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ABSTRACT

Project Code: BRG5880017
Project Title: Modeling of engineering mechanics problems by integrating nano-scale influences

Investigators: Teerapong Senjuntichai and Jaroon Rungamornrat, Department of Civil
Engineering, Faculty of Engineering, Chulalongkorn University

Email Address: Teerapong.S@chula.ac.th and Jaroon.r@chula.ac.th

Project Period: 3 years

Abstract: This research project presents accurate and efficient techniques for solving various
engineering mechanics with consideration of nano-scale influence by employing a complete
Gurtin-Murdoch model for surface elasticity. The concept of surface elasticity is adopted to take
into account the influence of surface energy that has been considered essential for nano-sized
elements and soft elastic solids. Existing mathematical models obtained from the previous project
(BRG5480006) are refined and extended for solving various nano-scaled problems, which include
multi-layered elastic media under surface loading, nano-beams, non-planar nano-sized cracks, and
nano-indentation with adhesive contact. In each problem, the governing equations for both surface
and bulk are properly formulated, and appropriate solution schemes are then implemented to
efficiently and accurately determine the solutions of the fully coupled governing equations. A
computer code is developed to obtain numerical solutions for each problem, and its accuracy is
verified with available benchmark solutions. Selected numerical results from extensive parametric
studies are presented to portray the influence of surface energy effects on elastic fields of nano-
mechanic problems under consideration. Presented results confirm the fact that the presence of
surface stresses renders elastic media stiffer, and size-dependent behavior is also observed. Thus,
the surface energy effects cannot be ignored in the analysis of engineering mechanics problems
involving nano-scale influence and soft elastic materials.

Keywords: Boundary element method, finite element method, nano-sized cracks, Gurtin-Murdoch,
multi-layered elastic media, nano-beams, nano-indentation, nonlocal elasticity, surface stresses
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CHAPTER I
INTRODUCTION

This chapter briefly summarizes the key motivation and significance of the current investigation.
The objectives, scope of work, and the methodology and research procedures are then clearly
addressed. Finally, the contribution of the present study is summarized.

1.1 Motivation and Significance

Nowadays, nanotechnology has become one of the most interesting research areas in various fields
such as biology, chemistry, physics, medicine and engineering. Although nanotechnology deals
with extremely tiny objects with their length scale of few nanometers (where one nanometer is
approximately about 50,000 times smaller than the average of a human hair), its applications tend
to be substantial. In the field of material science and engineering, advanced researches related to
nano-science and nanotechnology such as nano-tubes, nano-wires, nano-composites and nano-
films have grown rapidly and continuously. The physical modeling and corresponding
comprehensive analysis to gain an insight into the complex behavior of nano-sized devices and
nano-structured materials become crucial aspects in the optimal design of nano-scale products.
Besides the fundamental understanding of mechanical properties in the nano-scale level,
failure/damage analysis and assessment has been found to be an essential step that must be properly
considered to ensure their safety and integrity in the design procedure.

In the past three decades, various techniques have been applied to investigate mechanical
properties and characteristics of nano-sized structures. It is generally acknowledged that
experimental methods yield results reflecting actual response. However, it is still found highly
dependent on experimental environments and, more importantly, expensive due to the requirement
of sophisticated equipment and high-precision testing procedures. As a result, mathematical
modeling and simulations has become an attractive alternative, and been widely employed to
develop fundamental understanding to further investigate complex phenomena. In addition, once
integrating essential features and properly calibrated with data from basic experiments,
mathematical models are found capable of simulating responses under various practical conditions.

