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Abstract

A computationally efficient numerical technique capable of modeling mode-I planar cracks in three-

dimensional linear elastic media by taking the influence of the residual surface tension into account, 

is presented in this paper. The elastic medium (i.e., the bulk material) is modeled by the classical 

theory of linear elasticity, whereas the crack surface is treated as a zero-thickness layer perfectly 

bonded to the bulk material with its behavior governed by the special case of Gurtin-Murdoch

surface elasticity model. Governing equations of the bulk material are formulated in terms of 

weakly singular, weak-form boundary integral equations, whereas those of the surface are cast in a 

weak form using a weighted residual technique. The solution of the final coupled system of 

governing equations is subsequently accomplished by using a numerical procedure based primarily 

on a coupling between standard finite element technique and a weakly singular, symmetric Galerkin 

boundary element method. Extensive numerical simulations are conducted and the results are 

compared with available benchmark solutions to verify the formulation and numerical 

implementation. Applications of the technique to the analysis of nano-crack problems are presented 

for some selected cases, to study nano-scale influence and size-dependency behavior.  

Keywords: Crack opening displacement, Gurtin-Murdoch model, Nano-cracks, Residual surface 

tension, SGBEM, Surface elasticity  

1. Introduction 

Due to the rapid growth of the application of nano-sized devices and nano-structured materials in 

various fields, the physical modeling and corresponding comprehensive analysis to gain an insight 

into their complex behavior become important aspects in the optimal design of nano-scale products. 

Failure/damage analysis and assessment is one of the essential steps that must be properly 

considered to ensure their safety and integrity in the design procedure. To aid such crucial tasks, a 

classical approach based on the stress analysis of a body containing pre-existing defects or cracks is 

usually considered. While conventional linear elastic fracture mechanics has been well established 
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and employed in the modeling of cracks in linear elastic media, an enhancement of the classical 

model to incorporate the nano-scale influence is still required. Studies using atomistic calculations 

have pointed out that atoms near the free surface of solids behave differently from their bulk. In that 

sense, the whole body is not completely homogeneous, but when its size is in the range of 

micrometers or larger, the surface free energy effect can be neglected due to its insignificant 

influence on overall material properties. Unlike macro-structures, in the case of nano-sized objects 

(e.g., thin films, quantum dots, nano-wires, nano-tubes and nano-composites), the surface to volume 

ratio is much higher and, as a direct consequence, the surface free energy effect often plays a crucial 

role in the mechanical behavior [1]. Therefore, the classical theory of continuum-based mechanics 

commonly used in the modeling of macroscopic bodies cannot be directly applied to treat the 

problem of nano-sized cracks.  

 To be capable of capturing the surface free energy effect, a model that properly takes into 

account the surface free energy must be utilized. The most widely used continuum-based models 

which incorporate surface free energy effects are those using Gurtin-Murdoch surface elasticity 

theory. Gurtin and Murdoch [2, 3] proposed a mathematical framework to study the mechanical 

behavior of material surfaces through a continuum-based model which includes surface stresses. 

The elastic surface is assumed to be very thin and modeled as a mathematical layer of zero 

thickness that is perfectly bonded to the bulk material. In addition, such an idealized surface has 

different elastic moduli from those of the bulk material.  

 The Gurtin-Murdoch model has been widely used to study various size-dependent, nano-

scale problems. For instance, He et al. [4], Dingreville et al. [5] and Huang [6] employed the 

Gurtin-Murdoch surface elasticity model to clearly elucidate the size-dependent elastic properties of 

nano-structured elements such as wires and films, while Tian and Rajapakse [7, 8, 9] applied such 

model to demonstrate the influence of surface stresses on elastic fields of nano-inhomogeneity 

problems. More recently, Pinyochotiwong et al. [10] investigated the effects of surface energy in 

the analysis of an axisymmetric rigid frictionless indentor acting on an isotropic, linearly elastic 

half-space by using the complete version of the Gurtin-Murdoch model. 

 The continuum-based surface/interface model of Gurtin and Murdoch has also been 

employed in the modeling of nano-sized cracks. Based upon an investigation of an elliptical void, 

Wu [11] argued that the presence of the surface stress has the capability of containing the severity 

of deformations of a blunt crack. Wang et al. [12] studied the surface stress effect on near-tip 

stresses for both mode-I and mode-III blunt cracks and found that when the curvature radius of the 

crack front decreases to nanometers, surface energy significantly affects the stress intensities near 
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the crack tip. Fu et al. [13, 14] incorporated the surface elasticity model into the finite element 

method (via ANSYS  and ABAQUS ) to study the influence of surface stresses on the mode-I and 

mode-II crack-tip fields and concluded that when the curvature radius of the blunt crack root 

decreases to micro-/nano-meters, surface elasticity exhibits significant influence on the stresses near 

the crack tip. Fang et al. [15] analyzed the influence of surface effects on dislocation emission from 

an elliptically blunt crack under mode-I and mode-II loading conditions and showed that the impact 

of surface stresses on the critical stress intensity factors for dislocation emission becomes 

remarkable when the size of the blunt crack is very small, typically of a nanometer scale. Kim et al. 

[16, 17, 18] examined mode-I, mode-II and mode-III crack problems including surface stress effects 

which assumed that the stresses at the sharp crack-tip are finite. Recently, Nan and Wang [19] 

considered the effect of the residual surface tension on the crack surface, to investigate the mode-I 

crack problem and demonstrated that the surface effect on the crack deformation and crack-tip field 

are prominent at nanoscale. Moreover, the results are influenced by the residual surface tension not 

only on the surface near the crack-tip region but also on the entire crack-face. Intarit et al. [20, 21] 

analytically investigated a nano-sized, penny-shaped crack in three-dimensional, linear elastic 

media under mode-I loading conditions. 

 On the basis of an extensive literature survey, it can be said that work related to the 

modeling of defects/cracks at nano-scale level has been very limited. Most of the studies are 

restricted to situations where cracks can be treated either within the context of two-dimensional 

boundary value problems [11-19] or within the context of relatively simple three-dimensional 

problems [20, 21]. However, bodies or components containing existing defects/flaws involved in 

practical applications are, in general, relatively complex in terms of geometries, loading conditions, 

and influences to be treated (e.g., surface free energy). The existing mathematical models are 

therefore of limited scope and insufficient for the prediction of responses in practical cases. This, as 

a result, necessitates the development of fully three-dimensional mathematical models, along with 

efficient and powerful numerical procedures to construct their solutions. 

 Numerical techniques based on boundary integral equations have been well-established and 

proven powerful for both two-dimensional and three-dimensional fracture analysis (e.g., [22-27]). 

The techniques possess attractive characteristics, such as governing equations with spatially reduced 

dimensions and simplicity of treating remote boundaries and infinite bodies, rendering them 

computationally efficient and convenient for modeling crack problems. The weakly singular, 

symmetric Galerkin boundary element method (SGBEM), which is a principal numerical technique 

proposed to model the cracks in the present study, is a particular boundary integral equation method 
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that has been continuously developed and widely adopted by various investigators in the past four 

decades. This special numerical technique has been widely and successfully employed to solve both 

linear elasticity and linear elastic fracture problems [28-38], since it has several important features. 

For instance, the governing integral equations contain only weakly singular kernels (of (1 )rO ); the 

technique is applicable for modeling cracks with arbitrary configurations and under general loading 

conditions and for treating an infinite body efficiently; and the formulation is established in a 

symmetric weak-form such that it gives rise to a system of linear equations with a symmetric 

coefficient matrix. The first feature renders that all involved integrals exist in an ordinary sense and 

their validity requires only the continuity of the boundary data; i.e., in the numerical 

implementation, it is possible to employ standard C0 elements in the approximation of all primary 

unknowns and to apply existing quadrature schemes to numerically evaluate all involved integrals 

(e.g., [31, 32, 37, 38]). In addition, the last feature also allows the SGBEM to be conveniently 

coupled with the standard finite element procedure to enhance its computational efficiency and 

capability (e.g., [39, 40]). Extensive review of the weakly singular SGBEM can be found in Bonnet 

et al. [41], in Rungamornrat and Mear [37] and Rungamornrat and Senjuntichai [38] for its 

application to three-dimensional fracture analysis, in Rungamornrat and Mear [40] for its coupling 

with the standard FEM. It should be remarked that, on the basis of an extensive literature survey, 

applications of the SGBEM-FEM technique to the analysis of nano-size cracks has not been well 

recognized. Efficiency and capability of such technique, when applied to this particular class of 

problems, still requires full investigations.   

 In this paper, a computationally efficient numerical technique capable of modeling planar 

cracks in three-dimensional isotropic, linear elastic media including the influence of residual 

surface tension is presented. The residual surface tension effects are modeled using the well-known 

Gurtin-Murdoch theory of surface elasticity. A numerical procedure based primarily on the coupling 

of a standard finite element method (FEM) and a weakly singular, symmetric Galerkin boundary 

element method is employed. The former technique is mainly utilized to efficiently handle the 

governing equation of the surface. While the proposed technique follows, in principle, the standard 

coupling procedure, novelty of the current work should be reflected through its recent applications 

to the modeling of cracks with nano-scale influence. Extensive numerical simulations are conducted 

and the results are compared with available benchmark solutions to verify both the formulation and 

the numerical implementation. Applications of the technique to the analysis of mode-I, nano-sized, 

crack problems are presented for some selected cases, to study nano-scale influence and size-

dependency behavior.  
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2. Formulation 

This section begins with the clear description and essential assumptions of the boundary value 

problem that is the focus of the present study. All basic field equations and the development of key 

governing equations for both the bulk material and the crack surface are then briefly presented. 

Finally, the coupled system of weak-form equations governing the primary unknowns on the crack 

surface is derived.  

2.1. Problem description 

(a) (b)
 

Fig. 1. (a) Schematic of three-dimensional infinite elastic medium containing an isolated crack;  

(b) prescribed traction on crack surfaces. 

Consider a three-dimensional, infinite, elastic medium  containing an isolated, planar crack as 

shown schematically in Fig. 1(a). The reference Cartesian coordinate system 1 2 3{ ; , , }O x x x  is also 

shown. The bulk material is made of a homogeneous, isotropic, linearly elastic material with shear 

modulus  and Poisson’s ratio . The crack surfaces which are geometrically identical are 

represented by cS  and cS  with corresponding outward unit normal n  and n , respectively. The 

medium is assumed to be free of body forces and remote loading but subjected to prescribed 

tractions 0t  and 0t on cS  and cS , respectively (Fig. 1(b)). In addition, infinitesimally thin layers 

on the crack surfaces (mathematically modeled by zero-thickness layers perfectly bonded to the 

crack surfaces) possess the constant residual surface tension under unstrained conditions which is 

denoted by s .

 In the formulation of the boundary value problem, the medium is decomposed into three 

parts: the bulk material, the zero-thickness layer cS  and the zero-thickness layer cS  as shown in 

Fig. 2. The bulk material is simply the whole medium without the two infinitesimally thin layers on 

3x

2x
1x

cS

cS n

O

n cS

cS
2x

3x

0t

0t



6

the crack surfaces. Since both layers have zero thickness, the geometry of the bulk material is 

therefore identical to that of the whole medium (i.e., it can also be completely described by the 

region  and the two crack surfaces cS  and cS ). 

The key difference between the bulk material and the original medium is that the bulk 

material is homogeneous and the crack surfaces cS  and cS  in the bulk part are subjected to 

unknown tractions (exerted directly by the two layers) bt  and bt , respectively. The layer cS  is 

treated as a two-sided surface with one side subjected to the prescribed traction 0t  and the other 

side subjected to the traction st  exerted by the bulk material (Fig. 2(b)). Similarly, the layer cS  is 

treated as a two-sided surface with one side subjected to the prescribed traction 0t  and the other 

side subjected to the traction st  exerted by the bulk material (Fig. 2(c)). In what follows, Greek 

subscripts denote field quantities associated with the surface and take the values 1, 2 while the Latin 

subscripts take the values 1, 2, 3. We remark that, in the development to follow, it will suffice to 

make reference to the single crack surface .c cS S

  (a) (b) (c) 

Fig. 2. Schematics of (a) the bulk material, (b) the zero-thickness layer cS  and (c) the zero-

thickness layer .cS

2.2. Governing equations for bulk material 

Since the bulk material is made of homogeneous, isotropic, linearly elastic material, its behavior is 

governed by the classical theory of linear elasticity. From results developed in the work of 

Rungamornrat and Mear [36] and Rungamornrat and Senjuntichai [38], the displacement and stress 

components at any interior point x , denoted respectively by ( )pu x  and ( )ij x , can be expressed in 

terms of the traction data bt  and bt  and the displacement data bu  and bu  on the crack surfaces 

cS  and cS  as 

2x

3x

cS

cS bt

bt
cS

0t

st

cS
0t

st
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
c

c c

p b
p j jS

p b p b
mj m j ij i jS S

u U t dS

G D u dS H n u dS

x x

x x
  (1)

,

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
c

c c

tj b
ij irt lk r l kS

p b p b
irt tj r p ij pS S

C D u dS

G t dS H t dS

x x

x x
  (2)

where ( ) ( ) /t tmj m jD n  is a surface differential operator, b b b
j j jt t t , b b b

j j ju u u , irt  is 

the standard alternating symbol, the kernels { , , , }p p tk p
j mj mj ijU G C H  for isotropic elastic materials are 

given by 

2

( )( )1( ) (3 4 )
16 (1 )

p p j jp
j pj

x x
U v

v r r
x   (3) 

2

( )( )1( ) (1 2 )
8 (1 )

p p a ap
mj mpj ajm

x x
G v

v r r
x   (4) 

2

( )( )
( ) (1 ) 2

4 (1 )
k k j jtk

mj tk mj km tj kj tm tm

x x
C v v

v r r
x  (5) 

3

( )
( )

4
i i jpp

ij

x
H

r
x   (6) 

with || ||r x and ,ij ijk  are standard Kronecker delta and alternating symbols, respectively. The 

boundary integral relations (1) and (2) allow the displacement and stress at any interior point to be 

determined once the data bt  , bt , bu  and bu are known. To establish the integral equations 

governing the unknown data bt  , bt , bu  and bu , the integral relations (1) and (2) are utilized 

along with the process of taking limit to any point on the crack surface and the standard procedure 

using Stokes’ theorem in the development of the weak-form equations. The final weak-form, 

boundary integral equations are given by (see details of the development in Rungamornrat and Mear 

[36] and Rungamornrat and Senjuntichai [38])   

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

c c c

c c

c c

b p b
p p p j jS S S

p b
p mj m jS S

p b
p ij i jS S

t u dS t U t dS dS

t G D u dS dS

t H n u dS dS

y y y y y y

y y y

y y y

 (7) 
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1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

c c c

c c

c c

b tk b
k k t k mj m jS S S

j b
t k tk jS S

j b
k lk l jS S

u t dS D u C D u dS dS

D u G t dS dS

u H n t dS dS

y y y y y y

y y y

y y y y

 (8) 

where b b b
j j ju u u , b b b

j j jt t t , and { , }p kt u  are sufficiently smooth test functions. The pair of 

equations (7) and (8) has been well recognized as the weak-form boundary integral equations for 

the sum of the displacement b
ju  and the jump of the traction b

jt  across the crack surface, 

respectively. It is worth noting that both integral equations contain only weakly singular kernels 

{ , , , }p p tk p
j mj mj ij jU G C H n  of (1 )rO . This positive feature renders the existence of all involved double 

surface integrals in an ordinary sense and their validity requires only C0- boundary data.

