This problem has been previously solved by Intarit et al. (2012) and Intarit (2013) using Hankel
integral transforms along with a solution technique for dual integral equations, and their results
are used as the benchmark solution to validate the proposed FEM-SGBEM technique. In this
numerical example, results for mode-I loading conditions are presented for three different
models. The model-1 represents the classical case without the surface stress effects. It should be
noted that, for this particular case, the classical solution of the crack opening displacement and
the stress in the vicinity of crack front can be found in Tada et al. (2000) and Kachanov et al.
(2004) respectively. The model-2 is associated with a simplified version of Gurtin-Murdoch

surface elasticity model (the first special case), in which the residual surface tension (z*°) is only
considered. The model-3 corresponds a full version of Gurtin-Murdoch surface elasticity model
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where both the surface elastic constants (A°,4°) and the residual surface tension (z°) are

included.

The normalized crack opening displacement and the normalized vertical stresses near the
crack front, when the influence of surface stresses is taken into account, are reported in Figures
4.4-4.5 along with the benchmark solution generated by a technique proposed by Intarit et al.
(2012) and Intarit (2013). It is seen that the numerical results are slightly mesh dependent and
that they are highly accurate and almost indistinguishable from the analytical solution for both

the crack opening displacement and near-tip vertical stresses o, for the model-2 and model-3. It

can also be pointed out from the results shown in Figure 4.4 that the two models incorporating
the surface stresses with (model-3) and without (model-2) the influence of the in-plane surface
elasticity yield results significantly different from those predicted by the classical model (model-
1). While both the residual surface tension and the in-plane surface elasticity contribute to such
discrepancy, the influence of the residual surface tension seems more significant in the case of
mode-I loading conditions. The medium tends to be much stiffer than the classical case, when
the full version of the surface stress model is considered in the analysis.

1.0

0.8 |

0.6

> |wC|>

m Numerical Sol. - Mesh 1
© Numerical Sol. - Mesh 2
. Numerical Sol. - Mesh 3
Analytical Sol. (2°, /£, ©)
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------ Exact Sol. (classical model)
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Figure 4.4 Comparison of the normalized crack opening displacements of a penny-shaped crack
under uniformly distributed normal traction obtained from three different models for

E=107GPa, v=0.33, 1°=4.4939 N/m, & =2.7779 N /m and 7° =0.6056 N /m
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Figure 4.5 Normalized vertical stresses o,/ 0, in the vicinity of the crack-front of a penny-
shaped crack under uniformly distributed normal traction for E =107GPa, v=0.33,

A*=44939 N/m, 1 =2.7779 N/m and 7°=0.6056 N /m: results for (a) model-3 and (b)
model-2.
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4.3.1.2 Parametric study

To further examine the influence of the residual surface tension (z°) on the predicted solution of
mode-1 crack problems, the normalized crack opening displacement and the normalized vertical
stress o,, for different values of the residual surface tension z° ranging from 0.1 to 1.0 N/m

(with the surface elastic constants and the bulk material properties remaining fixed) are shown in
Figure 4.6. It can be concluded that the residual surface tension exhibits significant role on the
crack opening displacement and the vertical stress o,, for mode-I loading conditions. In

particular, as z° becomes larger, the deviation of results from the classical case (without the
surface stresses) significantly increases and, clearly, it renders the elastic medium much stiffer.

The investigation of the influence of the surface elasticity constants (A°,x°) on the
solution of cracks under mode-1 loading conditions is also considered. The normalized crack
opening displacement and the normalized vertical stress o, in the vicinity of the crack front for

different values of the surface elasticity constants (A°, #°) ranging from 0, 0.1, 1 and 10 times of

their initial value (with the residual surface tension and the bulk material properties remaining
fixed) are reported in Figure 4.7. This numerical study is performed only for the model-3 where
the full version of Gurtin-Murdoch surface elasticity is considered. It can be concluded from this
set of results that the surface elasticity constants exhibit a little influence on the crack opening
displacement but negligible influence on the vertical stress for mode-l loading conditions.
However, as the surface elasticity constants become larger, the deviation of results from those
predicted by the model-2, slightly, increases and, it clearly makes the bulk material a little stiffer.

To demonstrate the size-dependent behavior of results due to the presence of the surface
stresses, the crack opening displacements and the near-tip vertical stresses are illustrated in
Figure 4.8 for all three models. It is evident that the predicted solutions apparently exhibit size-
dependent behavior by including the surface stress effects in the mathematical model. In
particular, the normalized crack opening displacements and the normalized vertical stresses in
the vicinity of the crack front of the model-2 and model-3 depend significantly on the crack size.
On the contrary, the normalized crack opening displacements and normalized vertical stresses of
model-1 are independent of the crack radius upon the proper normalization.

4.3.2 Penny-shaped crack under mixed mode loading

In this section, a penny-shaped crack in an unbounded medium under mixed-mode loading
conditions (i.e. mode-11 and mode-Ill loading conditions) is investigated to demonstrate the
capability of the proposed FEM-SGBEM coupling in the analysis of nano-sized crack problems.
This numerical example should provide the complete information with insight of the influence of
surface stresses on elastic responses and fracture data within the context of three-dimensional
problems. In the Gurtin-Murdoch surface elasticity model, the surface elastic constants are
related to the in-plane terms in the governing equations of the surface and should significantly
affects the in-plane behavior of cracks under mixed-mode loading conditions. Therefore, similar
to the previous problem, three different models are considered in this case. The model-1 is the
classical model when the surface stresses are ignored. The classical solution of the crack sliding
displacements and stresses in the vicinity of the crack front can be found in Kachanov et al.
(2004). The model-2 is associated with a simplified version of Gurtin-Murdoch surface elasticity
model where the in-plane surface elasticity is only treated. The last model, the model-3, once
again corresponds to the full version of Gurtin-Murdoch model.
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Figure 4.6 Penny-shaped crack under uniformly distributed normal traction for different residual
surface tension z° ranging from 0.1 to 1 N/m; E=107GPa, v=0.33, A°=4.4939 N /m,

1 =2.7779 N /m: (a) normalized crack opening displacements and (b) normalized near-tip
vertical stresses o, / 0, obtained by using mesh-3
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Figure 4.7 Penny-shaped crack under uniformly distributed normal traction, for different surface
elasticity constants (A°,4°) ranging from 0; 0.1; 1 and 10 times of their initial value (

A*=4.4939 N /m, 1 =2.7779 N/ m);
normalized crack opening displacements and (b) normalized near-tip vertical stresses obtained

by using mesh-3

E=107GPa, v=0.33,
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Figure 4.8 Penny-shaped crack under uniformly distributed normal traction, for three different
crack radii a,=a/A=05,1.0,10, and for E=107GPa, v=0.33, A°=4.4939 N/m,

P =27779 N/m, 7°=0.6056 N /m: (a) normalized crack opening displacements and (b)
normalized near-tip vertical stresses obtained by using mesh-3
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Consider a penny-shaped crack of radius a embedded in an isotropic, linear elastic
infinite medium as shown in Figure 4.9(a). The crack is subjected to the self-equilibrated,
uniformly distributed shear traction t| =-t, =7, . Three meshes, adopted as depicted in Figure
4.9(b), are employed in the analysis.

Numerical results for the crack sliding displacements (CSD) and the stresses in the
vicinity of the crack front along the x;-direction (the direction of the applied shear traction) are
presented in Figure 4.10. It is seen that numerical solutions exhibit very good convergence for
both the CSD and the near-tip stresses. It can be pointed out from the results in Figure 4.10(a)
that the CSD depend significantly on the surface stresses. In addition, the CSD, predicted by the
model-2 and the model-3, are virtually the same. As a result, it can be concluded that the in-plane
elastic constants prominently affect the CSD of cracks under in-plane loading conditions whereas
the influence of the residual surface tension on the CSD is insignificant. It also can be argued

from Figure 4.10(b) that the shear stress o, near the crack front is strongly influenced by the

surface stresses. The magnitude of the predicted stresses near the crack front reduces
considerably from the classical solution when the surface stresses are present. In particular, the
in-plane elastic constants affect substantially the in-plane quantities for cracks under in-plane
loadings in comparison with the residual surface tension.

To further understand the role of each parameter in the Gurtin-Murdoch model on the
predicted solutions of mixed-mode crack problems, the following four cases obtained by varying
the value of the in-plane elastic constants and the residual surface tension are considered:

Case 1: Both the in-plane elastic constants (A°, «°) are varied from 0, 1, 5 and 10 times

of their initial value (4°=4.4939 N/m, x° =2.7779 N/m) whereas the residual
surface tension remains fixed.

Case 2: The residual surface tension (z°) is ranged from 0, 1, 5 and 10 times of its initial
value (7° =0.6056 N /m) whereas the in-plane elastic constants remain fixed.

Case 3: Only the parameter A° is varied from 0, 1, 5 and 10 times of its initial value (
A =4.4939 N / m) whereas all remaining parameters remain fixed.

Case 4: Only the parameter z° is varied from 0, 1, 5 and 10 times of its initial value (
1°=2.7779 N/m) whereas all remaining parameters remain fixed.

The normalized CSD and the normalized shear stresses in the vicinity of the crack front along the
X1-direction are reported in Figures 4.11-4.12 for all four cases. It can be seen that the surface

elastic constants (A°, z°) in the Gurtin-Murdoch model significantly reduce the CSD and the

shear stresses near the crack front, whereas the residual surface tension practically has no
influence on the predicted solution of mixed-mode crack problems. It can be also pointed out that

the parameter x° in the Gurtin-Murdoch model exhibits more prominent effect on the CSD and

the near-tip shear stresses when compared to the parameter A° (see Figure 4.11(c)-(d) and
Figure 4.12(c)-(d)). To investigate the size-dependent behavior of the solution of mixed-mode
crack problems due to the presence of the surface stresses, the CSD and the shear stresses in the

vicinity of the crack-front for different crack radii a, =0.5,1.0, 10 are considered. Results of the
crack sliding displacement and the shear stresses along the x;-direction are shown in Figure 4.13.
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It can be seen from Figure 4.13 that the normalized CSD and the normalized shear stresses in the
vicinity of the crack front along the x;-direction obtained from the model-2 and model-3 are
apparently size-dependent. This finding agrees with the case of mode-1 loading conditions. When
the crack-size decreases, the influence of the surface stresses on elastic responses of cracks
subjected to mixed-mode loading conditions becomes more significant in the sense that the

medium is stiffer.

X
y 3 X3
—_—— _L@L
(b)

Mesh 1

Figure 4.9: (a) Schematic of a penny-shaped crack of radius a embedded in an isotropic, linear
elastic infinite medium subjected to uniformly distributed shear traction t' =-t =7,; (b)
meshes adopted in the analysis. Mesh 1: 20 elements and 77 nodes. Mesh 2: 88 elements and 297
nodes. Mesh 3: 216 elements and 665 nodes.
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Figure 4.10: A penny-shaped crack under uniformly distributed shear traction, for E =107 GPa,

v=0.33, A°=44939 N/m,

W=27779N/m, °=0.6056 N/m: (a) normalized crack

sliding displacements and (b) normalized near-tip shear stress along the x;-direction.
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Figure 4.11 Normalized crack sliding displacements of a penny-shaped crack under uniformly
distributed shear traction for E =107GPa, v =0.33 in four cases: (a) different values of (1°, 1°

) with 7° =0.6056 N /m; (b) different values of z° with A° =4.4939 N/m, ¢* =2.7779 N/m
; (c) different values of A° with #°=2.7779 N/m, 7°=0.6056 N /m and (d) different values
of 4° with ° =4.4939 N/m, 7° =0.6056 N /m obtained by using mesh-3
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Figure 4.12 Normalized near-tip shear stresses of a penny-shaped crack under uniformly
distributed shear traction for E =107 GPa, v =0.33 in four cases: (a) different values of (A°, ¢°

); (b) different values of 7°; (c) different values of A° and (d) different values of x° obtained
by using mesh-3
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Figure 4.13 A penny-shaped crack under uniformly distributed shear traction, for different crack
radii @, =a/A =0.5,1.0,10, for E=107GPa, v=0.33, A°=4.4939 N/m, ' =2.7779 N /m

and 7° =0.6056 N /m: (a) normalized crack sliding displacements and (b) normalized near-tip
shear stresses obtained by using mesh-3.
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4.3.3 Elliptical crack

To demonstrate the capability of the proposed FEM-SGBEM coupling technique for treating
crack problems of arbitrary shapes with consideration of the surface stress effects, an elliptical
crack embedded in an isotropic, linear elastic infinite domain is considered (see Figure 4.14(a)).
The material in which the crack is embedded is Si [100] where properties of the bulk material are
E =107GPa, v =0.33 and the surface elastic constants and the residual surface tension are
obtained from Miller and Shenoy (2000). The crack-front is parameterized in terms the angle @

by
x,=acosd, Xx,=bsing, x,=0; 6¢€[0,27] (4.78)

where a and b are the major and minor semi-axes of the crack, respectively. In this numerical
example, two loading conditions are investigated. The first case is associated with the crack

subjected to the self-equilibrated, uniformly distributed normal traction t; =-t; = o, (see Figure
4.14(b)) whereas the other case corresponds to the crack subjected to the self-equilibrated,
uniformly distributed shear traction t, =—t, =7, (see Figure 4.14(c)). Numerical results are

presented for three different aspect ratios a/b =1,2,3, and three meshes shown in Figure 4.14(d)

are adopted to model the elliptical crack (Mesh 1 has 20 elements and 77 nodes; Mesh 2 has 88
elements and 297 nodes and Mesh 3 has 216 elements and 665 nodes).

