

บทคัดย่อ

รหัสโครงการ: BRG5580004

ชื่อโครงการ: สารต้านไวรัสเริมและไข้หวัดนกจากพืชสมุนไพรไทย

ชื่อนักวิจัย: กิตติศักดิ์ ลิขิตวิทยา漏 คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address : Kittisak.L@chula.ac.th

ระยะเวลาโครงการ: 31 กรกฎาคม พ.ศ. 2555 ถึง 30 กรกฎาคม พ.ศ. 2558

ที่มาของแผนงานวิจัย: ออกซิเรสเวอราทรอล (oxyresveratrol หรือ 2,4,3',5'-tetrahydroxystilbene) เป็นสาร phytoalexin ซึ่งพบในปริมาณมากในแก่นต้นมะหาด (วงศ์ Moraceae) สารนี้จัดอยู่ในกลุ่มสารต้านไวรัสที่มีโครงสร้างที่เป็น bis-aryl ซึ่งคณะผู้วิจัยได้เคยเสนอแนวความคิดไว้ ผลการศึกษาพบว่า oxyresveratrol มีฤทธิ์ยับยั้งไวรัสเริม (HSV) ดังนั้นจึงคาดว่าสารนี้อาจมีศักยภาพที่จะนำมาใช้ป้องกันหรือรักษาโรคอัลไซเมอร์ (AD) ได้ เพราะมีรายงานว่าการติดเชื้อ HSV ที่สมองมีส่วนเกี่ยวข้องกับการก่อโรค AD อย่างไรก็ตามจากการทดลองในสัตว์พบว่า oxyresveratrol มีประสิทธิภาพในการฆ่า HSV ที่ผิวนังเมื่อให้โดยการทาบริเวณที่ติดเชื้อ แต่ไม่ให้ผลในการรักษาหากให้ทางปาก นอกจากนี้มีผู้รายงานว่า oxyresveratrol มีฤทธิ์ยับยั้งเอนไซม์ neuraminidase ของไวรัสไข้หวัดนกยีกด้วย

วัตถุประสงค์แผนงานวิจัย: นำองค์ความรู้เกี่ยวกับ oxyresveratrol และฤทธิ์ทางชีวภาพ ที่คณะผู้วิจัยได้สะสมไว้ รวมทั้งสมมติฐานข้างต้น มาเป็นพื้นฐานในการดำเนินการวิจัยเพื่อค้นหาหรือพัฒนาฯ หรือระบบนำส่งยาที่มีประสิทธิผลต่อโรคที่มีความเกี่ยวข้องกับไวรัสเริมหรือไข้หวัดนก

วิธีดำเนินการ: จัดทำเป็นชุดโครงการวิจัย ประกอบด้วย 3 โครงการคือ (1) การพัฒนาและประเมินระบบนำส่ง oxyresveratrol ทางปากโดยใช้ตัวพาร์ทีมีขีดนาโน (2) การดัดแปลงโครงสร้างสาร oxyresveratrol และ (3) การค้นหาสารต้านไวรัสจากพืชสมุนไพรไทย

สรุปผลแผนงานวิจัยและข้อเสนอแนะ:

