

Abstract (Thai)

การพัฒนาความก้าวหน้าของเทคนิคเคมีไฟฟ้า 3 เทคนิก ได้แก่ (1) scanning electrochemical microscopy (SECM), (2) electrochemical scanning tunneling microscopy (EC-STM) และ (3) macro- and microelectrode (trace) voltammetry คือ เป้าหมายของโครงการ TRF-BRG นี้ โดยเฉพาะอย่างยิ่งการประยุกต์ใช้ไมโครอิเล็กโตรดปลายเข็มของ SECM และ EC-STM ในการวิเคราะห์โดยใช้เทคนิคโอลแทมเมตري การประยุกต์ใช้เซ็นเซอร์ เชลล์เคมีไฟฟ้า และ/หรือ กระบวนการตรวจสอบแบบต่างๆ เพื่อเพิ่มความสะดวก เพิ่มประสิทธิภาพ และเพิ่มความน่าเชื่อถือมากยิ่งขึ้น.

สำหรับการวิเคราะห์ที่สำคัญของ นิกเกิลไอโอน (Ni^{2+}) ในระดับความเข้มข้น ppb ในสารละลายนั้นสามารถใช้เทคนิควิธีสตริบปิงโอลแทมเมตريภายใต้ศักย์ไฟฟ้าต่ำ ซึ่งเป็นการสะสูนนิกเกิลไอโอนที่ข้าวไฟฟ้าใช้งาน และเทคนิคเอนไซม์กัญโสดออกซิเดส-ไบโอลเซนเซอร์ ซึ่งเป็นการวิเคราะห์การยับยั้งเอนไซม์ที่เกิดจากนิกเกิลไอโอน ด้วยข้าวไฟฟ้าใช้งานแพลทินัม (Pt working electrode) ที่มีเส้นผ่าศูนย์กลางขนาดมิลลิเมตร แม้ว่าการวัดปริมาณความเข้มข้นของโลหะหนักที่เป็นพิษนิลเกิลไอโอนที่มีการละลายออกมานานาจักรีของโลหะผสม Ni/Ti ในตัวอย่างวัสดุที่ใช้ในทางการแพทย์ โดยใช้เครื่อง SECM ในการวัดร่วมกับเซนเซอร์ขนาดจุลภาคยังไม่สัมฤทธิ์ผล แต่เครื่องมือสำหรับการทำหัวตรวจสอบหรือเซนเซอร์ของเคมีไฟฟ้าที่ได้ถูกปรับแต่งขึ้นมา ทั้งในส่วนของโลหะ (หัวสแตน) และแกร์ไฟต์ (ไส้ดินสอ) นั้นจะเป็นลักษณะปลายแหลม ซึ่งโครงสร้างและรูปร่างของเซนเซอร์ที่ได้มีความเหมาะสมสมสำหรับการประยุกต์ใช้ในการเป็นหัวตรวจสอบของ STM และ EC-STM.

และในที่นี้ได้มีการสร้างจนสำเร็จทั้งในด้านการพัฒนาการวิเคราะห์ความไวต่อตัวอย่างยาปฏิชีวะด้วยเทคนิคเอมเพอร์เมตري, เทคนิคโรบอติกโอลแทมเมตรีในไมโครไตเตอร์เพลต 24 หลุม ใช้ร่วมกับเซ็นเซอร์ท่อนาโนคาร์บอน (carbon nanotube-based sensors), สายนำไฟฟ้าทองแดงเป็นข้าวไฟฟ้าใช้งานของออกซิเดสไบโอลเซนเซอร์ที่เหมาะสมในการตรวจสอบในกระแสแคปโตดิกของ H_2O_2 , และสามอิเล็กโตรดขนาดเล็กที่ง่ายและประหยัด เพื่อใช้งานกับการวิเคราะห์โอลแทมเมตريเพื่อหาสารจำนวนเล็กน้อยปริมาตร 15 ไมโครลิตร. การบรรลุเป้าหมายของโครงการนี้ได้มีการเผยแพร่สิ่งพิมพ์ 3 ฉบับ เป็นที่เรียบร้อยแล้วในวารสารที่มีคุณภาพ มีค่าคะแนน impact factor ในระดับที่ดีเยี่ยม ซึ่งมีสิ่งพิมพ์สองเรื่องได้ถูกตีพิมพ์ใน Analytical Chemistry โดยมีวารสารฉบับ #1 ในสาขาวิชาเคมีวิเคราะห์ มีค่าคะแนน impact factor เท่ากับ 6.320 ในปี 2016 และสิ่งพิมพ์อันดับที่สามได้ถูกเผยแพร่ในวารสาร Electroanalysis เนื่องในโอกาสพิเศษฉลองครบรอบ 60 ปี ของ Professor Dr. Wolfgang Schuhmann ซึ่งเป็นบุคคลที่ได้รับการยกย่องอย่างกว้างขวาง ในด้านของเคมีไฟฟ้า/การวิเคราะห์ทางเคมีไฟฟ้า (electrochemistry/electroanalysis) สิ่งพิมพ์ที่ 4 และ 5 งานเกี่ยวกับเชลล์ไฟฟ้าขนาดไมโครเมตร คาดว่าจะอยู่ใน Analytical Chemistry (สิ่งพิมพ์ฉบับนี้ได้รับการตรวจสอบและได้รับการพิจารณาให้เผยแพร่ภายในปีหน้า) และบทความของ scanning electrochemical microscopy (ส่วนที่หนึ่งของโครงการ) ได้รับเชิญเข้าร่วมสำหรับ RSC Proc. A.

