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Fig. 5 Non-dimensional stress profiles at z, = 0.1 under vertical surface
stresses: (a) Vertical stress. (b) Horizontal stress. (¢) Shear stress

vertical load p, and a horizontal load ¢, over a region 2a (with

4

load for different residual surface

ay = 1) at the free surface are

presented in Figs. 8 and 9 respectively. In this case, it is convenient to define the non-dimensional
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Fig. 6 Non-dimensional stress profiles along the z-axis of a half-plane under internal vertical load: (a) Vertical
stress. (b) Horizontal stress
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Fig. 7 Non-dimensional shear stress profiles along the z-axis of a half-plane under internal horizontal load
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Fig. 8 Non-dimensional stress profiles along the z-axis of a finite layer under vertical surface load: (a) Vertical
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layer thickness. 7, = (/ A. Once again, the residual surface stress shows more significant influence
in the case of a vertical strip load when compared to a horizontal strip load. It is clear from these
figures that the thickness of a layer has a significant influence on the stress field for both classical
and non-classical cases. The stresses in both cases are mainly compressive and decrease with
increasing layer thickness. except for the horizontal stresses under vertical strip load in Fig. 8(b), in
which tensile stresses are also noted for layers with finite thickness, Numerical results shown in
Figs. 2-9 confirm the fact that the influence of the residual surface stress should not be ignored in
the analysis of the problems involving nanoscale layers or soft elastic materials.

5. Conclusions

A theoretical formulation based on the Gurtin-Murdoch continuum theory of elastic material
surfaces is presented to study the elastic response of a nanoscale layer. An important aspect of the
present study is the consideration of the out-of-plane term of the surface displacement gradient in
the formulation, 1t is shown that the elastic field can be solved explicitly by using Fourier integral
transform techniques. The final solution is expressed in terms of semi-infinite integrals that can be
accurately computed by employing a numerical quadrature scheme. It is found from the analytical
solution and numerical results that the effects of the surface energy on the elastic field are
characterized by both the characteristic length parameter A that is related to the surface and bulk
elastic moduli and the residual surface stress (7). As expected, the influence of the surface elasticity
and the residual surface stress becomes more significant in the vicinity of the layer surface.
Numerical results also indicate that increasing A and 7' result in a decrease in bulk stresses.
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Abstract

A computationally efficient numerical technique capable of modeling mode-I planar cracks in three-
dimensional linear elastic media by taking the influence of the residual surface tension into account,
is presented in this paper. The elastic medium (i.e., the bulk material) is modeled by the classical
theory of linear elasticity, whereas the crack surface is treated as a zero-thickness layer perfectly
bonded to the bulk material with its behavior governed by the special case of Gurtin-Murdoch
surface elasticity model. Governing equations of the bulk material are formulated in terms of
weakly singular, weak-form boundary integral equations, whereas those of the surface are cast in a
weak form using a weighted residual technique. The solution of the final coupled system of
governing equations is subsequently accomplished by using a numerical procedure based primarily
on a coupling between standard finite element technique and a weakly singular, symmetric Galerkin
boundary element method. Extensive numerical simulations are conducted and the results are
compared with available benchmark solutions to verify the formulation and numerical
implementation. Applications of the technique to the analysis of nano-crack problems are presented

for some selected cases, to study nano-scale influence and size-dependency behavior.

Keywords: Crack opening displacement, Gurtin-Murdoch model, Nano-cracks, Residual surface
tension, SGBEM, Surface elasticity

1. Introduction

Due to the rapid growth of the application of nano-sized devices and nano-structured materials in
various fields, the physical modeling and corresponding comprehensive analysis to gain an insight
into their complex behavior become important aspects in the optimal design of nano-scale products.
Failure/damage analysis and assessment is one of the essential steps that must be properly
considered to ensure their safety and integrity in the design procedure. To aid such crucial tasks, a
classical approach based on the stress analysis of a body containing pre-existing defects or cracks is
usually considered. While conventional linear elastic fracture mechanics has been well established
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and employed in the modeling of cracks in linear elastic media, an enhancement of the classical
model to incorporate the nano-scale influence is still required. Studies using atomistic calculations
have pointed out that atoms near the free surface of solids behave differently from their bulk. In that
sense, the whole body is not completely homogeneous, but when its size is in the range of
micrometers or larger, the surface free energy effect can be neglected due to its insignificant
influence on overall material properties. Unlike macro-structures, in the case of nano-sized objects
(e.g., thin films, quantum dots, nano-wires, nano-tubes and nano-composites), the surface to volume
ratio is much higher and, as a direct consequence, the surface free energy effect often plays a crucial
role in the mechanical behavior [1]. Therefore, the classical theory of continuum-based mechanics
commonly used in the modeling of macroscopic bodies cannot be directly applied to treat the

problem of nano-sized cracks.

To be capable of capturing the surface free energy effect, a model that properly takes into
account the surface free energy must be utilized. The most widely used continuum-based models
which incorporate surface free energy effects are those using Gurtin-Murdoch surface elasticity
theory. Gurtin and Murdoch [2, 3] proposed a mathematical framework to study the mechanical
behavior of material surfaces through a continuum-based model which includes surface stresses.
The elastic surface is assumed to be very thin and modeled as a mathematical layer of zero
thickness that is perfectly bonded to the bulk material. In addition, such an idealized surface has
different elastic moduli from those of the bulk material.

The Gurtin-Murdoch model has been widely used to study various size-dependent, nano-
scale problems. For instance, He et al. [4], Dingreville et al. [5] and Huang [6] employed the
Gurtin-Murdoch surface elasticity model to clearly elucidate the size-dependent elastic properties of
nano-structured elements such as wires and films, while Tian and Rajapakse [7, 8, 9] applied such
model to demonstrate the influence of surface stresses on elastic fields of nano-inhomogeneity
problems. More recently, Pinyochotiwong et al. [10] investigated the effects of surface energy in
the analysis of an axisymmetric rigid frictionless indentor acting on an isotropic, linearly elastic

half-space by using the complete version of the Gurtin-Murdoch model.

The continuum-based surface/interface model of Gurtin and Murdoch has also been
employed in the modeling of nano-sized cracks. Based upon an investigation of an elliptical void,
Wu [11] argued that the presence of the surface stress has the capability of containing the severity
of deformations of a blunt crack. Wang et al. [12] studied the surface stress effect on near-tip
stresses for both mode-I and mode-I11 blunt cracks and found that when the curvature radius of the
crack front decreases to nanometers, surface energy significantly affects the stress intensities near
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the crack tip. Fu et al. [13, 14] incorporated the surface elasticity model into the finite element
method (via ANSYS® and ABAQUS®) to study the influence of surface stresses on the mode-I and
mode-11 crack-tip fields and concluded that when the curvature radius of the blunt crack root
decreases to micro-/nano-meters, surface elasticity exhibits significant influence on the stresses near
the crack tip. Fang et al. [15] analyzed the influence of surface effects on dislocation emission from
an elliptically blunt crack under mode-I and mode-11 loading conditions and showed that the impact
of surface stresses on the critical stress intensity factors for dislocation emission becomes
remarkable when the size of the blunt crack is very small, typically of a nanometer scale. Kim et al.
[16, 17, 18] examined mode-I, mode-11 and mode-I11 crack problems including surface stress effects
which assumed that the stresses at the sharp crack-tip are finite. Recently, Nan and Wang [19]
considered the effect of the residual surface tension on the crack surface, to investigate the mode-I
crack problem and demonstrated that the surface effect on the crack deformation and crack-tip field
are prominent at nanoscale. Moreover, the results are influenced by the residual surface tension not
only on the surface near the crack-tip region but also on the entire crack-face. Intarit et al. [20, 21]
analytically investigated a nano-sized, penny-shaped crack in three-dimensional, linear elastic

media under mode-1 loading conditions.

On the basis of an extensive literature survey, it can be said that work related to the
modeling of defects/cracks at nano-scale level has been very limited. Most of the studies are
restricted to situations where cracks can be treated either within the context of two-dimensional
boundary value problems [11-19] or within the context of relatively simple three-dimensional
problems [20, 21]. However, bodies or components containing existing defects/flaws involved in
practical applications are, in general, relatively complex in terms of geometries, loading conditions,
and influences to be treated (e.g., surface free energy). The existing mathematical models are
therefore of limited scope and insufficient for the prediction of responses in practical cases. This, as
a result, necessitates the development of fully three-dimensional mathematical models, along with
efficient and powerful numerical procedures to construct their solutions.

Numerical techniques based on boundary integral equations have been well-established and
proven powerful for both two-dimensional and three-dimensional fracture analysis (e.g., [22-27]).
The techniques possess attractive characteristics, such as governing equations with spatially reduced
dimensions and simplicity of treating remote boundaries and infinite bodies, rendering them
computationally efficient and convenient for modeling crack problems. The weakly singular,
symmetric Galerkin boundary element method (SGBEM), which is a principal numerical technique

proposed to model the cracks in the present study, is a particular boundary integral equation method
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that has been continuously developed and widely adopted by various investigators in the past four
decades. This special numerical technique has been widely and successfully employed to solve both
linear elasticity and linear elastic fracture problems [28-38], since it has several important features.

For instance, the governing integral equations contain only weakly singular kernels (of ¢(1/r)); the

technique is applicable for modeling cracks with arbitrary configurations and under general loading
conditions and for treating an infinite body efficiently; and the formulation is established in a
symmetric weak-form such that it gives rise to a system of linear equations with a symmetric
coefficient matrix. The first feature renders that all involved integrals exist in an ordinary sense and
their validity requires only the continuity of the boundary data; i.e., in the numerical
implementation, it is possible to employ standard C° elements in the approximation of all primary
unknowns and to apply existing quadrature schemes to numerically evaluate all involved integrals
(e.g., [31, 32, 37, 38]). In addition, the last feature also allows the SGBEM to be conveniently
coupled with the standard finite element procedure to enhance its computational efficiency and
capability (e.g., [39, 40]). Extensive review of the weakly singular SGBEM can be found in Bonnet
et al. [41], in Rungamornrat and Mear [37] and Rungamornrat and Senjuntichai [38] for its
application to three-dimensional fracture analysis, in Rungamornrat and Mear [40] for its coupling
with the standard FEM. It should be remarked that, on the basis of an extensive literature survey,
applications of the SGBEM-FEM technique to the analysis of nano-size cracks has not been well
recognized. Efficiency and capability of such technique, when applied to this particular class of

problems, still requires full investigations.

In this paper, a computationally efficient numerical technique capable of modeling planar
cracks in three-dimensional isotropic, linear elastic media including the influence of residual
surface tension is presented. The residual surface tension effects are modeled using the well-known
Gurtin-Murdoch theory of surface elasticity. A numerical procedure based primarily on the coupling
of a standard finite element method (FEM) and a weakly singular, symmetric Galerkin boundary
element method is employed. The former technique is mainly utilized to efficiently handle the
governing equation of the surface. While the proposed technique follows, in principle, the standard
coupling procedure, novelty of the current work should be reflected through its recent applications
to the modeling of cracks with nano-scale influence. Extensive numerical simulations are conducted
and the results are compared with available benchmark solutions to verify both the formulation and
the numerical implementation. Applications of the technique to the analysis of mode-I, nano-sized,
crack problems are presented for some selected cases, to study nano-scale influence and size-

dependency behavior.



2. Formulation

This section begins with the clear description and essential assumptions of the boundary value
problem that is the focus of the present study. All basic field equations and the development of key
governing equations for both the bulk material and the crack surface are then briefly presented.
Finally, the coupled system of weak-form equations governing the primary unknowns on the crack

surface is derived.

2.1. Problem description

(a) (b)
Fig. 1. (a) Schematic of three-dimensional infinite elastic medium containing an isolated crack;
(b) prescribed traction on crack surfaces.

Consider a three-dimensional, infinite, elastic medium Q containing an isolated, planar crack as

shown schematically in Fig. 1(a). The reference Cartesian coordinate system {O; X, X,, X,} is also
shown. The bulk material is made of a homogeneous, isotropic, linearly elastic material with shear
modulus x and Poisson’s ratio v. The crack surfaces which are geometrically identical are
represented by S; and S_ with corresponding outward unit normal n* and n™, respectively. The
medium is assumed to be free of body forces and remote loading but subjected to prescribed
tractions t* and t™ on S} and S_, respectively (Fig. 1(b)). In addition, infinitesimally thin layers

on the crack surfaces (mathematically modeled by zero-thickness layers perfectly bonded to the

crack surfaces) possess the constant residual surface tension under unstrained conditions which is

denoted by 7°.

In the formulation of the boundary value problem, the medium is decomposed into three
parts: the bulk material, the zero-thickness layer S; and the zero-thickness layer S_ as shown in

Fig. 2. The bulk material is simply the whole medium without the two infinitesimally thin layers on
5



the crack surfaces. Since both layers have zero thickness, the geometry of the bulk material is

therefore identical to that of the whole medium (i.e., it can also be completely described by the

region Q and the two crack surfaces S and S;).