- (1) ได้ระบบนำส่งยาในรูปแบบของยารับประทานซึ่งสามารถเพิ่มการดูดซึม oxyresveratrol จึงมีความเห็นว่า ควรนำระบบนำส่งยาดังกล่าวมาประยุกต์ใช้ศึกษาในโรคที่เกี่ยวโยงการติดเชื้อไวรัสเริมในสมองเช่น โรคอัลไซเมอร์
- (2) ได้สารอนุพันธ์ 2 ชนิดคาดว่าอาจมีศักยภาพสูงกว่า oxyresveratrol ในการนำมาใช้กับโรคติดเชื้อเริมที่สมองและโรคอัลไซเมอร์ สารอนุพันธ์ 1 ชนิดคาดว่าอาจนำมาพัฒนาเป็นยาช่วยควบคุมระดับน้ำตาลในเลือดได้ดีกว่า เพราะอัตราการถูกทำลายในร่างกายที่คาดว่าซ้ำกัน สารอนุพันธ์ 1 ชนิดที่แสดงความเป็นพิษสูงต่อเซลล์มะเร็ง HeLa จึงมีความเห็นว่าควรนำสารอนุพันธ์ที่มีศักยภาพสูงกว่า oxyresveratrol เหล่านี้ไปศึกษาต่อในสัตว์ทดลอง
- (3) ได้ข้อมูลโครงสร้างและฤทธิ์ต้านไวรัสเริมของสารที่มีโครงสร้าง bis-aryl เพิ่มเติม จึงเสนอว่าควรนำมารวบรวมและวิเคราะห์ความสัมพันธ์เปรียบเทียบกับข้อมูลจากแหล่งอื่นๆ เพื่อประโยชน์ในการออกแบบการสังเคราะห์สารต้านไวรัสในอนาคต

คำสำคัญ

ออกซิเรสเวอราทรอล ไวรัส เริม ไข้หวัดนก โรคอัลไซเมอร์ โรคเบาหวาน มะเร็ง

โครงการวิจัยที่ 1

วัตถุประสงค์ พัฒนาสูตรสำหรับที่เหมาะสมในการนำส่ง oxyresveratrol (OXYR) ทางปาก

วิธีการทดลอง พัฒนาระบบนำส่ง oxyresveratrol 3 ระบบ ได้แก่ (1) ระบบ solid lipid nanoparticles (SLN) (2) ระบบ nanostructured lipid carriers (NLC) และ (3) ระบบ self-microemulsifying drug delivery systems (SMEDDS) ทำการทดลองจนได้สูตรสำหรับและวิธีการเตรียมที่เหมาะสมที่สุด ของแต่ละระบบ นำไปศึกษาคุณสมบัติทางฟิสิกส์เคมี ความสามารถของ oxyresveratrol ในแต่ละ สำหรับในการซึมผ่านในเซลล์เพาะเลี้ยง Caco-2 และถูกดูดซึมในทุกชั้นของเยื่อหุ้มทางปาก

ผลการทดลอง สำหรับ SMEDDS มีลักษณะเป็นของเหลวคล้ายน้ำมันสีเหลือง ส่วนสำหรับ SLN และ NLC มีลักษณะ เป็นยาแขวนตะกอนซึ่งมีความหนืดแน่นอย ได้ศึกษาเปรียบเทียบคุณสมบัติทางกายภาพ ความเป็น พิษต่อเซลล์ และความสามารถในการซึมผ่านชั้นเซลล์ Caco-2 ชั้นเดียวของสำหรับเหล่านี้ พบว่า สำหรับ SMEDDS มีความสามารถในการรองรับยา (drug loading) คิดเป็น 13 เท่าของสำหรับ SLN และ NLC สำหรับ SMEDDS มีขนาดอนุภาค (26.94 ± 0.08 นาโนเมตร) ซึ่งเล็กกว่าสำหรับ NLC และ SLN ($p < 0.05$) สำหรับ SMEDDS มีการกระจายตัวของขนาดอนุภาค (PDI, 0.073 ± 0.010) ที่แคนกว่าสำหรับ NLC และ SLN (PDI, 0.2–0.3) ในการศึกษาความเป็นพิษต่อเซลล์ Caco-2 ด้วยวิธี MTT พบว่าสำหรับ SMEDDS ซึ่งบรรจุ oxyresveratrol (OXYR-SMEDDS) มีความเป็นพิษต่อเซลล์ Caco-2 เป็น 4 เท่าของสำหรับ SLN และ NLC ที่บรรจุ oxyresveratrol เมื่อนำแต่ละสำหรับ มาศึกษาผลต่อการดูดซึม OXYR แบบ *in vitro* กับเซลล์ Caco-2 โดยใช้ขนาดบรรจุ OXYR 100 มิลลิโมลาร์ (mM) ซึ่งไม่เป็นพิษต่อเซลล์ พบว่าเมื่อเปรียบเทียบกับการให้ OXYR ซึ่งไม่อยู่ตัวสำหรับ สำหรับทั้งสามช่วยให้ OXYR ที่อยู่ในสำหรับซึมเข้าสู่เซลล์ได้มากขึ้นคิดเป็น 2.5 – 3 เท่า และช่วยลด การผลัก OXYR ออกจากเซลล์ลงคิดเป็น 1.3 – 1.8 เท่า ผลการศึกษาดังกล่าวจึงแสดงให้เห็นว่า สำหรับทั้งสามสามารถเพิ่มการดูดซึม OXYR เข้าสู่ร่างกาย เมื่อให้ทางปากได้ โดยเพิ่มการซึมผ่าน เข้าและยับยั้งการผลัก OXYR ออกจากเซลล์ เมื่อทำการศึกษาทางเภสัชจุลศาสตร์ในหนู Wistar rat พบว่าสำหรับ SLN และ NLC ช่วยเพิ่มค่าชีวปริมาณของ OXYR คิดเป็นร้อยละ 125 และ 177 เมื่อเปรียบเทียบกับการให้ OXYR ซึ่งไม่อยู่ในสำหรับ ส่วนสำหรับ SMEDDS ช่วยเพิ่มค่าชีวปริมาณได้ถึงร้อยละ 218 – 786 ขึ้นกับปริมาณและชนิดของสารลดแรงตึงผิวที่ใช้

