Abstract

Project Code: BRG5480009

Project Title: Microwave-Assisted Extraction of Bioactive Compounds from Fruit and

Vegetable Residues

Principal Investigator: Associate Professor Dr. Sakamon Devahastin

E-mail Address: sakamon.dev@kmutt.ac.th

Project Period: 3 years (July 2011-July 2014)

The first part of the project was aimed at investigating the effects of selected pretreatment methods, i.e., soaking in citric acid, blanching in water as well as in citric acid, on the sample structure and subsequent microwave-assisted extraction (MAE); carrots and β-carotene (as well as carotenoids) were selected as the test material and bioactive compound, respectively. At the optimized condition the contents of β -carotene and total carotenoids extractable from carrots blanched in water and in citric acid were significantly higher than those from the untreated carrots. The antioxidant activity of the extracts obtained from carrots blanched in water and in citric acid was also higher than that from carrots with no pretreatment. The effects of various parameters, i.e., type of solvent, set microwave power and extraction time, on the extraction yield of sulforaphane, which is a naturally potent anticarcinogenic compound, from cabbage residues were also investigated in the second part of the project. The effect of partial drying prior to MAE on the extractable amount of sulforaphane was as well investigated. No significant differences in the highest extractable sulforaphane contents from the fresh and semi-dried samples were noted. Use of different solvents did not lead to any significant effect on the MAE of sulforaphane, either from the fresh or semi-dried sample. Use of intermittent microwave radiation to allow extended MAE without causing excessive thermal degradation of the interested bioactive compounds was investigated in the third part of the project. Use of appropriate intermittency ratio along with optimum microwave power and solvent-to-sample ratio resulted in larger amounts of extractable β-carotene and total carotenoids as compared with the use of the corresponding continuous MAE. Prolonging the off period and subsequently turning on the microwave radiation resulted in higher antioxidant activity of the extracts in almost all cases. Finally, a mathematical model that can be used to describe the evolutions of temperature and concentration of an extract during both continuous and intermittent MAE was developed. The model consists of the Maxwell's, energy and species balance equations, along with appropriate initial and boundary conditions. Validation of the model was performed by comparing the simulated results with the experimental temperature and β -carotene concentration evolutions of the extracts from carrot peels. In general, the model was capable of predicting the evolutions of the temperature and β -carotene concentration quite adequately. In some cases, however, the temperature prediction was compromised due to the evaporation of solvent, which was not considered in the model. The empirical constants of the model were noted to depend on the specific absorbed microwave power and the sample-to-solvent ratio.

Keywords: Antioxidant activity; Carotenoids; Drying; Intermittent radiation; Mathematical modeling; Microstructure; Pretreatment; Process intensification; Solvent; Sulforaphane; Transport phenomena.

บทคัดย่อ

รหัสโครงการ: BRG5480009

ชื่อโครงการ: การสกัดสารออกฤทธิ์ทางชีวภาพจากเศษผักและผลไม้เหลือทิ้งโดยใช้ไมโครเวฟ

ชื่อนักวิจัย: รศ. ดร.สักกมน เทพหัสดิน ณ อยุธยา E-mail Address: sakamon.dev@kmutt.ac.th

ระยะเวลาโครงการ: 3 ปี (กรกฎาคม พ.ศ. 2554 – กรกฎาคม พ.ศ. 2557)