The key difference between the bulk material and the original medium is that the bulk

material is homogeneous and the crack surfaces S and S_ in the bulk part are subjected to
unknown tractions (exerted directly by the two layers) t™ and t™°, respectively. The layer S, is

treated as a two-sided surface with one side subjected to the prescribed traction t™ and the other

side subjected to the traction t** exerted by the bulk material (Fig. 2(b)). Similarly, the layer S_ is

treated as a two-sided surface with one side subjected to the prescribed traction t™ and the other

side subjected to the traction t™° exerted by the bulk material (Fig. 2(c)). In what follows, Greek
subscripts denote field quantities associated with the surface and take the values 1, 2 while the Latin

subscripts take the values 1, 2, 3. We remark that, in the development to follow, it will suffice to

make reference to the single crack surface S, =S_.

X
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Fig. 2. Schematics of (a) the bulk material, (b) the zero-thickness layer S; and (c) the zero-

thickness layer S_.

2.2. Governing equations for bulk material

Since the bulk material is made of homogeneous, isotropic, linearly elastic material, its behavior is
governed by the classical theory of linear elasticity. From results developed in the work of
Rungamornrat and Mear [36] and Rungamornrat and Senjuntichai [38], the displacement and stress

components at any interior point x, denoted respectively by u (x) and o;(x), can be expressed in

terms of the traction data t™ and t® and the displacement data u™ and u™ on the crack surfaces

S, and S as



U, ()= [, U&=t (©)ds (@)

1)
+_|.SC GF (& —x)D,u;"(§)dS(&) - I HP (& —x)n; (&)u}* (§)dS (&)
7, (0 = |, &Cl, (6D (£)dS () o
+J &nGyr (6 - x)tﬁz(a)dS(é)—LcHi}’(é—x)tﬁz(i)dS(g)
where D,(-) = &,;n,0()/ 0&; is a surface differential operator, t™ =t.” +t,°, u?* =u;"—u.°, ¢, is

the standard alternating symbol, the kernels {U’,G, Ck H. i} for isotropic elastic materials are

mj? ~mj?
given by
UP(E=x) = — | 3=av)s, + Zo = %)5 7 %) )
! 1677(1—v)ur ¥ r
1 (& = %)(& — %)
Grﬁj(é_x):m (1 2V)gmpj : prz gajm (4)
I (& —xJ(& - X))
Cr(& =20 = | A V)8, 8y + 20806, = 8,8, == — 55— 0, )
(& =%)S;,
HP(E—x) = 6
PE—) =22 (6)
with r=[|§—x||and J;,¢; are standard Kronecker delta and alternating symbols, respectively. The

boundary integral relations (1) and (2) allow the displacement and stress at any interior point to be

** and u™are known. To establish the integral equations

determined once the data t™® , t™, u
governing the unknown data t*® , t™®, u*™ and u™, the integral relations (1) and (2) are utilized
along with the process of taking limit to any point on the crack surface and the standard procedure
using Stokes’ theorem in the development of the weak-form equations. The final weak-form,
boundary integral equations are given by (see details of the development in Rungamornrat and Mear

[36] and Rungamornrat and Senjuntichai [38])

% J, Bumdsy) =], T)f, UG-yt @)dsEds(y)
+j )], G4(E-y)D,u}" (©)dS(©)dS(y) )
LB O], HIE-y)n @)u} @)ds©)ds(y)



—%LC 0 (V)R ()dS(y) =], DA ()|, Cry(& - y)D,u}" (€)dS(2)dS(y)
+], DB ()], GiE- YL (©)ds@)ds(y) ®)
+f, B[, HLE-yn ()L ©)ds@)ds(y)

where uf* =u?® +u®, " =t° —t;*, and {t,, 0.} are sufficiently smooth test functions. The pair of
equations (7) and (8) has been well recognized as the weak-form boundary integral equations for

the sum of the displacement u'f and the jump of the traction t?A across the crack surface,

respectively. It is worth noting that both integral equations contain only weakly singular kernels
{Lij,Gn;:jlctk

mj !

Hin,} of O(Lr). This positive feature renders the existence of all involved double

surface integrals in an ordinary sense and their validity requires only C°- boundary data.

2.3. Governing equations for two layers

The two layers S, and S_ shown in Figs. 2(b) and 2(c) are considered as infinitesimally thin

membranes adhered perfectly to the bulk material. The behavior of these two layers is modeled by
Gurtin-Murdoch surface elasticity theory by ignoring terms associated with the surface elastic
constants. It has been pointed out by various investigations that the influence of the surface elastic
constants on the out-of-plane responses in the region very near the surface is negligibly weak [10,
19-21]. The simplified version of the Gurtin-Murdoch model is therefore considered suitable for
modeling planar crack problems especially when mode-I behavior is of primary interest.

The equilibrium equations, the surface constitutive relations and the strain-displacement

relationship of the layers S and S_ are therefore given by [2, 3]

O s+ H1 =0 ©)
ol :TS{(1+5;)5Q,,-U;“} , O3, =T°U5 (10)

1
g’ =—(us +u

ap =5 Uy ﬁ,a) (11)

where o, &;,, U represent stress, strain and displacement components within the layer.

To construct the weak-form equation, we multiply the equilibrium equation (9) with a
sufficiently smooth test function G} and then integrate the result over the entire crack surface to

obtain



[ 5o, ,d8 + [ Giteds + [ Git’ds =0 (12)
S, S, S

C

By using the fact that z° is spatially independent, it can be readily verified that o, , =0. With

such condition along with carrying out the integration by parts of the first term using the Gauss-

divergence theorem, it leads to

[ s, 05,08 - [ atids = [ Gos,n,dS + [ GitPds (13)
S, Se S

as,

Substituting (10) into (13) finally yields

o[ 05 u3,d8 - [ Gt5dS = [ G5o3,n,dS + [ Gitds (14)
S, S, s Se

Note that the weak-form equation (14) applies to both crack surfaces. For instance, the weak-form

equations for the surface S and the surface S_ can be obtained explicitly by

o[ asugsds — [ arteds = | d°ogin,ds + [ 67t ds (15)
S, S¢ s Se

o [ U55u5508 - [ 07t °dS = [ 0;°0;5n,dS + [ 67t dS (16)
Se Sc oS Se

where superscripts “+” and “~" are added to differentiate quantities defined on each crack surface.
Since the integral equations governing the bulk material are derived in terms of the unknown sum
and jump of quantities across the crack surface, it is natural to establish the weak-form equations

governing the surface containing the same type of unknowns. This can be readily accomplished by

forming two linear combinations of (15) and (16) as follows: (i) choosing 0° =0, =G and then
adding (15) to (16) and (ii) choosing G.* =0 ° = G** and then subtracting (15) from (16). Such pair

of equivalent weak-form equations is given by

o [ us,ds - [at™ds = [ a*on,ds + [ 67t dS (17)
S S s Se

o[ @ushds — [ G360ds = | a5°ogsn,ds + [ a7t ds (18)
S, S, S, S

where superscripts “X” and “ A” indicate the sum and jump of quantities across the crack surface. It
should be remarked further that since the jump of the displacement along the crack front vanishes

identically, the test function G;* is chosen to satisfy the homogeneous condition G;* =0 on &S, . In

addition, the traction boundary conditions o;;n, =0 on &S, are assumed. The weak-form equations

(17) and (18) finally become



o[ agyus,ds — [ at™ds = [ 6 ds (19)
SC SC SC

o [ G55us)ds — [ G ds = [ °t*ds (20)
SC SC SC

Equations (19) and (20) constitute a set of weak-form equations governing the unknown quantities
{u™, £, u™, t=}. It is worth noting that the formulation presented above is clearly not restricted

only to applied normal traction to the crack surface, although the mathematical model of the surface

is physically suitable for pure mode-I loading. Due to the vanishing o

~s.5» the equilibrium equation

(9) indicates that the applied shear traction is transmitted directly to the crack surface of the bulk

material.
2.4. Governing equations for whole medium

Since the two layers S and S_ are adhered perfectly to the bulk material, the displacements and

tractions along the interface of the two layers and the bulk material must be continuous. This yields

the following continuity conditions:

ut =u =u’ (21)
U= =u” =u’ (22)
=" =t (23)
t =" =t (24)

Substituting (21)-(24) into (7), (8), (19) and (20), leads to a system of four equations involving four

unknown functions {u*, t*, u*, t*}. By choosing appropriate test functions, (8) and (20) can be

combined and the unknown t* can be eliminated. The final system of three equations involving

three unknown functions {u”, u, t*} is given by

d(UsE,uZ) +‘Z)(052,t2) :‘@(USE)
BEW) +eE) +2EU) =0 (25)
D(,0%) +&£@uY) =20

where the bilinear integral operators &,.2,C,2,& are defined by

@ =2, X, 00V, (IS ) (26)
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FXY) =3[, X, ()Y, 0)dS() @)

e(X.Y)=-, X, [, Ui -y, ()dSE)dS(y) (28)
D(X.Y)==[ X, W], G4(E-Y)D,Y; (£)dS(E)dS(y)

H, X, 0], H &=V @)Y, (©)ds @S (y) )
£(X,Y) ==] DX, )], Ch(E-Y)D,Y; (§)dS(E)dS(y) + Z(X,Y) (30)

and the linear integral operators {4, 2} are defined, in terms of prescribed data t** and t°*, by

AX) =3 [, X DL ()ES) @)

A0 =2 [, X () ()S() )

3. Numerical implementation

In this section, all numerical treatments including the discretization and numerical integration are
briefly discussed. In general, standard procedures for the weakly singular SGBEM (e.g., [31, 32, 35,
37]) and those for the standard finite element method (e.g., [42-44]) are utilized to form the

discretized system of linear algebraic equations.
3.1. Discretization

Standard Galerkin approximation is employed in the discretization of the system of governing
equations (25). Since all involved boundary integrals contain only weakly singular kernels of

O(1/r), standard C? interpolation functions are utilized in the approximation of both trial and test

functions. In particular, the following approximation for the test functions and the trial functions is

introduced:
N
ZUISS(ZP a®p i U _ZUS(q—l)H (33)
p=1
N
- Z_;U s(pi®Pp 3 u = ZUe,(q P (34)

11



N

fiZ = zf3(p—1)+| ’ Lt z 3(q 1)+| (35)

p=1

where N is the number of nodal points; @ is the nodal basis function at node g; Uy U sigoyi -
and T, ,,,; are nodal degrees of freedom associated with the sum of the displacement, the jump of
the displacement and the sum of the traction across the crack surfaces, respectively; and U;fpfl)ﬂ,
03( o1y and fs(pfl)ﬂ are arbitrary nodal quantities. Substituting (33)-(35) into (25) along with using

the arbitrariness of Ujfp i US(HM, and fs(pfl)ﬂ, leads to a symmetric system of linear algebraic

equations
A B 0][U” R
B" C D|<T ;=<0 (36)
0 D' E|lU* R

where the sub-matrices A,B,C,D,E are associated with the bilinear operators &,%2,€, 2, & ; sub-

vectors R,,R, correspond to the linear operators 42,4 ; U is a vector of nodal quantities of the

sum of the displacement; U* is a vector of nodal quantities of the jump of the displacement and T*

is a vector of nodal quantities of the sum of the traction. The sub-matrices A, B, C, D, E and sub-

vectors R,,R, are given explicitly by

(Al s = [, @y, (P, (1)IS() @)
(Bl = J, S5 (NP0 (39)
[Chiip syisa s = =], PoM], U5(§ = NP ()dS()dS(y) (39)
[DLipsyisars = —J, Po(N], Gry (&= Y)D, D (£)dS(£)dS(y)

+ j ®,(y) j Hyy (&= Y)Nn, (&)@, (£)dS(£)dS(v) o0
[ELitp siista s =~ Jo DL Cri(€ = Y)D, @y ()dS(E)AS(Y) +[Alsgy 1306 0. (41)
Rk =5 [, 2, OTOESW); [Rekpa =5 ], @, (08 (1)) “2)
[U ke =Yt [V L =Yoot [T e = Totan (43)
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3.2. Numerical integration

To evaluate the sub-matrices A, B, C, D, E and sub-vectors R;, R, numerically, the single and

double surface integrals must be properly treated. All single surface integrals contain regular
integrands and can be efficiently and accurately integrated using standard Gaussian quadrature.

Unlike single surface integrals, double surface integrals can be categorized into three types
depending on a pair of elements resulting from the discretization of the surface S_. The first type is

termed a regular double surface integral since its integrand is not singular with only mild variation.
This type of integral arises when both elements in a pair are relatively remote in comparison with
their characteristic size. Similar to the single surface integral, all regular double surface integrals
can be accurately integrated by Gaussian quadrature. The second type, termed weakly singular
double surface integrals, arises when both elements in a pair are identical and their integrand is
therefore weakly singular due to the involved kernels. Although these integrals exist in the sense of
Riemann, it was pointed out by Xiao [45] that they cannot be efficiently integrated by standard
Gaussian quadrature. To circumvent such difficulty, similar techniques based on integrand
regularization via a series of transformations proposed by Li and Han [46], Hayami and Brebbia
[47] and Xiao [45] are employed. The last type of double surface integrals, which are considered
most challenging, is a nearly singular integral. The integrand of these integrals is nearly singular
since both elements in a pair are relatively close in comparison with their characteristic size and this
renders the kernels contained in those integrals not only nearly singular but also exhibiting rapid
variation. Similar to the weakly singular integrals, Gaussian quadrature cannot be used to integrate
nearly singular integrals efficiently. Special techniques proposed by Hayami [48], Hayami and
Matsumoto [49], and Xiao [45] are systematically adopted to perform the numerical integration of

this type of integrals.
4. Numerical results

First, to verify the formulation and numerical implementations, a penny-shaped crack in an
unbounded domain is considered, to compare results with existing benchmark solutions. Next the
elliptical crack and two interacting penny-shaped cracks in an unbounded domain are fully

investigated.