สรุป ระบบนำส่งยาในรูปแบบของยาสำหรับประทานที่พัฒนาขึ้นสามารถเพิ่มการดูดซึม oxyresveratrol ซึ่งอาจนำมาใช้ประโยชน์ในโรคที่เกี่ยวข้องกับการติดเชื้อไวรัสเริมในสมองเช่น โรคอัลไซเมอร์

ข้อเสนอแนะ นำระบบนำส่งยาที่พัฒนาขึ้นมาศึกษาการใช้ประโยชน์ในโรคที่เกี่ยวข้องการติดเชื้อไวรัสเริมในสมองเช่น โรคอัลไซเมอร์

โครงการวิจัยที่ 2

วัตถุประสงค์ ดัดแปลงโครงสร้างของ oxyresveratrol ด้วยวิธีทางเคมี และตรวจสอบฤทธิ์ต้านไวรัสเริมและฤทธิ์ยับยั้งเอนไซม์ neuraminidase ของไวรัสหวัดนกของอนุพันธ์ที่เตรียมได้

วิธีการทดลอง เติมหมู่ฟังก์ชันลงในโครงสร้างของ oxyresveratrol โดยใช้ปฏิกิริยาเคมีต่างๆ

ผลการทดลอง ได้คิดค้นวิธีบังคับปฏิกิริยาแบบ electrophilic substitution ให้เกิดขึ้นเฉพาะที่วง aromatic วงใดวงหนึ่ง ด้วยการเลือกใช้ชนิดและจำนวนหมู่ปักป้องที่เหมาะสม สามารถเตรียมได้อนุพันธ์จำนวน 26 ชนิด เมื่อนำ oxyresveratrol และอนุพันธ์ที่เตรียมได้ทั้งหมดมาทดสอบฤทธิ์ต้านไวรัสเริม พบนุพันธ์ 2 ชนิดซึ่งมีฤทธิ์ต้านไวรัสเริมสูงกว่า oxyresveratrol ประมาณ 3 – 4 เท่าคือ 3',5'-dihydroxy-2,4-dimethoxystilbene และ 5'-hydroxy-2,3',4-trimethoxystilbene ส่วน

