

รายงานวิจัยฉบับสมบูรณ์

โครงการ "การพัฒนานาโนคริสตัลของคลาริโธมัยซินเพื่อเพิ่มการ ละลายสำหรับการนำส่งทางปาก"

โดย

ศาสตราจารย์ ดร. วราภรณ์ จรรยาประเสริฐ และคณะ

รายงานวิจัยฉบับสมบูรณ์

โครงการ "การพัฒนานาโนคริสตัลของคลาริโธมัยซินเพื่อเพิ่ม การละลายสำหรับการนำส่งทางปาก"

คณะผู้วิจัย

- 1. ศ. ดร. วราภรณ์ จรรยาประเสริฐ
- 2. ผศ. จิรพงศ์ สุขสิริวรพงศ์
- 3. น.ส. บุญธิดา มระกูล

สังกัด

คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

สหับสนุนโดยสำนักงานกองทุนสหับสนุนการวิจัย (สกว.)

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และสกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการวิจัยเรื่อง "การพัฒนานาโนคริสตัลของคลาริโธมัยซินเพื่อเพิ่มการละลายสำหรับการนำส่งทางปาก" (BRG5680020) ได้รับการสนับสนุนทุนวิจัยจาก ทุนองค์ความรู้ใหม่ที่เป็นพื้นฐานต่อการพัฒนา สำนักงานกองทุน สนับสนุนการวิจัย (สกว.) ผู้วิจัยจึงขอขอบคุณแหล่งทุนดังกล่าวมา ณ โอกาสนี้ ผู้วิจัยขอขอบคุณคณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล ที่เอื้อเฝื้อเครื่องมือครุภัณฑ์วิทยาศาสตร์ อุปกรณ์ และสถานที่ ต่อการวิจัยครั้งนี้

การวิจัยนี้สำเร็จได้ด้วยความร่วมมือของคณะผู้วิจัยที่ประกอบด้วย ศาสตราจารย์ ดร. วราภรณ์ จรรยา ประเสริฐ หัวหน้าโครงการ ผู้ช่วยศาสตราจารย์ ดร. จิรพงศ์ สุขสิริวรพงศ์ และผู้ช่วยวิจัย คือ นางสาวบุญธิดา มระกูล คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล ผู้วิจัยขอขอบคุณ Prof. Peter Langguth, Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, Mainz, Germany ที่ให้คำแนะนำที่เป็น ประโยชน์ต่อการวิจัย และเอื้อเฝื้อสถานที่สำหรับการศึกษาอัตราการละลายและความเป็นพิษต่อเซลล์ ผู้วิจัยหวังเป็น อย่างยิ่งว่าข้อมูลจากการวิจัยที่ได้จากโครงการวิจัยนี้จะเป็นประโยชน์ต่อการการศึกษาวิจัยให้แก่นักวิจัยและผู้สนใจ ทั่วไป

บทสรุปสำหรับผู้บริหาร (Executive Summary)

คลาริโธรมัยซินเป็นยาต้านเชื้อแบคทีเรียที่ออกฤทธิ์กว้างในการรักษา สามารถยั้งยั้งเชื้อได้หลายชนิดและมี
ประโยชน์ในการรักษาโรคติดเชื้อมากมายได้แก่ โรคติดเชื้อในทางเดินหายใจ เช่น ปอดอักเสบ หลอดลมอักเสบ การติด
เชื้อที่หู ไชนัสและลำคอ การติดเชื้อที่ผิวหนังและเยื่อบุต่างๆ รวมทั้งสามารถใช้ในการป้องกันและรักษาการติดเชื้อ
Mycobacterium avium complex (MAC) ในผู้ป่วย HIV นอกจากนี้คลาริโธรมัยซินยังถูกใช้เป็นส่วนประกอบสำคัญใน
สูตรยามาตรฐานในการรักษาผู้ป่วยโรคกระเพาะอาหารและลำไส้ที่ติดเชื้อ H. pylori อีกด้วย อย่างไรก็ตามเนื่องจาก
คลาริโธรมัยซินมีคุณสมบัติการละลายน้ำได้น้อยจึงส่งผลทำให้ชีวภาพหร้อมใช้ของตัวยาที่ต่ำ การพัฒนายาในรูปแบบ
นาโนคริสตัลจะสามารถช่วยเพิ่มพื้นที่ผิวของอนุภาค ค่าการละลาย และอัตราการละลายของยา ส่งผลให้ตัวยาสามารถ
ละลายได้รวดเร็วเพียงพอให้เกิดการดูดซึมได้อย่างมีประสิทธิภาพ นอกจากนี้ระบบนาโนคริสตัลมีข้อดีพิเศษอื่นคือ
สามารถยึดเกาะกับผนังทางเดินอาหารซึ่งจะสามารถเพิ่มการดูดซึมของตัวยาได้อีกทางหนึ่ง การละลายและดูดซึมที่
เพิ่มขึ้นส่งผลให้ชีวภาพพร้อมใช้ของตัวยาเพิ่มขึ้นได้ จากข้อมูลดังกล่าวนี้จะเห็นได้ว่านาโนคริสตัลเป็นระบบนำส่งยาที่
มีประสิทธิภาพซึ่งให้ประโยชน์สำคัญในการเพิ่มคุณสมบัติการละลายของตัวยา จึงเป็นที่น่าสนใจเป็นอย่างยิ่งที่จะ
พัฒนาระบบนาโนคริสตัลของยาคลาริโธรมัยซินเพื่อเพิ่มการละลายของยาสำหรับการนำส่งทางปาก จากการศึกษานี้จะ
ทำให้ได้อนุภาคนาโนของยาคลาริโธรมัยซินในรูปผงแห้งซึ่งสามารถใช้เป็นสารตั้งต้นในการเพิ่มศักยภาพของการแข่งขัน
ของประเทศต่อไป

บทคัดย่อ

คลาริโธรมัยซินเป็นยาต้านเชื้อจุลชีพที่ออกฤทธิ์กว้างในการยับยั้งเชื้อแบคทีเรีย มีคุณสมบัติการละลายน้ำได้ ์ต่ำและถูกจัดอยู่ใน BCS (Biopharmaceutical Classification System) class II มีรายงานว่าชีวภาพพร้อมใช้ของการ นำส่งทางปากของยาคลาริโธรมัยซินเพียง 50% เนื่องจากอัตราการละลายที่ต่ำของตัวยา การวิจัยนี้มีวัตถุประสงค์โดย พัฒนาคลาริโธรมัยซินในรูปแบบของนาโนคริสตัลเพื่อเพิ่มการละลายของยาคลาริโธรมัยซินสำหรับการนำส่งทางปาก โดยการศึกษาเทคนิควิธีการผลิตและปัจจัยในการผลิต เช่น ชนิดและปริมาณของสารลดแรงตึงผิว สารลดแรงตึงผิวร่วม และปริมาณยาตั้งต้นที่ใช้ในการผลิต เพื่อหาสภาวะในการผลิตที่เหมาะสม ผลการทดลองพบว่า เทคนิคการผลิตนาโน คริสตัลด้วยวิธี precipitation-homogenization-lyophilization (PLH) จะให้ประสิทธิภาพในการลดขนาดอนุภาคได้ดีและ ใช้จำนวนครั้งการผ่านเครื่อง high pressure homogenizer น้อยกว่าเมื่อเปรียบเทียบกับเทคนิค high pressure โดยสูตรตำรับนาโนคริสตัลที่เหมาะสมคือสูตรตำรับ C1F2S01 และ C1F5S01 ซึ่งมี homogenization (HPH) ส่วนประกอบของสารลดแรงตึงผิว poloxamer 407 2 %w/v และ 5 %w/v ตามลำดับ และสารลดแรงตึงผิวร่วม SLS 0.1 %w/v นาโนคริสตัลของยาคลาริโธรมัยซินที่ผลิตได้มีขนาดอนุภาคเฉลี่ยประมาณ 400 nm และมีค่าความต่างศักย์ ที่ผิวอนุภาคมากกว่า -30 mV จากผลของ SEM พบว่านาโนคริสตัลของยาคลาริโธรมัยซิน มีรูปร่างอนุภาคคล้าย สี่เหลี่ยมลูกบาศก์ และเมื่อตรวจสอบความเป็นผลึกและพหฺสัณฐานของนาโนคริสตัลด้วยเทคนิค DSC และ XRPD พบว่านาโนคริสตัลของยาคลาริโธรมัยซินอยู่ในรูปผลึก (crystalline) และมีบางส่วนอยู่ในรูปอสัณฐาน (amorphous) จากการศึกษาค่าการละลาย (saturation solubility) และคุณสมบัติการละลาย (dissolution) ของตำรับนาโนคริสตัลของ ยาคลาริโธรมัยซินในตัวกลางการละลายบัฟเฟอร์ pH 5.0 และ 6.8 พบว่าตำรับนาโนคริสตัลมีค่าการละลายที่สูงกว่าและ มีคุณสมบัติการละลายที่ดีกว่าผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาด ทั้งนี้น่าจะเป็นผลมาจากขนาด อนุภาคที่ลดลงในระดับนาโนของนาโนคริสตัล โดยพบว่าตำรับนาโนคริสตัลที่ศึกษาทั้งสองตำรับมีค่าการละลายและ คุณสมบัติการละลายไม่แตกต่างกันมากนัก เนื่องมาจากนาโนคริสตัลทั้งสองตำรับมีขนาดอนุภาคที่ใกล้เคียงกัน เมื่อ ทำการศึกษาความเป็นพิษต่อเซลล์ของตำรับนาโนคริสตัล พบว่าเซลล์เยื่อบุทางเดินอาหารสามารถมีชีวิตอยู่ได้ตลอด ระยะเวลาที่ทำการศึกษาเมื่อใช้ความเข้มข้นของยาในตำรับนาโนคริสตัลไม่เกิน 50 µM นอกจากนี้ผลการศึกษาความ คงตัวทางกายภาพ แสดงให้เห็นว่านาโนคริสตัลของยาคลาริโธรมัยซินทั้งสองตำรับมีความคงตัวทางกายภาพที่ อุณหภูมิ 4 °C, 30 °C และ 45 °C ตลอดระยะเวลา 4 เดือนในการเก็บรักษา

คำสำคัญ: นาโนคริสตัล, คลาริโธรมัยซิน, ค่าการละลาย, การละลาย, ความคงตัว

Abstract

Clarithromycin is a board spectrum antibacterial agent which is poorly soluble in water. It is

classified in BCS (Biopharmaceutical Classification System) class II. The oral bioavailability of clarithromycin

is only 50% due to the slow dissolution rate. The aim of this study was to develop clarithromycin

nanocrystals having high dissolution for oral delivery. In the experiment, the production technique and other

factors involving the preparation such as type and amount of surfactant, co-surfactant, and initial drug loading

were studied to obtain an optimized formulation. The results indicated that the preparation of clarithromycin

nanocrystals by precipitation-homogenization-lyophilization (PLH) method provided more effective and

reduced the passing cycle through the high pressure homogenizer as compared with high pressure

homogenization (HPH) method. The optimized formulations were C1F2S01 and C1F5S01 which were

consisted of poloxamer 407 as a surfactant 2 %w/v and 5 %w/v, respectively and SLS as a co-surfactant 0.1

%w/v. Nanocrystals of clarithromycin had mean particle size approximately of 400 nm and zeta potential

higher than -30 mV. The results from SEM showed that clarithromycin nanocrystals were in cubic-like shape.

The DSC thermogram and x-ray diffraction pattern showed that clarithromycin nanocrystals were in crystalline

state and/or partial amorphous form. The results from saturation solubility and dissolution study indicated

that the clarithromycin nanocrystals had higher saturation solubility and dissolution when compared to the

clarithromycin powder and the coarse suspension in both dissolution buffer pH 5.0 and 6.8. The better

dissolution performance of nanocrystals would be the result from the reduction of the particle size into

nanometer range. The saturation solubility and dissolution profile of both nanocrystal formulations were

comparable which were due to the similar size of the particles. The results from cytotoxicity study of

clarithromycin nanocrystals revealed that cellular monolayer was viable when the clarithromycin concentration

in nanocrystals was less than 50 µM. Moreover, the stability study suggested that both nanocrystal

formulations had good physical stability at 4 °C, 30 °C and 45 °C for 4 months.

Keywords: Nanocrystal, Clarithromycin, Saturation solubility, Dissolution, Stability

BRG5680020 การพัฒนานาโนคริสตัลของคลาริโธมัยซินฯ

iν

สารบัญ

	หน้า
กิตติกรรมประกาศ	i
บทสรุปสำหรับผู้บริหาร (Executive Summary)	ii
บทคัดย่อ	iii
Abstract	iv
สารบัญ	V
สารบัญรูป	vi
สารบัญตาราง	vii
สัญลักษณ์และคำย่อ	ix
เนื้อหางานวิจัย	
บทนำ	1
วัตถุประสงค์ของโครงการ	2
วิธีดำเนินการทดลอง	3
ผลการทดลองและวิจารณ์ผล	10
สรุปผลการทดลอง	29
เอกสารอ้างอิง	30
ภาคผนวก	32
Output จากโครงการวิจัย	33
ผลงานตีพิมพ์ (Reprint)	34
การเสนอผลงาน (Presentation)	66
บทความสำหรับเผยแพร่	91
กิจกรรมที่เกี่ยวข้องกับการนำผลของโครงการไปใช้ประโยชน์	92

สารบัญรูป

		หน้า
รูปที่ 1	การเปรียบเทียบขนาดอนุภาคของ nanocrystal ของ clarithromycin ที่เตรียมด้วยเทคนิค	13
	High pressure homogenization (HPH) และเทคนิค Precipitation- lyophilization-	
	homogenization (PLH) ซึ่งทำการวัดดัวยเครื่อง laser diffraction (ซ้าย) และเครื่อง	
	photon correlation spectroscopy (ขวา)	
รูปที่ 2	การเปรียบเทียบอิทธิพลของปริมาณยาเริ่มตันที่ใช้ในการผลิตที่มีต่อการลดขนาดอนุภาค	14
	nanocrystal ของ clarithromycin โดยการวัดด้วยเครื่อง laser diffraction (ซ้าย)	
	และเครื่อง photon correlation spectroscopy (ขวา)	
รูปที่ 3	การเปรียบเทียบอิทธิพลของสารลดแรงตึงผิวและสารลดแรงตึงผิวร่วมที่มีต่อการลดขนาด	15
	อนุภาค nanocrystal ของ clarithromycin ที่เตรียมดัวยเทคนิค PLH ซึ่งทำการวัดดัวย	
	เครื่อง laser diffraction (ซ้าย) และเครื่อง photon correlation spectroscopy (ขวา)	
รูปที่ 4	ภาพถ่ายอนุภาคดัวยกล้องจุลทรรศน์อิเล็กตรอนของ (A) ผงยาคลาริโธมัยซินที่ไม่ผ่าน	16
	กระบวนการลดขนาด (B) นาโนคริสตัลของยาคลาริโธมัยซินที่เตรียมด้วยวิธี HPH และ	
	(C) นาโนคริสตัลของยาคลาริโธมัยซินที่เตรียมด้วยวิธี PLH	
รูปที่ 5	DSC thermogram ของผงยาคลาริโธมัยซินที่ไม่ผ่านกระบวนการลดขนาด, poloxamer 407,	18
	SLS และนาโนคริสตัลของยาคลาริโธรมัยซิน	
รูปที่ 6	XRPD diffractogram ของผงยาคลาริโธมัยซินที่ไม่ผ่านกระบวนการลดขนาด, poloxamer 407,	18
	SLS และนาโนคริสตัลของยาคลาริโธรมัยซิน	
รูปที่ 7	FT-IR spectra ของ (A) ผงยาคลาริโธมัยซินที่ไม่ผ่านกระบวนการลดขนาด,	19
	(B) poloxamer 407, (C) SLS และ (D) นาโนคริสตัลของยาคลาริโธรมัยซิน	
รูปที่ 8	kinetics ของค่าการละลายของผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด	21
	(clarithromycin), ผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสาร	
	เพิ่มความคงตัวในสูตรตำรับ C1F2S01 (coarse suspension) และนาโนคริสตัลของยา	
	คลาริโธรมัยซินตำรับ C1F2S01 และ C1F5S01 ในตัวกลางการละลายบัฟเฟอร์ (A) pH 6.8	
	และ (B) pH 5.0 ภายใต้สภาวะควบคุมอุณหภูมิที่ 37 °C (n=3) (ส่วนขยายที่แทรกมาแสดง	
	kinetic ของค่าการละลายของตัวอย่างในช่วงแรกของการทดลอง)	
รูปที่ 9	dissolution profile ของผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด	24
	(clarithromycin), ผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความ	
	คงตัวในสูตรตำรับ C1F2S01 (coarse suspension) และนาโนคริสตัลของยาคลาริโธรมัยซิน	
	ตำรับ C1F2S01 และ C1F5S01 ในตัวกลางการละลายบัฟเฟอร์ (A) pH 6.8 และ (B) pH 5.0	
	ภายใต้สภาวะควบคุมอุณหภูมิที่ 37 °C (n=3)	

สารบัญรูป

		หน้า
รูปที่ 10	อิทธิพลของความเข้มข้นของนาโนคริสตัลสูตรตำรับ C1F2S01 และ C1F5S01,	26
	ผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด และผงยาคลาริโธรมัยซินที่ไม่	
	ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ	
	C1F2S01 ต่อ % cell viability ของ Caco-2 cell หลังการ incubate ที่ 37 ^o C เป็นเวลา	
	24 ชั่วโมง (n=8)	
รูปที่ 11	อิทธิพลของความเข้มข้นของนาโนคริสตัลสูตรตำรับ C1F2S01 และ C1F5S01,	27
	ผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด และผงยาคลาริโธรมัยซินที่ไม่	
	ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ	
	C1F2S01 ต่อ % cell viability ของ NCI-N87 cell หลังการ incubate ที่ 37 °C เป็นเวลา	
	24 ชั่วโมง (n=8)	
รูปที่ 12	ขนาดอนุภาคเฉลี่ย (z-ave, column), polydispersity index (PI, diamond spot),	28
	ค่าความต่างศักย์ที่ผิวอนุภาค (ZP) ของนาโนคริสตัลของยาคลาริโธรมัยซินสูตรตำรับ	
	C1F2S01 และ C1F5S01 ที่เวลาหลังการผลิต (ขาว) และหลังการเก็บรักษาเป็นเวลา 4 เดือน	
	ที่อุณหภูมิ 4 °C (เทาอ่อน), 30°C (เทา) และ 45°C (เทาเข้ม)	

สารบัญตาราง

		หน้า
ตารางที่ 1	สูตรตำรับ nanocrystal ของ clarithromycin ที่เตรียมโดยวิธี High pressure	5
	homogenization (HPH)	
ตารางที่ 2	สูตรตำรับของอนุภาค nanocrystal ของ clarithromycin ที่เตรียมโดยวิธี Precipitation-	5
	lyophilization-homogenization (PLH)	
ตารางที่ 3	สูตรตำรับและขนาดอนุภาค nanocrystal ของ clarithromycin ที่เตรียมโดยวิธี High	11
	pressure homogenization (HPH)	
ตารางที่ 4	ขนาดอนุภาคและความต่างศักย์ที่ผิวอนุภาคของอนุภาค nanocrystal ของ clarithromycin	16
	สูตรตำรับ C1F2S01 และ C1F5S01 ที่เตรียมด้วยเทคนิค PLH	
ตารางที่ 5	ค่าตัวแปรทางสถิติของการละลายได้แก่ percent dissolution efficiency at 30 min	25
	(%DE 30 min), relative dissolution rate at 30 min (RD 30 min), mean dissolution time	
	(MDT), difference factor (f_1) และ similarity factor (f_2) ของผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่า	น
	กระบวนการลดขนาด (clarithromycin), ผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่ง	
	ผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 (coarse suspension) และ	
	นาโนคริสตัลของยาคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01	

สัญลักษณ์และคำย่อ

nm นาโนเมตร

µm ไมโครเมตร cm เซนติเมตร

cm² ตารางเซนติเมตร

 µI
 ไมโครลิตร

 mI
 มิลลิลิตร

 mg
 มิลลิกรัม

g กรัม min นาที

mV มิลลิโวลต์% เปอร์เซนต์

pH ความเป็นกรดเบส

°C องศาเซลเซียส

HPLC High Pressure Liquid Chromatography

DSC Differential Scanning Calorimetry

XRPD X-ray Powder Diffraction

FT-IR Fourier Transformed Infrared Spectroscopy

PCS Photon Correlation Spectroscopy

LD Laser Diffraction

Z-ave Mean Particle Size

PI Polydispersity Index

ZP Zeta potential

RD Relative Dissolution Rate

DE Dissolution Efficiency

MDT Mean Dissolution Time

f₁ Difference Factor

f₂ Similarity Factor

รายงานฉบับสมบูรณ์

โครงการ "การพัฒนานาโนคริสตัลของคลาริโธมัยซินเพื่อเพิ่มการละลายสำหรับ การนำส่งทางปาก"

บทน้ำ

คลาริโธรมัยซินเป็นยาต้านเชื้อจุลชีพซึ่งออกฤทธิ์กว้างในการรักษา มีประโยชน์ในการรักษาโรคติดเชื้อได้ หลายประเภท ได้แก่ โรคติดเชื้อในทางเดินหายใจ เช่น ปอดอักเสบ หลอดลมอักเสบ การติดเชื้อที่หู ไซนัส และลำคอ การติดเชื้อที่ผิวหนังและเยื่อบุต่างๆ รวมทั้งสามารถใช้ในการป้องกันและรักษาการติดเชื้อ Mycobacterium avium complex (MAC) ในผู้ป่วย HIV นอกจากนี้คลาริโธรมัยซินยังถูกใช้เป็นส่วนประกอบสำคัญในสูตรยามาตรฐานในการ รักษาผู้ป่วยโรคกระเพาะอาหารและลำไส้ที่ติดเชื้อ H. pylori คลาริโธรมัยซินมีโครงสร้างโมเลกุลเป็น macrolide มี น้ำหนักโมเลกุลใหญ่ (M.W. 747.95 g/mol) มีคุณสมบัติการละลายน้ำได้ต่ำและจัดอยู่ใน BCS (Biopharmaceutical Classification System) class II คลาริโธรมัยซินมีชีวภาพพร้อมใช้เมื่อให้ยาทางปากเพียง 50% เนื่องมาจาก ความสามารถในการละลายน้ำได้ต่ำของตัวยา การเพิ่มค่าการละลายและอัตราการละลายของยาจะส่งผลให้ตัวยามี การละลายที่รวดเร็วเพียงพอกับการดูดซึม ทำให้ยาดูดซึมได้ดีขึ้นและส่งผลถึงประสิทธิภาพในการรักษาได้ดีขึ้น

โดยทั่วไป ยาที่ละลายน้ำได้น้อยจะมีปริมาณยาที่สามารถดูดซึมน้อยและมีชีวภาพพร้อมใช้ที่ต่ำ (3) การลด ขนาดอนุภาคเป็นกลวิธีหนึ่งที่นิยมใช้เพื่อเพิ่มการละลายของตัวยา การเตรียมยาในรูปแบบของนาโนคริสตัลจะส่งผล ให้พื้นที่ผิวของอนุภาค และค่าการละลายและอัตราการละลายของตัวยาเพิ่มขึ้น นำไปสู่การเพิ่มขึ้นของชีวภาพพร้อม ใช้ของยา (4) นอกจากนี้ อีกหนึ่งคุณสมบัติพิเศษของนาโนคริสตัลคือสามารถยึดเกาะกับผนังทางเดินอาหาร ซึ่งจะ สามารถเพิ่มการดูดซึมของตัวยาได้อีกทางหนึ่ง (5,6) จากคำจำกัดความนาโนคริสตัล คือ อนุภาคผงยาซึ่งมีขนาดอนุภาค เฉลี่ยอยู่ในช่วงนาโน (น้อยกว่า 1000 nm) (7) โดยอนุภาคผงยานาโนคริสตัลที่กระจายตัวอยู่ในตัวกลางของเหลวได้แก่ น้ำ หรือสารอื่นเช่น PEG และมีสารเพิ่มความคงตัวเช่นสารลดแรงตึงผิวหรือโพลิเมอร์ ระบบดังกล่าวจะถูกเรียกว่า nanosuspension

เทคนิควิธีที่ใช้ในการผลิตนาโนคริสตัลมีหลายวิธี ได้แก่ เทคนิค precipitation (8), เทคนิค pearl milling (9), เทคนิค high pressure homogenization (10) เทคนิคเหล่านี้เป็นเทคนิคพื้นฐานในการเตรียมนาโนคริสตัล ในทาง ปฏิบัติพบว่าเทคนิค high pressure homogenization เป็นเทคนิคหนึ่งที่นิยมใช้ เนื่องจากสามารถใช้ผลิตนาโนคริสตัล ได้ง่าย สามารถขยายการผลิตในระดับอุตสาหกรรมได้ และมีการปนเปื้อนของสารปนเปื้อนในผลิตภัณฑ์ต่ำ (11) อย่างไร ก็ตาม เทคนิคดังกล่าวอาจมีข้อจำกัดในกรณีที่อนุภาคตั้งต้นมีความแข็งของอนุภาคสูงซึ่งจำเป็นต้องใช้ความดันและ จำนวนรอบในการผ่านเครื่อง high pressure homogenizer ที่มากขึ้น จึงได้มีการพัฒนาเทคโนโลยีในการผลิตโดยใช้ หลาย ๆ เทคนิคการผลิตผสมร่วมกันเพื่อช่วยลดจำนวนรอบการผ่านเครื่อง high pressure homogenizer และทำให้ได้ นาโนคริสตัลที่มีขนาดเล็กลง (12) ตัวอย่างเทคโนโลยีผสมดังกล่าว ได้แก่ เทคนิค NanoEdge เป็นเทคนิคผสมระหว่าง precipitation และ high pressure homogenization (13) และเทคนิค SmartCrystal ซึ่งเป็นเทคนิคผสมระหว่าง precipitation และ high pressure homogenization และ high pressure homogenization และ high pressure homogenization และ H96 เป็น เทคนิคผสมระหว่าง lyophilization และ high pressure homogenization ในงานวิจัยนี้ได้ทำการผสมเทคนิควิธีการ

ผลิต 3 เทคนิคเข้าด้วยกันคือเทคนิค precipitation-lyophilization-homogenization (PLH) โดยมีวัตถุประสงค์คือ เทคนิค precipitation จะช่วยลดขนาดอนุภาคเริ่มต้นให้มีขนาดเล็กเพียงพอที่จะสามารถผ่าน homogenization gap ได้ อย่างไรก็ตามในเทคนิค precipitation มีการใช้ organic solvent ซึ่งจำเป็นต้องมีการกำจัดออกเพื่อป้องกันการโตขึ้น ของอนุภาคในเวลาต่อมา (12) ดังนั้นการใช้เทคนิค lyophilization ในขั้นตอนถัดมาจะสามารถกำจัด organic solvent ที่ หลงเหลืออยู่ได้ นอกจากนี้เทคนิคดังกล่าวยังส่งผลให้อนุภาคของยาที่ได้มีความพรุนและความเปราะของอนุภาค เพิ่มขึ้น (14-16) ซึ่งง่ายแก่การลดขนาดด้วยเทคนิค high pressure homogenization ในขั้นตอนสุดท้าย

รายงานวิจัยหลายฉบับระบุว่า นาโนคริสตัลสามารถเพิ่มการละลายของยาได้เป็นอย่างดี ยกตัวอย่างเช่น การ พัฒนานาโนคริสตัลของยา rutin เพื่อนำส่งทางปากโดย Mauludin และคณะ พบว่าอัตราการละลายของ rutin nanocrystal-loaded tablet ซึ่งเตรียมโดยวิธี high pressure homogenization ให้ค่าสูงกว่าอัตราการละลายของ rutin-microcrystal-loaded tablet และตำรับที่มีในท้องตลาด ซึ่งการละลายที่เพิ่มขึ้นของ rutin nanocrystal-loaded tablet ส่งผลให้ชีวภาพพร้อมใช้ของ rutin ในร่างกายเพิ่มขึ้นตามมา⁽¹⁷⁾ นอกจากนี้ จากการศึกษาของ Kocbek และคณะ พบว่า nanosuspension ของยา ibuprofen ที่เตรียมด้วยเทคนิค melt emulsification และ solvent diffusion สามารถ เพิ่มอัตราการละลายของยาได้ โดยพบว่า ยาในตำรับ nanosuspension มากกว่า 65% สามารถละลายได้ภายใน 10 นาทีแรก ขณะที่ตำรับยาที่มีขนาดระดับไมครอนจะมีการละลายได้เพียง 15% ซึ่ งการละลายที่เพิ่มขึ้นของยาดังกล่าว ส่งผลให้เกิดการเพิ่มชีวภาพพร้อมใช้ และช่วยลดการระคายเคืองของยาในกระเพาะอาหารได้⁽¹⁸⁾ ดังนั้นจึงเป็นที่ น่าสนใจอย่างยิ่งที่จะพัฒนาระบบนาโนคริสตัลของยาคลาริโธรมัยซินเพื่อเพิ่มประสิทธิภาพในการละลายของยา ทำให้ได้ยาที่มี ประสิทธิผลในการรักษาเพิ่มขึ้น สามารถใช้เป็นสารตั้งตันในการผลิตยาเม็ด แคปซูล หรือแกรนูลต่อไปในอนาคต สามารถทดแทนผลิตภัณฑ์นำเข้าจากต่างประเทศ และเป็นการเพิ่มศักยภาพของการแข่งขันของประเทศต่อไป

วัตถุประสงค์ของโครงการ

- 1). เพื่อพัฒนาตำรับนาโนคริสตัลของยาคลาริโธมัยซินและตรวจสอบคุณลักษณะของอนุภาคนาโนดังกล่าวในด้าน ต่าง ๆ ได้แก่ ขนาดอนุภาค ความต่างศักย์ที่ผิวอนุภาค รูปร่างของอนุภาค ความเป็นผลึกและพหุสัณฐานของ อนุภาค
- 2). เพื่อตรวจสอบอิทธิพลของปัจจัยต่าง ๆ ในสูตรตำรับ และกระบวนการผลิต ที่มีผลต่อคุณสมบัติทางกายภาพ ของนาโนคริสตัลของยาคลาริโธมัยซิน
- 3). เพื่อตรวจสอบค่าการละลาย คุณสมบัติการละลาย และความเป็นพิษของนาโนคริสตัลของยาคลาริโธมัยซิน

วิธีดำเนินการทดลอง

สารเคมีและอุปกรณ์

สารเคมี: Clarithromycin (Suzhou Rovathin Foreign Trade, China), Poloxamer 407 (BASF, Germany), Poloxamer 188 (BASF, Germany), Polyvinyl alcohol (PVA) (Carlo Erba Reagenti, Italy), Tween 80 (S.Tong chemical, Thailand), Sodium lauryl sulfate (SLS) (S.Tong chemical, Thailand), Potassium dihydrogen orthophosphate A.R. grade (Fisher scientific, UK), Acetone A.R. grade (RCI-Labscan, Thailand), Acetonitrile HPLC grade (Burdick & Jackson, Korea), Sodium acetate trihydrate (VWR BDH Prolabo, Belgium), Acetic acid, glacial A.R. grade (RCI-Labscan, Thailand), Dulbecco's Modified Eagle Medium (DMEM, Gibco, UK), Roswell Park Memorial Institute medium 1640 (RPMI-1640, Gibco, USA)

<u>a្ឋាក់ទល់</u>: High pressure homogenizer (APV-2000, SPX Flow Technology, Germany), High speed homogenizer (Ultra-Turrax® T25, IKA, Germany), Freeze dryer (Alpha 1-4, Martin Christ Gefriertrocknungsanlagen GmBH, Germany), Zetasizer NanoZS (Malvern Instruments, Worcestershire, UK), Mastersizer 2000 (Malvern Instruments, Worcestershire, UK), Scanning electron microscope (JSM-6400, JEOL, Japan), Differential scanning calorimeter (DSC 8000, Perkin Elmer, USA), X-ray powder diffractometer (D8 Advance, Bruker AXS GmBH, Germany), Fourier Transform Infrared spectrometer (Nicolet 6700, Thermo Scientific, USA), Dissolution tester (Erweka ET 1500I, Erweka GmBH, Germany), High performance liquid chromatography (Shimadzu® series 20AD, Shimadzu Corporation, Japan), Multi-well scanning spectrophotometer (Infinite® F200, Tecan, Switzerland), Incubator (HERAcell® 240, Thermo Electron LED, Germany)

วิธีการทดลอง

(1) การเตรียม nanocrystals ของ clarithromycin

1.1 การเตรียม nanocrystal ของ clarithromycin ด้วยเทคนิค High pressure homogenization (HPH)

เตรียมสารละลายสารลดแรงตึงผิวในน้ำตามปริมาณที่กำหนดไว้ในสูตรตำรับตามตารางที่ 1 และกระจายผง ยา clarithromycin 1%w/v ลงในสารละลายสารลดแรงตึงผิวดังกล่าว แล้วนำไปปั่นผสมด้วยเครื่องปั่นผสมความเร็วสูง (Ultra-Turrax T25, IKA, Germany) เพื่อลดขนาดอนุภาคเบื้องต้นก่อนนำไปผ่านเครื่อง high pressure homogenizer (APV-2000, SPX Flow Technology, Germany) สารตัวอย่างจะถูกปั่นผสมเพื่อลดขนาดอนุภาค และสุ่มออกมาหลังจากผ่านกระบวนการ pre-milling และหลังจากการปั่นผสมที่ 1500 bar ที่ cycle 1, 5, 10, 15, 20, 25 และ 30 ตามลำดับ สารตัวอย่างที่ถูกสุ่มออกมาจะถูกนำไปวิเคราะห์คุณลักษณะทางกายภาพของผลึกนาโน ได้แก่ การวัด ขนาดอนุภาคด้วยเครื่อง photon correlation spectroscopy (Zetasizer NanoZS, Malvern Instrument, UK) และ เครื่อง laser diffraction (Mastersizer 2000, Malvern Instrument, UK)

1.2 การเตรียมอนุภาค nanocrystal ของ clarithromycin ด้วยเทคนิค Precipitation-lyophilization-homogenization (PLH)

เตรียมสารละลายสารลดแรงตึงผิวในน้ำในปริมาณที่กำหนดในสูตรตำรับตามตารางที่ 2 และเตรียมสารละลาย ของ clarithromycin ใน acetone จากนั้นตกตะกอนโดยการหยดสารละลายของ clarithromycin ใน acetone ลงใน สารละลายสารลดแรงตึงผิวโดยทำการควบคุมอุณหภูมิขณะตกตะกอนที่ 8-10 °C และคนตลอดเวลาด้วย magnetic stirrer ตั้งทิ้งไว้จน acetone ระเหยและนำไปทำให้เป็นผงแห้งด้วยเครื่อง lyophilizer (Alpha 1-4, Martin Christ Gefriertronungsanlagen GmbH, Germany) ผงแห้งดังกล่าวจะถูกนำมากระจายตัวอีกครั้งในน้ำเพื่อผ่านเครื่อง high pressure homogenizer โดยสารตัวอย่างจะถูกปั่นผสมลดขนาดที่ 1500 bar 30-70 cycle และถูกสุ่มออกมาหลังจาก ผ่านกระบวนการ pre-milling และหลังจากการปั่นผสม ที่ cycle 1, 5, 10, 15, 20, 25, 30, 40, 50, 60 และ 70 ตามลำดับ (การปั่นผสมลดขนาดจนถึง 70 cycle จะทำเฉพาะในสูตรตำรับ C3F2S01 และ C5F2S01 เพื่อศึกษา อิทธิพลจากปริมาณตัวยาต่อการลดขนาดอนุภาค) สารตัวอย่างที่ถูกสุ่มออกมาจะถูกนำไปวิเคราะห์คุณลักษณะทาง กายภาพของ nanocrystal ได้แก่ การวัดขนาดอนุภาคด้วยเครื่อง photon correlation spectroscopy (Zetasizer NanoZS, Malvern Instrument, UK)

(2) สมบัติทางกายภาพของ nanocrystal ของ clarithromycin

2.1 รูปร่างของอนุภาค

ตรวจสอบรูปร่างอนุภาคของผงยาคลาริโธมัยซินที่ไม่ผ่านกระบวนการลดขนาด นาโนคริสตัลของยาคลาริโธ มัยซินที่เตรียมโดยวิธี PLH โดยใช้กล้องจุลทรรศน์ อิเล็กตรอน (JSM-6400, JEOL, Japan) การเตรียมตัวอย่างก่อนการตรวจสอบด้วยกล้องจุลทรรศน์อิเล็กตรอนทำโดย การนำตัวอย่างที่ต้องการตรวจสอบมาเจือจางด้วยน้ำกลั่นจนมีความเข้มข้นที่เหมาะสม สารตัวอย่างดังกล่าวจะถูก กระจายลงบนแท่นรองรับตัวอย่าง และทำให้แห้งภายใต้สุญญากาศ จากนั้นทำการเคลือบที่ผิวสารตัวอย่างที่ต้องการ วัดด้วยทองคำก่อนทำการส่องด้วยกล้องจุลทรรศน์อิเล็กตรอน

2.2 ความเป็นผลึกและพหุสัณฐานของนาโนคริสตัลของยาคลาริโธมัยซิน

ตรวจสอบความเป็นผลึกและพหุสัณฐานของนาโนคริสตัลของยาคลาริโธมัยซินโดยอาศัยเทคนิค Differential scanning calorimetry (DSC) และเทคนิค X-ray powder diffraction (XRPD) ประกอบกัน โดยมีรายละเอียด ดังต่อไปนี้

Differential scanning calorimetry (DSC) : ประเมินความเป็นผลึกและพหุสัณฐานด้วยการใช้ DSC 8000 Perkin Elmer วิธีการโดยการชั่งสารตัวอย่างประมาณ 1-2 มิลลิกรัม ใส่ใน aluminum pan และใช้ aluminum pan เปล่าเป็น reference ทำการเพิ่มอุณหภูมิจาก 30 °C เป็น 250 °C แล้วทำให้เย็นเป็น 30 °C อีกครั้งโดยใช้อัตราการ เปลี่ยนแปลงอุณหภูมิที่ 10 °C/min ประเมินจุดหลอมเหลว (melting point) และ enthalpy จาก DSC thermogram

X-ray powder diffraction (XRPD) : ประเมินความเป็นผลึกและพหุสัณฐานด้วยการใช้เครื่อง x-ray diffractometer D8 Advance, Bruker AXS GmbH วิเคราะห์หา diffractogram ของสารตัวอย่างโดยการเก็บข้อมูล 2θ จาก 2° ถึง 70° โดยเว้นระยะห่างในการเก็บข้อมูลครั้งละ 0.04° ทุก 4 วินาที

ตารางที่ 1 สูตรตำรับ nanocrystal ของ clarithromycin ที่เตรียมโดยวิธี High pressure homogenization (HPH)

		สารลดแรงตึงผิว	ชนิดที่ 1	สารลดแรงตึงผิวชนิดที่ 2		
สูตรตำรับ	ปริมาณยา (%w/v)	ชนิด	ปริมาณ (%w/v)	ชนิด	ปริมาณ (%w/v)	
C1Tween	1	Tween 80	10	-	-	
C1PVA	1	PVA 1 -		-		
C1SLS	1	SLS	0.1	-	-	
C1F188	1	Poloxamer 188	5	-	-	
C1F5	1	Poloxamer 407	5	-	-	
C1F2	1	Poloxamer 407	2	-	-	
C1F2S005	1	Poloxamer 407	2	SLS	0.05	
C1F2S01	1	Poloxamer 407	2	SLS	0.1	

ตารางที่ 2 สูตรตำรับของอนุภาค nanocrystal ของ clarithromycin ที่เตรียมโดยวิธี Precipitation-lyophilization-homogenization (PLH)

สูตรตำรับ	ปริมาณยา	สารลดแรงตึง	ผิวชนิดที่ 1	สารลดแรงตึงผิวชนิดที่ 2			
ผู้ผางผางก	(%w/v)	ชนิด	ปริมาณ (%w/v)	ชนิด	ปริมาณ (%w/v)		
C1F2	1	Poloxamer 407	2	-	-		
C1F5	1	Poloxamer 407	5	-	-		
C1F2S01	1	Poloxamer 407	2	SLS	0.1		
C1F5S01	1	Poloxamer 407	5	SLS	0.1		
C3F2S01	3	Poloxamer 407	2	SLS	0.1		
C5F2S01	5	Poloxamer 407	2	SLS	0.1		

2.3 วิเคราะห์การเกิด interaction ระหว่างนาโนคริสตัลและสารลดแรงตึงผิวที่ใช้เพิ่มความคงตัวของ ระบบ