4.3.3.1 Normal traction

For this particular loading condition, results obtained from three different models indicated
below are presented and compared:

- Model-1 represents the classical model without the influence of the surface stresses. The
classical solution of the crack opening displacements and the vertical stresses in the
vicinity of crack front can be found in Zeng-shen (1982) and Kassir and Sih (1975),
respectively.

Model-2 is associated with the simplified version of Gurtin-Murdoch model without the
contribution of surface elastic constants.
Model-3 is the full version of Gurtin-Murdoch model where the surface elastic constants

(A%, 1°) and the residual surface tension (z°) are included.
The convergence study of the normalized crack opening displacement (COD) and the normalized
vertical stress along the minor axis for the aspect ratio a/b =2 using the model-2 and model-3

are reported in Figure 4.15. As observed from this figure, the predicted solutions for COD and
the vertical stresses near the crack front show good convergence. The normalized CODs and the
normalized vertical stresses o,, /o, along the minor axis of the crack are also presented in
Figure 4.16 for the aspect ratios a/b=1,2,3 and all three models. It can be seen from Figure 4.16
that the influence of the surface stresses on the CODs and the near-tip vertical stresses decreases
when the aspect ratio a/b increases. It can also be remarked that for the mode-1 crack problem,

the difference between solutions predicted by the full version and simplified version of Gurtin-
Murdoch model is insignificant. As a result, the simplified version of Gurtin-Murdoch model can
be utilized to investigate the nano-scale influence of mode-I crack problems to simplify the
calculation.
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In order to investigate the role of the residual surface tension on responses of cracks
under the mode-I loading conditions, the normalized CODs and the normalized vertical stresses

0,/0, are computed for different values of the residual surface tension z° ranging from 0.1 to

1.0 N/m. Solutions obtained from the model-3 are illustrated in Figure 4.17 for the aspect ratio
a/b=2. It can be concluded from this set of results that the influence of the residual surface

tension is also significant and the medium becomes much stiffer when z° increases.
To examine the size-dependent behavior of predicted results due to the presence of the

residual surface tension, the CODs and the near-tip vertical stresses for b, =0.5,1.0, 10 and the

aspect ratio a/b=2 are shown in Figure 4.18. As can be seen in Figure 4.18, the normalized

CODs and normalized vertical stresses are clearly size-dependent. This is in contrast with the
classical case (i.e. without the surface stress effects) where the solutions are size-independent. In
particular, when the crack-size or the aspect ratio decreases, the influence of the surface stresses
becomes more significant in the sense that the medium becomes stiffer.

4.3.3.2 Shear traction

Consider, next, an elliptical crack subjected to uniform shear traction z, as shown in Figure

4.14(c). The direction of the applied shear traction is taken in the x,-direction as shown
schematically in Figure 4.14(c). As a consequence of the anti-symmetric nature of the applied
load, only mode-11 (sliding mode) and mode-I11 (tearing mode) responses are investigated. Once
agam the following three different models are considered in the numerical study:
Model-1 is associated with the classical model where the surface stresses are not
included. It is remarked that the classical solution of the crack sliding displacement and
the shear stresses in the vicinity of the crack front was given by Kassir and Sih (1975).
Model-2 corresponds to the simplified version of Gurtin-Murdoch model where only the
in-plane elastic constants are considered.
Model-3 represents the full version of Gurtin-Murdoch model where both the in-plane
elastic constants and the residual surface tension are considered.
The numerical results are obtained using the three meshes as indicated in Figure 4.14(d) to
confirm the convergence of numerical solutions. The convergence study of the crack sliding

displacement (CSD) and the shear stress o,, in the vicinity of the crack front along the minor-
axis are reported in Figure 4.19. It can be observed from these results that the proposed technique
yields converged solutions for both the CSD and the shear stress.

The Normalized CSDs and the normalized shear stresses o,,/7, near the crack front

along the minor-axis are presented in Figure 4.20 for three aspect ratios a/b=1, 2, 3 and for

three models to show the influence of the surface stresses on responses of mixed-mode cracks.
Numerical results shown in Figure 4.20(a) indicate that solutions of the CSDs predicted by

model-2 and model-3 are almost identical, whereas solutions of shear stresses o,; for this

particular case (see Figure 4.20(b)) are slightly different. When compared to the classical
solution (model-1), it can be easily recognized that the surface stresses (especially the in-plane
elasticity constants) significantly reduce the CSDs and the shear stresses in the neighborhood of
the crack front. This confirms that presence of the surface stresses renders the medium much

stiffer. To further examine the influence of the in-plane elastic constants (A°,x°), these
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parameters are varied from 0, 0.1, 0.5 and 1 times of their initial value (A°=4.4939 N/m,

15 =2.7779 N /' m) while the residual surface tension remains the same. The numerical study is
conducted only for two aspect ratios of a/b=2, 3 and the model-3. The normalized CSDs and
the shear stresses o, in the vicinity of the crack front along the minor-axis are presented in

Figures 4.21. It can be seen that the surface elastic constants (A°, «°) in Gurtin-Murdoch

surface elasticity theory significantly reduce the CSD and the near-tip shear stresses, whereas the
residual surface tension virtually has no influence on the solution of mixed-mode crack
problems. To investigate the size-dependent behavior of the solution of mixed-mode crack
problems due to the presence of the surface stresses, the elliptical crack of the aspect ratio

a/b=2 is examined for different sizes of the minor semi-axisb, =0.5, 1.0, 10. Results of the

CSDs and the shear stresses in the vicinity of the crack-front along the minor-axis are shown in
Figure 4.22. It can be seen that the normalized CSDs and the normalized shear stresses along the
minor-axis predicted by model-2 and model-3 are size-dependent. Once again, this is in contrast
with the classical case (i.e., without the surface stress effects) where the solutions are essentially
size-independent upon proper normalization. When the crack-size decreases, the influence of
surface stresses on the predicted responses becomes more significant.

>
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Figure 4.14 (a) Schematic of an elliptical crack embedded in an isotropic, linear elastic infinite
medium; (b) both surfaces of the crack subjected to uniformly distributed normal traction

t, =—t, =0, ; (c) both surfaces of the crack subjected to uniformly distributed shear traction
t, =—t, =17,; (d) meshes used in the analysis
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Figure 4.18 Elliptical crack under uniformly distributed normal traction for three different
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E=107GPa, v=033, A°=44939N/m, &#=27779 N/m and 7°=0.6056 N/m: (a)
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minor-axis obtained by using mesh-3
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Figure 4.19 Convergence study of an elliptical crack under uniformly distributed shear traction
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125



1.6

- —— Model-3
14 F Model-2
LT Model-1
1.2 p—o T = ab=1
- Il o ab=2
1.0 f— \O\i:\ A ab=3
A B Tl \\:\\
(a) Y sk e
a g o RSURNN
A E \\\ \§§\
0.6 [ AN \\\\
- Y
04 F
T F A\
: \
0.2 F 4
- \
0.0-||||||||||||||||||||||||
0.0 0.2 0.4 0.6 0.8 1.0
ro/bg
10.0 T
it —— Model-3
‘.'éﬁ -+ - Model-2
8oy s Model-1
Bt o ab=1
Bt © ab=2
6.0 | Y 4 alb=3
Oy i \\“‘\\
®) 7, AL
B AN
4.0 B \\Q%\
R N \QQ\
20} e
oot e b
1.00 1.02 1.04 1.06 1.08 1.10
ro/bg

Figure 4.20 Elliptical crack under uniformly distributed shear traction in the x,-direction with
the aspect ratio a/b =1, 2, 3, for E=107GPa, v=0.33, A°=4.4939 N /m, x' =2.7779 N /m,

7°=0.6056 N /mand for model-1, model-2, model-3: (a) normalized CSDs along the minor-
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Figure 4.21 Elliptical crack under uniformly distributed shear traction in the x,-direction for the
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Figure 4.22 Elliptical crack under uniformly distributed shear traction in the x,-direction for
a/b=2, by=b/A=05 10,10, for E=107GPa, v=0.33, A°=4.4939N/m,
W =27779 N/m, z°=0.6056 N /mand model-1, model-3: (a) normalized CSDs along the

minor-axis and (b) normalized near-tip shear stresses o,; along the minor-axis obtained by using
mesh-3

4.3.4 Two co-planar penny-shaped cracks
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Finally, to demonstrate another feature of the proposed FEM-SGBEM technique in modeling
multiple cracks, a problem of two interacting penny-shaped cracks embedded in an unbounded
domain with consideration of the surface stress effects is investigated in this section.

Consider a pair of co-planar, identical penny-shaped cracks of radius a embedded in an
isotropic, linear elastic unbounded domain as shown in Figure 4.23(a). The distance between the
centers of the two cracks is denoted by h. Both cracks are subjected to the self-equilibrated,

uniformly distributed normal traction t; = —t, = o,. Young’s modulus and Poisson’s ratio for the
bulk material are taken as E =107 GPa and v =0.33 respectively. The influence of the

interaction between the two cracks on the maximum crack opening displacement (COD) and on
the stress in the vicinity of the crack front at a particular point A (see Figure 4.23(a)) is
investigated. To investigate the size-dependent behavior, two values of the normalized radius of
the crack, a, =a/A =1 and 10 are considered. Three meshes shown in Figure 4.23(b) are used to

test the convergence of numerical solutions. For this particular problem, the surface stress effects
are modeled by the simplified version of Gurtin-Murdoch surface elasticity model with only the

residual surface tension (z° =0.6056 N /m) being treated.

X3

Crack2 g, o, Crack1
X

5 >
Oy Oy

(@)

=%

Mesh 1

Figure 4.23 (a) Schematic of a pair of penny-shaped cracks of radius a embedded in an
isotropic, linear elastic infinite medium subjected to uniformly distributed normal traction

t, =—t, =0, and (b) meshes adopted for each crack. Mesh-1: 20 elements and 77 nodes. Mesh-
2: 88 elements and 297 nodes. Mesh-3: 216 elements and 665 nodes.
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To examine the convergence of the numerical solutions, the normalized CODs and the vertical
stresses in the vicinity of the crack front of one of the penny shaped cracks (crack 1) with the

normalized radius a, =1 are obtained for the three meshes and results are reported in Figure 4.24

for h/a=2.2. The results also are compared with classical solutions, which can be found in

Fabrikant (1989). It is seen that converged results of the normalized CODs and the near-tip
vertical stresses are obtained. The residual surface tension significantly lowers the crack opening
displacement and the near-tip vertical stresses.

To study the interaction between the two coplanar cracks, the normalized maximum COD
and the normalized vertical stress at the point A are plotted for different values of h/a in Figures

4.25-4.26 for two cases of radius a, =a/A =1 and 10 with three values of the residual surface

tension 7° =0 (classical solution), z° =0.6056 N /m, and z° =1 N /m. It can be seen in Figure

4.25(a) that the maximum CODs and the vertical stresses in the neighborhood of the crack front
decreases when the residual surface tension increases similar to what observed from other
examples. The bulk medium becomes much stiffer with the presence of the residual surface
tension for cracks under mode-I loading conditions. It can also be seen from Figures 4.25 and
4.26 that the interaction between the two cracks for the classical case is size-independent (i.e.
solutions of the two cracks converge asymptotically to that of the single crack in the identical
manner). On the contrary, when the residual surface tension is incorporated in the mathematical
model, the size-dependent behavior can be clearly observed by comparing the results in Figures
4.25(a), (b) with the results in Figures 4.26(a), (b) respectively. The decrease in the crack size
also reduces the interaction between the two cracks.
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Figure 4.24 A pair of coplanar identical penny-shaped cracks with radius a, =1 and h/a=2.2
under uniformly distributed normal traction, for E =107GPa, v =0.33, A° =4.4939 N /m, and

residual surface tension 7° =0.6056 N /m: (a) normalized CODs of crack 1 and (b) normalized
near-tip vertical stresses of crack 1
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CHAPTER V
CONCLUSIONS AND REMARKS

This chapter summarizes both analytical and numerical techniques established in the present
investigation for solving fundamental problems in solid mechanics (e.g., elastic layers under
surface loading, nano-indentations, and nano-sized cracks) with consideration of the nano-scale
influence. Major findings regarding to both computational performance of the developed
techniques and extensive parametric study on the influence of the surface stresses and size-
dependency of the predicted solutions are presented. Limitations of the current development and
the possible extensions for each particular problem are also indicated.

5.1 Elastic Layer under Surface Loading

A complete analytical solution of a three-dimensional, infinite elastic layer under the action of
axisymmetric normal and tangential surface loadings with consideration of the surface energy
effect has been derived. A novel feature of the present study is the use of a complete version of
Gurtin-Murdoch constitutive relation to model the free surface of the layer. In solution
procedure, Love’s strain potential technique along with Hankel integral transform are applied to
obtain the general solution for the bulk whereas the surface equations and conditions at the rigid
base supply sufficient boundary conditions to determine all arbitrary constants. The displacement
and stress fields within the bulk have been obtained via a selected efficient numerical quadrature.
Once the obtained general solutions were verified by comparing with available benchmark
solutions, extensive parametric study has been carried out to gain insights into the nano-scale
influence and investigate the size dependency. Moreover, the three fundamental solutions
corresponding to normal concentrated load, normal ring load, and tangential ring load, which
constitute the basis for solving nano-indentations problems, have been constructed.