In the analysis, three meshes with different levels of refinement are utilized to investigate
the convergence of numerical solutions. Nine-node isoparametric elements are used to discretize the
entire crack front while the other parts of the crack surfaces are discretized by eight-node and six-
node isoparametric elements. The material Si [100] is used for all of numerical examples, where
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properties of the bulk material and the residual surface tension E =107GPa, v =0.33and

7°=0.6056 N /m are obtained from Miller and Shenoy [50]. For convenience in the handling of

numerical analysis, presentation of results, and demonstration of the influence of residual surface

tension, all involved quantities are normalized in a proper fashion. For instance, the unknown sum
of the traction is normalized by the shear modulus « (i.e., t :tz/y); the unknown sum and jump
of the crack-face displacement are normalized by a special length scale A = rs/y:0.01506 nm
(i.e., ud =u*/A and u =u*/A); all characteristic lengths representing the geometry of the crack
such as the crack radius a, the semi-major axis a, and the semi-minor axis b used in following

examples are normalized by the length scale A (e.g., a,=a/A and b, =b/A); and the prescribed

traction on the crack surface is normalized by the shear modulus # (i.e., t, :tio/y) .

4.1. Penny-shaped crack in an unbounded domain

As a means for verifying the proposed technique, the problem of a penny-shaped crack of radius a

embedded in an isotropic, linear elastic infinite medium is considered (Fig. 3(a)). The crack is

subjected to self-equilibrated, uniformly distributed normal traction t; = —t; =t°. This problem has

been previously solved analytically by [20, 21] using Hankel integral transforms and a special
technique for solving dual integral equations and their results are employed as the benchmark
solutions to validate the proposed FEM-SGBEM technique. The three meshes of the crack surface
used in the numerical study are shown in Fig. 3(b).

domm |
| (Y

Mesh-1 Mesh-2
(a) (b)

Fig. 3. (a) Schematic of a penny-shaped crack of radius a embedded in an isotropic, linear elastic

infinite medium subjected to uniformly distributed normal traction t; =—t; =t°; (b) Meshes

adopted in the analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105 nodes.

Mesh-3: 128 elements and 401 nodes.
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The normalized crack opening displacement and normalized stresses in the vicinity of the
crack front, when the influence of the residual surface tension is taken into account, are shown in
Fig. 4. Results are compared with those obtained by an analytical technique [20, 21]. It is seen that
the current technique yields solutions that agree very well with the benchmark solutions for both
crack opening displacement and stresses oi1, 022, os3 in the vicinity of the crack front. To further
examine the influence of the residual surface tension, the normalized crack opening displacement
and the normalized vertical stress o33 in the vicinity of the crack front with different values of
residual surface tension z°ranging from 0 to 1.0 N/m are reported in Fig. 5. It can be concluded that
the residual surface tension exhibits significant influence on the crack opening displacement and the
vertical stress. In particular, as z° becomes larger, the deviation of results from the classical case
(i.e., without the residual surface tension) significantly increases and, clearly, it makes the elastic

medium much stiffer.

To demonstrate the size-dependent behavior of results due to the presence of residual surface
tension, the crack opening displacement and the vertical stress in the vicinity of the crack front are
shown in Fig. 6 for both the classical case and the present study. It is evident that, by including the
residual surface tension effects in the mathematical model, the solutions exhibit size-dependent
behavior. In particular, the normalized crack opening displacement and vertical stress in the vicinity
of crack front depend significantly on the crack size and this is in contrast with the classical case
where the normalized crack opening displacement and normalized vertical stress are independent of

crack radius.
4.2. Elliptical crack in infinite domain

To demonstrate the capability of the proposed technique for treating mode-I cracks of arbitrary
shape, an elliptical crack embedded in an isotropic, linear elastic infinite domain is considered (see

Fig. 7(a)). The crack front is parameterized in terms of a parameter t by
x, =acost, X,=bsint, x,=0; te[0,27] (44)

where a and b are the major and minor semi-axes of the crack, respectively. The crack is subjected

to a self-equilibrated, uniformly distributed normal traction t; =—t; =t°. Numerical results are

presented for the aspect ratio a/b =1,2,3 and three meshes shown in Fig. 7(b) are used to model the

elliptical crack.

The normalized crack opening displacement and the normalized stress ae,s/t0 along the

minor axis, when the influence of the residual surface tension is included, are presented in Fig. 8 for
15



aspect ratio a/b =1,2,3. Clearly, converged results of the crack opening displacement are obtained

with Mesh-2 and Mesh-3 for all three aspect ratios (see Fig. 8(a)). It can be seen in Fig. 8 that when
the aspect ratio a/b increases, the influence of the residual surface tension on the crack opening

displacement and the stresses near the crack decreases.
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Fig. 4. Penny-shaped crack under uniformly distributed normal traction, for E =107 GPa, v =0.33
and residual surface tension z° =0.6056 N /m: (a) Normalized crack opening displacement, (b)
Normalized stress o, /t° in the vicinity of the crack front, (c) Normalized stress o, /t° in the

vicinity of the crack front, and (d) Normalized stress o, /t° in the vicinity of the crack front.
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Fig. 5. Penny-shaped crack under uniformly distributed normal traction, for E =107 GPa, v =0.33

for different residual surface tension z°: (a) Normalized crack opening displacement and (b)

Normalized stress o, /t° in the vicinity of the crack front.
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opening displacement and (b) Normalized stress o, /t° in the vicinity of the crack front.
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analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105 nodes. Mesh-3: 128
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In order to demonstrate the influence of the residual surface tension, the normalized crack
opening displacement and the normalized vertical stress oz in the vicinity of crack front with
different values residual surface tensionz®ranging from 0 to 1.0 N/m are reported in Fig. 9. Two
aspect ratios, a/b=2,3, are considered in this particular case. As shown in Fig. 9, the influence of

the residual surface tension is also significant and the medium is stiffer when the residual surface

tension increases.

To examine the size-dependent behavior of results due to the influence of residual surface
tension, the crack opening displacement and the vertical stress in the vicinity of the crack front for

a,=0.5,1.0, 5.0 and two aspect ratios a/b =2,3 are shown in Fig. 10. As can be seen in Fig. 10,

the normalized crack opening displacement and normalized stresses in the vicinity of the crack front
are size-dependent. It is contrary to the classical case (i.e., without the residual surface tension) that
the solutions are size-independent. When either the crack-size or the aspect ratio decreases, the
influence of the residual surface tension becomes significant; in particular, it renders the medium
stiffer.
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Fig. 9. Elliptical crack under uniformly distributed normal traction for different residual surface

tension 7° , for E =107 GPa, v =0.33, for different aspect ratios a/b=2,3: (a) Normalized crack
opening displacement along the minor axis and (b) Normalized stress o, /t° in the vicinity of the

crack front along the minor axis.
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Fig. 10. Elliptical crack under uniformly distributed normal traction for different crack radii

a,=al/A=0.5,1.0,5.0 for E=107GPa, v=0.33, 7°=0.6056 N/m , for different aspect ratios
a/b=2,3: (a) Normalized crack opening displacement along the minor axis and (b) Normalized

stress o, /t° in the vicinity of the crack front along the minor axis.

4.3. Two interacting penny-shaped cracks in an unbounded domain

As a final example, we demonstrate another feature of the current technique, viz. modeling multiple
cracks, by considering a pair of identical penny-shaped cracks of radius a embedded in an isotropic,
linear elastic unbounded domain as shown in Fig. 11(a). The distance between the centers of the
two cracks is denoted by h. Both cracks are subjected to a self-equilibrated, uniformly distributed
normal traction t; = —t; =t°. Here, the influence of the interaction between the two cracks on the
maximum crack opening displacement is considered. To investigate the size-dependent behavior,
two cases are considered where the normalized radii of the identical penny-shaped cracks are taken

as a,=1 and 10. The three meshes shown in Fig. 11(b) are used to test the convergence of
numerical solutions.

The normalized crack opening displacement of one of the penny-shaped cracks with radius
a, =10 is shown in Fig. 12 for h/a=2.4. It is seen that converged results of the normalized crack

opening displacement are obtained and the residual surface tension has a significant influence on

the predicted crack opening displacement.
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To study the interaction between the two cracks, the normalized maximum crack opening
displacement is plotted for different values of h/a in Fig. 13. It can be observed in Fig. 13 that, in

agreement with the previous examples of a penny-shaped crack and an elliptical crack, the
maximum crack opening displacement decreases when the residual surface tension increases. The

medium becomes much stiffer when the residual surface tension is taken into account.
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Fig. 11. (a) Schematic of a pair of penny-shaped cracks of radius a embedded in an isotropic, linear
elastic infinite medium subjected to uniformly distributed normal traction t; = —t; =t° and (b)

Meshes adopted for each crack. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105

nodes. Mesh-3: 128 elements and 401 nodes.
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Fig. 12. Normalized crack opening displacement for a pair of penny-shaped cracks with radius

a, =10 and h/a =2.4 under uniformly distributed normal traction, for E =107GPa, v =0.33 and

7°=0.6056N /m .
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It can also be observed from Figs. 13(a), 13(b) and 13(c) that results for the case of two

interacting cracks converge very fast to those of a single crack when the residual surface tension

increases. In particular, as the value of h/a is greater than 8, 5 and 3.5 for the classical case,

7°=0.6056N/m , and z°=1N/m , respectively, the normalized maximum crack opening

displacement of the two interacting crack and that of the single crack are nearly identical. This not
only implies the significant reduction of the interaction between the two cracks due to the presence

of the residual surface tension but also provides the applicable range of the aspect ratio h/a to

allow the replacement of the two-crack model by the single crack model. In addition, as clearly
indicated in Figs. 13(a) and 13(d), the interaction between the two cracks for the classical case is
size-independent (i.e., solutions of the two cracks converge asymptotically to that of the single
crack in the identical manner). On the contrary, when the residual surface tension is incorporated in
the mathematical model, the size-dependent behavior can be clearly observed by comparing results
in Figs. 13(b), 13(e) and results in Figs. 13(c), 13(f), respectively. The decrease in the crack size
also lowers the interaction between the two cracks.

5. Conclusions

A computationally efficient numerical technique capable of modeling mode-1 planar cracks in three-
dimensional, linearly elastic media incorporating the influence of residual surface tension has been
established. The governing equations have been formulated based on the classical theory of linear
elasticity for the bulk medium and the Gurtin-Murdoch surface elasticity model for the
infinitesimally thin layers on the crack surfaces. The fully coupled system of governing equations
has been solved numerically by using the FEM-SGBEM coupling procedure. Numerical results for
the penny-shaped crack problem have been compared with the analytical solution to validate the
formulation and the proposed FEM-SGBEM method. By solving both the elliptical crack and two
interacting cracks problems, the current technique has been found computationally promising to
treat mode-I planar cracks including residual surface tension effects, for arbitrary shaped cracks and
multiple cracks in three-dimensional isotropic linear elastic media. It has also been shown that the
residual surface tension has a significant influence on the crack opening displacement and stresses
in the vicinity of the crack front. Consideration of the surface stresses in the mathematical model
not only renders the material stiffer but also introduces the size-dependency behavior of the solution.

The presence of the residual surface tension also tends to weaken the interaction among cracks.
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Abstract

An efficient numerical procedure for modeling planar cracks in a three-dimensional, linear elastic,
infinite medium which accounts for the influence of surface stresses is presented in this paper. The
concept of surface stresses, which has been widely employed in the investigation of nano-scale
problems, is considered in the present study to derive a suitable mathematical model capable of
simulating nano-sized cracks. An infinitesimally thin layer of material on the crack surface is
modeled by a zero-thickness surface perfectly bonded to the bulk material, with its behavior
governed by the Gurtin-Murdoch constitutive relation. In the formulation, the classical theory of
isotropic linear elasticity is utilized to establish the governing equation of the bulk material in terms
of completely regularized boundary integral equations for the displacement and traction on the
crack surface. For the zero-thickness layer, the final governing equation incorporating the surface
stress effect is obtained in a weak form following the standard weighted residual technique. The
fully coupled system of equations is then solved by the FEM-SGBEM coupling numerical
procedure. Due to the weakly singular feature of all involved boundary integral equations, standard
continuous interpolation functions can be employed everywhere in the approximation of crack-face
data and only special quadrature for evaluating nearly singular and weakly singular integrals is
required. Once the implemented numerical scheme is validated with available benchmark solutions,
it is applied to investigate the nano-scale influence of nano-sized cracks. Results from an extensive
parametric study reveal that, the presence of surface stresses not only increases the near-surface
material stiffness but also introduces size dependent behavior of solutions and the reduction of
stresses in the region ahead of the crack front.

Keywords: FEM-SGBEM Coupling, Gurtin-Murdoch Model, Nano-sized Cracks, Size
Dependency, Surface Stresses.