การเกิด interaction ระหว่างนาโนคริสตัลและสารลดแรงตึงผิวที่ใช้เพิ่มความคงตัวของระบบสามารถ ตรวจสอบได้โดยอาศัยเทคนิค Fourier transformed infrared spectroscopy (FT-IR) ซึ่ง FT-IR spectra จะถูกบันทึก ผลจากเครื่อง FT-IR spectrometer Nicolet 6700 Thermo Scientific ในช่วงสเปคตรัม 4000 - 400 cm⁻¹ สารตัวอย่าง ที่ทำการวัดจะถูกนำมาบดผสมกับ KBr และทำการตอกให้เป็นแผ่นบางใสด้วยความดันไฮโดรลิกก่อนนำมาวิเคราะห์ ด้วย FT-IR ในการวิเคราะห์อาศัยเทคนิค transmittance โดยการ scan ผ่าน 32 ครั้งด้วยความละเอียด 4 cm⁻¹

(3) การศึกษาค่าการละลาย (saturation solubility) ของนาโนคริสตัลของยาคลาริโธรมัยซิน

ศึกษาค่าการละลาย (saturation solubility) ของสารตัวอย่างที่ต้องการศึกษาในตัวกลางการละลายบัฟเฟอร์ 2 ชนิดคือ 0.05M KH₂PO₄ buffer pH 6.8 และ 0.1M CH₃COONa buffer pH 5.0 ในการทดลองหาค่าการละลาย สาร ตัวอย่างนาโนคริสตัลของคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01 จะนำมาศึกษาเปรียบเทียบกับสาร ตัวอย่างผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาดและสารตัวอย่างผงยาคลาริโธรมัยซินที่ไม่ผ่าน กระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 สารตัวอย่างทั้ง 4 ชนิดจะถูก นำมาชั่งแยกกันใส่ในหลอดทดลองในปริมาณที่มากเกินพอ จากนั้นทำการเติมบัฟเฟอร์ตัวกลางการละลายที่ต้องการ ศึกษาปริมาณ 5 ml ใส่ในหลอดทดลอง นำหลอดทดลองดังกล่าวไปเขย่าในอ่างเขย่าควบคุมอุณหภูมิที่ 37.0±0.5 °C เป็นเวลา 72 ชั่วโมง ทำการสุ่มสารตัวอย่าง 1 ml ณ เวลาที่กำหนด และแทนที่ด้วยบัฟเฟอร์ตัวกลางการละลายเปล่า ในปริมาณที่เท่ากันโดยทันทีหลังจากการสุ่มตัวอย่างแต่ละครั้ง นำสารตัวอย่างที่สุ่มได้มากรองด้วย 0.2 μm membrane filter (Minisart®, Sartorius, Germany) จากนั้นสารตัวอย่างดังกล่าวจะถูกนำมาเจือจางด้วย HPLC mobile phase ให้มีความเข้มข้นขืองยาคลาริโธรมัยซิน (solubility) และเวลา

สำหรับการวิเคราะห์หาปริมาณ clarithromycin ทำการวิเคราะห์โดย HPLC spectrophotometer (Series 20AD, Shimadzu Corporation, Japan) ใช้สภาวะการวิเคราะห์ด้วย isocratic mode ตามรายละเอียดดังต่อไปนี้

Stationary phase : Hypersil® ODS C18 reversed-phase column, 250 mm × 4.6 mm, particle

size of packing 5 µm (Thermo Scientific, Germany)

Mobile phase : Acetonitrile : KH₂PO₄ buffer pH 6.0 (65 : 35 v/v)

Flow rate: 1 ml/min

Column temperature : 40 °C

Detector wavelength : 210 nm

Injection volume : 50 µI

ซึ่งสภาวะดังกล่าวให้ linearity ในช่วงความเข้มข้น 1.563-200 μ g/ml โดย R 2 > 0.999 และมี intraday-interday precision น้อยกว่า 2 %

(4) การศึกษาคุณสมบัติการละลาย (dissolution) ของหาโหคริสตัลของยาคลาริโธรมัยซิน

ศึกษาคุณสมบัติการละลายของนาโนคริสตัลของยาคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01 เปรียบเทียบกับผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด และผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาด และผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาด ซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 การทดสอบการละลายทำได้ โดยการใช้เครื่องทดสอบการละลาย USP apparatus 2 (Erweka ET 1500I, Germany) ทดสอบการละลายของสาร ตัวอย่างซึ่งมีปริมาณยาคลาริโธรมัยซิน 125 mg ในตัวกลางการละลายบัฟเฟอร์ 2 ซนิดคือ 0.05 M KH₂PO₄ buffer pH 6.8 และ 0.1 M CH₃COONa buffer pH 5.0 โดยใช้ปริมาตรตัวกลางการละลายที่ 900 ml ภายใต้สภาวะควบคุม อุณหภูมิ 37±0.5 °C และควบคุมการหมุนของ paddle ที่ 50 rpm สุ่มตัวกลางการละลายของสารตัวอย่างปริมาตร 1 ml ตามเวลาที่กำหนด และแทนที่ด้วยบัฟเฟอร์ตัวกลางการละลายเปล่าในปริมาณที่เท่ากันโดยทันทีหลังจากสุ่ม ตัวอย่าง สารตัวอย่างที่สุ่มได้จะถูกนำมากรองด้วย 0.2 μm membrane filter (Minisart®, Sartorius, Germany) แล้ว วิเคราะห์หาปริมาณคลาริโธรมัยซินด้วย HPLC spectroscophy ต่อไป ทำการทดลองซ้ำ 3 ครั้ง

ทำการวิเคราะห์ค่าตัวแปรทางสถิติของการละลาย โดยอาศัยตัวแปรดังต่อไปนี้

- 4.1 Relative dissolution rate (RD) คือ อัตราส่วนระหว่างเปอร์เซนต์ยาที่ถูกปลดปล่อยจากตำรับที่ทดสอบ (test formulation) ต่อตำรับอ้างอิง (reference) ณ เวลาใดๆ
- 4.2 Percent dissolution efficiency (%DE) เป็นค่าที่ใช้เปรียบเทียบพฤติกรรมการละลายของแต่ละตำรับ โดย %DE คำนวณได้จากอัตราส่วนระหว่างพื้นที่ใต้กราฟการละลายจนถึงเวลา t ต่อพื้นที่สี่เหลี่ยมซึ่งแสดงถึงการ ละลาย 100% ที่เวลาเดียวกัน ดังสมการที่ 1

$$\% DE = \left(\frac{\int_{0}^{t} y \, dt}{y_{100} \, t}\right) 100 \tag{สมการที่ 1}$$

4.3 Mean dissolution time (MDT) แสดงถึงเวลาเฉลี่ยที่ยาใช้ในการละลาย 50% ซึ่งคำนวณได้จากสมการที่ 2

$$MDT = \frac{\sum_{i=1}^{n} t_{mid} \Delta M}{\sum_{i=1}^{n} \Delta M}$$
 (สมการที่ 2)

โดย

i = dissolution sample number

n = number of dissolution times

 t_{mid} = time at the midpoint between t_i and t_{i-1}

 ΔM = amount of drug dissolved (µg) during t_i to t_{i-1}

4.4 Difference factor (f₁) เป็นค่าที่ใช้ประเมิน percent error ระหว่างกราฟการละลาย 2 ตำรับที่ต้องการ นำมาเปรียบเทียบกัน ซึ่งสามารถคำนวณได้จากสมการที่ 3

$$f_1 = \frac{\sum_{i=1}^{n} \left| R_i - T_i \right|}{\sum_{i=1}^{n} R_i} x 100$$
 (สมการที่ 3)

โดย

i = dissolution sample number

n = number of dissolution times

 T_i = dissolved amounts of test drug at each time point i

 R_i = dissolved amounts of reference at each time point i

ค่า f_1 จะมีค่าเข้าใกล้ศูนย์เมื่อ test drug และ reference มีการละลาย (dissolution profile) ที่เท่ากัน และค่าดังกล่าวจะ เพิ่มขึ้นเมื่อการละลายของทั้งสองตำรับมีความแตกต่างกัน

4.5 Similarity factor (f_2) เป็นค่าที่ใช้ในการบ่งบอกถึงความคล้ายคลึงกันของการละลาย (dissolution profile) ระหว่างสองตำรับ ซึ่งสามารถคำนวณได้จากสมการที่ 4

$$f_2 = 50x \log \left\{ \left[1 + (1/n) \sum_{i=1}^{n} \left| R_i - T_i \right|^2 \right]^{-0.5} x 100 \right\}$$
 (สมการที่ 4)

โดย

i = dissolution sample number

n = number of dissolution times

 T_i = dissolved amounts of test drug at each time point i

 R_i = dissolved amounts of reference at each time point i

ค่า f_2 จะมีค่าเข้าใกล้ 100 เมื่อ test drug และ reference มีการละลาย (dissolution profile) ที่เท่ากัน และค่าดังกล่าวจะ เข้าใกล้ 0 เมื่อการละลายของทั้งสองตำรับมีความแตกต่างกัน โดยทั่วไป dissolution profile ของสองตำรับจะถูก พิจารณาว่ามีความเท่าเทียมกันเมื่อค่า f_1 น้อยกว่า 15 (0-15) และค่า f_2 มากกว่า 50 (50-100)

(5) ศึกษาความเป็นพิษต่อเซลล์ (cytotoxicity) ของนาโนคริสตัลของยาคลาริโธรมัยซิน

5.1 การเพาะเลี้ยงเซลล์เนื้อเยื่อ (cell cultures)

ทำการเพาะเลี้ยงเซลล์เนื้อเยื่อ 2 ชนิดคือ Caco-2 cell ซึ่งเป็นแบบจำลองของเซลล์เยื่อบุลำไส้เล็กของมนุษย์ และ NCI-N87 cell ซึ่งเป็นแบบจำลองของเซลล์เยื่อบุกระเพาะอาหาร โดยมีรายละเอียดดังต่อไปนี้

<u>Caco-2 cell</u> : ทำการเพาะเลี้ยงใน 75 cm² T-flasks ด้วย Dulbecco's modified Eagle's medium (DMEM) ซึ่งผสมด้วย 10% FBS. 1% NEAA และ 1% PEST

<u>NCI-N87 cell</u> : ทำการเพาะเลี้ยงใน 75 cm² T-flasks ด้วย Roswell Park Memorial Institute medium 1640 (RPMI-1640) ซึ่งผสมด้วย 10% FBS, 1% sodium pyruvate, 4.5 g/L D-glucose, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), และ 1% PEST

เซลล์เนื้อเยื่อที่เพาะเลี้ยงจะถูกควบคุมภายใต้สภาวะ 37 °C, 5% CO₂, 90% relative humidity และทำการ เปลี่ยนอาหารเลี้ยงเซลล์ทุกๆ 2 วัน

5.2 การทดสอบความเป็นพิษต่อเซลล์ (*In vitro* cytotoxicity)

ทำการเพาะเลี้ยง Caco-2 cell และ NCI-N87 cell ลงใน 96-well plate ด้วยความเข้มข้น 5000 cells/well และ 20000 cells/well ตามลำดับ ทำการ incubate plate ที่เพาะเลี้ยงไว้ข้ามคืนโดยควบคุมอุณหภูมิที่ 37 °C เมื่อถึง เวลาทดลองทำการเจือจางสารตัวอย่างที่ต้องการทดสอบ (นาโนคริสตัลของคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01, ผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด และผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาด ซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01) ลงในอาหารเลี้ยงเซลล์ เพื่อให้ได้ความ

เข้มข้นต่าง ๆ ดังต่อไปนี้ 0, 5, 25, 37.5, 50, 100, 150 µM จากนั้นเดิมสารตัวอย่างที่ถูกเจือจางตามความเข้มข้น ดังกล่าวลงใน plate ที่เพาะเลี้ยงเซลล์ไว้ ทำการ incubate plate เป็นเวลา 24 ชั่วโมง แล้วทดสอบด้วย MTT assay โดย วิธีการ คือ ดูดสารตัวอย่างที่ incubate ทิ้ง เติม MTT working solution ลงใน plate และ incubate ทิ้งไว้ 30 นาที เมื่อ ครบตามเวลา คูด MTT working solution ทิ้งและเติม DMSO ลงใน plate เพื่อละลาย formazan crystals ที่เกิดขึ้น จากนั้นวัด optical density ของ formazan ที่เกิดขึ้นด้วย spectrophotometer (Infinite F200, Tecan, Switzerland) ที่ ความยาวคลื่น 560 nm เซลล์ที่ incubate ด้วยอาหารเลี้ยงเซลล์เปล่าซึ่งไม่มีสารตัวอย่างที่ต้องการทดสอบจะใช้เป็นกลุ่ม ควบคุม (control group) ในการเปรียบเทียบ ทำการทดลองซ้ำ 8 ครั้ง คำนวณหา percent cell viability ตามสมการที่ 5

%
$$cell$$
 $viability = \frac{Absorbance}{Absorbance}$ of $treated$ $cell$ $\times 100$ (สมการที่ 5)

(6) ศึกษาความคงตัวทางกายภาพของนาโนคริสตัลของยาคลาริโธรมัยซิน

นาโนคริสตัลของยาคลาริโรมัยซินสูตรตำรับ C1F201 และ C1F5S01 ที่ผ่านการ lyophilized และเก็บในรูปผง แห้งจะนำไปบรรจุในภาชนะบรรจุปิดสนิทและเก็บในภูมิควบคุมที่ 4 °C, 30 °C และ 45 °C เป็นเวลา 4 เดือน หลังจาก การเก็บรักษานาโนคริสตัลของยาคลาริโรมัยซินจะถูกนำมาทดสอบความคงตัวทางกายภาพโดยการวัดขนาดอนุภาค เฉลี่ย (z-ave), polydispersity index (PI) และค่าความต่างศักย์ที่ผิวอนุภาค (zeta potential) ก่อนการทดลองวัดขนาด อนุภาคและความต่างศักย์ที่ผิวอนุภาคนาโนคริสตัลของยาคลาริโรมัยซินจะถูกนำมาเจือจางด้วย deionized water จนมี ความเข้มข้นที่เหมาะสมในการวัด

ผลการทดลองและวิจารณ์ผล

(1) การเตรียม nanocrystals ของ clarithromycin

1.1 การเตรียม nanocrystal ของ clarithromycin ด้วยเทคนิค High pressure homogenization (HPH)

ตารางที่ 3 แสดงขนาดอนุภาค nanocrystal ของ clarithromycin ซึ่งผลการทดลองนี้จะนำไปใช้ในการกำหนด สูตรตำรับที่เหมาะสม โดยการพิจารณาอิทธิพลของสารลดแรงตึงผิวและสารลดแรงตึงผิวร่วม ต่อการลดขนาดอนุภาค nanocrystal ดังรายละเอียดต่อไปนี้

อิทธิพลของสารลดแรงตึงผิว

ผลของขนาดอนุภาค nanocrystal ของ clarithromycin หลังจากการปั่นผสมด้วยเทคนิค High pressure homogenization ที่ 1500 bar 30 cycle แสดงให้เห็นในตารางที่ 3 พบว่าสูตรตำรับที่มีการใช้ Poloxamer 407 เป็น สารลดแรงตึงผิวมีประสิทธิภาพสูงสุดในการลดขนาดอนุภาค nanocrystal ของ clarithromycin ตามด้วยสูตรตำรับที่ใช้ PVA, SLS, Poloxamer 188 และ Tween 80 ตามลำดับ นอกจากนั้น สูตรตำรับที่ใช้ Poloxamer 407 เป็นสารลดแรง ตึงผิวนี้ยังให้ค่าการกระจายขนาดของอนุภาค (PI-value) ต่ำกว่า 0.5 ซึ่งบ่งชี้ถึงความคงตัวของระบบที่ดี ดังนั้น Poloxamer 407 จึงเป็นสารลดแรงตึงผิวที่เหมาะสมในการพัฒนาตำรับ nanocrystal ของ clarithromycin ต่อไป

อิทธิพลสารลดแรงตึงผิวร่วม (co-surfactant)

ผลการทดลองเมื่อใช้ Poloxamer 407 ปริมาณ 2%w/v เป็นสารลดแรงตึงผิวหลักของตำรับ และใช้ SLS เป็น สารลดแรงตึงผิวร่วม (co-surfactant) ในการลดขนาดอนุภาคของ nanocrystal ของ clarithromycin แสดงให้เห็นใน ตารางที่ 3 เมื่อเปรียบเทียบผลการทดลองระหว่างสูตรตำรับที่ไม่มีการเติม SLS และ สูตรตำรับที่มีการเติม SLS เป็น สารลดแรงตึงผิวร่วมในปริมาณ 0.05%w/v และ 0.1%w/v พบว่าสูตรตำรับที่มีการเติม SLS ปริมาณ 0.1%w/v ทำให้ ขนาดอนุภาคของ nanocrystal ของ clarithromycin มีค่าประมาณ 400 nm และสามารถลดขนาดอนุภาค nanocrystal ของ clarithromycin ได้ดีกว่าสูตรตำรับที่ไม่มี SLS และ สูตรตำรับที่มี SLS ในปริมาณ 0.05%w/v โดยสูตรตำรับที่มี การเติม SLS ในปริมาณ 0.05%w/v โดยสูตรตำรับที่มี การเติม SLS ในปริมาณ 0.05%w/v ให้ผลการลดขนาดอนุภาคไม่แตกต่างจากสูตรตำรับที่ไม่มีการเติม SLS ดังนั้น การใช้ SLS เป็นสารลดแรงตึงผิวร่วมในปริมาณที่เหมาะสม (0.1%w/v) ในสูตรตำรับ สามารถช่วยลดขนาดอนุภาคใน การเตรียม nanocrystal ของ clarithromycin ได้

ตารางที่ 3 สูตรตำรับและขนาดอนุภาค nanocrystal ของ clarithromycin ที่เตรียมโดยวิธี High pressure homogenization (HPH)

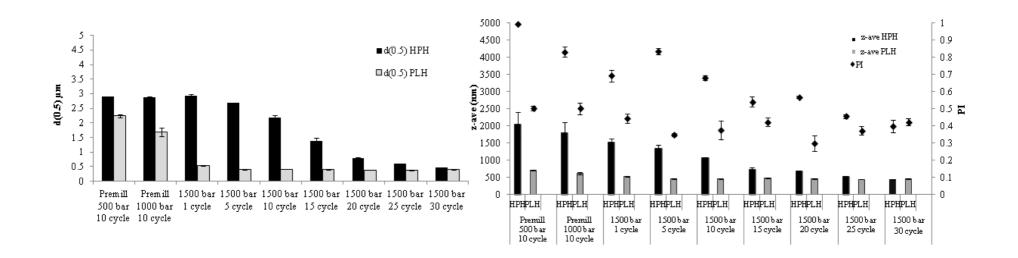
		สารลดแรงตึงผิวชนิดที่ 1		สารลดแรงตึงผิวชนิดที่					
สูตรตำรับ	ปริมาณยา (%w/v)	ชนิด	ปริมาณ (%w/v)	ชนิด		PI*	d(0.5) (μm)	d(0.9) (μm)	
C1Tween	1	Tween 80	10	-	-	3018±241	0.564±0.105	3.167	5.203
C1PVA	1	PVA	1	-	-	893±74	0.743±0.191	1.786	4.695
C1SLS	1	SLS	0.1	-	-	851±132	0.690±0.081	2.373	11.874
C1F188	1	Poloxamer	5	-	-	1534±14	0.633±0.094	2.726	6.900
C1F5	1	Poloxamer	5	-	-	732±81	0.429±0.040	0.694	1.651
C1F2	1	Poloxamer	2	-	-	737±26	0.433±0.056	1.150	2.462
C1F2S005	1	Poloxamer	2	SLS	0.05	761±46	0.637±0.087	0.761	2.406
C1F2S01	1	Poloxamer	2	SLS	0.1	438±12	0.397±0.072	0.467	1.158

^{*}ค่าเฉลี่ยของการทดลอง 3 ครั้ง

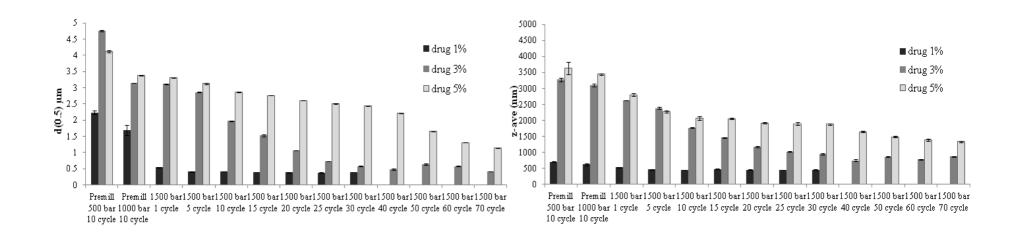
1.2 การเตรียมอนุภาค nanocrystal ของ clarithromycin ด้วยเทคหิค Precipitation-lyophilization-homogenization (PLH)

ผลจากการวิเคราะห์ขนาดอนุภาคสามารถสรุปปัจจัยที่มีอิทธิพลต่อการลดขนาดอนุภาค nanocrystal ของ clarithromycin ได้ ดังต่อไปนี้

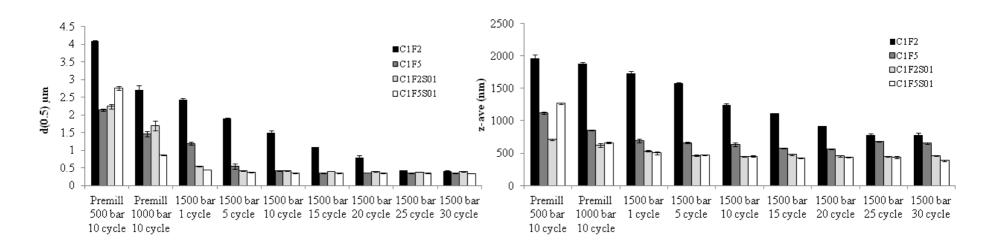
อิทธิพลของเทคนิคในการเตรียมอนุภาค nanocrystal


สูตรตำรับ C1F2S01 ถูกนำมาใช้ในการทดลองเพื่อเปรียบเทียบเทคนิคการผลิตระหว่างวิธี High pressure homogenization (HPH) และวิธี Precipitation-lyophilization-homogenization (PLH) ผลการทดลองดังแสดงในรูปที่ 1 จากการทดลองพบว่าเทคนิคทั้งสองสามารถลดขนาดอนุภาคของผลึกนาโนของยาคลาริโธมัยซินได้โดยมีขนาดอนุภาค สุดท้ายประมาณ 400 nm อย่างไรก็ตามเทคนิค PLH มีประสิทธิภาพในการลดขนาดอนุภาคที่ดีกว่า เนื่องจากใช้ จำนวนครั้งการผ่านเครื่อง high pressure homogenizer ของอนุภาคผลึกนาโนที่น้อยกว่าเมื่อเปรียบเทียบกับเทคนิค HPH โดยที่เทคนิค PLH สามารถลดขนาดอนุภาคของผลึกนาโนของยาคลาริโธมัยซินได้ถึงในช่วง 444-478 nm ด้วย การใช้จำนวนรอบการปั่นผสมเพียง 5 รอบ ในขณะที่เทคนิค HPH ต้องใช้จำนวนรอบในการปั่นผสมถึง 30 รอบเพื่อให้ มีขนาดอนุภาคที่ใกล้เคียงกันในช่วง 400 nm

<u>อิทธิพลของปริมาณยาที่ใช้ในการผลิต</u>


จากการทดลองเปรียบเทียบอิทธิพลของปริมาณยาเริ่มต้นในการผลิตที่มีต่อการลดขนาดอนุภาคผลึกนาโน เทคนิค PLH ได้ถูกนำมาใช้ในการผลิตอนุภาค nanocrystal ของ clarithromycin โดยการกำหนดให้มีปริมาณยาเริ่มต้น ในการผลิตแตกต่างกัน คือ 1, 3 และ 5 %w/v (สูตรตำรับ C1F2S01, C3F2S01 และ C5F2S01 ตามลำดับ) ผลการ ทดลองแสดงให้เห็นในรูปที่ 2 พบว่าในการลดขนาดอนุภาคให้อยู่ในระดับนาโน (< 1,000 nm) ผลึกของอนุภาคจำเป็น จะต้องผ่านเครื่อง high pressure homogenizer 1, 25 และมากกว่า 70 รอบ สำหรับสูตรตำรับ C1F2S01, C3F2S01 และ C5F2S01 ตามลำดับ ซึ่งอาจสรุปได้ว่าปริมาณยาเริ่มต้นในการผลิตที่สูงขึ้นอาจส่งผลให้ประสิทธิภาพในการลด ขนาดอนุภาคลดลงซึ่งจำเป็นจะต้องใช้พลังงานหรือรอบในการปั่นผสมที่เพิ่มขึ้นเพื่อลดขนาดอนุภาคให้อยู่ในระดับนาโน

อิทธิพลของสารลดแรงตึงผิวและสารลดแรงตึงผิวร่วม

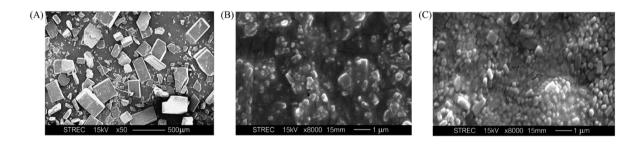

ผลการทดลอง preliminary study (ตามข้อ 1.1) พบว่าการใช้สารลดแรงตึงผิว Poloxamer 407 เป็นสารลด แรงตึงผิวหลัก และ SLS เป็นสารลดแรงตึงผิวร่วมช่วยเพิ่มความคงตัวของอนุภาค nanocrystal ของ clarithromycin จึงใช้สารทั้งสองในการผลิต nanocrystal ของ clarithromycin ในการทดลองเพื่อเปรียบเทียบอิทธิพลของสารลดแรงตึง ผิวที่มีต่อการลดขนาดอนุภาคผลึกนาโน โดยเตรียม nanocrystal ของ clarithromycin ด้วยเทคนิค PLH ด้วยการ กำหนดปริมาณสารลดแรงตึงผิวหลัก (Poloxamer 407) ให้มีปริมาณแตกต่างกันในสูตรตำรับ (2 และ 5 %w/v) ใน สภาวะที่มีการเติมและไม่เติมสารลดแรงตึงผิวร่วม (0.1 %w/v SLS) และประเมินผลกระทบของปริมาณสารลดแรงตึง ผิวที่มีต่อการลดขนาดอนุภาคผลึกนาโน โดยการเปรียบเทียบขนาดอนุภาคที่เตรียมได้จากสูตรตำรับที่มีปริมาณสารลด แรงตึงผิวต่างกัน (สูตรตำรับ C1F2 และ C1F5) ดังรูปที่ 3 พบว่าสูตรตำรับที่มีปริมาณ Poloxamer 407 5 %w/v (C1F5) สามารถลดขนาดอนุภาคได้เร็วกว่าสูตรตำรับที่มีปริมาณ Poloxamer 407 2 %w/v (C1F2) และผลของการ เติมสารลดแรงตึงผิวร่วม (0.1 %w/v SLS) ต่อการลดขนาดอนุภาคผลึกนาโน แสดงให้เห็นในรูปที่ 3 พบว่าสูตรตำรับที่มีการเติม SLS (สูตรตำรับ C1F2และ C1F5)

ร**ูปที่ 1** การเปรียบเทียบขนาดอนุภาคของ nanocrystal ของ clarithromycin ที่เตรียมด้วยเทคนิค High pressure homogenization (HPH) และเทคนิค Precipitation-lyophilization-homogenization (PLH) ซึ่งทำการวัดด้วยเครื่อง laser diffraction (ซ้าย) และเครื่อง photon correlation spectroscopy (ขวา)

รูปที่ 2 การเปรียบเทียบอิทธิพลของปริมาณยาเริ่มต้นที่ใช้ในการผลิตที่มีต่อการลดขนาดอนุภาค nanocrystal ของ clarithromycin โดยการวัดด้วยเครื่อง laser diffraction (ซ้าย) และ เครื่อง photon correlation spectroscopy (ขวา)

รูปที่ 3 การเปรียบเทียบอิทธิพลของสารลดแรงตึงผิวและสารลดแรงตึงผิวร่วมที่มีต่อการลดขนาดอนุภาค nanocrystal ของ clarithromycin ที่เตรียมด้วยเทคนิค PLH ซึ่งทำการวัดด้วย เครื่อง laser diffraction (ซ้าย) และเครื่อง photon correlation spectroscopy (ขวา)

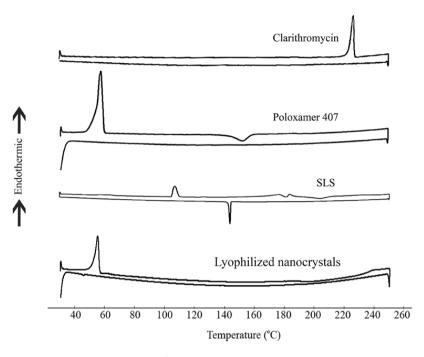
จากผลการทดลองข้างต้น พบว่า nanocrystal ของ clarithromycin สูตรตำรับ C1F2S01 และ C1F5S01 ที่ เตรียมด้วยเทคนิค PLH ให้ขนาดอนุภาคผลึกนาโนและความต่างศักย์ที่ผิวอนุภาคดังแสดงในตารางที่ 4 เป็นสูตรตำรับ ที่เหมาะสมและน่าสนใจในการนำไปศึกษาคุณสมบัติของอนุภาค nanocrystal ต่อไป

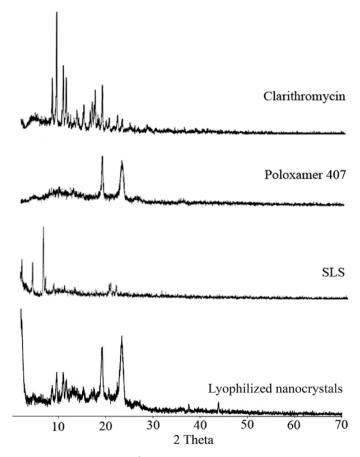

ตารางที่ 4 ขนาดอนุภาคและความต่างศักย์ที่ผิวอนุภาคของอนุภาค nanocrystal ของ clarithromycin สูตรตำรับ C1F2S01 และ C1F5S01 ที่เตรียมด้วยเทคนิค PLH

สูตรตำรับ	z-ave (nm)	PI	d(0.5) (μm)	d(0.9) (μm)	ความต่างศักย์ ที่ผิวอนุภาค (mV)
C1F2S01	460±10	0.423±0.044	0.396±0.020	2.352±0.236	-36.0
C1F5S01	386±17	0.304±0.028	0.339±0.006	1.067±0.076	-32.7

(2) คุณสมบัติทางกายภาพของ nanocrystal ของ clarithromycin

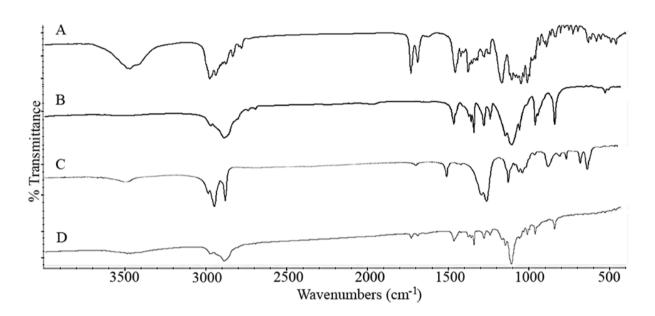
2.1 รูปร่างของอนุภาค


จากภาพถ่ายอนุภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนรูปที่ 4 พบว่า อนุภาคของนาโนคริสตัลของยาคลาริโธมัย ซินที่เตรียมด้วยวิธี PLH (รูปที่ 4C) และ HPH (รูปที่ 4AB) มีขนาดเล็กกว่าผงยาคลาริโธมัยซินที่ไม่ผ่านกระบวนการลด ขนาด (รูปที่ 4A) อย่างเห็นได้ชัด อย่างไรก็ตาม รูปร่างอนุภาคของนาโนคริสตัลของยาคลาริโธมัยซินที่เตรียมด้วยวิธี PLH และ HPH ดังกล่าวมีรูปร่างอนุภาคคล้ายสี่เหลี่ยมลูกบาศก์ (cubic-like shape) ซึ่งไม่แตกต่างจากรูปร่างของผงยาคลาริโธมัยซินที่ไม่ผ่านกระบวนการลดขนาด


ร**ูปที่ 4** ภาพถ่ายอนุภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนของ (A) ผงยาคลาริโธมัยซินที่ไม่ผ่านกระบวนการลดขนาด (B) นาโนคริสตัลของยาคลาริโธมัยซินที่เตรียมด้วยวิธี HPH และ (C) นาโนคริสตัลของยาคลาริโธมัยซินที่เตรียมด้วยวิธี PLH

2.2 ความเป็นผลึกและพหุสัณฐานของนาโนคริสตัลของยาคลาริโธมัยซิน

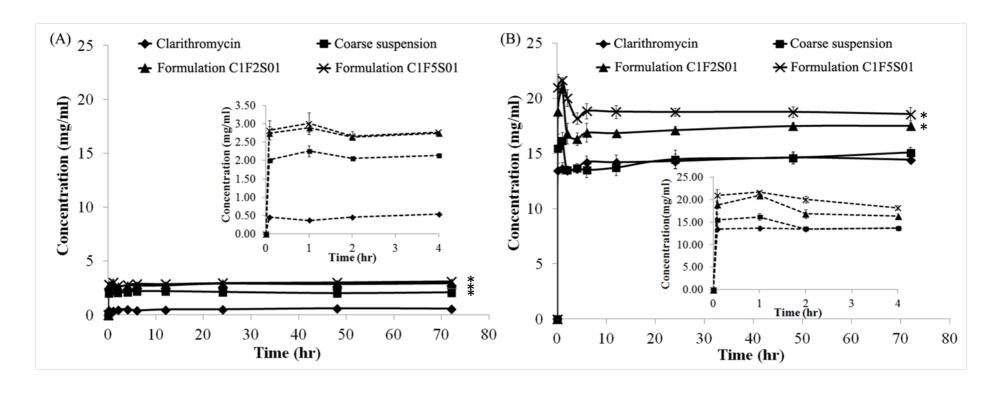
การประเมินความเป็นผลึกและพหุสัณฐานของนาโนคริสตัลของยาคลาริโธรมัยซินสามารถพิจารณาได้จาก ข้อมูลการวิเคราะห์ด้วย DSC ประกอบกับข้อมูลการวิเคราะห์ด้วย XRPD จากการศึกษาที่เคยมีรายงานมา ชี้ให้เห็นว่า คลาริโธรมัยซินมีพหุสัณฐานในรูปของผลึก (crystalline) อย่างน้อย 5 รูปแบบคือ Form I, Form IV, Form V และ Form O และรูปอสัณฐาน (amorphous) โดยทุกพหุสัณฐานจะมีฤทธิ์ทางเภสัชวิทยาเท่าเทียมกัน อย่างไรก็ตาม พบว่า Form II เป็นรูปผลึกที่มีความคงตัวสูงสุดและมีวางจำหน่ายในรูปยาทั่วไป จากผลการทดลองในการวิเคราะห์ ด้วย DSC (ดังแสดงในรูปที่ 5) พบว่า ผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาดมี DSC thermogram ตรงกับรูปผลึก Form II โดยมีจุดหลอมเหลว (endothermic melting peak) ชัดเจนอยู่ที่ประมาณ 226 °C สำหรับ poloxamer 407 และ SLS ซึ่งใช้เป็นสารเพิ่มความคงตัวของระบบมีการเปลี่ยนแปลงค่าพลังงานแบบดูดความร้อน (endothermic peak) ที่ประมาณ 50 °C และ 100 °C ตามลำดับ ขณะเดียวกันพบว่า peak ที่แสดงจุดหลอมเหลวของ นาโนคริสตัลของยาคลาริโธรมัยซินมีขนาดเล็ก ไม่ชัดเจน และมีการเคลื่อนออกไปเล็กน้อยที่ประมาณ 235 °C การ เปลี่ยนแปลงดังกล่าวอาจมีผลเนื่องมาจากความเป็นผลึกของคลาริโธรมัยซินที่ลดลง โดยการเปลี่ยนแปลงไปอยู่ในรูป ผลึกอื่นที่มีความคงตัวน้อยกว่าหรืออยู่ในรูปอสัณฐาน ซึ่งเมื่อนำมาประกอบกับข้อมูลการวิเคราะห์ด้วย x-ray diffractometer (แสดงในรูปที่ 6) พบว่า x-ray diffractogram ของผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลด ขนาดมีลักษณะของผลึกรูปแบบ Form II ซึ่งมี diffraction peak ที่เป็นลักษณะเฉพาะที่ตำแหน่ง 2heta ดังต่อไปนี้ $8.5^{\circ} \pm 0.2$, $9.5^{\circ} \pm 0.2$, $10.8^{\circ} \pm 0.2$, $11.5^{\circ} \pm 0.2$, $11.9^{\circ} \pm 0.2$, $12.4^{\circ} \pm 0.2$, $13.7^{\circ} \pm 0.2$, $14.1^{\circ} \pm 0.2$, $15.2^{\circ} \pm 0.2$, 16.5°±0.2, 16.9°±0.2, 17.3°±0.2, 18.1°±0.2, 18.4°±0.2, 19.0°±0.2, 19.9°±0.2 และ 20.5°±0.2 โดยพบว่านาโน คริสตัลของคลาริโธรมัยซินมี diffraction peak ขึ้นที่ตำแหน่งดังกล่าวเช่นเดียวกัน ซึ่งบ่งบอกว่านาโนคริสตัลของคลา ริโธรมัยซินที่ได้จากการเตรียมอยู่ในรูปของผลึกรูปแบบ Form II ขณะเดียวกันยังพบ diffraction peak ของนาโน คริสตัลของคลาริโธรมัยซินเกิดขึ้นในตำแหน่ง 20 ตำแหน่งใหม่ดังต่อไปนี้ $5.2^{\circ}\pm0.2$, $6.7^{\circ}\pm0.2$, $10.2^{\circ}\pm0.2$, 12.3°±0.2, 14.2°±0.2, 15.4°±0.2, 15.7°±0.2 และ 16.4°±0.2 ซึ่งตำแหน่งดังกล่าวเป็นลักษณะเฉพาะของผลึก รูปแบบ Form I นอกจากนี้ยังพบว่าความสูงของพีค (intensity) ซึ่งบ่งบอกความเป็นผลึกของนาโนคริสตัลของคลา ริโธรมัยซินมีขนาดเล็กลงเมื่อเปรียบเทียบกับความสูงของพีค (intensity) ของผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่าน กระบวนการลดขนาด ที่อาจบ่งบอกได้ว่าหลังกระบวนการผลิตนาโนคริสตัลของยาคลาริโธรมัยซินบางส่วนจะเกิดการ เปลี่ยนแปลงสัณฐานจากรูปแบบผลึกที่คงตัว Form II ไปเป็นรูปแบบผลึก Form I หรือรูปแบบอสัณฐาน (amorphous) ที่มีความคงตัวน้อยกว่า ซึ่งเหตุการณ์ดังกล่าวสามารถเกิดขึ้นได้เนื่องจากในกระบวนการผลิตมีการใช้พลังงานสูงใน การลดขนาดอนุภาค (high pressure homogenization) และการทำให้เย็นอย่างรวดเร็วในขั้นตอน lyophilization ดังนั้นจึงอาจสรุปได้ว่านาโนคริสตัลของยาคลาริโธรมัยซินภายหลังกระบวนการผลิตจะอยู่ในรูปผลึก (crystalline) Form II และ Form I และมีบางส่วนในรูปแบบอสัณฐาน (amorphous) นาโนคริสตัลของยาคลาริโธรมัยซินในรูปผลึก (crystalline) จะมีข้อดีในเรื่องความคงตัวของนาโนคริสตัล ขณะเดียวกันนาโนคริสตัลบางส่วนซึ่งอยู่ในรูปอสัณฐาน (amorphous) จะส่งผลให้เกิดข้อดีในการเพิ่มการละลายของยาควบคู่กัน


รู**ปที่ 5** DSC thermogram ของผงยาคลาริโธมัยซินที่ไม่ผ่านกระบวนการลดขนาด, poloxamer 407, SLS และนาโน คริสตัลของยาคลาริโธรมัยซิน

รู**ปที่ 6** XRPD diffractogram ของผงยาคลาริโธมัยซินที่ไม่ผ่านกระบวนการลดขนาด, poloxamer 407, SLS และนา โนคริสตัลของยาคลาริโธรมัยซิน

2.3 วิเคราะห์การเกิด interaction ระหว่างนาโนคริสตัลและสารลดแรงตึงผิวที่ใช้เพิ่มความคงตัวของ ระบบ

จาก FT-IR spectra (แสดงในรูปที่ 7) พบว่า คลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาดขมี peak ลักษณะเฉพาะขึ้นที่ตำแหน่ง 1692 cm⁻¹ แสดงถึง C=O stretching ของหมู่ ketone, ตำแหน่ง 1733 cm⁻¹ แสดงถึงหมู่ carbonyl ในวง lactone, ตำแหน่ง 1170-1053 cm⁻¹ แสดงถึง C-O stretching ของ ether, ตำแหน่ง 2974-2940 cm⁻¹ แสดงถึง C-H stretching ของหมู่แทนที่ alkyl-CH₃ และตำแหน่ง 3473 cm⁻¹ แสดงถึง O-H stretching ในโครงสร้าง ของยาคลาริโธรมัยซิน ผลการทดลอง พบว่า นาโนคริสตัลของยาคลาริโธรมัยซินให้ peak ของ FT-IR spectra ใน รูปแบบและตำแหน่งเดียวกับคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด โดยไม่พบตำแหน่งของ peak ที่ เกิดขึ้นใหม่ซึ่งแสดงถึงการเกิด interaction กันระหว่างยาและสารลดแรงตึงผิวที่ใช้ในระบบ จึงอาจสรุปได้ว่า ภายหลัง การเตรียมนาโนคริสตัลของยาคลาริโธรมัยซินไม่พบการเปลี่ยนแปลงโครงสร้างทางเคมีของตัวยาหรือการเกิด interaction กันระหว่างตัวยากับสารลดแรงตึงผิวที่ใช้เพิ่มความคงตัวของระบบ