Results from extensive parametric studies have confirmed the significance of surface
energy effects and the necessity to properly treat such influence in the continuum-based model.
In the region close to the surface, the presence of the surface stresses exhibits very strong
influence on both the displacement and stress fields. Magnitudes of field quantities obtained
from models accounting for the surface energy effects are generally less than those obtained
from the classical model. The presence of the surface energy renders the layer much stiffer than
that of the classical case. This is due to the fact that not the entire loading that transfers directly
into the bulk but part of it is carried by the surface through the equilibrium of the surface and the
membrane-like action. Such influence also depends on the length scale of the problem, i.e. the
influence of surface stresses becomes significant when the length scale is comparable to the
intrinsic length of the surface. Moreover, it is worth pointing out that such behavior of the out-of-
plane responses due to the normal traction are more apparent in the model that integrates the out-
of-plane contribution of the residual surface tension into the analysis. This additionally confirms
the necessity to treat such crucial contribution in the modeling of soft elastic solids and nano-
scale problems.

In addition, the radial and vertical surface displacements of a layer under either a normal
ring load or a tangential ring load, predicted by a model employed in the present study (i.e. the
complete Gurtin-Murdoch surface elasticity model that includes the out-of-plane contribution of
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the residual surface tension), are finite everywhere. If the out-of-plane term is neglected, the
predicted vertical displacement due to the normal ring load is still singular at the location where
the load is applied. For the case of a normal concentrated load acting to the origin, the vertical
displacement obtained from both classical model and model incorporating the surface stress
effects is singular at the applied load location whereas only the radial displacement obtained
from a model accounting for the out-of-plane term is finite.

Due to the three fundamental solutions derived in the present study, frictionless
indentation problems with arbitrary indentor profiles, axisymmetric frictionless indentation
problems, axisymmetric indentation problems with the presence of friction, and axisymmetric,
fully-bonded indentation problems can now be fully investigated. In addition, the formulation
can further be generalized to treat the following two cases, namely, multiple layers under
axisymmetric surface loading and a single layer under non-axisymmetric surface loading.

5.2 Nano-indentation Problem

The complete solutions of an axisymmetric rigid frictionless indentation acting on an isotropic,
elastic half-space with consideration of surface energy effects by employing a complete version
of Gurtin-Murdoch surface elasticity model have been fully investigated. Based on the
axisymmetric solutions in term's of Love's strain potential together with the application of
Hankel integral transform technique, the mixed boundary conditions on the surface of a half-
space both inside and outside the contact region can be reduced to a set of dual integral
equations, which can be further equivalently transformed into a single Fredholm integral
equation of the second kind. To obtain the solution of this single integral equation, various
numerical schemes have been employed in the present study to enhance both the accuracy and
computational efficiency of the solutions. First, standard approximation of a solution form and a
collocation technique are adopted to discretize the Fredholm integral equation. After a system of
linear algebraic equations with non-symmetric, dense coeffient matrix is obtained from the
discretization, either LU-decomposition or stabilized bi-conjugate gradient method has been
applied to solve such a system. Finally, complete elastic fields within the half-space are obtained
by applying the Hankel innversion along with employing standard Gaussian quadrature. For
smooth-contact punches, a physically admissible condition associated with the continuity of
vertical stress at the contact boundary is employed to determine the unknown contact radius for a
given indentation depth.

The numerical procedures have been implemented as an in-house computer code to
determine the complete elastic fields of both non-smooth contact and smooth contact punches.
The validity of the current formulation and accuracy of the numerical implementations have been
confirmed by comparing with the classical case in which exact solutions exist. As anticipated,
obtained numerical results have demonstrated that the influence of surface energy effects
becomes larger when the size of the punch is smaller especially in the region very near the
punch. In addition, material behaves stiffer due to such effects. It is interestingly remarked that
the distribution of contact pressure for two punch profiles (i.e. flat-ended and paraboloidal
punches) obtained from the current model exhibits significant discrepancy. In particular, the
contact pressure obtained from the current model for the flat-ended punch is considerable lower
than the classical case and that by Zhao (2009) whereas, for the paraboloidal punch, the current
model predicts much higher contact pressure than the other two models. However, for both types
of contacts, elastic fields obtained from the current model indicate strong influence of the surface
free energy for region relatively close to the punch. Such influence decays rapidly for the vertical
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stresses but, for the vertical displacements, it exhibits slower decay as the depth increases. Still,
the sigularity at the boundary has been observed for the case of a non-smooth contact. Size-
dependent behavior has also been presented to confirm the essence of accounting surface energy
effects on analysis of material properties at nanoscale and soft elastic solids due to their high
surface to volume ratio.

The boundary value problem considered in the present study is restricted only to the
axisymmetric indentation on an isotropic, elastic half-space. In addition, the punch is also
assumed to be rigid with no friction. The generalization to alleviate all these limitations should
be potentially useful to enhance the understanding of nano-mechanics and the mechanics of soft
solids in a broader context. For instance,

(1) a punch profile can be generalized to non-axisymmetric one and an elastic half-

space can also be replaced by a more general film/substrate system;

(2) A constitutive model for an elastic half-space can be generalized to treat both
anisotropic linearly elastic and inelastic materials. The ability to treat material
anisotropy and nonlinear material behavior will enhance the modeling capability for
simulating more practical problems associated with characterization of material
properties using nano-indentations.

A proper friction model can also be incorporated to treat the interaction between a punch and an
elastic half-space. It is known that frictionless contact is very idealistic and can hardly be found
in practices.

5.3 Nano-crack Problem

A computationally efficient numerical technique capable of modeling planar cracks in three-
dimensional, linearly elastic media incorporating the influence of surface stresses has been
established. In the formulation of the boundary value problem, the domain decomposition
technique has been adopted to separate a cracked body into three parts: (i) an infinitesimally thin
layer of materials on the upper crack surface, (ii) an infinitesimally thin layer of materials on the
lower crack surface, and (iii) the remaining bulk medium with those two layers being removed.
The classical theory of isotropic linear elasticity has been employed to form a system of
governing equations of the bulk cracked medium in terms of weakly singular, weak-form
boundary integral equations for the sum of the displacement and the jump of the traction across
the crack surface of the bulk. Such governing equations possess several desirable features such
as the weakly singular nature, simplicity to treat an infinite body and remote loading condition,
and applicability to model cracks of arbitrary shapes and under general loading conditions. For
both thin layers, they have been modeled as zero-thickness, two-sided surfaces with their
behavior being described by Gurtin-Murdoch surface elasticity theory. In the present study the
full version of Gurtin-Murdoch model including the in-plane surface elasticity, and the residual
surface tension and its simplified versions without either the in-plane surface elasticity or the
residual surface tension, are both considered. The weight residual technique has been applied to
derive the final weak-form statement for the surface part in terms of the same types of primary
unknowns as those appearing in the bulk equations. The strong continuity condition of the
displacement and traction on the interface of the surface and the bulk medium has been enforced
to obtain the fully-coupled system of equations governing the whole medium.

Standard FEM-SGBEM coupling procedure has been implemented to construct
numerical solutions of the final coupled system of governing equations. In the discretization,
continuous element-based interpolation functions have been employed everywhere in the
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approximation of trial and test functions. In the present study, it has been postulated based on the
physical evidence and previous investigations that the presence of surface stresses renders the
stress along the crack front of the bulk medium finite. As the direct consequence, standard C°-
elements have been employed everywhere in the discretization of all primary unknowns on the
crack surface when the full version of Gurtin-Murdoch model has been considered. For the
special cases, when the simplified version of Gurtin-Murdoch model without either the residual
surface tension or the in-plane surface elasticity has been applied, standard C%-elements have
been employed everywhere in the discretization except in a local region along the crack front
where either the jJump of the out-of-plane displacement or the jump of the in-plane displacement
is discretized by special crack-tip elements respectively to enhance the capability of the
technique to capture the near-tip field. In the construction of a coefficient matrix, standard
Gaussian quadrature has been adopted to evaluate all involved regular integrals whereas such
quadrature supplemented by a family of suitable transformation has been employed to efficiently
compute both weakly singular and nearly singular integrals. The final system of linear algebraic
equations has been solved by an efficient linear solver.

Extensive numerical experiments have been conducted and obtained results have been
compared with available benchmark solutions to validate both formulation and numerical
implementations of the proposed technique. From a convergence study of numerical solutions, it
has been found that the FEM-SGBEM coupling technique yields converged solutions with only
weak dependence on the mesh refinement. In addition, the capability and the robustness of the
proposed method to model relatively complicated fracture problems with the treatment of the
nano-scale influence have been confirmed via various examples involving mixed-mode loading
conditions and interacting cracks.

From an extensive numerical study aiming to examine the influence of the surface
stresses present at the crack surface on elastic responses of the bulk cracked medium, it has been
found that the residual surface tension and the in-plane surface elasticity appearing in Gurtin-
Murdoch model both play a vital role on the prediction of field responses, and can substantially
deviate results from the classical solutions. In general, the results from the simulations using
either the full or simplified version of Gurtin-Murdoch have indicated that the surface stresses
tend to increase the local material stiffness in the vicinity of the crack, in particular, the predicted
relative crack-face displacements and near-tip stresses are significantly lower than those obtained
by the classical model without the contribution of the surface effects. In addition, the size-
dependent behavior of the elastic responses predicted by models incorporating either the full or
simplified version of Gurtin-Murdoch has been observed. In particular, as the characteristic size
of the crack reduces to the intrinsic length scale of materials (in the range of nano-scale for
metals), the influence of both the residual surface tension and the in-plane surface elasticity
becomes more prominent.

Results from the investigation of pure mode-1 crack problems have indicated that the
residual surface tension plays an important role on the reduction of the crack-opening
displacement and the vertical stress in the vicinity of the crack front from the classical solution
whereas the in-plane surface elasticity exhibits insignificant effect on such quantities. This
finding suggests that the simplified version of Gurtin-Murdoch model with only the residual
surface tension being treated can be used sufficiently in the modeling of mode-1 crack problems
to simplify the calculations. On the contrary, for cracks subjected to pure in-plane loading
conditions (i.e. mode-1l and mode-11l loading conditions), the influence of the in-plane surface
elasticity on major in-plane quantities such as the crack sliding displacement and the mode-I11 and
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mode-I11 shearing stresses is much more prominent than that of the residual surface tension. As a
result, the simplified version of Gurtin-Murdoch model without the residual surface tension
yields, in general, similar results to those predicted by a full model incorporating both the
residual surface tension and the surface elastic constants. However, for cracks under full mixed-
mode loadings, both the residual surface tension and the in-plane surface elasticity can play a
crucial role on the predicted responses, and the full version of Gurtin-Murdoch model is
required.

The present study has provided an alternative computational tool based primarily on an
enhanced continuum-based model that can be used to explore the fundamental behavior of nano-
scale fractures. Nevertheless, the proposed numerical technique has been developed within the
context where the fractures must be modeled as isolated planar cracks embedded in a
homogeneous, isotropic, linear elastic, infinite bulk medium. To further enhance the modeling
capability of the developed technique for solving a wide range of problems and obtaining more
interesting fracture data, the following potential extensions are suggested:

(1) the governing equations of the surface part can be extended to treat non-planar

cracks;

(2) the formulation can be generalized to treat embedded, near-surface, and surface-

breaking cracks in half-space or finite bodies; and

(3) the constitutive model for bulk materials can be extended to treat material

anisotropy, non-uniformity, and multi-field material behavior such as
piezoelectricity; and

(4) the computation of crucial fracture data such as the T-stress along the crack front

can be added.
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ARTICLE INFO ABSTRACT
Article history: This paper proposes an application of continuum-based concepts in the analysis of an axi-
Received 13 January 2013 symmetric rigid frictionless indentor acting on an isotropic, linearly elastic half-space
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> accounted for surface energy effects. The influence of surface stresses is considered by
Accepted 30 April 2013

employing a complete Gurtin-Murdoch continuum model for surface elasticity. With use
of standard Love’s representation and Hankel integral transform, such boundary value
problem is reduced to a set of dual integral equations that can be further transformed into

;fé’:;ﬁ;ﬁ;ns an equivalent Fredholm integral equation of the second kind. Selected numerical proce-
Surface elasticity dures based on the solution discretization and standard collocation technique are then
Surface stresses implemented to construct its solution numerically. Obtained numerical results for elastic
Half-space fields within the bulk are shown and compared for indentors of different profiles and con-
Gurtin-Murdoch tact radii at various depths. It is found that the influence of surface free energy on bulk

stresses and displacements and the size-dependency of solutions become more apparent
in a region very near the free surface. The significant contribution of the residual surface
tension on predicted responses is obviously observed in comparison with existing results.
The proposed mathematical model not only offers an alternative for specifically studying
both mechanical properties and elastic fields for indentors of arbitrary axisymmetric pro-
files but also provides, in general, a crucial basis for further investigations in the area of
nano-mechanics.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, it is undeniable that a wide range of engineering and industrial sectors has benefited greatly from vast appli-
cations of nanotechnology. Many new nano-materials have been developed by utilizing the fact that, at a nano-scale, mate-
rials begin to exhibit unique properties (i.e., optical, electrical, chemical and mechanical properties), which significantly
differ from those at a larger scale. To take most advantages of these novel properties on the development of powerful
nano-devices, profound understanding on their behavior and characterization of material properties at such very small scale
is essential for various researchers.

