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ABSTRACT
An attempt was made by this study to replace Pb-based piezoelectric ceramics with a

non-toxic lead-free piezoceramic, while focusing on a perovskite structure based on 3 systems;
BaTiOs, (Bi,Na)TiOs and (K,Na)NbOz-based ceramics. In order to achieve high piezoelectric
properties, the composition that exhibits two or multiphase coexistent near room temperature was
designed, based on the concept of morphotropic phase boundary (MPB) and polymorphic phase
transition (PPT). Several works in the literature were reviewed in order to establish the ferroelectric
phase diagram and search the polymorphic phase boundary (PPB). Phase compositions in the
crystal structure were characterized by X-ray diffraction and Raman spectroscopy. The quantitative
phase analysis and local structure of some systems were characterized by Rietveld analysis
refinement and X-ray absorption fine structure spectroscopy (XAS). This study measured important
piezoelectric and ferroelectric parameters, such as dss, dg,; Ko, Pr, Ec, and also focused on electric
fatigue behavior, which is an important parameter for HDD applications.

The ferroelectric phase diagram was established in the BT-BZ-CT ternary system, with
the PPB line being proposed. The PPB composition exhibited outstanding piezoelectric properties. A
large, virtually hysteresis-free electric field induced strain of 0.23% was achieved with the
composition, x = 0.06, at 40 kV/cm on the boundary between rhombohedral and tetragonal
phase. This relates to an extraordinarily high and normalized piezoelectric coefficient (Syax/Emax) Of
1280 pm/V, which was reached at a low electric field applied at 10 kV/cm. Fatigue measurement
carried out on PPB compositions showed a small degradation in maximum strain after 10° cycles,
when using an applied field of 20 kV/cm at 10 Hz. Furthermore, the unipolar strain curves were
almost hysteresis—-free at a high electric field. This study recommended the use of PPB
composition for high precision actuator applications.

As a result, at x = 0.1000 in the BT-CT-BS system, the (Baggo5.xC00.175-)(Ti1_xSN,)O0=
showed outstanding piezoelectric values of dss = 515 pC/N and dg,; = 1293 pm/V, which were

higher than those found in commercially available soft PZT. In addition, this study was the first to



report an anomalous dielectric relaxation at 7 = 90-150 K, which is far below that in
rhombohedral to orthorhombic phase transition. This relaxation fitted the Vogel-Fulcher model with
activation energy of E, = 20 - 70 meV and freezing temperature of Tyr = 65-85 K.

Solid solution of (1-%)(0.94Biy sNag 5Ti0z-0.06BaTiOz)-xBaSnOx [abbreviated as BNT-BT-

xBSn] with the compositions, x = 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10 in the BNT-based
system was considered. This part of the research reported that a large strain of around 0.4%, with
a normalized strain value (dg,;) of 669 pm/V at the composition, x = 0.02, was achieved by
applying an electric field of 60 kV/cm at room temperature. The results of this study showed that
a new BNT-BT-xBSn ceramic system is a very promising candidate for creating a significantly

large strain response, which is sufficiently effective for actuator material applications.

In the KNN-based system, the binary system of (1-x)(K;uNay)NbOs — XBi(Zn,sNbyz)05
[(1-x)KNN-xBZnN]; x = 0.01-0.10 was investigated. The dielectric data show that the amount of
Bi(ZnysNbyz)05 added in  (KyuNayp)NbOs decreases the ferroelectric—paraelectric  transition
temperature progressively. Furthermore, optimum piezoelectric and ferroelectric properties were
observed at the composition, x = 0.01: effective piezoelectric coefficients (dg,;) = 498 pm/V,
remanent polarization (P,) = 23.3 MC/cmz, coercive field (E.) = 14 kV/cm, maximum strain (Spmgy) =
0.3% and Curie temperature (T¢) = 380°C. The results of this study show that KNN with a smalll
amount of Bi(ZnysNbyz)05 (x = 0.01) can be a candidate lead-free piezoelectric ceramic.
Furthermore, when compared with the BT and BNT-based system, the KNN-based system can be
a candidate lead free piezoelectric ceramic for high power or high temperature actuator

applications.

Keywords : Barium Titanate, Solid solution, Phase transition, Tolerance factor, Piezoelectric

properties;
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