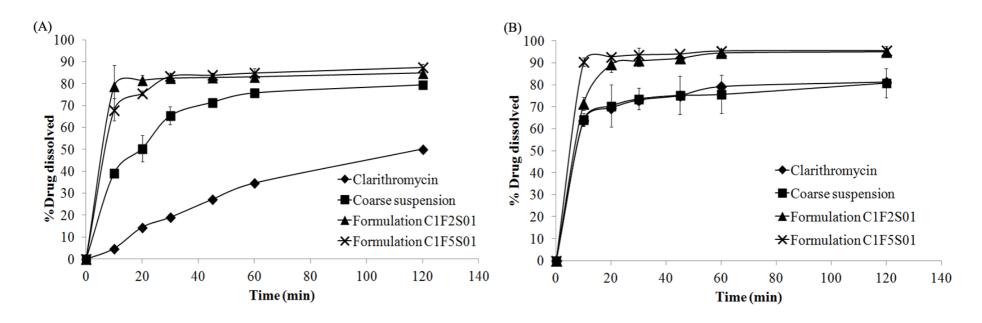

ร**ูปที่ 7** FT-IR spectra ของ (A) ผงยาคลาริโธมัยซินที่ไม่ผ่านกระบวนการลดขนาด, (B) poloxamer 407, (C) SLS และ (D) นาโนคริสตัลของยาคลาริโธรมัยซิน

(3) การศึกษาค่าการละลาย (saturation solubility) ของนาโนคริสตัลของยาคลาริโธรมัยซิน

การเพิ่มค่าการละลาย (saturation solubility) เป็นคุณสมบัติสำคัญซึ่งเป็นวัตถุประสงค์ในการผลิตนาโน คริสตัล โดยการเพิ่มขึ้นของค่าการละลายเป็นผลมาจากขนาดอนุภาคที่ลดลงและการเพิ่มขึ้นของ dissolution pressure ที่ผิวโค้งของอนุภาคนาโนคริสตัลซึ่งสามารถอธิบายได้ด้วย Ostwald-Freundlich theory และ Kelvin equation จากผล การทดลองหาค่าการละลายในตัวกลางการละลายบัฟเฟอร์ต่างชนิดกัน พบว่า ค่าการละลายของตำรับคลาริโธรมัยซิน ในบัฟเฟอร์ pH 5.0 จะมีค่าสูงกว่าในบัฟเฟอร์ pH 6.8 (แสดงในรูปที่ 8) จากการทดลองหาค่าการละลายในบัฟเฟอร์ pH 6.8 (รูปที่ 8A) หลังจาก 72 ชั่วโมงพบว่านาโนคริสตัลของยาคลาริโธรมัยซินตำรับ C1F2S01 และ C1F5S01, ผง

ยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวในสูตรตำรับ C1F2S01 และผงยาคลาริโธร มัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด มีค่าการละลายเท่ากับ 2.93±0.11, 3.10±0.31, 2.09±0.13 และ 0.57±0.13 mg/ml ตามลำดับ ซึ่งพบว่านาโนคริสตัลของยาคลาริโธรมัยซินมีค่าการละลายเพิ่มสูงขึ้นประมาณ 6 เท่า อย่างมี นัยสำคัญ (p < 0.05) เมื่อเปรียบเทียบกับผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด และเช่นเดียวกัน จากผลการทดลองหาค่าการละลายในบัฟเฟอร์ pH 5.0 (รูปที่ 8B) พบว่าหลังจาก 72 ชั่วโมงค่าการละลายของนาโน คริสตัลของยาคลาริโธรมัยซินตำรับ C1F2S01 และ C1F5S01, ผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่ง ผสมสารเพิ่มความคงตัวในสูตรตำรับ C1F2S01 และผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาดมีค่า เท่ากับ 17.51±0.556, 18.57±1.20, 15.08±0.95 และ 14.42±0.29 mg/ml ตามลำดับ ซึ่งจากผลการทดลองแสดงให้ เห็นว่านาโนคริสตัลของยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด (p < 0.05) อย่างไรก็ตามผลการทดลอง พบว่า ค่าการ ละลายของนาโนคริสตัลทั้งสองตำรับ (C1F2S01 และ C1F5S01) ในแต่ละตัวกลางการละลายบัฟเฟอร์จะมีค่าไม่ แตกต่างกันอย่างมีนัยสำคัญ (p > 0.05) ซึ่งการเท่าเทียมกันของค่าการละลายดังกล่าวอาจเป็นผลมาจากขนาดอนุภาค ของนาโนคริสตัลที่เท่ากันในสูตรตำรับทั้งสอง

เมื่อพิจารณา kinetics ของค่าการละลาย พบว่า นาโนคริสตัลของยาคลาริโธรมัยซินมีค่าการละลายเพิ่มขึ้น อย่างรวดเร็วภายใน 1 ชั่วโมงแรกของการละลาย จากนั้นค่าการละลายจะค่อย ๆ ลดลงมาแล้วคงที่ภายใน 6-12 ชั่วโมง ปรากฏการณ์ดังกล่าวสามารถอธิบายได้เนื่องจากในช่วงแรกของการละลายอนุภาคนาโนคริสตัลซึ่งมีขนาดเล็ก (nanosized) และมีพื้นที่ผิวในการละลายสูงส่งผลให้ค่าการละลายเริ่มตันมีความเข้มขันมาก อย่างไรก็ตามเนื่องจากในตำรับ นาโนคริสตัลยังคงมีอนุภาคบางส่วนที่มีขนาดใหญ่ (micro-sized) ซึ่งอนุภาคขนาดใหญ่ดังกล่าวจะทำหน้าที่เป็น nuclei ทำให้เกิดการ recrystallization เป็นอนุภาคขนาดใหญ่และส่งผลให้ค่าการละลายลดลงในช่วงเวลาถัดมา ด้วยเหตุนี้จึง ควรมีอนุภาค micro-sized ในปริมาณน้อยที่สุดเท่าที่เป็นไปได้ในตำรับนาโนคริสตัล เพื่อรักษาค่าการละลายและความ คงตัวของระบบ

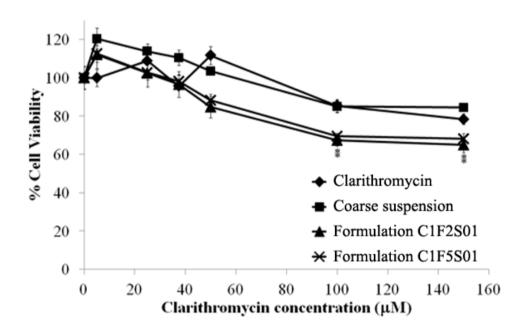

ร**ูปที่ 8** kinetics ของค่าการละลายของผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด (clarithromycin), ผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่ม ความคงตัวในสูตรตำรับ C1F2S01 (coarse suspension) และนาโนคริสตัลของยาคลาริโธรมัยซินตำรับ C1F2S01 และ C1F5S01 ในตัวกลางการละลายบัฟเฟอร์ (A) pH 6.8 และ (B) pH 5.0 ภายใต้สภาวะควบคุมอุณหภูมิที่ 37 °C (n=3) (ส่วนขยายที่แทรกมาแสดง kinetics ของค่าการละลายของตัวอย่างในช่วงแรกของการทดลอง)
*มีความแตกต่างอย่างมีนัยสำคัญระหว่างผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาดกับสารตัวอย่างตำรับอื่นๆ (p < 0.05)

(4) การศึกษาคุณสมบัติการละลาย (dissolution) ของนาโนคริสตัลของยาคลาริโธรมัยซิน

การศึกษาการละลายของนาโนคริสตัลของยาคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01 เปรียบเทียบกับผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด และผงยาคลาริโธรมัยซินที่ไม่ผ่าน กระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 ในตัวกลางการละลาย บัฟเฟอร์ pH 6.8 (แสดงในรูปที่ 9A) พบว่า ภายใน 10 นาทีแรก เปอร์เซนต์คลาริโธรมัยซินที่ละลายออกมาจากผงยา คลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด. ผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสาร เพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 และนาโนคริสตัลของยาคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01 มีค่าเท่ากับ 4.91±1.28%, 39.24±3.7%, 78.81±18.89% และ 68.05±10.15% ตามลำดับ ซึ่งเห็นได้ ชัดเจนว่า นาโนคริสตัลของยาคลาริโธรมัยซินทั้งสองตำรับสามารถเพิ่มเปอร์เซนต์การละลายของคลาริโธรมัยซินได้ ้ตั้งแต่ในช่วง 10 นาทีแรกของการละลาย นอกจากนี้ พบว่าอัตราการละลายของนาโนคริสตัลจะเพิ่มขึ้นและเริ่มเข้าสู่ plateau ที่ประมาณ 80% ภายใน 20 นาทีของการละลาย ขณะที่ ณ เวลาเดียวกันผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่าน กระบวนการลดขนาดและผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่ มีในสูตรตำรับ C1F2S01 ให้เปอร์เซนต์การละลายเพียงประมาณ 15% และ 50% ตามลำดับ หลังจากการละลายที่ 120 นาที นาโนคริสตัลของยาคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01 ให้การละลายได้สูงสุดที่ 84.89±2.77% และ 87.49±2.96% ตามลำดับ ในขณะเดียวกันผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลด ขนาดและผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 จะให้เปอร์เซนต์การละลายสูงสุดเพียง 50.31±0.96% และ 79.51±1.88% ตามลำดับ

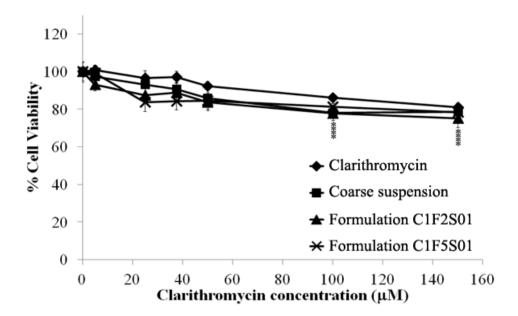
การศึกษาการละลายของนาโนคริสตัลของยาคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01 เปรียบเทียบกับผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด และผงยาคลาริโธรมัยซินที่ไม่ผ่าน กระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 ในตัวกลางการละลาย บัฟเฟอร์ pH 5.0 (แสดงในรูปที่ 9B) พบว่าการละลายของตำรับยาคลาริโธรมัยซินที่ pH 5.0 มีการละลายที่ดีกว่าที่ pH 6.8 โดยนาโนคริสตัลของยาคลาริโธมัยซินทั้งสองตำรับจะมีการละลายได้ดีกว่าผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่าน กระบวนการลดขนาดและผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่ มีในสูตรตำรับ C1F2S01 การศึกษาพบว่าภายใน 10 นาทีแรกเปอร์เซนต์การละลายของผงยาคลาริโธรมัยซินเปล่าที่ ไม่ผ่านกระบวนการลดขนาด, ผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัว เช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 และนาโนคริสตัลของยาคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01 มี ค่าเท่ากับ 63.89±2.87%, 64.09±5.88%, 71.40±5.82% และ 90.34±3.76% ตามลำดับ ภายใน 20 นาทีของการ ละลายนาโนคริสตัลจะมีเปอร์เซนต์การละลายเพิ่มขึ้นถึง 90% ขณะที่ผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการ ลดขนาดและผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตร ตำรับ C1F2S01 สามารถละลายได้เพียง 70% นอกจากนี้ยังพบว่าหลังจากการละลายครบ 120 นาที นาโนคริสตัล สามารถให้เปอร์เซนต์การละลายสูงสุดได้ถึง 95% ในขณะเดียวกัน ผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลด ขนาดและผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 จะสามารถให้เปอร์เซนต์การละลายสูงสุดได้ประมาณ 80%

เมื่อวิเคราะห์ค่าตัวแปรทางสถิติของการละลาย (แสดงในตารางที่ 5) พบว่านาโนคริสตัลของยาคลาริโธรมัย ซินสูตรตำรับ C1F2S01 และ C1F5S01 มีค่า relative dissolution rate at 30 min (RD 30 min) เพิ่มขึ้น 4.31 และ 4.36 เท่า ในตัวกลางการละลายบัฟเฟอร์ pH 6.8 และเพิ่มขึ้น 1.24 และ 1.28 เท่าในตัวกลางการละลายบัฟเฟอร์ pH 5.0 เมื่อเปรียบเทียบกับผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด เมื่อพิจารณาค่าตัวแปร mean dissolution time (MDT) ของนาโนคริสตัลของยาคลาริโธรมัยซินทั้งสองสูตรตำรับ พบว่า มีค่าต่ำกว่าผงยาคลาริโธรมัย ซินเปล่าที่ไม่ผ่านกระบวนการลดขนาดและผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคง ตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 ซึ่งบ่งบอกว่าตำรับนาโนคริสตัลใช้เวลาเฉลี่ยในการละลาย 50% น้อยกว่า และมีอัตราการละลายที่สูงกว่าตำรับผงยาที่ไม่ผ่านการลดขนาด นอกจากนี้ยังพบว่า percent dissolution efficiency at 30 min (%DE 30 min) ซึ่งแสดงถึง dissolution performance ของนาโนคริสตัลทั้งสองตำรับมีค่าสูงกว่าผงยาคลา ริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาดและผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่ม ความคงตัวเช่นเดียวกับที่มีในสตรตำรับ C1F2S01 ดังนั้นค่าดังกล่าวจึงเป็นการชี้ให้เห็นถึง dissolution performance ที่เพิ่มขึ้นของนาโนคริสตัลทั้งสองตำรับ นอกจากนั้น เมื่อพิจารณา difference factor (f_1) และ similarity factor (f_2) ของนาโนคริสตัลของยาคลาริโธรมัยซินเปรียบเทียบกับผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด พบว่า นาโนคริสตัลทั้งสองสูตรตำรับให้ค่า f_1 มากกว่า 15 และค่า f_2 น้อยกว่า 50 ซึ่งบ่งบอกว่าตำรับนาโนคริสตัลทั้งสองมี dissolution profile ที่แตกต่างจากผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด จากค่าตัวแปรทางสถิติ สำหรับการละลายดังกล่าว จึงอาจสรุปได้ว่าการเตรียมยาคลาริโธรมัยซินในรูปแบบนาโนคริสตัลส่งผลให้ยามี ความสามารถในการละลายได้ดีขึ้นซึ่งเป็นผลเนื่องมาจากขนาดอนุภาคที่เล็กลงในระดับนาโน, พื้นที่ผิวอนุภาคที่เพิ่มขึ้น และการเพิ่มขึ้นของค่าการละลาย


ร**ูปที่ 9** dissolution profile ของผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด (clarithromycin), ผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคง ตัวในสูตรตำรับ C1F2S01 (coarse suspension) และนาโนคริสตัลของยาคลาริโธรมัยซินตำรับ C1F2S01 และ C1F5S01 ในตัวกลางการละลายบัฟเฟอร์ (A) pH 6.8 และ (B) pH 5.0 ภายใต้สภาวะควบคุมอุณหภูมิที่ 37 °C (n=3)

ตารางที่ 5 ค่าตัวแปรทางสถิติของการละลายได้แก่ percent dissolution efficiency at 30 min (%DE 30 min), relative dissolution rate at 30 min (RD 30 min), mean dissolution time (MDT), difference factor (f_1) และ similarity factor (f_2) ของผงยาคลาริโธรมัยซินเปล่าที่ไม่ผ่านกระบวนการลดขนาด (clarithromycin), ผงยาคลาริโธรมัย ซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัวเช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 (coarse suspension) และนาโนคริสตัลของยาคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01

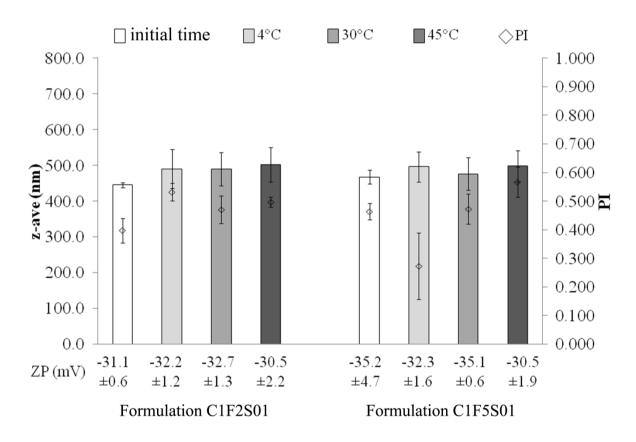
Formulations in acetate buffer	Statistical values				
pH 5.0	%DE 30 min	RD 30 min	MDT	f_1	f_2
Clarithromycin	56.67	-	11.94	-	-
Coarse suspension	57.10	1.01	12.88	1.31	90.84
Formulation C1F2S01	68.74	1.24	9.34	20.60	46.73
Formulation C1F5S01	76.58	1.28	6.42	26.90	41.21
Formulations in phosphate buffer	Statistical values				
pH 6.8	%DE 30 min	RD 30 min	MDT	f_{I}	f_2
Clarithromycin	9.69	-	47.34	-	-
Coarse suspension	40.81	3.42	19.16	153.09	27.03
Formulation C1F2S01	67.19	4.31	7.61	226.97	18.20
Formulation C1F5S01	61.79	4.36	10.86	220.24	19.09


(5) การศึกษาความเป็นพิษต่อเซลล์ (cytotoxicity) ของนาโนคริสตัลของยาคลาริโธรมัยซิน

จากผลการทดลองหา % cell viability ของ Caco-2 cell และ NCI-N87 cell ด้วย MTT assay หลังจากการ incubate ด้วยสารตัวอย่างเป็นเวลา 24 ชั่วโมง (ดังแสดงในรูปที่ 10 และ 11 ตามลำดับ) พบว่าเซลล์ทั้งสองชนิดให้ผล การทดลองเป็นไปในทิศทางเดียวกัน โดยเซลล์จะสามารถมีชีวิตอยู่ได้ตลอดระยะเวลาที่ทำการศึกษาเมื่อความเข้มข้น ของคลาริโธรมัยซินในตำรับไม่เกิน 50 µM อย่างไรก็ตามเมื่อความเข้มข้นของคลาริโธรมัยซินในตำรับเพิ่มขึ้นมากกว่า 50 µM พบว่า % cell viability จะลดลง โดยเฉพาะอย่างยิ่งสารตัวอย่างนาโนคริสตัลของคลาริโธรมัยซินตำรับ C1F2S01 และ C1F5S01 พบว่าเมื่อทำการ incubate cell monolayer ทั้งสองชนิดด้วยตำรับนาโนคริสตัลดังกล่าวที่ ความเข้มข้น 100 และ 150 µM % cell viability ของเซลล์ที่ incubate ด้วยตำรับนาโนคริสตัลจะลดลงต่ำกว่า 80% เมื่อเปรียบเทียบกับกลุ่มควบคุม (p < 0.05) ซึ่งอาจแสดงถึงความเป็นพิษต่อเซลล์ของตำรับนาโนคริสตัลเมื่อใช้ใน ปริมาณที่สูงขึ้น

ร**ูปที่ 10** อิทธิพลของความเข้มข้นของนาโนคริสตัลสูตรตำรับ C1F2S01 และ C1F5S01, ผงยาคลาริโธรมัยซินเปล่าที่ ไม่ผ่านกระบวนการลดขนาด และผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัว เช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 ต่อ % cell viability ของ Caco-2 cell หลังการ incubate ที่ 37 °C เป็นเวลา 24 ชั่วโมง (n=8)

^{*} แสดงความแตกต่างอย่างมีนัยสำคัญระหว่าง % cell viability ของตำรับกับกลุ่มควบคุมของแต่ละตำรับนั้นๆ



ร**ูปที่ 11** อิทธิพลของความเข้มข้นของนาโนคริสตัลสูตรตำรับ C1F2S01 และ C1F5S01, ผงยาคลาริโธรมัยซินเปล่าที่ ไม่ผ่านกระบวนการลดขนาด และผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาดซึ่งผสมสารเพิ่มความคงตัว เช่นเดียวกับที่มีในสูตรตำรับ C1F2S01 ต่อ % cell viability ของ NCI-N87 cell หลังการ incubate ที่ 37 °C เป็นเวลา 24 ชั่วโมง (n=8)

* แสดงความแตกต่างอย่างมีนัยสำคัญระหว่าง % cell viability ของตำรับกับกลุ่มควบคุมของแต่ละตำรับนั้นๆ

(6) การศึกษาความคงตัวทางกายภาพของนาโนคริสตัลของยาคลาริโธรมัยซิน

รูปที่ 12 แสดงผลการศึกษาความคงตัวทางกายภาพของนาโนคริสตัลของยาคลาริโธรมัยซินภายหลังการผลิต และภายหลังการเก็บรักษาที่อุณหภูมิ 4 °C, 30 °C และ 45 °C เป็นเวลา 4 เดือน จากผลการทดลองพบว่าหลังการ เก็บรักษาเป็นเวลา 4 เดือนในทุกสภาวะอุณหภูมิ นาโนคริสตัลทั้งสองสูตรตำรับ (C1F2S01 และ C1F5S01) มีขนาด อนุภาคเฉลี่ย (z-ave) และ polydispersit index (PI) ไม่แตกต่างจากนาโนคริสตัลที่ได้หลังจากการผลิตใหม่ (p > 0.05) นอกจากนี้เมื่อพิจารณาค่าความต่างศักย์ที่ผิวอนุภาคพบว่าหลังการเก็บรักษาเป็นเวลา 4 เดือนในทุกสภาวะอุณหภูมิ นาโนคริสตัลของยาคลาริโธรมัยซินยังคงมีค่าความต่างศักย์ที่ผิวอนุภาคสูงกว่า |30 mV| ซึ่งบ่งบอกว่านาโนคริสตัลของ ยาคลาริโธรมัยซินทั้งสองสูตรตำรับ (C1F2S01 และ C1F5S01) มีความคงตัวทางกายภาพตลอดระยะเวลาการเก็บ รักษา 4 เดือน ซึ่งอาจเป็นผลเนื่องมาจากนาโนคริสตัลดังกล่าวอยู่ในรูปแบบของผงแห้งซึ่งสามารถป้องกันการเกิดการ เกาะกลุ่มกันของอนุภาคและการโตขึ้นของอนุภาคได้

ร**ูปที่ 12** ขนาดอนุภาคเฉลี่ย (z-ave, column), polydispersity index (PI, diamond spot), ค่าความต่างศักย์ที่ผิว อนุภาค (ZP) ของนาโนคริสตัลของยาคลาริโธรมัยซินสูตรตำรับ C1F2S01 และ C1F5S01 ที่เวลาหลังการผลิต (ขาว) และหลังการเก็บรักษาเป็นเวลา 4 เดือนที่อุณหภูมิ 4 °C (เทาอ่อน), 30°C (เทา) และ 45°C (เทาเข้ม)

สรุปผลการทดลอง

การเตรียมนาโนคริสตัลของยาคลาริมัยซิน พบว่าเทคนิคการผลิตนาโนคริสตัลด้วยวิธี precipitation-homogenization-lyophilization (PLH) ให้ประสิทธิภาพในการลดขนาดอนุภาคได้ดีและใช้จำนวนครั้งการผ่านเครื่อง high pressure homogenizer น้อยกว่าเมื่อเปรียบเทียบกับเทคนิค high pressure homogenization (HPH) โดยสูตร ตำรับ C1F2S01 และ C1F5S01 ซึ่งมีส่วนประกอบของสารลดแรงตึงผิว poloxamer 407 2 %w/v และ 5 %w/v ตามลำดับ และสารลดแรงตึงผิวร่วม SLS 0.1 %w/v เป็นสูตรตำรับที่เหมาะสมโดยให้ขนาดอนุภาคที่เล็กและมีการ กระจายขนาดที่สม่ำเสมอ นาโนคริสตัลของยาคลาริโธรมัยซินหลังการผลิตมีขนาดอนุภาคเฉลี่ยประมาณ 400 nm และ ค่าการกระจายขนาดอนุภาคประมาณ 0.3-0.4 และพบว่าความต่างศักย์ที่ผิวอนุภาคมีค่ามากกว่า -30 mV ซึ่งแสดงถึง ความคงตัวของระบบ การทดสอบลักษณะทางกายภาพของอนุภาคนาโนคริสตัลพบว่าอนุภาคมีรูปร่างคล้ายสี่เหลี่ยม ลูกบาศก์ อยู่ในรูปผลึก (crystalline) และมีบางส่วนอยู่ในรูปอสัณฐาน (amorphous) การประเมินความเป็นผลึกและ พหุสัณฐานของนาโนคริสตัลของยาคลาริโธรมัยซินสามารถพิจารณาได้จากข้อมูลการวิเคราะห์ด้วย DSC ประกอบกับ ข้อมูลการวิเคราะห์ด้วย XRPD แสดงให้เห็นว่า นาโนคริสตัลของยาคลาริโธรมัยซินภายหลังกระบวนการผลิตจะอยู่ใน รูปผลึก (crystalline) Form II และ Form I และมีบางส่วนในรูปแบบอสัณฐาน (amorphous) และผลจาก FT-IR ซื้ให้เห็นว่า ภายหลังการเตรียมนาโนคริสตัลของยาคลาริโธรมัยซินไม่พบการเปลี่ยนแปลงโครงสร้างทางเคมีของตัวยา หรือการเกิด interaction กันระหว่างตัวยากับสารลดแรงดึงผิวที่ใช้เพิ่มความคงตัวของระบบ

จากการศึกษาค่าการละลาย (saturation solubility) และคุณสมบัติการละลาย (dissolution) ในตัวกลางการ ละลายบัฟเฟอร์ pH 5.0 และ 6.8 พบว่าตำรับนาโนคริสตัลมีค่าการละลายที่สูงกว่าและมีคุณสมบัติการละลายที่ดีกว่าผง ยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาด ซึ่งน่าจะเป็นผลมาจากขนาดอนุภาคที่ลดลงในระดับนาโนของนาโน คริสตัล โดยค่าการละลายและคุณสมบัติการละลายของตำรับนาโนคริสตัลทั้งสองที่ทำการศึกษาไม่แตกต่างกันมากนัก เนื่องมาจากนาโนคริสตัลทั้งสองมีขนาดอนุภาคที่ใกล้เคียงกัน ผลการศึกษาความเป็นพิษต่อเซลล์พบว่าเซลล์เยื่อบุ ทางเดินอาหารสามารถมีชีวิตอยู่ได้ตลอดระยะเวลาที่ทำการศึกษาเมื่อใช้ความเข้มขันของยาในตำรับนาโนคริสตัลไม่ เกิน 50 µM และพบว่านาโนคริสตัลของยาคลาริโธรมัยซินทั้งสองตำรับมีความคงตัวทางกายภาพที่อุณหภูมิ 4 °C, 30 °C และ 45 °C ตลอดระยะเวลา 4 เดือนในการเก็บรักษา

เอกสารอ้างอิง

- 1. Alladi KK, Suram R, Bela M, Kiran S, Ramaesh V, Narendra Y. Formulation and characterization of clarithromycin controlled released bioadhesive tablets. J Chem Pharm Res 2011; 3: 684-690.
- 2. Yonemochi E, Kitahara S, Maeda S, Yamamura S, Oguchi T, Yamamoto K. Physicochemical properties of amorphous clarithromycin obtained by grinding and spray drying. Eur J Pharm Sci 1999; 7: 331-338.
- 3. Teeranachaideekul V, Junyaprasert VB, Souto EB, Muller RH. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int J Pharm 2008; 354: 227-234.
- 4. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Adv Drug Deliver Rev 2001; 47: 3-19.
- Möschwitzer J, Müller RH. Drug nanocrystals-The universal formulation approach for poorly soluble drugs. In: Thassu D, Deleers M, Pathak Y, eds. Nanoparticulate drug delivery systems. New York: Informa Healthcare; 2007. p. 71-88.
- 6. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 2008; 10: 845-862.
- 7. Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 2011; 16: 354-360.
- 8. Trotta M, Gallarate M, Pattarino F, Morel S. Emulsions containing partially water-miscible solvents for the preparation of drug nanosuspensions. J Control Release 2001; 76: 119-128.
- 9. Liversidge EM, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 2003; 18: 113-120.
- Müller RH, Jacobs C, Kayser O. Nanosuspensions for the formulation of poorly soluble drug. In: Nielloud F, Marti-Mestres G, eds. Pharmaceutical emulsions and suspensions. New York: Marcel Dekker; 2000.
- 11. Müller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid naoparticles. J Biotechnol 2004; 113: 151-170.
- 12. Möschwitzer J. Nanotechnology: Particle size reduction technologies in the pharmaceutical development process. Am Pharm Rev 2010; 13: 54-59.
- 13. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Sci 2006; 62: 3-16.
- Bansal S, Bansal M, Kumria R. Nanocrystals: Current strategies and trends. IJRPBS 2012; 3: 406-419.

- 15. Katteboinaa S, Chandrasekhar VSRP, Balaji S. Drug nanocrystals: A novel formulation approach for poorly soluble drugs. Int J PharmTech Res 2009; 1: 682-694.
- 16. Sterling J. Lyophilization: Growing with biotechnology. New products such as mabs and recombinant proteins should drive advances. Genetic Engineering & Biotechnology News (GEN) 2005.
- 17. Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm 2009; 370: 202-209.
- 18. Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 2006; 312: 179-186.

ภาคผนวก

(Appendix)

Output จากโครงการวิจัย

ผลงานตีพิมพ์ (Reprint)

- Morakul B, Suksiriworapong J, Leanpolchareanchai J, **Junyaprasert VB***. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: Influencing factors on physicochemical properties and stability. Int J Pharm 2013, 457: 187-196. (JCR Impact Factor 2013 = 3.458) (เอกสารหมายเลข 1; หน้า 34)
- Morakul B, Suksiriworapong J, Chomnawang MT, Langguth P, Junyaprasert VB*. Dissolution enhancement and in vitro performance of clarithromycin nanocrystals produced by precipitation-lyophilization-homogenization method. Eur J Pharm Biopharm 2014, 88(3):886-896. (JCR Impact Factor 2014 = 3.850) (เอกสารหมายเลข 2; หน้า 44)
- Junyaprasert VB*, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci 2015, 10: 13-23. (เอกสารหมายเลข 3; หน้า 55)

การเสนอผลงาน (Presentation)

- ได้รับเชิญเป็นวิทยากรบรรยายเรื่อง "Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs" ในการประชุมวิชาการนานาชาติ The 3rd Asian Symposium on Pharmaceutical Science and Technology (ASPSR 2014) & The 3rd Enlarged Editorial Board Conference of Asian Journal of Pharmaceutical Sciences (AJPS) ระหว่าง 25-27 May 2014 ที่เมือง Shenyang ประเทศ China (เอกสารหมายเลข 4; หน้า 66)
- Junyaprasert VB, Morakul B, Suksiriworapong J, Langguth P. Production of clarithromycin nanocrystals by precipitation-homogenization to enhance dissolution for oral delivery. The 15th TRF-OHEC Annual Congress, 6-8 January 2016, The Regent Cha Am Beach Resort, Petchburi, Thailand. (เอกสารหมายเลข 5; หน้า 78)
- Morakul B, Suksiriworapong J, Chomnawang MT, Langguth P, Junyaprasert VB. Dissolution enhancement and *In vitro* performance of clarithromycin nanocrystals produced by precipitation-lyophilization-homogenization method. 2015 AAPS Annual Meeting and Exposition, October 25-29, 2015, Orange County Convention Center, Orlando, Florida, USA. (เอกสารหมายเลข 6; หน้า 88)

International Journal of Pharmaceutics 457 (2013) 187-196

Contents lists available at ScienceDirect

International Journal of Pharmaceutics

journal homepage: www.elsevier.com/locate/ijpharm

Pharmaceutical Nanotechnology

Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: Influencing factors on physicochemical properties and stability

Boontida Morakul, Jiraphong Suksiriworapong, Jiraporn Leanpolchareanchai, Varaporn Buraphacheep Junyaprasert*

Excellent Center of Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, Rajathevee, Bangkok 10400, Thailand; Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Rajathevee, Bangkok 10400, Thailand

ARTICLE INFO

Article history: Received 20 May 2013 Received in revised form 13 August 2013 Accepted 11 September 2013 Available online xxx

Keywords: Nanocrystals Clarithromycin Precipitation-lyophilizationhomogenization High pressure homogenization Poorly soluble drug

ABSTRACT

Nanocrystals is one of effective technologies used to improve solubility and dissolution behavior of poorly soluble drugs. Clarithromycin is classified in BCS class II having low bioavailability due to very low dissolution behavior. The main purpose of this study was to investigate an efficiency of clarithromycin nanocrystals preparation by precipitation-lyophilization-homogenization (PLH) combination method in comparison with high pressure homogenization (HPH) method. The factors influencing particle size reduction and physical stability were assessed. The results showed that the PLH technique provided an effective and rapid reduction of particle size of nanocrystals to 460 ± 10 nm with homogeneity size distribution after only the fifth cycle of homogenization, whereas the same size was attained after 30 cycles by the HPH method. The smallest nanocrystals were achieved by using the combination of poloxamer 407 (2%, w/v) and SLS (0.1%, w/v) as stabilizers. This combination could prevent the particle aggregation over 3-month storage at 4 °C. The results from SEM showed that the clarithromycin nanocrystals were in cubic-shaped similar to its initial particle morphology. The DSC thermogram and X-ray diffraction pattern of nanocrystals were not different from the original drug except for intensity of peaks which indicated the presenting of nanocrystals in the crystalline state and/or partial amorphous form. In addition, the dissolution of the clarithromycin nanocrystals was dramatically increased as compared to the coarse clarithromycin.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Poorly water-soluble drugs are a general problem in pharmaceutical formulation (Müller et al., 1998). According to the Biopharmaceutics Classification System (BCS), a drug with poor solubility but high permeability is classified as a BCS class II drug. The drug in this class usually provides low bioavailability due to low dissolution in gastrointestinal fluid (Teeranachaideekul et al., 2008). Clarithromycin is a macrolide antibiotic classified as a BCS class II drug with high molecular weight and crystalline state of solid particles. It exerts low bioavailability due to its practical insolubility in water leading to limited and slow absorption (Alladi et al., 2011; Yonemochi et al., 1999). Nanonization is an approach used

Abbreviations: PUH, precipitation-lyophilization-homogenization; HPH, high pressure homogenization.

* Corresponding author at: Department of Pharmacy, Faculty of Pharmacy, Mahi-

E-mail address: varaporn.jun@mahidol.ac.th (V.B. Junyaprasert).

0378-5172/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ijpharm.2013.09.022 to solve such problem by increasing the dissolution velocity and the saturation solubility of drug (Müller et al., 2001). Nanocrystals are nanoscopic crystals of a parent compound with a dimension of less than 1 µm (Chen et al., 2011). The drug nanocrystals dispersed in a liquid medium are so-called nanosuspensions. The system is principally composed of 100% pure drug particles and stabilized by surfactant or polymeric stabilizer in either aqueous or nonaqueous solution. The high loading makes them very efficient in transporting high therapeutic concentration for the pharmacological effect (Müller et al., 2011). Therefore, the nanocrystals are suitable carrier of clarithromycin which requires high oral dosage regimen of 250–500 mg every 4–6 h for treatment of bacterial infection (Alladi et al., 2011). In addition the nanocrystals may improve the dissolution behavior of clarithromycin leading to an increase in bioavailability of the drug.

Several methods have been used for production of drug nanocrystals such as precipitation (Trotta et al., 2001), pearl milling (Liversidge et al., 2003), and high pressure homogenization (Müller et al., 2000). Although the last method has been frequently used, due to its simplicity, feasibility in large-scale production and low product contamination (Müller and Keck, 2004), it still encounters

^{*} Corresponding author at: Department of Pharmacy, Faculty of Pharmacy, Mahidul University, Rajathevee, Bangkok 10400, Thailand. Tel.: +662 644 8677 91; fax: +662 644 8694.

Table 1
Composition of clarithromycin nanocrystal formulations prepared by high pressure homogenization (HPH) method and precipitation-lyophilization-homogenization (PLH) method

Formulations	Amount of drug (%, w/v)	Surfactant		Co-surfac	tant	Preparation method
		Type	Amount (%, w/v)	Type	Amount (%, w/v)	
ClTween	1	Tween 80	10	_	_	HPH
C1PVA	1	PVA	1	_	_	HPH
CISIS	1	SLS	0.1	_	_	HPH
C1F188	1	Poloxamer 188	5	_	_	HPH
C1F5	1	Poloxamer 407	5	_	_	HPH,PLH
C1F2	1	Poloxamer 407	2	_	_	HPH,PLH
C1F2S005	1	Poloxamer 407	2	SLS	0.05	HPH
C1F2S01	1	Poloxamer 407	2	SLS	0.1	HPH,PLH
C1F5S01	1	Poloxamer 407	5	SLS	0.1	PLH
C3F2S01	3	Poloxamer 407	2	SLS	0.1	PLH
C5F2S01	5	Poloxamer 407	2	SLS	0.1	PLH

some limitations. For the high hardness solid drug, an extreme pressure and more homogenization cycles are considerably required. Moreover, the particle size of starting material must be small enough to pass through a homogenizer gap to avoid its blockage. Therefore, the combination technology has been developed to facilitate the nanocrystal production to reduce the passage number of homogenization or provide very small particles prior to homogenization (Möschwitzer, 2010). The patent combination technologies are, for example, NanoEdge® (a combination of precipitation and high pressure homogenization) (Keck and Müller, 2006) and SmartCrystal® (e.g. H42 process: a combination of spray drying with high pressure homogenization, and H96 process: a combination of lyophilization and high pressure homogenization) (Keck et al., 2008). Nevertheless, three combination technologies have been scantily developed for preparation of drug nanocrystals. Therefore, it is of our interest to explore the use of the combination technique of precipitation, lyophilization and homogenization to produce nanocrystals of clarithromycin. On the basis of solventantisolvent technique, the precipitation method can be used to reduce an initial particle size prior to homogenization, During precipitation, any factor affecting the precipitation rate is necessarily controlled to avoid the particle growth. Additionally, the used organic solvent must be carefully removed otherwise it will act as a cosolvent resulting in the growth of particles (Möschwitzer, 2010). The following lyophilization enables a complete removal of solvent in the formulation and provides porous and friable drug particles (Bansal et al., 2012; Katteboinaa et al., 2009; Sterling 2005). After lyophilization, the subsequent application of high pressure homogenization may facilitate the reduction of drug crystals to the nanometer size range.

Various factors affect the particle size reduction and stability of nanocrystals. In general, the increasing homogenization pressure and cycle lead to a decrease in particle size with narrow size distribution. The crystals break preferentially at the imperfection points. Forces required for breaking the crystals increase with decreasing particle size leading to fewer remaining imperfection points of the crystals. If the forces applied by the homogenizer are equal to the interaction forces in the crystals, the particles will not be further diminished, even when additional cycles are applied (Keck and Müller, 2006). In the process of particle size reduction, the obtained nanometer size crystals create an increase in the particle surface area, which is thermodynamically unstable. Then, the nano-sized particles tend to agglomerate to reduce their highly active surface area (Cerdeira et al., 2010). An addition of stabilizer affects the activation energy and possesses a barrier against the agglomeration of particles (Eerdenbrugh et al., 2008). The use of suitable type and adequate concentration of stabilizer is thus important during the particle size reduction and for the physical stability of drug nanocrystals.

Therefore, our investigation was aimed to investigate an efficient production of clarithromycin nanocrystals by a new combination technology of precipitation-lyophilization-homogenization (PLH) method in comparison with the high pressure homogenization (HPH) method. The factors affecting the particle size reduction and physical stability of clarithromycin nanocrystals were examined including preparation technique, number of homogenization cycle, initial drug loading, type and amount of surfactant, and an addition of co-surfactant.

2. Materials and methods

2.1. Materials

Clarithromycin was purchased from Suzhou Rovathin Foreign Trade Co., Ltd, China. Poloxamer 407, poloxamer 188 and sodium lauryl sulfate (SLS) were obtained as gifts from BASF, Germany. Polyvinyl alcohol (PVA) was purchased from Carlo Erba Reagenti, Italy. Tween 80 was bought from Croda Singapore Pte Ltd, Singapore. Acetone A.R. grade was purchased from RCI-Labscan, Thailand. Sterile water for injection was obtained from Thai Nakorn Patana Co., LTD, Thailand.