Mechanical behavior of nano-structured materials and nano-sized elements can be investigated by two basic approaches,
namely, experimental methods and theoretical simulations. The former approach basically yields results reflecting the real
behaviors but it has been found highly dependent on experimental settings and, generally, expensive due to the requirement
of high precision testing devices and procedures. For the latter approach, though existing molecular simulations offer
advantages in precise response prediction according to proper underlying governing physics, they require simultaneously

* Corresponding author. Tel.: +66 22186460; fax: +66 22517304.
E-mail addresses: yutiwadee_p@yahoo.com (Y. Pinyochotiwong), jaroon.r@chula.ac.th (J. Rungamornrat), teerapong.s@chula.ac.th (T. Senjuntichai).
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intensive computational resources associated with the modeling of a large number of degrees of freedom at a nano-scale.
Due to such highly demanding requirement, applications of those techniques to modeling practical problems have been
quite limited. The continuum-based approach is therefore considered as an attractive alternative since the use of simplified
governing physics dramatically reduces the computational cost. Nevertheless, the classical continuum theory generally ne-
glects the presence of intrinsic size and thus seems incapable of demonstrating the size-dependent behavior which truly ex-
ists in nano-materials and soft elastic solids, e.g., polymer gels. The size dependency of material behaviors at a nano-scale has
been well recognized due to their relatively high surface-to-volume ratio whereas, in the case of soft elastic materials, the
intrinsic length scale, which is defined as the ratio of surface free energy and Young’s modulus (Yakobson, 2003), is much
larger than that of conventional solids and becomes comparable to the characteristic length of the material element in prac-
tical situations (He & Lim, 2006). As a consequence, the influence of free surfaces should be properly incorporated into clas-
sical continuum-based models in order to obtain ones that are capable of capturing real responses to the level of complexity
involved with predicted results of sufficiently high accuracy.

The concept of surface phenomena (i.e., the thermodynamics of solid surfaces) was noticed for more than a century ago
by Gibbs (1906). Comprehensive literature review on the surface energy effects and the Gibbsian formulation of the thermo-
dynamics of surfaces can be found in many researches on surface and interface stresses (Cammarata, 1994; Cammarata,
1997; Fischer, Waitz, Vollath, & Simha, 2008). To study the mechanical behavior of an immediate neighborhood of material
surfaces through a continuum-based model, Gurtin and his co-workers (Gurtin & Murdoch, 1975; Gurtin & Murdoch, 1978;
Gurtin, Weissmiiller, & Larché, 1998) developed a mathematical framework, known as the theory of surface elasticity, to ac-
count for the influence of surface free energy. In their model, the existing surface is simply represented by an infinitesimally
thin layer (or, mathematically, a layer of zero thickness) bonded perfectly to the bulk (i.e., an interior of the body) and its
behavior is governed by a constitutive law different from that of the bulk. In the study of nano-scale problems, all material
constants appearing in that constitutive model were commonly calibrated with data obtained from either experimental
measurements (Jing et al., 2006) or atomistic simulations (Miller & Shenoy, 2000; Shenoy, 2005). Upon various verifications
and comparisons with results predicted by atomistic and molecular static simulations (Dingreville, Qu, & Cherkaoui, 2005;
Miller & Shenoy, 2000; Shenoy, 2005), Gurtin—-Murdoch surface elasticity model has proven promising and attractive for
modeling a variety of nano-scale problems to account for the influence of free surfaces. The model has gained rapid recog-
nition from various researchers and been widely used in the investigation of mechanical responses of nano-structures, e.g.
ultra-thin elastic films (He, Lim, & Wu, 2004; Huang, 2008), thin plates (Lu, He, Lee, & Lu, 2006), nano-scale inhomogeneities
(Sharma, Ganti, & Bhate, 2003; Duan, Wang, Huang, & Karihaloo, 2005; Sharma & Wheeler, 2007; Tian & Rajapakse, 2007),
dislocations (Intarit, Senjuntichai, & Rajapakse, 2010) and nano-scale elastic layers (Intarit, Senjuntichai, Rungamornrat, &
Rajapakse, 2011; Zhao & Rajapakse, 2009). This should additionally confirm the benefit of employing such alternative con-
tinuum-based model to save the computational resources with an acceptable level of accuracy gained.

Indentation techniques have been extensively employed by many researchers in the study of material properties such as
hardness and elastic modulus. For instance, by using depth-sensing indentation tests with either spherical or conical inden-
tors, Young’s modulus can be calculated from the slope of the linear regime of the unloading curve in the load versus pen-
etration depth while hardness can be obtained from data along the loading curve (Doerner & Nix, 1986; Oliver & Pharr,
1992). In nano-applications, such techniques were also applied to measure the mechanical properties of ceramics (Hains-
worth & Page, 1994), metals (Armstrong, Shin, & Ruff, 1995; Beegan, Chowdhury, & Laugier, 2007) and polymers (Yang &
Li, 1995; Yang & Li, 1997). Besides those experimental studies, modeling of indentation problems via the use of suitable
mathematical models has been also of interest for more than a century and offered an attractive candidate for investigating
various aspects and gaining fundamental insight of material properties. The classical problem of an axisymmetric rigid
punch indenting on an elastic half-space seems to be first considered by Boussinesq (1885) and, in that work, results were
presented only for flat-ended cylindrical and conical punches. Harding and Sneddon (1945) and Sneddon (1965) resolved
Boussinesq’s problem for a punch of an arbitrary profile by applying the Hankel integral transform technique. The indenta-
tion problems associated with an elastic layer perfectly bonded to an elastic half-space have also been investigated. For in-
stance, Lebedev and Ufliand (1958) studied a problem of a flat-ended rigid cylindrical indentor on an elastic layer resting on a
rigid foundation by using Papkovich-Neuber’s representation for the displacement vector. After reducing mixed boundary
conditions to a pair of integral equations, a Fredholm integral equation was obtained and solved numerically. By applying
the Hankel integral transform technique, Dhaliwal and Rau (1970) derived a Fredholm integral equation governing a prob-
lem of an elastic layer lying over an elastic half-space under an axisymmetric rigid punch of arbitrary profile. Subsequently,
Rau and Dhaliwal (1972) developed a numerical technique to solve the integral equation developed by Dhaliwal and Rau
(1970) and obtained the complete elastic field. Yu, Sanday, and Rath (1990) presented numerical results obtained from solv-
ing Fredholm integral equation of the second kind to demonstrate the effect of a substrate on the elastic properties of films
and provided useful guidelines for the proper choice of an approximate layer thickness and substrate elastic properties to
determine the elastic constants of the layer. Motivated by a recently developed multi-dimensional nano-contact system (Lu-
cas, Hay, & Oliver, 2003), Gao, Xu, Oliver, and Pharr (2008) gave an analytical formulation by applying Green’s function in
Fourier space to predict the effective elastic modulus of film-on-substrate systems under normal and tangential contacts.
In addition, Yang (1998) applied the Hankel integral transform to investigate the problem of compressing an incompressible
elastic film by a rigid flat-ended cylindrical indentor. While analysis of indentation problems have been carried out exten-
sively within the context of classical linear elasticity, on the basis of a careful literature survey, works towards the treatment
of surface stresses to model nano-scale influences are still relatively few. Recently, Zhao (2009) proposed a continuum-based
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model to study the influence of surface stresses on mechanical responses of an elastic half-space compressed by an axisym-
metric, rigid, frictionless nano-indentor. In the analysis, a method of Hankel integral transform was utilized to construct an
analytical solution and results were reported for certain indentor profiles. Although Zhao’s model can successfully capture
the size-dependency behavior of solutions and contribution of the surface stresses, Gurtin-Murdoch constitutive relation
used in his formulation is still not complete (i.e., the out-of-plane contribution of the residual surface tension was ignored).
Lack of such term can significantly alter predicted responses such as the pressure profile beneath the indentor and normal
components of elastic fields in the vicinity of the indentor.

The primary objective of the present study is to generalize the work of Zhao (2009) to investigate mechanical responses of
an elastic half-space compressed by an axisymmetric, rigid, frictionless indentor by using a complete Gurtin-Murdoch sur-
face elasticity model to account for the influence of surface stresses. It is vital to emphasize here that the generalization to
include the out-of-plane contribution of the residual surface tension becomes theoretically and computationally non-trivial
since presence of such extra term requires very distinct solution procedure from that employed by Zhao (2009). In the fol-
lowing sections, a problem description is addressed first and a formulation of the boundary value problem using Love’ strain
representation and Hankel integral transform is then outlined. A technique to form the final, single governing equation in
terms of Fredholm integral equation of the second kind is clearly demonstrated. Next, a selected numerical procedure to
determine the primary unknown and all related field quantities is fully discussed. Finally, selected numerical results and
findings from extensive parametric studies are reported to demonstrate the size-dependency and influence of surface stres-
ses for different indentor profiles and indentation depths.

2. Problem description

Consider a half-space Q compressed by an axisymmetric, frictionless, rigid indentor as shown schematically in Fig. 1. A
top surface of the half-space possesses a constant residual surface tension 7° under unstrained conditions and surface Lame’s
constants p* and /° whereas the remaining majority of the medium is made of a homogeneous, isotropic, linearly elastic
material with Lame’s constants x4 and A. For convenience, a reference Cartesian coordinate system (x,y,z) is chosen such that
its origin is located at the center of the indentor and the z-axis directs downward, and the corresponding cylindrical coor-
dinate system used in the formulation presented further below is denoted by (r,0,z). A profile of the indentor is completely
described by a function § = 5(r) which represents the distance from the reference datum at the center of the indentor to its
surface, i.e., 6(0) = 0. The radius of a contact region and the indentation depth resulting from a resultant force P at the center

«—rg

r, X1

r, X1

(b)

Fig. 1. Elastic half-space compressed by axisymmetric rigid frictionless indentor: (a) smooth contact profile and (b) non-smooth contact profile.
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of the indentor are denoted by a and d, respectively. In the present study, the profile of the indentor is assumed to be smooth
at any interior point of the contact region (i.e., the unit normal vector to the surface of the indentor or, equivalently, ds/dr is
well-defined for r < a) whereas, along the boundary r = g, the profile is allowed to be non-smooth. For brevity in further ref-
erence, an indentor with the well-defined dé/dr for r < a is termed here a smooth-contact indentor (see Fig. 1(a)) whereas that
possessing the well-defined dé/dr only for r < a is termed a non-smooth-contact indentor (see Fig. 1(b)).

The problem statement is to determine the pressure distribution exerted by the indentor and the complete elastic
fields (e.g., displacements and stresses) within the half-space accounted for the influence of surface stresses. The size-depen-
dency behavior of the predicted solutions and the contribution of the surface stresses to those solutions are to be fully
investigated.

3. Formulation of indentation problem

In the formulation of a boundary value problem, the given half-space Q is first decomposed into two parts: a bulk denoted
by Q" and a surface denoted by S. A surface S is defined as a layer of zero thickness located at the top boundary of Q and the
bulk Q" is simply the original half-space Q with the surface S being removed. Since the surface S is modeled as a zero-
thickness layer, the geometry of the bulk Q” (which is treated as a homogeneous half-space) is identical to that of Q. The
boundary of the bulk is subjected to the unknown traction t” exerted directly by the surface S whereas S is treated as a
two-sided surface with the top side compressed by the indentor and the bottom side subjected to the traction t° exerted
by the bulk.

3.1. Basic equations
In the present study, behavior of the bulk Q” is modeled by a classical theory of linear elasticity. In the absence of a body

force, the governing field equations (i.e., equilibrium equations, constitutive laws and strain-displacement relations) can be
expressed in a standard indicial form as

ijj =0 (1)

gjj = 2/,{81‘1‘ + ),5,‘1‘81([( (2)
1

&j =5 (uij + ;i) 3)

where u;, 0 and ¢; denote components of the displacement vector, stress and strain tensors, respectively, and d; is a Kro-
necker-delta symbol. Note that lower-case indices range from 1 to 3 and repeated indices imply the summation over their
range.