การทดสอบฤทธิ์ยับยั้งเอนไซม์ neuraminidase นั้นไม่พบว่า oxyresveratrol และอนุพาร์เมทิฟิลี เมื่อนำสารทั้งหมดไปทดสอบฤทธิ์ทางชีวภาพอื่นเพิ่มเติม ได้แก่ฤทธิ์ยับยั้งเอนไซม์ α -D-glucosidase พบว่า 5'-Hydroxy-2,3',4'-triisopropoxy-stilbene มีฤทธิ์ยับยั้งเอนไซม์ α -D-glucosidase ใกล้เคียงกับ oxyresveratrol ซึ่งมีรายงานว่ามีฤทธิ์ยับยั้งเอนไซม์นี้สูงและสามารถลดระดับน้ำตาล ในสัตว์ทดลองได้ นอกจากนี้ได้ทดสอบความเป็นพิษต่อเซลล์มะเร็งของสารทั้งหมด พบว่า 3',5'-diacetoxy-2,4-diisopropoxystilbene มีความเป็นพิษสูงและจำเพาะต่อเซลล์มะเร็ง HeLa สารอนุพันธ์ที่เตรียมได้ 2 ชนิดมีฤทธิ์ต้านไวรัสเริมสูงกว่า oxyresveratrol ซึ่งคาดว่าอาจมีศักยภาพสูงกว่า oxyresveratrol ในการนำมาใช้กับโรคติดเชื้อเริมที่สมองและโรคอัลไซเมอร์ เพราะคุณสมบัติการละลายในไขมันที่คาดว่าสูงกว่า oxyresveratrol การศึกษาไม่พบว่า oxyresveratrol หรือนุพันธ์ใดๆ มีฤทธิ์ยับยั้ง AIV neuraminidase สารอนุพันธ์ 1 ชนิดมีฤทธิ์ยับยั้งเอนไซม์ α -glucosidase ใกล้เคียงกับ oxyresveratrol แต่คาดว่าอาจมีศักยภาพที่จะนำมาพัฒนาเป็นยาสูงกว่า เพราะอัตราการถูกทำลายในร่างกายที่คาดว่าช้ากว่า นอกจากนี้มีสารอนุพันธ์ 1 ชนิดที่แสดงความเป็นพิษสูงต่อเซลล์มะเร็ง HeLa

ข้อเสนอแนะ นำสารอนุพันธ์ที่มีศักยภาพสูงกว่า oxyresveratrol ไปศึกษาต่อในสัตว์ทดลอง

โครงการวิจัยที่ 3

วัตถุประสงค์ วิจัยต่อยอดจากข้อสังเกตที่คณะผู้วิจัยได้เสนอว่าสารเมทابอลิตทุติยภูมิจากพืชหลายกลุ่มที่มีฤทธิ์ต้านไวรัส มีโครงสร้างจัดเป็น bis-aryl เช่น กลุ่มสารคุ้มพลอโกรูลูนอล กลุ่มสารสติลบิน กลุ่มเฟโนนอยด์ และกลุ่มลิกแนน

วิธีการทดลอง นำตัวอย่างพืชจำนวนหนึ่งซึ่งได้แก่ *Artocarpus lakoocha* (Moraceae), *Miliusa mollis*, *M. fragrans*, *M. umpangensis* (Annonaceae), *Mallotus plicatus* (Euphorbiaceae), *Dendrobium venustum* และ *Dendroium williamsonii* (Orchidaceae) มาตรวจสอบฤทธิ์ต้านไวรัสเริมแล้วทำการศึกษาต่อเพื่อแยกเอาสารออกฤทธิ์โดยวิธีโครมาโทกราฟี