2,2, Preparation of clarithromycin nanocrystals

2,2,1. High pressure homogenization (HPH) method

The nanocrystals prepared by the HPH method were used for comparison. Briefly, a preset amount of surfactant as shown in Table 1 was dissolved in sterile water. To a surfactant solution, 1% (w/v) of clarithromycin was sequentially dispersed under magnetic stirring. The dispersion formulation was homogenized by a high speed homogenizer (Ultra-Turrax T25, IKA, Germany) at 10,000 rpm, 10 min/cycle for 3 cycles. The dispersion was then passed through a high pressure homogenizer (APV-2000, SPX Flow Technology, Germany). The sample was subjected to the premilling step as per the following order; at 50 bar for 5 cycles, at 100 bar for 10 cycles, and at 1000 bar for 10 cycles. Afterward the suspension was homogenized at 1500 bar for 30 cycles. During the process of HPH, the temperature of samples was controlled by an external cooling ice bath to prevent a generating heat causing an evaporation of solvent and consequently immediate precipitation of drug crystals. The sample was collected after pre-milling and during homogenization at cycle 1, 5, 10, 15, 20, 25, and 30 for further analysis.

To preliminarily determine a suitable amount of co-surfactant, the nanosuspensions containing 1% (w/v) of clarithromycin, 2% (w/v) of poloxamer 407 and various amounts of SLS (C1F2, C1F2S005, C1F2S01) were stored at room temperature for 1 month.

The parameters affecting the stability of nanocrystals were assessed in terms of particle size, polydispersity index, and zeta potential.

2.2.2. Precipitation-lyophilization-homogenization (PLH) combination method

The composition of all formulations is shown in Table 1. The clarithromycin nanocrystals were prepared by combination technology as follows. The predetermined amount of surfactant was dissolved in sterile water. In the meantime, 1% (w/v) of clarithromycin was totally dissolved in 60 ml of acetone. The clarithromycin solution was admixed into the surfactant solution under magnetic stirring at 8-10°C. The mixture was continuously stirred until acetone was completely evaporated. The clarithromycin suspension was then lyophilized for 32 h. The lyophilized powder was redispersed in the water to a homogeneous dispersion and then passed through the high pressure homogenizer. The sample was pre-milled according to the following step; homogenization at 50 bar for 5 cycles, at 100 bar for 5 cycles, at 500 bar for 10 cycles, and at 1000 bar for 10 cycles. Subsequently, it was homogenized at 1500 bar for 30-70 cycles. The sample was collected after pre-milling and during homogenization at cycle 1, 5, 10, 15, 20, 25, 30, 40, 50, 60 and 70 for further analysis.

2,3. Preparation of clarithromycin conventional suspension

The conventional suspension was prepared as a reference sample for comparison. The formulation consisted of 1% (w/v) of drug, 2% (w/v) of poloxamer 407 and 0.1% (w/v) of SLS. The suspension was prepared according to the same procedure as HPH method except for the passage of reference sample to the ultra-turrax and high pressure homogenizer.

2.4. Lyophilization of nanocrystals and reference sample

The optimal formulation of nanocrystals and reference sample were finally prepared in the dried powder form by lyophilization. The samples were pre-frozen at -75 °C for 12 h. Samples were subsequently primarily dried at -36 °C and 0.200 mbar for 24 h and secondarily dried at -50 °C and 0.040 mbar for 8 h by freeze dryer (Alpha 1-4, Martin Christ Gefriertrocknungsanlagen GmbH, Germany).

2,5. Physicochemical characterization

2.5.1. Particle size analysis

The mean particle size (z-ave) and polydispersity index (PI) were determined by photon correlation spectroscopy (PCS) using Zetasizer NanoZS (Malvern Instruments, UK). The real refractive index and the imaginary refractive index were set at 1.526 and 0.01, respectively. The particle size analysis was determined using the Mie theory. The z-ave and PI values were obtained by averaging of three measurements. Before the measurement, a small aliquot of nanosuspensions was diluted with 5 ml of deionized water to have a suitable scattering intensity. The analysis of volume distribution diameters, d(0.5) and d(0.9), was performed by laser diffraction (LD) using Mastersizer 2000 (Malvern Instruments, UK). The d(0.5) and d(0.9) represent that 50% and 90%, respectively, of the particles were below the reported values.

2,5,2. Zeta potential

The zeta potential was assessed by determining particle electrophoretic mobility using Zetasizer NanoZS (Malvern Instruments, UK). The zeta potential values were calculated using the Helmholtz-Smoluchowsky equation. The analysis was performed after a small aliquot of nanosuspension was diluted with 5 ml of deionized

water. The measurements were repeated in triplicate at 25 °C with field strength of 20 V/cm.

2.5.3. Particle morphology

The morphological examination was performed using scanning electron microscope (JSM-6400, JEOL, Japan). Prior to analysis, the sample was diluted with ultra-purified water to obtain a suitable concentration. Then, the sample was spread on a sample holder, dried under vacuum and eventually coated with gold.

2.5.4. Differential scanning calorimetry (DSC)

The thermal analysis was performed using DSC 8000 Perkin Elmer differential scanning calorimeter (Perkin Elmer, USA). All samples were weighed approximately 1–2 mg in an aluminum pan. The heating and cooling scans were performed from 30 °C to 250 °C at the heating and cooling rates of 10 °C/min. An empty aluminum pan was used as a reference. The melting temperature and enthalpy were calculated from the DSC thermograms.

2.5.5. X-ray powder diffraction (XRPD)

The X-ray diffraction measurement was carried out using X-ray diffractometer (D8 Advance, Bruker AXS GmbH, Germany). The obtained data were typically collected from 2° to 70° with a step width of 0.04° and a count time of 4s.

2.5.6. Fourier transformed infrared spectroscopy (FT-IR)

FT-IR technique was applied to determine the interaction between surfactant and drug nanocrystals. FT-IR spectra were recorded by FT-IR spectrometer (Nicolet 6700, Thermo Scientific, USA) within the spectral region of 4000 and 400 cm⁻¹. The sample was mixed with KBr in a mortar and compressed in a hydraulic press to a thin disk. The analysis was conducted by transmittance technique with 32 scansions and 4 cm⁻¹ resolution. The FT-IR spectra were continuously collected by Nicolet Omnic software.

2,6, Stability of lyophilized clarithromycin nanocrystals

The lyophilized powder of the optimal formulation nanocrystals prepared by PLH method was kept in a tight container at 4°C, 30°C, and 45°C for 3 months. At predetermined time intervals, the samples were characterized in terms of particle size and zeta potential. The samples were redispersed in deionized water by hand-shaking prior to the measurement.

2.7. Dissolution study

The dissolution test of coarse clarithromycin and lyophilized nanocrystals (C1F2S01) prepared by HPH and PLH method was carried out in 900 ml phosphate buffer solution (pH 6.8) by USP Apparatus 2 dissolution tester (Erweka ET 1500l, Erweka GmbH, Germany) at a stirring speed of 50 rpm. The sample equivalent to 125 mg of clarithromycin was tested and the temperature was maintained at 37 ± 0.5 °C. The dissolution medium was withdrawn at certain time intervals and immediately replenished with the fresh medium. The collected sample was immediately filtered through 0.2 µm membrane filter (Minisart®, Sartorius, Germany) and further determined by HPLC analysis. The dissolution tests were performed in triplicate. HPLC analysis of clarithromycin was performed on Series 20AD (Shimadzu Corporation, Japan) equipped with an autosampler system and a variable wavelength UV detector with a detection wavelength of 210 nm. The chromatographic separation was carried out through Hypersil® ODS C18 reversed-phase column (250 mm × 4.6 mm, 5 µm) using the mixture of acetonitrile and pH 6.0 phosphate buffer solution (65:35, v/v) as a mobile phase at a flow rate of 1.0 ml/min. The column temperature was maintained at 40 °C and the injection volume of sample was 50 µl.

Effect of stabilizer on mean particle size (z-ave), polydispersity index (PI), and particle undersize diameters d(0.5) and d(0.9) of clarithromycin nanocrystals produced by high pressure homogenization (HPH) at 1500 bar for 30 cycles (n=3).

Formulations	z-ave (nm)	P	d(0.5) (μm)	d(0.9) (μm)
C1Tween	$3018 \pm 241^{h,c,d,e,f,g,h}$	0.564 ± 0.105	3.167	5.203
CIPVA	893 ± 74°,d,b	0.743 ± 0.191	1.786	4.695
CISLS	851 ± 132°	0.690 ± 0.081	2.373	11.874
C1F188	$1534 \pm 14^{a,b,e,f,z,b}$	0.633 ± 0.094	2.726	6.900
CIPS	$732 \pm 81^{a,d}$	0.429 ± 0.040	0.694	1.651
C1F2	$737 \pm 26^{u,d,h}$	0.433 ± 0.056	1.150	2.462
C1F2S005	$761 \pm 46^{a,d,h}$	0.637 ± 0.087	0.761	2.406
C1F2S01	$438 \pm 12^{a,b,d,f,g}$	0.397 ± 0.072	0.467	1.158

- ^a There was significant difference between the particle size of C1Tween and other formulations
- There was significant difference between the particle size of C1PVA and other formulations There was significant difference between the particle size of C1SLS and other formulations
- There was significant difference between the particle size of C1F188 and other formulations.
- There was significant difference between the particle size of C1F5 and other formulations.
- There was significant difference between the particle size of C1F2 and other formulations.

 There was significant difference between the particle size of C1F2S005 and other formulations.

 There was significant difference between the particle size of C1F2S005 and other formulations (p < 0.05).

The response was linear between 1.5625 and 200 µg/ml and the inter- and intraday precisions of the method were less than 2.0%.

2.8. Statistical analysis

The reported data represented the mean value ± standard deviation (S.D.). Significance of difference was evaluated using t-test and one-way ANOVA at the probability level of 0.05. Two dissolution profiles were compared by using the similarity factor (f2) calculated according to Eq. (1),

$$f_2 = 50 \times \log \left\{ \left[1 + \left(\frac{1}{n} \right) \sum_{i=1}^{n} |R_i - T_i|^2 \right]^{-0.5} \times 100 \right\}$$
 (1)

The f_2 value of 50 or greater (50-100) ensures the similarity of the two dissolution profiles.

3. Results and discussion

3.1. Preliminary study of clarithromycin nanocrystals

Prior to the preparation of clarithromycin nanocrystals by the combination technology, the factors affecting particle size reduction and physical stability of nanocrystals prepared by the HPH method were determined.

3.1.1. Type of surfactant

According to a typical HPH method, the homogenization at 1500 bar for 30 cycles was used to prepare the clarithromycin nanocrystals for the selection of a suitable surfactant. Various types of surfactants may possess the different stabilizing mechanism and thus have an impact on the stabilizing efficiency for the clarithromycin nanocrystals. The nonionic polymeric stabilizers (poloxamer 188, 407, and PVA), nonionic surfactant (Tween 80), and anionic surfactant (SLS) were employed at the concentration often used for clarithromycin nanocrystal preparation, Table 2 shows an influence of various surfactants on the particle size and size distribution of clarithromycin nanocrystals, Poloxamer 407 exhibited the most effectiveness to stabilize the clarithromycin nanocrystals, followed by PVA, SLS, poloxamer 188, and Tween 80, respectively. Among nonionic polymeric stabilizers, poloxamer 407 and PVA could reduce the particle size of clarithromycin to nanometer size range (732 \pm 81 nm or d(0.5) 0.694 μ m for poloxamer 407 and 893 ± 74 nm or d(0.5) 1.786 μ m for PVA). Meanwhile, the particles of larger than 1 µm were obtained when using poloxamer 188 as a stabilizer (1534 \pm 14 nm or d(0.5) 2.726 μ m). The obtained

results could be ascribed by the higher molecular weight of poloxamer 407 and PVA. The higher molecular weight could provide more physically adsorbing and higher steric hindrance resulting in more effective prevention of particle aggregation (Eerdenbrugh et al., 2008). Comparing between poloxamer 407 and PVA, although PVA had a higher molecular weight and could provide higher steric effect, its large molecule may exert more kinetic restriction for adsorption on the surface of particles and consequently slower diffusion. Thus, the particle size of nanocrystals stabilized by PVA was larger (Lee et al., 2008). Concerning a nonionic small molecule surfactant, Tween 80 gave the mean particle size of larger than 3 µm $(3018 \pm 241 \text{ nm} \text{ and } d(0.5) \text{ 3.167 } \mu\text{m}) \text{ because Tween 80 solely}$ formed a thin adsorption layer around the particles leading to less effective stabilization (Sepassi et al., 2007). In case of an anionic surfactant, SLS could prevent the agglomeration of particles by electrostatic repulsion. It could diminish the mean particle size to 851 ± 132 nm and d(0.5) 2.373 μ m which was smaller than the particles stabilized by poloxamer 188 and Tween 80. SLS had the low molecular weight; therefore, the covering of surface of nanocrystals could occur rapidly during the particle size reduction and thus preventing the particle agglomeration (Mehnert and Mäder, 2001). Owing to the electrostatic repulsion, SLS caused higher effective prevention on particle aggregation than Tween 80. However, an exertion of SLS as a single surfactant in the formulation was not enough to attain the homogenous nano-sized particles. The PI values of all formulations were higher than 0.500 except for the nanocrystals stabilized by poloxamer 407. Of these results, the formulation containing poloxamer 407 was further used for the development of clarithromycin nanocrystals.

3,1,2. Addition of co-surfactant

It has been well stated that SLS can be used as a co-surfactant during particle size reduction by HPH due to its small molecule and highly electrostatic repulsive force, SLS had more capability of rapid redistribution process to cover a new happening surface of nanocrystals during HPH than the high molecular weight surfactant contributing to the rapid achievement of small particles (Mehnert and Mäder, 2001). Additionally, the combination of ionic surfactant and polymeric stabilizer can mediate electrostatic and steric mechanisms associated with smaller particles and higher storage stability as compared to the use of a single surfactant (Rabinow, 2004). As shown in Table 2, it was found that the lower amount of SLS (0.05%, w/v) in the formulation did not show the significant reduction of nanocrystal size as compared to the formulation without co-surfactant (p > 0.05). In the meantime, the mean particle size of nanocrystals was significantly reducible to around 400 nm when

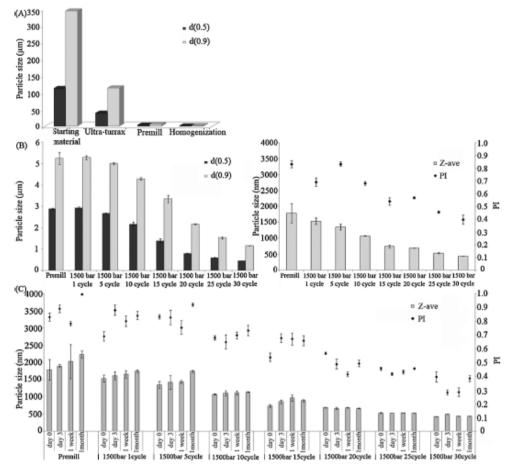


Fig. 1. Influences of (A) processing step, (B) homogenization cycle on particle size reduction of clarithromycin nanocrystal C1F2S01 formulation and (C) homogenization cycle on the physical stability of nanosuspension C1F2S01 formulation during 1 month of storage at room temperature. The error bars represent the standard deviation of three repeated measurements.

 $0.1\%\,(w/v)$ of SLS was used in combination with poloxamer 407 (2%, $w/v)\,(p\!<\!0.05).$

3,1,3. Homogenization cycle

To investigate the optimum homogenization cycle for HPH, clarithromycin nanocrystal (C1F2S01) formulation was chosen in this experiment. As shown in Fig. 1A, the particles of clarithromycin raw material (d(0.5) 112.174 μ m) were milled to d(0.5) of 38.489 μ m by ultra-turrax and further decreased to d(0.5) of 2.886 μ m after premilling step. The drug reached the smallest particle size of 0.467 μ m after passing through HPH for 30 cycles. The data showed that an increase in applied pressure led to a reduction of nanocrystal size of approximately 200 folds smaller than the raw material.

Focusing on the homogenization cycle, the homogenization was performed at 1500 bar with varying numbers of homogenization cycles from 1 to 30. From the results illustrated in Fig. 1B, the particle size and PI values of clarithromycin nanocrystals gradually decreased when the number of homogenization cycles increased. The particle size was less than $1\,\mu m$ after 15–20 cycles and the smallest particles of around 400 nm were obtained at 30 cycles with PI value of less than 0.400.

3.1.4. Physical stability

The good physical stability of nanosuspensions could be attained by an optimal amount of suitable surfactant which provided a well protective effect for stabilization and a homogeneous particle size distribution. Furthermore, the homogeneous particle size of nanocrystals could hinder the Ostwald-ripening phenomenon (Liu et al., 2011). From the results in the previous section, the nanosuspension formulations of C1F2, C1F2S005, and C1F2S01 were evaluated the physical stability for 1 month at room temperature. As shown in Table 3, C1F2S01 formulation presented the most stable. The higher concentration of SLS in C1F2S01 formulation resulted in the insignificant changes in particle size, $P_{\rm H}$, and zeta potential after storage for 1 month at room temperature (p>0.05). Conversely, the stability of nanosuspensions

Mean particle size (z-ave), polydispersity index (P1), particle undersize diameters d(0.5) and d(0.9), and zeta potential (ZP) values of clarithromycin nanosuspension formulations (C1F2, C1F2S005, and C1F2S01) during 1 month of storage at room temperature (n-3).

Formulations		z-ave (nm)	PI	d(0.5) (μm)	d(0.9) (μm)	ZP(mV)
C1F2	Day 0	737 ± 26	0.433 ± 0.056	1.150	2.462	-32.6±0.8
	Day 3	969 ± 14"	0.518 ± 0.043	1.179	2.603	-26.2±1.1
	1 Week	944 ± 58'	0.566 ± 0.015	1.210	2.761	-26.6 ± 1.4
	1 Month	977 ± 36'	0.547 ± 0.056"	1.240	32.100	-26.0 ± 8.1
C1F2S005	Day 0	761 ± 46	0.637 ± 0.087	0.761	2.406	-35.8 ± 0.1
	Day 3	784 ± 15"	0.604 ± 0.016	0.729	2.382	-34.4 ± 0.2
	1 Week	917 ± 89'	0.596 ± 0.140	0.808	2.696	-36.3 ± 0.4
C1F2S01	1 Month	946 ± 9°	0.596 ± 0.289"	1.143	26.072	-34.0 ± 0.7
	Day 0	438 ± 12	0.397 ± 0.072	0.467	1.158	-38.4 ± 0.1
	Day 3	499 ± 7"	0.283 ± 0.038	0.495	1.220	-34.8 ± 2.2
	1 Week	443 ± 9"	0.287 ± 0.063	0.466	1.174	-38.2 ± 0.7
	1 Month	444 ± 13"	0.385 ± 0.044	0.475	1.181	-38.5 ± 0.8

^{*} There was significant difference between day 0 and other times of each formulation (p<0.05).

formulating with lower SLS concentration (C1F2S005) and without SLS (C1F2) decreased with timing and the particle size significantly increased rapidly even after 1-week and 3-days storage, respectively (p < 0.05). Moreover, the zeta potential of C1F2 nanosuspensions became less negative as compared to the initial value indicating the lowering stability of nanocrystals. Therefore, 0.1% (w/v) of SLS sufficiently stabilized the drug particles from aggregation during 1-month storage, Fig. 1C demonstrates the effect of homogenization cycle on the stability of nanosuspensions in terms of particle size and size distribution during 1-month storage. The increasing numbers of homogenization cycles led to more homogeneous size distribution of nanocrystals. At least 20 cycles of homogenization could prevent the growth of particles after 1 month possibly due to the homogeneous size distribution preventing the particle aggregation and/or Ostwald-ripening phe-

3.2. Preparation of clarithromycin nanocrystals by PLH method

3.2.1. Effect of preparation technique

According to the aforementioned results of clarithromycin nanocrystals prepared by the HPH method, C1F2S01 formulation was prepared by the PLH method to compare with the HPH method. As shown in Fig. 2A, both methods yielded the nanocrystals with the final particle size of around 400 nm. However, the HPH technique required at least 15-20 cycles of homogenization to reduce the particle size of nanocrystals below 1000 nm and the particle size reached to about 400 nm after 30 cycles of homogenization, Meanwhile, only 1 cycle of PLH technique could diminish the particle size of nanocrystals less than 1000 nm. The particle size decreased to approximately 400 nm and remained almost constant after 5 cycles of homogenization. The higher number of homogenization cycles required for the HPH method could be ascribed as follows, Since the number of cycles depended on the hardness of crystalline drug, the increasing cycle numbers led to more energy to break down the crystalline at an imperfection point. Besides, the fluid passed the homogenization gap within a flash time was not sufficient to make all particles into a uniform size. Additionally, a flow rate of fluid at an equal cross-section was not identical and the fluid has higher velocity in the central zone than nearby the wall. Therefore, an increment of cycle numbers increased the probability of larger particles subjected to the high power zone during homogenization, so that the nanocrystals could be produced with homogeneous size distribution (Keck and Müller, 2006). Meanwhile, the PLH combination technique greatly decreased the number of homogenization cycles by the following reasons; firstly, the precipitation at first step reduced the particle size of initial drug crystals from d(0.5)of 112,174 µm to 9,113 µm. Secondly, the following lyophilization

did not only completely remove the solvent but it also caused more porous and friable crystals which were thus easily broken during homogenization. Only one cycle of homogenization at 1500 bar resulted in the mean particle size of 535 ± 31 nm with the \overline{M} value of 0.443 ± 0.055 and further decreased to a considerably stable size of 466 ± 13 nm with the PI value of 0.349 ± 0.017 at 5 cycles of homogenization. After 5 cycles, the particle size was considerably constant and fell in the range of 444-478 nm. From the results, it was found that the PLH technique could effectively reduce the number of homogenization cycles as compared to the HPH technique.

3,2,2. Effect of amount of drug loading

To evaluate the effect of drug loading on the preparation of clar-ithromycin nanocrystals by the PLH method, the amount of initial drug loading was varied at 1, 3 and 5% (w/v). As shown in Fig. 2B, the particle size of drug nanocrystals was reduced to the nanometer size range after passing through homogenization for 1, 25, and more than 70 cycles for the formulations containing 1% (w/v) (C1F2S01), 3% (w/v) (C3F2S01), and 5% (w/v) (C5F2S01) of drug, respectively. A high amount of feeding drug at initial contributed to an increase in particle size of nanocrystals. This result is consistent with the previous report on the increase of particle size with the particle content of nanosuspensions (Dalvi et al., 2012). Higher content of drug loading caused more number of drug particles to pass through the piston gap and more remaining imperfection points of crystals. Therefore, the particle size reduction by homogenization consumed more energy to achieve the homogeneous nano-sized particles. In addition, the high initial drug loading may require more concentration of surfactant to stabilize the particles, An insufficient amount of surfactant could bring about the large particle and instability of drug nanocrystals.

3,2,3. Effect of amount of surfactant

Since the concentration of surfactant was of great impact on the particle size and stability of nanocrystals, 2 and 5% (w/v) of poloxamer 407 were used for investigation. Fig. 3A presents an effect of surfactant concentration on the particle size reduction of clarithromycin nanocrystals prepared by PLH technique, Poloxamer 407 at 5% (w/v) (C1F5) could reduce the particle size more rapidly than the 2% (w/v) formulation (C1F2). The particle size of C1F5 formulation reduced to less than 1000 nm after only 1 cycle of homogenization, whereas C1F2 formulation consumed about 20 cycles of homogenization, Higher surfactant concentration decreased the interfacial tension and facilitated the particle partition during homogenization (Mehnert and Mäder, 2001). Therefore, it provided more rapid and sufficient coverage of the new apparent surface and led to better particle size reduction and stability than the lower surfactant concentration.

There was no significant difference between day 0 and other times of each formulation (p>0.05).

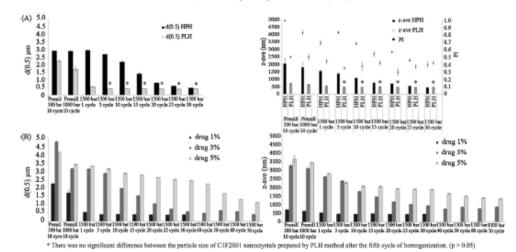
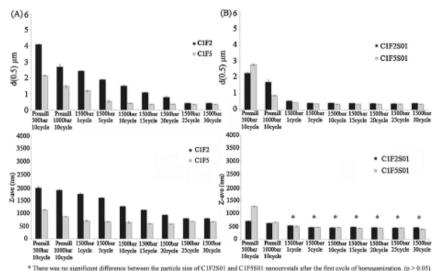


Fig. 2. Influences of (A) preparation technique and (B) amount of drug loading on particle size reduction of clarithromycin nanocrystals prepared by PLH method. The particle sizes were obtained from LD (left) and PCS (right). The error bars represent the standard deviation of three repeated measurements.


3.2.4. Effect of addition of SLS

As previously mentioned in the HPH method, the combination of SLS and poloxamer 407 yielded electrostatic and steric stabilization which led to lower particle size and better storage stability (Rabinow, 2004). With the addition of SLS at 0.1% (w/v) in the formulations (C1F2S01 and C1F5S01), the nanocrystals produced by the PLH technique quickly reduced to the particles of smaller than 1000 nm at the first cycle of homogenization and achieved almost constant particle size at around 400 nm after the fifth cycle (Fig. 3B). The addition of SLS efficiently reduced the number of homogenization cycle as compared to the formulation without SLS (Fig. 3A and

B). Furthermore, the particle size at each homogenization cycle of C1F2S01 and C1F5S01 formulations were not significantly different (p>0.05); therefore, the added SLS at 0.1% (w/v), ould decrease the amount of poloxamer 407 from 5 to 2% (w/v). The further analysis was thus performed and focused on C1F2S01 formulation.

3.3. SEM analysis

Fig. 4 illustrates SEM images of clarithromycin conventional suspension and the nanocrystals prepared by the HPH and the PLH methods. It was observed that the clarithromycin nanocrystals

There was no agritude the terreter the particle size of C1720VI and C1720VI tallock/state after the trial cycle or individual action.

Fig. 3. Influences of amount of surfactant and addition of SLS on particle size reduction of clarithromycin nanocrystals. The particle sizes were obtained from LD (upper) and PCS (lower). The error bars represent the standard deviation of three repeated measurements.

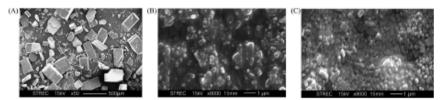
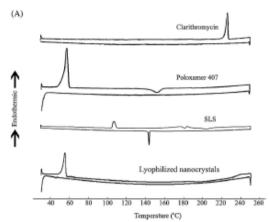



Fig. 4. SEM microphotographs of (A) conventional suspension, (B) nanosuspensions prepared by high pressure homogenization (HPH) method, and (C) nanosuspensions prepared by precipitation-hyophilization-homogenization (PLH) method of C1F2S01 clarithromycin formulation.

prepared by the PLH method showed no difference in morphology when comparing with the nano-sized drug produced by the HPH method and the conventional suspension. SEM images showed that the clarithromycin nanocrystals prepared by both techniques were cubic-like shape and were in agreement with the previous reports of other drugs such as ascorbyl palmitate and buparvaquone nanocrystals (Müller and Jacobs, 2002; Teeranachaideekul et al. 2008).

3.4. Crystallinity of clarithromycin nanocrystals

Since any changes in thermal behavior and crystallinity of drug after processing may affect the physicochemical property, the thermal behavior and crystallinity of nanocrystals were examined by DSC analysis. The DSC thermograms of clarithromycin powder, poloxamer 407, SLS, and lyophilized clarithromycin nanocrystals are presented in Fig. 5A. In this study, the clarithromycin powder had a sharp endothermic melting peak at ~226°C. Poloxamer 407 and SLS had the characteristic endothermic peaks at ~50°C and -100 °C, respectively. Clarithromycin has been known to exist in at least five polymorphic crystalline forms "Form I", "Form II", "Form IV", "Form V" and "Form O" and also an amorphous form. All polymorphisms possess an equivalent pharmacological activity. Nevertheless, the commercially available drug products are formulated from the thermodynamically stable Form II. The DSC thermograms of Form II and other crystalline forms showed the same position of endothermic melting peak at around 223-229°C (Gruss, 2008). In addition to the peak at 223-229 °C, the other crystalline forms exhibited another characteristic peak at the different position, for instances, an exothermic transition of Form I at 132,2°C and an endothermic peak of Form V at 106,3°C (Lifshitz et al., 2003; Gruss, 2008). The DSC thermogram of clarithromycin pure drug shown in Fig. 5A showed the peak pattern corresponding to Form II. In the meantime, the clarithromycin nanocrystals showed the small endothermic melting peak slightly shifted to approximately at 235 °C. This change might be due to the dilution effect of presented surfactant or the certain loss of crystallinity of drug (Dolenc et al., 2009; Sahoo et al., 2010). This result was further confirmed by XRPD analysis. Fig. 5B demonstrates the diffractograms of bulk clarithromycin, poloxamer 407, SLS, and lyophilized clarithromycin nanocrystals without cryoprotective agent. The bulk clarithromycin showed the crystalline pattern of Form II having the characteristic diffraction peak at an angle 2-theta of $8.5^{\circ}\pm0.2$, $9.5^{\circ}\pm0.2$, $10.8^{\circ}\pm0.2$, $11.5^{\circ}\pm0.2$, $11.9^{\circ}\pm0.2$, $12.4^{\circ}\pm0.2$, $13.7^{\circ}\pm0.2$, $14.1^{\circ}\pm0.2$, $15.2^{\circ}\pm0.2$, $16.5^{\circ}\pm0.2$, $16.9^{\circ}\pm0.2$, $17.3^{\circ}\pm0.2$, $18.1^{\circ}\pm0.2$, $18.4^{\circ}\pm0.2$, 19.0° ± 0.2, 19.9° ± 0.2 and 20.5° ± 0.2. Likewise, all diffraction peaks of Form II clarithromycin of the lyophilized nanocrystals were apparently observed at the same position as those of original drug. Additionally, the new peaks of the lyophilized nanocrystals were detected in the diffractogram at the angle 2-theta of $5.2^{\circ}\pm0.2$, $6.7^{\circ}\pm0.2$, $10.2^{\circ}\pm0.2$, $12.3^{\circ}\pm0.2$, $14.2^{\circ}\pm0.2$, $15.4^{\circ}\pm0.2$, $10.2^{\circ}\pm0.2$, 15.7° ±0.2 and 16.4° ±0.2. These new peaks corresponded to

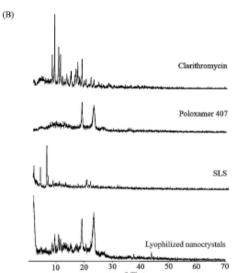


Fig. 5. Differential scanning calorimetry thermograms (A) and X-ray diffractograms (B) of clarithromycin raw material, poloxamer 407, SLS, and lyophilized clarithromycin nanocrystals.

Table 4

Mean particle size (z-ave), polydispersity index (PI), particle undersize diameters d(0.5) and d(0.9), and zeta potential (ZP) values of lyophilized clarithromycin nanocrystals (C1P2S01) stored at 4 *C, 30 *C, and 45 *C for 3 months (n=3).

Temperature		z-ave (nm)	PI	d(0.5) (μm)	d(0.9) (μm)	ZP(mV)
4°C	Day 0	446 ± 32	0.455 ± 0.024	0.454	1.386	-31.1 ± 0.6
	Day 7	476 ± 34	0.455 ± 0.046	0.480	1.412	-32.9 ± 0.6
	1 Month	471 ± 18	0.474 ± 0.022	0.443	1.250	-36.9 ± 4.4
	2 Months	471 ± 10	0.468 ± 0.046	0.469	1.417	-33.3 ± 1.5
	3 Months	484 ± 77"	0.473 ± 0.041	0.484	1.424	-30.6 ± 2.2 "
30-C	Day 0	446 ± 32	0.455 ± 0.024	0.454	1.386	-31.1 ± 0.6
	Day 7	476 ± 13	0.473 ± 0.024	0.473	1.440	-30.3 ± 1.0
	1 Month	479 ± 60	0.480 ± 0.057	0.475	1.394	-33.9 ± 3.4
	2 Months	482 ± 60	0.582 ± 0.029	0.528	1.614	-35.0 ± 6.4
	3 Months	494 ± 20 "	0.458 ± 0.029 "	0.511	1.575	-34.7 ± 3.5 "
45-C	Day 0	446 ± 32	0.455 ± 0.024	0.454	1.386	-31.1 ± 0.6
	Day 7	465 ± 35	0.624 ± 0.034	0.479	1.569	-32.6 ± 2.6
	1 Month	487 ± 28	0.487 ± 0.042	0.484	1.574	-32.5 ± 9.4
	2 Months	502 ± 50	0.482 ± 0.019	0.522	1.598	-25.9 ± 5.9
	3 Months	487 ± 49 "	0.479 ± 0.050 "	0.527	1.602	-26.3 ± 0.6 "

[&]quot; There was no significant difference between day 0 and 3 months of storage (p> 0.05).

the characteristic peaks of Form I clarithromycin (Lifshitz et al., 2003). Besides, the peak intensity of the lyophilized nanocrystals was smaller as compared to that of original drug. The detectable new characteristic peaks and the lower peak intensity of the lyophilized nanocrystals indicated the change in crystallinity of some fraction of the obtained nanocrystals from more thermodynamically stable Form II to less stable crystalline form (Form I) and amorphous form. Apart from the change in crystallinity, the low peak intensity in nanoformulation might additionally be due to a dilution effect of stabilizers (Hecq et al., 2005; Liu et al., 2011). The partial transformation of nanocrystals to amorphous state was possibly caused by the applied energy during high pres-sure homogenization and the rapid cooling during lyophilization process. Thus, the obtained clarithromycin nanocrystals were probably in the crystalline form (Forms I and II) and partially in amorphous form, It has been well established that the amorphous substance showed higher solubility compared to the crystalline state; however, the crystalline substance was more physically stable than the amorphous state. Therefore, the drug nanocrystals in crystalline form and/or partial amorphous form may enhance the dissolution behavior and increase the physical stability (Sahoo et al., 2010).

3.5. Fourier transformed infrared spectroscopy (FT-IR) analysis

The FT-IR spectroscopy was used to determine the interaction between surfactant and drug nanocrystals. Fig. 6 demonstrates the FT-IR spectra of bulk clarithromycin, poloxamer 407, SLS, and lyophilized clarithromycin nanocrystals. Clarithromycin showed the characteristic peaks of C=O stretching vibrations of ketone group at $1692\,\mathrm{cm}^{-1}$ and of carbonyl group in lactone ring at

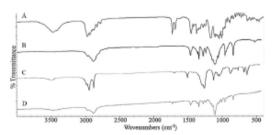


Fig. 6. FT-IR spectra of clarithromycin raw material (A), poloxamer 407 (B), SLS (C), and lyophilized clarithromycin nanocrystals (D).

1733 cm⁻¹, C—O stretching of ether at 1170–1053 cm⁻¹, C—H stretching of alkyl-CH₃ substitution at 2974–2940 cm⁻¹ and O—H stretching at 3473 cm⁻¹ (Inoue et al., 2007). The FT-IR spectra of bulk clarithromycin and lyophilized clarithromycin nanocrystals were similar in peak pattern and frequency. From the results, it indicated no change in the chemical structure of drug after preparation and no interaction between drug and surfactants.

3.6. Stability of lyophilized clarithromycin nanocrystals

By the PLH technique, the lyophilized clarithromycin nanocrystals were stored at 4°C, 30°C, and 45°C. The particle size, PI, and zeta potential values were monitored over 3 months as shown in Table 4. After stored at 4°C, the z-ave, PI values and zeta potential values showed no significant change over a period of 3 months (p>0.05). At 30 and 45 °C, the z-ave and P1 values were almost constant while the particle size measured by LD slightly increased after 3-month storage indicating an occurrence of particle aggregation. Nanocrystal system of hydrophobic drug typically possesses hydrophobic interactions which are negative entropic processes. At high temperature, the system becomes more thermodynamically unfavorable resulting in the tendency of particle aggregation (Lu et al., 2005). The change in zeta potential can also predict the stability of nanocrystals. According to Table 4, the zeta potential did not change during 3-month storage at $4\,^{\circ}$ C and $30\,^{\circ}$ C, but tended to decrease when storing at $45\,^{\circ}$ C. Based on these results, the C1F2S01 formulation showed a good stability when storing at 4°C for 3 months. However, an assessment of the stability needs to be further investigated for determining an accurate shelf-life of the clarithromycin nanocrystal product.

3.7. Dissolution study

The main purpose of the nanocrystal system is to increase the dissolution of poorly water-soluble drug. According to the Noyes-Whitney equation, it is widely accepted that the particle size reduction can enhance the drug dissolution (Chen et al., 2011; Müller et al., 2001). Especially the nano-sized particles, the increases in surface area and saturation solubility of the nano-sized particles would result in an increased dissolution velocity of the drug (Müller et al., 2001).

In this study, the dissolution profile of coarse clarithromycin and both formulations of C1FZS01 lyophilized nanocrystals prepared by HPH and PLH methods was investigated. As shown in Fig. 7, the amounts of dissolved drug of coarse clarithromycin, HPH and PLH nanocrystals were 50,31%, 84.33% and 84.89% within

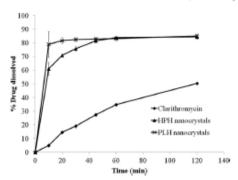


Fig. 7. Dissolution profiles of coarse clarithromycin and lyophilized clarithromycin crystals prepared by HPH and PLH methods.

120 min, respectively. The dissolution velocity of both nanocrystal formulations was markedly enhanced as compared to that of the coarse clarithromycin. The increased velocity of drug dissolution was caused by the increased surface area and saturation solubility of nanocrystals, Nevertheless, the dissolution profiles of nanocrystals prepared by both methods were comparable (f2 value = 58.7) probably due to the same particle size of nanocrystals (438 \pm 12 nm and 460 ± 10 nm for HPH and PLH methods, respectively, p-value >0.05). Although, no significant difference in dissolution profiles of both nanocrystal formulations, the PLH method could considerably reduce the homogenization cycle for the preparation of the nanocrystals.

4. Conclusion

The present study showed that the precipitation-lyophilizationhomogenization combination technique provided the advantages over the high pressure homogenization technique in terms of feasibility and ease of particle size reduction. The nano-sized crystals could be easily achieved by the PLH method and the number of homogenization cycle was significantly smaller as compared to the HPH method. The combination of amphililic block copolymers (poloxamer 407) and ionic surfactant (SLS) appeared more efficient for particle size reduction and physical stability. The obtained clarithromycin nanocrystals were in crystalline forms (Form I and II) and partial amorphous form and no interaction between surfactants and drug was observed. The clarithromycin nanocrystal formulation containing 1% (w/v) of clarithromycin, 2% (w/v) of poloxamer 407, and 0.1% (w/v) of SLS could increase the physical stability of clarithromycin over 3-month storage at 4°C and dramatically enhance the dissolution of drug.

Acknowledgements

This work was supported by the Thailand Research Fund through Grants BRG5680020 (to V.B.J.) and PHD/0258/2550 of the Royal Golden Jubilee Ph.D. Program and Mahidol University (to RM)

References

Alladi, K.K., Suram, R., Bela, M., Kiran, S., Ramaesh, V., Narendra, Y., 2011. Formulatio and characterization of clarithromycin control J. Chem. Pharm. Res. 3, 684–690.

Bansal, S., Bansal, M., Kumria, R., 2012. Nanocrystals: current strategies and International Journal of Research in Pharmaceutical and Biomedical Sci

Cerdeira, A.M., Mazzotti, M., Gander, B., 2010. Miconazole nano ence of formulation variables on particle size reduction and physical stability. Int. J. Pharm. 396, 210–218.

Chen, H., Khemtong, C., Yang, X., Chang, X., Gao, J., 2011. Nanonization strategies for

poorly water-soluble drugs. Drug Discov Today 11. nanontzation strategies for Dalwi, S.V., Azad, M.A., Dave, R., 2012. Precipitation and stabilization of ultrafine particles of fenofibrate in aqueous suspensions by RESOLV. Powder Technol. 236, 75–84.

Dolenc, A., Kristl, L., Baumeartner, S., Planinsek, O., 2009, Advantages of celecoxib lation and transformation n into tablets. Int. I. Pharm. 376.

Ballosuspension Rolling St. Augustijns, P., 2008. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int. J. Pharm. 364, 64-75.
Ballosuspension of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int. J. Pharm. 364, 64-75.

Gruss, M., 9 October 2008. Polymorph of clarithromycin (Form V). US Patent US 2008/0249035 A1.

Hecq, J., Deleers, M., Fanara, D., Vranckx, H., Amighi, K., 2005. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of

FIRCE, J., Delects, M., Fahara, D., Vranckx, H., Jimigni, K., 2002. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int. J. Pharm. 299, 167–177.
Inoue, Y., Yoshimura, S., Tozuka, Y., Moribe, K., Kumamotoa, T., Ishikawa, T., Yamamoto, K., 2007. Application of ascorbic acid 2-glucoside as a solubilizing agent for clarithromycin: solubilization and nanoparticle formation. Int. arm. 331. 38-45.