Behavior of the surface S is treated differently by Gurtin—-Murdoch surface elasticity model. The equilibrium conditions on
the surface, surface constitutive relations and strain-displacement relationship, when specialized to the flat surface, are gi-
ven by Gurtin and Murdoch (1975), Gurtin and Murdoch (1978), Gurtin et al. (1998)

0
o-?x,m + t? +t = 0 (4)
Oy = TOpy + 2(1° = T)&y, + (X + )8, 0p0 + T°UY,, 03, = T°U, (5)
1
S;ﬁ = 3 (u;,/: + u;a) (6)

where the superscript ‘s’ is used to denote the quantities corresponding to the surface and t° denotes the traction exerted on
the top side of the surface. It is important to emphasize here that appearing Greek indices range from 1 to 2 and, again, re-
peated indices imply the summation over their range. By substituting (5) and (6) into (4), it leads to the in-plane and out-of-
plane equilibrium equations of the surface in terms of the surface displacement as shown below

PEUS, o + (W + VU5 + £+ £) =0 (7)
TUy +65+13=0 ®)

3.2. Boundary and continuity conditions

Since the surface S is adhered perfectly to the bulk Q° without slipping, the displacement and traction along the interface
of the surface and the bulk must be continuous. This renders the following continuity conditions:

u? = ui'z:Ov t? + t? =0 9
The traction t” can be related to the stress components within the bulk by

£ = ~0il,o (10)

1
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From the frictionless condition of the indentor and its prescribed profile, the traction t° on the top side of the surface S iden-
tically vanishes outside the contact region whereas, within the contact region, the tangential components of t° vanish and
the normal displacement is prescribed in terms of the indentation depth d and the indentor profile §(r), i.e.,

=0 for r>a

11
=0,u§=d-94(r) forr<a (an

3.3. General solution for bulk

A general solution for stress and displacement fields within the bulk Q, for an axisymmetric case, can readily be obtained
in terms of the Love’s strain potential ® = ®(r,z) in the cylindrical coordinate system (r,0,z) as follows (Sneddon, 1951; Sel-
vadurai, 2000)

G — IV <%) 20+ ;;?Z (12a)
Gop = IV (‘Zf) 2(;”: K % (12b)
0= (3A+4u)V? (‘f’) 204+ 1) %37? (12¢)
O = (2+240) 5 (v2q>) 20+ u)% (12d)
= % (12¢)
Z:}.Jruzuvzq)_z;u% (12f)

where @ is governed by a bi-harmonic equation V(V2®)=0 with V? = %+% g;+ £ denoting an axisymmetric Laplace

operator. By applying Hankel integral transforms, the bi-harmonic equation can be reduced to

AN
(E - 52) G(¢,2) =0 (13)

where G(¢,2) = [;° r®Jy(¢r)dr and J,(¢) denotes the first order Bessel functions of order n. The general solution of (13) is given
by
G(¢,2) = (A+Bz)e ¥ + (C 4 Dz)e* (14)
where A, B, C and D are arbitrary functions of ¢ that can be determined from boundary conditions.
The general solution for the displacements and stresses can be subsequently transformed into relations involving G(¢,z)

and its derivatives with respect to z by using Hankel transform inversion and the relations (12a)-(12f). Final results are given
by

~ [.&c dG + dG
a,,=/0 g{zdfwzu)z }h( )défA—“/ &g hiEnde (13a)
&G ,dG dG
on=r [ { 3 dz}h(fr)du B [T e e (15b)
o &G . dG
0n = [ €|+ 2 S5~ 31+ a2 G hotiryz (15¢)
. 2
= / 52{1“ u+2u)ézc]11(ér)dé (15d)
dz*
/L+M vsz é (156)
d*G Z+2,u )
L= e 2G| Jo(Er)de 15f
u /Of{dzz e (ende (15f)

Note that uy, 6,9 and o, vanish due to the symmetry and all non-zero field variables are obviously independent of 0. By
invoking the remote condition that the displacements and stresses approach zero as z — oo, C and D must vanish and the
function G(¢&,z) therefore reduces to
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G(¢,2) = (A+Bz)e ™ (16)

Upon substituting (16) into (15), components of stresses and displacements can be expressed in terms of A and B by

s = | e (B L - a)plehiend: - [ eteas (- e ez (17)
ST T o €8 hende 1 [T @l-ea+ (1 - e ¥ e (18)
sz e e (g ee)Ble otenas (19
sz el (o e)Bleeenas (20
m:izuémﬁkm+ﬂf&WFWﬂMM (21)

Al [l (2 ce)blecayends 22

3.4. Governing equation for A and B

For an axisymmetric case, the in-plane equilibrium equations (7) and the out-of-plane equilibrium equation (8) simply
reduce to the following equilibrium equations in the radial direction and z-direction, respectively:

o dus 1du s
drt rdr r?

+”)+tﬁ+t?=0 (23)

d*us 1 du
r(d; +rd”rz>+t;+r2:0 (24)

where «° is a material constant defined by x°* =2y° + 2°; u$ and u denote the displacement of the surface in the radial and z-
directions; ¢ and t; denote components of the traction t* in the radial and z-directions; and t° and t? denote components of
the traction t° in the radial and z-directions. By using the continuity conditions (9) and the relation (10) for the axisymmetric
case (i.e., U = Ur|, g, U = Us|, g, £ = —t0 = G|,y £ = —t2 = 02|,_0), Eqs. (23) and (24) can be rewritten in terms of the dis-
placement and traction on the surface of the bulk as

KS _dzur_i_l%_&
drr rdr r?
d*u, 1du

s z -z

E <er Jrr dr)

By enforcing the boundary conditions (11) along with the continuity condition 1§ = u,
leads to a set of mixed boundary conditions for the bulk Q” as

+0rl, o+ =0 (25)
z=0

+ 0zl 0+t =0 (26)
z=0

o and the relations (25) and (26), it

lo-

U, o=d—-0(r), 0<r<a (27)
2
azz|zo+7:5<‘;lﬁz+%d—”;) —0, a<r<oo (28)
z=0
sfdu 1du, u
O-rZZOJFK(dZ FW—T_—2> :07 O<r<OO (29)
z=0

Upon substituting (20) and (21) into the boundary condition (29), it yields a relation between A and B:
A
A1+ Agé) = [——+A 30
E(1 4 Ag) <+u+ of) (30)

where Ag = k*/2 1. By enforcing the mixed boundary conditions (27) and (28) along with the relation (30), we obtain a pair of
integral equations:
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* (4420 + (243 AC .
_/0 ¢ { (1 + Agd) Bjy(¢rydé =d—6(r), 0<r<a (31)
® s 2u[(A+ ) + (A4 2 Aol] + TE[(A + 21) + (A4 31) Aoé] L N
/o g{ W21+ Agf) }BJo(cr)df—Q a<r< (32)

The dual integral equations (31) and (32) constitute a complete set of equations for determining the unknown function
B =B(¢&) for ¢ € [0,00). By introducing two functions ¢ = ¢(¢&) and w = w(¢) such that

bo o {zmu A+ 2000 G2 o WM 53

£ +w(e)] = [T IR (34)
the integral equations (31) and (32) can be further simplified to

| Er@n +wan@Ends =fo. o<r< (35)

/ a)E]Ofdf 0, 1<r<oo (36)

where f(F) = f(F)/a = —[d — (7)), 6(F) = (F)/a, d=d/a, & = éa, T =r1/a, and ¢ = ¢(&) = ¢(&)/a. The function ¢ = $(&) be-
comes the primary unknown of the dual integrals (35) and (36) while the function w = w(¢) can be obtained directly from
(33) and (34) as

(2+2) + (A+3)Aoé B
20+ 1) + (2 + 2)Ao8] + TE[(7+ 2) + (7 + 3)Aod]

where 2 = 2/, Ao = Ao/a and T5 = 7°/(ua). It is evident from (37) that the function w = w(&) possesses a limit equal to -1 as
& — oo. This condition renders the technique employed by Zhao (2009) inapplicable to determine the unknown function
¢ = ().

To construct a solution of the dual integral equations of the type (35) and (36), a technique proposed by Sneddon (1966)
and Mandal (1988) is adopted. By following their procedures, the dual integral equations (35) and (36) can be reduced to a
Fredholm integral equation of the second kind of the form

Sz 281 Cufwydu [~ wu)g(u) (sin(u+E)  sin(u— &)
o= [ osenteg, [ [ 8)

It can be seen from (38) that the function f (u) is merely related to the indentor profile and the function w(u) is related to the
boundary conditions involving the surface stress parameters. This single integral equation (38) is in a form well-suited for
constructing the numerical solution for ¢ = $(). Once the function ¢ = ¢(¢) is solved, the functions A and B can be subse-
quently determined from (30) and (33), respectively, and the complete elastic fields within the half-space can also be ob-
tained from (17)-(22). In addition, the magnitude of the total indentation force P producing the indentation depth d can
be obtained by integrating the contact pressure, i.e., the same quantity as that appears on left hand side of Eq. (28) with
the negative sign, over the area of the contact region.

It is worth noting that in the absence of surface energy effects, the above formulation can be readily specialized to a clas-
sical indentation problem by setting Ag = 0 and 75 = 0. The function w = w(&) in (37) simply reduces to a constant w* given
below:

w(¢) = (37)

42
o tHE 39
TV (39)

The dual integral equations (35) and (36) for this special case become

/:z-wp@ o(ERdE=F (), 0<F<1 (40)

A P(E)p(ENdé=0, 1<T <o (41)

where f*(F) = f()/(1 + w*). A set of dual integral equations (40) and (41) was solved analytically by Sneddon (1965).

4. Numerical implementation

Due to the complexity of the Fredholm integral equation of the second kind formulated in the previous section, a numer-
ical procedure must be employed to construct an approximate solution for ¢ = ¢(£). Essential ingredients for such numerical
implementation including the convergence study are briefly summarized below.
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4.1. Solution approximation

It is evident that the second integral of the Fredholm integral equation (38) is an improper integral with an infinite upper
limit and the involved primary unknown function ¢ = ¢(¢) is defined on a semi-infinite interval [0, c0). Before constructing
an approximate solution for ¢ = ¢(¢), the domain of integration of the improper integral is first truncated from [0,00) to
[0, &k] where & is a finite real number. The truncated Fredholm integral equation is given by

d(&) &/ cos(¢& dtf /tM,é {R W(u)é(u){sin(ut5)+sm(u é)}du (42)
0

(&) 3
2Z_w2 Tl u u+é u-¢

The unknown function ¢ = ¢(&) over the entire truncated domain [0, &] can be approximated by
o(&) = 52%% (&) (43)

where ¢; are unknown nodal quantities to be determined, y;(¢) are nodal basis functions, and n is the number of nodes
resulting from the discretization. It is worth noting that the approximation (43) results from a special property of the func-
tion ¢ at the origin, more specifically, this function vanishes at the origin of order ©(¢). In addition, in the present study, the
nodal basis functions %(E) are constructed systematically in an element-wise fashion based on standard isoparametric, qua-
dratic elements.

Upon inserting the approximation (43) into (42) and then dividing the entire equation by ¢, it leads to a discretized inte-
gral equation

> MO = F (&) (44)
=
where the integrals M; (&) and F (&) are defined on the truncated domain [0, &] by
M© =+ [ K Eud (45)

o2 ! ‘ uf (u)du

Fo-% | cos(étydr o e (46)
sy W) [sin(u+ 13 sm(u _—

K¢ u) = p= { —: + - } (47)

It can readily be verified that the kernel K(&, u) is regular for any pair of points (¢, u) and, as a result, M;(&) involves only an
regular integral for all ¢ € [0, &]. The integral F (&) is given in terms of a double line integral whose inner integrand involves
the prescribed profile of the indentor and is only weakly singular at u = t. To obtain a better form well-suited for numerical
integration, an integration by parts is performed along with applying a special variable transformation (i.e., u = tsin0) to re-
move such singularity and this, finally, leads to

2
FO= 5/ sin(¢ / U)o + 25 AR (48)

To obtain a sufficient number of equations to solve for the unknown constants o, a collocation-based technique is utilized. In
particular, the discretized integral equation (44) is collocated (or, equivalently, forced to be satisfied) at all nodes ¢ = ¢&; (for
i=1,2,3,...,n) and this leads to a set of n linear algebraic equations governing the nodal quantities o; as follows

Mo = F (49)

where a = {01,00, . . ., 0,7 is vector of nodal quantities and entries of the coefficient matrix M and the prescribed vector F are
given by
_ _ Cr _
M]; = M;(&) = ¥;(&) + A Yi(WwK (&, u)du (50)

I S I S L 2cos(&) [™? -
Fl= 7@ =5 [ sinén) [ oot + = [ up )l p,do (51)

It is evident from (50) and (51) that entries of the matrix M and the prescribed vector F involve only regular integrals. Thus, a
standard Gaussian quadrature can be applied to efficiently and accurately evaluate such integrals. Note also that, for some
special indentor profiles, the integral F(¢) admits an explicit expression and, as a result, construction of the corresponding
vector F requires no numerical integration. For instance, the integral F(¢) can be obtained for a flat-ended cylindrical inden-
tor (i.e., §(F) = 0) and a paraboloidal indentor (i.e., 6(F) = aar?> where o is a constant representing the slenderness of the
indentor profile) as
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Flat-ended cylindrical indentor : F (&) = —i—g sin(&) (52)
Paraboloidal indentor : F(¢) = — i—d sin(&) + — {Zg cos(&) + (=2 + &) sin(é)} (53)

Once the nodal quantities o; are obtained by solving a system of linear equations (49), the approximate solution for ¢ = ¢(¢)
can readily be computed from (43) for any ¢ in the truncated domain [0, %] and then functions A = A(¢) = A(¢)/a® and
B = B(¢) = B(¢)/a* can be determined at any ¢ € [0, &] by directly solving the relations (30) and (33) with the proper normal-
ization. The explicit formulae for A = A(¢) and B = B(¢) in terms of ¢ = ¢(&) are given respectively by

A = A : (54)

E{20(G+ 1)+ 2+ 2)Rof] + T

B(¢) = (55)

(
23{2 [(Z +1)+ 0+ Z)KOE,} +TA+2)+ (A+ 3)&@]}

The normalized stress and displacement fields within the bulk can then be approximated by the integral relations
(17)-(22) with their upper limit being replaced by &, i.e.,

0utr2) =g = [ o[- (B - a)Be a1 | " (1 - Bl (56)
ou(F2) = 5 = g / FBe ¥y (N)dE + 1 /f%z[—iﬂﬂl—Ef)ﬁle’éill(éf)df (57)
0utr 1) = = [ e[ (g Blenena: 8
672 =52 = | e EE (m -2 )B|e (et (59)
w(r2) =2 = (74 1) /0 "o (A + (1 - 2B, &z (60)
W (F,2) = % ——G+1) /o 2 {E,,h (%+ E_z)E} e, (2F)dC (61)

where Z = z/a. To evaluate truncated Hankel transform inversions appearing in (56)-(61) for any pair of points (7,z), stan-
dard Gaussian quadrature is again employed. It is important to point out that presence of the exponential term e~ in the
integrand significantly increases the rate of decay of the unfavorable oscillated behavior arising from the Bessel functions
Jn(&) for z > 0 and, as a result, the associated integrals converges very rapidly with a relatively low &. On the contrary, such
exponential term becomes unity on a surface of the bulk (i.e., Z = 0) and, due to the slow rate of decay of the Bessel functions,
it generally requires a sufficiently large & for those integrals associated with z = 0 to achieve their converged value.