2.3. Governing equations for two layers 

The two layers cS  and cS  shown in Figs. 2(b) and 2(c) are considered as infinitesimally thin 

membranes adhered perfectly to the bulk material. The behavior of these two layers is modeled by 

Gurtin-Murdoch surface elasticity theory by ignoring terms associated with the surface elastic 

constants. It has been pointed out by various investigations that the influence of the surface elastic 

constants on the out-of-plane responses in the region very near the surface is negligibly weak [10, 

19-21]. The simplified version of the Gurtin-Murdoch model is therefore considered suitable for 

modeling planar crack problems especially when mode-I behavior is of primary interest.  

 The equilibrium equations, the surface constitutive relations and the strain-displacement 

relationship of the layers cS  and cS are therefore given by [2, 3] 

, 0s s o
i i it t   (9) 

,(1 )s s s su    , 3 3,
s s su   (10) 

, ,
1
2

s s su u   (11) 

where , ,s s s
i iu  represent stress, strain and displacement components within the layer. 

 To construct the weak-form equation, we multiply the equilibrium equation (9) with a 

sufficiently smooth test function s
iu  and then integrate the result over the entire crack surface to 

obtain
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0
, 0

c c c

s s s s s
i i i i i i

S S S

u dS u t dS u t dS   (12) 

By using the fact that s  is spatially independent, it can be readily verified that , 0s . With 

such condition along with carrying out the integration by parts of the first term using the Gauss-

divergence theorem, it leads to 

0
3, 3 3 3

c c c c

s s s s s s s
i i i i

S S S S

u dS u t dS u n dS u t dS   (13) 

Substituting (10) into (13) finally yields 

0
3, 3, 3 3

c c c c

s s s s s s s s
i i i i

S S S S

u u dS u t dS u n dS u t dS  (14) 

Note that the weak-form equation (14) applies to both crack surfaces. For instance, the weak-form 

equations for the surface cS  and the surface cS  can be obtained explicitly by  

0
3, 3, 3 3

c c c c

s s s s s s s s
i i i i

S S S S

u u dS u t dS u n dS u t dS  (15) 

0
3, 3, 3 3

c c c c

s s s s s s s s
i i i i

S S S S

u u dS u t dS u n dS u t dS  (16) 

where superscripts “+” and “–” are added to differentiate quantities defined on each crack surface. 

Since the integral equations governing the bulk material are derived in terms of the unknown sum 

and jump of quantities across the crack surface, it is natural to establish the weak-form equations 

governing the surface containing the same type of unknowns. This can be readily accomplished by 

forming two linear combinations of (15) and (16) as follows: (i) choosing s s s
i i iu u u  and then 

adding (15) to (16) and (ii) choosing s s s
i i iu u u  and then subtracting (15) from (16). Such pair 

of equivalent weak-form equations is given by 

0
3, 3, 3 3

c c c c

s s s s s s s s
i i i i

S S S S

u u dS u t dS u n dS u t dS  (17) 

0
3, 3, 3 3

c c c c

s s s s s s s s
i i i i

S S S S

u u dS u t dS u n dS u t dS  (18) 

where superscripts “ ” and “ ” indicate the sum and jump of quantities across the crack surface. It 

should be remarked further that since the jump of the displacement along the crack front vanishes 

identically, the test function s
iu  is chosen to satisfy the homogeneous condition 0s

iu  on cS . In 

addition, the traction boundary conditions 3 0s n  on cS  are assumed. The weak-form equations 

(17) and (18) finally become 



10

0
3, 3,

c c c

s s s s s s
i i i i

S S S

u u dS u t dS u t dS   (19) 

0
3, 3,

c c c

s s s s s s
i i i i

S S S

u u dS u t dS u t dS   (20) 

Equations (19) and (20) constitute a set of weak-form equations governing the unknown quantities 

{ , , , }s s s s
i i i iu t u t . It is worth noting that the formulation presented above is clearly not restricted 

only to applied normal traction to the crack surface, although the mathematical model of the surface 

is physically suitable for pure mode-I loading. Due to the vanishing ,
s , the equilibrium equation 

(9) indicates that the applied shear traction is transmitted directly to the crack surface of the bulk 

material.   

2.4. Governing equations for whole medium 

Since the two layers cS  and cS  are adhered perfectly to the bulk material, the displacements and 

tractions along the interface of the two layers and the bulk material must be continuous. This yields 

the following continuity conditions: 

s b
i i iu u u    (21) 

s b
i i iu u u    (22) 

s b
i i it t t   (23) 

s b
i i it t t   (24) 

Substituting (21)-(24) into (7), (8), (19) and (20), leads to a system of four equations involving four 

unknown functions { , , , }i i i iu t u t . By choosing appropriate test functions, (8) and (20) can be 

combined and the unknown it  can be eliminated. The final system of three equations involving 

three unknown functions { , , }i i iu u t  is given by 

1

2

( , )  ( , )                       ( )

( , )   ( , )   ( , ) 0
                      ( , )   ( , ) ( )

s s su u u t u
t u t t t u

t u u u u

A B R

B C D

D E R

 (25) 

where the bilinear integral operators , , , ,A B C D E  are defined by

3, 3,( , ) ( ) ( ) ( )
2 c

s

S
X Y dSX Y y y yA   (26) 
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1( , ) ( ) ( ) ( )
2 c

p pS
X Y dSX Y y y yB   (27)

( , ) ( ) ( ) ( ) ( ) ( )
c c

p
p j jS S

X U Y dS dSX Y y y yC  (28)

( , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
c c

c c

p
p mj m jS S

p
p ij i jS S

X G D Y dS dS

X H n Y dS dS

X Y y y y

y y y

D

(29)

( , ) ( ) ( ) ( ) ( ) ( ) ( , )
c c

tk
t k mj m jS S

D X C D Y dS dSX Y y y y X YE A  (30) 

and the linear integral operators 1 2{ , }R R  are defined, in terms of prescribed data 0t  and 0t , by

0
1

1( ) ( ) ( ) ( )
2 c

l lS
X t dSX y y yR   (31) 

0
2

1( ) ( ) ( ) ( )
2 c

l lS
X t dSX y y yR   (32) 

3. Numerical implementation 

In this section, all numerical treatments including the discretization and numerical integration are 

briefly discussed. In general, standard procedures for the weakly singular SGBEM (e.g., [31, 32, 35, 

37]) and those for the standard finite element method (e.g., [42-44]) are utilized to form the 

discretized system of linear algebraic equations.   

3.1. Discretization 

Standard Galerkin approximation is employed in the discretization of the system of governing 

equations (25). Since all involved boundary integrals contain only weakly singular kernels of 

(1 )rO , standard C0 interpolation functions are utilized in the approximation of both trial and test 

functions. In particular, the following approximation for the test functions and the trial functions is 

introduced: 

3( 1)
1

N
s s
i p i p

p
u U ; 3( 1)

1

N

i q i q
q

u U    (33) 

3( 1)
1

N

i p i p
p

u U ; 3( 1)
1

N

i q i q
q

u U    (34) 
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3( 1)
1

N

i p i p
p

t T ; 3( 1)
1

N

i q i q
q

t T    (35) 

where N  is the number of nodal points; q  is the nodal basis function at node q; 3( 1)q iU , 3( 1)q iU ,

and 3( 1)q iT  are nodal degrees of freedom associated with the sum of the displacement, the jump of 

the displacement and the sum of the traction across the crack surfaces, respectively; and 3( 1)
s

p iU ,

3( 1)p iU , and 3( 1)p iT  are arbitrary nodal quantities. Substituting (33)-(35) into (25) along with using 

the arbitrariness of 3( 1)
s

p iU , 3( 1)p iU , and 3( 1)p iT , leads to a symmetric system of linear algebraic 

equations

1

2

T

T

A B 0 U R
B C D T 0
0 D E U R

   (36) 

where the sub-matrices , , , ,A B C D E  are associated with the bilinear operators , , , ,A B C D E ; sub-

vectors 1 2,R R  correspond to the linear operators 1 2,R R ; U  is a vector of nodal quantities of the 

sum of the displacement;

 

U  is a vector of nodal quantities of the jump of the displacement and T

is a vector of nodal quantities of the sum of the traction. The sub-matrices , , , ,A B C D E  and sub-

vectors 1 2,R R  are given explicitly by  

3( 1) 3,3( 1) 3 , ,[ ] ( ) ( ) ( )
2 c

s

p q p qS
dSA y y y    (37) 

3( 1) ,3( 1)
1[ ] ( ) ( ) ( )
2 c

p i q j ij p qS
dSB y y y    (38)

 

3( 1) ,3( 1)[ ] ( ) ( ) ( ) ( ) ( )
c c

i
p i q j p j qS S

U dS dSC y y y  (39)

3( 1) ,3( 1)[ ] ( ) ( ) ( ) ( ) ( )

                            ( ) ( ) ( ) ( ) ( ) ( )
c c

c c

i
p i q j p mj m qS S

i
p mj m qS S

G D dS dS

H n dS dS

D y y y

y y y
 (40)

3( 1) ,3( 1) 3( 1) ,3( 1)[ ] ( ) ( ) ( ) ( ) ( ) [ ]
c c

ti
p i q j t p mj m q p i q jS S

D C D dS dSE Ay y y  (41)

0
1 3( 1)

1[ ] ( ) ( ) ( )
2 c

p i p iS
t dSR y y y ; 0

2 3( 1)
1[ ] ( ) ( ) ( )
2 c

p i p iS
t dSR y y y  (42) 

3( 1) 3( 1)[ ] q i q iUU ; 3( 1) 3( 1)[ ] q i q iUU ; 3( 1) 3( 1)[ ] q i q iTT  (43) 
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3.2. Numerical integration 

To evaluate the sub-matrices , , , ,A B C D E

 

and sub-vectors 1 2,R R numerically, the single and 

double surface integrals must be properly treated. All single surface integrals contain regular 

integrands and can be efficiently and accurately integrated using standard Gaussian quadrature. 

Unlike single surface integrals, double surface integrals can be categorized into three types 

depending on a pair of elements resulting from the discretization of the surface cS . The first type is 

termed a regular double surface integral since its integrand is not singular with only mild variation. 

This type of integral arises when both elements in a pair are relatively remote in comparison with 

their characteristic size. Similar to the single surface integral, all regular double surface integrals 

can be accurately integrated by Gaussian quadrature. The second type, termed weakly singular 

double surface integrals, arises when both elements in a pair are identical and their integrand is 

therefore weakly singular due to the involved kernels. Although these integrals exist in the sense of 

Riemann, it was pointed out by Xiao [45] that they cannot be efficiently integrated by standard 

Gaussian quadrature. To circumvent such difficulty, similar techniques based on integrand 

regularization via a series of transformations proposed by Li and Han [46], Hayami and Brebbia 

[47] and Xiao [45] are employed. The last type of double surface integrals, which are considered 

most challenging, is a nearly singular integral. The integrand of these integrals is nearly singular 

since both elements in a pair are relatively close in comparison with their characteristic size and this 

renders the kernels contained in those integrals not only nearly singular but also exhibiting rapid 

variation. Similar to the weakly singular integrals, Gaussian quadrature cannot be used to integrate 

nearly singular integrals efficiently. Special techniques proposed by Hayami [48], Hayami and 

Matsumoto [49], and Xiao [45] are systematically adopted to perform the numerical integration of 

this type of integrals. 

4. Numerical results 

First, to verify the formulation and numerical implementations, a penny-shaped crack in an 

unbounded domain is considered, to compare results with existing benchmark solutions. Next the 

elliptical crack and two interacting penny-shaped cracks in an unbounded domain are fully 

investigated. 

In the analysis, three meshes with different levels of refinement are utilized to investigate 

the convergence of numerical solutions. Nine-node isoparametric elements are used to discretize the 

entire crack front while the other parts of the crack surfaces are discretized by eight-node and six-

node isoparametric elements. The material Si [100] is used for all of numerical examples, where 
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0t

0t

properties of the bulk material and the residual surface tension 107 ,E GPa 0.33 and

0.6056 /s N m  are obtained from Miller and Shenoy [50]. For convenience in the handling of 

numerical analysis, presentation of results, and demonstration of the influence of residual surface 

tension, all involved quantities are normalized in a proper fashion. For instance, the unknown sum 

of the traction is normalized by the shear modulus  (i.e., 0t t ); the unknown sum and jump 

of the crack-face displacement are normalized by a special length scale 0.01506s nm

(i.e., 0u u  and 0u u ); all characteristic lengths representing the geometry of the crack 

such as the crack radius a, the semi-major axis a, and the semi-minor axis b used in following 

examples are normalized by the length scale  (e.g., 0a a  and 0b b ); and the prescribed 

traction on the crack surface is normalized by the shear modulus  (i.e., 0
0i it t ) . 

4.1. Penny-shaped crack in an unbounded domain 

As a means for verifying the proposed technique, the problem of a penny-shaped crack of radius a

embedded in an isotropic, linear elastic infinite medium is considered (Fig. 3(a)). The crack is 

subjected to self-equilibrated, uniformly distributed normal traction 0
3 3t t t . This problem has 

been previously solved analytically by [20, 21] using Hankel integral transforms and a special 

technique for solving dual integral equations and their results are employed as the benchmark 

solutions to validate the proposed FEM-SGBEM technique. The three meshes of the crack surface 

used in the numerical study are shown in Fig. 3(b). 

