บทคัดย่อ

รหัสโครงการ: BRG5580003

ชื่อโครงการ:การพัฒนาเทคนิดเพื่อวัดสัญญานประสาทจากเนื้อฟันในมนุษย์และการใช้วิธี ไอออนโตโฟรีซีสเพื่อให้เนื้อเยื่อในโพรงฟันชา

ชื่อนักวิจัย: รองศาสตราจารย์ ทพ. ดร. นพคุณ วงษ์สวรรค์

E-mail Address: noppakun.von@mahidol.ac.th

ระยะเวลาโครงการ: วันที่ 31 กรกฎาคม 2555 ถึงวันที่ 30 กรกฎาคม 2558

การศึกษาวิจัยในการศึกษาที่หนึ่งคณะผู้วิจัยประสบผลสำเร็จในการการพัฒนาเทคนิดเพื่อวัด สัญญานประสาทจากเนื้อฟันในมนุษย์ได้เป็นครั้งแรก การศึกษาวิจัยนี้คณะผู้วิจัยได้ศึกษา เปรียบเทียบสัญญานประสาทจากเนื้อฟันในมนุษย์ที่อยู่ไกล้ผิวเคลือบฟัน และสัญญานประสาทจาก เนื้อฟันในมนุษย์ที่อยู่ลึกลงไปในเนื้อฟัน 0.5-2 มม แต่ยังคงเหลือเนื้อฟันอีก 1 มม จากการศึกษา พบว่า สัญญานประสาทจากเนื้อฟันในมนุษย์ที่อยู่ไกล้ผิวเคลือบฟัน ไม่แตกต่างจากสัญญานประสาท จากเนื้อฟันในมนุษย์ที่อยู่ลึกลงไปในเนื้อฟัน 0.5-2 มม การศึกษาวิจัยในการศึกษาที่สอง สาม และสิ่ คณะผู้วิจัยประสบผลสำเร็จในการการพัฒนาเทคนิดวิธีไอออนโตโฟรีซีสเพื่อให้เนื้อเยื่อในโพรงฟันชา ในมนุษย์ได้เป็นครั้งแรก กล่าวคือทำให้สามารถบูรณะฟันที่ผุได้โดยไม่ต้องฉีดยาชาและไม่มีอาการ เจ็บปวด ในการศึกษาที่สาม ได้ทดลองวิธีไอออนโตโฟรีซีสเพื่อให้เนื้อเยื่อในโพรงฟันชาในฟันกราม น้อยจำนวน 13 ซี่ โดยใช้ยาชาลิกโนเคน 20% ผสมกับอิพินิฟฟรีน 1% ใช้กระแส 120 ไมโครแอมป์ เวลา 90 วินาที พบว่าทำให้เนื้อเยื่อในโพรงฟันชากว่า 40 นาทีในฟันทุกซี่ที่ทดลอง และมีผลทำให้ เลือดที่มาเลี้ยงเนื้อเยื่อในโพรงฟันหดตัวเพื่อทำให้อาการชานานขึ้น การวัดปริมาณเลือดที่มาเลิ้งฟัน ใช้วิธีวัดด้วยเครื่องเลเซอร์ ดอปเปลอร์โฟลมีเตอร์ ในการศึกษาที่สี่ ได้ทดลองวิธีไอออนโตโฟรีซีส เพื่อให้เนื้อเยื่อในโพรงฟันชาในฟันกรามที่ผุจำนวน 57 ซี่โดยใช้ยาชาลิกโนเคน 20% ผสมกับอิพินิฟ ฟรีน 1% ใช้กระแส 200 ไมโครแอมป์ เวลา 2-10 นาที พบว่า 7 ซี่ใช้เวลาไอออนโตโฟรีซีส 2 นาที 17 ์ ซี่ใช้เวลาไกคคนโตโฟรีซีส 4 นาที่ 14 ซี่ใช้เวลาไกคคนโตโฟรีซีส 6 นาที่ 4 ซี่ใช้เวลาไกคคนโตโฟรีซีส 8 นาที 7ซี่ใช้เวลาไอออนโตโฟรีซีส 10 นาที อีก 7 ซี่ไม่ชาแม้ใช้เวลาไอออนโตโฟรีซีส 10 นาทีแล้ว โดยสรุปวิธีใอออนโตโฟรีซีสประสบผลสำเร็จโดยสามารถทำให้เนื้อเยื่อในโพรงฟันที่ผุชาได้ สารถ บูรณะฟันโดยไม่ต้องฉีดยาชา 87.5%

คำสำคัญ: อาการเจ็บปวด ภาวะเสียวฟัน สัญญานประสาท วิธีไอออนโตโฟรีซีส ยาชา ฟันมนุษย์ที่ผุ

Abstract

Project Code: BRG5580003

Project Title: Development of the techniques for recording nerve discharges from

human dentine and the iontophoretic delivery of local anesthetic drugs

through dentine to obtain pulpal anesthesia in man

Investigator: Dr. Noppakun Vongsavan

E-mail Address: noppakun.von@mahidol.ac.th Project Peroid: 31th July 2012- 30th July 2015

The first series of experiments, the technique for recording nerve discharges from human dentine was successfully developed. This recording would be the quantitative pain assessment for pain sensation eg. the number of action potentials or spikes per second. The first objective of these experiments were to determine if dentine at the enamel-dentine junction (EDJ) in man is more sensitive to hydrostatic pressure stimuli then deeper dentine. In all the teeth, the intensity of the pain produced by a stimulus tended to increase as the cavity was deepened, as did the number of action potentials recorded (in 6 of the 8 teeth). The responses were greater from etched than unetched dentine, and negative pressures evoked greater responses than the corresponding positive pressures. It was concluded that there was no evidence that dentine close to the EDJ was more sensitive to hydrostatic pressure stimuli than deeper dentine. The second and third series of experiments aim to use high concentration of lignocaine and to determine the effects of the iontophoretic application of lignocaine and epinephrine to exposed dentine on the sensitivity of the dentine in premolars in human subjects. The lignocaine plus epinephrine solution completely blocked the pain produced by both forms of stimulus immediately, and this continued for 40 min. It also produced an immediate fall in pulpal blood flow that lasted for 40 min. The control solution had the same effect on pulpal blood flow but no effect on dentine sensitivity. The topical application of 20% lignocaine and 0.1% epinephrine, with an iontophoretic current of 120 µA for 90 s, will anaesthetise exposed, normal dentine. The fourth series of experiments aim to determine the effectiveness of the iontophoretic delivery of lidocaine with epinephrine through carious dentine for pain control during cavity preparation. The total duration (mins.) of iontophoresis required to anaesthetize the dentine was: 2 in 7 teeth, 4 in 17 teeth, 6 in 14 teeth, 8 in 4 teeth, and 10 in 7 teeth. The remaining 7 teeth were not anaesthetized even after 14 mins, of iontophoresis. The iontophoretic delivery of lidocaine with epinephrine anaesthetized dentine for cavity preparation in 49 of 56 (87.5%) of carious molars. The restoration was complete without needle anesthesia

Key Words: Pain, Dentine Sensitivity, Nerve discharges, Iontophoresis, Local anaesthetic, Carious human teeth

BRG5580003