ผลการทดลอง ได้สารบริสุทธิ์จำนวน 60 ชนิด พบว่าเป็นสารใหม่จำนวน 17 ชนิด ซึ่งจัดเป็นสารในกลุ่มเฟโนนอยด์ 1 ชนิด ในกลุ่มลิกแนน 1 ชนิด ในกลุ่มนิโอลิกแนน 13 ชนิด และในสารกลุ่มกรดกลิคอลิยไดไซด์ 2 ชนิด เมื่อนำสารเหล่านี้มาทดสอบ พบร่วมสาร 10 ชนิดที่มีฤทธิ์ต้านไวรัสเริม จัดเป็นสารกลุ่มเฟโนนอยด์ 4 ชนิด สารกลุ่มนิโอลิกแนน 3 ชนิดและสารกลุ่มไดไฮดรสติลบิน สารเหล่านี้ต่างมีโครงสร้างส่วนหนึ่งเป็น bis-aryl ซึ่งสอดคล้องกับข้อสังเกตที่คณะผู้วิจัยได้เสนอมาก่อน สารที่มีฤทธิ์สูงสุดคือ 5,7,2',4'-tetrahydroxy-3-prenyl-6-geranylflavone แต่จัดว่ามีฤทธิ์ปานกลาง เมื่อเทียบกับยาต้านไวรัสเริม acyclovir นอกจากนี้ได้นำสารที่แยกได้บางชนิดมาทดสอบฤทธิ์ต้าน neuraminidase ของไวรัสไข้หวัด แต่ไม่พบสารใดที่มีฤทธิ์

สรุป การศึกษาในสารสกัดที่เตรียมจากพืช 7 ชนิด แยกสารได้ 60 ชนิด จัดเป็นสารใหม่ 17 ชนิด พบว่าสารที่แยกได้ 10 ชนิดมีฤทธิ์ต้านไวรัสเริม โดยทั้งหมดมีโครงสร้าง bis-aryl ซึ่งเป็นไปตามข้อสังเกตที่ได้เคยเสนอไว้ ไม่พบสารที่มีฤทธิ์ยับยั้ง AIV neuraminidase

ข้อเสนอแนะ ประมวลข้อมูลโครงสร้างและฤทธิ์ต้านไวรัสเริมของสารที่มีโครงสร้าง bis-aryl เพื่อนำมาใช้ประกอบในการวิเคราะห์ความสัมพันธ์ สำหรับการออกแบบการสังเคราะห์สารต้านไวรัสในอนาคต

ABSTRACT

Project Code: BRG5580004

Project Title: Antiviral agents against herpes simplex and avian influenza viruses from Thai medicinal plants

Investigator : Kittisak Likhitwitayawuid, Faculty of Pharmaceutical Sciences, Chulalongkorn University

E-mail Address: Kittisak.L@chula.ac.th

Project Period : 31 July 2012 – 30 July 2015

Rationale of research program: Oxyresveratrol (2,4,3',5'-tetrahydroxystilbene) is a phytoalexin present in large amounts in the heartwood of *Artocarpus lakoocha* Roxb. (Moraceae). It is a representative of antiviral compounds with a *bis*-aryl structure, which was earlier elaborated in our recently proposed hypothesis. Our previous studies have revealed its inhibitory activity against herpes simplex virus (HSV). Because cerebral HSV infection has been implicated in the pathogenesis of Alzheimer's disease (AD), oxyresveratrol may have a potential use for preventing or treating AD. Although oxyresveratrol, by topical application, has been shown to be effective against cutaneous HSV infection, the compound lacks this activity when orally administered. Recently, oxyresveratrol has been claimed to possess inhibitory activity against neuraminidase of avian influenza virus (AIV).

Objectives of research program: To find/develop medicinally useful compounds or drug delivery systems for application in HSV, based on our earlier accumulated data on oxyresveratrol and its medicinal potentials, as well as our earlier proposed hypothesis.

Methodology of research program: The research program consists of three separate projects: (1) Development and evaluation of nanocarriers for oral delivery of oxyresveratrol; (2) Structural modification of oxyresveratrol; and (3) Search for new antiviral agents from Thai medicinal plants.

Results of research program and suggestions:

- (1) New drug delivery systems (DDS) for enhancing the oral absorption of oxyresveratrol were obtained. We suggest that these DDSs be applied in the study of HSV-related cerebral disorders such as Alzheimer's disease (AD).
- (2) Two compounds derived from oxyresveratrol may have higher potential than the parent compound for treating cerebral HSV-infection and AD, due to their possibly higher lipophilicity. One derivative may be a better blood sugar controlling agent, a result of a theoretically slower rate of metabolism. Another derivative showed potent cytotoxicity against HeLa cancer cells. In vivo studies are recommended for these active analogs.