Once the elastic fields within the bulk are obtained, other interesting quantities can also be computed. For instance, the
normalized contact pressure under the indentor, denoted by p = p(), can readily be obtained from

p
2(24 W)

p(r) = 301 1) <rg1 (62)

TSN2{)(F. 7 —
- —[o'zz(r,ZO)-ﬂ—iT v uZ(r’ZO)} <

where V2 = d &4l 14 It is remarked that the Laplacian of the normal displacement appearing on the right hand side of (62)
can directly be evaluated using the prescribed boundary condition (27). The normalized indentation force P can further be
computed by integrating the contact pressure p = p(r) over the contact region as follows

B P an 1 1
Prir/ / 7??d?d0:27‘c/ p(r)rdr 63
il A [ p(1) (63)
4.2. Determination of contact radius for smooth-contact indentor

For a smooth-contact indentor, the contact radius a is unknown a priori and must be determined first before other quan-
tities of interest can be obtained. It is remarked that once the contact radius a is known, there is no difference between a
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solution procedure for both smooth-contact and nonsmooth-contact indentors. To solve for a final contact radius a that cor-
responds to a given indentation depth d, a physically admissible condition associated with the continuity of the vertical
stress at r = a is utilized. However, the explicit or closed-form relationship between those two parameters (a and d) cannot
be obtained due to the complexity of the boundary value problem accounted for the surface energy effects.

4.3. Convergence study

For the proposed numerical technique, three key factors that affect the accuracy of the approximate solutions are the
truncated parameter &, the number of elements employed in the discretization, and the number of integration points used
in standard Gaussian quadrature. Extensive numerical experiments have been performed to choose a proper truncated do-
main, the level of mesh refinement and optimal quadrature to ensure the convergence and accuracy of numerical results.
Such investigation is briefly discussed below.

The number of Gauss points required in the numerical integration can be significant to accurately integrate oscillating
and complex integrands (resulting from the Bessel functions, ¢ = ¢ (&), and the kernel K(&, u)). From numerical experiments,
it is found that as the size of elements decreases (i.e., the number of elements in the discretization increases), it only requires
few Gauss points to achieve highly accurate results since the integrand on each element exhibits milder variation without
oscillating behavior.

To investigate the level of mesh refinement required to obtain the converged results, we perform experiments for a given
truncated domain [0, &]. A series of meshes for the fixed interval [0, &] is constructed and then used in the analysis. The
number of elements in the discretization (N) is increased until a converged solution (for a specified tolerance) is attained
for a fixed &. By repeating the analysis for various values of &, a ratio N/& (representing the level of mesh refinement)
greater than or equal to 1 is found to yield sufficiently fine meshes.

To obtain a proper truncated domain that optimizes the computational cost but, at the same time, yields accurate results,
we next investigate the convergence of approximate solutions with respect to the truncated parameter &. From such study,
it can be concluded that the truncated parameter & to obtain converged results for the non-smooth contact indentor is much
larger than that for the smooth contact one. This is due primarily to the singularity induced at the boundary of the contact
region of the non-smooth contact indentor. On the basis of extensive numerical experiments, the suggested values of the
truncated parameter & in the analysis of non-smooth contact and smooth contact indentors are approximately equal to
10,000 and 1,000, respectively. These values of & are therefore employed along with N/& = 1 to obtain all numerical results
presented further below.

5. Numerical results and discussion

Accuracy of the proposed numerical scheme is first verified by comparing computed results with available analytical
solutions of the classical case (without the influence of surface stresses) for both smooth-contact and non-smooth-contact
indentors. In the analysis, indentors with flat-ended and paraboloidal profiles are chosen to represent the non-smooth and
smooth contacts, respectively. Results for both elastic fields and pressure beneath the indentor predicted by three different
models (i.e., a model based on classical linear elasticity and two models accounted for surface stress effects with and without
the out-of-plane contribution of the residual surface tension) are fully investigated and compared. In addition, some crucial
findings are addressed.

5.1. Verification with analytical solutions

Consider an elastic half-space compressed by a rigid frictionless indentor with either a flat-ended cylindrical profile de-
scribed by (r) = 0 or a paraboloidal profile described by §(r) = or? where o is a constant. It is remarked that for both cases, the
indentation depth d and the final radius of contact a are associated with the indentation force P. Without the influence of
surface stresses, the analytical solutions derived by Sneddon (1965) are employed to validate the proposed formulation
and numerical implementations.

In numerical experiments, the proposed solution scheme is specialized to treat the classical case by setting Ag = 0 and
75 = 0. Though the properties of elastic materials in the current formulation can be chosen arbitrarily, to allow the compar-
ison with results obtained by Zhao (2009) when the influence of surface stresses is considered, the same set of material prop-
erties is uitilized. Aluminum is used for the bulk material (Meyers & Chawla, 2009) whereas Al [1 1 1] is employed for the
surface (Miller & Shenoy, 2000). The corresponding material constants are given by /4 =58.17 x 10° N/m?, u=26.13 x 10° N/
m?, Ag=0.16707 nm, /*=6.8511 N/m, ¢ = —0.376 N/m, 7* = 1 N/m. For convenience in the numerical study, following non-
dimensional quantities: ro = 1/ Ao, Zo = [ Ag, o = A/ Ao, do = d| Ap and g = 2 Ag are introduced. It is worth noting that although
the classical solution is independent of Ay, use of this parameter in the normalization allows a direct comparison between
non-classical and classical solutions.

In the case of a flat-ended cylindrical indentor with the contact radius aq = 0.5, comparisons between numerical solutions
for the contact pressure and vertical displacement and the benchmark solutions are reported in Fig. 2(a) and (b), respectively.
It is evidently found that results obtained from the present study are nearly indistinguishable from the analytical solutions
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Fig. 2. Comparisons of classical numerical solutions with analytical solutions for flat-ended cylindrical indentor: (a) normalized contact pressure and (b)
normalized vertical displacement.

proposed by Sneddon (1965). Another comparison is performed for the case of a paraboloidal indentor with o = 0.5. It can be
obviously seen from Fig. 3(a) and (b) that two numerical solutions obtained from the present scheme, one is the contact pres-
sure and the other is the vertical displacement at the free surface, again exhibit excellent agreement with the corresponding
reference solutions. This additionally confirms the accuracy of the proposed technique.

5.2. Results of indentor with surface stress effects

From the high accuracy of numerical solutions obtained in the classical case, the proposed scheme is now convincingly
applied to investigate the indentation problems with the influence of surface stress being incorporated. To allow compari-
sons with results obtained from Zhao (2009) and demonstrate the significant role of the residual surface tension 7°, Gurtin-
Murdoch model without the out-of-plane contribution of 7° is also considered. Selected numerical results are reported and
dicussed for both indentor profiles as follows.

5.2.1. Flat-ended cylindrical indentor

The case of an elastic half-space indented by a flat-ended cylindrical indentor with a specified contact radius a and inden-
tation depth d is first examined. Note that this particular indentor is an example of a non-smooth-contact indentor since dé/
dr is not well-defined at r = a. Numerical results for elastic fields within the bulk are reported in Figs. 4-7.
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Fig. 3. Comparisons of classical numerical solutions with analytical solutions for paraboloidal indentor: (a) normalized contact pressure and (b) normalized
vertical displacement.

It can be apparently seen from Fig. 4 that the distribution of the contact pressure under the indentor accounted for the
surface stress effects possesses the same trend as that for the classical solution in which the singularity still exists at the edge
of the indentor. Due to the integration of the out-of-plane contribution of the residual surface tension, the predicted contact
pressure for this particular model is considerably less than those obtained from the other two models (i.e., the classical mod-
el and Gurtin-Murdoch model without the out-of-plane contribution of 7°). In the analysis, three values of the normalized
contact radius, ag = 0.5, 1.0 and 1.5, are considered to study the size-dependent behavior. It is found that when the radius of
the indentor becomes smaller, the influence of surface stresses is comparatively larger. It is interesting to point out that
when the contact pressure p has been normalized in a proper manner (e.g., normalized as npag/4udy), size-dependent behav-
ior due to the influence of surface stresses is significantly apparent and this phenomenon cannot be certainly observed from
the solution predicted by the classical model (only one single dotted line is shown in spite of changing the contact radius ao).
It implies that the classical model completely ignores an inevitable material parameter (i.e., the intrinsic length Ag) and, as a
result, it cannot capture the size-dependent behvior and yields a solution significantly different from those predicated by the
other two models when the radius of the indentor becomes relatively small. However, the contact pressure under the larger
indentor (i.e., larger contact radius ag) for both models accounted for the surface stress effects converges monotonically to
the classical solution.

The variations of the normalized vertical stress, mo,,/4u do, along the radial direction at four depths z; = 0.1, 0.5, 1.0 and
1.5 and for the contact radius ao = 0.5 are shown in Fig. 5. The vertical stress profiles indicate the strong influence of the sur-
face stresses for a region relatively close to the indentor. In particular, at very small depth (i.e., zo = 0.1), the vertical stress
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Fig. 5. Normalized vertical stress profiles for flat-ended cylindrical indentor with contact radius ao = 0.5 at various depths.

increases monotonically and reaches their peak values near ro/ap =1 and then starts to drop rapidly when ry increases. At
larger depths, the vertical stress reaches its maximum at ro = 0 and decreases monotonically to zero as ry increases. It is evi-
dent that an ideal surface attached to the bulk of the current model distributes the localized indentation force to an area
outside the contact region. As a direct consequence, the current model (i.e., Gurtin-Murdoch model with the out-of-plane
contribution of 7°) predicts the lower vertical stress under the indentor and higher vertical stress outside the contact region
than those obtained from the other two models. However, such discrepancy becomes insignificant in the region far away
from the indentor.

Numerical results for the normalized shear stress, no,,/4udo, and the radial stress, na,,/4udy, at various depths and for the
contact radius ag = 0.5 are also presented in Fig. 6(a) and (b), respectively. Similar to the vertical stress, the magnitude of
shear stresses along the radial direction predicted by the current model is generally lower than and higher than those ob-
tained from the other two models for regions inside and outside the contact, respectively. The shear stress at any depth van-
ishes at ro = 0 due to the axisymmetry, reaches its peak value near the edge of the indentor (ro/ag = 1), and starts to decay to
zero for sufficiently large ro. Nevertheless, such behavior is significantly different from that of the radial stress; for instance,
the magnitude of the radial stress at zo = 0.5 obtained from the current model lies between those predicted by the other two
models for a region inside the contact. As anticipated, the shear and radial stresses obtained from all three models for rel-
atively large ro possess the same trend and decay monotonically to zero. The inflence of surface stresses is extremely small
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Fig. 6. Normalized stress profiles for flat-ended cylindrical indentor with contact radius ao = 0.5 at various depths: (a) shear stress and (b) radial stress.

for zg > 1.5 as clearly demonstrated by insignificant discrepancy between solutions obtained from the current and classical
models.

According to results shown in Fig. 7(a) for the normalized vertical displacement, u,/ Aodo, along the radial direction at five
different depths, zo = 0.0, 0.1, 0.5, 1.0 and 1.5, and for contact radius ao = 0.5, the one predicted by the current model is com-
paratively higher than those obtained from the other two models due to the fact that higher indentation force is required to
produce the same indentation depth resulting in the half-space Q° in the current model subjected to larger surface traction
than the other two half-spaces. Unlike the solution for stresses, the vertical displacement from the present study exhibits a
slower rate of decay for larger value of zy, and it gradually converges to the other two solutions as rg increases. As a final set
of results for this particular indentor, the normalized radial displacement, u,/Aodg, at four dfifferent depths, zo=0.1, 0.5, 1.0
and 1.5, and for the same contact radius ag = 0.5 is reported in Fig. 7(b). Clearly, the radial displacement increases rapidly
from zero at ro =0 to its peak value at relatively small ro, and then gradually decreases as rq increases. It should be noted

that the surface stresses only influence the magnitude of the radial displacement while its distribution along the radial direc-
tion predicted by all three models is quite similar.

5.2.2. Paraboloidal indentor

Consider, next, a paraboloidal indentor with oo = 0.5 acting on the elastic half-space with the indentation depth d and fi-
nal contact radius a. This particular indentor belongs to a class of smooth-contact indentors since dd/dr is well-defined at
r=a where a is unknown a priori. Note again that the final contact radius a is determined by enforcing the continuity
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Fig. 7. Normalized displacement profiles for flat-ended cylindrical indentor with contact radius ap = 0.5 at various depths: (a) vertical displacement and (b)
radial displacement.

condition of the vertical stress beneath the indentor at r = a. Numerical results for elastic fields of this particular case are
reported in Figs. 8-11 and those demonstrating the size-dependent behavior and increase of material stiffness due to the
presence of surface stresses are shown in Figs. 12-14. All crucial findings and remarks are summarized as follows.