Introduction

Nano-structured materials such as nano-belts, nano-springs, nano-wires, nano-tubes, and
nano-composites have received much attention in various fields in recent years due to their
desirable and unique features. One obvious example of their vast applications is the
invention of nano-scale components and devices. In the design procedure, analysis and
assessment of failure/damage have been found to be an essential step that must be properly
considered to ensure the safety and integrity throughout their lifespan. While conventional
linear elastic fracture mechanics has been well established and successfully employed as a
tool in the modeling of existing defects/flaws in linear elastic media at a macroscopic
scale, those hypothetical models have failed to simulate the problem of nano-sized cracks
due to the limitation of their underlying governing physics and simplified assumptions.
The enhancement of classical continuum-based fracture models to properly incorporate the
nano-scale influence is, therefore, required in order to accurately capture inherent physical



characteristics at such a small scale. Atomistic and molecular dynamics simulations have
demonstrated that atoms in the vicinity of the free surface behave differently from those
within the bulk material and effects of the surface free energy on the mechanical behavior
can be very important at the nano-scale level. This near-surface phenomenon is one of the
most important factors rendering the difference between macroscopic and nano-scale
structures and must be properly integrated into the continuum-based models.

Gurtin and Murdoch [1] and Gurtin et al. [2] proposed a well-known, surface elasticity,
continuum-based theory to enhance the modeling capability to capture the effects of
surface free energy in solid materials. In their model, the surface is assumed to be elastic
and very thin, which can be mathematically modeled as a layer of zero thickness perfectly
bonded to the bulk material. The behavior of such an idealized surface is governed by a
linear constitutive law involving surface material parameters different from those of the
bulk material. In the past two decades, the Gurtin-Murdoch surface elasticity theory has
been widely used to investigate various nano-scale problems (e.g., nano-scale elastic films
[3-5], nano-sized particles and wires [4], nano-scale inhomogeneities [6-8], nano-
indentations [9], etc.) and has also been validated because results predicted by this
continuum-based model exhibit reasonably good agreement with those from atomistic and
molecular dynamics simulations [4,10-12].

The Gurtin-Murdoch surface elasticity model has also been utilized in the investigation
of nano-sized cracks; however, on the basis of an extensive literature survey, most existing
studies are still limited to certain problem settings, formulations and solution techniques.
For instance, studies of nano-sized cracks under various loading conditions using either the
two-dimensional, blunt-crack or classical sharp-crack models can be extensively found in
[12-16] and [17-21], respectively. In those studies, analytical, semi-analytical or numerical
techniques were proposed to solve the associated boundary value problem. It should be
remarked that while use of two-dimensional models in the simulation significantly reduces
both theoretical and computational efforts, it, at the same time, poses several drawbacks
including the loss of out-of-plane information and limited capability to treat cracks of
general geometry. Recently, Intarit et al. [22] and Intarit [23] successfully developed an
analytical technique based on Hankel integral transforms to investigate the influence of
surface stresses on the behavior of three-dimensional, nano-sized cracks. Nevertheless, due
to the limitation of their solution technique, only penny-shaped cracks under axisymmetric
loading can be considered. In practical situations, nano-sized crack problems can be very
complex in terms of geometries, loading conditions, and influences to be treated (e.g.,
surface free energy and residual surface tension). As a result, the development of a fully
three-dimensional model and an efficient and powerful numerical procedure to enhance the
capability of existing techniques is essential and still requires rigorous investigations. Most
recently, Nguyen et al. [24] developed a computational procedure based on the coupling of
the finite element technique and the boundary integral equation method to model nano-
sized planar cracks in an infinite elastic medium. While their technique is applicable to
planar cracks of arbitrary shapes, the formulation is still restricted to a limited version of
Gurtin-Murdoch model accounting only for the residual surface tension and the
implementation was carried out within the context of pure mode-I loading conditions.

The present study directly generalizes the work of Nguyen et al. [24] to incorporate the
full Gurtin-Murdoch surface elasticity model including both surface elasticity and residual
surface tension in modeling the zero-thickness layer. The incorporation of in-plane
elasticity of the surface renders the mathematical model more complete and well-suited for
studying the influence of in-plane surface stress on essential fracture data such as relative
crack-face displacement and near-tip field, and the size-dependent behavior of the
predicted solution.



Problem Formulation

In this section, the description of the boundary value problem considered in the present
study is clearly stated and then the formulation of the key governing equations for both the
bulk material and the zero-thickness layer on the crack surface are briefly summarized. The
fully coupled system of governing equations resulting from the enforcement of interfacial
conditions is finally presented.

Problem Description

Consider a three-dimensional, linearly elastic, infinite medium Q containing an isolated,
planar crack of arbitrary shape with a selected reference Cartesian coordinate system {O;
X1, X2, X3}, as shown schematically in Figure 1(a). The crack is represented by two
geometrically identical surfaces, denoted by S; and S_ with the corresponding outward

unit normal vectors n” and n~, and, for convenience in further development, is oriented
perpendicular to the xs-axis. In the present study, the medium is assumed free of body
forces and remote loading, but subjected to prescribed, self-equilibrated, normal tractions
t“and t> on the crack surfaces S; and S, respectively (see Figure 1(b)). An
infinitesimally thin layer on each crack surface possesses a constant residual surface
tension z° (under unstrained conditions) and the surface Lamé constants A° and zx°,
whereas the rest of the medium, termed the “bulk material”, is made of a homogeneous,
isotropic, linearly elastic material with shear modulus & and Poisson’s ratio v.

A clear problem statement of the present study is, to determine the complete elastic
field including the displacements and stresses within the bulk material by taking the
influence of surface stresses into account. Fracture related information such as relative
crack-face displacement and local stress field in the vicinity of the crack front is also of
primary interest.

Figure 1: (a) Schematic of a planar crack embedded in a three-dimensional, linearly elastic,
infinite medium and (b) prescribed normal traction on crack surfaces.

Governing Equations

In the formulation of the boundary value problem, the whole medium is first decomposed
into three parts: the bulk, a layer of zero thickness on the surfaceS; , and a layer of zero
thickness on the surfaceS_. Both the zero-thickness layers are assumed to be perfectly
bonded to the bulk material.



Since the bulk material is made of a homogeneous, isotropic, linearly elastic material,
the classical theory of isotropic linear elasticity is used to describe its behavior. For
convenience in the treatment of an infinite body containing cracks, the final governing
equations are given in terms of boundary integral equations for the sum of the
displacement and the jump of the tractions across the crack surface as (see details in
Rungamornrat and Mear [28] and Rungamornrat and Senjuntichai [30]),
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the standard alternating symbol; uf* =u;*+u;* and u®* =u;®—u;" are the sum and the
jump of the displacement across the crack surface; t* =t;° +t;” and t* =t;" —t,* are the
sum and the jump of the traction across the crack surface; {fpz, 0.} are sufficiently smooth
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where &; is the Kronecker delta symbol and r =[|E—y||. The boundary integral equations
(1) and (2) are formulated in a weak form and contain only weakly singular kernels of
¢(1/r) and, in addition, involve only unknowns on the crack surface.

The behavior of the two zero-thickness layers is governed by the full version of Gurtin-
Murdoch surface elasticity model, including the influence of both surface elasticity and
residual surface tension. The equilibrium equations, surface constitutive relations, and

strain-displacement relationship of the zero-thickness layers S and S_ are of the same
form and given by (see also [1, 2]),
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where o7, &,,, uS represent stress, strain and displacement components of each layer;

t° denotes prescribed traction on the top of each layer; and t° denotes the unknown traction
exerted on the interface of each layer by the bulk material. It is noted that the superscript
“s” is utilized to emphasize that those quantities are associated with the two layers and
Greek subscripts take the values 1, 2 (instead of 1, 2, and 3 as the Latin subscripts). The

weak statement of (7)-(9) for both layers S and S_ can readily be established following

a standard procedure based on the weighted residual technique and the final results are
given by (see also the development of weak statement for the special case of Gurtin-
Murdoch model in the work of Nguyen et al. [24]),
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where superscripts “X” and “A ™ indicate the sum and jump of quantities across the crack
surfaces and G and G* are sufficiently smooth test functions. It is worth noting that the

test function 3" satisfies the homogeneous condition on the boundary of the crack surface

similar to the relatlve crack-face displacement u®*, i.e., G:* =u* =0 on 4S,. By enforcing
the continuity of the displacements and tractions along the interface of the two layers and
the bulk material (i.e., u™=u™=u", U™ =u™=u*, t* =" =—t*, t™=—t"=-t"),

the governing equations of the bulk material (1)-(2) and those of the surfaces (10)-(11) can
be combined to obtain a final system of governing equations for the entire medium as,
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where the bilinear integral operators &,.%,€C, 2 and & are defined by,
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and the linear integral operators % and %, are defined, in terms of the prescribed traction
data t” and t**, by,

Z(X) = % [RERCE (19)

R0 = [ X, 17°ds (20)

It is remarked in particular that the last equation of (12) is obtained by combining

equations (2) and (11), along with choosing the test functions satisfying 0> =G .

Numerical Implementation

Standard procedures for the weakly singular SGBEM (e.g., [25-27, 29]) and for the
standard finite element method (e.g., [31-33]) are employed to form the discretized system
of linear algebraic equations of (12). Since all involved boundary integrals in the governing
equation of the bulk material contain only weakly singular kernels of ¢(1/r), standard o
interpolation functions are utilized everywhere in the approximation of both trial and test
functions.

The construction of the coefficient matrix of the discretized system requires the
numerical integration of two different types of integrals viz. the single and double surface
integrals. The former which contains the regular and well-behaved integrand can be
integrated accurately and efficiently by standard, low-order Gaussian quadrature, whereas
the numerical integration of the latter type (appearing in the boundary integral equations
for the bulk material) is more challenging, depending primarily on the behavior of the
integrand. Due to the presence of the singular kernels {U?,G, CX H ;n;}, the integrand

mj? m]’



becomes weakly singular, nearly singular, and regular when two elements involved in the
double surface integral are identical, relatively close, and sufficiently remote, respectively.
The transformation technique and integration rule proposed by Xiao [34] and Li and Han
[35] are utilized to treat such double surface integrals. Once the system of linear algebraic
equations is solved by a selected efficient linear solver, all the primary unknowns on the

crack surface i.e.,{u®, u”, t°} are obtained and other quantities within the bulk material

(e.g., the displacements and stresses) can then be obtained by using integral relations
proposed by Rungamornrat and Mear [28].

Results and Discussions

In this section, results for a penny-shaped crack embedded in an infinite medium are first
presented, to verify both the formulation and the numerical implementation of the
proposed technique with available benchmark solutions. Then, an elliptical crack
embedded in an unbounded domain is further investigated, to demonstrate the capability of
the proposed numerical technique.

In the analysis, three different levels of mesh refinement are adopted to examine the
convergence of numerical results. Nine-node isoparametric elements are used to discretize
the entire crack front, whereas the rest of the crack surface is discretized by eight-node and
six-node isoparametric elements. Young’s modulus and Poisson’s ratio for the bulk
material are taken as E =107 GPa and v =0.33, respectively, and the surface elastic

constants and the residual surface tension are chosen identical to those utilized by [22, 23]
(ie., A°=4.4939 N/m, £°=27779 N/m, z°=0.6056 N /m). For convenience in the

numerical analysis, all quantities involved in the key governing equation are properly
normalized. For instance, the unknown sum of the traction and the prescribed traction on
the top surface of the two-thickness layers are normalized by the shear modulus 4 (i.e.,

tr=t"/u and o,,=0c"/u); the unknown sum and jump of the relative crack-face
displacement are normalized by a special length scale A =x®/u=0.24983nm (i.e.,
ud =u®/A and ui=u*/A) where x*=|2°+24°|; and all characteristic lengths

representing the geometry of the crack such as the crack radius a, the semi-major axis a,
and the semi-minor axis b used in following examples are normalized by the length scale
A (e.9., a,=a/A and by =b/A).

Penny-shaped Crack in an Elastic Infinite Medium

In order to verify the proposed numerical technique, the problem of a penny-shaped crack
of radius a embedded in a homogeneous, isotropic, linearly elastic infinite medium (see
Figure 2(a)) is investigated. The crack is subjected to self-equilibrated, uniformly

distributed traction ¢° normal to its surface. This boundary value problem was previously

studied by Intarit et al. [22] and Intarit [23] using Hankel integral transforms along with a
solution technique for the dual integral equations, and their results are taken as the
benchmark solutions.

The normalized crack opening displacement and vertical stress in the vicinity of the
crack front obtained from the proposed numerical technique for the three meshes shown in
Figure 2(b) are presented in Figure 3 along with the benchmark solution generated by [22,
23]. It is seen that the numerical results are slightly mesh dependent and that they are
highly accurate and almost indistinguishable from the analytical solution. It can also be
pointed out from the results shown in Figure 3 that the two models incorporating the
surface stresses with and without the influence of in-plane surface elasticity yield results

7



significantly different from those predicted by the classical model (i.e., without the surface
stress effects). While both the residual surface tension and the in-plane surface elasticity
contribute to such discrepancy, the influence of the residual surface tension seems more
significant. Similar to previous findings (e.g., [9, 22]), the medium tends to be much stiffer
than the classical case, when the full version of the surface stress model is considered in
the analysis.