คำสำคัญ: Scanning Probe Microscopy, Scanning Electrochemical Microscopy, Scanning Tunneling Microscopy, ข้าวไฟฟ้าขนาดไมโครเมตร เชลล์ไฟฟ้ายอดล้วน โอลแทมเมตريสำหรับปริมาณสารต่ำ โอลแทมเมตรีสำหรับโลหะหนัก ไฟฟ้าเคมีอัตโนมัติ

Abstract (English)

Methodological advancements of three key electrochemical techniques, namely (1) scanning electrochemical microscopy (SECM), (2) electrochemical scanning tunneling microscopy (EC-STM) and (3) macro- and microelectrode (trace) voltammetry were approached in this TRF-BRG project. Targets were actually novel SECM and EC-STM tips as well as a voltammetric analysis that, through adaptations of sensors, electrochemical cells and/or detection procedures, offered enhanced convenience, effectiveness and reliability.

For working electrodes with millimeter diameters, under-potential deposition nickel stripping voltammetry and nickel ion-induced glucose oxidase biosensor inhibition were identified in part (1) as analytical schemes that can measure trace (ppb) levels of Ni^{2+} in aqueous solution; not yet achieved adaptation of the strategies to micrometer-sized disk sensors could possibly lead to a Ni (II) analysis suitable for measurements of the local release of the toxic heavy metal from biomedical Ni/Ti alloys in an SECM setup. In part (2) an apparatus for electrochemical probe etching was constructed that allowed making of well-formed tapered (needled) metal (here: tungsten) and graphite (here: pencil lead) structures with tip shapes and curvatures suitable for further processing into STM and EC-STM tips. In part (3), an advanced amperometric respiration assay for antibiotic susceptibility testing, robotic 24-well microplate-based voltammetry with carbon nanotube-based sensors, an electrical cable copper-based oxidase biosensor platforms with favorable cathodic H_2O_2 readout and a simple and economical three-electrode electrochemical mini cell for analytical voltammetry in 15 μL -volumes were established in course of project efforts.

The project accomplishments generated 3 already published high-quality papers in journals with very good impact factor scores. Two studies were actually accepted for the journal *Analytical Chemistry*, which is the #1 periodical in the field of Analytical Chemistry with a 2016 impact factor of 6.320, while the third paper was placed in the journal *Electroanalysis*, as contribution to a special issue celebrating the 60st birthday anniversary of prominent Professor Dr. Wolfgang Schuhmann, which will be highly recognized in the field of electrochemistry/electroanalysis. The 4th and 5th outputs are expected to be another appearance in *Analytical Chemistry* on the work of microliter-volume voltammetry (the paper has been reviewed and was considered publishable after revision) and a review on scanning electrochemical microscopy (the 'part 1' subject) as invited contribution for *RSC Proc. A*.

Keywords: Scanning Probe Microscopy, Scanning Electrochemical Microscopy, Scanning Tunneling Microscopy, Microelectrodes, Small Volume Electroanalysis, Trace Voltammetry, Heavy Metal Voltammetry, Automated (Robotic) Electroanalysis