To demonstrate the size-dependency resulting from the influence of surface stresses, the distribution of the normalized
contact pressure under a paraboloidal indentor, tpag/4udo, is first presented in Fig. 8 for three different values of the contact
radius, ap = 0.5, 0.8 and 1.0. Interestingly, the contact pressure predicted by the current model becomes finite at the bound-
ary of the contact region while that obtained from the classical case and Zhao’s model vanishes at that boundary. Unlike the
results for the flat-ended cylindrical indentor, the contact pressure obtained from the current model is significantly larger
than those obtained from the other two models. However, such discrepancy becomes smaller when the contact radius in-
creases. Note in addition that, upon the proper normalization, the distribution of the contact pressure for the classical case
is obviously independent of the contact radius and exhibits no size-dependency.

Normalized vertical stress profiles for the paraboloidal indentor for a fixed contact radius ap=0.5 and five different
depths, zo = 0.0, 0.1, 0.5, 1.0 and 1.5, are reported in Fig. 9. It is important to emphasize that due to the enforcement of con-
tinuity of the vertical stress at r = a, the singularity behavior at the boundary of the contact region observed in the case of the
flat-ended indentor disappears for this particular indentor profile. The maximum value of the vertical stress occurs at r=0
and rapidly decays to zero as rg increases. Clearly, the distribution of the vertical stress along the radial direction at a very
small depth exhibits significant difference from the case of the flat-ended indentor. Again, the vertical stress in a region very
near the free surface predicted by the current model deviates from those obtained from the classical and Zhao’s models
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Fig. 9. Normalized vertical stress profiles for paraboloidal indentor with contact radius ao = 0.5 at various depths.

indicating the significant influence of the surface stresses and the out-of-plane contribution of the residual surface tension. It
is also worth pointing out that the contact pressure shown in Fig. 8 is clearly identical to the negative value of the vertical
stress at zo = 0 shown in Fig. 9 for both classical and Zhao’s models (when aq = 0.5 is brought into the normalization) whereas
the significant discrepancy of those two quantities is observed in the current model. This is due primarily to the out-of-plane
contribution of the residual surface tension as indicated by the relation (62).

Fig. 10(a) and (b) show the normalized shear and radial stresses along the radial direction for the contact radius ag = 0.5
and four different depths zo = 0.1, 0.5, 1.0 and 1.5. Similar to the case of the flat-ended indentor, the shear stress at each depth
increases from zero at ro = 0 to its peak value near the indentor boundary (rp/ao = 1) and then decays rapidly as ry increases
whereas the radial stress decreases monotonically from its maximum value at rp = 0 as rp increases. Again, the surface stres-
ses exhibits significant influence on both shear and radial stresses only in a local region very close to the indentor, and its
contribution becomes negligible at a region very far from the indentor. The influence of surface stresses on the vertical and
radial displacements is also clearly demonstrated by the results shown in Fig. 11(a) and (b) respectively. The vertical dis-
placement predicted by the current model is comparatively higher with a slower decay rate when compared to those ob-
tained from the other two models. In addition, the magnitude of the radial displacement depends significantly on the
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Fig. 10. Normalized stress profiles for paraboloidal indentor with contact radius ap = 0.5 at various depths: (a) shear stress and (b) radial stress.

surface stresses whereas the radial distributions predicted by all three models are rather similar. These behaviors are similar
to what observed in the case of the flat-ended indentor.

To further demonstrate the size-dependent behavior, the relationship between the ratio ag/a. (where a. denotes the con-
tact radius for the classical case) and the contact radius ag of the paraboloidal indentor is investigated and results are re-
ported in Fig. 12. Due to the influence of surface stresses, it is evident that the contact radius is smaller than that
obtained from the classical case for the same indentation depth. This implies that presence of the surface stress render
the material stiffer. In particular, the difference in comparison with the classical solution is less than 1% for Zhao’s model
and up to 30% for the current model. It appears that the out-of-plane contribution of the residual surface tension strongly
affects the material stiffness and the surface stresses play a prominent role in mechanical responses and properties of mate-
rials in the nano-scale.

Another set of results that confirms the size-dependent behavior of predicted solutions, when the influence of surface
stresses is incorporated, is associated with the relationship between the normalized indentation force, P/P. (where P. denotes
the indentation force for the classical case), and the contact radius a, for the flat-ended cylindrical and paraboloidal inden-
tors as shown in Fig. 13. It is obviously seen that, when the radius of the indentor becomes smaller, the indentation force
required to produce the same indentation depth is relatively higher due to the surface stresses effect. The discrepancy is
more pronounced for the results predicted by the current model when compared with Zhao’s solutions. This implies that
the stiffness of materials characterized by the indentation experiment depends not only on the penetration depth but also
on the contact radius of the indentor. In particular, at the contact radius ag = 0.1, results obtained from Zhao’s model are
approximately 5% higher than the classical solution for both indentor profiles whereas those predicted by the current model
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accounted for the out-of-plane contribution of the residual surface tension are up to 120% and 160% higher than that ob-
tained from the classical model for paraboloidal and flat-ended indentors, respectively.

To clearly demonstrate the influence of surface stresses on the material stiffness, the relationship between the normalized
indentation force, P/4,uA§, and the indentation depth dg for both indentor profiles is presented in Fig. 14(a) and (b). It can be
concluded from this set of results that the indentation force for both indentors predicted by the current model is significantly
higher than that obtained from the classical and Zhao’s models. This additionally confirms that materials become stiffer due
to the presence of the surface stresses and the out-of-plane contribution of the residual surface tension amplifies such influ-
ence. It is also important to emphasize that the discrepancy of results for the flat-ended cylindrical indentor is more pro-
nounced than that for the paraboloidal indentor due to the non-smoothness of the indentor profile and the singularity of
stress field introduced at the boundary of the contact region.

6. Conclusion and remark

The complete solutions of elastic fields and related quantities for a linear elastic half-space compressed by an axisymmet-
ric, rigid, frictionless indentor with integration of the influence of surface stresses have been fully investigated. In the
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modeling of surface behavior, a complete version of Gurtin-Murdoch surface elasticity model has been used. By employing
the solution representation in terms of Love’s strain potential together with the application of Hankel integral transform
technique, the associated boundary value problem has been reduced to a set of dual integral equations which can be further
transformed into an equivalent Fredholm integral equation of the second kind. Various numerical schemes have been ap-
plied to enhance both the solution accuracy and computational efficiency of the proposed technique. For smooth-contact
indentors, a physically admissible condition associated with the continuity of the vertical stress at the boundary of the con-
tact region is enforced to determine the unknown contact radius for a given indentation depth. The validity of the current
formulation and accuracy of the numerical implementations have been confirmed by comparing computed results with
existing analytical solutions in the classical case for both smooth and non-smooth contacts.

As anticipated, obtained numerical results from extensive numerical experiments have demonstrated that the influence
of surface stresses becomes more significant when the size of the indentor is smaller especially in the region very near the
indentor. In addition, material behaves stiffer due to the presence of such effect. It is interesting to remark that the distri-
bution of the contact pressure for two indentor profiles (i.e., flat-ended and paraboloidal indentors) predicted by the current
model exhibits significant discrepancy from those obtained from the classical model and the model accounted for the surface
stresses but without out-of-plane contribution of the residual surface tension. The singularity of the contact pressure and
vertical stress at the boundary of the contact region is still observed in the current model for the case of non-smooth-contact
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indentors whereas such blow-up behavior completely disappears in the case of smooth-contact indentors. Size-dependent
behavior has been also presented to confirm the essence of integrating the influence of surface stresses into the mathemat-
ical model in order to accurately capture mechanical responses and properties of materials at a nano-scale and soft elastic
solids.

It is important to emphasize that the boundary value problem considered in the present study is restricted mainly to an
indentation problem with axisymmetric data and rigid, frictionless indentors. The generalization of the current work to alle-
viate all those limitations (e.g., treatment of indentors of non-axisymmetric profiles and non-frictionless contact) should be
potentially useful to enhance understanding of nano-mechanics and mechanics of soft solids in a broader context.
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Abstract. The influence of surface elasticity and surface residual stress on the elastic field of an
isotropic nanoscale elastic layer of finite thickness bonded to a rigid material base is considered by
employing the Gurtin-Murdoch continuum theory of elastic material surfaces. The fundamental solutions
corresponding to buried vertical and horizontal line loads are obtained by using Fourier integral transform
techniques. Selected numerical results are presented for the cases of a finite elastic layer and a semi-
infinite elastic medium to portray the influence of surface elasticity and residual surface stress on the bulk
stress field. It is found that the bulk stress field depends significantly on both surface elastic constants and
residual surface stress. The consideration of out-of-plane terms of the surface stress yields significantly
different solutions compared to previous studies. The solutions presented in this study can be used to
examine a variety of practical problems involving nanoscale/soft material systems and to develop
boundary integral equations methods for such systems.

Keywords: continuum mechanics; elasticity; nanomechanics: residual stress: surface energy: surface
stress; thin films.

1. Introduction

Nanomaterials and nanostructures are increasingly used in advanced engineering applications due
to their superior mechanical. electronic and optical properties (Wong er al. 1997). In nanoscale
systems, the surface-to-volume ratio is relatively high compared to macroscale systems and the
influence of surface/interface free energy becomes an important factor in their mechanical properties
and behavior (Yakobson 2003). Surface energy effects are also important in soft materials such as
polymer gels and biomaterials (Peter er al. 2000, Srinivasan er al. 2001). Although atomistic
methods (e.g. Chen ef al. 2008. Chen and Lee 2010) are considered very accurate for nanoscale
systems, the associated computational resources are significantly large. Modified continuum
methods are therefore considered very efficient in obtaining a first-approximation to nanoscale
systems. Gurtin and Murdoch (1975, 1978) developed a rigorous theory based on continuum
mechanics concepts to incorporate the surface and interfacial energy effects. The surface is modeled
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as a layer with zero thickness perfectly bonded to the underlying bulk material. The surface elastic
constants can be obtained from atomistic simulations (Miller and Shenoy 2000. Shenoy 2005,
Dingreville and Qu 2007).

Over the past decade. Gurtin-Murdoch theory of deformable material surfaces has been
extensively applied to study problems in nanotechnology and soft materials. He and Lim (2006)
derived the surface Green’s function for a soft incompressible isotropic elastic half-space by
assuming that the surface elastic properties are the same as bulk properties. The elastic field of a
half-plane subjected to surface loading in the presence of surface stresses was considered by Huang
and Yu (2007). Zhao and Rajapakse (2009) studied the plane-strain and axisymmetric response of
an isotropic elastic layer bonded to a rigid base under vertical and horizontal surface loads.
Recently, Intarit er al. (2010) derived the fundamental solutions of an elastic half-plane with surface
effects under internal loading and dislocations.

In the above studies, the surface stress tensor is considered a 2D quantity and its out-of-plane
components are excluded. A recent study by Wang e al. (2010). who formulated the surface
elasticity theory in the Lagrangian and Eulerian frameworks, indicated that the deformed and
undeformed configurations should be discriminated even in the case of small deformations. The out-
of-plane terms of the surface displacement gradient could be significant particularly for curved and
rotated surfaces. Povstenko (1993) studied the influence of residual surface stress gradient on the
elastic field of a half-space that has a jump in residual surface stress over a circular area.

This paper examines the elastic field of an isotropic nanoscale or soft elastic material layer of
finite thickness bonded to a rigid material base and subjected to internal and surface loading. The
surface elasticity and residual surface stresses are considered in the formulation. This class of
problems has extensive applications in the study of nanocoatings and nanoscale surface layers that
are used in electronic devices, tribological and biomaterial applications, advanced industrial
materials, communication devices, etc. The boundary-value problems involve non-classical boundary
conditions due to surface stresses are solved by using Fourier integral transforms. Selected
numerical results are presented to demonstrate the influence of surface elasticity and residual
surface stress on the elastic field.

2. Governing equations and general solutions

Consider a finite elastic layer of thickness r bonded to a rigid material base, and subjected to
vertical and horizontal loading at a depth % below the free surface as shown in Fig. 1. In the
absence of body forces, the equilibrium equations, constitutive laws and strain-displacement
relations of an isotropic bulk material are given by

;=0 (1)
oy = 2ug;+ A by (2)
g, = 2(u,+u,) 3)

where u,, o, and g, denote respectively the components of displacement, stress and strain tensors.
In addition. & and A are Lamé constants of the bulk material.
For the surface. the equilibrium equation. constitutive laws and strain-displacement relations can



Surface elasticity and residual stress effect on the elastic field of a nanoscale elastic laver 87

be expressed as (Gurtin and Murdoch 1975. 1978).

G et O, =0 (4)

Al A 5 > -t ) - A N N N -

‘gﬂa =P O,‘j‘n- + 2(.” = )gﬂr} + (/- T }59-.7(),:‘}a T ”ﬂ. s O3y = Tl 4 (3)
5 = | N \

Eap = ;(”a./;"' Up o) (6)

where the superseript *s” is used to denote the quantities corresponding to the surface: 4 and A’
are surface Lamé constants: 7 is the surface residual stress (or surface tension) under unstrained
conditions: and 7, denotes the components of the unit normal vector of the surface. It is noted that
the value of 7 is constant for a given surface orientation of a pure metal/semiconductor at a
specific temperature (Zhao and Rajapakse 2009).