(@)

(b)

Mesh-1: Mesh-2: Mesh-3:
20 elements, 88 elements, 216 elements,
77 nodes 297 nodes 665 nodes

Figure 2: (a) Schematic of a penny-shaped crack of radius a embedded in a three-
dimensional, isotropic, linear elastic infinite medium under self-equilibrated, uniformly
distributed, normal traction and (b) three meshes adopted in the analysis.
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Figure 3: Results for penny-shaped crack under uniformly distributed normal traction;
(a) normalized crack opening displacement and (b) normalized vertical stress along the
xi-axis where r, = x, /A
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Figure 4: Results for penny-shaped crack under uniformly distributed normal traction for
different residual surface tension z° varied from 0 to 1 N/m and E =107 GPa, v =0.33,

A*=4.4939 N/m, 4 =2.7779 N/m; (a) normalized crack opening displacement and
(b) normalized vertical stress along the x;-axis where r, = x, /A .
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Figure 5: Results for penny-shaped crack under uniformly distributed normal traction for
different crack radii a, €{0.5, 1.0, 10.0} and E =107 GPa, v=0.33, 1°=4.4939 N /m,

L =27779 N/m, 7°=0.6056 N /m; (a) normalized crack opening displacement and
(b) normalized vertical stress along the x;-axis where r, = x, /A .

To further examine the influence of residual surface tension on the normalized crack
opening displacement and vertical stress in the vicinity of the crack front when the surface
elasticity is included, results are presented in Figure 4 for various values of the residual
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surface tension z°ranging from 0 to 1.0 N/m with the surface elastic constants remaining
fixed. It is evident that the residual surface tension exhibits significant influence on both
the crack opening displacement and the vertical stress in the vicinity of the crack front. As
7° becomes larger, the deviation of results from the classical case (i.e., without the surface
stresses) increases significantly.

To demonstrate the size-dependent behavior of results due to the presence of surface
stresses, the normalized crack opening displacement and vertical stress in the vicinity of
the crack front obtained from three different models (i.e., the classical model without the
surface stresses, the model incorporating only the residual surface tension [24], and the
current model) are shown in Figure 5 for three different crack radii
a,=al/A e{0.51.0,10.0}. It is evident from this particular set of results that solutions

predicted by the two models including surface stresses clearly exhibit size-dependent
behavior, whereas those predicted by the classical model are size-independent.
Furthermore, as the crack radius decreases, the influence of surface stresses is more
significant, especially when the surface elastic constants are included.

In addition, the incorporation of in-plane surface elasticity further reduces the crack
opening displacement (see Figure 4(a) and Figure 5(a)). However, the existence of such
surface elastic constants does not significantly influence the vertical stress in the vicinity of
the crack front. The discrepancy of predicted vertical stress in the vicinity of the crack
front from the two models with and without the surface elastic constants is barely
recognizable (see Figure 4(b) and Figure 5(b)).

Elliptical Crack in an Elastic Infinite Medium

To demonstrate the capability of the proposed numerical technique of treating cracks of
arbitrary shape, an elliptical crack embedded in an isotropic, linear elastic unbounded
domain is considered (see Figure 6(a)). The crack front is parameterized in terms of a
parameter t by,

x, =acost, x,=bsint, x,=0; te[0,27] (21)

where a and b denote the major and minor semi-axes of the crack, respectively. The crack
is subjected to a self-equilibrated, uniformly distributed normal traction o°. Numerical
results are presented for three different aspect ratios a/be{l, 2, 3} and three meshes
shown in Figure 6(b) are adopted in the numerical study.

The normalized crack opening displacement and vertical stress along the minor axis,
with the influence of the surface stresses, are presented in Figure 7 for all three aspect
ratios considered. It can be seen from results in Figure 7, that when the aspect ratio a/b

increases, the influence of the surface stresses on the crack opening displacement and the
near-tip vertical stresses decreases. To further examine the size-dependent behavior of
results due to the presence of the surface stresses, the crack opening displacement and the
vertical stress in the vicinity of the crack front for by=b/ A €{0.5, 1.0, 10.0} and for the

aspect ratio a/b =2 are shown in Figure 8. It can be observed from these results that the
normalized crack opening displacement and the vertical stress in the vicinity of the crack
front are apparently size-dependent. This is in contrast to the classical model (i.e., without
the surface stresses) whose predicted solutions are size-independent. When the crack-size
decreases, the influence of surface stresses becomes significant; in particular, it renders the
medium much stiffer. Additionally, in agreement with the previous example, it can also be

10



observed that in-plane surface elasticity further reduced the crack opening displacement.
However, it has negligible influence on the vertical stress in the vicinity of the crack front.

(@)
(b)
Mesh-1: Mesh-2:
20 elements, 88 elements, 216 elements,
77 nodes 297 nodes 665 nodes

Figure 6: (a) Schematic of an elliptical crack embedded in a three-dimensional, isotropic,
linear elastic infinite medium under self-equilibrated, uniformly distributed, normal
traction and (b) three meshes adopted in the analysis.
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Figure 7: Results for elliptical crack under uniformly distributed normal traction and for
different aspect ratios a/b e{l, 2, 3}; (a) normalized crack opening displacement along the

minor axis and (b) normalized vertical stress in the vicinity of the crack front along the
minor axis.
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Figure 8: Results for elliptical crack under uniformly distributed normal traction for
different crack radii b, €{0.5,1.0,10.0} and a/b=2; (a) normalized crack opening

displacement along the minor axis and (b) normalized vertical stress in the vicinity of the
crack front along the minor axis.

Conclusions

A numerical technique capable of modeling planar cracks in three-dimensional, linear
elastic media including the surface stress effect has been established. The governing
equations have been formulated using the classical theory of isotropic linear elasticity for
the bulk medium and the full version of the Gurtin-Murdoch surface elasticity model for
the infinitesimally thin layers on the crack surfaces. The full coupled system of governing
equations has been solved numerically by using the FEM-SGBEM coupling procedure.
The numerical results for a penny-shaped crack problem have been benchmarked with the
available analytical solution, to verify the formulation and the proposed FEM-SGBEM
technique. Results for an elliptical crack have also been investigated, to demonstrate the
capability of the proposed computational procedure to treat cracks of arbitrary shape. The
numerical technique developed in the present study has been found computationally
promising and capable of modeling planar nano-sized cracks with arbitrary shape.
Although results are presented only for the single crack problem for the sake of brevity, the
formulation and implementation are definitely applicable to problems of multiple cracks.
From an extensive numerical study, the significant role of surface stresses and the size-
dependent behavior of the predicted solutions are confirmed. In particular, a model
including both in-plane elasticity of the surface and residual surface tension, significantly
increases the near-surface material stiffness and predicts a much lower crack opening
displacement and near-tip vertical stress, in comparison with the classical solution.
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ABSTRACT

This paper presents the analysis of an infinite, rigid based elastic layer under the action of
axisymmetric surface loads by taking the surface energy effects into account. The
corresponding boundary value problems for the bulk and the surface are formulated based on
a classical theory of linear elasticity and a complete Gurtin-Murdoch constitutive relation. An
analytical technique using Love’s representation and Hankel integral transform is adopted to
derive an explicit integral-form solution for both the displacement and stress fields. A
selected numerical quadrature is subsequently applied to efficiently evaluate all involved
integrals. After conducting an extensive parametric study, the surface stresses show strong
influence on responses in the region relatively close to the surface and also when a length
scale of the problem is comparable to the intrinsic length of the surface. Such influence is
more evident when the contribution of the residual surface tension is taken into account.
Results for general axisymmetric surface loads are then used to derive fundamental solutions
for a unit normal concentrated load, a unit normal ring load and a unit tangential ring load.
Such basic results constitute the essential basis for the development of boundary integral
equations governing other related problems such as contact and nano-indentation problems.
Keywords: Elastic layer, Gurtin-Murdoch model, Hankel integral transform, Nano-scale

influence, Surface stresses

1. INTRODUCTION

Nowadays, nanotechnology gains remarkable recognition in various disciplines including
biology, chemistry, physics, medicines, material sciences, and also engineering. This is due to
the fact that materials in the nano-scale level exhibit desirable physical, mechanical, and
other crucial properties very different from those of a larger scale and this, therefore, enables
their unique applications in various fields. For instance, nano-crystals are employed in

household lightings to convert electricity into light instead of wasting away into heat; a newly
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invented device, called nano-shell, is used in the medical applications to destroy a tumor after
activated by a laser beam without any harm to contiguous cells; and nano-crystalline silicon
carbide is found in the hard protective coatings of cutting tools and computer hard disks. To
aid the optimal design and development of those newly invented, nano-scale devices,
advanced material researches related to nano-scale and nano-structured materials are essential

for profoundly understanding their fundamental properties and behaviors.

Various sophisticated techniques and physically suitable mathematical models have
been proposed continuously, in the past three decades, to investigate the behavior and
properties of nano-scale and nano-structured materials. Experimental methods have been
widely employed in the characterization of mechanical properties of materials in nano-scale
due to their advantages of perceiving the actual behavior. For instance, Wong et al. [1]
utilized an atomic-force microscope to determine the mechanical properties of isolated silicon
carbide nano-rods (SiC-NRs) and multi-wall carbon nano-tubes (MWNTS); Mao et al. [2]
also employed the atomic-force microscope to investigate the hardness of both ZnO and SnO,
nano-belts; and Poncharal et al. [3] statically and dynamically measured the bending modulus
of carbon nano-tubes in a transmission electron microscope. Although experimental
investigations have boosted significant progress in the area, obtained results and findings are,
in general, highly dependent on testing conditions and, in addition, sophisticated testing

devices and high-precision testing procedures are required.

Due to the significant breakthrough of numerical analysis and computational devices,
mathematical modeling and simulations have become an attractive candidate and been widely
used in the study of nano-scale problems. Once integrating essential inherent features via
selected governing physics and properly calibrated with data from basic experiments,
mathematical models have been found capable of simulating responses under various
conditions and yielding sufficiently accurate results (e.g., [4-13]). Among existing
techniques, the molecular dynamics or atomistic calculations are robust and generally yield
highly accurate response prediction (e.g. [6, 7, 10-11]). However, those techniques still
possess a major drawback associated with the requirement of tremendous computational
resources in the solution procedure. As a result, continuum-based models enhanced by
incorporating the nano-scale influence have been increasingly proposed due to their

simplified governing physics and computational efficiency (e.g., [4, 8-9, 12-13]).

Resulting from atomistic simulations, it was discovered that the energy at the free

surface is generally different from that of atoms in the bulk material (e.g., [5]). The intrinsic
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length scale, which is defined as the ratio of surface free energy and Young’s modulus is an
inevitable material parameter [14] because it becomes comparable to the characteristic length
of the material at a nano-scale. For this particular situation, the surface free energy plays an
important role on the properties of materials and they, therefore, become size-dependent (e.g.,
[4]). As a result, the effect of surface stresses should be integrated into the classical
continuum models to be capable of capturing the mechanical behavior of nano-scale
materials. The concepts of surface energy and surface stress were originally introduced by
Gibbs [15]. Gibbsian thermodynamics, one of the most useful tools for studying various
surface phenomena, can be found in several studies of surface stresses (e.g., [16-18]). Gurtin-
Murdoch’s surface elasticity model, one that incorporates the influence of the surface free
energy into the classical continuum-based theory, proposed by Gurtin and his co-workers
[19-21] has been extensively employed. The surface, which has its own constitutive law, is
assumed to be very thin and modeled as a mathematical layer with zero thickness and
perfectly bonded to the bulk. Material parameters contained in the constitutive relation were

generally obtained from atomistic simulation is utilized [7, 22].

The validity of the Gurtin-Murdoch model has been extensively examined and verified
in various investigations (e.g., [5, 7, 22-23]). For instance, Miller and Shenoy [22] and
Shenoy [23] applied the Gurtin-Murdoch constitutive relation to investigate the behavior of
nano-scale bars, beams and plates under uniaxial tension, bending, and torsion. Results from
their study were compared with those from atomistic simulations and good agreement among
those results was concluded. Dingreville et al. [5] studied the size-dependency of elastic
properties of nano-sized particles, wires, and films by using an analytical technique. The
effective Young’s modulus of thin films of various thicknesses in their analytical study was
found in excellent agreement with results generated by molecular static (MS) simulations.
Moreover, they also pointed out that their proposed formulation was much more
computationally efficient than the MS simulations. According to the accuracy of predicted
responses and computational efficiency of related solution procedures, Gurtin-Murdoch
continuum-based model has gained significant popularity and been widely used in the study
of nano-scale problems such as ultra-thin elastic films [24-25], nano-inclusions [26-27],

nano-scale inhomogeneities [8-9], and nano-scale indentations [13, 28].

Problems of surface loadings and contacts are considered fundamental in nano-
mechanics and have a wide range of applications including the investigation of mechanical

properties such as hardness and elastic modulus. Work towards the modeling of near-surface



fields under different surface loading conditions by using enhanced continuum-based models
to characterize the surface energy effects has started gaining attention from various
researchers in the past two decades since it offers computationally efficient techniques
capable of reasonably predicting the behavior of materials at a nano-scale level. For instance,
Wang and Feng [29] studied the responses of an elastic half-plane subjected to surface
pressure by considering the influence of a constant residual surface tension but ignoring the
surface elastic constants. Huang and Yu [30] extended the work of Wang and Feng [29] by
incorporating the surface elastic constants. Recently, Zhao and Rajapakse [31] studied the
near-surface responses and size dependency of a two-dimensional and an axisymmetric three-
dimensional infinite elastic layers under surface loads by using Fourier and Hankel integral
transform techniques. It should be emphasized, however, that the Gurtin-Murdoch model
used in their study was still incomplete since the out-of-plane contribution of the residual
surface tension was ignored in their formulation. Intarit et al. [32] studied the effect of
surface stresses on the near-surface responses of semi-infinite dislocations and buried loads in
an elastic half-plane. Again, the contribution of out-of-plane terms was still not considered.
Most recently, Intarit et al. [33] generalized the work of Intarit et al. [32] by integrating the
influence of the residual surface tension in addition to the surface elastic constants to model a

two-dimensional elastic layer under buried loading conditions.

