บทคัดย่อ

เชื้อเบอโคลเดอเรีย สูโดมอลลิอายเป็นแบคทีเรียแกรมลบที่มีความสามารถในการหลบหลีกระบบภูมิคุ้มกันและ แม้จะมีการพิสูจน์ได้ว่าแบคทีเรียชนิดนี้จะสามารถยับยั้งการส่งสัญญาณผ่านทาง Toll-like ก่อโรคเมลิออยด์โดซิสได้ receptor (TLR) ซึ่งเป็นสาเหตุของการยับยั้งการตอบสนองของ proinflammatory และกระตุ้นการแสดงออกของ iNOS มีผลทำให้เชื้อชนิดนี้สามารถอยู่รอดและเพิ่มจำนวนในเซลล์แมคโครฟาจได้ โดยกลไกที่เป็นสาเหตุในการยับยั้งการส่ง สัญญาณผ่านทาง TLR นี้ยังไม่สามารถเข้าใจได้หมด ในการศึกษานี้ได้ศึกษาวิจัยเกี่ยวกับกลไกที่สนับสนุนการยับยั้งการส่ง สัญญาณผ่านทาง TLR จากผลการทดลองพบว่าเชื้อเบอโคลเดอเรีย สูโดมอลลิอาย สายพันธุ์แท้สามารถยับยั้งการส่ง สัญญาณผ่านทาง TLR โดยการยับยั้งการลดการแสดงออกของsignal regulatory protein lpha (SIRP-lpha) ซึ่งเป็น negative regulator ของ TLR ในเซลล์แมคโครฟาจของหนูได้ อย่างไรก็ตามการหายไปของ SIRP- lpha จะให้เชื้อแบคทีเรีย ชนิดนี้ถูกกำจัดโดยเซลล์แมคโครฟาจได้ โดยการกระตุ้นการแสดงออกของยีนที่อยู่ใน MyD88-independent pathway เช่น inos และ ifn- $m{6}$ ที่มีความเกี่ยวข้องกับการส่งสัญญาณผ่านทาง TLR ในทางตรงกันข้ามเชื้อเบอโคลเดอเรีย สูโดมอลลิ อาย สายพันธุ์ทางที่มีไม่มี lipopolysaccharide และมีความรุนแรงน้อยกว่าสายพันธุ์แท้ ไม่สามารถยั้บยั้งการลดการ แสดงออกของ SIRP- α จึงถูกเซลล์แมคโครฟาจกำจัด นอกจากนี้แล้วจากผลกการทดลองยังได้ชี้ถึงเอนไซม์ที่เป็นอิสระต่อ โมเลกุลที่มีบทบาทใน downstream ของ SIRP- lpha ใน negative regulation ของการส่งสัญญาณผ่านทาง TLR ระหว่าง ที่เซลล์ติดเชื้อเบอโคลเดอเรีย สูโดมอลลิอายอีกด้วย จากทั้งหมดที่กล่าวมานี้แสดงให้เห็นถึงกลไกเกี่ยวข้องกับการ แสดงออกของ SIRP- lpha ในเชื้อเบอโคลเดอเรีย สูโดมอลลิอาย ที่ทำให้เชื้อดังกล่าวหลบหนีการถูกฆ่าจากเซลล์แมคโครฟาจ ได้

คำสำคัญ; เชื้อเบอโคลเดอเรีย สูโดมอลลิอาย, SIRP- lpha , การส่งสัญญาณผ่านทาง TLR, เซลล์แมคโครฟาจ, iNOS

Abstract

The facultative intracellular Gram-negative bacterium Burkholderia pseudomallei is the causative agent of melioidosis and is known for its ability to evade the Toll-like receptor (TLR)mediated innate immune response. Previously it has been demonstrated that this bacterium was able to suppress the MyD88-independent pathway and can survive macrophage intracellular killing. However, the underlying mechanisms responsible for the suppression of this pathway are not fully understood. In the present study, we showed that both living and heat-killed B. pseudomallei bacteria restrict the TLR signaling response, particularly macrophage inducible nitric oxide synthase (iNOS) expression, by preventing downregulation of constitutively expressed signal regulatory protein α (SIRP α) molecule, a known negative regulator of TLR signaling. In contrast, a lipopolysaccharide (LPS) mutant of B. pseudomallei, a less virulent strain, was able to downregulate SIRPa expression in mouse macrophages. However, depletion of constitutively expressed SIRPα was able to induce the gene expression downstream of TLR signaling pathways (particularly the MyD88-independent pathway), such as that of the iNOS gene, leading to enhanced macrophage intracellular killing of B. pseudomallei. Induction of gene expression was consistent with the enhanced degradation pattern of IκBα with SIRPα depletion. Additionally, the downregulation of SIRPα expression with upregulation of iNOS was observed when the macrophages were pretreated with gamma interferon (IFN-γ) prior to the infection, suggesting that the enhanced intracellular killing of bacteria by IFN-y is associated with the decreased SIRPa expression. Altogether our findings demonstrate that B. pseudomallei evades macrophage intracellular killing by preventing the downregulation of SIRPa that results in the inhibition of gene expression downstream of the MyD88-independent pathway.

Keywords; Burkholderia pseudomallei, SIRPα, TLR signaling pathway, macrophages, iNOS