Katteboinaa, S., Chandrasekhar, V.S.R.P., Balaji, S., 2009. Drug nanocrystals: a novel formulation approach for poorly soluble drugs. Int. J. Pharm Tech Res. 1, 682–694.
Keck, C.M., Kobierski, S., Mauludin, R., Müller, R.H., 2008. Second generation of drug nanocrystals for delivery of poorly soluble drugs: smartcrystals technology.

DOSIS 24, 124-128.

Keck, C.M., Müller, R.H., 2006. Drug nanocrystals of poorly so uble drugs produced

Keck, C.M., Müller, R.H., 2006. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur. J. Pharm. Sci. 62, 3–16.
Lee, J., Choi, J.Y., Park, C.H., 2008. Characteristics of polymers enabling nano-comminution of water-insoluble drugs. Int. J. Pharm. 355, 328–336.
Lifshitz, I., Aynutov, I., Schwartz, E., Maxarwa, B., 23 September 2003. Processes for preparing clarithromycin polymorphs. US Patent US 6,624,292 B2.
Liu, P., Rong, X., Laru, J., van Veen, B., Kiewaara, J., Hirvonen, J., Laaksonen, T., PelTonen, L., 2011. Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Int. J. Pharm. 411, 215–222.
Liversidge, E.M., Liversidge, G.G., Cooper, E.R., 2003. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 18, 113–120.
Lu, S., Pugh, R., Forssberg, E., 2005. Interfacial Separation of Particles. Elsevier, Amsterdam.

 Lu, S., Pugh, K., Potsseerg, E., 2002.
 Amsterdam.
 Mehnert, W., Mäder, K., 2001. Solid lipid nanoparticles production, characterization and applications. Adv. Drug Deliver. Rev. 47, 165–196.
 Möschwitzer, J., 2010. Nanotechnology: particle size reduction technologies in the pharmaceutical development process. Am. Pharm. Rev. 13, 54–59.
 Müller, R.H., Benita, S., Böhm, B. (Eds.), 1998. Emulsions and Nanosuspensions for the Formulation of Poorly Soluble Drugs. Medpharm Scientific, Stuttgart.
 Müller, R.H., Gohla, S., Keck, C.M., 2011. State of the art of nanocrystals – special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm. 78, 1–9.

Müller, R.H., Jacobs, C., 2002. Buparvaguone muco

Müller, R.H., Jacobs, C., 2002. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int. J. Pharm. 237, 151–161. Müller, R.H., Jacobs, C., Kayser, O., 2001. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Adv. Drug Deliver. Rev. 47, 3–19. Müller, R.H., Jacobs, C., Kayser, O., 2000. Nanosuspensions for the formulation of poorly soluble drug. In: Nielloud, F., Marti-Mestres, G. (Eds.), Pharmaceutical Emulsions and Suspensions. Marcel Delker Inc., New York. Müller, R.H., Keck, C.M., 2004. Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid naoparticles. J. Biotechnol. 113, 151–170. Rabinow, B.E., 2004. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 3, 785–796.

Sahoo, N.G., Kakran, M., Shaal, L.A., Li, L., Müller, R.H., Pal, M., Tan, L.P., 2010.

2319-2390.
Sepassi, S., Goodwin, D.J., Drake, A.F., Holland, S., Leonard, G., Martini, L., Lawrence, M.J., 2007. Effect of polymer molecular weight on the production of drug nanoparticles. J. Pharm. Sci. 96, 2655-2666.

nanoparticles, J. Pharm. Sci. 96, 2655–2666.
Sterling, J. (2005. Lyophilization: growing with biotechnology. New products such as mabs and recombinant proteins should drive advances. Genet. Eng. Biotechnol. News (GEN) 25, Available from: http://www.genengnews.com/gen-articles/byophilization-growing-with-biotechnology/1082.

gen-articles/lyophilization-growing-with-biotechnology/1083/ Teeranachaideekul, V., Junyaprasert, V.B., Souto, E.B., Muller, R.H., 2008. Development of ascorbyl palmitate nanocrystals applying the na technology. Int. J. Pharm. 354, 227-234.

Trotta, M., Gallarate, M., Pattarino, F., Morel, S., 2001, Emulsions containing partially nts for the preparation of drug nanosuspensions. J. Control. Release 76, 119-128. Yonemochi, E., Kitahara, S., Maeda, S., Yamamura, S., Oguchi, T., Yamamoto, K., 1999.

Physicochemical properties of amorphous clarithromycin and spray drying. Eur. J. Pharm. Sci. 7, 331–338.

European Journal of Pharmaceutics and Biopharmaceutics 88 (2014) 886-896

Contents lists available at ScienceDirect

European Journal of Pharmaceutics and Biopharmaceutics

journal homepage: www.elsevier.com/locate/ejpb

Research paper

Dissolution enhancement and in vitro performance of clarithromycin nanocrystals produced by precipitation-lyophilization-homogenization method

Boontida Morakul ^a, Jiraphong Suksiriworapong ^{a,b}, Mullika Traidej Chomnawang ^c, Peter Langguth ^d, Varapom Burapacheep Junyaprasert a.b.

ARTICLE INFO

Article history: Received 11 June 2014 Accepted in revised form 20 August 2014 Available online 6 September 2014

Keywords: Clarithromycin Nanocrystals Permeability Antibiotic activity

ABSTRACT

The gastroduodenal diseases caused by Helicobacter pylori were commonly treated with antibiotic clarithromycin as a standard regimen. According to the poorly water-soluble of clarithromycin, the nanocrystal formulation was prepared. The aim of this study was to investigate an enhancement effect of clarithromycin nanocrystals produced by precipitation-lyophilization-homogenization (PLH) method on the saturation solubility, dissolution velocity, antibiotic activity, permeability through the gastric mucus and cellular permeability. Poloxamer 407 and sodium lauryl sulfate (SLS) were chosen as combined stabilizers in the nanocrystal system. The obtained darithromycin nanocrystals were identified as cubic particles by SEM with a bulk population of approximately 400 nm existed in crystalline and/or partial amorphous form as investigated by DSC and XRPD. The saturation solubility of the clarithromycin nanocrystals was increased by 1.5- and 6-folds higher than clarithromycin powder in buffer pH 5.0 and 6.8, respectively. The dissolution profiles of clarithromycin nanocrystals at pH 5.0 and 6.8 were significantly different from clarithromycin powder and the marketed product (f_1 value > 15 and f_2 value <50). All dissolution parameters (relative dissolution rate, percent dissolution efficiency and mean dissolution time) showed that darithromycin nanocrystals had higher dissolution rate when compared with the clarithromycin powder, the lyophilized coarse suspension and the marketed product. The bioassay study by diffusion agar method showed a maintained antibiotic activity of clarithromycin nanocrystals solubilized in buffer solution which was greater potency than the lyophilized coarse suspension and the clarithromycin powder. Additionally, the nanocrystals possessed higher permeability through gastric mucus and cellular monolayer of Caco-2 and NCI-N87 cells as compared to the lyophilized coarse suspension and the clarithromycin powder. The results indicated that, the developed clarithromycin nanocrystals were a potential delivery system that exerts more effectiveness in H pylori eradication.

© 2014 Elsevier B.V. All rights reserved.

E-mail address: varaporn.jun@mahidol.ac.th(V.B. Junyaprasert).

http://dx.doi.org/10.1016/j.ejpb2014.08.013 0939-6411/@ 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of important risk factors in several gastroduodenal diseases, including gastric malignancy and peptic ulcer is Helicobacter pylori, gram-negative microaerophilic bacteria residing in the mucus gel closed proximity to the gastric epithelial surface and selectively colonizing in the gastric mucosa [1-3]. Currently, the eradication of H. pylori is recommended in patients to prevent the recurrence of peptic ulcer and the incidence of gastric cancer, and thus antibiotic treatments are necessary. In several standard regimens, no single antibiotic agent enables to obliterate H. pylori

^a Department of Pharmacy, Faculty of Hurmacy, Mahidol University, Thailand
^b Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, Thailand
^c Department of Microbiology, Faculty of Pharmacy, Mahidol University, Thailand

^d Department of Biopharm aceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, Mainz, Germany

Abbreviations: BCS, biopharmaceutical dassification system; DE, dissolution efficiency; DSC, differential scanning calorimetry; f_1 , different factor, f_2 , similarity factor; LD, laser diffractometry; MDT, mean dissolution time; NEAA, non-essential amino acid; P_{app}, apparent permeability coefficient; PEST, penicill in-streptomycin; PGM, porcine gastric mucin; Pl, polydispersity index; PlH, precipitation-lyophili-zation-homogenization; PCS, photon correlation spectroscopy; RD, relative dissolution rate; SEM, scanning electron microscopy; SLS, sodium lauryl sulfate; TEER, transepithelial electrical resistance; XRPD, X-ray powder diffraction; z-ave, mean partide size; ZP, zeta potential.

^{*} Corresponding author, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Rajathevee, Bangkok 10400, Thailand. Tel.: +66 2 644 8677-91; fax: +66

wing to some problems such as inhomogeneous local distribution, poor penetration into gastric mucus, and poor availability at the site of action [4,5]. After oral administration of drug in solid dosage form, the drug has to be dissolved in gastrointestinal fluid. For the topical action of antibiotics in *H. pylori* eradication, the dissolved molecules should penetrate through the mucus layer to reach the site of bacterial localization. Moreover, to have the systemic action, the dissolved molecules should be absorbed in the intestinal tract to the systemic circulation and re-secreted in the gastric secretory fluid to act against *H. pylori*. Notwithstanding the routes of action, antibiotics must be dissolved and penetrate through the mucus layer to eradicate *H. pylori* which deeply buries in the mucus gel to provide a sufficient concentration for antibacterial activity.

Clarithromycin, a semi-synthetic 14-membered macrolide, is the most potent and commonly used antibiotic in the standard regimens of H. pylori eradication combining with a second antibiotic and an acid-suppressing agent [6,7]. Clarithromycin is classified as Biopharmaceutical Classification System (BCS) class 2 which is practically insoluble in water and its solubility is pH-dependent, Typical problems associated with the poorly water-soluble drugs are very low oral bioavailability and erratic absorption due to very low saturation solubility and dissolution velocity. The poor dissolution behavior brings about the limited absorption of clarithromycin. After ingestion, clarithromycin has to be solubilized to allow its diffusion into the gastric mucus, a complex mixture of water (main composition), glycoproteins, proteins, and lipids. The gastric mucus covers the surface of gastric mucosa and restricts the diffusion of drug to the site of action [8-10]. An increase in dissolution behavior of clarithromycin can increase more numbers of drug molecules penetrating through the gastric mucus layer to act at which H. pylori exists. Therefore, an improvement in therapeutic efficacy is possibly obtained and the failure of H. pyroli eradication can be reduced.

Nanonization strategy has been emerged over the last two decades to increase dissolution rate and bioavailability of numerous poorly water-soluble drugs [11], Nanonization of hydrophobic drugs generally involves the production of drug nanocrystals through either chemical precipitation or disintegration [11,12]. Nanocrystals are consisted of pure drugs and surface active agents required for stabilization. This system is considered as carrier-free submicron drug delivery with the mean particle size in the nanometer range, typically less than 1 µm [13]. The drug nanocrystals provide more benefits over the microparticles. The very small particles of nanocrystals have larger surface area and possess an increased saturation solubility. Therefore, the dissolution velocity is increased leading to higher oral absorption and more improvement of bioavailability. Several techniques have been used for nanocrystal preparations such as precipitation, pearl milling, and high pressure homogenization. Moreover, the combination of preparation techniques has been developed to obtain the efficient method to prepare the nanocrystals. Previously, clarithromycin nanocrystals were efficiently produced by the three combination called precipitation-lyophilization-homogenization (PLH) [14]. It has been reported that the PLH technology was properly employed for the starting materials that require high pressure and more cycle numbers of homogenization to decrease the size of particles. The pre-treatment by precipitation could reduce the initial particle size of the starting materials to be small enough to pass through the homogenization gap. The additional pre-treatment by lyophilization could further provide more porous and friable particles that were easily breakable to nanometer size by high pressure homogenization. The combination technology of PLH led to the reduced homogenization cycle number and the rapid achievement of nanosized crystals as compared to the high pressure homogenization method. In this study, the nanocrystal system was investigated for enhancement effect on saturation solubility and

dissolution behavior. Furthermore, the bioassay for antibiotic activity, permeability through the gastric mucus, cellular permeability and cytotoxicity of the obtained clarithromycin nanocrystals were also evaluated.

2. Materials and methods

2.1. Materials

Clarithromycin was purchased from Suzhou Rovathin Foreign Trade Co., Ltd., China. Poloxamer 407 and sodium lauryl sulfate (SLS) were obtained as gifts from BASF, Germany. Potassium dihydrogen orthophosphate (KH₂PO₄) was obtained from Fisher scien tific, UK. Sodium acetate trihydrate was supplied from VWR BDH Prolabo, Belgium, Acetone and glacial acetic acid were purchased from RCI-Labscan Thailand Citric acid was obtained from Carlo Erba Reagenti, Italy. Acetonitrile and methanol were of high performance liquid chromatography (HPLC) grade (Burdick & Jackson, Korea). Sterile water for injection was obtained from Thai Nakorn Patana Co., Ltd., Thailand. Porcine gastric mucin was supplied from Jiagen Biotechnologies, Canada, Caco-2 and NCI-N87 cell lines used in cellular permeability and Bacillus subtilis (ATCC6633) used in bioassay of antibiotic activity were obtained from the ATCC (American Type Culture Collection, USA). Dulbecco's modified Eagle's medium (DMEM), Roswell Park Memorial Institute medium 1640 (RPMI-1640), fetal bovine serum (FBS), non-essential amino acid (NEAA) and penicillin-streptomycin (PEST) were supplied by Gibco, UK.

2.2. Methods

2.2.1. Preparation of clarithromy an nanocrystals and coarse

Clarithromycin nanocrystals were prepared by precipitationlyophilization-homogenization (PLH) method as previously reported [14]. Briefly, SLS (0.1%w/v) and poloxamer 407 (2 and 5%w/v for Formulations A and B, respectively, as seen in Table 1) were dissolved into the sterile water. Meanwhile, 1%w/v of clarithromycin was completely dissolved into an excess amount of acetone. Clarithromycin solution was mixed into the surfactant solution. The mixture was continuously stirred at around 8-10 ℃ until acetone was completely evaporated. Subsequently, the suspension was pre-frozen at -75 °C for 12 h, Then, it was primarily dried at -36 °C and 0.200 mbar for 24 h and secondarily dried at -50 °C and 0.040 mbar for 8 h by freeze dryer (Alpha 1-4, Martin Christ Gefriertrocknungsanlagen GmbH, Germany). The lyophilized powder was redispersed in the sterile water and homogeneously stirred. The nanosuspension was then obtained using a high pressure homogenizer (APV-2000, SPX Flow Technology, Germany) by applying the homogenization step in order of 5 cycles at 50 bar. 5 cycles at 100 bar, 10 cycles at 500 bar, 10 cycles at 1000 bar, and 30 cycles at 1500 bar. For the clarithromycin coarse suspension, one-step preparation was performed by homogenously dispersing clarithromycin powder (1%w/v) in the surfactant solution of Formulation A (see Table 1), Afterward, the obtained nanosuspension and coarse suspension were finally converted into the dried powder form by lyophilization under the aforementioned condition.

2.2.2. Physical characterization

The particle size analysis was carried out using photon correlation spectroscopy (PCS; Zetasizer NanoZS, Malvem Instruments, UK) and laser diffractometry (ID; Mastersizer 2000 Malvern Instruments, UK). PCS measurement provided the mean particle diameter (z-ave) and the polydispersity index (PI). ID analysis gave

Table 1
Composition and characteristics in terms of mean particle size (z-ave), polydispessity index (PI), d(0.5), d(0.9), zeta potential (ZP) and %drug content of clarithromycin nanocrystal formulations.

-									
Formulations	Amoun	t (%w/v)		z-ave (nm)	PI	d(0.5) (µm)	d(0.9) (µm)	ZP (mV)	*Drug content
	Drug	Poloxamer 407	SLS						
A	1	2	0,1	460 ± 10	0.423 ± 0.044	0,396 ±0,020	2,352±0,236	-36 _. D	100,87 ± 1,63
В	1	5	0.1	386±17	0.304 ± 0.028	0.339 ± 0.006	1,067±0,076	-32.7	99,02 ± 1,62

the volume distribution diameters expressed as d(0.5) and d(0.9)indicating that 50% and 90% of the particles were below the reported values, respectively. The particle size measurement was performed at 25 °C, Prior to all measurements, samples were diluted with deionized water to a suitable scattering intensity and redispersed by hand-shaking. The zeta potential (ZP) was assessed by determining particle electrophoretic mobility using Zetasizer NanoZS (Malvem Instruments, UK), ZP values were calculated using the Helmholtz-Smoluchowsky equation. The particle morphology of clarithromycin nanocrystals was examined using scanning electron microscope (SEM; JSM-6400, JEOL, Japan). Crystalline state of nanocrystals was evaluated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). DSC measurement was carried out using DSC 7 (Perkin Elmer, USA). The sample was heated from 30 °C to 250 °C at a heating rate of 10°C/min. XRPD measurement was performed by X-ray diffractometer (D8 Advance, Bruker AXS GmbH, Germany) over the range of angle 2-theta of 2° to 70° with a step width of 0,04° and a count time of 4 s.

2.2.3. HPLC analysis of clarithromycin

The quantity of clarithromycin was determined by HPLC analysis. The chromatographic system consisted of Series 20AD machine (Shimadzu Corporation, Japan). The stationary phase was Hypersil® ODS C18 reversed-phase column (250 mm × 4.6 mm, 5 μm) in isocratic mode and the temperature was maintained at 40 °C. The mobile phase was composed of KH₂PO₄ buffer pH 6.0 and acetonitrile (35:65%v/v). The clarithromycin was eluted through a stationary phase at a flow rate of 1 ml/min and detected at a wavelength of 210 nm. The injection volume was 50 μl. Prior to analysis, the HPLC condition was validated for linearity, repeatability, reproducibility, and accuracy. The linearity was attained over the concentration range of 1.563-200 µg/ml with a correlation coefficient of at least 0,999. The repeatability and reproducibility were confirmed by coefficients of variation of less than 2%. The accuracy was determined by three replicate injections of three different concentrations of clarithromycin, and the percent recovery was found to be 99.39%. Therefore, the HPLC method used in this study demonstrated good linearity. precision, and accuracy and suitable for the determination of

2.2.4. Drug content [15]

The quantitative determination of clarithromycin content in the lyophilized nanocrystals was determined by HPLC analysis. The formulation was completely dissolved in acetone at a concentration of 1 mg/ml and diluted with HPLC mobile phase to a concentration of $100 \mu g/ml$. The amount of drug recovery was calculated and expressed as the percentage of the total clarithromycin presented in the formulation.

2.2.5. Physical and chemical stability

Lyophilized nanocrystal Formulations A and B were prepared and kept in a tightly sealed container at three different temperatures (4°C, 30°C, and 45°C). The physical and chemical stability tests of lyophilized clarithromycin nanocrystals were examined after 4 months of storage. Regarding the physical stability aspect, samples were characterized in terms of mean particle size (z-ave), PI and ZP. Prior to the measurement, the lyophilized samples were redispersed in deionized water by hand-shaking. For the chemical stability, the percent clarithromycin content in lyophilized nanocrystal Formulations A and B was determined as previously described in Section 2.2.4 and reported as % label amount compared to the initial preparation.

2.2.6. Saturation solubility

Saturation solubility evaluation was carried out in 0.05 M KH₂PO₄ buffer solution pH 6.8 and 0.1 M sodium acetate (CH₃COONa) buffer solution pH 5.0. An excess amount of clarithromycin powder, lyophilized coarse suspension, and lyophilized nanocrystals (Formulations A and B) was separately dispersed into 5 ml of medium in a test tube. The mixture was stirred in a mechanical shaking water bath for 72 h at a temperature of 37.0 ± 0.5 °C. One milliliter of sample was collected at the predetermined times and filtered through 0.2 µm membrane filter (Minisart^a), Sartorius, Germany). An equal volume of fresh medium was immediately added into the test tube after sampling. The filtrate was diluted with HPIC mobile phase to a suitable concentration and then analyzed by HPIC. The solubility data was expressed as an average of three measurements of each formulation.

2.2.7. Dissolution study

2,2.7.1. Dissolution testing. The in vitro dissolution of clarithromycin powder, lyophilized coarse suspension, lyophilized nanocrystals (Formulations A and B), and marketed clarithromycin granules for oral suspension was determined using USP Apparatus 2 dissolution tester (Erweka ET 1500I, Erweka GmbH, Germany). The dissolution test was carried out in 900 ml of 0.05 M KH₂PO₄ buffer solution pH 6.8 or 0.1 M CH₃COONa buffer solution pH 5.0. The paddle rotation was 50 rpm. The temperature was maintained at 37 ± 0.5 °C. An amount of sample equivalent to 125 mg of clarithromycin was weighed and tested. One milliliter of dissolution medium was collected from the vessel at the predetermined time points. The collected sample was immediately filtered through 0.2 µm membrane filter and the fresh dissolution buffer (1 ml) was immediately replenished into the vessel. For each sample, three replicate dissolution tests were performed. The clarithromycin concentration was determined by HPLC analysis.

2,2,7,2, Statistical analysis for dissolution [16,17].

2.2.7.2.1. Relative dissolution rate (RD). The relative dissolution rate (RD) was calculated and expressed as the ratio of percent cumulative of drug release of the tested formulation at a particular time to that of the reference.

2.2.7.2.2. Percent dissolution efficiency (%DE). The percent dissolution efficiency (%DE) was calculated to compare the relative performance of clarithromycin powder, lyophilized coarse suspension, lyophilized nanocrystals (Formulations A and B), and marketed clarithromycin granules for oral suspension. The %DE at 30 min (%DE 30 min) for each formulation was computed as the percent ratio of area under the dissolution curve up to the time t (t = 30 min) to that of the rectangle described by 100% dissolution at the same time as shown in Eq. (1).

$$\%DE = \left(\frac{\int_0^t y \cdot dt}{y_{100} \cdot t}\right)100 \qquad (1$$

2.2.7.2.3. Mean dissolution time (MDT). The mean dissolution time (MDT) was calculated to determine the average time required to dissolve 50% of the drug as given by Eq. (2).

$$MDT = \frac{\sum_{i=1}^{n} I_{mil} \Delta M}{\sum_{i=1}^{n} \Delta M}$$
(2)

where i is the dissolution sample number, n is the number of dissolution times, t_{mid} is the time at the midpoint between t_i and t_{i-1} , and ΔM is the amount of drug dissolved (μ g) during t_i to t_{i-1} .

2.2.7.2.4. Difference factor (f_1) . The difference factor (f_1) evaluates the percent error between two curves over all time points as given by Eq. (3).

$$f_1 = \frac{\sum_{i=1}^{n} |R_i - T_i|}{\sum_{i=1}^{n} |R_i|} \times 100$$
(3)

where i is the dissolution sample number, n is the number of dissolution times. T_i and R_i are the dissolved amounts of the test drug and reference at each time point i, respectively. The percent error equals to zero when the test drug and reference profiles are identical and it increases proportionally with the dissimilarity between the two dissolution profiles.

2.2.7.2.5. Similarity factor (f_2) . The similarity factor (f_2) is a logarithmic transformation of the sum-squared error of differences between the test (T_i) and reference (R_i) over all time points as given in Eq. (4).

$$f_2 = 50x \log \left\{ \left[1 + (1/n) \sum_{i=1}^{n} |R_i - T_i|^2 \right]^{-0.5} \times 100 \right\}$$
 (4)

It equals to 100 when the test and reference profiles are identical and approaches to 0 as the dissimilarity increases. In general, f_1 value lower than 15 (0–15) and f_2 value higher than 50 (50–100) indicate the similarity of the two dissolution profiles.

2.2.8. Bioassay for antibiotic activity

The bioassay of clarithromycin was performed by diffusion agar method as previously reported [10] with minor modification, The concentration of soluble clarithromycin of different formulations (clarithromycin powder, lyophilized coarse suspension, and lyophilized nanocrystals) was determined by microbiological diffusion agar method. Since clarithromycin is incompletely soluble in 0.01 M phosphate-citrate buffer pH7.0, the clarithromycin solution in that buffer was determined in comparison with that in methanol used as a control, Sample equivalent to 6,4 mg of clarithromycin in each formulation was weighed and dispersed in 10 ml of phosphate-citrate buffer pH 7.0 by shaking for 2 h. The dispersion was centrifuged at 10,000 rpm for 10 min and the supernatant was collected and used as a stock so lution of the tested sample, Each formulation dissolved in methanol was used as a control for its corresponding formulation. Stock solution of the control was prepared by completely dissolving sample equivalent to $6.4\,\mathrm{mg}$ of clarithromycin in methanol (5 ml) and adjusting to the final volume (10 ml) by phosphate-citrate buffer. The stock solution of the tested sample and the control was then diluted with 0,01 M phosphatecitrate buffer pH 7.0 to obtain a series of concentrations in the range of 2,5-640 µg/ml, In this experiment, B. subtilis (ATCC 6633) was selected as a test microorganism since it was more reliably culturable, extensively useful in standardized bioassay, and appropriate in antibiotic activity assay of macrolides than H. pyroli, B. subtilis was harvested from sheep blood agar plate and suspended in tryptic soy broth at an opacity equivalent to a McFarland 0,5 opacity standard. Mueller-Hinton agar inoculated with B. subtilis was used as an

assay medium. An assay disk was soaked in each 20 µl of the series of the tested sample and the control solutions. The disk was further applied to a plate containing an assay medium and incubated for 18–20 h at 37 °C. Subsequently, an inhibition zone diameter was measured using vemier calipers and plotted against the logarithmic concentration of clarithromycin. All tests were done in triplicate.

2,2,9. Permeability through gastric mucus

The clarithromycin permeability through the gastric mucus layer was determined using porcine gastric mucin (PGM, 10 mg/ml) in side-by-side diffusion cells (Fig. 1). The lyophilized nanocrystals (Formulations A and B) were tested in comparison with clarithromycin powder and lyophilized coarse suspension. The optimum growth and ability to colonize the gastric mucosa of H. pylori was reported to be at pH 7.0 [18,19]. Therefore, one-hundredth molar of phosphatecitrate buffer solution pH 7.0 was used as a medium. The sample was dispersed in the medium at a concentration of 5 mg/ml and added to a donor compartment. A receiver compartment was filled with the same medium and separated from the donor compartment by PGM layer between two sheets of 0.2 µm cellulose acetate membrane. All compartments were firmly mounted by the holder. The experiment was conducted at 37 ± 0.5 °C under a constant stirring rate of 100 rpm using magnetic stirrer. At predetermined times (10, 30, 60, 120, 240, and 360 min), 500 µl of the solution were withdrawn from the receiver compartment and then determined for the clarithromycin concentration by HPLC analysis. An equal volume of fresh buffer solution immediately replaced after sampling. Samples of each formulation were analyzed in six times (n = 6).

2,2,10. In vitro cytotoxicity and cellular permeability

2.2.10.1. Cell cultures. The in vitro cytotoxicity and cellular permeability was investigated in Caco-2 cells and NCI-N87 cells. Caco-2 cells were a representative of intestinal cell, whereas NCI-N87 cells were applied as a model of gastric cell for permeability study. Caco-2 cells were grown in 75 cm² T-flasks with Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% FBS, 1% NEAA and 1% PEST. NCI-N87 cells were maintained with Roswell Park Memorial Institute medium 1640 (RPMI-1640) supplemented with 10% FBS, 1% sodium pyruvate, 4.5 g/l p-glucose, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 1% PEST. The cultures were controlled under atmosphere (37 °C, 5% CO₂, 90% relative humidity). The culture medium was changed every 2 days until cells reached 70-90% confluence, using 0.25% trypsin-EDTA at 37 °C.

2.2.10.2. In vitro cytotoxicity. Caco-2 cells and NCI-N87 cells were trypsinized and seeded at a density of approximately 5000 cells/ well and 20,000 cells/well in 96-well plates, respectively. Cell cultures were incubated overnight at 37 °C. At a time of experiment, the tested sample (clarithromycin powder, lyophilized coarse

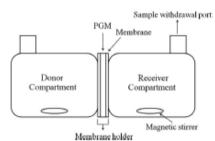


Fig. 1. Schematic illustration of side-by-side diffusion cell used to measure drug permeability through the gastric mucus layer.

suspension, and lyophilized nanocrystal Formulations A and B) were suspended in cell culture medium at different concentrations (0, 5, 25, 37.5, 50, 100, 150 μ M), added into each well and incubated for 24 h. After incubation, the tested sample was removed and MTT working solution was added. The plate was incubated for 30 min and then DMSO was added to dissolve the insoluble formazan crystals. Optical density was investigated by multi-well scanning spectrophotometer (Infinite® F200, Tecan, Switzerland) at wavelength of 560 nm. The cell culture medium with no sample was used as a control group. Samples of each formulation were analyzed in eight times (n = 8). The percent cell viability was cakulated according to following formula Eq. (5).

% Cell viability =
$$\frac{\text{Absorbance of treated cell}}{\text{Absorbance of control cell}} \times 100$$
 (5)

2,2,10,3. In vitro cellular permeability. Caco-2 cells and NCI-N87 cells were cultured on tissue-culture-treated polycarbonate Transwell inserts (Coming Costar, Bodenheim, Germany) at a density of 1×10^5 and 2.5×10^5 cells/well, respectively. Transwell inserts were placed in 12-well tissue culture plates with 0.6 ml of inside (apical side) and 1.5 ml of outside (basalateral side) medium. The cells were grown in an atmosphere of 5% CO2 and 90% humidity at 37 °C, given fresh medium every 2 days, Caco-2 cells and NCI-N87 cells were allowed to reach confluence and form monolayers after seeding in 21 days and 18-24 days, respectively. The integrity of cell monolayer was examined by measuring the transepithelial electrical resistance (TEER) at the start and the end of the experiment, Prior to the measurement, both compartments of monolayers were rinsed and pre-incubated with drugfree transport medium Hanks' balanced salt solution (HBSS) for 15 min. The samples of clarithromycin powder, lyophilized coarse suspension, Ivophilized nanocrystals (Formulations A and B) were diluted to a concentration of 50 µM in HBSS pH 5.0 and 6.8. The study was investigated in apical to basolateral transport, A 0,6 ml of tested sample in HBSS (pH 6,8 for Caco-2 cells and pH 5,0 for NCI-N87 cells) was introduced to the apical compartment as donor phase and 1.5 ml of drug-free HBSS pH 7.4 was added to the basolateral compartment as the receptor phase. Immediately, 100 µl of the tested sample was withdrawn from the donor phase to determine the initial concentration (C_0). The monolayers were incubated for 120 min at 37 °C, Samples (200 µl) were taken from the receptor phase at the predetermined time intervals (0, 15, 30, 60, 90, 120 min) and then an equal volume of fresh medium was replenished immediately. The transport studies were performed in 5 and 6 times for Caco-2 cells and NCI-N87 cells, respectively. The samples were further analyzed by HPLC, Apparent permeability coefficient, Papp (cm/s) was calculated according to Eq. (6)

ity coefficient,
$$P_{\text{qap}}$$
 (cm/s) was calculated according to Eq. (6)

$$P_{\text{qap}} = \frac{dC/dt \times V}{A \times C_0}$$
(6)

where dC/dt is the flux rate of drug from the donor to the receptor phase given in concentration/time, C_0 is the initial concentration of drug in donor phase, V is the volume of receptor phase, and A is the surface area of the cell monolayers.

2.2.11. Statistics

The reported data presented as the mean value ± standard deviation (S.D.). Significance of difference was determined using t-test and one-way ANOVA at the probability level of 0.05.

3. Results and discussion

3.1. Characterization of clarithromycin nanocrystals

In this study, two different formulations of clarithromycin nanocrystals (Formulations A and B) were examined. The composition

and physical characteristics of the Formulations A and B are shown in Table 1. After production, both nanocrystal formulations had comparable particle sizes in the nanometer range. The LD data also supported the PCS results. The particle sizes of non-homogenized clarithromycin crystals (d(0.5) of 112,174 µm) were reduced to 0,396 µm and 0,339 µm for Formulation A and Formulation B, respectively, after applying 30 homogenization cycles at 1500 bar. Both formulations revealed absolute ZP values higher than |30 mV| indicating long-term physically stable systems [20]. The morphological micrographs of clarithromycin nanocrystals were examined by SEM as demonstrated in Fig. 2A. It was observed that the clarithromycin nanocrystals were cubic-like shape, Regarding the crystallinity of clarithromycin nanocrystals, DSC thermograms (Fig. 2B) showed that the endothermic melting peak of clarithromycin nanocrystals was small and slightly shifted when compared to that of the clarithromycin powder. These results indicated possibility of an alteration of crystallinity of drug to other crystalline forms or to amorphous stage and a presence of surfactant bound to the surface of nanocrystals. In Fig. 2C, the X-ray diffractograms of clarithromycin nanocrystals demonstrated that the lyophilized nanocrystals showed similar characteristic peaks to that of crystalline clarithromycin powder except for lower intensity. Combining the DSC and XRPD results, it indicated the coexistence of crystalline and amorphous forms of the obtained clarithromycin nanocrystals as previously reported [14]. The presence of amorphous fraction in nanocrystals could provide the additional benefit on the dissolution performance of drug. The nanometer size combining with the amorphous state of particles contributed to the higher dissolution when compared to the equal size crystalline particles. However, the recrystallization of amorphous to the stable crystalline form (Form II) may occur upon storage and affect the dissolution performance. Hence, the transformation of amorphous state during the product shelf-life should be considered when the nanocrystals are further applied in pharmaceuticals [11]. Nevertheless, the dissolution performance of clarithromyc in nanocrystals may not be greatly affected by the transformation of amorphous state if the particle size of nanocrystals could be preserved in the nanometer range upon the shelf-life since a very few fraction of amorphous form existed in the clarithromycin nanocrystal formulation after production.

Concerning drug content of clarithromycin nanocrystals, clarithromycin content of lyophilized nanocrystals (Formulations A and B) was determined quantitatively by HPLC analysis. The results are compiled in Table 1. The percent clarithromycin content of lyophilized nanocrystals (Formulations A and B) were almost 100% after preparation. The high percent drug content was one benefit of nanocrystal system because most composition of nanocrystals was the pure drug without carrier materials [11].

3.2. Physical and chemical stability evaluations

Physical stability of lyophilized clarithromycin nanocrystal Formulations A and B stored at $4 \, ^{\circ}\text{C}$, $30 \, ^{\circ}\text{C}$ and $45 \, ^{\circ}\text{C}$ was evaluated over 4 months. The z-ave, Pl and ZP values were measured by PCS immediately after production and 4 months of storage as shown in Fig. 3. The z-ave and Pl values of both nanocrystal formulations after 4-month stored at three different temperatures were comparable with those at an initial time (p > 0.05). The absolute ZP values remained higher than $|30 \, \text{mV}|$ after 4-month stored at all temperatures. These results indicated that both lyophilized nanocrystal formulations were physically stable which might be due to the presence in a lyophilized form. The lyophilized powder could prevent particle aggregation and particle growth from Ostwald ripening phenomenon. Regarding the chemical stability, the clarithromycin content in both lyophilized nanocrystal Formulations A and B slightly decreased (p > 0.05) after 4-month storage

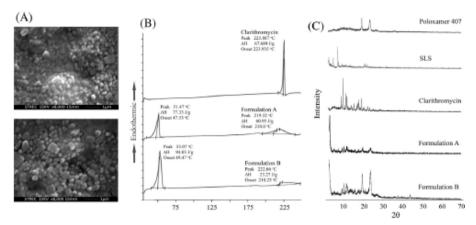


Fig. 2. (A) Scanning electron microscopic (SEM) photographs of lyo-philized nanocrystal Formulation A (upper) and Formulation B (lower), (B) Differential scanning calorimetry thermograms of darithromycin powder, and lyo-philized nanocrystal formulations, and (C) X-ray diffractograms of poloxamer 407, SLS, clarithromycin powder, and lyo-philized nanocrystal formulations.

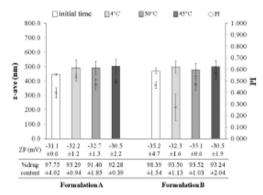
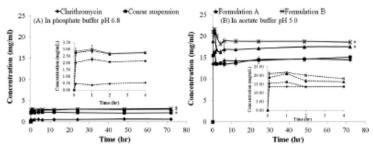


Fig. 3. Mean particle size (z-ave, column), polydispersity index (Pl, diamond spot), zeta potential (ZP) and percentage of drug remaining in hyophilized nanocrystal Formulations A and B after 4 months of storage at 4 C (light gray), $30 \, ^{\circ}C$ (gray), and $45 \, ^{\circ}C$ (dark gray) comparing with those at initial time (white).


at all studied temperatures (Fig. 3). Nonetheless, the percentages of drug remaining in the formulations were still higher than 90% which met the requirement stated in USP35/NF30 [21]. It has been generally known that the degradation of drug is more pronounced in the dissolved form than the solid state [22]. Additionally, the surfactant surrounding the surface of drug nanocrystals may act as a barrier to reduce an exposure of active pharmaceutical ingredient to an environment [23]. Thus, the chemically stable clarithromycin could be achieved by producing in form of lyophilized nanocrystals.

3,3, Saturation solubility

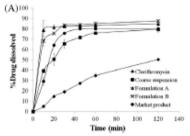
An increase in saturation solubility of poorly water-soluble drug is one of distinctive characteristics of nanocrystals [24]. In this study, kinetics of saturation solubility of clarithromycin formulation were studied in the different dissolution media. It was found that clarithromycin solubility was pH-dependent (Fig. 4). Higher

solubility of clarithromycin from all samples was observed in pH 5.0 buffer as compared to that in pH 6.8 buffer. The kinetics of saturation solubility results indicated that lyophilized clarithromycin nanocrystals rapidly reached a maximum solubility approximately within the first hour of dissolution, and slightly decreased to reach an equilibrium solubility within 6-12 h of dissolution. This result could be explained by the fact that the high surface area of nanocrystals could accelerate an initial kinetic solubility. However, the presence of the micron-sized crystals in the formulations acted as crystallization nuclei leading to re-crystallization and growth of microcrystals and resulting in an immediate reduction in the kinetic solubility. From this result, it was notable that a small fraction of microcrystals in the formulation could destabilize the kinetically supersaturated solution. Therefore, the microcrystal fraction should remain as small as possible in the nanocrystal formulation so as to maintain the kinetic solubility and stability of the system

In phosphate buffer solution pH 6.8 after 72-h incubation, the clarithromycin powder had saturation solubility of 0.57 ± 0.13 mg/ml whereas the lyophilized coarse suspension and lyophilized nanocrystal Formulations A and B had higher saturation solubility (2,09 ± 0,13, 2,93 ± 0,11 and 3,10 ± 0,31 mg/ml, respectively). The lyophilized nanocrystals significantly increased the saturation solubility by approximately sixfold higher than that of the clarithromycin powder (p < 0.05). Similarly, the lyophilized nanocrystal Formulation B showed higher saturation solubility in acetate buffer pH 5.0 than the lyophilized nanocrystal Formulation A, the lyophilized coarse suspension and the clarithromycin powder, respectively. At 72 h, the saturation solubility values of the clarithromycin powder, the lyophilized coarse suspension and the lyophilized nanocrystal Formulations A and B were 14.42 ± 0.29 , 15.08 ± 0.95, 17.51 ± 0.556 and 18.57 ± 1.20 mg/ml, respectively. The solubility of the lyophilized nanocrystal formulations significantly increased by approximately 1.5 folds compared to that of the clarithromycin powder (p < 0.05). Nevertheless, the saturation solubility of both lyophilized nanocrystal Formulations A and B was not significantly different in both solubility media (p > 0.05) owing to the comparable size of the nanocrystals in both formulations. Generally, the solubility of regular size powders is a compound specific constant relying on temperature and solvent, However, when the particle size is smaller than 1 um, the solubility

* There was significant difference between the clarithromycin powder and other formulations (p < 0.05)

Fig. 4. Kinetic saturation so lubility profiles of clarithromycin powder, lyophilized coarse suspension, and lyophilized nanocrystals (Formulations A and B) in (A) phosphate buffer solution pH 6.8 and (B) acetate buffer solution pH 5.0 at 3.7 °C (n=3). The inserts illustrate the saturation solubility profiles of all samples within the first 4 h of test.


will be changed dependent on the size [24]. According to the Ostwald-Freundlich theory, an increase in saturation solubility of the nanosized clarithromycin was as a result of the reduced particle size. Moreover, the increasing saturation solubility could be explained by Kelvin equation which states that the saturation solubility is an equilibrium process between the dissolved and recrystallized molecules. A strong curvature of the nanocrystals leads to an increase in dissolution pressure and shifts equilibrium toward the dissolved molecules [26]. To sum up, the nanonization of clarithromycin by PLH method increased the saturation solubility of drug mainly due to the decreasing particle size and increasing dissolution pressure at the surface curvature of the nanocrystals.