(3) Additional facts on the structures and antiherpetic activity of *bis*-aryl compounds were obtained. It is suggested that these data be digitally stored and analyzed in comparison with information from other sources for future designs of antiviral drugs.

Key words: oxyresveratrol, virus, herpes, avian influenza, Alzheimer's disease, diabetes, cancer

Project 1

Objectives: Develop pharmaceutical formulations for the oral delivery of oxyresveratrol (OXYR).

Methods: Three different delivery systems were investigated: (1) solid lipid nanoparticles (SLN), (2) nanostructured lipid carriers (NLC) and (3) self-microemulsifying drug delivery systems (SMEDDS). Each system was successfully formulated using different optimized compositions and methods. Comparative analysis was done on the physicochemical properties of these OXYR formulations, as well as the ability to increase the permeability of oxyresveratrol against cultured Caco-2 cells and oral absorption in rats.

Results: The obtained SMEDDS appeared as a yellow oily liquid, while the SLN and NLC as low viscous suspensions. The physical properties, cytotoxicity, and drug permeability across the Caco-2 monolayer of the different systems were compared. The non-aqueous SMEDDS had about a 13-fold higher drug loading than the lipid nanoparticles (SLN and NLC). The particle sizes (26.94 ± 0.08 nm) of OXYR-SMEDDS were significantly smaller than that of the NLC and SLN ($p < 0.05$). Also, a narrow size distribution of the SMEDDS (PDI, 0.073 ± 0.010) was obtained compared to the lipid nanoparticles (PDI, 0.2–0.3). In the MTT assay, the OXYR-SMEDDS showed a 4-fold greater toxicity on the Caco-2 cells than the SLN and NLC containing OXYR. At the non-toxic concentration of 100 mM of OXYR, the SMEDDS and the lipid nanoparticles had 2.5 to 3-fold enhanced permeability and 1.3 to 1.8-fold reduced efflux transport, as compared to the unformulated OXYR ($p < 0.05$). The improvement of the *in vitro* oral absorption of the lipid-based formulations resulted from the increased permeability and the efflux inhibition. The *in vivo* pharmacokinetic studies of these OXYR-loaded formulations in the Wistar rat revealed that the SLN and NLC increased the relative bioavailability of OXYR to 125% and 177%, respectively when compared with unformulated OXYR. The SMEDDS enhanced bioavailability of OXYR to 218–786 %, depending on the type and quantity of the surfactant.

Conclusion: These newly developed drug delivery systems have provided the possibility of oral administration of oxyresveratrol for the treatment/prevention of Alzheimer's disease.

Suggestion: Study the potential application of OXYR formulations in cerebral HSV-related diseases such as Alzheimer's disease.

Project 2

Objectives: To chemically modify the structure of oxyresveratrol and determine the antiherpetic activity of the obtained derivatives.

Methods: Several types of chemical reactions were studied.

Results: We found that electrophilic substitution on the two aromatic rings could be controlled by manipulating the type and the number of protecting groups placed on the phenolic groups. A total of twenty-six derivatives were prepared from oxyresveratrol through. This innovative strategy has provided a valuable tool for the future chemical modification of similarly oxygenated aromatic structures. Oxyresveratrol and all of its prepared analogs were evaluated for inhibitory activity against herpes simplex virus (HSV) and neuraminidase of avian influenza virus (AIV). The most attractive products are the partially etherified analogs, namely 3',5'-dihydroxy-2,4-dimethoxystilbene and 5'-hydroxy-2,3',4-trimethoxy-stilbene, which displayed 3- to 4-fold higher antiherpetic activity than the parent compound. Because of the ether functionalities, these two synthetic compounds are expected to have higher lipophilicity and thus may have greater potential use in cerebral HSV infection, as well as HSV-related Alzheimer's disease (AD). Neither oxyresveratrol nor its derivatives showed AIV neuraminidase inhibition. Additional bioassays for α -glucosidase inhibition and cytotoxicity against cancer cells were performed on the twenty-seven stilbenoids. Due to its strong α -glucosidase inhibitory activity, oxyresveratrol has been recently suggested as an adjunct treatment for diabetes. The compound 5'-Hydroxy-2,3',4,-triisopropoxystilbene obtained in this study showed as strong anti- α -glucosidase activity as oxyresveratrol, and could be a better drug candidate, as judged from its likely slower rate of metabolism. 3',5'-Diacetoxy-2,4-diisopropoxystilbene, another analog derived oxyresveratrol, displayed selective and pronounced *in vitro* cytotoxicity against HeLa cancer cells, and should be further investigated for anticancer activity in animals.