On the basis of an extensive literature survey, the study of near-surface responses of a
three-dimensional elastic layer using a complete version of Gurtin-Murdoch model has not
been well recognized. In particular, an analytical solution of a three-dimensional elastic layer
subjected to arbitrary axisymmetric surface loads by incorporating both in-plane and out-of-
plane contribution of surface stresses is still not available in the literature and is the main
focus of the present study. Results from this fundamental problem should not only shed some
light on the nano-scale influence but also be potentially useful in the investigation of more

complex boundary value problems such as nano-indentations.

2. PROBLEM FORMULATION

This section begins with the clear description and essential assumptions of the boundary
value problem considered in the present study. All basic field equations for the bulk material
and the surface are then briefly summarized. A solution technique to determine the general
solution of elastic fields within the bulk is also outlined with the final results. Finally, the

boundary conditions derived from the surface equations are enforced to determine a complete



solution of the given boundary value problem.
2.1 Problem Description

Consider a three-dimensional, infinite, elastic layer of constant thickness h subjected to
arbitrary axisymmetric surface loads with its base fully restrained against the movement as
shown schematically in Fig. 1. The reference cylindrical coordinate system is chosen such
that the origin is located at the free surface and the positive z-axis directs downward whereas
other axes follow the standard right-hand rule. The entire domain is treated as a body
consisting of two different parts, the bulk material occupying a three-dimensional region
defined by 0 < z < h and the zero-thickness layer occupying the plane z = 0 and perfectly
bonded to the bulk material. The former is made of a homogeneous, isotropic, linear elastic
material with Lamé constants {«, A} whereas the latter possesses the surface Lamé constants
{4, 2’} and the residual surface tension 7°. The normal and tangential loads acting on the
surface (i.e., the top side of the zero-thickness layer) are denoted by p = p(r) and g = q(r),
respectively. In the presence study, the bulk part is assumed to be free of the body force and
remote loadings. For brevity, in what follows, the term “surface” is utilized throughout to
signify the zero-thickness layer unless stated otherwise. The statement of the problem is to
determine the complete elastic fields (e.g., the displacement and stress fields) within the bulk
due to the arbitrary (axisymmetric) applied surface loads p(r) and q(r) and the influence of

surface stresses.
2.2 Basic Equations

Basic field equations for the bulk follow directly the classical theory of isotropic, linear
elasticity [34, 35]. In the absence of the body force and under axisymmetric deformation,
equilibrium equations, constitutive laws, and strain-displacement relations (referring to the

cylindrical coordinate system) are given by

ao'rr+a(7rz+6rr_099=01 %4_%4_&:0 (1)

Urr = (ﬂ“ + 2/,!)8”, + j"94949 + ﬂ'gzz ' 0-96 = ﬂ“grr + (/1 + 2;”)‘999 + j"c"zz

2

Gzz = ﬂ“‘c"rr + 2869 + (ﬂ’ + zlu)gzzi Grz = 2lu‘c"rz ( )
ou u ou 1,0u ou

:_r' :_r’ zz:_z’ 7= %r T4 ~+ - 3

b = gp b T T e T 2(82 ar) )

! I zz'™rz

where {o,,,0,,,0,,,0,,} are non-zero stress components; {&,,, &,,, &,,, €, = &, } are non-zero

strain components; and {u,,u,} are non-zero displacement components.
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For the surface (i.e., the zero-thickness layer), the equilibrium conditions on the surface
in terms of the generalized Young-Laplace equation [36], Gurtin-Murdoch constitutive
relation (e.g., [19, 20]), and strain-displacement relation are given, for the axisymmetric case
and the undeformed flat surface, by

doy, + 9 " +t'+q(r)=0, do, +&+tzS +p(r)=0 4)
dr r dr r
0% =70+ Qe+ Ve + (04 T)ely, Oy =" + QU+ 20)ey + (B0 4 T0)e, ol =1 ddurz ©)
du’ u;
= oy = ©

where the superscript ‘s’ is used to denote quantities corresponding to the surface and t°
denote the traction exerted on the bottom side of the surface by the bulk material. It is worth
noting that the out-of-plane contribution of the residual surface tension indicated by the third
equations of (5) is generally ignored in several earlier studies (e.g., [31, 32]) but it was
pointed out by certain investigators that the influence of such out-of-plane stress on elastic
responses can become significant (e.g., [13, 33]). By combining equations (4)-(6), it leads to

S

two governing field equations for the surface in terms of the surface displacement{u;,u:}:

dzs(, u®) 201+D(d%x 1du® o = s g

1+-— |+ £ rps T 1 2(A+] =0 7
dr(+r]+ A+2 (dr2 T r2j+ (+Dt+a() (7)
d da’ ) z°do® . ~—
—| 7 |+ — =2 428 (A+ D)+ P(F) =0 8
df(r dr}rr e £ (A+D)+p(r) (8)

where various normalized quantities appearing in (7) and (8) are defined as follows:
= A, W=U/A, T =u/A, T=t/120+u), T =t0/204+u), A=Alu,
T=r/A, Z=2/A, Q") =q(r)/u, p(")=pr)/ u, A=x>(A+21)/2u(A+ ) , and
K> =2 + A.

2.3 Boundary Conditions for Bulk

Due to the movement restraint at the base of the elastic layer, all components of the

displacement must vanishat Z=h =h/A i.e.,

r|7:ﬁ =0 (9)



U,|,_; =0 (10)

7=h ~
where U, =u, /A and U, =u, / A. Since the surface is perfectly bonded to the bulk material,

the normalized displacements {U;,U;} and the normalized tractions {t°,T°} on the surface

can be related directly to the displacement and stress within bulk by

0 =Orl . 0 0 )
t° +6y),,=0, &’ +5,|, ,=0 (12)

where &,, =0,/ 2(A+ ) and G, =0, [ 2(A+ ). By employing (7), (8) and (11), and

assuming that 7° is spatially independent, the relations (12) can be further expressed as

—S 2— — I
Gl = pr d_uzz ,1d0 ) p(r) (13)
2(A+1) | dr rdr ) 2(1+1)
B a (d%, 1do, o q(r)
_ e O L DI 14
Fizlyo (/1+2)(dr2 rdr 2] 2(4+)) (14)

where constants « and g are introduced only to differentiate among models with and
without the consideration of the surface stress effects and the out-of-plane contribution of the
residual surface tension; in particular, a =1if the surface stresses are taken into account
otherwise @ =0, and S =1 if the out-of-plane contribution is taken into account otherwise
P =0. It is evident that for the special case of = =0, (13) and (14) simply reduce to
traction boundary conditions for the classical case (without the influence of surface stresses).

The relations (9)-(10) and (13)-(14) constitute a sufficient set of mixed boundary conditions

for the bulk material.
2.4 General Solution of Field Quantities within Bulk

A form of the general solution for the normalized displacement and normalized stress within
the bulk material can be obtained by following a standard procedure via Love’s strain
potential representation and the Hankel integral transform technique (see more details in [37,

38]). The final expressions are given explicitly by

0 = (1 +0[ £2 20 (Enag (15)
0



_ 2_ld%G 5 S
uffé{——(i +2)¢& G}Jo(ér)df (16)
0

dz?
i —@E {2&121) 208, 240 }Jo@r)délézﬁi—j%@r)dé )
%:2(; )Ifﬁf 2"6} oE)AE+1 jészJl(ér)dE (18)
A
arz—zle T fH) - +Z‘(Z;fl))EZG(E,Z)]Jl(Ermf (20)

where J, (&) denotes the Bessel function of the first kind of order n, and & is the Hankel

transform parameter. In addition, G =G(&,Z) is a solution of the bi-harmonic equation in the

Hankel transform domain, i.e., the function G satisfies

d? i
(T—ézj G(£,2)=0 21)
A general solution of the homogeneous ordinary differential equation (21) is given by

G(&,7)=(A+B7)e¢7 +(C +Dz)e? (22)
where A, B, C, and D are unknown functions of & and can be determined by employing

appropriate boundary conditions.
2.5 Determination of A, B, Cand D

To obtain the complete solution of a particular boundary value problem, the four unknown
functions A, B, C and D must be determined. This can be achieved by enforcing the boundary
conditions at the top and bottom surfaces of the bulk (i.e., at Z=0 and Z =h). By taking
Hankel integral transform of all four boundary conditions (9)-(10) and (13)-(14) along with
exploiting the relations (15)-(16) and (19)-(20), it leads to a system of four linear algebraic

equations in terms of A, B, C and D:
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where y=(Z2+1)2/(1+2), §=(1+1)7°/2, and the functions Z(&) and R(E) are given

in terms of the surface loads p(r) and q(r) by

p(r)Jo(ST)rdr (24)

2(7)--
R(£)--

A system of equations (23) is sufficient for uniquely determining A, B, C, and D as functions

(r)Jl(ér)rdr (25)
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of £ and the applied surface loads Z(&)and R(&), and the final explicit solution is given by
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D:%[DZO";OCDZl}ZSéz)+E|:DRO+ﬁDR1}RS%?) (29)
e 4 F ¢

where{Az¢, Arg: Az1: Art} - {Bz0: Bro» Bz1: Brit {C20,Cro:C21,Cri}s {Dz0: Dro: D21, Dri}t

and F are given by

/1(/1+3) 25 | pE%h7 2§h/1 A2 +31+4
(A +1) Al (A +1)

Z0 —

Ay, = %{(z +3)(eXM _1)— 28R (Eh -1)(Z +1)}

= a7 ay (30)
2&h —o—
Ao = (;:1:;2 o (3;:1)52 + Z§+1+2§2h2
758 | 2(2+3) o280 _ 4Eh oo
P = {(/1 T A e }
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/1+3
Bo=(1-28h)+ ="

| By = %{(ezih _1)(Z+3)+2Eh(1 +1)}
(31)

A+3 e25h T3 243, 2hy | oz
Bny =—(1+2Eh) - , B —(1-e 2&Eh
ro =—(1+ 5 ) +1 RL= > 17+ 1( )+2&

20—~

ﬂ(/1+3) _ggah 25252_2§_ﬁi_12+31+4
(1 1)2 A+l (A+1)?

C21—/1 {(x +3)(e XN _1)—2Zh(+ ERY(T +1)}

- - (32)
A+3 o  31+5 2Eh

(1 +1)? (1+1)? A+1

’l_'s 2(14—3) —2§h _@ =29
Cry = { (7417 5 (e D-F7+2% h}

+2E%h?

RO =

A+3 o260

D7o =L+ 25h)+ 56" Dlei{(l e—th)(/1+3)+2§h(/1+1)}

A
TEJA+3 . 2FRy_,En
{z e 2§h}

(33)

ﬂ+3 -
Dro =(1-2£)+ 27", Dy =

A% +4245
a4+l
o {27 +)hE? + (1 +3)E sinh(2Zh))|

F +2(1 +D)h2E? + (1 +3)cosh(2Zh)

(34)

+ﬂ{ig{(Z+3)%sinh(2§ﬁ)—2§_ﬁ(/_l+2)}}

+af 7 [(Z +3)?cosh(2Eh) — (1 +3)% —2E2h?(1 +1)2]
2(1+2)

Once the functions A, B, C, and D are solved, the displacement and stress within the bulk

material can then be obtained by using the relations (15)-(20) along with (22).

3. NUMERICAL INTEGRATION

Although all functions A, B, C, and D are obtained in a closed form in terms of the transform
parameter E and applied surface loads, determination of the displacement and stress fields

within the bulk material still requires evaluation of various integrals arising from the Hankel
transform inversion. Due to the complexity of integrands, the direct integration procedure is

not suitable and, in the present study, an efficient numerical quadrature is utilized.

It is evident that all integrals appearing in (15)-(20) are improper with the upper limit

equal to infinity. To evaluate such integrals numerically, it is common to truncate the domain
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of integration from (0, ) to (0, &) where &, is a finite real number. The approximate

displacement and stress fields in terms of A, B, C, and D and truncation parameter &, are

therefore given by

0 =(2+) [ &7 {[ AZ +B(1-E7) |e 57 +[CE +D(1+E7) Jef }Jl(gr)df (35)

S _
uz=—(z+1)j52{A£+B( z +Ez)}e-§z {«: (ﬂ—ﬂ)}e‘fz} o(£T)dE  (36)

e - ) B
o g 53{4@ B(Zgjll_ﬁﬂe_gz{cé : D[ijll (’E?ﬂeéz}%(ér)df (37)
ER 34 3 z E7 — —
-+ [E([-AE+BU-E)Je T +[CE4 DU ED) |6 |y (ET0E
0
599-%f53{86_52+De5 }Jo(ff)dé’
g (38)
+ 2] 8%([-A2 +BA-E7) e F7 +[CF + DU+ E) Jo7 |3y (ET)E
0
] _A&B(L@zj e_éz+__C§+D(L_fzj TENE ()
" o L A+1 i A+1 0
7 _Té_s s e o A | g YT (40)
Grz_o i A+1 ] A+1 1

While the convergence of above approximate integrals to an analytical solution is ensured

mathematically as &, approaches infinity, in the numerical calculations, it suffices to choose

a relatively large &, such that the error from the approximation is less than a specified
tolerance since all integrands possess a desirable rate of decay at infinity. However, due to
the oscillating nature of their integrands introduced by Bessel functions J,(£T) and J;(£T),
the numerical evaluation of all truncated integrals appearing in (35)-(40) by standard
Gaussian quadrature over a single interval generally requires a large number of integrations
points. To enhance the computation efficiency, the integral over the interval [0,¢,] is first

divided into N sub-integrals and Gaussian quadrature is then applied to each sub-integral. As

N increases, the oscillating behavior of the integrand in each sub-integral essentially
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disappears and they can, therefore, be integrated accurately by using low-order Gaussian

quadrature.