3.4. Dissolution study

Dissolution profiles of the clarithromycin powder, the lyophilized coarse suspension, the lyophilized nanocrystals (Formulations A and B), and the marketed product in phosphate buffer pH 6,8 and acetate buffer pH 5,0 are shown in Fig. 5A and B, respectively. In phosphate buffer pH 6,8, the percent drug dissolved of the lyophilized coarse suspension (39,24 ± 3,7%) increased by 8 folds as compared to that of the clarithromycin powder (4.91 ± 1.28%) at the first 10 min of dissolution, In comparison with the clarithromycin powder and the lyophilized coarse suspension, the lyophilized nanocrystals dramatically increased the percent drug dissolved within 10 min (78,81 ± 18,89% and 68,05 ± 10,15% for Formulations A and B. respectively). The dissolution rate was markedly enhanced by the nanocrystals and reached the plateau at approximately 80% within 20 min, In contrast, only 15% and 50% of drug dissolved were obtained from the clarithromycin powder and the lyophilized coarse suspension, respectively. After

120 min, the Iyophilized nanocrystal formulations achieved the maximum dissolution at 84.89 ± 2.77% and 87.49 ± 2.96% for Formulations A and B, respectively. Meanwhile, the clarithromycin powder and the lyophilized coarse suspension formulations gave the maximum percent drug dissolved only at 50.31 ± 0.96% and 79.51 ± 1.88%, respectively. When compared with the marketed product, both lyophilized nanocrystal Formulations (A and B) had higher extent of drug dissolved. At the first 10 min of dissolution, the lyophilized nanocrystal Formulations A and B provided 2.7 and 2.3 folds higher percent drug dissolved than the marketed product, respectively. The percent drug dissolved of the marketed product reached the plateau at about 75.65 ± 0.81% within 30 min and the maximum dissolution of 79.96 ± 6.26% after 120 min which was lower than that of both lyophilized nanocrystal formulations.

In acetate buffer pH 5.0, the clarithromycin formulations had higher dissolution capability when compared to those in phosphate buffer pH 6.8. The percent dissolution of the lyophilized clarithromycin nanocrystals (Formulations A and B) was significantly higher than that of the clarithromycin powder and the lyophilized coarse suspension. Within the first 10 min, the %drug dissolved of each formulation was 63.89 ± 2.87%, 64.09 ± 5.88%, 71.40 ± 5.82% and 90.34 ± 3.76% for the clarithromycin powder, the lyophilized coarse suspension, the lyophilized nanocrystal Formulations A and B, respectively. After 20 min, the nanocrystals had the increased %drug dissolved to about 90%, whereas only 70% of drug dissolved were obtained from the clarithromycin powder and the lyophilized coarse suspension. After 120 min of dissolution, the percent dissolution of drug from the nanocrystals reached maximum at approximately 95% while that of the clarithromycin powder and the lyophilized coarse suspension was about 80%.

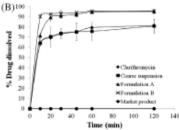


Fig. 5. Dissolution profiles of clarithromycin powder, lyophilized coarse suspension, lyophilized nanocrystals (Formulations A and B), and marketed product in (A) phosphate buffer pH 6.8 and (B) acetate buffer pH 5.0 (n = 3).

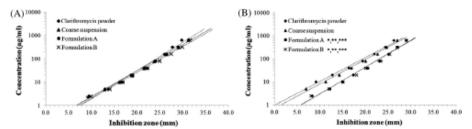
The dissolution of the marketed product in acetate buffer pH 5.0 was also investigated. However, the marketed granules were coated with hydroxylpropyl methylcellulose phthalate-55 copolymer which was insoluble at pH below 5.5. Therefore, no drug dissolved from the marketed product was observed in acetate buffer pH 5.0.

To compare the dissolution parameters of the lyophilized nanocrystals with the drug powder, the lyophilized coarse suspension and the marketed product, the relative dissolution rate (RD) at 30 min, percent dissolution efficiency (%DE) at 30 min, mean dissolution time (MDT), difference factor (f1), and similarity factor (f2) were computed as shown in Table 2, The lyophilized nanocrystal Formulations A and B had higher RD at 30 min by 1.24 and 1.28 folds in acetate buffer pH 5.0 and 4.31 and 4.36 folds in phosphate buffer pH 6,8, respectively as compared to the clarithromycin powder. Moreover, both lyophilized nanocrystal Formulations A and B achieved lower MDT when compared with the clarithromycin powder, the lyophilized coarse suspension and the marketed product in both dissolution media (pH 5,0 and 6,8). These results indicated higher dissolution rate of the nanocrystals. The %DE at 30 min was used to evaluate the dissolution performance of samples. It was found that both lyophilized nanocrystal formulations had significantly higher %DE at 30 min (p < 0.05) when compared with the marketed product, the lyophilized coarse suspension and the clarithromycin powder implying higher dissolution performance of the lyophilized nanocrystal Formulations A and B. Additionally, the lyophilized nanocrystal Formulations A and B had formulations A value higher than 15 and f2 value lower than 50 indicating that the dissolution profiles of nanocrystal formulations were different from those of the clarithromycin powder and the marketed product. These results suggested that the preparation of poorly watersoluble clarithromycin as nanocrystals had a dramatic effect on the drug solubility, dissolution rate, and dissolution behavior. The reduction of particle size to nanosize range led to a drastic increment in surface area, resulting in an increase in dissolution velocity which well agrees with the Noyes-Whitney equation. Moreover, an enhanced dissolution velocity of nanocrystals was also caused by an increase in saturation solubility as previously described [27,28].

3,5, Bioassay for antibiotic activity

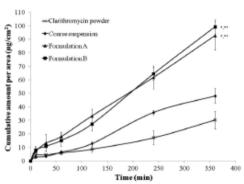
To further confirm an antibiotic activity of the clarithromycin nanocrystals, the bioassay was carried out by disk diffusion method. Dose-antibiotic activity response curves of clarithromycin formulations are shown in Fig. 6. Since the solubility of drug in different media affected the diffusion of drug in agar plate related to the antibiotic activity, an equivalent amount of clarithromycin

from all formulations was totally dissolved in methanol-buffer solution and used as a control for their own formulations. As illustrated in Fig. 6A, all controls showed nearly identical dose-antibiotic activity response curve due to an equal amount of drug completely dissolved in the medium. This result confirmed that the different formulations of clarithromycin possessed a comparable antibiotic activity when the drug in the medium was completely dissolved. Therefore, the bioassay for antibiotic activity of clarithromycin in 0.01 M phosphate-citrate buffer solution pH 7.0 was further studied. According to the results shown in Fig. 6B, the dose-antibiotic activity response curve of clarithromycin was obviously different among all formulations. The lyophilized nanocrystal Formulations A and B yielded significantly larger inhibition zone as compared to the lyophilized coarse suspension and the clarithromycin powder (p < 0.05). In comparison with their controls, the curves of Formulations A and B remained unchanged whereas those of the lyophilized coarse suspension and the clarithromycin powder shifted backward to smaller inhibition zone. This result indicated that the lyophilized clarithromycin nanocrystals possessed higher antibiotic activity than the lyophilized coarse suspension and the clarithromycin powder. Hence, the higher antibiotic activity of the nanocrystal formulations was attributed to the enhanced solubility and dissolution in phosphate-citrate buffer solution, leading to more extent of drug diffused through an agar and thus increasing the antibiotic activity. Both Ivophilized nanocrystals (Formulations A and B) showed no significant difference in the dose-antibiotic activity response curve (p > 0.05). Of these results, both lyophilized clarithromycin nanocrystals had an identical antibiotic activity but higher activity than the lyophilized coarse suspension and the clarithromycin powder,


3.6. Permeability through gastric mucus

To investigate an effect of nanocrystal formulation on the permeability through gastric mucus of clarithromycin, the side-by-side diffusion cells were used in this study. The side-by-side diffusion was a common method to study the drug diffusion through mucus gel. The diffusion cells were composed of two compartments namely a donor and a receiver, separated by a mucus solution layer. The dissolved drug in donor compartment would permeate through the mucus layer, as seen in Fig. 1 [29]. Permeation profiles of clarithromycin through the mucus layer are illustrated in Fig. 7. After 6 h, Formulation B had higher amount of permeated drug per area when compared with Formulation A, the lyophilized coarse suspension and the clarithromycin powder, respectively. In comparison with the clarithromycin powder, the amount of permeated drug of both lyophilized nanocrystals

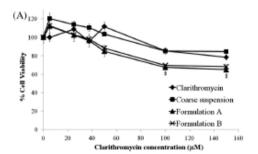
Table 2
Statistical dissolution parameters (percent dissolution efficiency (XDE) at 30 min, relative dissolution rate (RD) at 30 min, mean dissolution time (MDT), difference factor (f₁) and similarity factor (f₂)) of clarithromycin powder, lyophilized coarse suspension, lyophilized nanocrystals (Formulations A and B) and marketed product.

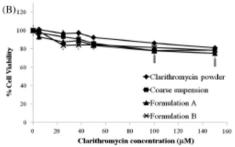

	Statistical values						
	%DE 30 min	RD 30 min	MDT	fi ^a	f2ª	fi ^b	f2 ^b
Formulations in acetate buffer	pH 5.0						
Clarithromycin powder	56,67	-	11,94	_	-	-	-
Coarse suspension	57.10	1.01	12,88	131	90,84	-	_
Romulation A	68,74	1,24	934	20,60	46,73	-	-
Formulation B	76,58	1,28	6.42	26,90	41,21	-	-
Formulations in phosphate buf	fer pH 6.8						
Clarithromycin powder	9.69	_	47.34	_	_	63.06	24.12
Marketed product	43.67	3,95	14.03	170,73	24.12	-	-
Coarse suspension	40.81	3,42	19.16	153.09	27.03	11.45	58,83
Romulation A	67.19	4.31	7.61	226.97	18,20	20.78	39,59
Romulation B	61.79	4.36	10.86	220,24	19.09	18,29	44,57

⁴⁶ Comparing with clarith to mycin powder, and marketed product, respectively.

- * There was significant difference between the clarithromycin powder and other formulations, (p<0.05)** There was significant difference between the coarse suspension and other formulations, (p<0.05)*** There was no significant difference between formulation A and formulation B.(p>0.05)

g. 6. Dose-antibiotic activity response curves of clarithromycin powder, lyophilized coarse suspensi ethanol-buffer solution and (B) pho-sphate-citrate buffer solution pH $7.0\ (n=3)$. on, and lyophilized nano crystals (Formulations A and B) in (A, control)

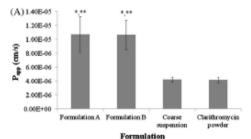

** There was significant difference between the coarse suspension and other formulations.(p < 8.85)


Fig. 7. Permeation profiles of clarithromycin powder, lyophilized coarse suspension, and lyophilized nanocrystals (Formulations A and B) through PGM layer (10mg/ml) at an initial clarithromycin concentration of 5 mg/ml (n = 6).

(Formulations A and B) was significantly increased by 3.06 and 3.28 folds, respectively (p < 0.05). Moreover, both formulations provided significantly higher amount of permeated drug than the hyophilized coarse suspension by 1.93 and 2.07 folds for Formulations A and B, respectively (p < 0.05). However, both lyophilized nanocrystals (Formulations A and B) showed no significant difference in permeation profile and amount of drug permeated per area through gastric mucus (p > 0.05). Additionally, the permeation profile and the amount of permeated drug per area of the lyophilized coarse suspension were slightly higher than those of the clarithromycin powder, but lesser than those of the two nanocrystal formulations. According to the side-by-side diffusion method, two steps must occur consecutively. The first step is the dissolution of drug in the medium and subsequently the dissolved molecules permeate through the mucus layer. From the results, more amount of permeated drug and higher permeation rate of clarithromycin nanocrystals were probably resulted from the enhancement of dissolution rate and drug extent by nanocrystal formulations.

3.7. In vitro cytotoxicity and cellular permeability

The % cell viability of Caco-2 cells and NCI-N87 cells after 24 h exposed to the tested samples were evaluated by MTT assay and shown in Fig. 8A and B, respectively. The cell monolayers were still viable after the completion of the study in the presence of



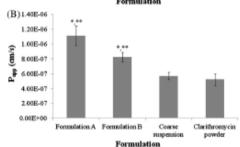

* There was significant difference between each formulation and its control. (p < 0.05)

Fig. 8. Effect of concentration of clarithromycin powder, lyophilized coarse suspension, and lyophilized nanocrystals (Formulations A and B) on % cell viability of (A) Caco-2 cells and (B) NCI-N87 cells after 24-h incubation (expressed as % of

nanocrystals and other formulations when the clarithromycin concentration was less than 50 µM. All tested formulations had reduced the % cellular viability when the concentration was higher than 50 μ M. Especially in the lyophilized nanocrystal Formulations A and B, the % cellular viability of the lyophilized nanocrystals at concentration of 100 and 150 µM was significantly decreased to lower than 80% as compared to the control (p < 0.05). Therefore, the concentration of 50 µM was chosen to further apply in the in vitro permeability study.

Fig. 9A and B illustrates the Papp from the transport of the clar-ithromycin powder, the lyophilized coarse suspension, and the lyophilized nanocrystals Formulations A and B through Caco-2 cells and NCI-N87 cells, respectively. The permeability from apical

* There was significant difference between the clarithromyc

** There was significant difference between the coarse susp nycin powder and other for expension and other forms ns. (p < 0.05)

Fig. 9. The apparent permeability coefficient (P_{app}) for the darithromycin transport across (A) Caco-2 and (B) NCI-N87 cells monolayer of darithromycin powder, lyophilized coarse suspension, and lyophilized nanocrystals (Formulations A and B) (n = 5 or 6, for Caco-2 cells or NCI-N87 cells, respectively).

to basolateral of Caco-2 cells showed that the lyophilized nanocrystal Formulations A and B performed a significant increase in P_{am} by 2.5 folds higher than the lyophilized coarse suspension and the clarithromycin powder (p < 0.05). Likewise, the transport from apical to basolateral of NCI-N87 cells also expressed the significantly higher Papp of the hyophilized nanocrystal Formulations A and B as compared to the lyophilized coarse suspension and the clarithromycin powder (p < 0.05). It could be implied that the clarithromycin transport through cellular monolayers of the lyophilized nanocrystal formulations was improved as compared to the lyophilized coarse suspension and the clarithromycin powder which might be the results from an increase in dissolution behavior combining with an increase in permeation of nanocrystals, Additionally, a persistence of a few H. pylori which was deeply grown and colonized in gastrointestinal cells could be the cause of recurrence infection in gastroduodenal disease [30,31]. Therefore, an increase in permeability through gastrointestinal cell monolayer of the clarithromycin nanocrystals might be given the benefits for an eradication treatment,

4. Conclusion

Clarithromycin nanocrystals could efficiently be produced by precipitation-lyophilization-homogenization (PIH) method with the particle size as small as 400 nm. The reduced particle size of clarithromycin nanocrystals promoted the saturation solubility and the dissolution velocity of drug in comparison with the clarithromycin powder. Moreover, the antibiotic activity of clarithromycin nanocrystals was equivalent to that of the soluble form in methanol-buffer solution and possessed higher activity than the clarithromycin coarse suspension and the powder. In addition, the clarithromycin nanocrystals significantly enhanced the drug permeability through the gastric mucus layer and also through

the cellular monolayer of Caco-2 and NCI-N87 cells, Of these results, the nanocrystals of clarithromycin enhanced the bioavailability and availability of drug at the desired site of action, However, both clarithromycin nanocrystals (Formulations A and B) showed no significant differences in saturation solubility, dissolution, bioassay, mucus and cellular permeability properties probably due to the same particle size of the obtained nanocrystals of both formulations. Therefore, clarithromycin nanocrystals Formulation A may be considered as a preferred formulation because of the lesser amount of used surfactant as compared to Formulation B. The lyophilized powder of clarithromycin nanocrystals from this study can be further applied as the starting materials for the production of various dosage forms such as tab lets, capsules and granules.

Acknowledgements

The authors wish to thank the Thailand Research Fund through Thai Basic Research Grant (BRG5680020 to V.B.J.) and the Royal Golden Jubilee Ph.D. Program and Mahidol University (PHD/ 0258/2550 to B.M.) for financial supports.

References

- [1] M.S. Wu, C.I. Chen, J.T. Lin, Host-environment interactions: their impact or M.S., Wu, C.J., Chen, J.T. Lin, Host-environment interactions: their impact on progression from gastric inflammation to carcinogenesis and on development of new approaches to prevent and treat gastric cancer, Cancer Epidemiol. Biomar. Prev. 14 (2005) 1878–1882.
 R.M. Peek, M.J. Blaser, Helicobacter pylori and gastrointestinal tract adenocarcinomas, Nat. Rev. Cancer 2 (2002) 28–37.
- [3] S. Suerbaum, P. Michetti, Helicobacter pylori infection, N. Engl. J. Med. 347 2002) 1175-1186
- [4] M.P. Cooreman, P. Krausgrill, K.J. Hengels, Local gastric and serum amoxicillin concentrations after different oral application forms, Antimicrob. Agents Chemother. 37 (1993) 1506–1509.
 [5] CAM. Mcnulty, J.C. Dent, G.A. Pord, S.P. Wilkinson, Inhibitory antimicrobial
- concentrations against Compylobacter pylori in gastric mucosa, J. Antimicrob. Chemother. 22 (1988) 729-738.
- Chemother, 22 (1988) 729–738.
 [6] W.L. Peterson, D.Y. Craham, B. Marshall, et al., Clarithromycin as monotherapy for endication of Helicobacter pylori: a randomized, double blind trial, Am. J. Gastroemterol. 88 (1993) 1860–1864.
 [7] K. Mahalingan, S. Rajarajan, B. Baby, N.S. Harsha, Formulation and evaluation of darithromycin extended release tablets, J. Pharm. Sci. Res. 3 (2009) 97–100.
- [8] A. Allen. Structure and function of gastr intestinal mucus, in: LR, John (Ed.), Physiology of the Gastrointestinal Tract, Raven Press, New York, 1981,
- il, H.E. Stanley, J.T. LaMont, Mucin biophysics, Annu. Rev. Physiol. 57
- [9] R. Banul, H.E. Statuey, J. L. Statuey, J. Stat
- 569-576.
 [11] J.J.A.H. Junghanns, R.H. Muller, Nanocrystal technology, drug delivery and clinical applications, Int. J. Nanomed. 3 (2008) 295-309.
 [12] H. Chen, C. Khemtong, X. Yang, X. Chang, J. Gao, Nanonization strategies for poorly water-soluble drugs, Drug Discov. Today 16 (2011) 354-360.
 [13] L. Gao, D. Zhang, M. Chen, Drug nanocrystals for the formulation of poorly

- [13] L. Gao, D. Zhang, M. Chen, Drug nanocrystals for the formulation of poorly soluble drugs and tist application as a potential drug delivery system, J. Nanopart. Res. 10 (2008) 845–862.
 [14] B. Morakul, J. Suksiriworapong, J. Leanpolchareanchai, V.B. Junyaprasert, Precipitation-hyophilization-homo genization (PIH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability, Int. J. Pharm. 457 (2013) 187–196.
 [15] M. Nakarani, P. Patel, J. Patel, P. Patel, R.S.R. Murthy, S.S. Vaghani, Cyclosporine Annanosuspension: formulation, characterization and in vivo comparison with a mathematic formulation.

- A-nanosuspension: formulation, characterization and in vivo companson with a markeed formulation, Sci. Pharm. 78 (2010) 345-361.

 [16] P. Costa, J.M.S. Lobo, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci. 13 (2001) 123-133.

 [17] N.G. Sahoo, M. Kakran, I.A. Shaal, I. Li, R.H. Müller, M. Pal, L.P. Tan, Preparation and characterization of queroetin nanocrystals, J. Pharm. Sci. 100 (2010) 2379-

- B. J. Marshall, J.L. Barrett, C. Prakash, R.W. McCallum, R.L. Guerrant, Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid, Castroenterology 99 (1990) 697-702.
 D.R. Morgan, R. Freedman, C.E. Depew, W. Kraft, Growth of Campylobacter pylori in liquid media, J. Clin. Microbial. 25 (1987) 2123-2125.
 R.H. Müller, Zetapotensal und Partikelladung-Kurze Theorie, praktische MeBdurchfuhrung, Dateninterpretation, Wissenschaftliche Verlagsgesellschaft, Stutturt. 1996. Stuttgart, 1996.

- The United States Pharmacopeia and National Formulary (USP 35 NF 30), The United States Pharmacopeial Convention, Rodoville, 2012.
 J. Wells, Pharmaceutical preformulation: the physicochemical properties of drug substances, in: M.E. Aulton (Ed.), Pharmaceutics: The Science of Dosage form Design, Churchill Evingstone, Spain, 2002, pp. 113-138.
 V. Teeranachaideekul, V.B. Junyaprasert, E.B. Souto, R.H. Muller, Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology, Int., J. Pharm. 35 4 (2008) 227-234.
 C.M. Keck, R.H. Müller, Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation, Eur. J. Pharm. Biopharm. 62 (2006) 3-16.
 R. Mauladin, R.H. Müller, C.M. Keck, Kinetic solubility and dissolution velocity of rutin nanocrystals, Eur. J. Pharm. Sci. 36 (2009) 502-510.
 R.H. Müller, A. Akkar, Drug nanocrystals of poorly soluble drugs, in: H.S. Nalwa (Ed.). Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, USA, 2004, pp. 627-638.

- [27] H.G. Brittian, Physical Characterisation of Pharmaceutical Solids, Marcel Dekker, New York, 1995.
 [28] R.H. Müller, C.M. Keck, Chillenges and solutions for the delivery of biotech drugs a review of drug nanocrystal technology and lipid nanoparticles, J. Biotechnol. 113 (2004) 151–170.
 [29] K. Khanvilkar, M.D. Donovan, D.R. Hanagan, Drug transferthrough mucus, Adv. Drug Deliv, Rev. 48 (2001) 173–193.
 [30] L. Engstrand, D. Graham, A. Scheynius, R.M. Genta, F. El-Zaatari, is the sanctuary where Helisobacter pylori avoids antibacterial treatment intracelular?, Am J. Glin. Pathol. 108 (1997) 504–509.
 [31] T. Matysiak-Budnik, M. Heyman, C. Candalh, D. Lethuaire, F. Mégraud, In vitro transfer of clarithromycin and amosicillin across the epithelial barrier: effect of Helisobacter pylori, J. Antimicrob. Chemother, 50 (2002) 865–872.

ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES TO (2015) 13-23

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: http://ees.elsevier.com/ajps/default.asp

Review

Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs

Varaporn Buraphacheep Junyaprasert a,b,*, Boontida Morakul a

- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Thailand
- ^b Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, Thailand

ARTICLE INFO

Article history: Received 16 June 2014 Received in revised form 15 July 2014 Accepted 17 August 2014 Available online 27 August 2014

Keywords: Nanocrystals Bioavailability Poorly water-soluble drugs

ABSTRACT

Nanocrystals, a carrier-free colloidal delivery system in nano-sized range, is an interesting approach for poorly soluble drugs. Nanocrystals provide special features including enhancement of saturation solubility, dissolution velocity and adhesiveness to surface/cell membranes. Several strategies are applied for nanocrystals production including precipitation, milling, high pressure homogenization and combination methods such as Nano-Edge^{IM}, SmartCrystal and Precipitation-lyophilization-homogenization (PIH) technology. For oral administration, many publications reported useful advantages of nanocrystals to improve in vivo performances i.e. pharmacokinetics, pharmacodynamics, safety and targeted delivery which were discussed in this review. Additionally, transformation of nanocrystals to final formulations and future trends of nanocrystals were also described.

© 2015 Shenyang Pharmaceutical University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licen ses/by-nc-nd/4.0/).

1. Introduction

The poor solubility of drug is a major problem which limits the development of highly potent pharmaceutics. The drugs with low solubility lead to low oral bioavailability and erratic absorption which is particularly pertinent to drugs within class II of the Biopharmaceutical Classification System (BCS). Generally, the rate-limiting step for absorption of the drugs in this class is the dissolution velocity arising from low solubility. Although the drugs are high permeability, the poor solubility results in a low concentration gradient between gut and blood vessel consequent to a limitation of drug transport and oral

absorption. Nowadays, there are a large percentage of drug compounds in drug development represents as poor aqueous solubility. Therefore, one of the most challenging tasks in drug development is to improve the drug solubility in order to enhance the bioavailability of these drugs. Several strategies have been employed to overcome these limitations. The approaches to increase the solubility and the available surface area for dissolution are classified as physical and chemical modifications. For the physical modification, the techniques include decreasing particle size (micronization, nanonization), formation of polymorphs/pseudopolymorphs (including solvates), complexation/solubilization (by means of using surfactants or cyclodextrins, conjugation to dendrimers, and an

E-mail address: varaporn.jun@mahidol.ac.th (V.B. Junyaprasert).

Peer review under responsibility of Shenyang Pharmaceutical University. http://dx.doi.org/10.1016/j.ajps.2014.08.005

1818-0876/© 2015 Shenyang Pharmaceutical University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Corresponding author. Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Rajathevee, Bangkok 10400, Thailand. Tel: +66 2 644 8677-91; fax: +66 2 644 8694.

addition of co-solvents) and preparation of drug dispersions in carriers (eutectic mixtures, non-molecular solid dispersions, solid solutions). For the chemical modification, the used technique is the synthesis of soluble prodrugs and salts [1–5].

Particle size reduction has been a much smarter approach that can be applied to nonspecific formulation for many years. The micronization of drug leads to an increase in their surface area which proportionally increases in rate of dissolution and rate of diffusion (absorption). However, for very low solubility compounds the micronization fails to improve the saturation solubility and increase the bioavailability of the drug. Therefore, the further step to reduce the particle dimension to nanometer size range has been invented. Recently, particle diminution to the sub-micron range has emerged to be a powerful formulation approach that can increase the dissolution rate and the saturation solubility, subsequently improve the bioavailability of poorly water-soluble drugs and may also decrease systemic side effects. Over the last decade. drug nanocrystals are considered as a novel approach to improve the solubility of hydrophobic drugs since the technique is simple and effective which can quickly launch product to the market. The nanocrystals were invented at the beginning of the 1990s and the first products appeared very fast on the market from the year 2000 onwards. Additionally, drug nanocrystals are a universal approach generally applied to all poorly soluble drugs for the reason that all drugs can be disintegrated into nanometer-sized particles [6].

Drug nanocrystals are nanoscopic crystals of parent compounds with the dimension of less than 1 µm. They are composed of 100% drug without carriers and typically stabilized with surfactants or polymeric steric stabilizers. A dispersion of drug nanocrystals in an outer liquid medium and stabilized by surface active agents is so-called nanosuspensions. The dispersion medium can be water, aqueous or nonaqueous media e.g. liquid polyethylene glycol (PEG) and oils. The nanosuspensions can be used to formulate compounds that are insoluble in both water and oil and to reformulate existing drugs to remove toxicologically less favorable excipients. Additionally, the poorly soluble drugs enable to be formulated as nanosuspensions alone, or with a combination of pharmaceutical excipients [2,4,7].

Special features of nanocrystals to enhance oral bioavailability

Poorly soluble drugs encounter biopharmaceutical delivery problems such as low bioavailability after oral administration, low penetration of the drug into the skin, large injection volume for intravenous (i.v.) administration and undesired side effects after i.v. injection when using traditional formulations. Drug nanocrystals possess outstanding features enabling to overcome the solubility problems including an increase in saturation solubility, an increase in dissolution velocity, and an increased adhesiveness to surface/cell membranes [6].

These features are resulted from transferring of particle size from macroparticle to nanodimension that changes their physicochemical properties on the basis of nanotechnology. A detailed description of the physical background of these effects is shown below.

2.1. An increase in saturation solubility (Ca)

In general, saturation solubility is a compound-specific constant, which is depending on physicochemical properties of the compound, dissolution medium and temperature. However, this definition is only valid for drug particles with a minimum particle size in the micrometer range. Furthermore, the saturation solubility is also a function of the crystalline structure (i.e. lattice energy) and particle size. The polymorphic modification with highest energy and lowest melting point leads to the best solubility. Occasionally, homogenization process generates amorphous fraction with high inner energy that contributes to an increased solubility of the substance. For the particle size aspect, the saturation solubility is also a function of particle size when a critical size is below 1-2 μm. The saturation solubility increases with decreasing particle size below 1000 nm. This phenomenon can be explained by the Kelvin and the Ostwald-Freundlich equations.

The Kelvin equation (Eq. (1)) is originally used to describe the vapor pressure over a curved surface of a liquid droplet in gas (aerosol). A decrease in the particle size of liquid droplet contributes to an increase in curvature of the surface and the increasing vapor pressure. The situation of a transfer of molecules from a liquid droplet to a gas is comparable to the transfer of molecules from a solid nanocrystal to a liquid dispersion medium. Therefore, the Kelvin equation is also applicable to explain the relation between the dissolution pressure and the curvature of the solid particles in liquid. The dissolution pressure is equivalent to the vapor pressure. At saturation solubility state, the dissolving molecules and recrystallizing molecules are equilibrium. The dissolution pressure can be increased with increasing curvature (decreasing particle size). Therefore, the equilibrium is shifted toward dissolution, and thus the saturation solubility increases. The curvature is especially immense when the particle size is in the nanometer range.

$$ln \frac{P_r}{P_{\infty}} = \frac{2\gamma M_r}{rRT\rho}$$
(1)

where P_r is the dissolution pressure of a particle with the radius r, P_{∞} is the dissolution pressure of an infinitely large particle, γ is the surface tension, R is the gas constant, T is the absolute temperature, r is the radius of the particle, M_r is the molecular weight, ρ is the density of the particle.

The Ostwald-Freundlich equation (Eq. (2)) directly describes the relation between the saturation solubility of the drug and the particle size.

$$log \frac{C_z}{C_a} = \frac{2\sigma V}{2.303RT\rho r}$$
(2)

where C_a is the saturation solubility, C_a is the solubility of the solid consisting of large particles, σ is the interfacial tension of substance, V is the molar volume of the particle material, R is the gas constant, T is the absolute temperature, ρ is the density of the solid, r is the radius.

From the Ostwald-Freundlich equation, it obviously shows that the saturation so lubility (C_n) of drug increases with a decrease in the particle size (r). However, this effect is not substantial for larger particles but will be pronounced for materials that have a mean particle size of less than 1-2 μ m, especially well under 200 nm [2-4,8-11].

2.2. An increase in dissolution velocity

Nanocrystals possess an increased dissolution velocity that can be explained by the Noyes-Whitney equation (Eq. (3)).

$$\frac{dX}{dt} = \frac{DA}{h_D} \times \left(C_z - C_t\right)$$
(3)

where dX/dt is the dissolution velocity, D is the diffusion coefficient, A is the surface area, h_D is the diffusional distance, C_x is the saturation solubility, C_x is the concentration around the particles.

The dissolution velocity ($\Delta V/dt$) of drug nanocrystals increases due to the greater surface area (A) and the increase in saturation solubility (C_n) of the compound. The size reduction of nanocrystals leads to an increased surface area and thus according to the Noyes—Whitney equation the dissolution velocity is increased [12]. Furthermore, the size reduction of nanocrystals also leads to an increased saturation solubility which can provide two advantages. Firstly, dissolution velocity is further enhanced due to an increased in concentration gradient (C_n - C_n)/ N_{to} , according to Noyes—Whitney equation. Secondly, an increase in saturation solubility contributes to an increase in concentration gradient between gut lumen and blood; therefore, the permeation and absorption by passive diffusion is further promoted.

Another important factor is the diffusional distance h_D , as a part of the hydrodynamic boundary layer h_H , which is also strongly dependent on the particle size as shown by Prandtl equation (Eq. (4)):

$$h_{H} = k \left(\frac{L^{2}}{\sqrt{\epsilon}} \right) \qquad (4)$$

where h_N is the hydrodynamic boundary layer thickness, k denotes a constant, L is the length of the particle surface in the direction of flow, V is the relative velocity of the flowing liquid surrounding the particle.

In accordance with Prandtl equation, the particle size reduction leads to a decreased diffusional distance h_D and consequently an increased dissolution velocity, as described by Noyes—Whitney equation [2–4,8–11].

An increased adhesiveness to surface/cell membranes

Comparing with microparticles, drug nanocrystals have another outstanding feature because they can distinctly increase adhesiveness to surface/cell membranes. An increased adhesiveness of nanomaterials is usually due to an increased contact area of small particles versus large particles (at identical total particle mass). Similar to other nanoparticles, drug nanocrystals show an increased adhesiveness to tissue which lead to an improvement of oral absorption of poorly soluble drugs apart from the increased saturation solubility and dissolution rate [2,3]. This aspect will be further discussed in topic "Invivoperformances of drug nanocrystals in oral administration routes".

An additional feature of nanocrystals is an advantage of amorphous state drug nanocrystals. The drug nanocrystals in the amorphous state possess higher saturation solubility compared to equally sized drug nanocrystals in the crystalline form. Therefore, to obtain the highest saturation solubility, a combination of nanometer size and amorphous state is ideal. The process to produce drug nanocrystals may induce the transformation of crystalline structure, increasing an amorphous fraction in the particle or even creating completely amorphous particles that make the drugs dissolve more rapidly. However, the utilization of the amorphous state in pharmaceutical products has to be concerned that it can maintain the amorphous state for the shelf life of the product [4]. Furthermore, the high drug loading of nanocrystals is also one aspect that makes nanocrystals to be very efficient in transporting drug to or into cells, reaching a sufficiently high therapeutic concentration for pharmacological effect [6,10].

Another special feature of drug nanocrystals is a longterm stability. The nanosuspension could provide the good physical stability by an absence of aggregation and Ostwald ripening phenomenon. The prevention of aggregation may be achieved by the addition of surface active agent including ionic surfactants, non-ionic surfactants, and polymers which can provide an electrostatic and steric repulsion between the nanocrystals. It was reported that a combination using of electrostatic and steric stabilizer usually had a better effectiveness for stabilizing drug nanocrystals. Ostwald ripening phenomenon [13] is the incident that the solute concentration in the vicinity of smaller particles is higher than the large particles due to the higher saturation solubility of small particles. Therefore, the molecules surrounding of the small particles will diffuse to surround the large particles driven by the concentration gradient. Then, the recrystallization on the surface of the larger particles is occurred and leads to the formation of microparticles. A narrow size distribution of drug nanocrystals can avoid the different in saturation solubility due to the different particle sizes. In general, to achieve an absence of Ostwald ripening phenomenon, the narrow size distribution of drug nanocrystals should be concerned. Besides the physical stability, drug nanocrystals can be used for a chemical stabilization of chemically labile drug. The increased stability of drug nanocrystals can be explained by a shield effect of surfactants and a monolayer of degraded drug molecules which acts as the surface of drug nanocrystals for protecting the drug underneath its surface from degradation. Paclitaxel formulated in nanosuspension can preserve drug from degradation which can be exemplified for this incident [14]. Another good example is omeprazole, the chemically labile drug. The stability of omeprazole nanosuspension was distinctly increased when compared to an aqueous solution [15]. Additionally, the same result was found for ascorbyl palmitate nanocrystals. The chemical stability of ascorbyl palmitate could be improved when formulated as nanosuspension, in comparison to its methanolic solution and other colloidal carrier systems [16].

Research studies on benefits of nanocrystals are exemplified as follows. Mauludin et al. developed an oral rutin nanocrystal-loaded tablet via high pressure homogenization method. They found that the dissolution velocity of the rutin nanocrystal-loaded tablet was superior compared to the rutin microcrystal-loaded and the marketed tablets. The improving dissolution behavior of the rutin nanocrystal-loaded tablet led to a better bioavailability of the poorly soluble rutin in the body [17]. Andrei et al. prepared the crystalline nano-sized celecoxib by the emulsion-diffusion method using three different stabilizers (Tween 80, polyvinyl pyrrolidone K30 (PVP K30) and sodium dodecyl sulfate (SDS)). The result showed that nanocrystals had a dramatic increase in dissolution rate and extent compared to micronized form [18]. In the study by Kocbek et al., they developed the formulation of ibuprofen as a nanosuspension by melt emulsification and solvent diffusion method. The results demonstrated that the combination of Tween 80 and PVP K25 used as stabilizers yielded nanosuspensions of the smallest average particle size. The nanosuspensions, either in the form of lyophilized powder or granules, were very successful in enhancing dissolution rate as shown that more than 65% of the drug was dissolved within the first 10 min compared to less than 15% of the micronized drug. They concluded that the increase in in vitro dissolution rate might favorably affect bioavailability and improve safety for the patient by decreasing gastric irritancy [7].

In conclusion, the properties of drug nanocrystals that should be concerned and the given benefits over the microsized particles are summarized in Table 1 [4]. Alternatively, the nanotoxicity of drug nanocrystals cannot be neglected. In recent years, a concern of nanotoxicity of nanoparticles is increased due to the fact that nanoparticles have ability to enter the cell and cause damage to single cells. Hence, the interaction of nanoparticles with cells and its uptaking should be considered when the nanoparticles are developed. The nanotoxicity should be aware in nanoparticles with particle size below 100 nm and prepared by non-degradable polymer. Normally, the nanoparticles in range of 100 nm up to 1000 nm can only be taken up by quite limit number of cells with phagocytic activity and are not easy to access. Therefore, the toxic risk is limited. In contrast, the nanoparticles with size below 100 nm can be taken up by all cells by endocytosis which leads to the high risk of toxicity. Additionally, the persistency of nanoparticles in the body after administration also affects the risk of toxicity. It should be considered that the nanoparticles can be degraded in the body or at least be eliminated, otherwise they are biopersistent. The non-biodegradable nanoparticles cannot be easily eliminated because they are too large for renal clearance. Normally, they stay within the cells, cannot exocytose, and remain as a waste. Therefore, the non-biodegradable nanoparticles are not acceptable in pharmaceutical products. A nanotoxicological classification

rties of drug nanocrystals that should be ned and the given benefits ov

Properties of drug nanocrystals

- 1 Particle size below 1 μm
- 2 100% Drug, no carrier
- 3 Generally needed to be stabilized by surface active agent
- 4 Crystalline or amorphous structure (Amorphous state offering advantages)
- 5 Increase in saturation solubility
- 6 Increase in dissolution velocity

The table is modified from Junghanns et al. [4]

system (NCS) is applied to arrange the toxicity risk of nanoparticles. The size and persistency related risks are combined to classify the NCS of nanoparticles as follows. Class I is classified for the nanoparticles with size above 100 nm and biodegradable, Class II is for the nanoparticles with size above 100 nm and non-biodegradable, Class III is for the nanoparticles with size below 100 nm and biodegradable, and Class IV is for the nanoparticles with size below 100 nm and nonbiodegradable. Normally, the nanocrystals belong to the low risk class of nanoparticles, because their particle size can be made to be higher than 100 nm and they are also biodegradable (the dissolution occurs when the water is sufficient). However, they can cause undesired systemic effects in the body. When the nanoparticles are taken up by the cells of the immune system, they can trigger an immune response and irritate the immune system. Hence, the development of nanocrystals requires the carefully investigation to provide the potential effects and less toxicity [6].

Preparation of drug nanocrystals

Several preparation methods for drug nanocrystals have been investigated. The techniques to produce drug nanocrystals can be divided in two basic approaches, namely the bottom up and the top down technologies. To obtain nanoparticles of drugs, the top down processes involve a breaking down of larger particles by milling or homogenization, while the bottom up processes associate with an assembling and controlling of precipitations at nanometer scale. An overview of drug nanocrystals for oral administration which were prepared by different techniques in current marketed and during pharmaceutical researches was shown in Table 2.

Bottom up processes [2,4,6,19]

Starting from the molecules in solution, the molecules are aggregated to form particles that can be crystalline or amorphous form. This technique may be called 'a classical precipitation process' (in latin: via humida paratum). In this technique, the drug is completely dissolved in a solvent. Then the solvent solution is added to a non-solvent, causing precipitation of the drug, Importantly, it is necessary to control the structure of the particles and to avoid the growth of the particles to the micrometer size range by controlling influence factors and adding stabilizers such as surfactants. Other bottom up technologies include sonocrystallization, the high gravity controlled precipitation technology, confined impinging liquid jet precipitation and multi-inlet vortex mixing. Bottom up processes open the ways of interesting possibilities to incorporate multiple active ingredients in a single nanocarrier and to tailor nanoparticle surface functionality. However, a basic disadvantage of many precipitation processes is the use of organic solvent which is needed to be removed, leading to the high cost of production. Particularly, in case of low water and organic solvent soluble drug, the large solvent volumes are required. Hence, in pharmaceutical industry, the bottom up processes has not been employed for the production of the marketed drug.