Within the context of modeling nano-scale influence on solids, two predominant
mathematical models, one known as the molecular or atomistic models whereas the other
corresponding to the modified or enhanced continuum-based models, have been commonly
employed in the literature. The molecular-based simulations have been verified to yield accurate
prediction of responses of interest due to their effectiveness in detailing with bonds and atoms.
However, such simulations require enormous computational effort and resources to treat billions
of atoms at nano-scale. This therefore renders the discrete atomic-scale models impractical in
various applications. As a result, modified or enhanced continuum-based models have become
attractive due to their advantages in saving computational resources. Unlike macro-structures, the
surface to volume ratio in the case of nano-sized objects (e.g., thin films, quantum dots, nano-
wires, nano-tubes and nano-composites) is much higher and, as a direct consequence, the surface
free energy often plays a crucial role in the mechanical behavior. Therefore, the classical theory
of continuum mechanics commonly used in the modeling of macroscopic bodies is not directly
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applicable to accurately treat problems related to nano-scale structures and nano-sized cracks.
While a conventional theory of linear elasticity has been well established and employed in the
modeling of a variety of problems involving linear elastic uncracked and cracked bodies, the
enhancement of classical continuum mechanics models to incorporate the nano-scale influence is
essentially required. To be capable of capturing the surface free energy effect, a model that
properly takes into account the influence of surface stresses must be utilized.

The present research project aims to extend the work carried out in the previous TRF
project (Grant BRG5480006) to treat more general class of boundary value problems in nano-
mechanics. Existing mathematical models are to be refined and adjusted as necessary to be well-
suited for modeling various nano-scale problems (e.g., nano-indentations and nano-cracks). In
addition, an extensive numerical study is to be carried out to fully investigate the size dependent
behavior and gain an insight into nano-scale influence on predicted solutions.

1.2 objectives

The main objectives of the present study are

1. to refine and necessarily adjust the modified continuum model that takes into account
influence of surface stresses, established in the previous TRF project, to enhance modeling
capability to treat more general boundary value problems,

2. to investigate more complex nano-indentation problems such as those associated with non-
smooth contact and interfaces, and indentation on thin layer substrates, and

3. toinvestigate more complicated nano-size crack problems such as those involving non-planar.

1.3 Scope of Work

Scope of the present study and assumptions relevant to the development are summarized as follows:

1. The boundary value problem considered in this investigation is linear and governed by the
theory of linear elasticity;

2. A body associated with the boundary value problem is three-dimensional with applications to
layered elastic media;

3. A body is assumed to be free of a body force;

4. The influence of nano-scale in the local region near the boundary is modeled by properly
incorporating the surface elasticity model (proposed by Gurtin and Murdoch (1975) into
classical continuum theory for solid mechanics;

5. Analytical and semi-analytical solutions are constructed for boundary value problems
involving simple geometry, loading conditions and boundary conditions (e.g., surface
axisymmetric loadings on layered elastic media, and indentation problems with consideration
of frictionless and adhesive contacts, etc.); and

6. A framework of numerical techniques (e.g., FEM, SGBEM, Coupling of FEM and SGBEM)
capable of solving relatively complex boundary value problems induced by the presence of
surface elasticity, embedded singularity such as cracks, complicated geometries, loadings and
boundary conditions is developed. In house computer codes using FORTRAN 90 are
implemented to demonstrate accuracy and capabilities of the proposed technique.



1.4 Methodology and Procedure

The fundamental theories, key methodology and research procedure adopted and developed in the
previous TRF project are used as the basis for the proposed study. Additional theories (e.g., a
theory of non-local linear elasticity, a theory of curvature-dependent and curvature-independent
residual surface tension, a dilute theory in micromechanics, etc.) and solution techniques (e.g., a
potential-function-based approaches, solution representations, singular boundary integral equation
techniques, etc.) are also integrated to enhance the modeling capability. The procedure and
methodology can be briefly summarized below.

1.

A literature survey is conducted in addition to that reported in the previous TRF project to
identify the most recent advances and state of the art in the relevant area and properly refine
the scope of the current work.

An enhanced continuum-based mathematical model is utilized to establish basic governing
equations and formulate the associated boundary value problems. Similar to the previous
project, the classical theory of linear elasticity is still employed to efficiently model the
majority of the domain whereas the nano-scale influence due to the presence of the
surface/boundary is captured by a well-established and extensively verified Gurtin-Murdoch
surface elasticity theory. For certain class of problems when the inherent nonlocal effect for
tiny-scale objects becomes significant, the theory of nonlocal elasticity is utilized to formulate
the nonlocal constitutive relations.