In the present study, the suitable truncated parameter (&,), number of sub-integrals
(N), and number of integration points (n) utilized in the numerical integration are fully
investigated to ensure the accuracy of numerical results while still consuming reasonable
computational time. Both n and N have the direct influence on the accuracy of the numerical
integration for a fixed truncation parameter &, . In general, by increasing N, each sub-integral

requires less number of integration points since the oscillating behavior of the integrand

gradually disappears. In the numerical experiment, for a fixed&,, N is increased until the
value of the integral converges (for a specified tolerance) by using a low order Gaussian
quadrature for each sub-integral. The ratio ER /' N is then recorded and used to indicate the
size of the sub-interval over which the integrand is sufficiently well-behaved to be integrated
using low order Gaussian quadrature. Finally, a proper choice of the truncation parameter ER

is obtained by increasing such upper limit until the value of the integral converges (for a
specified tolerance). It is important to remark that in such process, the number of sub-

integrals must be increased accordingly in order to maintain the size of the sub-intervals

(&, 1N ) sufficiently small to allow the use of low-order Gaussian quadrature.

4. NUMERICAL RESULTS AND DISCUSSION

To verify both the formulation and numerical integration scheme, obtained results are first
compared with available benchmark solutions. Once the proposed technique is fully tested,
extensive studies for a layer under both axisymmetric normal and axisymmetric tangential
surface loads are investigated to understand the nano-scale influence and size-dependent
behaviors through the surface stress effects (with/without the contribution of the residual
surface tension). Moreover, fundamental results of an elastic layer under a unit normal point
load, a unit normal ring load, and a unit tangential ring load are also demonstrated and fully

discussed.
4.1 Verification

In this sub-section, results obtained in the present study are verified with three available
benchmark solutions. Without the integration of surface stresses in the mathematical model,

the present numerical results are verified with the classical solutions of an elastic layer
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proposed by Burmister [39-40] and an elastic half space reported by Ahlvin and Ulery [41],
respectively. Moreover, obtained results are also compared with the solution proposed by
Zhao [28] for the case that the influence of surface stresses is taken into account without the
out-of-plane contribution of the residual surface tension.

4.1.1 Infinite rigid-based elastic layer under normal point force

Consider a point load P,

normalized such that P, =P, / uA?, acting normal to the surface
of a rigid-based layer with the normalized thickness h =1.0 and Poisson’s ratio v =0.2 as
shown in Fig. 2(a). Results for this particular case without the influence of surface stresses
can readily be obtained by setting =0 and £ =0. The radial and vertical displacements at
the surface and non-zero stress components at Z =0.1 along the radial direction are reported
and compared with analytical solutions proposed by Bumister [39-40], which were tabulated
by Poulos [42], in Tables 1-3. It is obvious from this set of results that solutions obtained

from the present study show very good agreement with the benchmark solution.
4.1.2 Elastic half-space under uniformly distributed normal traction

A three-dimensional, elastic half-space with Poisson’s ratio v =0.2 and subjected to
uniformly distributed normal traction po over a circular area of normalized radius a=a/A
shown in Fig. 2(b) is considered without the surface stress effects. To treat this classical case,
o and £ are taken to be zero and the normalized thickness h is chosen to be sufficiently
large in the analysis to represent the half-space. Results for non-zero displacement and stress
components are reported in Table 4 along with those reported by Ahlvin and Ulery [41].
Similar to the previous case, solutions obtained from the current study are almost

indistinguishable from the reference results.
4.1.3 Infinite rigid-based elastic layer under uniformly distributed normal traction

Consider, next, an infinite, rigid-based, elastic layer with the normalized thickness h =30
and subjected to uniformly distributed normal traction po, normalized such that p, = p,/x,
over a circular area of normalized radius a=a/ A =10 as shown in Fig. 2(c). To allow a
direct comparison with available results proposed by Zhao [28], the same set of material
constants obtained from atomistic simulation [7, 22] is utilized (i.e., A = 58.17x10° N/m?, u =
26.13x10% N/m?, 2° = 6.8511 N/m, x° = -0.376 N/m, z° = 1 N/m). Note that this particular set
of material properties is also employed for the rest of numerical study presented hereafter.

Results for the classical case, and the case accounting for the surface stress effects without
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the out-of-plane contribution of the residual surface tension can be obtained by simply setting

a=0,=0, and a=1,=0, respectively. By comparing results for the surface
displacement and stresses at Z =0.1 along the radial direction with those presented by Zhao

[28] for h/a =3 as shown in Figs. 3 and 4, it is found that solutions obtained from the

present study are in excellent agreement with the benchmark solutions.
4.2 Influence of Surface Stresses

After the proposed solution and numerical scheme are verified, extensive parametric studies
are performed to demonstrate the influence of surface stresses, the significant contribution of
the residual surface tension, and the size-dependent behavior of the elastic field of the layer

under normal and tangential axisymmetric surface loads.
4.2.1 Infinite rigid-based elastic layer under uniformly distributed normal traction

Consider an infinite, rigid-based, elastic layer subjected to uniformly distributed normal
traction po over a circular area of normalized radius a as shown in Fig. 2(c). Results for both

radial and vertical surface displacements along the radial direction for a =10 and various

values of the normalized thickness h are reported in Fig. 5. It is apparent from this set of
results that a model incorporating the out-of-plane component of the surface stresses (i.e., the
third equation of (5)) predicts much lower surface displacement or, equivalently, renders
materials stiffer whereas the solution obtained from a model excluding the out-of-plane
contribution exhibits significant influence of the surface stresses only in the case of the radial
displacement. This implies that the out-of-plane contribution of the residual surface tension is
significant and, in general, cannot be neglected. In addition, results for all cases show similar
trend for all values of h considered; in particular, the magnitude of the displacement is larger
as the normalized thickness of the layer increases.

For non-zero stress components, results are obtained for h =10, a=1, and three

different normalized depths 7 €{0.25,0.5,1.0}. The variation of the normalized vertical stress

in the radial direction is reported in Fig. 6(a). Clearly, the vertical stresses for all cases reach
the maximum value at ¥ =0 and decay monotonically and rapidly to zero as I increases.
Due to the presence of surface stresses, values of the vertical stress are lesser within the
region under the surface loads (T/a<1.0) and insignificantly higher for r/a>1.0 in
comparison with the classical solution. It can also be concluded from this set of results that

the influence of surface stresses is more significant in the region relatively close to the
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surface. In addition, such behavior becomes more apparent if the model incorporating the

out-of-plane contribution of the residual surface tension is utilized in the analysis.

Results for the normalized shear stress o,, are also reported in Fig. 6(c) for various

normalized depths. The shear stress along the radial direction predicted by three different
models exhibit the similar trend. In particular, the shear stress vanishes at ¥ =0 due to the
symmetry, rapidly increases and reaches its peak near the edge of the loading area (i.e.,
r/a~1), and promptly decay after reaching the peak. It is worth noting that, in the region
very near the edge of the loading area, the surface stresses especially in a model including the
out-of-plane contribution of the residual surface tension significantly lower the magnitude of
the shear stress. As anticipated, the influence of surface stresses is quite large in a region near
the surface and becomes negligible in a region far away from the surface. The variation of the

normalized radial stress &,, and normalized hoop stress &, along the radial direction are also

presented for various depths in Figs. 6(b) and 6(d), respectively. While all three different
models yield qualitatively similar stress profiles, presence of the surface stresses generally
lowers the magnitude of stresses and the discrepancy from the classical solution is magnified
when the out-of-plane component is included.

Through the proper normalization, solutions obtained by a classical case without the
surface stress effects exhibit no size-dependency. However, this is different for results
predicted by the other two models integrating the surface stresses with/without the out-of-
plane term. The size-dependent behavior can be observed due to the existence of an intrinsic
length scale associated with the presence of the surface stresses. In this study, the size-
dependency of all normalized stresses is investigated by varying the radius of the loading
region while maintaining the ratio h/a. Results for h/a=3 and F/a=05 of three
different depths are reported in Fig. 7. Unlike the classical solutions, results obtained from
the two models accounting for surface stresses depend strongly on the normalized radius a
for relatively small @ and such dependence gradually disappear as @ increases. It is worth
emphasizing that results predicted by the model taking the out-of-plane contribution of the
residual surface tension exhibit much stronger size-dependency than that excluding the out-
of-plane term.

4.2.2 Infinite rigid-based elastic layer under linearly distributed tangential traction

For this particular case, the infinite, rigid-based elastic layer subjected to linearly distributed,

tangential traction q(r) =q,r/a over a circular area of normalized radius a as shown in Fig.
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2(d) is investigated. The prescribed traction is normalized such that q(r)=q,r/a where
0, =09,/u and q, is the maximum traction at the edge of the loading region. Results for the

normalized radial and vertical displacements for different thicknesses of the layer are
reported in Fig. 8. It is evident from these results that the presence of surface stresses
significantly lowers the magnitude of the displacement. However, the out-of-plane surface
stress has a very strong influence on the vertical displacement and becomes negligible for the
radial displacement. Moreover, when the thickness of the layer increases, both the radial and

vertical displacements increase.

For non-zero stress components, results are obtained for h =10, a=1, and three

different normalized depths 7 €{0.25,0.5,1.0}. Profiles of the normalized vertical stresses a,,

along the radial direction are reported in Fig. 9(a). At a relatively small depth, the tensile
stress is observed within a region under the loading area and it gradually changes to the
compressive stress when passing the edge of the loading area. The vertical stress profiles also
show the strong influence of the surface stresses for the region relatively near the surface.
Moreover, the discrepancy of results predicted by the two models with/without the out-of-
plane contribution of the residual surface tension is more apparent for the vertical stress but

insignificant for the radial stresses &, and the hoop stresses a,, (see Figs. 9(b) and 9(d)).
Results for the normalized shear stress o,, are also reported in Fig. 9(c) for various depths.

For this particular loading condition, the shear stress increases to reach its peak near the edge
of the loading region and then abruptly decreases to zero after passing the edge of the loading
area. Again, the influence of the surface stresses on this shear stress component is more

apparent for the region close to the surface.

To demonstrate the size-dependent behavior of solutions for a layer subjected to the
linearly distributed tangential traction, a scheme similar to that used to study a layer under
uniformly distributed normal traction is employed. The layer thickness and the radius of the
loading region are varied while their ratio is fixed with h / @ =3. The relationship between
the normalized stress components and the normalized radius of the loading region for three
different depths and r/a=0.5 are reported in Fig. 10. Unlike the case of uniformly
distributed normal load, the out-of-plane contribution of the residual surface tension has very
strong influences only on the vertical stress whereas, for other stress components, such
contribution becomes negligible. However, solutions obtained from the two models

accounting for the surface stresses still show the size-dependency. In particular, as the
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normalized radius a and the normalized depth Z decrease, the surface stress effects become

more significant and the size-dependency of the predicted solution is obvious.
4.3 Fundamental Solutions

Since the formulation has been established for arbitrarily distributed, axisymmetric surface
loads, general results can be further specialized to construct certain fundamental solutions.
Here, solutions of an infinite, rigid-based, elastic layer subjected to three special loading
conditions including a normal concentrated load at the origin, a normal ring load, and a
tangential ring load are obtained. Although only results for the surface displacement are
reported and discussed for the sake of brevity, other field quantities such as the displacement

and stress at any location within the bulk can also be determined in a similar fashion.

4.3.1 Infinite rigid-based elastic layer under normal concentrated load at origin

Consider an infinite, rigid-based, elastic layer subjected to a normal concentrated load P,
(with the normalized load P, =P, / zzA%) as shown in Fig. 2(a). Profiles of the normalized
radial displacement U, and the normalized vertical displacement u, at the surface obtained by
three different models are reported in Fig. 11 for four different layer thicknesses

h €{0.5,1.0,2.0,3.0}. It is found that the normalized radial displacement is singular at T =0

except the solution obtained from a model accounting for the out-of-plane contribution of the
residual surface stress. On the other hand, results of the normalized vertical displacement
tend to be infinite under the concentrated load for all cases and reduce rapidly when T
increases. In addition, the similar behavior is observed for all layer thicknesses considered

and the magnitude of the displacement is higher as the layer thickness increases.