                                                                                                                 

   

  (a) (b) 

Fig. 3. (a) Schematic of a penny-shaped crack of radius a embedded in an isotropic, linear elastic 

infinite medium subjected to uniformly distributed normal traction 0
3 3t t t ; (b) Meshes 

adopted in the analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105 nodes. 

Mesh-3: 128 elements and 401 nodes. 

 Mesh-1 Mesh-2 Mesh-3

2x

3x
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 The normalized crack opening displacement and normalized stresses in the vicinity of the 

crack front, when the influence of the residual surface tension is taken into account, are shown in  

Fig. 4. Results are compared with those obtained by an analytical technique [20, 21]. It is seen that 

the current technique yields solutions that agree very well with the benchmark solutions for both 

crack opening displacement and stresses 11, 22, 33 in the vicinity of the crack front. To further 

examine the influence of the residual surface tension, the normalized crack opening displacement 

and the normalized vertical stress 33 in the vicinity of the crack front with different values of 

residual surface tension s ranging from 0 to 1.0 N/m are reported in Fig. 5. It can be concluded that 

the residual surface tension exhibits significant influence on the crack opening displacement and the 

vertical stress. In particular, as s  becomes larger, the deviation of results from the classical case 

(i.e., without the residual surface tension) significantly increases and, clearly, it makes the elastic 

medium much stiffer. 

 To demonstrate the size-dependent behavior of results due to the presence of residual surface 

tension, the crack opening displacement and the vertical stress in the vicinity of the crack front are 

shown in Fig. 6 for both the classical case and the present study. It is evident that, by including the 

residual surface tension effects in the mathematical model, the solutions exhibit size-dependent 

behavior. In particular, the normalized crack opening displacement and vertical stress in the vicinity 

of crack front depend significantly on the crack size and this is in contrast with the classical case 

where the normalized crack opening displacement and normalized vertical stress are independent of 

crack radius. 

4.2. Elliptical crack in infinite domain 

To demonstrate the capability of the proposed technique for treating mode-I cracks of arbitrary 

shape, an elliptical crack embedded in an isotropic, linear elastic infinite domain is considered (see 

Fig. 7(a)). The crack front is parameterized in terms of a parameter t  by 

1 2 3cos , sin , 0; 0,2x a t x b t x t   (44) 

where a and b are the major and minor semi-axes of the crack, respectively. The crack is subjected 

to a self-equilibrated, uniformly distributed normal traction 0
3 3t t t . Numerical results are 

presented for the aspect ratio 1,2,3a b  and three meshes shown in Fig. 7(b) are used to model the 

elliptical crack. 

 The normalized crack opening displacement and the normalized stress 0
33 t  along the 

minor axis, when the influence of the residual surface tension is included, are presented in Fig. 8 for 
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aspect ratio 1,2,3.a b  Clearly, converged results of the crack opening displacement are obtained 

with Mesh-2 and Mesh-3 for all three aspect ratios (see Fig. 8(a)). It can be seen in Fig. 8 that when 

the aspect ratio a b  increases, the influence of the residual surface tension on the crack opening 

displacement and the stresses near the crack decreases.

r0/a0

(a)
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Analytical Sol. [20, 21]
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3.0
- Present study
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Fig. 4. Penny-shaped crack under uniformly distributed normal traction, for 107 , 0.33E GPa

and residual surface tension 0.6056 /s N m : (a) Normalized crack opening displacement, (b) 

Normalized stress 0
11 / t in the vicinity of the crack front, (c) Normalized stress 0

22 / t  in the 

vicinity of the crack front, and (d) Normalized stress 0
33 / t  in the vicinity of the crack front. 
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Fig. 5. Penny-shaped crack under uniformly distributed normal traction, for 107 , 0.33E GPa

for different residual surface tension s : (a) Normalized crack opening displacement and (b) 

Normalized stress 0
33 / t in the vicinity of the crack front. 
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Fig. 6. Penny-shaped crack under uniformly distributed normal traction, for different crack radii 

0 / 0.5,1.0,5.0a a for 107 , 0.33E GPa , 0.6056 /s N m : (a) Normalized crack 

opening displacement and (b) Normalized stress 0
33 / t in the vicinity of the crack front. 
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  (a) (b) 

Fig. 7. (a) Schematics of an elliptical crack embedded in an isotropic, linear elastic infinite medium 

subjected to uniformly distributed normal traction 0
3 3t t t  and (b) Meshes adopted in the 

analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105 nodes. Mesh-3: 128 

elements and 401 nodes. 
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Fig. 8. Elliptical crack under uniformly distributed normal traction, for different aspect ratios 

/ 1,2,3a b  for 107 , 0.33E GPa , 0.6056 /s N m : (a) Normalized crack opening 

displacement along minor axis and (b) Normalized stress 0
33 / t in the vicinity of the crack front 

along the minor axis. 
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In order to demonstrate the influence of the residual surface tension, the normalized crack 

opening displacement and the normalized vertical stress 33 in the vicinity of crack front with 

different values residual surface tension s ranging from 0 to 1.0 N/m are reported in Fig. 9. Two 

aspect ratios, 2,3a b , are considered in this particular case. As shown in Fig. 9, the influence of 

the residual surface tension is also significant and the medium is stiffer when the residual surface 

tension increases.

 To examine the size-dependent behavior of results due to the influence of residual surface 

tension, the crack opening displacement and the vertical stress in the vicinity of the crack front for 

0 0.5, 1.0, 5.0a  and two aspect ratios 2,3a b  are shown in Fig. 10. As can be seen in Fig. 10, 

the normalized crack opening displacement and normalized stresses in the vicinity of the crack front 

are size-dependent. It is contrary to the classical case (i.e., without the residual surface tension) that 

the solutions are size-independent. When either the crack-size or the aspect ratio decreases, the 

influence of the residual surface tension becomes significant; in particular, it renders the medium 

stiffer. 
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Fig. 9. Elliptical crack under uniformly distributed normal traction for different residual surface 

tension s  , for 107 , 0.33E GPa , for different aspect ratios / 2,3a b : (a) Normalized crack 

opening displacement along the minor axis and (b) Normalized stress 0
33 / t in the vicinity of the 

crack front along the minor axis. 
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Fig. 10. Elliptical crack under uniformly distributed normal traction for different crack radii 

0 / 0.5,1.0,5.0a a for 107 , 0.33E GPa , 0.6056 /s N m , for different aspect ratios 

/ 2,3a b : (a) Normalized crack opening displacement along the minor axis and (b) Normalized 

stress 0
33 / t in the vicinity of the crack front along the minor axis. 

4.3. Two interacting penny-shaped cracks in an unbounded domain 

As a final example, we demonstrate another feature of the current technique, viz. modeling multiple 

cracks, by considering a pair of identical penny-shaped cracks of radius a embedded in an isotropic, 

linear elastic unbounded domain as shown in Fig. 11(a). The distance between the centers of the 

two cracks is denoted by h. Both cracks are subjected to a self-equilibrated, uniformly distributed 

normal traction 0
3 3t t t . Here, the influence of the interaction between the two cracks on the 

maximum crack opening displacement is considered. To investigate the size-dependent behavior, 

two cases are considered where the normalized radii of the identical penny-shaped cracks are taken 

as 0 1a  and 10.  The three meshes shown in Fig. 11(b) are used to test the convergence of 

numerical solutions. 

 The normalized crack opening displacement of one of the penny-shaped cracks with radius 

0 10a  is shown in Fig. 12 for 2.4h a . It is seen that converged results of the normalized crack 

opening displacement are obtained and the residual surface tension has a significant influence on 

the predicted crack opening displacement.  
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 To study the interaction between the two cracks, the normalized maximum crack opening 

displacement is plotted for different values of h a  in Fig. 13. It can be observed in Fig. 13 that, in 

agreement with the previous examples of a penny-shaped crack and an elliptical crack, the 

maximum crack opening displacement decreases when the residual surface tension increases. The 

medium becomes much stiffer when the residual surface tension is taken into account. 
 

 
 
 
 
 
 
 

(a) (b)

Fig. 11. (a) Schematic of a pair of penny-shaped cracks of radius a embedded in an isotropic, linear 

elastic infinite medium subjected to uniformly distributed normal traction 0
3 3t t t  and (b) 

Meshes adopted for each crack. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105 

nodes. Mesh-3: 128 elements and 401 nodes. 
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Fig. 12. Normalized crack opening displacement for a pair of penny-shaped cracks with radius 

0 10a  and 2.4h a  under uniformly distributed normal traction, for 107 ,E GPa 0.33  and 

0.6056 /s N m .
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It can also be observed from Figs. 13(a), 13(b) and 13(c) that results for the case of two 

interacting cracks converge very fast to those of a single crack when the residual surface tension 

increases. In particular, as the value of h a  is greater than 8, 5 and 3.5 for the classical case, 

0.6056 /s N m , and 1 /s N m , respectively, the normalized maximum crack opening 

displacement of the two interacting crack and that of the single crack are nearly identical. This not 

only implies the significant reduction of the interaction between the two cracks due to the presence 

of the residual surface tension but also provides the applicable range of the aspect ratio h a  to 

allow the replacement of the two-crack model by the single crack model. In addition, as clearly 

indicated in Figs. 13(a) and 13(d), the interaction between the two cracks for the classical case is 

size-independent (i.e., solutions of the two cracks converge asymptotically to that of the single 

crack in the identical manner). On the contrary, when the residual surface tension is incorporated in 

the mathematical model, the size-dependent behavior can be clearly observed by comparing results 

in Figs. 13(b), 13(e) and results in Figs. 13(c), 13(f), respectively. The decrease in the crack size 

also lowers the interaction between the two cracks. 

5. Conclusions 

A computationally efficient numerical technique capable of modeling mode-I planar cracks in three-

dimensional, linearly elastic media incorporating the influence of residual surface tension has been 

established. The governing equations have been formulated based on the classical theory of linear 

elasticity for the bulk medium and the Gurtin-Murdoch surface elasticity model for the 

infinitesimally thin layers on the crack surfaces. The fully coupled system of governing equations 

has been solved numerically by using the FEM-SGBEM coupling procedure. Numerical results for 

the penny-shaped crack problem have been compared with the analytical solution to validate the 

formulation and the proposed FEM-SGBEM method. By solving both the elliptical crack and two 

interacting cracks problems, the current technique has been found computationally promising to 

treat mode-I planar cracks including residual surface tension effects, for arbitrary shaped cracks and 

multiple cracks in three-dimensional isotropic linear elastic media. It has also been shown that the 

residual surface tension has a significant influence on the crack opening displacement and stresses 

in the vicinity of the crack front. Consideration of the surface stresses in the mathematical model 

not only renders the material stiffer but also introduces the size-dependency behavior of the solution. 

The presence of the residual surface tension also tends to weaken the interaction among cracks. 
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Abstract 

An efficient numerical procedure for modeling planar cracks in a three-dimensional, linear elastic, 
infinite medium which accounts for the influence of surface stresses is presented in this paper. The 
concept of surface stresses, which has been widely employed in the investigation of nano-scale 
problems, is considered in the present study to derive a suitable mathematical model capable of 
simulating nano-sized cracks. An infinitesimally thin layer of material on the crack surface is 
modeled by a zero-thickness surface perfectly bonded to the bulk material, with its behavior 
governed by the Gurtin-Murdoch constitutive relation. In the formulation, the classical theory of 
isotropic linear elasticity is utilized to establish the governing equation of the bulk material in terms 
of completely regularized boundary integral equations for the displacement and traction on the 
crack surface. For the zero-thickness layer, the final governing equation incorporating the surface 
stress effect is obtained in a weak form following the standard weighted residual technique. The 
fully coupled system of equations is then solved by the FEM-SGBEM coupling numerical 
procedure. Due to the weakly singular feature of all involved boundary integral equations, standard 
continuous interpolation functions can be employed everywhere in the approximation of crack-face 
data and only special quadrature for evaluating nearly singular and weakly singular integrals is 
required. Once the implemented numerical scheme is validated with available benchmark solutions, 
it is applied to investigate the nano-scale influence of nano-sized cracks. Results from an extensive 
parametric study reveal that, the presence of surface stresses not only increases the near-surface 
material stiffness but also introduces size dependent behavior of solutions and the reduction of 
stresses in the region ahead of the crack front. 

Keywords: FEM-SGBEM Coupling, Gurtin-Murdoch Model, Nano-sized Cracks, Size 
Dependency, Surface Stresses. 