Conclusion: Two derivatives showed greater antiherpetic activity than oxyresveratrol and might have better potential for cerebral infection and AD, due to their possibly higher lipophilicity. Neither oxyresveratrol nor any derivatives displayed AIV neuraminidase inhibition. One derivative was approximately as strong as oxyresveratrol in inhibiting α -glucosidase, and might be a more preferable drug candidate, thanks to its hypothetically slower rate of metabolism. Another derivative exhibited potent cytotoxicity against HeLa cancer cells.

Suggestion: Derivatives with improved activity should be further studied *in vivo*.

Project 3

Objectives: To further accumulate data on naturally occurring antiviral compounds with a *bis*-aryl structure, focusing on flavonoids, lignoids and stilbenoids.

Methods: Selected plants were evaluated for antiherpetic activity, and then subjected to detailed investigation, including *Artocarpus lakoocha* (Moraceae), *Miliusa mollis*, *M. fragrans*, *M. umpangensis* (Annonaceae), *Mallotus plicatus* (Euphorbiaceae), *Dendrobium venustum* and *Dendroium williamsonii* (Orchidaceae). Constituents of these plants were isolated by repeated chromatography, structurally characterized by spectroscopic methods, and then evaluated for antiherpetic activity by the plaque reduction assay.

Results: A total of sixty secondary plant metabolites were obtained. Seventeen of these isolates were determined as new compounds, consisting of a prenylated flavonoid [named 5,7,2',4'-tetrahydroxy-3-prenyl-6-geranylflavone], a tetrahydrofuran lignan [named (+)-3-hydroxy-veraguensin], five dihydrobenzofuran neolignans [named miliumollin, 3'-methoxymiliumollin, 4'-*O*-methylmiliumollin, 7-methoxymiliumollin and miliumollinone], eight 8-*O*-4' neolignans [named miliusamollin, (+)-3-*O*-demethyl-eusiderin C, (+)-4-*O*-demethyleusiderin C, (-)-miliusfragrin, (-)-4-*O*-methyl-miliusfragrin, (+)-eusiderin A, (-)-miliusfragranol A and (-)-miliusfragranol B], and two glycosidic gallic acid derivatives [named bergenin-8-*O*- α -L-rhamnoside and *seco*-bergenin-8-*O*- α -L-rhamnoside]. When subjected to antiherpetic activity evaluation, only ten compounds were found to exhibit activity, including four flavonoids [i.e. 5,7,2',4'-tetrahydroxy-3-prenyl-6-geranylflavone, cudraflavone C, quercetin 3,7-dimethyl ether and chrysosplenol-D], three neolignans [i.e. miliumollinone, 4-*O*-demethyleusiderin C and licarin A] and three dihydrostilbenes (or bibenzyls) [i.e. gigantol, batatasin III and 3,3'-dihydroxy-4, 5-dimethoxybibenzyl].

Conclusion: All of the antiherpetic molecules contained a *bis*-aryl structure, in accordance with our previous observations. The most potent compound was 5,7,2',4'-tetrahydroxy-3-prenyl-6-geranylflavone, which showed moderate activity as compared with the antiherpetic drug acyclovir. Some of the isolates were evaluated for anti-neuraminidase, but were devoid of such activity.

Suggestion: Data on the structures and activity should be digitally stored for future antiviral drug design.