Drug	Tradename/Company	Indication	Applied technology	Dosage form	Status	Reference
Sirolimus Rag	Rapamune*/Wyeth	Immumosuppressant	Top-down, media milling	Tablet	Marketed	X
	send*/Merck	Antiemetic	Top-down, media milling	Capsule	Marketed	X
Fenofibrate Tra	icor*/Abbott	Hypercholesterolemia	Top-down, media milling	Tablet	Marketed	X
Fenofibrate Tri	gliden/First Horizon Pharmaceutical	Hypercholesterolemia	Top-down, High pressure homogenization	Tablet	Marketed	X
Megestrol a cetate Me	gace* ES/Par Pharmaceutical	Appetite stimulant	Top-down, media milling	Oral suspension	Marketed	X
	Gris-PEG*/Novartis	Antifungal	Bottom up, coprecipitation	Tablet	Marketed	[22]
	samet*/Lilly	Antiemetic	Bottom up, coprecipitation	Capsule	Marketed	[22]
		Estrogen antagonist	Top-down, media milling	Nanosuspension	(gob) oviva et	28
Naproxen -		Anti-inflammatory	Top-down, media milling	Nanosuspension	In vivo (rat)	[43]
Cilostazol		Antiplatelet agent	Top-down, media milling	Nanosuspension	(gob) ovive of	[47]
Ketpprofen –		Anti-inflammatory	Top-down, media milling	Pellets containing dried	(gob) oviva na	98
				nanocrystals powder		
Cydosporine -		Immumosuppressant	Top-down, High pressure homogenization	Nanosuspension	In wive (pig)	[57]
Spironolactone -		Dinretic	Top-down, High pressure homogenization	Nanosuspension	In vrivo (rat)	<u> </u>
1traconazole –		Antifungal	Bottom up, precipitation	Nanosuspension	In mino (rat)	[65]

3.2. Top down processes [1-4,6,20,21]

One starts from large crystals in the micrometer range and goes down to the nanodimension by diminuting the crystals; such as performing a milling process and using high pressure homogenization [5,22,23].

For the milling method, dry milling (e.g. jet milling) is not efficient to obtain a size in the nanometer range; therefore, wet milling is applied. Wet milling is a means that the drug particles are dispersed in a surfactant/stabilizer solution and the obtained macrosuspension is then subjected to milling energy. The classical milling process is the pearl mill (bead mill), being the NanoCrystal™ technology. Milling media, dispersion medium (generally water), stabilizer and drug are filled into the milling chamber. Shear force of impact, generated by the movement of milling media, leads to the particle size reduction. The pearls or balls used as milling media consist of ceramics, stainless steel, glass or highly crosslinked polystyrene resin-coated beads [20,22,24]. This technology is an important particle size reduction technology which has been used to produce four FDA-approved drugs such as Rapamune®, Emend®, Tricor®, and Megace ES® [25]. The common problem of this technology is an erosion of milling material during the milling process. To solve this problem, coated milling beads are used to reduce the impurities caused by erosion of milling media. Another problem is an adherence of product to the inner surface area of the mill (consisting mainly of the surface of the milling pearls and the surface of the mill itself).

For the homogenization method, there are three important technologies to produce nanocrystals which are Microfluidizer technology (IDD-P™ technology), Piston-gap homogenization in water (Dissocubes® technology) and Piston-gap homogenization in water mixtures or in nonaqueous media (Nanopure® technology). The microfluidizer technology can generate small particles by a frontal collision of two fluid streams under pressure up to 1700 bar. This leads to particle collision, shear forces and also cavitation forces. This method can be achieved with jet stream homogenizer such as the microfluidizer. Unfortunately, for the sufficient particle size reduction, it is required a relatively high number of cycles (50-100 passes). The Dissocubes® technology employs piston-gap homogenizers that can produce the nanoparticle suspensions in water at room temperature. A drug powder is dispersed in an aqueous surfactant solution and subsequently forced by a piston through the tiny homogenization gap with pressure up to 4000 bar, typically 1500-2000 bar. The resulting high streaming velocity of the suspension causes an increase in the dynamic pressure which is compensated by a reduction in the static pressure below the vapor pressure of the aqueous phase (according to Bernoulli's law). The simplified form of Bernoull's law is shown below

$$p + q = p_0$$
 (5)

where p_0 is total pressure, p is static pressure, q is dynamic pressure.

Formation of gas bubbles occurs because the water starts boiling at room temperature. The gas bubbles collapse immediately when the liquid leaves the homogenization gap being again under normal air pressure of 1 bar. The phenomenon of formation and implosion of the gas bubbles is called cavitation resulting in shockwaves. The drug particles are reduced in size due to high shear forces, turbulent flow and the enormous power of these shockwaves. However, the use of water leads to many disadvantages such as hydrolysis of water-sensitive drugs and problem during subsequent drying steps. Another approach using the piston-gap homogenizer is the Nanopure® technology. The dispersion media with a low vapor pressure (e.g. oils, PEG or hot-melted polyethylene glycols) and optionally homogenization at low temperatures are used in this technology. The cavitation in the homogenization gap is very little or nonexistent. Even without cavitation, the size diminution to achieve nanoparticles is sufficient by the remaining shear forces, particle collisions and turbulences. A low temperature while homogenizing makes this process suitable for temperature labile drug. Also, it is possible to carry out the whole process in nonaqueous media to protect the drug from hydrolysis. The obtained suspensions from Nanopure® technology can directly be filled into soft gelatin capsules or into hard gelatin or HPMC capsules which are then being sealed. In addition, drug nanocrystals in solid PEG can be used as powder for tablet production [26].

To obtain an optimized formulation for the homogenization method, the following process parameters that influence on properties of nanocrystals must be considered such as:

- 1. Applied pressure
- 2. Number of homogenization cycles
- 3. Temperature

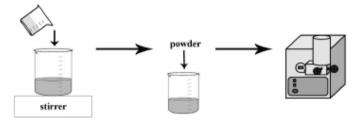
Usually, the homogenizer can handle varying pressures, ranging from 100 to 1500 bar for most lab-scale ones. Therefore, an effect of homogenization pressure on the particle size should be investigated to optimize the final formulation. The pressure is provided by the pump converting the kinetic energy of the fluid in the gap. The higher homogenization pressure, the higher velocity of the fluid in the gap is. The static pressure will drop to a larger extent leading to generating more bubbles and then higher energy to comminute the particles. This is consistent with the law of conservation of energy. Therefore, it is anticipated that the higher homogenization pressure, the smaller particle sizes are obtained. Usually for the production of the drug nanocrystals, a maximum pressure (for most lab homogenizers this value is 1500 bar) is required. The fluid passing through the gap is performed instantaneously, generally within several milliseconds. The energy generated in such short time is not sufficient to comminute all particles into uniform drug nanocrystals even at the highest applied pressure 1500 bar; thus more homogenization cycles are needed to perform. The increased cycle numbers provide more energy to break down the crystals. Therefore, homogenization is often performed in five, ten, or more cycles depending on the hardness of drug and the desired particle size. Apart from reducing the particle size, more cycles lead to more homogenous nanocrystal suspensions, i.e. a narrow size distribution. Because the flow rate of fluid in the gap is not identical among different zones and the fluid in central zone of the pipe has the higher velocity than the fluid near the wall, the energy dispersed among the fluid is not uniform, leading to an inhomogeneous particle

size distribution. By increasing number of cycles, the probability that larger particles pass the zone of high-power density in the middle of the gap increases; thus these particles are also diminished. Therefore, the particle size is a function of pressure and number of cycles. The desired particle size can be achieved by adjusting the procedure parameters, pressure and cycle number. Temperature is also an important parameter which should be strictly controlled when the drug is temperature sensitive. High pressure processing increases the temperature of the sample (approximately 10 °C at 500 bar). An increasing temperature in the homogenization process is not favorable to temperature-sensitive drugs. In that case, the temperature can be promptly reduced by placing a heat exchanger ahead of the homogenizer valve. In general, the sample temperature can be maintained at about 10 °C and even below so that the process is applicable to the temperature-sensitive drugs.

High pressure homogenization is a simple technique. When an optimized procedure is achieved after adjustment of the production parameters, high quality nanosuspensions with little batch-to-batch variation can be obtained. An important advantage is that a considerably high productivity can be obtained with very low microparticle content in the product. In addition, compared with pearl milling technique, the contamination due to the erosion from the wall of the homogenizer is at a lower level. Müller et al. investigated the metal contamination of the nanosuspensions under a harsh production condition, i.e. 20 cycles at a maximum pressure of 1500 bar. The most dominant iron ion in steel was analyzed in nanosuspensions and was found to be below 1 ppm, which was an uncritical level and safe even for a chronic therapy.

Other techniques for the production of drug nanocrystals [2,4,6,11,20,21]

Milling, high pressure homogenization, and precipitation are main methods employed for the production of drug nanocrystals. However, there is an intensive research for new technologies leading to many other approaches for the production of drug nanocrystals. The combination technologies combine generally a pre-treatment step followed by a high energy process, such as the NanoEdge™ technology. In the first step, crystals are precipitated; and the obtained suspension is then subjected to a high energy process, typically used high pressure homogenization. SmartCrystal technology is not only one technology but a number of different processes that are combined either to accelerate production by reducing the number of passes through the homogenizer or to obtain very small nanocrystals below 100 nm. Such small nanocrystals are difficult to produce via pearl milling or simple high pressure homogenization, especially in large scale industrial production. The combination process H69 is a parallel flow precipitation and subsequent high pressure homogenization (HPH) in which the precipitation takes place in the cavitation zone or just before the cavitation zone of the homogenizer (cavi-precipitation). In the H42 process, spray-drying and high pressure homogenization are combined. Moreover, in H96 process, the most effective combination technology, the lyophilization (bottom up) and the high pressure homogenization (top down) are combined to yield nanocrystals of the


size significantly smaller than 100 nm. Recently, a novel tricombination technology as "Precipitation-lyophilization-homogenization (PLH) method" for preparation of nanocrystals had been proposed by Janyaprasert group [27]. This combination technology composed of precipitation, lyophilization and homogenization techniques, respectively. First step was the precipitation process which was used to reduce an initial particle size of the drug. In this step, the drug was dissolved in an organic solvent and added into an aqueous phase, resulting in a precipitation of preferably friable and small crystals. The organic solvent was carefully removed from the nanosuspensions to avoid its cosolvent action which may result in particle growth. Afterward, the second lyophilization step was applied which led to modification of the starting material and removal of the organic solvent used in the precipitation step. Finally, in the last step, high pressure homogenization was applied to break the crumbly particles into the nanometer range. Diagram of preparation step of PLH technique is shown in Fig. 1. The results showed that PLH technique could provide an effective reduction of particle size of clarithromycin nanocrystals to approximately of 400 nm with homogeneity size distribution after only the fifth cycle of homogenization whereas the same size was attained after 30 cycles by the normal high pressure homogenization (HPH) technique [27]. Among other technologies, the following supercritical fluid methods are also mentioned to produce nanocrystals such as rapid expansion of supercritical solution (RESS), rapid expansion from supercritical to aqueous solution (RESAS), solution-enhanced dispersion by the supercritical fluids (SEDS), spray freezing into liquid (SFL), evaporative precipitation into aqueous solution (EPAS), and aerosol solvent extraction (ASES).

4. In vivo performances of drug nanocrystals in oral administration routes

In contrast to other nanoparticle systems, drug nanocrystals consist mainly of pure active drugs. Drug nanocrystals exhibit many advantages including high efficiency of drug loading, easy scale-up for manufacture, relatively low cost for preparation and applicability to various administration routes, such as oral [28,29], parenteral [30,31], ocular [32-34], pulmonary [35-37] and dermal [38-41] delivery.

As known, the oral route is the most important and the first choice for drug delivery because of its several advantages including convenience, safety, inexpensive, etc. Poorly water-soluble drugs for oral administration often show many problems in bioavailability including, a low/variable bioavailability, a retarded onset of action, a variation in bioavailability resulting from fed/fast state and a large oral dose usage. The production of drug nanocrystals offers many advantages for oral drug delivery and provides a solution to these problems. Additionally, at present, the formulations of drug nanocrystal in the market are mostly used for oral delivery.

Drug nanocrystals could improve an absorption of drug due to two major mechanisms via firstly, an improvement of solubility and dissolution rate and secondly, the bioadhesion to the intestinal wall. For the firstly aspect, drug absorption in oral administration is involved with the process that drug is dissolved from the formulation into aqueous digestive fluid and then it is transported across the GI epithelium into the blood circulation. The dissolution is generally considered to be the rate-limiting process in oral delivery of the drugs in BSC class II. Drug with poor solubility and dissolution rate will provide a slow and erratic dissolution that limits the in vivo absorption and is unable to reach an effective therapeutic concentration. The formulation of drug nanocrystals can impressively improve the bioavailability of perorally administered poorly soluble drugs as shown by changes in pharmacokinetic parameters of blood profiles including, an increase in area under the blood concentration-time curve (AUC), an increase in maximum plasma concentration (Cmax), a decrease in time to maximum plasma concentration (Tmax). For example, Liversidge and Cundy reported that danazol, a gonad otropin inhibitor, showed the absolute bioavailability of marketed danazol microsuspension (200 mg, 10 µm) only $5.1 \pm 1.9\%$. Meanwhile, the absolute bioavailability of danazol nanos uspension (200 mg, 169 nm) was 82.3 ± 10.1% which was equal to 16-fold increase in bioavailability. Additionally, the T_{max} was reduced and the C_{max} was 15-fold increased [28]. Amphotericin B was formulated as a nanosuspension for the

precipitation lyophilization redispersion high pressure homogenization

Fig. 1 – Diagram of the preparation step of drug nanocrystals by precipitation-lyophilization-homogenization (PLH) technique.

treatment of visceral leishmaniasis. After oral administration (5 mg kg-1) in BALB/c mice, amphotericin nanosuspension could significant reduce liver parasite numbers in the liver by 28.6% compared to untreated controls. While, the micronized amphotericin B did not show any curative effect [42]. Additionally, the formulation of drug nanocrystals can provide advantage whenever a quick onset of a poorly soluble drug is required. For instance, an analgesic naproxen was formulated as nanosuspension (270 nm) for oral administration. Besides the nanosuspension of naproxen was approximately 3-fold increased in AUC when compared to an unmilling suspension (20 μ m), it could be concurrently reduced in T_{max} . The data showed that the time for nanosuspension to reach Cmax was only about 8 min whereas the unmilling naproxen suspension was achieved the C_{max} at 33.5 min. It was suggested that an increase in 4-fold faster absorption rate of nanosuspension when compared to unmilling suspension was contributed to the increased solubility and dissolution rate of nanocrystals [43]. In the study by Li et al., revaprazan hydrochloride was developed in form of nanosuspensions. The in vivo evaluation showed that revaprazan hydrochloride nanosus pensions exhibited significant increase in AUCo-t (45% and 36% higher), Cmse (87% and 98% higher) and decrease in T_{max} (185 and 315 min shorter), MRT (114 and 157 min shorter) when compared to a coarse suspension [44]. Nitrendipine nanosuspensions were prepared by precipitationultrasonication method to enhance the dissolution rate and oral bioavailability of the drug. The in vivo test demonstrated that the Cmax and AUC₀₋₁₂ values of nanosuspensions in rats were approximately 6.1-fold and 5.0-fold greater than that of commercial tablets, respectively [45]. These examples obviously demonstrated that nanocrystals formulation could increase dissolution velocity and saturation solubility of poorly soluble drugs. Therefore, the fast and complete drug dissolution, an important prerequisite for drug absorption, is achieved.

The second mechanism of nanocrystals that can improve the drug absorption is due to the mucoadhesion to biological mucosa (GI mucosa) which can positively influence the oral bioavailability. Owing to the adhesiveness of nanocrystals to GI mucosa, drugs can provide the higher concentration gradient and prolonging residence and contact time in the GIT. The mucoadhesion mechanism of nano particles could be explained by many theories including, the electronic theory (electrostatic attraction forces between the surfaces of particles and mucus), the adsorption theory (hydrogen and van der Waals bond between the surfaces of particles and mucus), the diffusion theory (interpenetration and physical entanglement of the mucus protein and polymer chains), and the trapping theory (retention of nanoparticles by the uneven mucosa surface). Due to the benefits of mucoadhesion, some researchers were interested in an enhancement of adhesiveness between nanocrystals and GI mucosa by modifying the surface of drug nanocrystals with cationic polymers or incorporation of drug nanocrystals into mucoadhesive polymers. Additionally, the utilized mucoad hesive polymers can prevent the drug from degradation. The antibiotic buparvaquone, used for treatment of Cryptosporidium parvum (C. parvum), has very low oral bioavailability due to its low solubility. Nanosuspension of buparvaquone cannot only increase drug

solubility but it can also perform a mucoadhesion to the gut wall. In addition, an incorporation of buparvaquone nanosuspension into mucoadhesive polymers can enhance the mucoadhesiveness and show more effectively clear C. paruum from the GIT when compared to the unmodified nanosuspension [46].

Another problem of poorly soluble drug is a variation in bioavailability resulting from fed/fast state. Poorly soluble drugs usually shows an increased or accelerated absorption when intake with food. Drug bioavailability is increased due to the food effect because of the enhanced dissolution rate in GIT caused by several factors including larger volume of the gastric fluid, delayed gastric emptying, increased bile secretion, increased gastric pH (for acidic drugs), and increased splanchnic blood flow [47]. When poorly soluble drugs are formulated as a uniform nanosuspension, the variation in bioavailability resulting from fasted/fed state can be minimized. The nanocrystals could significantly increase dissolution rate because of the increase in solubility and enormous particle surface. The dissolution rate of nanocrystals is fast enough even under the fasted state. Therefore, the absorption in both fasted and fed state can be a permeability-limit, and the absorption difference between the fasted and fed conditions due to the dissolution difference is eliminated. For example, the formulation of cilostazol nanocrystals (220 nm) could significantly reduce fed-fasted ratios of the Cmax, AUC, Tmax and MRT as compared to a microsized dispersion (13 and 2.4 µm) when given in beagle dogs. Therefore, the fasted/fed variation in bioavailability was almost eliminated [47]. The study of Wu et al. showed that the nanocrystals dispersion of aprepitant (MK-0869), the active ingredient in Emend®, could eliminate the food effect on oral absorption. The fed-fasted ratio was reduced and the bioavailability was improved in the beagle dogs at a dose of 2 mg/kg [48]. The same result was also found in the study by Sauron et al. The food effect on bioavailability of a new tablet formulation containing fenofibrate nanoparticles was accessed in human. It was demonstrated that the peak and overall exposures from the 145 mg nanoparticle fenofibrate tablet were not affected by food and the result was concluded that the nanoparticle fenofibrate tablet can be taken regardless of the timing of meals [49].

Poorly soluble drugs usually provide more troublesome in the safety issue because of the use of a large amount of organic cosolvent or solubilizer that will result in an unwanted side effect or toxicity. Drug nanocrystals are generally reported as a safe and well tolerated formulation in many administration route compared with the conventional products. Several safety advantages of drug nanocrystals in oral delivery include i) fine particle size, ii) safe composition, and iii) tolerance to various sterilizations. The fine particle size of drug nanocrystals can increase the distribution uniformity in the gastrointestinal fluid and avoid the high and prolonged local concentration [43]. Nanocrystals are also beneficial to a better toleration in the mucosa delivery by reduction in the occurrence of the local irritation or gritty feel. For example, the study by Liversidge and Conzentino demonstrated that naproxen naposuspensions showed not only the faster onset of action but also a reduction in the gastric irritancy [43]. Drug nanocrystals can provide an opportunity to escalate dose and

reduce solvent-related adverse effect because of the safe composition since nanosuspension formulations do not require organic solvent or extreme pH ranges for solubilization of poorly soluble drug [22]. Additional benefit of drug nanocrystals in safety issue is the tolerance to various sterilizations. Several sterilization approaches can be successfully applied to nanosuspensions including gamma radiation, filtration sterilization, and thermal sterilization.

Concerning the final formulations of drug nanocrystals, most drug nanocrystals in the in vivo experiments are aqueous dispersions. In clinical application, liquid dosage forms might be suitable for some groups of patients, e.g. children or elderly patients, but not for normal patients. In general, solid dosage forms are usually more preferred. Therefore, the liquid nanosuspensions should be transformed into dry powders which are then used for production of tablets, capsules, or pellets. There are several methods that can be used for solidification this nanosuspension. In case of drug nanosuspensions in pure water or in water containing mixture, nanosuspensions may be used as a granulation fluid for further production of tablets. The nanosuspension is admixed to binders and other excipients, and the granules are then finely compressed into the tablets [50]. Furthermore, nanosuspensions can also be produced as matrix pellets or layering dispersion in fluidized bed process [51-53]. In case of drug nanosuspensions produced in nonaqueous media such as liquid/solid PEG, the use of melted PEG which is solidified at room temperature for the dispersion of nanosuspension is interesting. After solidification of PEG, the nanocrystals containing mass can be ground and filled into the capsules. Additionally, the other approval methods for solidification of nanosuspension are such as spray-drying and lyophilization. Spray-drying process is the cost effective approach to transform the nanosuspensions into dry products under appropriate conditions. Lyophilization process is recommended for intravenous product in order to avoid aggregation or caking of settled drug nanocrystals. However, during the drying process, the particle aggregation should be considered since the benefits of nano-sized particles will be lost if the particle aggregation occurs. Therefore, an addition of protectants (usually sugars) may reduce the growth of particle size during a solidification process. Besides the transformation to dry powder of nanosuspensions, the redispersion of solid drug nanocrystals in gastrointestinal fluid should be concerned. The stabilizers attached to the nanocrystal surfaces that provide efficient ionic or steric repulsion and have no effect from the GIT environment should be used.

Regarding micromeritic aspects, drug nanocrystals provide high saturation solubility and consequently increase dissolution velocity. However, in some applications, drug nanocrystals are essentially combined with traditional controlled release technology (e.g. coated pellets) to avoid excessively high plasma peaks and premature time to reach maximum plasma concentration (T_{mse}), and to achieve prolonged blood levels. Besides an optimal drug nanocrystal size and crystal-line/amorphous state that are taken into account for the production of drug nanocrystals, the other factors including the required blood profile, administration route, and stability of the amorphous state during shelf life of the product should be in consideration [4].

In addition to oral administration, drug nanocrystals also play abeneficial role on other administration routes. They can create supersaturated systems with high thermodynamic activity for demal delivery; create systems with prolonged retention times for ophthalmic administration; create mucoadhesive systems for mucosal administration of nasal, vaginal and pulmonary. Furthermore, an administration of drug nanocrystal suspensions as parenteral formulation is also feasible. The surfaced-modified drug nanocrystals can be preferentially adsorbed onto blood proteins for site specific localization that is applied as a targeted drug delivery.

Conclusion

Nanocrystal technology is evidently suitable for drugs with poor solubility. Drug nanocrystals can be applied to all poorly soluble drugs to overcome their solubility and bioavailability problems. The decrease in particle size to nanometer range contributes to the increased particle surface, curvature, saturation solubility, dissolution velocity and further acceptable bioavailability. Various applied and combination technologies are developed for the production of drug nanocrystals. Many reports on drug nanocrystals within recent years exhibit excellent in vivo performances of drug nanocrystals in different administration routes. In oral administration, drug nanocrystals offer great benefits of enhanced drug bioavailability. Moreover, drug nanocrystals allow the quickly absorption due to the fast dissolution that is suitable for the required fast onset drug. The increased solubility of drug nanocrystals also eliminates the food effect to drug absorption. Therefore, drug in nanocrystal formulations perform similar absorption in fed and fasted conditions. Another benefit of drug nanocrystals is that it can provide smaller dose administration to achieve moderate blood level and thus reduce the side effect from given larger dosage. Furthermore, drug nanocrystals can be applied to various administration routes such as oral, parenteral, ocular, pulmonary and dermal delivery. The liquid nanosuspensions can be employed as a liquid dosage form or transformed into solid dry powder for further production of tablets, capsules, or pellets dosage forms. Several techniques can be used to solidify the nanosuspension including the preparation as the granulation fluid for tablet production, the layering dispersion in fluidized bed process, the use of solid/liquid PEG, spray drying and lyophilization. At present, drug nanocrystals are paid increasing more attention as a promising approach owing to many reasons such as an increasing number of poorly soluble drugs in drug development process, pharmacoeconomic value, easier production, safer composition and other advantages that are previously mentioned. However, there is a lack of cytotoxicity studies and the details of intracellular fate of the nanocrystals. The particle size and persistency in the cells of nanocrystals are important parameters that determine the interaction between nanocrystals and the cells and their risk of toxicity. Additionally, the nanoparticles can lead to an irritation of the immune systems. Therefore, the nanotoxicity should be concerned when the nanocrystals are prepared. Moreover, the additional knowledge about intracellular fate of nanocrystals might open the way for new

application. In the future, the development of stealth nanocrystals and active targeting nanocrystals modified with functionalized surface will be the next important part of work for drug nanocrystals. The surface modification of nanocrystals affects the protein adsorption pattern and determines the cellular affinity. This aspect of nanocrystals can be employed as the new approach for the targeted delivery.

Acknowledgments

The authors wish to thank the Thailand Research Fund through Thai Basic Research Grant (BRG5680020 to V.B.J.), and Ph.D. scholarship from the Royal Golden Jubilee Ph.D. Program and Mahidol University (PHD/0258/2550 to B.M.) for financial supports.

REFERENCES

- [1] Magdalene R. Pure drug nanoparticles for the formulation of
- poorly soluble drugs. NewDrugs 2001;3:62-68.
 [2] Möschwitzer J, Müller RH. Drug nanocrystals the universal formulation approach for poorly soluble drugs. In: Thassu D, Deleers M, Pathak Y, editors. Nanoparticulate drug delivery systems. New York: Informa Healthcare; 2007. p. 71—88.
- [3] Gao L, Zhang D, Chen M. Drug nanocrystals for formulation of poorly soluble drugs and its application as a potential drug delivery system. I Nanopart Re-
- [4] Junghanns JUAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicin 2008:3(3):295-309.
- [5] Chen H, Khemtong C, Yang X, et al. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 2011;16(7/ 8):354-360.
- [6] Müller RH, Gohla S, Keck CM, State of the art of nanocrystals special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 2011;78:1-9.
 Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation
- of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 2006;312:179–186.
- [8] Buckton G, Beezer AE. The relationship between particle size and solubility. Int J Pharm 1992;82:R7-10.
- [9] Möschwitzer J, Müller RH. New method for the effective production of ultrafine drug nanocrystals. J Nanosci Nanotech 2006;6:3145-3153.
- [10] Gulsun T, Gursoy RN, Oner L. Nanocrystal technology for oral delivery of poorly water-soluble drugs. FABAD J Pharm Sci 2009:34:55-65.
- [11] Keck CM, Müller RH. SmartCrystals review of the second generation of drug nanocrystal. In: Torchilin VP, Amiji MM, editors. Handbook of materials for nanomedicine. Singapore: Pan Stanford; 2010. p. 555-580.
- [12] Kesisoglou F, Panmai S, Wu Y. Nanosizing oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 2007;59(7):631-644.
- [13] Jacobs C, Kayser O, Müller RH. Nanosuspensions as a new approach for the formulation of the poorly soluble drug tarazepide. Int J Pharm 2000;196:161-164.
- [14] Merisko-Liversidge E, Wei L. Stabilization of chemical compounds using nanoparticulate formulations. US 2001; 952032 20010914. CAN 138:243327, US 2003054042 A1. 2003.

- [15] Möschwitzer I. Achleitner G. Pomper H. et al. Development of an intravenously injectable chemically stable ago omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm 2004;58(3):615-619.
- [16] Teeran achaidee kul V, Junya prasert VB, Souto EB, et al. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int J Pharm 2008;354:227-234.
- [17] Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm 2009:370:202-209
- [18] Dolenc A, Kristl J, Baumgartner S, et al. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int J Pharm 2009:376:204-212.
- [19] Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm 2013;453:126-141.
- [20] Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 013:453:142-156.
- [21] Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006;62:3-16.
- [22] Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery; a perspective on formulating poorly-water soluble compounds using wet mediamilling technology. Adv Drug Deliv Rev 2011;30:427-440.
- [23] Eerdenbrugh BV, den Mooter GV, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 2008;364:64-75.
- [24] Niwa T, Miura S, Danjo K. Universal wet-milling technique to prepare oral nanosuspension focused on discovery and preclinical animal studies - development of particle design ethod. Int J Pharm 2011;405:218-227.
- [25] Merisko-Liversidge E, Liversidge GG. Drug nanoparticles. formulating poorly water-soluble compounds, Texicol Pathol 2008;36(1):43-48.
- Bushrab FN, Müller RH. Nanocrystals of poorly soluble drugs for oral administration. NewDrugs 2003;5:20-22.
- [27] Morakul B, Suksiriworapong J, Leanpolchareanchai J, et al. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencin factors on physicochemical properties and stability. Int J Pharm 2013;457:187-196.
- [28] Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in eagle dogs. Int J Pharm 1995;125(1):91-97.
- [29] Kesisoglou F, Mitra A. Crystalline nanosuspensions as potential toxicology and clinical oral formulations for BCS II/ IV compounds. AAPS J 2012;14:677-687.
- [30] Peters K, Leitzke S, Diederichs JE, et al Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother 2000:45(1):77-83.
- [31] Ganta S, Paxton JW, Baguley BC, et al. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int J Pharm 2009:367:179-186
- [32] Rosario P, Claudio B, Ferrara P, et al. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen, Eur J Pharm Sci 2002:16:53-61.
- [33] Kassem MA, Abdel Rahman AA, Ghorab MM, et al. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 2007;340:126–133.

- [34] Ali HSM, York P, Ali AMA, et al. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 2011;149:175-181.
- [35] Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res 2002;19(2):189-194.
- [36] Sultana S, Talegaonkar S, Ali R, et al. Inhalation of alendronate nanoparticles as dry powder inhaler for the treatment of osteoporosis. J Microencapsul 2012;29(5):445–454.
- [37] Zhang J, Lv H, Jiang K, et al. Enhanced bioavaiability after oral and pulmonary administration of baicalein nanocrystal. Int J Pharm 2011;420:180–188.
- [38] Shaal LA, Shegokar R, Müller RH. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int J Pharm 2011;420:133–140.
- [39] Mitri K, Shegokar R, Gohla S, et al. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int J Pharm 2011;420:141-146.
- [40] Zhai X, Lademann J, Keck CM, et al. Nanocrystals of medium soluble actives — novel concept for improved dermal delivery and production strategy. Int J Pharm 2014;470:141—150.
 [41] Mishra PR, Shaal LA, Müller RH, et al. Production and
- [41] Mishra PR, Shaal LA, Müller RH, et al. Production and characterization of hesperetin nanosuspensions for dermal delivery. Int J Pharm 2009;371:182–189.
- [42] Kayser O, Olbrich C, Yardley V, et al. Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm 2003;254:73-75.
- [43] Liversidge GG, Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm 1995;125:309–313.
- [46] Li W, Yang Y, Tian Y, et al. Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension. Int J Pharm 2011;408:157-162.
- [45] Xia D, Quan P, Piao H, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Fur J Pharm Sci 2010;40:325–334.
- bioavailability. Eur J Pharm Sci 2010;40:325–334.
 [46] Kayser O. A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions: research and applications. Int J Pharm 2001;214:83–85.
- [47] Jinno J, Kamada N, Miyake M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly

- water-soluble drug, cilostazol, in bengle dogs. J Control Release 2006;111:56-64.
- [48] Wu Y, Loper A, Landis E, et al. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm 2004;285:135-146.
- [49] Sauron R, Wilkins M, Jessent V, et al. Absence of a food effect with a 145 mg nanoparticle fenofibrate tablet formulation. Int J Clin Pharmacol Ther 2006;44(2):64-70.
- [50] Kirkof N. Greation and characterization of nanoparticles. In: 32nd annual meeting and exposition of the controlled release society Miami; 2005.
- [51] Möschwitzer J, Müller RH. From the drug nanocrystals to the final mucoadhesive oral dosage form; 2004.
- [52] Möschwitzer J, Müller RH. Spray coated pellets as carrier system for mucoadhesive drug nanocrystals. Eur J Pharm Biopharm 2006;62(3):282–287.
- [53] Möschwitzer J, Müller RR. Controlled drug delivery system for oral application of drug nanocrystals. 2004 AAPS annual meeting and exposition. Baltimore: MD; 2004.
- [54] Food and drug administration, Center for drug evaluation and research. Orange book approved drug products with therapeutics equivalence evaluations. 29th ed Rockville: MD. http://www.accessdata.fda.gov/scripts/cder/ob/de fault.cfm [Updated May 17, 2013. Accessed May 23, 2014].
- [55] de Waard H, Frijlink HW, Hinrichs WL. Bottom up preparation techniques for nanocrystals of lipophilic drugs. Pharm Res 2011;28:1220–1223.
- [56] Vergote GJ, Vervaet C, Driessche IV, et al. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen. Int J Pharm 2002;240:79–84.
- [57] Muller RH, Runge S, Revelli V, et al. Oral bioavailability of cyclosporine: solid lipid nanoparticles (SIM) versus drug nanocrystals. Int J Pharm 2006;317:82—89.
- [58] Lungguth P, Hanafy A, Frenzel D, et al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev Ind Pharm 2005;31:319–329.
- [59] Mou D, Chen H, Wan J, et al. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm 2011;413:237–244.

沈阳药科大学 110016 沈阳市文化路 103 号 网址: http://www.syphu.edu.cn/ E-mail: pharm@mail.sy.ln.cn SHENYANG PHARMACEUTICAL UNIVERSITY
No.103 WENHUA ROAD SHENYANG P.R.CHINA
TEL: (024)83890074
FAX: (024)83890024

Dear Professor Varaporn B. Junyaprasert,

On behalf of the Organizing Committee, I take great pleasure to invite you to attend the 3rd Asian Symposium on Pharmaceutical Science and Technology (ASPST 2014) & The 3rd Enlarged Editorial Board Conference of Asian Journal of Pharmaceutical Sciences (AJPS) to be held in May 25-27, 2014 in Shenyang, China. This conference is co-organized by Shenyang Pharmaceutical University and Asian Journal of Pharmaceutical Sciences (AJPS) and it mainly focus on the recent progress in the area of pharmaceutical science and technology.

We are planning to invite 10 international plus 10 local speakers to share with us about their recent studies. Here, I am writing to ask whether you are willing to attend the conference as an invited guest. If you accept our invitation, we hope you can also submit a review paper or research paper to AJPS before March 2014, which will be published as "invited paper" in the special column of AJPS.

AJPS is the official journal of Asian Federation for Pharmaceutical Sciences, which is published in English bimonthly. Starting from this year, AJPS is published by Elsevier. For more information, please visit the homepage of AJPS at http://ees.elsevier.com/ajps/ or http://www.asianjps.com.

In appreciation of your agreement as an invited guest and contribute a review paper or research paper to AJPS before March 2014, we will cover your local expenses, including hotel accommodation, meals during the conference, and free registration to the conference.

Hoping to hear from you soon! Your early response is highly appreciated.

We are looking forwards to seeing you in Shenyang next year.

Sincerely yours,

Zhonggui He

Zhonggui He, Ph.D. Professor The chairman of the organizing committee of the ASPST 2014

Abstract

Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs

Varaporn Buraphacheep Junyaprasert
Department of Pharmacy and Center of Excellence for innovative drug delivery and nanomedicine, Faculty of Pharmacy, Mahidol University, Thailand

Introduction

The poor solubility of drug is a major problem which can limit the development of highly potent pharmaceutics. The drugs with low solubility will confine the bioavailability and the absorption, especially drugs in class II of the Biopharmaceutical Classification System (BCS). Several strategies have been employed to overcome these limitations including physical and chemical modifications. Techniques used in the physical modification are decreasing particle size (micronization, nanonization), formation of polymorphs/pseudopolymorphs (including solvates), complexation/solubilization (by means of using surfactants or cyclodextrins, conjugation to dendrimers, and an addition of co-solvents) and preparation of drug dispersions in carriers (eutectic mixtures, non-molecular solid dispersions, solid solutions). For the chemical modification, the used technique is the synthesis of soluble prodrugs and salts (1-5).

Particle size reduction has been a much smarter approach that can be applied to nonspecific formulation for many years. The nanocrystals were invented at the beginning of the 1990s and the first products appeared very fast in the market from the year 2000 onwards. Additionally, drug nanocrystals are a universal approach generally applied to all poorly soluble drugs for the reason that all drugs can be disintegrated into nanometer-sized particles (6). Drug nanocrystals are nanoscopic crystals of the parent compound with the dimension of less than 1 µm. They are composed of 100% drug without carriers and typically stabilized with surfactants or polymeric steric stabilizers. A dispersion of drug nanocrystals in an liquid medium and stabilized by surface active agents is so-called nanosuspensions. The dispersion medium can be water, aqueous or nonaqueous media e.g. liquid polyethylene glycol (PEG) and oils. The nanosuspensions can be used to formulate compounds that are insoluble in both water and oil and to reformulate existing drugs to remove toxicologically less favourable excipients (2, 4, 7).

Special features of nanocrystals to enhance oral bioavailability

Drug nanocrystals possess outstanding features enabling to solve the problems of poorly soluble drugs, including an increase in saturation solubility, an increase in dissolution velocity, and an increased adhesiveness to surface/cell membranes (6).

An increase in saturation solubility

The saturation solubility is a function of the crystalline structure (i.e. lattice energy) and particle size. The polymorphic modification with highest energy and lowest melting point leads to the best solubility. Occasionally, during the production, homogenization process generates amorphous fraction with high inner energy that contributes to an increase in solubility of substance. Regarding the particle size aspect, the saturation solubility of drug increases with a decrease in particle size according to the Ostwald-Freundlich equation. However, this effect is not substantial for large particles but will be pronounced for materials that have a mean particle size of less than 1-2 μ m, especially well under 200 nm (2-4, 8-11).

An increase in dissolution velocity

The size reduction of nanocrystals leads to an increased surface area, resulting in an increase in the dissolution velocity according to the Noyes-Whitney. In addition, the size reduction of nanocrystals also leads to an increased saturation solubility which provides two advantages. Firstly, dissolution velocity is enhanced due to an increase in concentration gradient. Secondly, the increased saturation solubility contributes to an increase in concentration gradient between gut lumen and blood; therefore, permeation and absorption by passive diffusion are further promoted. Furthermore, the particle size reduction results in a decreased diffusional distance according to Prandtl equation, which consequently increases the dissolution velocity as described by Noyes-Whitney equation (2-4, 8-11).

An increased adhesiveness to surface/cell membranes

An increased adhesiveness of nanomaterials is usually due to larger contact area of small particles as compared to large particles. Similar to other nanoparticles, drug nanocrystals show strong adhesiveness to tissue which leads to an improvement in oral absorption of poorly soluble drugs (2, 3).

The high drug loading of nanocrystals is one aspect that makes nanocrystals efficiently transport the drug into cells, reaching a sufficiently high therapeutic concentration for pharmacological effect (6, 10). Another special feature of drug nanocrystals is a long-term stability. The nanosuspension provides good physical stability due to an absence of aggregation and Ostwald ripening. In addition, prevention of aggregation is achieved by an addition of ionic surfactants, non-ionic surfactants or polymers.

The properties of drug nanocrystals are summarized in Table 1 (4).

 Table 1 Properties of drug nanocrystals that give benefits over the microsized particles

Properties of drug nanocrystals

- 1. Particle size below 1 µm
- 2. 100% Drug, no carrier
- 3. Generally needed to be stabilized by surface active agent
- 4. Crystalline or amorphous structure (Amorphous state offering advantages)
- 5. Increase in saturation solubility
- 6. Increase in dissolution velocity

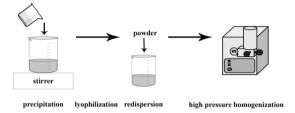
Preparation of nanocrystals

The techniques to produce drug nanocrystals are divided into two basic approaches, the bottom up and the top down technologies.

Bottom up processes (2, 4, 6)

This technique is known as a classical precipitation process. In this process, it is necessary to control the structure of the particles and avoid the growth of the particles by controlling influence factors and adding stabilizers such as surfactants. However, a basic disadvantage of precipitation processes is the use of organic solvents which is needed to be removed leading to high production costs. Hence, in pharmaceutical industry, the bottom up processes has not been employed for the production of the marketed drug.

Top down processes (1-4, 6, 12)


In this process, large crystals in the micrometer range are reduced to the nanodimension by diminuting; such as a milling process and high pressure homogenization. For the milling method, dry milling (e.g. jet milling) is not efficient to obtain a size in the nanometer range; therefore, wet milling is applied. The classical milling process is the pearl mill (bead mill), being the NanoCrystalTM technology which is an important technology used to produce four FDA-approved drugs; Rapamune[®], Emend[®], Tricor[®], and Megace ES[®] (13). The common problem of this technology is an erosion of milling material and an adherence of product to the inner surface area of the mill. For the homogenization method, three important technologies to produce nanocrystals are Microfluidizer technology (IDD-P^{TMTM} technology), Piston gap homogenization in water (Dissocubes[®] technology) and in water mixtures or in nonaqueous media (Nanopure[®] technology). An important advantage of this method is a considerably high productivity with low microparticles and low level of contamination from erosion of the homogenizer wall.

Other techniques for the production of drug nanocrystals (2, 4, 6, 11, 12)

Although high pressure homogenization has been frequently used, due to its simplicity, feasibility in large-scale production and low product contamination (11), it still encounters some limitations. For the high hardness solid drug, an extreme pressure and more homogenization cycles are considerably required. Moreover, the particle size of starting material must be small enough to pass through a homogenizer gap to avoid its blockage. Therefore, combination technologies have been developed to facilitate the nanocrystal production to reduce the passage number of homogenization or to provide very small particles prior to homogenization. The patented combination technologies are, for example, NanoEdge® (a combination of precipitation and high pressure homogenization) (12) and SmartCrystal® (e.g. H42 process: a combination of spray drying

with high pressure homogenization, and H96 process (a combination of lyophilization and high pressure homogenization) (11).