Introduction 
Nano-structured materials such as nano-belts, nano-springs, nano-wires, nano-tubes, and 
nano-composites have received much attention in various fields in recent years due to their 
desirable and unique features. One obvious example of their vast applications is the 
invention of nano-scale components and devices. In the design procedure, analysis and 
assessment of failure/damage have been found to be an essential step that must be properly 
considered to ensure the safety and integrity throughout their lifespan. While conventional 
linear elastic fracture mechanics has been well established and successfully employed as a 
tool in the modeling of existing defects/flaws in linear elastic media at a macroscopic 
scale, those hypothetical models have failed to simulate the problem of nano-sized cracks 
due to the limitation of their underlying governing physics and simplified assumptions. 
The enhancement of classical continuum-based fracture models to properly incorporate the 
nano-scale influence is, therefore, required in order to accurately capture inherent physical 
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characteristics at such a small scale. Atomistic and molecular dynamics simulations have 
demonstrated that atoms in the vicinity of the free surface behave differently from those 
within the bulk material and effects of the surface free energy on the mechanical behavior 
can be very important at the nano-scale level. This near-surface phenomenon is one of the 
most important factors rendering the difference between macroscopic and nano-scale 
structures and must be properly integrated into the continuum-based models.  
 Gurtin and Murdoch [1] and Gurtin et al. [2] proposed a well-known, surface elasticity, 
continuum-based theory to enhance the modeling capability to capture the effects of 
surface free energy in solid materials. In their model, the surface is assumed to be elastic 
and very thin, which can be mathematically modeled as a layer of zero thickness perfectly 
bonded to the bulk material. The behavior of such an idealized surface is governed by a 
linear constitutive law involving surface material parameters different from those of the 
bulk material. In the past two decades, the Gurtin-Murdoch surface elasticity theory has 
been widely used to investigate various nano-scale problems (e.g., nano-scale elastic films 
[3-5], nano-sized particles and wires [4], nano-scale inhomogeneities [6-8], nano-
indentations [9], etc.) and has also been validated because results predicted by this 
continuum-based model exhibit reasonably good agreement with those from atomistic and 
molecular dynamics simulations [4,10-12]. 
 The Gurtin-Murdoch surface elasticity model has also been utilized in the investigation 
of nano-sized cracks; however, on the basis of an extensive literature survey, most existing 
studies are still limited to certain problem settings, formulations and solution techniques. 
For instance, studies of nano-sized cracks under various loading conditions using either the 
two-dimensional, blunt-crack or classical sharp-crack models can be extensively found in 
[12-16] and [17-21], respectively. In those studies, analytical, semi-analytical or numerical 
techniques were proposed to solve the associated boundary value problem. It should be 
remarked that while use of two-dimensional models in the simulation significantly reduces 
both theoretical and computational efforts, it, at the same time, poses several drawbacks 
including the loss of out-of-plane information and limited capability to treat cracks of 
general geometry. Recently, Intarit et al. [22] and Intarit [23] successfully developed an 
analytical technique based on Hankel integral transforms to investigate the influence of 
surface stresses on the behavior of three-dimensional, nano-sized cracks. Nevertheless, due 
to the limitation of their solution technique, only penny-shaped cracks under axisymmetric 
loading can be considered. In practical situations, nano-sized crack problems can be very 
complex in terms of geometries, loading conditions, and influences to be treated (e.g., 
surface free energy and residual surface tension). As a result, the development of a fully 
three-dimensional model and an efficient and powerful numerical procedure to enhance the 
capability of existing techniques is essential and still requires rigorous investigations. Most 
recently, Nguyen et al. [24] developed a computational procedure based on the coupling of 
the finite element technique and the boundary integral equation method to model nano-
sized planar cracks in an infinite elastic medium. While their technique is applicable to 
planar cracks of arbitrary shapes, the formulation is still restricted to a limited version of 
Gurtin-Murdoch model accounting only for the residual surface tension and the 
implementation was carried out within the context of pure mode-I loading conditions.
 The present study directly generalizes the work of Nguyen et al. [24] to incorporate the 
full Gurtin-Murdoch surface elasticity model including both surface elasticity and residual 
surface tension in modeling the zero-thickness layer. The incorporation of in-plane 
elasticity of the surface renders the mathematical model more complete and well-suited for 
studying the influence of in-plane surface stress on essential fracture data such as relative 
crack-face displacement and near-tip field, and the size-dependent behavior of the 
predicted solution.
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Problem Formulation 
In this section, the description of the boundary value problem considered in the present 
study is clearly stated and then the formulation of the key governing equations for both the 
bulk material and the zero-thickness layer on the crack surface are briefly summarized. The 
fully coupled system of governing equations resulting from the enforcement of interfacial 
conditions is finally presented.

Problem Description 
Consider a three-dimensional, linearly elastic, infinite medium  containing an isolated, 
planar crack of arbitrary shape with a selected reference Cartesian coordinate system {O;
x1, x2, x3}, as shown schematically in Figure 1(a). The crack is represented by two 
geometrically identical surfaces, denoted by cS  and cS  with the corresponding outward 
unit normal vectors n  and n , and, for convenience in further development, is oriented 
perpendicular to the x3-axis. In the present study, the medium is assumed free of body 
forces and remote loading, but subjected to prescribed, self-equilibrated, normal tractions 

0t and 0t on the crack surfaces cS  and cS , respectively (see Figure 1(b)). An 
infinitesimally thin layer on each crack surface possesses a constant residual surface 
tension s  (under unstrained conditions) and the surface Lamé constants s  and s ,
whereas the rest of the medium, termed the “bulk material”, is made of a homogeneous, 
isotropic, linearly elastic material with shear modulus  and Poisson’s ratio .
 A clear problem statement of the present study is, to determine the complete elastic 
field including the displacements and stresses within the bulk material by taking the 
influence of surface stresses into account. Fracture related information such as relative 
crack-face displacement and local stress field in the vicinity of the crack front is also of 
primary interest.   

  (a) (b) 

Figure 1: (a) Schematic of a planar crack embedded in a three-dimensional, linearly elastic, 
infinite medium and (b) prescribed normal traction on crack surfaces. 

Governing Equations 
In the formulation of the boundary value problem, the whole medium is first decomposed 
into three parts: the bulk, a layer of zero thickness on the surface cS , and a layer of zero 
thickness on the surface cS . Both the zero-thickness layers are assumed to be perfectly 
bonded to the bulk material. 
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 Since the bulk material is made of a homogeneous, isotropic, linearly elastic material, 
the classical theory of isotropic linear elasticity is used to describe its behavior. For 
convenience in the treatment of an infinite body containing cracks, the final governing 
equations are given in terms of boundary integral equations for the sum of the 
displacement and the jump of the tractions across the crack surface as (see details in 
Rungamornrat and Mear [28] and Rungamornrat and Senjuntichai [30]),  
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where c cS S ; ( ) ( ) /t tmj m jD n  is a surface differential operator with tmj  denoting 

the standard alternating symbol; b b b
j j ju u u  and b b b

j j ju u u  are the sum and the 

jump of the displacement across the crack surface; b b b
j j jt t t  and b b b

j j jt t t  are the 

sum and the jump of the traction across the crack surface; { , }p kt u  are sufficiently smooth 

test functions; and the singular kernels { , , , }p p tk p
j mj mj ijU G C H  are defined for isotropic linearly 

elastic materials by, 
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where ij  is the Kronecker delta symbol and || ||r y . The boundary integral equations 
(1) and (2) are formulated in a weak form and contain only weakly singular kernels of 

(1 )rO  and, in addition, involve only unknowns on the crack surface.
 The behavior of the two zero-thickness layers is governed by the full version of Gurtin-
Murdoch surface elasticity model, including the influence of both surface elasticity and 
residual surface tension. The equilibrium equations, surface constitutive relations, and 
strain-displacement relationship of the zero-thickness layers cS  and cS are of the same 
form and given by (see also [1, 2]), 
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0
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i i it t   (7) 
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1
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where , ,s s s
i iu  represent stress, strain and displacement components of each layer;  

0t denotes prescribed traction on the top of each layer; and st denotes the unknown traction 
exerted on the interface of each layer by the bulk material. It is noted that the superscript 
“s” is utilized to emphasize that those quantities are associated with the two layers and 
Greek subscripts take the values 1, 2 (instead of 1, 2, and 3 as the Latin subscripts). The 
weak statement of (7)-(9) for both layers cS  and cS  can readily be established following 
a standard procedure based on the weighted residual technique and the final results are 
given by (see also the development of weak statement for the special case of Gurtin-
Murdoch model in the work of Nguyen et al. [24]),
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where superscripts “ ” and “ ” indicate the sum and jump of quantities across the crack 
surfaces and su  and su  are sufficiently smooth test functions. It is worth noting that the 
test function su  satisfies the homogeneous condition on the boundary of the crack surface 
similar to the relative crack-face displacement su , i.e., 0s su u  on cS . By enforcing 
the continuity of the displacements and tractions along the interface of the two layers and 
the bulk material (i.e., s b

i i iu u u , s b
i i iu u u , s b

i i it t t , s b
i i it t t ), 

the governing equations of the bulk material (1)-(2) and those of the surfaces (10)-(11) can 
be combined to obtain a final system of governing equations for the entire medium as, 
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where the bilinear integral operators , , ,A B C D  and E  are defined by, 
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and the linear integral operators 1R  and 2R  are defined, in terms of the prescribed traction 
data 0t  and 0t , by,

0
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c

l l
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X t dSXR   (19) 

0
2
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c

l l
S
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It is remarked in particular that the last equation of (12) is obtained by combining 
equations (2) and (11), along with choosing the test functions satisfying s

i iu u .

Numerical Implementation 
Standard procedures for the weakly singular SGBEM (e.g., [25-27, 29]) and for the 
standard finite element method (e.g., [31-33]) are employed to form the discretized system 
of linear algebraic equations of (12). Since all involved boundary integrals in the governing 
equation of the bulk material contain only weakly singular kernels of (1 )rO , standard C0

interpolation functions are utilized everywhere in the approximation of both trial and test 
functions.
 The construction of the coefficient matrix of the discretized system requires the 
numerical integration of two different types of integrals viz. the single and double surface 
integrals. The former which contains the regular and well-behaved integrand can be 
integrated accurately and efficiently by standard, low-order Gaussian quadrature, whereas 
the numerical integration of the latter type (appearing in the boundary integral equations 
for the bulk material) is more challenging, depending primarily on the behavior of the 
integrand. Due to the presence of the singular kernels { , , , }p p tk p

j mj mj ij iU G C H n , the integrand 
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becomes weakly singular, nearly singular, and regular when two elements involved in the 
double surface integral are identical, relatively close, and sufficiently remote, respectively. 
The transformation technique and integration rule proposed by Xiao [34] and Li and Han 
[35] are utilized to treat such double surface integrals. Once the system of linear algebraic 
equations is solved by a selected efficient linear solver, all the primary unknowns on the 
crack surface i.e.,{ , , }i i iu u t are obtained and other quantities within the bulk material 
(e.g., the displacements and stresses) can then be obtained by using integral relations 
proposed by Rungamornrat and Mear [28]. 

Results and Discussions 
In this section, results for a penny-shaped crack embedded in an infinite medium are first 
presented, to verify both the formulation and the numerical implementation of the 
proposed technique with available benchmark solutions. Then, an elliptical crack 
embedded in an unbounded domain is further investigated, to demonstrate the capability of 
the proposed numerical technique. 
 In the analysis, three different levels of mesh refinement are adopted to examine the 
convergence of numerical results. Nine-node isoparametric elements are used to discretize 
the entire crack front, whereas the rest of the crack surface is discretized by eight-node and 
six-node isoparametric elements. Young’s modulus and Poisson’s ratio for the bulk 
material are taken as 107E GPa  and 0.33 , respectively, and the surface elastic 
constants and the residual surface tension are chosen identical to those utilized by [22, 23] 
(i.e., 4.4939 / ,s N m 2.7779 /s N m , 0.6056 /s N m ). For convenience in the 
numerical analysis, all quantities involved in the key governing equation are properly 
normalized. For instance, the unknown sum of the traction and the prescribed traction on 
the top surface of the two-thickness layers are normalized by the shear modulus  (i.e., 

0t t  and 0
0i i ); the unknown sum and jump of the relative crack-face 

displacement are normalized by a special length scale 0.24983s nm  (i.e., 

0u u  and 0u u ) where 2s s s ; and all characteristic lengths 
representing the geometry of the crack such as the crack radius a, the semi-major axis a,
and the semi-minor axis b used in following examples are normalized by the length scale 

 (e.g., 0a a  and 0b b ).

Penny-shaped Crack in an Elastic Infinite Medium 
In order to verify the proposed numerical technique, the problem of a penny-shaped crack 
of radius a embedded in a homogeneous, isotropic, linearly elastic infinite medium (see 
Figure 2(a)) is investigated. The crack is subjected to self-equilibrated, uniformly 
distributed traction 0 normal to its surface. This boundary value problem was previously 
studied by Intarit et al. [22] and Intarit [23] using Hankel integral transforms along with a 
solution technique for the dual integral equations, and their results are taken as the 
benchmark solutions. 
 The normalized crack opening displacement and vertical stress in the vicinity of the 
crack front obtained from the proposed numerical technique for the three meshes shown in 
Figure 2(b) are presented in Figure 3 along with the benchmark solution generated by [22, 
23]. It is seen that the numerical results are slightly mesh dependent and that they are 
highly accurate and almost indistinguishable from the analytical solution. It can also be 
pointed out from the results shown in Figure 3 that the two models incorporating the 
surface stresses with and without the influence of in-plane surface elasticity yield results 
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significantly different from those predicted by the classical model (i.e., without the surface 
stress effects). While both the residual surface tension and the in-plane surface elasticity 
contribute to such discrepancy, the influence of the residual surface tension seems more 
significant. Similar to previous findings (e.g., [9, 22]), the medium tends to be much stiffer 
than the classical case, when the full version of the surface stress model is considered in 
the analysis. 
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665 nodes
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(b)

0

x3

x2

Figure 2: (a) Schematic of a penny-shaped crack of radius a embedded in a three-
dimensional, isotropic, linear elastic infinite medium under self-equilibrated, uniformly 
distributed, normal traction and (b) three meshes adopted in the analysis. 
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Figure 4: Results for penny-shaped crack under uniformly distributed normal traction for 
different residual surface tension s  varied from 0 to 1 N/m and 107E GPa , 0.33 ,

4.4939 /s N m , 2.7779 /s N m ; (a) normalized crack opening displacement and  
(b) normalized vertical stress along the x1-axis where 0 1r x .
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Figure 5: Results for penny-shaped crack under uniformly distributed normal traction for 
different crack radii 0 {0.5, 1.0, 10.0}a  and 107E GPa , 0.33 , 4.4939 /s N m ,

2.7779 /s N m , 0.6056 /s N m ; (a) normalized crack opening displacement and  
(b) normalized vertical stress along the x1-axis where 0 1r x .

 To further examine the influence of residual surface tension on the normalized crack 
opening displacement and vertical stress in the vicinity of the crack front when the surface 
elasticity is included, results are presented in Figure 4 for various values of the residual 
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surface tension s ranging from 0 to 1.0 N/m with the surface elastic constants remaining 
fixed. It is evident that the residual surface tension exhibits significant influence on both 
the crack opening displacement and the vertical stress in the vicinity of the crack front. As 

s  becomes larger, the deviation of results from the classical case (i.e., without the surface 
stresses) increases significantly.  
 To demonstrate the size-dependent behavior of results due to the presence of surface 
stresses, the normalized crack opening displacement and vertical stress in the vicinity of 
the crack front obtained from three different models (i.e., the classical model without the 
surface stresses, the model incorporating only the residual surface tension [24], and the 
current model) are shown in Figure 5 for three different crack radii 

0 / {0.5, 1.0, 10.0}a a . It is evident from this particular set of results that solutions 
predicted by the two models including surface stresses clearly exhibit size-dependent 
behavior, whereas those predicted by the classical model are size-independent. 
Furthermore, as the crack radius decreases, the influence of surface stresses is more 
significant, especially when the surface elastic constants are included. 
 In addition, the incorporation of in-plane surface elasticity further reduces the crack 
opening displacement (see Figure 4(a) and Figure 5(a)). However, the existence of such 
surface elastic constants does not significantly influence the vertical stress in the vicinity of 
the crack front. The discrepancy of predicted vertical stress in the vicinity of the crack 
front from the two models with and without the surface elastic constants is barely 
recognizable (see Figure 4(b) and Figure 5(b)). 