In the above equations, Greek subscripts denote the field quantities associated with the surface
and take the value of 1 or 2. while the Latin subscripts adopt values from 1 to 3. A majority of
existing studies based on the Gurtin-Murdoch theory has formulated the problems in undeformed
configuration due to the assumption of infinitesimal deformations thus the out-of-plane component
of surface stresses given by the second equation in Eq. (5) is normally ignored. The term 7u,
can simply be viewed as the out-of-plane component of the pre-existing surface tension 7 in the
deformed configuration whereas the surface gradient of the displacement «, , act as the out-of-
plane component of the unit vector tangent to the surface in the deformed state. While the
component 7 us , has physical meaning only in the deformed state and identically vanishes in the
undeformed configuration, its contribution to the constitutive Eq. (5) is of the same order as other
terms. As recently pointed out by Wang et al. (2010). these out-of-plane terms could become
significant even in the case of small deformations.

It is assumed that the deformations under consideration are plane-strain in the xz-plane, ie. &,=
£,= &-= 0. The general solutions for the bulk stresses and displacements can be expressed with respect
to a Cartesian coordinate system (Fig. 1) by using Fourier integral transforms as (Sneddon 1951)

l e 2 3K g
& = —Srj s De TdE (7)
1 pod @ gy
R g e R 8
Ty 2’?{]‘;: d:: E (25 ( )
] o J{J(D iEx
L= — FE—e T dE 9
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Fig. | An isotropic elastic layer subjected to internal vertical and horizontal loading
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where

®(& 2) = (4 +Bz)e " +(C+Dz)e'™ (12)

Note that @ is the Fourier transform of Airy stress function that satisfies the two-dimensional
biharmonic equation. In addition, the arbitrary functions 4, B, €' and D are determined from the
appropriate boundary conditions.

3. Solutions of boundary-value problems

The solution to the elastic layer problem shown in Fig. 1 can be derived by dividing the elastic
layer into two sub-domains. The sub-domain “1° corresponds to the region where 0 <z <h and the
sub-domain 2" corresponds to the region where s <z <t The general solution of the sub-domain
‘17 is given by Egs. (7) - (12) whereas the general solution of the sub-domain ‘2” is also given by
Egs. (7) - (12) with the arbitrary functions 4 to D being replaced by £ to H respectively. A
superscript "' (=1, 2) is used hereafter to denote quantities associated with each sub-domain. The
arbitrary functions 4 to f{ corresponding to each sub-domain can be obtained by solving the
following boundary value problem.

ol +[‘ﬁdi+ r“d_ufJ =1 "
s dx dx dx"/_._,
1 2 \]'
O{_I:i _-U+[L%+ .&'\d H: =1 (14)
X d'x‘)[. - 1)
0|, o] _, = P& -
S () v
=0 Ly
Hi-“‘ = H_.I) | (17)
s =
H'\-Ul J - ”"T:] ' .,
“E_D[_ﬂ o (19)
Hin s . (20)

where &' = 24" + A’ is a surface material constant. In addition, p(x) and g(x) denote the jump of
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the normal traction and shear traction across the line z=/ due to the applied internal vertical and
horizontal loads respectively (see Fig. 1). The Fourier transforms of plx) and g(x) are given
respectively by

(&) = ["px)e~dx (1)

g(& = [’ g(x)e' dx (22)

It should be noted that both Eqgs. (13) and (14) are non-classical boundary conditions obtained
from Eqs. (4) and (5). In addition, Eq. (13) contains the out-of-plane component of surface stresses
associated with residual surface stress, which has generally been ignored in most previous studies.
For a flat surface. it can be scen from Egs. (13) and (14) that the influence of residual surface stress
7 will be neglected if the out-of-plane component of surface stresses is disregarded (the second
term on the left-hand side of Eq. (13) vanishes) and the residual surface stress is assumed to be
constant. In view of Egs. (7) - (11). a set of linear simultancous equations for determining the
arbitrary functions can be constituted by applying Fourier integral transforms to Egs. (13) - (20)
together with the assumption that the surface residual stress is constant. The following solutions are
obtained for the arbitrary functions 4 to H.

g = (—L—LA’TA’): B = —;L(B'TB*) (23)
B (C‘TC}" 2 & (D.w}fD() (24)
o (E,J;EE,:): . {_F,TF,) 35)
e {_G,.-;f(f‘): . {Hn;fH) 26)

where the explicit expressions of A,. 4. B,. B,. C,. C. D,, D, En, E,. Fy, F,. G, Gy Hy,, H, and 1
arc given in Appendix.

In the following subsections, the explicit expressions of the arbitrary functions for the special
cases of surface loading 1 — 0 and a semi-infinite medium 7 — o are presented.

3.1 Surface loading on a finite layer

The surface loading of a nanoscale layer has many practical applications. The elastic field
corresponding to this case can be obtained by taking the limit of 7> 0 in Egs. (23)-(26). The
corresponding arbitrary functions are given by Eqgs. (23) and (24) with 4, to D, (i = p, g) defined as
follows

60 P e ailie g _2AA ) s gy g Bt ddpir 54
4 2;__\”/\ 3+ AL Al +2e8 (A= 1)+ D {z‘.*l,u}'u" 204+ wyild e
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The fundamental solutions corresponding to an elastic layer subjected to a vertical line load Py
and a horizontal line load O, can be obtained by substituting 5(5) = P, and §(<) = Q, in the
above solutions.

For the cases of vertical strip load of constant magnitude p, and horizontal strip load of constant
magnitude ¢, over the region —a<x<a

2sin(&

Blg = 2ina), (35)
Y iy (E

g(¢) = ==y, (36)

=

Note that A = & (A+2u)/2u(/+ p) is a parameter with a dimension of length. This parameter
can be viewed as a material characteristic length that represents the influence of surface stress. It is
clear from the above solutions that the influence from surface stresses does not only come from the
surface material constant & (or A) but also from the residual surface stress 7 . In the absence of
surface stress effects, A and 7 vanish and the above solutions reduce to the classical elasticity
solutions.

The elastic field of a semi-infinite medium under surface loading can readily be obtained from the
solutions in Egs. (23) and (24), with 4, to D, (i =p. ¢) given by Eqs. (27) to (34). by taking the
limit of 71— %, Note that the arbitrary functions C and D=0 to ensure the regularity of the
solutions at infinity. In the case of the vertical load. the arbitrary functions 4 and B take the form,
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In the case of the horizontal loading
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3.2 Internal Joading in a semi-infinite medium

The stress and displacement fields of a semi-infinite medium under vertical and horizontal loads applied
at a depth /4 below free surface can also be obtained from the solutions in Egs. (23)-(26) by taking the limit
of {— . Note that the arbitrary functions G and H =0 to ensure the regularity of the solutions at
infinity and the arbitrary functions 4 to /" can be specialized to the case of a half-plane as follows.

3.2.1 Arbitrary functions for internal vertical loading
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3.2.2 Arbitrary functions for internal horizontal loading
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4. Numerical results and discussion

It is noted that the solutions for displacements and stresses given by Egs. (7) - (11) are expressed
in terms of semi-infinite integrals. A closed-form solution cannot be obtained due to the complexity
of the integrands. Therefore, it is proposed to employ an accurate numerical scheme to evaluate
these integrals. In this study, the integrals are evaluated by using globally adaptive numerical
quadrature scheme based on 21-point Gauss-Kronrod rule (Piessens 1983). The surface elastic
constants can be obtained by using atomistic simulations (Miller and Shenoy 2000, Shenoy 2005.
Dingreville and Qu 2007). It is convenient to introduce the non-dimensional coordinates, x,=x/ A
and z,=z/ A, in the numerical study. The numerical results in the present study correspond to the
case of an elastic layer subjected to a uniformly distributed load applied over a strip —¢ <x<a. In
the numerical study, a hypothetical material with A/=2.226 and A =1 nm are used. In addition
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Fig. 2 Non-dimensional stress profiles of a half-plane under vertical surface load: (a) Vertical stress,
(b) Horizontal stress, (c) Shear stress

7' =35 N/m is used to demonstrate the influence of residual surface stress.
Figs. 2 to 7 demonstrate the influence of surface elasticity and residual surface stress on the stress



94

P hutarit, T. Senjuntichai, J. Rungamornrar and RK.N.D. Rajapakse

@, x4y

e

— il e NTROE SIS

WRERGUE M S TR0 SHESY
clivgsical Soimon

. 2 =01
. z, =0h
.uu;,L
a

a 2, =0

T
@

3

204

Wi nessuE Burtacl STRES
e ITOUL ST SLTEOS STMEE
clasngal Sohhor
- 2 40T
3 5 - 1,265
| & r=td
264 L
[ 1

3

walh cpsadia burfate Slrees

——— Wit il Surtatn SRy
? CiasaCa sl
3 =0
g # ] &
- Fa=l5
- . nete
1] 1 2 - @
]

{c)

Fig. 3 Non-dimensional stress profiles of a half-plane under horizontal surface load: (a) Vertical stress.
(b) Horizontal stress. (¢) Shear stress

field of an elastic layer with very large value of ¢ (a half-plane) under different loading cases. Figs.
5 and 3 show the variation of non-dimensional stresses along the x-direction of a half-plane at
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various depths under a uniform vertical strip load of magnitude p, and a horizontal strip load of
magnitude g, respectively applied at the surface. A non-dimensional load width. a,=a/ A = 1. is
used in the numerical study. Only the solutions along the positive y-axis are presented due to the
symmetry or anti-symmetry of the solutions about the z-axis.

The influence of surface elasticity on an identical problem was previously examined by Zhao and
Rajapakse (2009) by ignoring the out-of-plane component of surface stresses. The dotted lines
denote the classical elasticity solutions corresponding to zero surface stress (i.e. &' = 7' =0) and the
dash lines denote the solutions that neglect the out-of-plane component of surface stresses (Zhao
and Rajapakse 2009), which also disregard the influence of residual surface stress (') as previously
discussed. It is evident from the figures that the influence of residual surface stress is more
significant in the case ol vertical strip load when compared to the horizontal strip load case. On the
contrary, the influence of surface elasticity is more evident in the case of horizontal loading, It is
also found that for the horizontal loading the influence of residual surface stress is negligible on
horizontal normal and shear stresses but more evident on vertical normal stress, whereas in the case
of vertical strip load all stress components depend significantly on the residual surface stress. This
behavior can be described from the fact that the residual surface stress appears in the equilibrium
equation of the vertical normal stress, Eq. (13). but apparently vanishes in the shear stress equation,
Eq. (14). due to the assumption that the residual surface stress is constant. As expected, the
influence of residual surface stress becomes significant only in a local region near the surface (i.e.
zy < 2.0 for the vertical loading and =z, < 1.0 for the horizontal loading) and would diminish with the
distance from the free surface. In addition. the influence of the residual surface stress becomes
negligible when x,/a, > 4.

To investigate the influence of the surface material parameter A and the residual surface stress 7,
the non-dimensional stress profiles along the x-direction of a half-plane due to a uniform vertical
strip load p, are shown in Fig. 4 for different values of A and in Fig. 5 for different values of 7'
respectively. Note that in Figs. 4 and 5 stresses are calculated at z,=0.1. In Fig. 4. the non-
dimensional stresses are presented for a hypothetical material with the surface material parameter
A | being varied from 0 to 100A . whereas the residual surface stress parameter (7') is unchanged. It
can be seen from the figure that the free surface is stiffer with increasing values of A | resulting in
the reduction of the stresses in the layer. The influence of the residual surface stress in Fig. 5 shows
a similar trend to Fig. 4. It can be seen from Fig. 5 that all bulk stress components decrease when
residual surface stress (') increases from 0 to 100 N/,

Figs. 6 and 7 show the variation of non-dimensional stresses along the z-axis of an elastic half-
plane subjected to an internal vertical strip load p, and an internal horizontal strip load ¢, over a
region 2a (with a, = /) at various depths. A non-dimensional quantity, &, = A/ A, is used in the
numerical analysis. The influence of surface elasticity of an identical problem was recently
considered by Intarit er al. (2010) without the out-of-plane component of surface stresses and the
influence of residual surface stress (7'). Numerical results shown in Figs. 6 and 7 indicate that the
stresses increase when approaching the plane of applied loading. A discontinuity in both vertical
and horizontal stresses is observed at the level where the vertical strip load is applied. whereas for
the case of a horizontal strip load the shear stress is discontinuous at the loading plane. It is found
that the residual surface stress shows more significant influence on the stress ficld in the case of a
vertical strip loading, especially at points closer to the free surface (z,< 2) when compared to the
case of a horizontal strip loading. It should be noted that o in Fig. 6 is no longer zero at the
surface due to the presence of the residual surface stress 7.



96 P Intarit, T. Senjuntichai, J. Rungamornrat and R.K.N.D. Rajapakse

(a)

e — T
01 -
0% 4 -
5
&
W
o L
e
—— il o
044 —— A28
= vaiesn
k| 4
o g itk
0.5 A ¥
a 1 2 3 4
‘II
(¢)

Fig. 4 Non-dimensional stress profiles at z, = 0.1 under vertical surface load for different material constants:
(a) Vertical stress, (b) Horizontal stress. (¢) Shear stress

To investigate the influence of layer thickness, the profiles of non-dimensional stresses in elastic
layers of different thicknesses bonded to a rigid base and subjected to a uniformly distributed



