บทคัดย่อ

ไคตินเป็นชีวโพลีเมอร์ที่พบในปริมาณมากรองเป็นอันดับสองจากเซลลูโลส ในระบบนิเวศน์ทางทะเลมีแบคทีเรียใน ทะเลกลุ่ม Vibrios ที่ทำหน้าที่ย่อยสลายไคตินอย่างมีประสิทธิภาพทำให้ไม่มีการตกตะกอนสะสมของไคตินในท้อง ทะเล ดังนั้นแบคทีเรียกลุ่ม Vibrio จึงมีศักยภาพสูงที่จะนำมาประยุกต์ใช้เป็นตัวเร่งทางชีวภาพในขบวนการรีไซเคิลไค ตินชีวมวลให้เป็นพลังงานทดแทนได้ V. harveyi เป็นแบคทีเรียในทะเลชนิดเรื่องแสงที่สามารถเติบโตอย่างรวดเร็วทั้ง ในสภาวะที่มีออกซิเจนและขาดออกซิเจน แบคทีเรียนี้ใช้ไคตินเป็นแหล่งคาร์บอนและไนโตรเจนให้แก่เซลล์ แต่กลไก การสลายไคตินโดย V. harveyi ยังไม่ทราบแน่ชัด งานวิจัยนี้ได้ทำการศึกษาโครงสร้างและหน้าที่ของโปรตีนที่ทำ หน้าที่สลายไคติน โปรตีนขนส่งไคตินและโปรตีนจับไคติน การเข้าใจหน้าที่ของโปรตีนเหล่านี้จะช่วยเปิดโอกาสในการ นำแบคทีเรียนี้มาใช้ประโยชน์ในขบวนการสลายไคตินให้เป็นแหล่งพลังงานชีวภาพปริมาณมหาศาลได้

ABSTRACT

Chitin is one of the most abundant biopolymers second only to cellulose. Nevertheless, there is no accumulation of chitin in the ocean-floor sediments, since marine *Vibrios* are mainly responsible for the degradation of chitin biomaterials in order to utilize them as a sole source of carbon and nitrogen. Therefore, marine *Vibrios* bacteria offer highly potential as a biocatalyst in recycling of chitin biomass for alternative bioenergy. *V. harveyi* is a chitin-utilizing and fast growing bioluminescent bacterium because of its adaptive ability to grow under anaerobic and respiratory conditions. Although *V. harveyi* is known to utilize only chitin as its sole source of energy, the chitin catabolic pathway of *V. harveyi* is still unknown. This research investigated structure and function of proteins involving in chitin degradation, chitin transport, and chitin binding. A complete understanding of the chitin metabolic cascade will open up the opportunity to exploit this bacterium in the recycling process of chitin scraps that can be finally turned into multimillion tons of bioenergy compounds.