4.3.2 Infinite rigid-based elastic layer under normal ring load

Consider, next, an infinite, rigid-based, elastic layer subjected to a normal ring load at the
radius a, i.e., p(r) = p,o(r—a) where p, is a prescribed constant. The prescribed ring load
is normalized such that p(r) = p,o(r —a) where p, = p, / #A. Results for the normalized
radial displacement U, and the normalized vertical displacement U, at the surface are plotted
along the radial direction as shown in Fig. 12 for four different layer thicknesses

h €{0.51.0,2.0,3.0}and a=1. It is apparent from this set of results that the radial

displacement for the classical case exhibits rapid variation at the location of the applied ring
load while those obtained from the other two models are finite, smooth, and significantly

17



different from the classical solution. On the contrary, the vertical displacements predicted by
the classical model and a model accounting for the surface stresses without the out-of-plane
term are slightly different and singular at the location of applied load whereas that obtained
from a model incorporating the out-of-plane term is finite and significantly different from the

other two solutions.
4.3.3 Infinite rigid-based elastic layer under tangential ring load

Finally, consider an infinite, rigid-based, elastic layer subjected to a tangential ring load at the

radius a, i.e., q(r)=0q,0(r—a) where g, is a prescribed constant. Such applied load is
normalized such that () =0,0(F —a) where G, =q, / #A . Results for the normalized
radial displacement T, and the normalized vertical displacement U, at the surface along the
radial direction are reported in Fig. 13, once again, for four different layer thicknesses
ﬁe{0.5,1.0, 2.0,3.0yand a=1. For this particular loading condition, both the radial and

vertical surface displacements obtained from the classical model are singular at the location
of the applied ring load whereas those obtained from the two models accounting for the
surface stresses are finite everywhere. While the results obtained from the two models exhibit
huge discrepancy from the classical solution, the contribution of the out-of-plane surface

stress is insignificant especially for the surface radial displacement.

5. APPLICATIONS OF FUNDAMENTAL SOLUTIONS

Results obtained in sub-section 4.3 for three fundamental loading conditions can be employed
to construct Green’s function for both the displacements and stresses. Such Green’s functions
possess vast applications such as in the calculation of an elastic field of the layer under
arbitrarily distributed, axisymmetric surface loads and in the development of governing

integral equations for contact and indentation problems.

To clearly demonstrate their applications, let us consider a three-dimensional, infinite,
rigid-based, elastic layer subjected to arbitrarily distributed, axisymmetric normal traction
p(r) and tangential traction q(r). Once solutions of all field quantities due to both unit normal
and unit tangential ring loads are determined, they can be utilized along with a method of
superposition to obtain the integral relations for both the displacement and stress on the
surface and within the bulk material due to the tractions p(r) and q(r). For instance, the radial

and vertical displacements at any distance f on the surface are given by
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ur (F) =TurN (f, r)p(r)dr+TUI(f, r)q(r)dr (41)
0 0

u, (F) =TUZN (f, r)p(r)dr+TUZT(f, r)q(r)dr (42)
0 0

where UrN(f, r) and UZN (f,r) are radial and vertical displacements at any distance f on the
surface due to a unit normal ring load acting on the surface of the layer at the radius r,
respectively, and UrT(f,r) and UZT(f, r) are radial and vertical displacements at any distance

f on the surface due to a unit tangential ring load acting on the surface of the layer at the
radius r. Other field quantities at any point (£, Z) within the bulk material, denoted

generically by R(f,Z), can also be obtained in a similar fashion as
R(F,2)= [ R" (7, 2:r)p(r)dr + [ RT (7, 2;1)q(r)dr (43)
0 0

where RN (7, 2;r) and R' (f,2;r) are corresponding responses at any point (f,7) within the
bulk material due to the unit normal ring load and unit tangential ring load acting on the
surface of the layer at the radius r, respectively. Clearly, for a problem where the surface
traction p(r) and q(r) are fully prescribed, the integral relations (41)-(43) can be directly

employed to determine all field quantities.

For contact and nano-indentation problems, the traction p(r) and q(r) under an
indentor are unknown a priori and they must be determined before the integral relation (43)
can be used. For a special case of an axisymmetric, rigid, frictionless, nano-indentation

problem, the tangential traction q(r) vanishes and the vertical displacement under the indentor

is fully prescribed in terms of the known indentor profile vP and the prescribed indentation

depth d. The integral relation (42) for any f under the indentor becomes
a

U, (F) = U} (F,)p(r)dr =d +vP(F) , F<a (44)
0

where a denotes the contact radius. The integral equation (44) can be solved to obtain the

unknown contact pressure p(r). Once p(r) is determined, all other field quantities can readily

be obtained from the integral relation (43) with q(r) = 0.
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For an axisymmetric, rigid, fully bonded, nano-indentation problem, the radial

displacement under the indentor identically vanishes and the vertical displacement under the

indentor is fully prescribed in terms of the known indentor profile vP and the prescribed

indentation depth d. The integral relations (41) and (42) for any f under the indentor become

ur(f)ZTUrN(f,r)p(r)dr+TuI(f,r)q(r)dr:0 , f<a (45)
0 0

uz(f):_TUZN(f,r)p(r)dr+ja.UzT(f,r)q(r)dr:d +VP(F) , f<a (46)
0 0

The two integral equations (45)-(46) are sufficient for solving the unknown traction p(r) and
q(r). Once the unknown traction is obtained, all other field quantities can be computed, again,
from the integral relation (43).

For an axisymmetric, rigid, rough, nano-indentation problem, the tangential traction
q(r) can be related to the normal traction p(r) via a selected friction model and, once again,

the vertical displacement under the indentor is fully prescribed in terms of the known

indentor profile vP and the prescribed indentation depth d. The integral relation (42) for any

f under the indentor becomes
a a

U, (F) = [UY (£, 1) p(r)dr + [U] (F,) F (p(r))dr =d +vP(7) , F<a (47)
0 0

where a prescribed function f denotes the relation between p and g via the friction model. The
integral equation (47) can be employed to solve for the unknown normal traction p(r). Once
p(r) is determined, the tangential traction q(r) can readily be obtained from the function f and

all other field quantities can be computed from the integral relation (43).

By following the same strategy, solutions of all field quantities due to a unit normal
concentrated load applied to the surface of a layer can also be utilized as Green’s functions to
establish integral relations for field quantities due to arbitrary distributed, normal traction on
the surface. In addition, the integral relation for the vertical displacement on the surface can
be employed to form the integral equation governing the unknown pressure under the rigid,

frictionless indentor of arbitrary profiles.

While the formulation of the integral equations sufficient for solving the indentation

problems is already established here, it still requires non-trivial and challenging tasks
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regarding to various computational issues such as the efficiency and accuracy of the

numerical procedure and approximate solutions, and this should deserve further investigation.

6. CONCLUSIONS AND REMARKS

A complete solution of a three-dimensional, infinite, rigid-based, elastic layer under
axisymmetric normal and tangential surface loads with consideration of the surface stresses
has been derived. A novel feature of the present study is the use of a complete version of
Gurtin-Murdoch constitutive relation to model the free surface of the elastic layer. In the
solution procedure, Love’s strain potential representation along with Hankel integral
transform technique has been applied to obtain the general solution for the bulk material
whereas the surface equations and conditions at the rigid base supply sufficient boundary
conditions to determine all arbitrary constants. The displacement and stress fields within the
bulk material have been obtained via a selected efficient numerical quadrature. Once the
obtained solutions were verified by comparing with available benchmark solutions, extensive
parametric study has been carried out to gain insight into the nano-scale influence and also
fully investigate the size-dependent behavior. Moreover, fundamental solutions
corresponding to normal concentrated load, normal ring load, and tangential ring load have

also been constructed.

Results from extensive parametric studies have confirmed the significance of the
surface stresses and the necessity to properly treat such influence in the continuum-based
model. In the region relatively close to the surface, the presence of the surface stresses
exhibits very strong influence on both the displacement and stress fields. Magnitudes of field
quantities obtained from models accounting for the surface effects are generally less than
those obtained from the classical model. This is due to the fact that the applied surface loads
do not entirely transfer into the bulk but part of them is carried by the surface through the
equilibrium of the surface and the membrane-like action. Such influences also depend
primarily on the length scale of the problem; the influence of the surface stresses becomes
significant when the length scale is comparable to the intrinsic length of the surface.
Moreover, it is worth pointing out that such behavior of the out-of-plane responses under the
normal traction is more apparent in the model that integrates the out-of-plane contribution of
the residual surface tension. This additionally confirms the necessity to treat such crucial

contribution in the modeling of soft elastic solids and nano-scale problems.
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In addition, the surface radial and vertical displacements of a layer under either a
normal ring load or a tangential ring load predicted by a model employed in the present study
are finite everywhere. If the out-of-plane component of the surface stresses is neglected, the
predicted vertical displacement due to the normal ring load is still singular at the location
where the load is applied. For the case of a normal concentrated load, the vertical
displacement obtained from both the classical model and the model incorporating the surface
stresses is singular at the location of the applied load and only the radial displacement

obtained from a model accounting for the out-of-plane term is finite.
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Table 1 Normalized vertical and radial displacements of a three-dimensional, infinite, rigid-

based, elastic layer subjected to a normal point load

2mhEi. / ppt 2nhEi, / Ppt
I . -
B[l;rémfé?r Present study B[légmsé;:r Present study
0.05 -14.362 -14.344 35.921 35.310
0.1 -7.124 -7.172 16.728 16.554
0.2 -3.455 -3.477 7.162 7.195
0.3 -2.184 -2.178 4.016 4.050
0.4 -1.523 -1.512 2.478 2.473
0.5 -1.064 -1.109 1.599 1.579
0.6 -0.824 -0.830 1.048 1.048
0.7 -0.62 -0.620 0.69 0.704
0.8 -0.465 -0.461 0.45 0.458

Table 2 Normalized vertical and radial stress components of a three-dimensional, infinite,

rigid-based, elastic layer subjected to a normal point load

4zh* (. +1)5, / P, Axh® (. +1)5, / P,

' B[l;rgr,nllséaer Present study B[légmsé;r Present study

0 300 300 -30.71 -30.72
0.1 53.08 53.06 34.75 34.75
0.2 5.415 5.395 12.5 12.49
0.3 0.994 0.974 3.347 3.344
0.4 0.293 0.273 0.614 0.611
0.5 0.124 0.103 -0.259 -0.262
0.6 0.067 0.048 -0.528 -0.530
0.7 0.041 0.025 -0.578 -0.579
0.8 0.026 0.013 -0.544 -0.544
0.9 0.016 0.006 -0.479 -0.478




Table 3 Normalized shear and hoop stress components of a three-dimensional, infinite, rigid-

based, elastic layer subjected to a normal point load

4zh* (. +1)a,, / P, 4zh* (. +1)G,, / P,

' B[lé;mfé?r Present study B[gg?fé?r Present study

0 0 0.000 -30.71 -30.720
0.1 53 53.003 -4.342 -4.355
0.2 10.68 10.676 2.237 2.224
0.3 2.765 2.765 1.996 1.983
0.4 0.909 0.908 1.349 1.337
0.5 0.326 0.324 0.877 0.865
0.6 0.102 0.099 0.566 0.554
0.7 0.005 0.002 0.363 0.352
0.8 -0.038 -0.043 0.231 0.221
0.9 -0.056 -0.061 0.144 0.135

Table 4 Normalized displacement and stress components of a three-dimensional, infinite,

elastic half-space subjected to a uniformly distributed normal traction

202 +1)7,, / Py 202 +1)5,, / P, 202 +1)5,, / P, U,/ P
Ahlvin Ahlvin Ahlvin Ahlvin
Zla|  and Present and Present and Present and Present
Ulery study Ulery study Ulery study Ulery study

[41] [41] [41] [41]

0 | 1.000 0.993 0.700 0.695 0.700 0.695 0.800 0.800
0.1 | 0.999 0.999 0.581 0.581 0.581 0.581 0.769 0.769
0.2 | 0.992 0.992 0.468 0.468 0.468 0.468 0.736 0.736
0.3 | 0.976 0.976 0.367 0.367 0.367 0.367 0.702 0.702
0.4 | 0.949 0.949 0.280 0.280 0.280 0.280 0.667 0.667
0.5 0.911 0.911 0.208 0.208 0.208 0.208 0.633 0.633
0.6 | 0.864 0.864 0.151 0.151 0.151 0.151 0.599 0.599
0.7 | 0.811 0.811 0.106 0.106 0.106 0.106 0.566 0.566
0.8 | 0.756 0.756 0.072 0.072 0.072 0.072 0.535 0.535
0.9 | 0.701 0.701 0.047 0.047 0.047 0.047 0.505 0.505

1 | 0.646 0.646 0.028 0.028 0.028 0.028 0.478 0.478
1.2 | 0.547 0.547 0.005 0.005 0.005 0.005 0.429 0.429
1.5| 0.424 0.424 | -0.010 | -0.010 | -0.010 | -0.010 0.368 0.368

2 | 0.284 0.284 | -0.016 | -0.016 | -0.016 | -0.016 0.294 0.294
25| 0.200 0.200 | -0.014 | -0.014 | -0.014 | -0.014 0.243 0.243
0.146 0.146 | -0.012 | -0.012 | -0.012 | -0.012 0.207 0.207
0.087 0.087 | -0.008 | -0.008 | -0.008 | -0.008 0.158 0.158
0.057 0.057 | -0.005 | -0.005 | -0.005 | -0.005 0.128 0.128
0.040 0.040 | -0.004 | -0.004 | -0.004 | -0.004 0.107 0.107
0.030 0.030 | -0.003 | -0.003 | -0.003 | -0.003 0.092 0.092
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