Elliptical Crack in an Elastic Infinite Medium 
To demonstrate the capability of the proposed numerical technique of treating cracks of 
arbitrary shape, an elliptical crack embedded in an isotropic, linear elastic unbounded 
domain is considered (see Figure 6(a)). The crack front is parameterized in terms of a 
parameter t by,

1 2 3cos , sin , 0; 0, 2x a t x b t x t  (21) 

where a and b denote the major and minor semi-axes of the crack, respectively. The crack 
is subjected to a self-equilibrated, uniformly distributed normal traction 0 . Numerical 
results are presented for three different aspect ratios {1, 2, 3}a b  and three meshes 
shown in Figure 6(b) are adopted in the numerical study. 

 The normalized crack opening displacement and vertical stress along the minor axis, 
with the influence of the surface stresses, are presented in Figure 7 for all three aspect 
ratios considered. It can be seen from results in Figure 7, that when the aspect ratio a b
increases, the influence of the surface stresses on the crack opening displacement and the 
near-tip vertical stresses decreases. To further examine the size-dependent behavior of 
results due to the presence of the surface stresses, the crack opening displacement and the 
vertical stress in the vicinity of the crack front for 0 / {0.5, 1.0, 10.0}b b and for the 
aspect ratio 2a b  are shown in Figure 8. It can be observed from these results that the 
normalized crack opening displacement and the vertical stress in the vicinity of the crack 
front are apparently size-dependent. This is in contrast to the classical model (i.e., without 
the surface stresses) whose predicted solutions are size-independent. When the crack-size 
decreases, the influence of surface stresses becomes significant; in particular, it renders the 
medium much stiffer. Additionally, in agreement with the previous example, it can also be 



11 

observed that in-plane surface elasticity further reduced the crack opening displacement. 
However, it has negligible influence on the vertical stress in the vicinity of the crack front. 

x3

x2

x1

0

Mesh-1:
20 elements,

77 nodes

Mesh-2:
88 elements,
297 nodes

Mesh-3:
216 elements,

665 nodes

(a,0,0)

(a)

(b)

(0,b,0)

x3

x2
0

(0,b,0)
(0,-b,0)

Figure 6: (a) Schematic of an elliptical crack embedded in a three-dimensional, isotropic, 
linear elastic infinite medium under self-equilibrated, uniformly distributed, normal 
traction and (b) three meshes adopted in the analysis. 
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Figure 7: Results for elliptical crack under uniformly distributed normal traction and for 
different aspect ratios {1, 2, 3}a b ; (a) normalized crack opening displacement along the 
minor axis and (b) normalized vertical stress in the vicinity of the crack front along the 
minor axis. 



12 

r0/b0

0.0 0.2 0.4 0.6 0.8 1.0

u 3
/

0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Present study
Without s, s [24]
Classical Sol. [38]
b0 = 0.5
b0 = 1.0
b0 = 10

r0/b0

1.00 1.02 1.04 1.06 1.08 1.10

33
/

0

0

2

4

6

8

10

12

Present study
Without s, s [24]
Classical Sol. [39]
b0 = 0.5
b0 = 1.0
b0 = 10

  (a) (b) 

Figure 8: Results for elliptical crack under uniformly distributed normal traction for 
different crack radii 0 {0.5, 1.0, 10.0}b and / 2a b ; (a) normalized crack opening 
displacement along the minor axis and (b) normalized vertical stress in the vicinity of the 
crack front along the minor axis. 

Conclusions 
A numerical technique capable of modeling planar cracks in three-dimensional, linear 
elastic media including the surface stress effect has been established. The governing 
equations have been formulated using the classical theory of isotropic linear elasticity for 
the bulk medium and the full version of the Gurtin-Murdoch surface elasticity model for 
the infinitesimally thin layers on the crack surfaces. The full coupled system of governing 
equations has been solved numerically by using the FEM-SGBEM coupling procedure. 
The numerical results for a penny-shaped crack problem have been benchmarked with the 
available analytical solution, to verify the formulation and the proposed FEM-SGBEM 
technique. Results for an elliptical crack have also been investigated, to demonstrate the 
capability of the proposed computational procedure to treat cracks of arbitrary shape. The 
numerical technique developed in the present study has been found computationally 
promising and capable of modeling planar nano-sized cracks with arbitrary shape. 
Although results are presented only for the single crack problem for the sake of brevity, the 
formulation and implementation are definitely applicable to problems of multiple cracks. 
From an extensive numerical study, the significant role of surface stresses and the size-
dependent behavior of the predicted solutions are confirmed. In particular, a model 
including both in-plane elasticity of the surface and residual surface tension, significantly 
increases the near-surface material stiffness and predicts a much lower crack opening 
displacement and near-tip vertical stress, in comparison with the classical solution. 
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ABSTRACT 

This paper presents the analysis of an infinite, rigid based elastic layer under the action of 

axisymmetric surface loads by taking the surface energy effects into account. The 

corresponding boundary value problems for the bulk and the surface are formulated based on 

a classical theory of linear elasticity and a complete Gurtin-Murdoch constitutive relation. An 

analytical technique using Love’s representation and Hankel integral transform is adopted to 

derive an explicit integral-form solution for both the displacement and stress fields. A 

selected numerical quadrature is subsequently applied to efficiently evaluate all involved 

integrals. After conducting an extensive parametric study, the surface stresses show strong 

influence on responses in the region relatively close to the surface and also when a length 

scale of the problem is comparable to the intrinsic length of the surface. Such influence is 

more evident when the contribution of the residual surface tension is taken into account. 

Results for general axisymmetric surface loads are then used to derive fundamental solutions 

for a unit normal concentrated load, a unit normal ring load and a unit tangential ring load. 

Such basic results constitute the essential basis for the development of boundary integral 

equations governing other related problems such as contact and nano-indentation problems. 

Keywords: Elastic layer, Gurtin-Murdoch model, Hankel integral transform, Nano-scale 

influence, Surface stresses  

1. INTRODUCTION 

Nowadays, nanotechnology gains remarkable recognition in various disciplines including 

biology, chemistry, physics, medicines, material sciences, and also engineering. This is due to 

the fact that materials in the nano-scale level exhibit desirable physical, mechanical, and 

other crucial properties very different from those of a larger scale and this, therefore, enables 

their unique applications in various fields. For instance, nano-crystals are employed in 

household lightings to convert electricity into light instead of wasting away into heat; a newly 
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invented device, called nano-shell, is used in the medical applications to destroy a tumor after 

activated by a laser beam without any harm to contiguous cells; and nano-crystalline silicon 

carbide is found in the hard protective coatings of cutting tools and computer hard disks. To 

aid the optimal design and development of those newly invented, nano-scale devices, 

advanced material researches related to nano-scale and nano-structured materials are essential 

for profoundly understanding their fundamental properties and behaviors.  

Various sophisticated techniques and physically suitable mathematical models have 

been proposed continuously, in the past three decades, to investigate the behavior and 

properties of nano-scale and nano-structured materials. Experimental methods have been 

widely employed in the characterization of mechanical properties of materials in nano-scale 

due to their advantages of perceiving the actual behavior. For instance, Wong et al. [1] 

utilized an atomic-force microscope to determine the mechanical properties of isolated silicon 

carbide nano-rods (SiC-NRs) and multi-wall carbon nano-tubes (MWNTs); Mao et al. [2] 

also employed the atomic-force microscope to investigate the hardness of both ZnO and SnO2 

nano-belts; and Poncharal et al. [3] statically and dynamically measured the bending modulus 

of carbon nano-tubes in a transmission electron microscope. Although experimental 

investigations have boosted significant progress in the area, obtained results and findings are, 

in general, highly dependent on testing conditions and, in addition, sophisticated testing 

devices and high-precision testing procedures are required. 

Due to the significant breakthrough of numerical analysis and computational devices, 

mathematical modeling and simulations have become an attractive candidate and been widely 

used in the study of nano-scale problems. Once integrating essential inherent features via 

selected governing physics and properly calibrated with data from basic experiments, 

mathematical models have been found capable of simulating responses under various 

conditions and yielding sufficiently accurate results (e.g., [4-13]). Among existing 

techniques, the molecular dynamics or atomistic calculations are robust and generally yield 

highly accurate response prediction (e.g. [6, 7, 10-11]). However, those techniques still 

possess a major drawback associated with the requirement of tremendous computational 

resources in the solution procedure. As a result, continuum-based models enhanced by 

incorporating the nano-scale influence have been increasingly proposed due to their 

simplified governing physics and computational efficiency (e.g., [4, 8-9, 12-13]). 

Resulting from atomistic simulations, it was discovered that the energy at the free 

surface is generally different from that of atoms in the bulk material (e.g., [5]). The intrinsic 
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length scale, which is defined as the ratio of surface free energy and Young’s modulus is an 

inevitable material parameter [14] because it becomes comparable to the characteristic length 

of the material at a nano-scale. For this particular situation, the surface free energy plays an 

important role on the properties of materials and they, therefore, become size-dependent (e.g., 

[4]). As a result, the effect of surface stresses should be integrated into the classical 

continuum models to be capable of capturing the mechanical behavior of nano-scale 

materials. The concepts of surface energy and surface stress were originally introduced by 

Gibbs [15]. Gibbsian thermodynamics, one of the most useful tools for studying various 

surface phenomena, can be found in several studies of surface stresses (e.g., [16-18]). Gurtin-

Murdoch’s surface elasticity model, one that incorporates the influence of the surface free 

energy into the classical continuum-based theory, proposed by Gurtin and his co-workers 

[19-21] has been extensively employed. The surface, which has its own constitutive law, is 

assumed to be very thin and modeled as a mathematical layer with zero thickness and 

perfectly bonded to the bulk. Material parameters contained in the constitutive relation were 

generally obtained from atomistic simulation is utilized [7, 22].  

The validity of the Gurtin-Murdoch model has been extensively examined and verified 

in various investigations (e.g., [5, 7, 22-23]). For instance, Miller and Shenoy [22] and 

Shenoy [23] applied the Gurtin-Murdoch constitutive relation to investigate the behavior of 

nano-scale bars, beams and plates under uniaxial tension, bending, and torsion. Results from 

their study were compared with those from atomistic simulations and good agreement among 

those results was concluded. Dingreville et al. [5] studied the size-dependency of elastic 

properties of nano-sized particles, wires, and films by using an analytical technique. The 

effective Young’s modulus of thin films of various thicknesses in their analytical study was 

found in excellent agreement with results generated by molecular static (MS) simulations. 

Moreover, they also pointed out that their proposed formulation was much more 

computationally efficient than the MS simulations. According to the accuracy of predicted 

responses and computational efficiency of related solution procedures, Gurtin-Murdoch 

continuum-based model has gained significant popularity and been widely used in the study 

of nano-scale problems such as ultra-thin elastic films [24-25], nano-inclusions [26-27], 

nano-scale inhomogeneities [8-9], and nano-scale indentations [13, 28].  

Problems of surface loadings and contacts are considered fundamental in nano-

mechanics and have a wide range of applications including the investigation of mechanical 

properties such as hardness and elastic modulus. Work towards the modeling of near-surface 
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fields under different surface loading conditions by using enhanced continuum-based models 

to characterize the surface energy effects has started gaining attention from various 

researchers in the past two decades since it offers computationally efficient techniques 

capable of reasonably predicting the behavior of materials at a nano-scale level. For instance, 

Wang and Feng [29] studied the responses of an elastic half-plane subjected to surface 

pressure by considering the influence of a constant residual surface tension but ignoring the 

surface elastic constants. Huang and Yu [30] extended the work of Wang and Feng [29] by 

incorporating the surface elastic constants. Recently, Zhao and Rajapakse [31] studied the 

near-surface responses and size dependency of a two-dimensional and an axisymmetric three-

dimensional infinite elastic layers under surface loads by using Fourier and Hankel integral 

transform techniques. It should be emphasized, however, that the Gurtin-Murdoch model 

used in their study was still incomplete since the out-of-plane contribution of the residual 

surface tension was ignored in their formulation. Intarit et al. [32] studied the effect of 

surface stresses on the near-surface responses of semi-infinite dislocations and buried loads in 

an elastic half-plane. Again, the contribution of out-of-plane terms was still not considered. 

Most recently, Intarit et al. [33] generalized the work of Intarit et al. [32] by integrating the 

influence of the residual surface tension in addition to the surface elastic constants to model a 

two-dimensional elastic layer under buried loading conditions.  

On the basis of an extensive literature survey, the study of near-surface responses of a 

three-dimensional elastic layer using a complete version of Gurtin-Murdoch model has not 

been well recognized. In particular, an analytical solution of a three-dimensional elastic layer 

subjected to arbitrary axisymmetric surface loads by incorporating both in-plane and out-of-

plane contribution of surface stresses is still not available in the literature and is the main 

focus of the present study. Results from this fundamental problem should not only shed some 

light on the nano-scale influence but also be potentially useful in the investigation of more 

complex boundary value problems such as nano-indentations. 

2. PROBLEM FORMULATION 

This section begins with the clear description and essential assumptions of the boundary 

value problem considered in the present study. All basic field equations for the bulk material 

and the surface are then briefly summarized. A solution technique to determine the general 

solution of elastic fields within the bulk is also outlined with the final results. Finally, the 

boundary conditions derived from the surface equations are enforced to determine a complete 
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solution of the given boundary value problem.    

2.1 Problem Description 

Consider a three-dimensional, infinite, elastic layer of constant thickness h subjected to 

arbitrary axisymmetric surface loads with its base fully restrained against the movement as 

shown schematically in Fig. 1. The reference cylindrical coordinate system is chosen such 

that the origin is located at the free surface and the positive z-axis directs downward whereas 

other axes follow the standard right-hand rule. The entire domain is treated as a body 

consisting of two different parts, the bulk material occupying a three-dimensional region 

defined by 0 < z ≤ h and the zero-thickness layer occupying the plane z = 0 and perfectly 

bonded to the bulk material. The former is made of a homogeneous, isotropic, linear elastic 

material with Lamé constants { , } whereas the latter possesses the surface Lamé constants 

{ s, s} and the residual surface tension s. The normal and tangential loads acting on the 

surface (i.e., the top side of the zero-thickness layer) are denoted by p = p(r) and q = q(r), 

respectively. In the presence study, the bulk part is assumed to be free of the body force and 

remote loadings. For brevity, in what follows, the term “surface” is utilized throughout to 

signify the zero-thickness layer unless stated otherwise. The statement of the problem is to 

determine the complete elastic fields (e.g., the displacement and stress fields) within the bulk 

due to the arbitrary (axisymmetric) applied surface loads p(r) and q(r) and the influence of 

surface stresses.  