ส่วนที่หนึ่งของโครงการเป็นการศึกษาผลของวิธีการเตรียมตัวอย่างบางวิธีการ ได้แก่ การแช่ตัวอย่างในกรดซิตริก การลวกตัวอย่างในน้ำร้อนหรือในกรดซิตริก ที่มีต่อโครงสร้างของ ตัวอย่างและที่มีต่อกระบวนการสกัดโดยใช้ไมโครเวฟ ซึ่งเป็นกระบวนการหลักที่สนใจศึกษา ทั้งนี้ใช้แครอทและเบต้าแคโรทีน (ตลอดจนแคโรทีนอยด์) เป็นวัสดุและสารออกฤทธิ์ทางชีวภาพ ทดสอบ ตามลำดับ เมื่อทำการสกัดที่สภาวะการสกัดที่เหมาะสม พบว่าปริมาณเบต้าแคโรทีน และแคโรทีนอยด์ที่สกัดได้จากแครอทที่ผ่านการลวกในน้ำร้อนหรือในกรดซิตริกมีค่าสูงกว่า ปริมาณที่สกัดได้จากแครอทที่ไม่ผ่านกระบวนการเตรียมตัวอย่าง นอกจากนี้ยังพบว่าฤทธิ์ต้าน อนุมูลอิสระของสารสกัดที่ได้จากแครอทซึ่งผ่านการลวกทั้งในน้ำร้อนหรือในกรดซิตริกต่างก็มีค่า ้สูงกว่าค่าของสารสกัดที่ได้จากแครอทที่ไม่ผ่านกระบวนการเตรียมตัวอย่างเช่นเดียวกัน สำหรับ ส่วนที่สองของโครงการเป็นการศึกษาผลของพารามิเตอร์ที่สำคัญต่างๆ ของกระบวนการสกัดโดย ใช้ไมโครเวฟ ได้แก่ ชนิดของตัวทำละลาย กำลังของไมโครเวฟ และเวลาที่ใช้ในการสกัด ที่มีต่อ ปริมาณสารซัลโฟราเฟนที่สกัดได้จากเศษทิ้ง (กาบใบนอก) ของกะหล่ำปลี นอกจากนี้ยังได้ ศึกษาผลของการอบแห้งกะหล่ำปลีก่อนนำไปสกัดที่มีต่อปริมาณสารซัลโฟราเฟนที่สกัดได้ด้วย ผลการทดลองแสดงให้เห็นว่าปริมาณสารซัลโฟราเฟนสูงสุดที่สกัดได้จากกะหล่ำปลีสดและ กะหล่ำปลีที่ผ่านการอบแห้งก่อนการสกัดนั้นมีค่าไม่แตกต่างกันอย่างมีนัยสำคัญ นอกจากนี้ยัง พบว่าชนิดของตัวทำละลายไม่มีผลต่อปริมาณซัลโฟราเฟนที่สกัดได้ ทั้งจากกะหล่ำปลีสดและ กะหล่ำปลีที่ผ่านการอบแห้งก่อนการสกัด ส่วนที่สามของโครงการเป็นการศึกษาการให้พลังงาน ไมโครเวฟแบบไม่ต่อเนื่องเพื่อช่วยให้สามารถยืดเวลาการสกัดโดยใช้ไมโครเวฟออกไปได้โดย ไม่ส่งผลให้เกิดการเสื่อมสลายของสารออกฤทธิ์ทางชีวภาพที่สนใจจากความร้อน จากผลการ ทดลองพบว่าการให้พลังงานไมโครเวฟแบบไม่ต่อเนื่อง โดยใช้อัตราส่วนการให้พลังงานต่อการ หยุดให้พลังงานที่เหมาะสม ร่วมกับการใช้กำลังของไมโครเวฟและอัตราส่วนระหว่างปริมาณ ตัวอย่างกับตัวทำละลายที่เหมาะสม สามารถเพิ่มปริมาณเบต้าแคโรทีนและแคโรทีนอยด์ที่สกัด ได้จากเปลือกแครอท เมื่อเปรียบเทียบกับปริมาณที่สกัดได้โดยใช้กระบวนการที่มีการให้ พลังงานไมโครเวฟแบบต่อเนื่อง การยืดช่วงเวลาการหยุดให้พลังงานไมโครเวฟก่อนการให้ พลังงานไมโครเวฟในวงรอบถัดไปช่วยเพิ่มฤทธิ์ต้านอนุมูลอิสระของสารสกัดที่ได้ในเกือบทุก กรณี ส่วนสุดท้ายของโครงการวิจัยเป็นการพัฒนาแบบจำลองทางคณิตศาสตร์ซึ่งสามารถใช้ใน การอธิบายการเปลี่ยนแปลงอุณหภูมิและความเข้มข้นของสารสกัดระหว่างการสกัดโดยใช้ ไมโครเวฟ ทั้งในกรณีการให้พลังงานไมโครเวฟแบบต่อเนื่องและไม่ต่อเนื่อง แบบจำลอง ประกอบด้วยสมการของ Maxwell สมการอนุรักษ์พลังงานและมวลสาร ตลอดจนเงื่อนไขเริ่มต้น และเงื่อนไขขอบเขตที่เหมาะสม ทั้งนี้ทำการทวนสอบความถูกต้องของแบบจำลองโดยการ เปรียบเทียบผลการจำลองกับผลการทดลองการเปลี่ยนแปลงอุณหภูมิและความเข้มข้นของเบต้า แคโรทีนในระหว่างการสกัดเปลือกแครอทโดยใช้ไมโครเวฟ จากผลการเปรียบเทียบพบว่า โดยทั่วไปแบบจำลองสามารถทำนายการเปลี่ยนแปลงอุณหภูมิและความเข้มข้นของเบต้าแคโร ทีนได้เป็นอย่างดี อย่างไรก็ตาม ผลการทำนายอุณหภูมิในบางกรณีไม่แม่นยำ เนื่องจากเกิดการ ระเหยของตัวทำละลาย ซึ่งไม่สามารถทำนายได้โดยใช้แบบจำลองที่พัฒนาขึ้นในโครงการนี้ ใน ส่วนของค่าคงที่เอมพิริคัลของแบบจำลอง พบว่าเป็นฟังก์ชันของกำลังไมโครเวฟที่ถูกดูดกลืน โดยตัวอย่าง ตลอดจนอัตราส่วนระหว่างปริมาณตัวอย่างกับตัวทำละลายที่ใช้ในการสกัด

คำสำคัญ: ฤทธิ์ต้านอนุมูลอิสระ / แคโรทีนอยด์ / การอบแห้ง / การให้พลังงานไมโครเวฟแบบไม่ ต่อเนื่อง / การจำลองเชิงคณิตศาสตร์ / โครงสร้างระดับจุลภาค / การเตรียมตัวอย่าง / การเพิ่ม ประสิทธิภาพของกระบวนการ / ตัวทำละลาย / ซัลโฟราเฟน / ปรากฏการณ์ถ่ายเท