Recently, a novel tri-combination technology called "Precipitation-lyophilization-homogenization (PLH) method" for preparation of nanocrystals was published by Janyaprasert group (14). In the first step of this technique; the drug is dissolved in an organic solvent and mixed with an aqueous phase, resulting in a precipitation of preferably friable and small crystals. Secondly, lyophilization is applied which leads to the modification of the starting material and removal of the organic solvent used in precipitation step. In the final step, high pressure homogenization is performed to break dawn crumbly particles into the nanosized particles. Diagram of preparation by PLH technique is shown in Figure 1. It was reported that PLH technique is an effective method to reduce of the size of clarithromycin nanocrystals to 400 nm with homogenous size distribution as compared to conventional high pressure homogenization (HPH) as seen in Figure 2 (14).

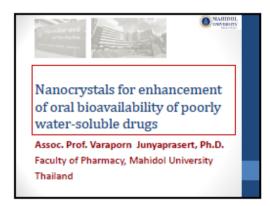
Figure 1 Production of drug nanocrystals by precipitation-lyophilization-homogenization (PLH).

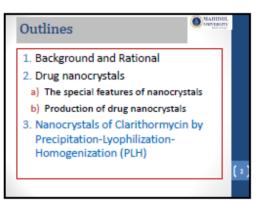
Figure 2 SEM microphotographs of (A) conventional suspension, and (B) nanosuspensions prepared by precipitation-lyophilization-homogenization (PLH) method of clarithromycin formulation (14).

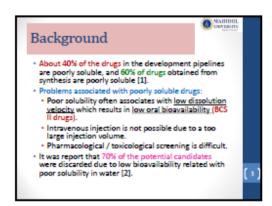
Among other technologies, the following supercritical fluid methods are mentioned in the production such as rapid expansion of supercritical solution (RESS), rapid expansion from supercritical to aqueous solution (RESAS), solution-enhanced dispersion by the supercritical fluids (SEDS), spray freezing into liquid (SFL), evaporative precipitation into aqueous solution (EPAS), and aerosol solvent extraction (ASES).

In vivo performances of drug nanocrystals in oral administration routes

Drug nanocrystals improve the absorption of drug due to two major mechanisms via firstly, an improvement of solubility and dissolution rate and secondly, the bioadhesion to the intestinal wall. The drug nanocrystals impressively improve the bioavailability of perorally administered poorly soluble drugs as observed by changes of pharmacokinetic parameters of blood profiles, including an increase in area under the blood concentration-time curve (AUC), an increase in maximum plasma concentration (C_{max}), and a decrease in time to maximum plasma concentration (T_{max}) (15-17).

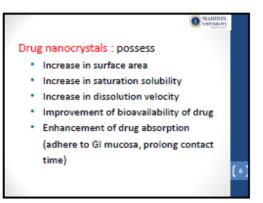

The second mechanism of nanocrystals to improve the drug absorption is due to the mucoadhesion to biological mucosa (GI mucosa) which positively enhances the oral bioavailability. Owing to the strong adhesiveness of nanocrystals to GI mucosa, the drugs provide the higher concentration gradient and prolong residence and contact time in the GIT. Moreover, a variation in bioavailability resulting from fed/fast state of the poorly soluble drug is minimized due to a uniform dispersion of the nanosuspension in the GIT.

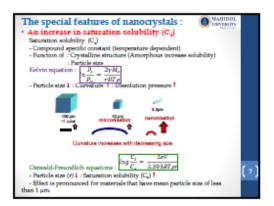

Finally, drug nanocrystals are a safe and well tolerated formulation as compared to the conventional products since they can avoid occurrence of an unwanted toxicity caused by the use of organic cosolvent or solubilizer. In addition, several advantages of drug nanocrystals in oral delivery include i) fine particle size, ii) safe composition, and iii) tolerance to various sterilizations (17, 18).

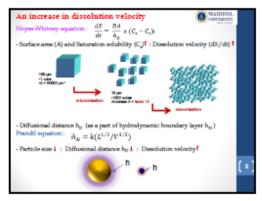

References

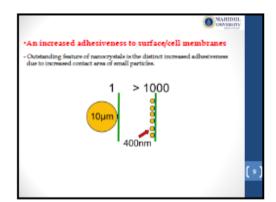
- Magdalene R. Pure drug nanoparticles for the formulation of poorly soluble drugs. NewDrugs. 2001;3:62-8.

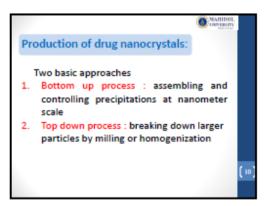
 Moschwitzer J., Muller RH. Drug nanocrystals-The universal formulation approach for poorly soluble drugs. In: Thassu D., Deleers M., Pathak Y, editors. Nanoparticulate drug delivery systems. New York: Informa Healthcare; 2007. p. 71-88.
- Gao L., Zhang D., Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res. 2008;10:845-62.
- Junghanns J.U.A.H., Muller RH. Nanocrystal technology, drug delivery and clinical appications. Int J Nanomedicine 2008;3(3):295-309.
- Chen H., Khemtong C., Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug discov today 2011;16(7/8):354-60.
- Muller R.H., Gohla S., Keck CM. State of the art of nanocrystals Special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78:1-9.
- 7. Kocbek P., Baumgartner S., et.al. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm. 2006;312:179-86.
- Buckton G., Beezer AE. The relationship between particle size and solubility. Int J Pharm. 1992;82:R7-R10.
- Moschwitzer J., Muller RH. New method for the effective production of ultrafine drug nanocrystals. J Nanosci Nanotech. 2006;6:3145-53.
- 10. Gulsun T., Gursoy R.N., Oner L. Nanocrystal technology for oral delivery of poorly water-soluble drugs. FABAD J Pharm Sci. 2009;34:55-65.
- Keck C.M., Muller RH. SmartCrystals Review of the second generation of drug nanocrystal. In: Torchilin V.P., Amiji MM, editors. Handbook of materials for nanomedicine. Singapore: Pan Stanford; 2010. p. 555-80.
- 12. Keck C.M., Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62:3-16.
- Elaine M., Liversidge M., et al. Drug nanoparticles: Formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36(1):43-8.
 Morakul B, Suksiriworapong J, Leanpolchareanchai J, Junyaprasert VB. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: Influencing factors on physicochemical properties and stability. Int J Pharm. 2013;457:187-96.
- 15. Liversidge G. G., Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125(1):91-7.
- Kayser O, Olbrich C, Yardley V, Kiderlen A.F., Croft SL. Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm. 2003:254:73-5
- 2003,234.73-3. Liversidge G.G., Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm. 1995;125:309-13.
- 18. Merisko-Liversidge E.M., Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet mediamilling technology. Adv Drug Deliv Rev. 2011;30:427-40.

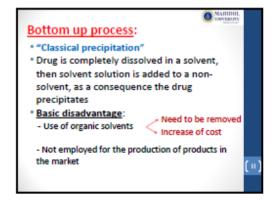


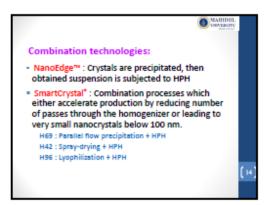


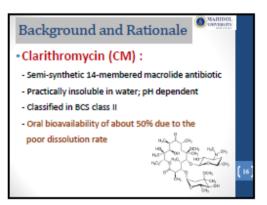


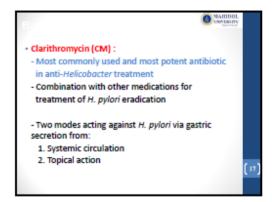


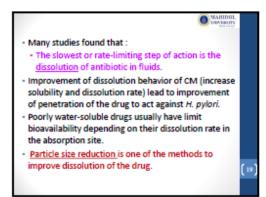


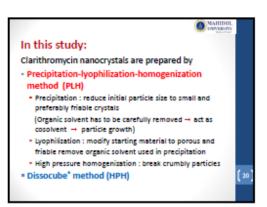


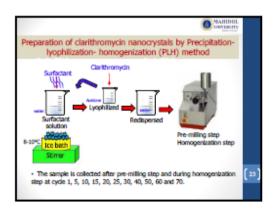


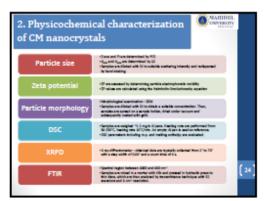


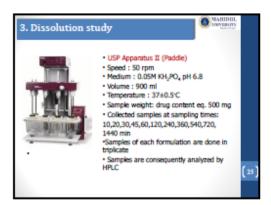


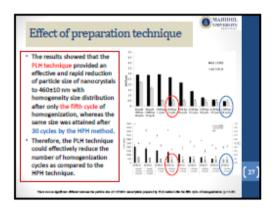


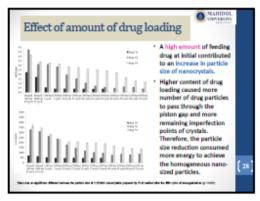


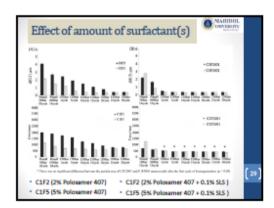


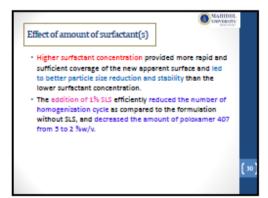


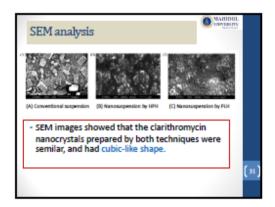


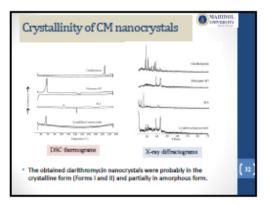


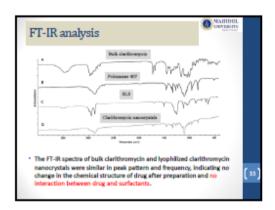


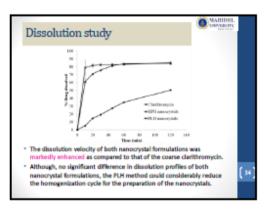


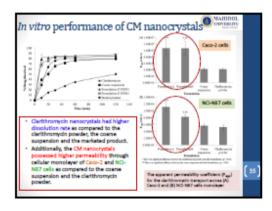


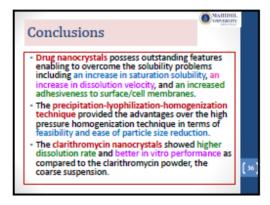












เอกสารหมายเลข 5

Production of Clarithromycin Nanocrystals by Precipitation-Lyophilization-Homogenization to Enhance Dissolution for Oral Delivery

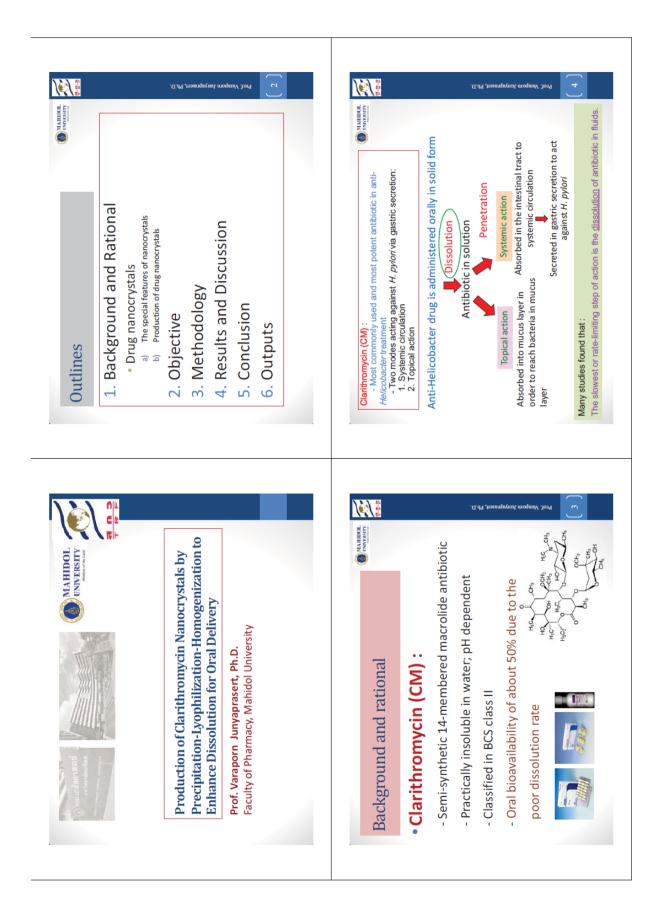
Junyaprasert, V.B. 1,2*, Morakul, B. 1, Suksiriworapong, J. 1,2, Langguth, P. 3,

¹Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand ²Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand ³Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany

Abstract

Clarithromycin is classified in BCS class II having low bioavailability due to very low dissolution behavior. The main purpose of this study was to investigate an efficiency of precipitation-lyophilization-homogenization (PLH) method to prepare clarithromycin nanocrystals to increase its dissolution. The factors influencing particle size reduction and physical stability were assessed. The results showed that the PLH technique provided an effective and rapid reduction of particle size of nanocrystals to 460±10 nm with homogeneity size distribution after only the fifth cycle of homogenization as compared to the conventional high pressure homogenization method which achieved the same size after 30 cycles. The smallest nanocrystals were obtained by using the combination of poloxamer 407 (2 %w/v) and SLS (0.1 %w/v) as stabilizers which could prevent the particle aggregation over 3-month storage at 4 °C. The nanocrystals were identified as cubic particles by SEM and existed in crystalline and/or partial amorphous form as investigated by DSC and XRPD. The saturation solubility of the clarithromycin nanocrystals was increased by 1.5- and 6-folds higher than clarithromycin powder in buffer pH 5.0 and 6.8, respectively. The dissolution profiles of clarithromycin nanocrystals at pH 5.0 and 6.8 were significantly different from clarithromycin powder and the marketed product (f_1 value>15 and f_2 value<50).

Keywords: nanocrystals; clarithromycin; precipitation-lyophilization-homogenization; poorly soluble drug; dissolution; dissolution


Outputs

- 1. Morakul B, Suksiriworapong J, Leanpolchareanchai J, **Junyaprasert VB***. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: Influencing factors on physicochemical properties and stability. Int J Pharm **2013**, 457(1): 187-196.
- 2. Morakul B, Suksiriworapong J, Chomnawang MT, Langguth P, **Junyaprasert VB***. Dissolution enhancement and in vitro performance of clarithromycin nanocrystals produced by precipitation-lyophilization-homogenization method. Eur J Pharm Biopharm **2014**, 88(3):886-896.

*Corresponding author.

Tel.:0-2644-8677-91 ext. 5730; Fax: 0-2644-8694

E-mail: varaporn.jun@mahidol.ac.th

Pure solid drug particles (100% drug without carriers)

Drug nanocrystals

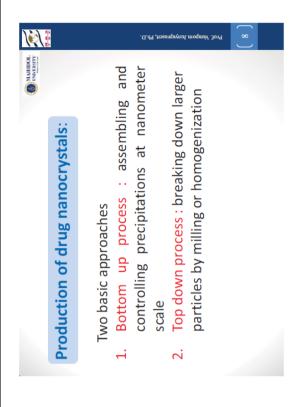
Mean diameter in nanometer range (≤1000 nm) Dispersion of drug nanocrystals in liquid media is

System of nanosuspensions consists of:

Drug nanocrystals
 Stabilizing agents

called as "nanosuspensions"

drugs, e.g. 250-500 mg of clarithromycin every 4-6 h.


nanocrystals is suitable for delivery of high dosing

Due to no carriers, the high drug loading of

(aqueous, nonaqueous solution)

3. Liquid dispersion medium

(surfactants, polymeric stabilizers)



diminuting the crystals performed by milling or

Starts from large crystals in micrometer range

Top down process:

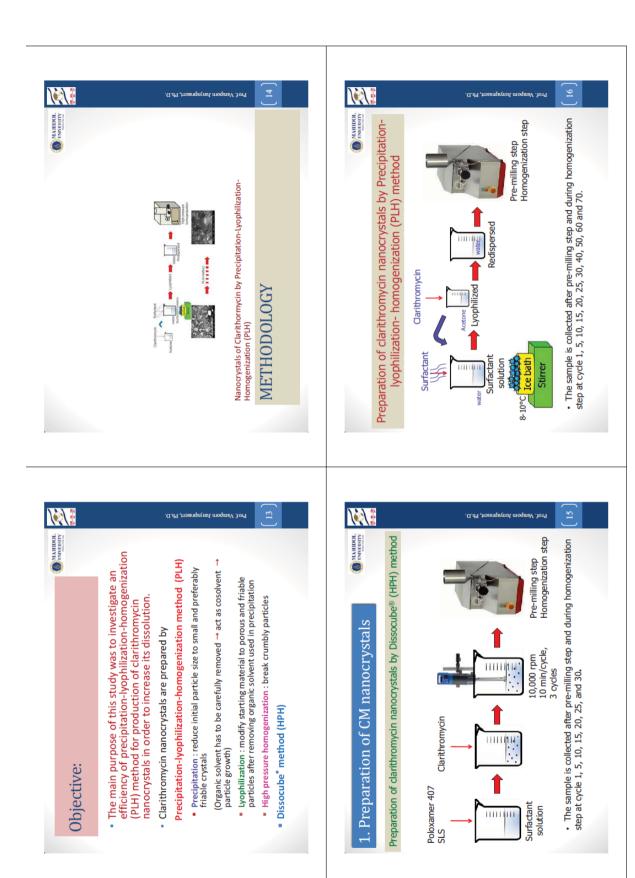
and goes down to nanodimension by

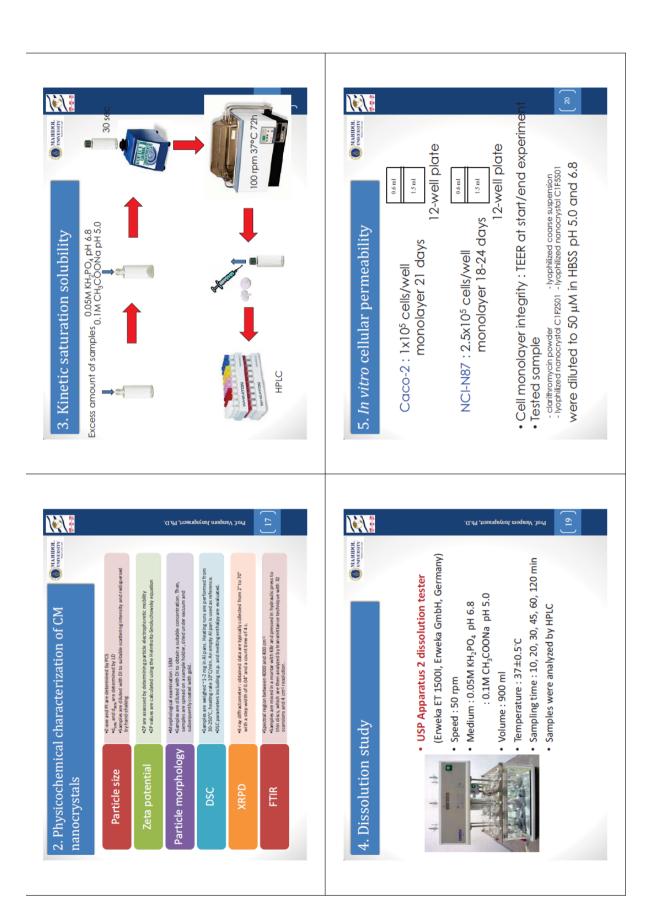
Adherence of product to inner surface area of the mill

Erosion of milling material

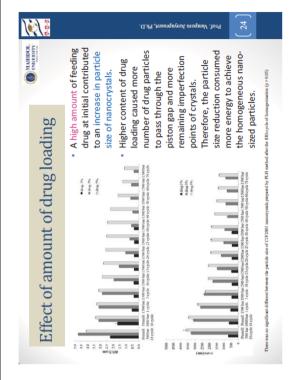
Disadvantages:

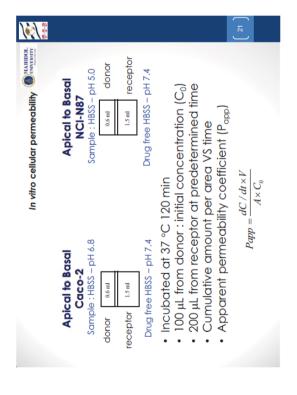
Rapamune, Emend, Tricor, and Megace ES

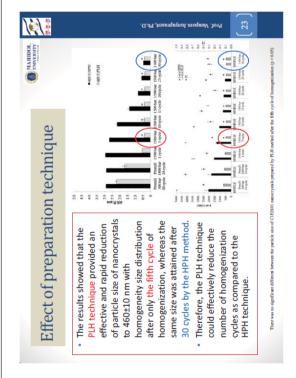

Produce four FDA-approved drugs:

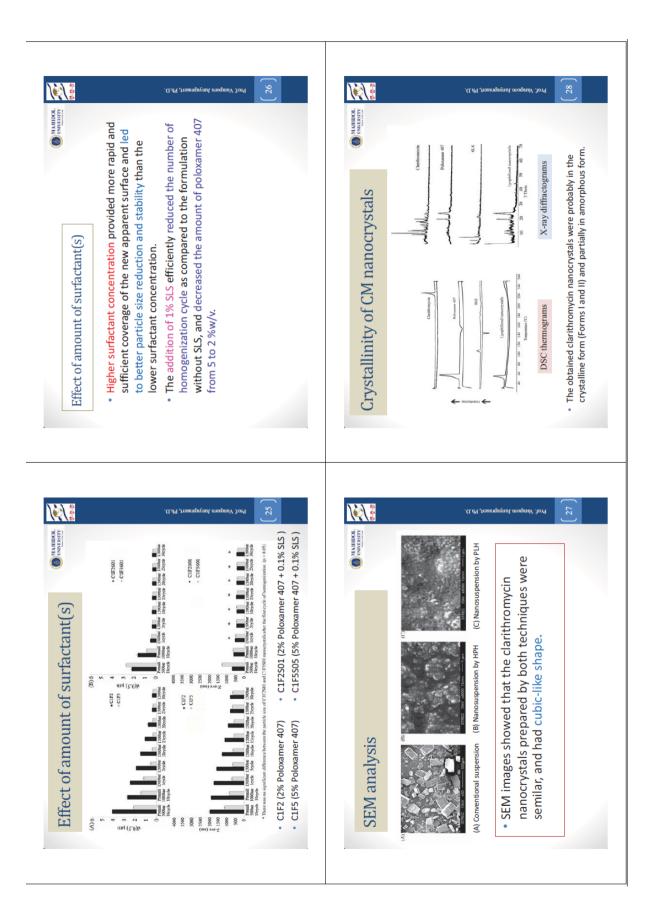

Wet milling or Pearl milling

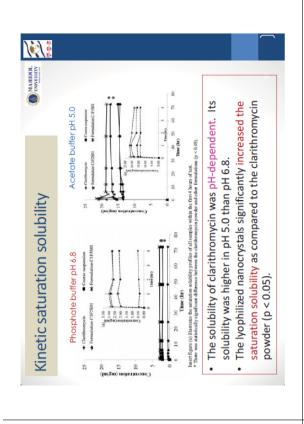
Milling process

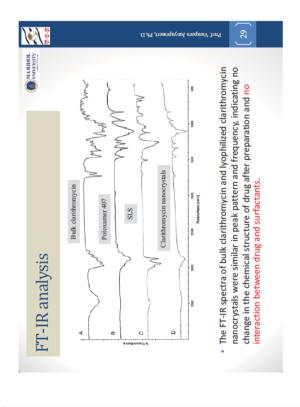

nomogenization.

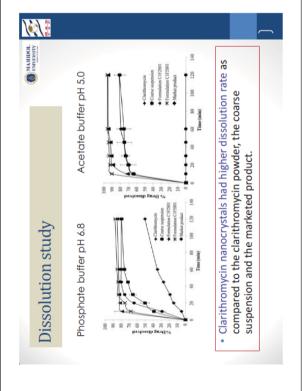


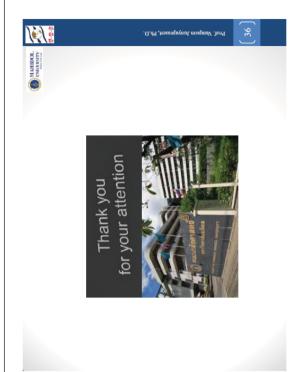












11/10/2015

2015 AAPS Annual Meeting and Exposition

• Login

- Home
- Attendees
- Agenda
- Posters
- Speakers
- Exhibitors

Sponsors

Sessions: Monday Contributed Paper Posters

M1128 - Dissolution Enhancement and In Vitro Performance of Clarithromycin Nanocrystals Produced by Precipitation-Lyophilization-Homogenization Method

Mahidol university

Add Add Note

Topics

Drug Delivery-Technol-SMFormulation

Description

Sessions: Monday Contributed Paper Posters

See attached abstract pdf for images.

Authors: Boontida Morakul, Mahidol University (Presenting Author); Jiraphong Suksiriworapong, Mahidol University; Mullika Chomnawang, Mahidol University; Peter Langguth, Johannes Gutenberg University; Varapom Junyaprasert, Mahidol University (Main Author)

Presenting Author: Boontida Morakul

Purpose: To investigate an enhancement effect of clarithromycin nanocrystals produced by precipitation-lyophilization-homogenization (PLH) method on the saturation solubility, dissolution velocity, antibiotic activity, permeability through gastric mucus and cellular permeability.

Methods: Nanocrystals of clarithromycin were prepared by PLH method using poloxamer 407 and sodium lauryl sulfate (SLS) as stabilizers. The particle size and polydispersity index of nanocrystals was determined by PCS and LD. The particle morphology was investigated by SEM and the crystallinity of nanocrystals was determined by DSC and XRPD analysis. Saturation solubility and dissolution behavior were studied in dissolution buffers pH 5.0 and 6.8 to evaluate an enhancement in solubility and dissolution velocity of the nanocrystals. The bioassay study by diffusion agar method was performed to investigate an antibiotic activity of clarithromycin nanocrystals. Additionally, the permeability study of nanocrystals was examined through the gastric mucus and cellular monolayer of Caco-2 and NCI-N87 cells.

Results: Nanocrystals of clarithromycin prepared by PLH method were identified as cubic particles with a bulk population of approximately 400 nm and PI-value of 0.4. The crystallimity of nanocrystals was existed in crystalline and/or partial amorphous form. The saturation solubility of the clarithromycin nanocrystals was increased by 1.5- and 6-folds higher than clarithromycin powder in buffer pH 5.0 and 6.8, respectively. The dissolution profiles of clarithromycin nanocrystals at pH 5.0 and 6.8 were significantly different from clarithromycin powder and the marketed product (f₁ value>15 and f₂ value<50) and all dissolution parameters (relative dissolution rate, percent dissolution efficiency and mean dissolution time) of the nanocrystals showed the better dissolution behavior when compared to the clarithromycin powder, the lyophilized coarse suspension and the marketed product. From the bioassay study, the results indicated that the antibiotic activity of clarithromycin nanocrystals solubilized in buffer solution could be maintained and showed the greater potency than the lyophilized coarse suspension and the clarithromycin powder. Additionally, the nanocrystals possessed higher permeability through gastric mucus and cellular monolayer of Caco-2 and NCI-N87 cells as compared to the lyophilized coarse suspension and the clarithromycin powder.

Conclusion: The clarithromycin nanocrystals produced by PLH method could provide better properties over the clarithromycin powder including the enhancement of saturation solubility, dissolution velocity, antibiotic activity, permeability through the gastric mucus and cellular monolayer. The development into nanocrystals might lead to higher performance in treatment of antibacterial of clarithromycin.

Abstract Link: http://abstracts.aaps.org/Verify/AAPS2015/PosterSubmissions/M1128.pdf

Agenda

Dissolution Enhancement and In Vitro Performance of Clarithromycin Nanocrystals Produced by Precipitation-Lyophilization-Homogenization Method

B. Morakul ¹, J. Suksiriworapong ¹, M. T. Chomnawang ¹, P. Langguth ², V. B. Junyaprasert ¹ Mahidol University, ² Johannes Gutenberg University

Purnose

To investigate an enhancement effect of clarithromycin nanocrystals produced by precipitation—lyophilization—homogenization (PLH) method on the saturation solubility, dissolution velocity, antibiotic activity, permeability through gastric mucus and cellular

Nanocrystals of clarithromycin were prepared by PLH method using poloxamer 407 and sodium lauryl sulfate (SLS) as stabilizers. The particle size and polydispersity index of nanocrystals was determined by PCS and LD. The particle morphology was investigated by SEM and the crystallinity of nanocrystals was determined by DSC and XRPD analysis. Saturation solubility and dissolution behavior were studied in dissolution buffers pH 5.0 and 6.8 to evaluate an enhancement in solubility and dissolution velocity of the nanocrystals. The bioassay study by diffusion agar method was performed to investigate an antibiotic activity of clarithromycin nanocrystals. Additionally, the permeability study of nanocrystals was examined through the gastric mucus and cellular monolayer of Caco-2 and NCI-N87 cells.

Results

Nanocrystals of clarithromycin prepared by PLH method were identified as cubic particles with a bulk population of approximately 400 nm and PI-value of 0.4. The crystallinity of nanocrystals was existed in crystalline and/or partial amorphous form. The saturation solubility of the clarithromycin nanocrystals was increased by 1.5- and 6-folds higher than clarithromycin powder in buffer pH 5.0 and 6.8, respectively. The dissolution profiles of clarithromycin nanocrystals at pH 5.0 and 6.8 were significantly different from clarithromycin powder and the marketed product (f1 value>15 and f2 value<50) and all dissolution parameters (relative dissolution rate, percent dissolution efficiency and mean dissolution time) of the nanocrystals showed the better dissolution behavior when compared to the clarithromycin powder, the lyophilized coarse suspension and the marketed product. From the bioassay study, the results indicated that the antibiotic activity of clarithromycin nanocrystals solubilized in buffer solution could be maintained and showed the greater potency than the lyophilized coarse suspension and the clarithromycin powder. Additionally, the nanocrystals possessed higher permeability through gastric mucus and cellular monolayer of Caco-2 and NCI-N87 cells as compared to the lyophilized coarse suspension and the clarithromycin powder.

Conclusion

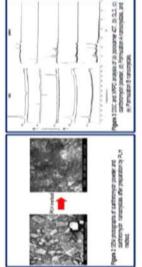
The clarithromycin nanocrystals produced by PLH method could provide better properties over the clarithromycin powder including the enhancement of saturation solubility, dissolution velocity, antibiotic activity, permeability through the gastric mucus and cellular monolayer. The development into nanocrystals might lead to higher performance in treatment of antibacterial of clarithromycin.

M 1128

Dissolution Enhancement and In Vitro Performance of Clarithromycin Nanocrystals Produced by Precipitation-Lyophilization-Homogenization Method

dicine, Faculty of Pharmacy, Mahidol University, Thailland; mistry, Johannes Gutenberg University, Mainz, Germany Morakul B¹, Suksiriworapong J¹, Chomnawang MT³, Langguth P⁴, Junyaprasert VB¹.2 Innovative Drug Delivery and Na finstitute for Pharmacy and Bioch iment of Microbiology, Faculty of Pharmacy, Mahidol University, Thailand; nacy, Mahidol Univ t of Pharmacy, Faculty of Phar

PURPOSE


clarithromyon nanocrystals was evaluated by determining the change in The dissolution enhancement of precipitation-lyophilizationthe saturation solubility and dissolution velocity. Antibiotic activity Mere Clarifromyon, the poorly water-soluble antibiotic, was aimed permeability nvestigated to determine in vitro performance of the nanocrystals cellular ă gastric mucus and method through nomogenization 읦 permeability develop

homogencation (PLH) method

Table 1 Composition and characteristics (mean particle size (2-ave), polydispersity index (PI) 600 St. 600 91, and 200a

METHODS

Preparation of clarithromycin nanocrystals by PLH method

water. Meanwhile, clarithromyon was dissolved into acetone. Clarithromyon solution was then admixed into the surfactant solution and continuously stirred at 8-10°C. The suspension was Clariffromyon nanocrystals were prepared by PLH method (Figure 1) using poloisamer 407 and sodium lauryl suffate (SLS) as stabilizers (Table 1). Surfactants were dissolved into sterile pressure homogenizer upphilized, redispersed in the stenie water, and passed through a high APV-2000, SPX Flow Technology, Germany) to obtain the nanocrystals

Physical characterization

Particle size, PI value, and zeta potential (ZP) were determined by PCS and LD.

Crystalinity of nanocrystals was determined by DSC and XRPD analysis. Particle morphology was investigated by SEM

Study of saturation solubility and dissolution: The study was carried out in KH-PO, buffer pH 6.8 and CH₂COONa buffer pH 5.0. The sample was collected at the predetermined times and analyzed by HPLC to compare with the clarithromycin powder and coarse suspension

Bioassay for antibiotic activity: The study was performed by disc diffusion agar method Bacillus subtilis (ATCC 6633)

Permeability study: The permeability of nanocrystals was examined through the gastric mucus (PGM) and cellular monoisyer of Caco-II and NCI-N87 cells.

RESULTS

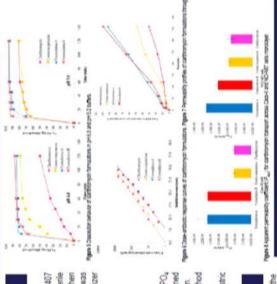

about 0.4, and ZP more than 30 mV (Table 1). SEM photograph showed that the nanocrystals possessed cubic-like shape (Figure 2). The DSC and XRPD analysis indicated the crystalline The precipitation-lyophilization-homogenization (PLH) method could efficiently produce the nanocrystals of clarifinomycin. The combination of surfactants (poloxamer 407 and SLS) used as stabilizer could produce the nanocrystals with particle size as small as 400 nm. Pl value and partial amorphous form of clarithromyon nanocrystals (Figure 3).

Figure 4 and 5 show that the reduced particle size of clarithromyon nanocrystals promoted saturation solubility and dissolution.

Dose-artibiotic response curves showed the higher nanocrystals when compared to clariffromyon powder and coarse suspension antibiotic activity of clariffromycin

ä

CONCLUSIONS

development into nanocrystals might lead to the higher performance in provide better properties over the clarithromych powder including the cellular monolayer. The The clariffromyoin nanocrystals produced by PLH method could enhancement of saturation soliddifty, dissolution velocity, antibiotic activity through the gastric mucus and antibacterial treatment of clarithromycir permeability

FUNDING/GRANTS/ENCORE REFERENCE

Jubilee Ph.D. Program and Mahidol University (PHDI0258/2550 to B.M.) for The authors wish to thank the Thailand Research Fund through Research Grant (BRG5680020 to VB.J.) and the Royal inancial supports Basic

Reference Morald R. Satisforgoog J. Chomesang MT, Langath P. Junjaprace VB. Doubline enhancement and in vibo performers of dethinorper insorpraits produced by Propolation—lyaphitation-demogenization method. Ear J Plant Bopham 2014; 88: 686-895.

บทความสำหรับเผยแพร่

คลาริโธรมัยซินเป็นยาต้านเชื้อแบคทีเรียที่ออกฤทธิ์กว้างในการรักษา สามารถยั้งยั้งเชื้อได้หลายชนิดและมี ประโยชน์ในการรักษาโรคติดเชื้อมากมายได้แก่ โรคติดเชื้อในทางเดินหายใจ เช่น ปอดอักเสบ หลอดลมอักเสบ การติด เชื้อที่หู ไซนัสและลำคอ การติดเชื้อที่ผิวหนังและเยื่อบุต่าง ๆ รวมทั้งสามารถใช้ในการป้องกันและรักษาการติดเชื้อ Mycobacterium avium complex (MAC) ในผู้ป่วย HIV นอกจากนี้คลาริโธรมัยซินยังถูกใช้เป็นส่วนประกอบสำคัญใน สูตรยามาตรฐานในการรักษาผู้ป่วยโรคกระเพาะอาหารและลำไส้ที่ติดเชื้อ H. pylori อีกด้วย อย่างไรก็ตามคลาริโธรมัย ซินมีคุณสมบัติการละลายน้ำได้ต่ำและพบว่าชีวภาพพร้อมใช้ของการนำส่งทางปากของยาคลาริโธรมัยซินมีเพียง 50% เนื่องจากอัตราการละลายที่ต่ำของตัวยา การวิจัยนี้มีวัตถุประสงค์เพื่อเพิ่มการละลายของยาคลาริโธรมัยซินสำหรับการ นำส่งทางปากโดยการพัฒนาคลาริโธรมัยซินในรูปแบบของนาโนคริสตัล

จากการทดลองได้ทำการศึกษาเทคนิควิธีการผลิตและปัจจัยในการผลิตเช่น ชนิดและปริมาณของสารลดแรง ์ ตึงผิว สารลดแรงตึงผิวร่วม และปริมาณยาตั้งต้นที่ใช้ในการผลิต เพื่อหาสภาวะในการผลิตที่เหมาะสม ผลการทดลอง พบว่าเทคนิคการผลิตนาโนคริสตัลด้วยวิธี precipitation-homogenization-lyophilization (PLH) ให้ประสิทธิภาพในการ ลดขนาดอนุภาคได้ดีและใช้จำนวนครั้งการผ่านเครื่อง high pressure homogenizer น้อยกว่าเมื่อเปรียบเทียบกับ เทคนิค high pressure homogenization (HPH) โดยสูตรตำรับ C1F2S01 และ C1F5S01 ซึ่งมีส่วนประกอบของสาร ลดแรงตึงผิว poloxamer 407 2 %w/v และ 5 %w/v ตามลำดับ และสารลดแรงตึงผิวร่วม SLS 0.1 %w/v เป็นสูตร ตำรับที่เหมาะสมโดยให้ขนาดอนุภาคที่เล็กและมีการกระจายขนาดที่สม่ำเสมอ อนุภาคนาโนคริสตัลของยาคลาริโธรมัย ซินมีขนาดอนุภาคเฉลี่ยประมาณ 400 nm และมีความต่างศักย์ที่ผิวอนุภาคมากกว่า -30 mV ซึ่งแสดงถึงความคงตัว ของระบบ การตรวจสอบทางกายภาพพบว่านาโนคริสตัลมีรูปร่างอนุภาคคล้ายสี่เหลี่ยมลูกบาศก์ อยู่ในรูปผลึก (crystalline) และมีบางส่วนอยู่ในรูปอสัณฐาน (amorphous) การศึกษาค่าการละลาย (saturation solubility) และ คุณสมบัติการละลาย (dissolution) พบว่าตำรับนาโนคริสตัลมีค่าการละลายที่สูงกว่าและมีคุณสมบัติการละลายที่ดีกว่า ผงยาคลาริโธรมัยซินที่ไม่ผ่านกระบวนการลดขนาด และเมื่อทำการศึกษาความเป็นพิษต่อเซลล์ของตำรับนาโนคริสตัล พบว่าเซลล์เยื่อบุทางเดินอาหารสามารถมีชีวิตอยู่ได้ตลอดระยะเวลาที่ทำการศึกษาเมื่อใช้ความเข้มข้นของยาในตำรับ นาโนคริสตัลน้อยกว่า 50 µM นอกจากนี้จากผลการศึกษาความคงตัวทางกายภาพพบว่าที่อุณหภูมิ 4 °C, 30 °C และ 45 °C เป็นเวลา 4 เดือน นาโนคริสตัลของยาคลาริโธรมัยซินทั้งสองตำรับมีความคงตัวทางกายภาพตลอดระยะเวลาที่ เก็บรักษา

กิจกรรมที่เกี่ยวข้องกับการนำผลจากโครงการไปใช้ประโยชน์

1. การเผยแพร่งานวิจัย

- 1.1 จัดทำเป็นรายงานการวิจัย เผยแพร่ให้ผู้สนใจใช้ศึกษาและค้นคว้า
- 1.2 การตีพิมพ์ในวารสารวิชาการระดับประเทศหรือนานาชาติ งานวิจัยนี้มีข้อมูลทางวิชาการที่เป็นประโยชน์ ที่ควรจะเผยแพร่ให้เป็นประโยชน์ต่อนักวิจัยอื่นๆ
- 1.3 รวบรวมข้อมูลเพื่อจัดทำเป็นเอกสารเผยแพร่ให้ผู้สนใจ

2. การนำผลไปช้ในเชิงพาณิชย์

2.1 นำผลการวิจัยไปขยายการผลิตในระดับอุตสาหกรรมยา เพื่อจำหน่ายภายในประเทศทดแทนการนำเข้า ผลิตภัณฑ์จากต่างประเทศ เป็นการเพิ่มศักยภาพการแข่งขันของประเทศ