2.2 Basic Equations 

Basic field equations for the bulk follow directly the classical theory of isotropic, linear 

elasticity [34, 35]. In the absence of the body force and under axisymmetric deformation, 

equilibrium equations, constitutive laws, and strain-displacement relations (referring to the 

cylindrical coordinate system) are given by 

0 ,  0rrrr rz rz zz rz

r z r r z r
       (1) 

( 2 ) ,    ( 2 )
( 2 ) ,    2

rr rr zz rr zz

zz rr zz rz rz

      (2) 

1, , , ( )
2

r r z r z
rr zz rz zr

u u u u u
r r z z r

       (3)  

where { , , , }rr zz rz  are non-zero stress components; { , , , }rr zz rz zr  are non-zero 

strain components; and { , }r zu u  are non-zero displacement components.  
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For the surface (i.e., the zero-thickness layer), the equilibrium conditions on the surface 

in terms of the generalized Young-Laplace equation [36], Gurtin-Murdoch constitutive 

relation (e.g., [19, 20]), and strain-displacement relation are given, for the axisymmetric case 

and the undeformed flat surface, by 

( ) 0 ,  ( ) 0
s ss s s

s srrrr rz rz
r z

d dt q r t p r
dr r dr r

       (4) 

(2 ) ( ) ,   (2 ) ( ) ,   
s

s s s s s s s s s s s s s s s s s s z
rr rr rr rz

du
dr

  (5) 

,
s s

s sr r
rr

du u
dr r

            (6)  

where the superscript ‘s’ is used to denote quantities corresponding to the surface and st  
denote the traction exerted on the bottom side of the surface by the bulk material. It is worth 

noting that the out-of-plane contribution of the residual surface tension indicated by the third 

equations of (5) is generally ignored in several earlier studies (e.g., [31, 32]) but it was 

pointed out by certain investigators that the influence of such out-of-plane stress on elastic 

responses can become significant (e.g., [13, 33]). By combining equations (4)-(6), it leads to 

two governing field equations for the surface in terms of the surface displacement{ , }s s
r zu u : 

2

2 2
2( 1) 11 2( 1) ( ) 0

2

s s s ss
sr r r r

r
u d u du ud t q r

dr r dr r dr r
     (7) 

2 ( 1) ( ) 0
s ss

s sz z
z

du dud t p r
dr dr r dr

        (8)  

where various normalized quantities appearing in (7) and (8) are defined as follows: 

/  s s , /s s
r ru u , /s s

z zu u , / 2( )s s
r rt t , / 2( )s s

z zt t , / , 

/r r , /z z , ( ) ( ) /q r q r , ( ) ( ) /p r p r , ( 2 ) / 2 ( )s , and 

2s
s s .   

2.3 Boundary Conditions for Bulk 

Due to the movement restraint at the base of the elastic layer, all components of the 

displacement must vanish at /z h h , i.e., 

0r z hu                                        (9) 
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0z z hu                                      (10) 

where /r ru u  and /z zu u . Since the surface is perfectly bonded to the bulk material, 

the normalized displacements { , }s s
r zu u  and the normalized tractions { , }s s

r zt t  on the surface 

can be related directly to the displacement and stress within bulk by    

0
s
r r zu u , 0

s
z z zu u                               (11) 

0 0s
r rz zt , 0 0s

z zz zt                              (12) 

where / 2( )rz rz  and / 2( )zz zz . By employing (7), (8) and (11), and 

assuming that  s is spatially independent, the relations (12) can be further expressed as 

2

0 2
1 ( )

2( 1) 2( 1)

s
z z

zz z
d u du p r

r drdr
                           (13) 

2

0 2 2
1 ( )

( 2) 2( 1)
r r r

rz z
d u du u q r

r drdr r
                  (14) 

where constants 
 
and  are introduced only to differentiate among models with and 

without the consideration of the surface stress effects and the out-of-plane contribution of the 

residual surface tension; in particular, 1 if the surface stresses are taken into account 

otherwise 0 , and 1 if the out-of-plane contribution is taken into account otherwise 

0 . It is evident that for the special case of 0 , (13) and (14) simply reduce to 

traction boundary conditions for the classical case (without the influence of surface stresses). 

The relations (9)-(10) and (13)-(14) constitute a sufficient set of mixed boundary conditions 

for the bulk material.  

2.4 General Solution of Field Quantities within Bulk 

A form of the general solution for the normalized displacement and normalized stress within 

the bulk material can be obtained by following a standard procedure via Love’s strain 

potential representation and the Hankel integral transform technique (see more details in [37, 

38]). The final expressions are given explicitly by 

2
1

0
( 1) ( )r

dGu J r d
dz

                                (15) 
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2
2

02
0

( 2) ( )z
d Gu G J r d
dz

                            (16) 

3
2 2

0 13
0 0

2 1( ) ( )
2( 1) 2( 1)rr

dG d G dGJ r d J r d
z r dzdz

            (17) 

3
2 2

0 13
0 0

1( ) ( )
2 1

d G dG dGJ r d J r d
dz r dzdz

             (18) 

3
2

03
0

2 (3 4) ( )
2 1 2 1zz

d G dG J r d
dzdz

               (19) 

2
2 2

12
0

( 2) ( , ) ( )
2 1 2 1rz

d G G z J r d
dz

               (20) 

where ( )nJ  denotes the Bessel function of the first kind of order n, and  is the Hankel 

transform parameter. In addition, ( , )G G z  is a solution of the bi-harmonic equation in the 

Hankel transform domain, i.e., the function G satisfies 

22
2

2 ( , ) 0d G z
dz

                   (21) 

A general solution of the homogeneous ordinary differential equation (21) is given by 

( , ) ( ) ( )z zG z A Bz e C Dz e                  (22) 

where A, B, C, and D are unknown functions of  and can be determined by employing 

appropriate boundary conditions. 

2.5 Determination of A, B, C and D 

To obtain the complete solution of a particular boundary value problem, the four unknown 

functions A, B, C and D must be determined. This can be achieved by enforcing the boundary 

conditions at the top and bottom surfaces of the bulk (i.e., at 0z  and z h ). By taking 

Hankel integral transform of all four boundary conditions (9)-(10) and (13)-(14) along with 

exploiting the relations (15)-(16) and (19)-(20), it leads to a system of four linear algebraic 

equations in terms of A, B, C and D: 
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2

2

( )
1 1 1 1

2
1 1

( )
(1 ) (1 ) 2

2 2 0
1 1 0

s s

h h h h

h h h h

Z
A
B R

e h e e h e C
De h e e h e

     (23) 

where 2( 1) / ( 2) , ( 1) / 2s , and the functions ( )Z  and ( )R  are given 

in terms of the surface loads ( )p r  and ( )q r  by 

0
0

( ) ( )Z p r J r rdr                                                (24) 

1
0

( ) ( )R q r J r rdr                                            (25) 

A system of equations (23) is sufficient for uniquely determining A, B, C, and D as functions 

of  and the applied surface loads ( )Z and ( )R , and the final explicit solution is given by 

0 1 0 1
3 3

1 ( ) 1 ( )
4 4

Z Z R RA A A AZ RA
F F

                (26)
 

0 1 0 1
2 2

1 ( ) 1 ( )
4 4

Z Z R RB B B BZ RB
F F

                (27) 

0 1 0 1
3 3

1 ( ) 1 ( )
4 4

Z Z R RC C C CZ RC
F F

                 (28) 

0 1 0 1
2 2

1 ( ) 1 ( )
4 4

Z Z R RD D D DZ RD
F F

               (29) 

where 0 0 1 1{ , , , }Z R Z RA A A A , 0 0 1 1{ , , , }Z R Z RB B B B , 0 0 1 1{ , , , }Z R Z RC C C C , 0 0 1 1{ , , , }Z R Z RD D D D  

and F are given by 
2

2 2 2
0 2 2

2
1

2 2 2
0 2 2

2 2 2
1 2

( 3) 2 3 42
1( 1) ( 1)

( 3)( 1) 2 ( 1)( 1)
2

3 3 5 2 2
1( 1) ( 1)

2( 3) 4( 1) 2
2 1( 1)

h
Z

h
Z

h
R

s
h

R

hA e h

A e h h

hA e h

hA e h

               (30) 
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2 2
0 1

2 2
0 1

3(1 2 ) ,   ( 1)( 3) 2 ( 1)
1 2

3 3(1 2 ) ,   (1 ) 2
1 2 1

h h
Z Z

s
h h

R R

B h e B e h

B h e B e h
            (31) 

2
2 2 2

0 2 2

2
1

2 2 2
0 2 2

2 2 2
1 2

( 3) 2 3 42
1( 1) ( 1)

( 3)( 1) 2 (1 )( 1)
2

3 3 5 2 2
1( 1) ( 1)

2( 3) 4( 1) 2
2 1( 1)

h
Z

h
Z

h
R

s
h

R

hC e h

C e h h

hC e h

hC e h

               (32) 

2 2
0 1

2 2
0 1

3(1 2 )   ,   (1 )( 3) 2 ( 1)
1 2
3 3(1 2 )   ,   (1 ) 2
1 2 1

h h
Z Z

s
h h

R R

D h e D e h

D h e D e h
            (33) 

2
2 2

2

2
2 2 2 2 2

4 5 2( 1) ( 3)cosh(2 )
1

   2( 1) ( 3) sinh(2 )

2   ( 3) sinh(2 ) 2 ( 2)
2 1

   ( 3) cosh(2 ) ( 3) 2 ( 1)
2( 2)

s

s

F h h

h h

h h

h h

                        (34) 

Once the functions A, B, C, and D are solved, the displacement and stress within the bulk 

material can then be obtained by using the relations (15)-(20) along with (22). 

3. NUMERICAL INTEGRATION 

Although all functions A, B, C, and D are obtained in a closed form in terms of the transform 

parameter  and applied surface loads, determination of the displacement and stress fields 

within the bulk material still requires evaluation of various integrals arising from the Hankel 

transform inversion. Due to the complexity of integrands, the direct integration procedure is 

not suitable and, in the present study, an efficient numerical quadrature is utilized. 

It is evident that all integrals appearing in (15)-(20) are improper with the upper limit 

equal to infinity. To evaluate such integrals numerically, it is common to truncate the domain 
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of integration from (0, ) to (0, R ) where R  is a finite real number. The approximate 

displacement and stress fields in terms of A, B, C, and D and truncation parameter R  are 

therefore given by  

2
1

0
( 1) (1 ) (1 ) ( )

R
z z

ru A B z e C D z e J r d             (35) 

2
0

0

2 2( 1) ( ) ( ) ( )
( 1) ( 1)

R
z z

zu A B z e C D z e J r d     (36) 

3
0

0

2
1

0

2 1 2 1 ( )
1 1

1      (1 ) (1 ) ( )

R

R

z z
rr

z z

A B z e C D z e J r d

A B z e C D z e J r d
r

          (37) 

3
0

0

2
1

0

( )
1

1      (1 ) (1 ) ( )

R

R

z z

z z

Be De J r d

A B z e C D z e J r d
r

               (38) 

3
0

0

1 1 ( )
1 1

R
z z

zz A B z e C D z e J r d             (39) 

3
1

0
( )

1 1

R
z z

rz A B z e C D z e J r d             (40) 

While the convergence of above approximate integrals to an analytical solution is ensured 

mathematically as R  approaches infinity, in the numerical calculations, it suffices to choose 

a relatively large R  such that the error from the approximation is less than a specified 

tolerance since all integrands possess a desirable rate of decay at infinity. However, due to 

the oscillating nature of their integrands introduced by Bessel functions 0( )J r  and 1( )J r , 

the numerical evaluation of all truncated integrals appearing in (35)-(40) by standard 

Gaussian quadrature over a single interval generally requires a large number of integrations 

points. To enhance the computation efficiency, the integral over the interval [0, R ] is first 

divided into N sub-integrals and Gaussian quadrature is then applied to each sub-integral. As 

N increases, the oscillating behavior of the integrand in each sub-integral essentially 
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disappears and they can, therefore, be integrated accurately by using low-order Gaussian 

quadrature. 

In the present study, the suitable truncated parameter ( R ), number of sub-integrals 

(N), and number of integration points (n) utilized in the numerical integration are fully 

investigated to ensure the accuracy of numerical results while still consuming reasonable 

computational time. Both n and N have the direct influence on the accuracy of the numerical 

integration for a fixed truncation parameter R . In general, by increasing N, each sub-integral 

requires less number of integration points since the oscillating behavior of the integrand 

gradually disappears. In the numerical experiment, for a fixed R , N is increased until the 

value of the integral converges (for a specified tolerance) by using a low order Gaussian 

quadrature for each sub-integral. The ratio /R N  is then recorded and used to indicate the 

size of the sub-interval over which the integrand is sufficiently well-behaved to be integrated 

using low order Gaussian quadrature. Finally, a proper choice of the truncation parameter R  

is obtained by increasing such upper limit until the value of the integral converges (for a 

specified tolerance). It is important to remark that in such process, the number of sub-

integrals must be increased accordingly in order to maintain the size of the sub-intervals 

( /R N ) sufficiently small to allow the use of low-order Gaussian quadrature.  

4. NUMERICAL RESULTS AND DISCUSSION 

To verify both the formulation and numerical integration scheme, obtained results are first 

compared with available benchmark solutions. Once the proposed technique is fully tested, 

extensive studies for a layer under both axisymmetric normal and axisymmetric tangential 

surface loads are investigated to understand the nano-scale influence and size-dependent 

behaviors through the surface stress effects (with/without the contribution of the residual 

surface tension). Moreover, fundamental results of an elastic layer under a unit normal point 

load, a unit normal ring load, and a unit tangential ring load are also demonstrated and fully 

discussed. 

4.1 Verification 

In this sub-section, results obtained in the present study are verified with three available 

benchmark solutions. Without the integration of surface stresses in the mathematical model, 

the present numerical results are verified with the classical solutions of an elastic layer 
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proposed by Burmister [39-40] and an elastic half space reported by Ahlvin and Ulery [41], 

respectively. Moreover, obtained results are also compared with the solution proposed by 

Zhao [28] for the case that the influence of surface stresses is taken into account without the 

out-of-plane contribution of the residual surface tension. 

4.1.1 Infinite rigid-based elastic layer under normal point force 

Consider a point load ptP , normalized such that 2/pt ptP P , acting normal to the surface 

of a rigid-based layer with the normalized thickness 1.0h  and Poisson’s ratio 0.2  as 

shown in Fig. 2(a). Results for this particular case without the influence of surface stresses 

can readily be obtained by setting 0  and 0 . The radial and vertical displacements at 

the surface and non-zero stress components at 0.1z  along the radial direction are reported 

and compared with analytical solutions proposed by Bumister [39-40], which were tabulated 

by Poulos [42], in Tables 1-3. It is obvious from this set of results that solutions obtained 

from the present study show very good agreement with the benchmark solution. 

4.1.2 Elastic half-space under uniformly distributed normal traction 

A three-dimensional, elastic half-space with Poisson’s ratio 0.2 and subjected to 

uniformly distributed normal traction p0 over a circular area of normalized radius /a a  

shown in Fig. 2(b) is considered without the surface stress effects. To treat this classical case, 

and  are taken to be zero and the normalized thickness h  is chosen to be sufficiently 

large in the analysis to represent the half-space. Results for non-zero displacement and stress 

components are reported in Table 4 along with those reported by Ahlvin and Ulery [41]. 

Similar to the previous case, solutions obtained from the current study are almost 

indistinguishable from the reference results. 

4.1.3 Infinite rigid-based elastic layer under uniformly distributed normal traction 

Consider, next, an infinite, rigid-based, elastic layer with the normalized thickness 30h  

and subjected to uniformly distributed normal traction p0, normalized such that 0 0 /p p , 

over a circular area of normalized radius / 10a a  as shown in Fig. 2(c). To allow a 

direct comparison with available results proposed by Zhao [28], the same set of material 

constants obtained from atomistic simulation [7, 22] is utilized (i.e.,  = 58.17x109 N/m2,  = 

26.13x109 N/m2, s = 6.8511 N/m,  s = -0.376 N/m,  s = 1 N/m). Note that this particular set 

of material properties is also employed for the rest of numerical study presented hereafter. 

Results for the classical case, and the case accounting for the surface stress effects without 
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the out-of-plane contribution of the residual surface tension can be obtained by simply setting 

0, 0 , and 1, 0 , respectively. By comparing results for the surface 

displacement and stresses at 0.1z  along the radial direction with those presented by Zhao 

[28] for / 3h a  as shown in Figs. 3 and 4, it is found that solutions obtained from the 

present study are in excellent agreement with the benchmark solutions. 

4.2 Influence of Surface Stresses 

After the proposed solution and numerical scheme are verified, extensive parametric studies 

are performed to demonstrate the influence of surface stresses, the significant contribution of 

the residual surface tension, and the size-dependent behavior of the elastic field of the layer 

under normal and tangential axisymmetric surface loads. 

4.2.1 Infinite rigid-based elastic layer under uniformly distributed normal traction 

Consider an infinite, rigid-based, elastic layer subjected to uniformly distributed normal 

traction p0 over a circular area of normalized radius a  as shown in Fig. 2(c). Results for both 

radial and vertical surface displacements along the radial direction for 10a  and various 

values of the normalized thickness h  are reported in Fig. 5. It is apparent from this set of 

results that a model incorporating the out-of-plane component of the surface stresses (i.e., the 

third equation of (5)) predicts much lower surface displacement or, equivalently, renders 

materials stiffer whereas the solution obtained from a model excluding the out-of-plane 

contribution exhibits significant influence of the surface stresses only in the case of the radial 

displacement. This implies that the out-of-plane contribution of the residual surface tension is 

significant and, in general, cannot be neglected. In addition, results for all cases show similar 

trend for all values of h  considered; in particular, the magnitude of the displacement is larger 

as the normalized thickness of the layer increases. 

For non-zero stress components, results are obtained for 10h , 1a , and three 

different normalized depths {0.25,0.5,1.0}z . The variation of the normalized vertical stress 

in the radial direction is reported in Fig. 6(a). Clearly, the vertical stresses for all cases reach 

the maximum value at 0r  and decay monotonically and rapidly to zero as r  increases. 

Due to the presence of surface stresses, values of the vertical stress are lesser within the 

region under the surface loads ( / 1.0r a ) and insignificantly higher for / 1.0r a  in 

comparison with the classical solution. It can also be concluded from this set of results that 

the influence of surface stresses is more significant in the region relatively close to the 
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surface. In addition, such behavior becomes more apparent if the model incorporating the 

out-of-plane contribution of the residual surface tension is utilized in the analysis. 

Results for the normalized shear stress rzσ  are also reported in Fig. 6(c) for various 

normalized depths. The shear stress along the radial direction predicted by three different 

models exhibit the similar trend. In particular, the shear stress vanishes at 0r  due to the 

symmetry, rapidly increases and reaches its peak near the edge of the loading area (i.e., 

/ 1r a ), and promptly decay after reaching the peak. It is worth noting that, in the region 

very near the edge of the loading area, the surface stresses especially in a model including the 

out-of-plane contribution of the residual surface tension significantly lower the magnitude of 

the shear stress. As anticipated, the influence of surface stresses is quite large in a region near 

the surface and becomes negligible in a region far away from the surface. The variation of the 

normalized radial stress rrσ  and normalized hoop stress θθσ  along the radial direction are also 

presented for various depths in Figs. 6(b) and 6(d), respectively. While all three different 

models yield qualitatively similar stress profiles, presence of the surface stresses generally 

lowers the magnitude of stresses and the discrepancy from the classical solution is magnified 

when the out-of-plane component is included.   

Through the proper normalization, solutions obtained by a classical case without the 

surface stress effects exhibit no size-dependency. However, this is different for results 

predicted by the other two models integrating the surface stresses with/without the out-of-

plane term. The size-dependent behavior can be observed due to the existence of an intrinsic 

length scale associated with the presence of the surface stresses. In this study, the size-

dependency of all normalized stresses is investigated by varying the radius of the loading 

region while maintaining the ratio /h a .  Results for / 3h a  and / 0.5r a  of three 

different depths are reported in Fig. 7. Unlike the classical solutions, results obtained from 

the two models accounting for surface stresses depend strongly on the normalized radius a  

for relatively small a  and such dependence gradually disappear as a  increases. It is worth 

emphasizing that results predicted by the model taking the out-of-plane contribution of the 

residual surface tension exhibit much stronger size-dependency than that excluding the out-

of-plane term. 

4.2.2 Infinite rigid-based elastic layer under linearly distributed tangential traction 

For this particular case, the infinite, rigid-based elastic layer subjected to linearly distributed, 

tangential traction 0( ) /q r q r a  over a circular area of normalized radius a  as shown in Fig. 
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2(d) is investigated. The prescribed traction is normalized such that 0( ) /q r q r a   where 

0 0 /q q  and 0q  is the maximum traction at the edge of the loading region. Results for the 

normalized radial and vertical displacements for different thicknesses of the layer are 

reported in Fig. 8. It is evident from these results that the presence of surface stresses 

significantly lowers the magnitude of the displacement. However, the out-of-plane surface 

stress has a very strong influence on the vertical displacement and becomes negligible for the 

radial displacement. Moreover, when the thickness of the layer increases, both the radial and 

vertical displacements increase.  

For non-zero stress components, results are obtained for 10h , 1a , and three 

different normalized depths {0.25,0.5,1.0}z . Profiles of the normalized vertical stresses zzσ  

along the radial direction are reported in Fig. 9(a). At a relatively small depth, the tensile 

stress is observed within a region under the loading area and it gradually changes to the 

compressive stress when passing the edge of the loading area. The vertical stress profiles also 

show the strong influence of the surface stresses for the region relatively near the surface. 

Moreover, the discrepancy of results predicted by the two models with/without the out-of-

plane contribution of the residual surface tension is more apparent for the vertical stress but 

insignificant for the radial stresses rrσ  and the hoop stresses θθσ  (see Figs. 9(b) and 9(d)). 

Results for the normalized shear stress rzσ  are also reported in Fig. 9(c) for various depths. 

For this particular loading condition, the shear stress increases to reach its peak near the edge 

of the loading region and then abruptly decreases to zero after passing the edge of the loading 

area. Again, the influence of the surface stresses on this shear stress component is more 

apparent for the region close to the surface.  

To demonstrate the size-dependent behavior of solutions for a layer subjected to the 

linearly distributed tangential traction, a scheme similar to that used to study a layer under 

uniformly distributed normal traction is employed. The layer thickness and the radius of the 

loading region are varied while their ratio is fixed with 3h / a . The relationship between 

the normalized stress components and the normalized radius of the loading region for three 

different depths and / 0.5r a  are reported in Fig. 10. Unlike the case of uniformly 

distributed normal load, the out-of-plane contribution of the residual surface tension has very 

strong influences only on the vertical stress whereas, for other stress components, such 

contribution becomes negligible. However, solutions obtained from the two models 

accounting for the surface stresses still show the size-dependency. In particular, as the 
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normalized radius a  and the normalized depth z  decrease, the surface stress effects become 

more significant and the size-dependency of the predicted solution is obvious. 

4.3 Fundamental Solutions 

Since the formulation has been established for arbitrarily distributed, axisymmetric surface 

loads, general results can be further specialized to construct certain fundamental solutions. 

Here, solutions of an infinite, rigid-based, elastic layer subjected to three special loading 

conditions including a normal concentrated load at the origin, a normal ring load, and a 

tangential ring load are obtained. Although only results for the surface displacement are 

reported and discussed for the sake of brevity, other field quantities such as the displacement 

and stress at any location within the bulk can also be determined in a similar fashion. 

4.3.1 Infinite rigid-based elastic layer under normal concentrated load at origin 

Consider an infinite, rigid-based, elastic layer subjected to a normal concentrated load ptP  

(with the normalized load 2/pt ptP P ) as shown in Fig. 2(a). Profiles of the normalized 

radial displacement ru  and the normalized vertical displacement zu  at the surface obtained by 

three different models are reported in Fig. 11 for four different layer thicknesses 

{0.5,1.0,2.0,3.0}h . It is found that the normalized radial displacement is singular at 0r  

except the solution obtained from a model accounting for the out-of-plane contribution of the 

residual surface stress. On the other hand, results of the normalized vertical displacement 

tend to be infinite under the concentrated load for all cases and reduce rapidly when r  

increases. In addition, the similar behavior is observed for all layer thicknesses considered 

and the magnitude of the displacement is higher as the layer thickness increases. 

4.3.2 Infinite rigid-based elastic layer under normal ring load 

Consider, next, an infinite, rigid-based, elastic layer subjected to a normal ring load at the 

radius a, i.e., ( ) ( )rp r p r a  where rp  is a prescribed constant. The prescribed ring load 

is normalized such that ( ) ( )rp r p r a  where /r rp p .  Results for the normalized 

radial displacement ru  and the normalized vertical displacement zu  at the surface are plotted 

along the radial direction as shown in Fig. 12 for four different layer thicknesses 

{0.5,1.0,2.0,3.0}h and 1a . It is apparent from this set of results that the radial 

displacement for the classical case exhibits rapid variation at the location of the applied ring 

load while those obtained from the other two models are finite, smooth, and significantly 
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different from the classical solution. On the contrary, the vertical displacements predicted by 

the classical model and a model accounting for the surface stresses without the out-of-plane 

term are slightly different and singular at the location of applied load whereas that obtained 

from a model incorporating the out-of-plane term is finite and significantly different from the 

other two solutions. 

4.3.3 Infinite rigid-based elastic layer under tangential ring load 

Finally, consider an infinite, rigid-based, elastic layer subjected to a tangential ring load at the 

radius a, i.e., ( ) ( )rq r q r a  where rq  is a prescribed constant. Such applied load is 

normalized such that ( ) ( )rq r q r a  where /r rq q . Results for the normalized 

radial displacement ru  and the normalized vertical displacement zu  at the surface along the 

radial direction are reported in Fig. 13, once again, for four different layer thicknesses 

{0.5,1.0,2.0,3.0}h and 1a . For this particular loading condition, both the radial and 

vertical surface displacements obtained from the classical model are singular at the location 

of the applied ring load whereas those obtained from the two models accounting for the 

surface stresses are finite everywhere. While the results obtained from the two models exhibit 

huge discrepancy from the classical solution, the contribution of the out-of-plane surface 

stress is insignificant especially for the surface radial displacement.  

5. APPLICATIONS OF FUNDAMENTAL SOLUTIONS 

Results obtained in sub-section 4.3 for three fundamental loading conditions can be employed 

to construct Green’s function for both the displacements and stresses. Such Green’s functions 

possess vast applications such as in the calculation of an elastic field of the layer under 

arbitrarily distributed, axisymmetric surface loads and in the development of governing 

integral equations for contact and indentation problems.  

To clearly demonstrate their applications, let us consider a three-dimensional, infinite, 

rigid-based, elastic layer subjected to arbitrarily distributed, axisymmetric normal traction 

p(r) and tangential traction q(r). Once solutions of all field quantities due to both unit normal 

and unit tangential ring loads are determined, they can be utilized along with a method of 

superposition to obtain the integral relations for both the displacement and stress on the 

surface and within the bulk material due to the tractions p(r) and q(r). For instance, the radial 

and vertical displacements at any distance r̂  on the surface are given by 
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0 0

ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( )N T
r r ru r U r r p r dr U r r q r dr                   (41) 

0 0

ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( )N T
z z zu r U r r p r dr U r r q r dr                   (42) 

where ˆ( , )N
rU r r  and ˆ( , )N

zU r r  are radial and vertical displacements at any distance r̂  on the 

surface due to a unit normal ring load acting on the surface of the layer at the radius r, 

respectively, and ˆ( , )T
rU r r  and ˆ( , )T

zU r r   are radial and vertical displacements at any distance 

r̂  on the surface due to a unit tangential ring load acting on the surface of the layer at the 

radius r. Other field quantities at any point ( r̂ , ẑ ) within the bulk material, denoted 

generically by ˆ ˆ( , )r zR , can also be obtained in a similar fashion as  

0 0

ˆ ˆ ˆˆ ˆ ˆ( , ) ( , ; ) ( ) ( , ; ) ( )N Tr z r z r p r dr r z r q r drR R R                  (43) 

where ˆ ˆ( , ; )N r z rR  and ˆ ˆ( , ; )T r z rR  are corresponding responses at any point ( r̂ , ẑ ) within the 

bulk material due to the unit normal ring load and unit tangential ring load acting on the 

surface of the layer at the radius r, respectively. Clearly, for a problem where the surface 

traction p(r) and q(r) are fully prescribed, the integral relations (41)-(43) can be directly 

employed to determine all field quantities.  

For contact and nano-indentation problems, the traction p(r) and q(r) under an 

indentor are unknown a priori and they must be determined before the integral relation (43) 

can be used. For a special case of an axisymmetric, rigid, frictionless, nano-indentation 

problem, the tangential traction q(r) vanishes and the vertical displacement under the indentor 

is fully prescribed in terms of the known indentor profile pv   and the prescribed indentation 

depth d. The integral relation (42) for any r̂  under the indentor becomes   

0

ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( )   ,    
a

N p
z zu r U r r p r dr d v r r a                  (44) 

where a denotes the contact radius. The integral equation (44) can be solved to obtain the 

unknown contact pressure p(r). Once p(r) is determined, all other field quantities can readily 

be obtained from the integral relation (43) with q(r) = 0. 
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For an axisymmetric, rigid, fully bonded, nano-indentation problem, the radial 

displacement under the indentor identically vanishes and the vertical displacement under the 

indentor is fully prescribed in terms of the known indentor profile pv   and the prescribed 

indentation depth d. The integral relations (41) and (42) for any r̂  under the indentor become   

0 0

ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( ) 0   ,    
a a

N T
r r ru r U r r p r dr U r r q r dr r a                 (45) 

0 0

ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( ) ( )   ,    
a a

N T p
z z zu r U r r p r dr U r r q r dr d v r r a               (46) 

The two integral equations (45)-(46) are sufficient for solving the unknown traction p(r) and 

q(r). Once the unknown traction is obtained, all other field quantities can be computed, again, 

from the integral relation (43). 

For an axisymmetric, rigid, rough, nano-indentation problem, the tangential traction 

q(r) can be related to the normal traction p(r) via a selected friction model and, once again, 

the vertical displacement under the indentor is fully prescribed in terms of the known 

indentor profile pv   and the prescribed indentation depth d. The integral relation (42) for any 

r̂  under the indentor becomes   

0 0

ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( ( )) ( )   ,    
a a

N T p
z z zu r U r r p r dr U r r f p r dr d v r r a               (47) 

where a prescribed function f denotes the relation between p and q via the friction model. The 

integral equation (47) can be employed to solve for the unknown normal traction p(r). Once 

p(r) is determined, the tangential traction q(r) can readily be obtained from the function f and 

all other field quantities can be computed from the integral relation (43). 

 By following the same strategy, solutions of all field quantities due to a unit normal 

concentrated load applied to the surface of a layer can also be utilized as Green’s functions to 

establish integral relations for field quantities due to arbitrary distributed, normal traction on 

the surface. In addition, the integral relation for the vertical displacement on the surface can 

be employed to form the integral equation governing the unknown pressure under the rigid, 

frictionless indentor of arbitrary profiles. 

 While the formulation of the integral equations sufficient for solving the indentation 

problems is already established here, it still requires non-trivial and challenging tasks 
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regarding to various computational issues such as the efficiency and accuracy of the 

numerical procedure and approximate solutions, and this should deserve further investigation. 

6. CONCLUSIONS AND REMARKS 

A complete solution of a three-dimensional, infinite, rigid-based, elastic layer under 

axisymmetric normal and tangential surface loads with consideration of the surface stresses 

has been derived. A novel feature of the present study is the use of a complete version of 

Gurtin-Murdoch constitutive relation to model the free surface of the elastic layer. In the 

solution procedure, Love’s strain potential representation along with Hankel integral 

transform technique has been applied to obtain the general solution for the bulk material 

whereas the surface equations and conditions at the rigid base supply sufficient boundary 

conditions to determine all arbitrary constants. The displacement and stress fields within the 

bulk material have been obtained via a selected efficient numerical quadrature. Once the 

obtained solutions were verified by comparing with available benchmark solutions, extensive 

parametric study has been carried out to gain insight into the nano-scale influence and also 

fully investigate the size-dependent behavior. Moreover, fundamental solutions 

corresponding to normal concentrated load, normal ring load, and tangential ring load have 

also been constructed. 

Results from extensive parametric studies have confirmed the significance of the 

surface stresses and the necessity to properly treat such influence in the continuum-based 

model. In the region relatively close to the surface, the presence of the surface stresses 

exhibits very strong influence on both the displacement and stress fields. Magnitudes of field 

quantities obtained from models accounting for the surface effects are generally less than 

those obtained from the classical model. This is due to the fact that the applied surface loads 

do not entirely transfer into the bulk but part of them is carried by the surface through the 

equilibrium of the surface and the membrane-like action. Such influences also depend 

primarily on the length scale of the problem; the influence of the surface stresses becomes 

significant when the length scale is comparable to the intrinsic length of the surface. 

Moreover, it is worth pointing out that such behavior of the out-of-plane responses under the 

normal traction is more apparent in the model that integrates the out-of-plane contribution of 

the residual surface tension. This additionally confirms the necessity to treat such crucial 

contribution in the modeling of soft elastic solids and nano-scale problems. 
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In addition, the surface radial and vertical displacements of a layer under either a 

normal ring load or a tangential ring load predicted by a model employed in the present study 

are finite everywhere. If the out-of-plane component of the surface stresses is neglected, the 

predicted vertical displacement due to the normal ring load is still singular at the location 

where the load is applied. For the case of a normal concentrated load, the vertical 

displacement obtained from both the classical model and the model incorporating the surface 

stresses is singular at the location of the applied load and only the radial displacement 

obtained from a model accounting for the out-of-plane term is finite.  
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Fig.1 A three-dimensional, infinite, elastic layer subjected to axisymmetric surface loads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (a) Three-dimensional, infinite, rigid-based, elastic layer subjected to a normal point 

load; (b) an elastic half-space subjected to uniformly distributed normal traction; (c) three-

dimensional, infinite, rigid-based, elastic layer subjected to uniformly distributed normal 

traction; and (d) three-dimensional, infinite, rigid-based, elastic layer subjected to linearly 

distributed tangential traction. 
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                                  (a)                  (b) 

Fig. 3 Normalized displacement profiles of an infinite elastic layer under uniformly 

distrubuted normal traction: (a) radial displacement and (b) vertical displacement.   
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                                  (c)                  (d) 

Fig. 4 Normalized stress profiles of an infinite elastic layer under uniformly distrubuted 

normal traction: (a) vertical stress, (b) radial stress, (c) shear stress, and (d) hoop stress.  
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                                  (a)                  (b) 

Fig. 5 Normalized displacement profiles of an infinite elastic layer under uniformly 

distrubuted normal traction: (a) radial displacement and (b) vertical displacement. 
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                                 (c)                  (d) 

 

Fig. 6 Normalized stress profiles of an infinite elastic layer under uniformly distrubuted 

normal traction for 10h  and 1a : (a) vertical stress, (b) radial stress, (c) shear stress, and 

(d) hoop stress. 
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                                   (c)                  (d) 

 Fig. 7 Normalized stresses of an infinite elastic layer under uniformly distrubuted normal 

traction for 3h / a and 0 5r / a . : (a) vertical stress, (b) radial stress, (c) shear stress, and 

(d) hoop stress. 
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                                  (a)                  (b) 

Fig. 8 Normalized displacement profiles of an infinite elastic layer under linearly distrubuted 

tangential load: (a) radial displacement, and (b) vertical displacement. 

h / a 0.5  

h / a 1000  
h / a 3.0  
h / a 2.0  
h / a 1.0  

Classical solution  
 = 1,  = 0 
 = 1,  = 1 

h / a 0.5  

h / a 1000  
h / a 3.0  
h / a 2.0  
h / a 1.0  

Classical solution  
 = 1,  = 0 
 = 1,  = 1 

4π
u̅ r

/q̅
0 

4π
u̅ z

/q̅
0 

r ̅/a̅ r ̅/a̅ 



 8 

             

                                  (a)                 (b) 

   

 

              

                                  (c)                 (d) 

Fig. 9 Normalized stress profiles of an infinite elastic layer under linearly distrubuted 

tangential load for 10h  and 1a : (a) vertical stress, (b) radial stress, (c) shear stress, and 

(d) hoop stress. 
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                                (a)                 (b) 

   

             

                                   (c)                 (d) 

Fig. 10 Normalized stresses of an infinite elastic layer under linearly distrubuted tangential 

load for 3h / a and 0 5r / a . : (a) vertical stress, (b) radial stress, (c) shear stress, and   

(d) hoop stress. 
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                                 (a)                 (b) 

Fig.11 Normalized displacement profiles of an infinite elastic layer under normal 

concentrated load: (a) radial displacement and (b) vertical displacement.   
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Fig.12 Normalized displacement profiles of an infinite elastic layer under normal ring load: 

(a) radial displacement and (b) vertical displacement.  
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                                  (a)                 (b) 

Fig. 13 Normalized displacement profiles of an infinite elastic layer under tangential ring 

load: (a) radial displacement and (b) vertical displacement. 
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Table 1 Normalized vertical and radial displacements of a three-dimensional, infinite, rigid-

based, elastic layer subjected to a normal point load 

 

r ̅ 
r pt2πhEu / P  z pt2πhEu / P  

Burmister 
[39, 40] Present study Burmister 

[39, 40] Present study 

0.05 -14.362 -14.344 35.921 35.310 
0.1 -7.124 -7.172 16.728 16.554 
0.2 -3.455 -3.477 7.162 7.195 
0.3 -2.184 -2.178 4.016 4.050 
0.4 -1.523 -1.512 2.478 2.473 
0.5 -1.064 -1.109 1.599 1.579 
0.6 -0.824 -0.830 1.048 1.048 
0.7 -0.62 -0.620 0.69 0.704 
0.8 -0.465 -0.461 0.45 0.458 

 

Table 2 Normalized vertical and radial stress components of a three-dimensional, infinite, 

rigid-based, elastic layer subjected to a normal point load 

 

r ̅ 
( 1)2

zz pt4πh λ σ / P  ( 1)2
rr pt4πh λ σ / P  

Burmister 
[39, 40] Present study Burmister 

[39, 40] Present study 

0 300 300 -30.71 -30.72 
0.1 53.08 53.06 34.75 34.75 
0.2 5.415 5.395 12.5 12.49 
0.3 0.994 0.974 3.347 3.344 
0.4 0.293 0.273 0.614 0.611 
0.5 0.124 0.103 -0.259 -0.262 
0.6 0.067 0.048 -0.528 -0.530 
0.7 0.041 0.025 -0.578 -0.579 
0.8 0.026 0.013 -0.544 -0.544 
0.9 0.016 0.006 -0.479 -0.478 
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Table 3 Normalized shear and hoop stress components of a three-dimensional, infinite, rigid-

based, elastic layer subjected to a normal point load 

r ̅ 
( 1)2

rz pt4πh λ σ / P  ( 1)2
θθ pt4πh λ σ / P  

Burmister 
[39, 40] Present study Burmister 

[39, 40] Present study 

0 0 0.000 -30.71 -30.720 
0.1 53 53.003 -4.342 -4.355 
0.2 10.68 10.676 2.237 2.224 
0.3 2.765 2.765 1.996 1.983 
0.4 0.909 0.908 1.349 1.337 
0.5 0.326 0.324 0.877 0.865 
0.6 0.102 0.099 0.566 0.554 
0.7 0.005 0.002 0.363 0.352 
0.8 -0.038 -0.043 0.231 0.221 
0.9 -0.056 -0.061 0.144 0.135 

Table 4 Normalized displacement and stress components of a three-dimensional, infinite, 

elastic half-space subjected to a uniformly distributed normal traction 

z ̅/a̅ 

( 1) zz 02 λ σ / p  ( 1) rr 02 λ σ / p  ( 1) θθ 02 λ σ / p  z 0u / p  
Ahlvin 

and 
Ulery 
[41] 

Present 
study 

Ahlvin 
and 

Ulery 
[41] 

Present 
study 

Ahlvin 
and 

Ulery 
[41] 

Present 
study 

Ahlvin 
and 

Ulery 
[41] 

Present 
study 

0 1.000 0.993 0.700 0.695 0.700 0.695 0.800 0.800 
0.1 0.999 0.999 0.581 0.581 0.581 0.581 0.769 0.769 
0.2 0.992 0.992 0.468 0.468 0.468 0.468 0.736 0.736 
0.3 0.976 0.976 0.367 0.367 0.367 0.367 0.702 0.702 
0.4 0.949 0.949 0.280 0.280 0.280 0.280 0.667 0.667 
0.5 0.911 0.911 0.208 0.208 0.208 0.208 0.633 0.633 
0.6 0.864 0.864 0.151 0.151 0.151 0.151 0.599 0.599 
0.7 0.811 0.811 0.106 0.106 0.106 0.106 0.566 0.566 
0.8 0.756 0.756 0.072 0.072 0.072 0.072 0.535 0.535 
0.9 0.701 0.701 0.047 0.047 0.047 0.047 0.505 0.505 
1 0.646 0.646 0.028 0.028 0.028 0.028 0.478 0.478 

1.2 0.547 0.547 0.005 0.005 0.005 0.005 0.429 0.429 
1.5 0.424 0.424 -0.010 -0.010 -0.010 -0.010 0.368 0.368 
2 0.284 0.284 -0.016 -0.016 -0.016 -0.016 0.294 0.294 

2.5 0.200 0.200 -0.014 -0.014 -0.014 -0.014 0.243 0.243 
3 0.146 0.146 -0.012 -0.012 -0.012 -0.012 0.207 0.207 
4 0.087 0.087 -0.008 -0.008 -0.008 -0.008 0.158 0.158 
5 0.057 0.057 -0.005 -0.005 -0.005 -0.005 0.128 0.128 
6 0.040 0.040 -0.004 -0.004 -0.004 -0.004 0.107 0.107 
7 0.030 0.030 -0.003 -0.003 -0.003 -0.003 0.092 0.092 

 