A singular boundary integral equation method will be developed to determine numerical
solutions of general nano-indentation problems such as nano-indentors with axisymmetric
profiles, nano-indentors with presence of friction, fully bonded nano-indentors, nano-
indentation on thin elastic substrates, etc. Required fundamental solutions derived in the
previous TRF project are utilized in the formulation of the key governing integral equations,
and both collocation technique and standard Galerkin method are adopted in the discretization.
A two-dimensional asymptotic analysis will be conducted to investigate the behavior of near-
tip fields of nano-size cracks. A conventional technique of separation of variables, series
representation, and existing fundamental results for classical crack problems are proposed to
achieve this particular task.

An existing coupling technique between a standard finite element method and a weakly
singular Symmetric Galerkin boundary element method (developed in the previous project)
will be generalized to solve non-planar cracks. The extension from planar to non-planar cracks
is non-trivial and requires the modification of the governing equations for the curved crack
surface. For the case where the residual surface tension does not vanish in the initial state, the
residual stress within the bulk material is properly treated in the constitutive relations. In
addition, results from the asymptotic analysis (performed in the procedure 4) will be used to
develop the local basis functions near the crack front to enhance the accuracy of the
approximation.

Beside the development of solution techniques, an extensive numerical study will be carried
out to fully investigate the influence of surface stresses and nonlocal parameters on predicted
solutions and size-dependency for various boundary value problems.



1.5 Contribution

The present study proposes the complete analytical solution of displacement and stresses
corresponding to the boundary value problems involving layered elastic media under axisymmitric
surface loading with consideration of surface energy effects. The influence of surface stresses in
the mathematical model is considered by employing a complate Gurtin-Murdoch continuum model
for surface elasticity. The present fundamental solution is useful in the development of boundary
integral equation methods for the investigation of more complicated problems such as nano-
indentation and contact problems involving a layered elastic half-space and a multi-layered elastic
medium. In addition, the present analytical solutions can also be employed as a benchmark solution
in the development of numerical techniques such as finite element and boundary element methods
for analysis of a variety of problems with the influence of surface energy such as nano-scale
systems and soft elastic solids.

The present investigation also offers a continuum-based mathematical model together with
an efficient and accurate solution procedure for simulating bending, buckling, and post-buckling
responses of nano-beams with consideration of the nano-scale influence such as the surface free
energy and nonlocal effects. The former effect is simulated using Gurtin-Murdoch surface
elasticity theory whereas the last one is modeled by the differential Eringen nonlocal theory. Due
to the vast capability of the proposed technique, it should provide an attractive alternative tool, in
addition to experimental methods and atomistic and molecular dynamic simulations, to explore the
mechanical behavior of slender nano-scale elements. In addition, results and findings from the
current parametric study should also enhance the fundamental understanding of the nano-scale
influence on the size-dependent characteristics of predicted results.

Within the context of modeling and analysis of fracture problems, the present research
should enhance or strengthen the capability in the modeling of nano-sized crack problems using
an alternative, computationally cheap continuum-based model along with the proper treatment of
surface stress effects via Gurtin-Murdoch surface elasticity model. The developed mathematical
model and the implemented numerical procedure allow more practical nano-sized fracture
problems to be investigated, e.g. cracks of arbitrary shapes (including both planar and non-planar
geometries) under general loading conditions. Availability of a computational tool of such high
capability should be very significant in the parametric study to investigate and gain an insight into
various crucial responses of interest in the nano-scale level such as the size-dependent behavior of
all field quantities.

The analysis of axisymmetric rigid indentation on a layered media with consideration of
frictionless and adhesive contacts is investigated based on a complete Gurtin-Murdoch theory of
surface elasticity. The fundamental solutions of a layered elastic medium with presence of surface
stresses derived in this study are employed in the formulation of axisymmetric indentation
problems as a mixed-boundary value problem. The displacement boundary condition is expressed
in terms of a displacement Green’s function, which is constructed from the fundamental solutions
of an elastic layer and a layered elastic half-space with consideration of surface stresses presented
by Intarit (2012) and Tirapat et al. (2017). The unknown contact pressure distribution under an
indenter of axisymmetric profiles is determined by employing either collocation or discretization
method. Numerical results indicate that the surface stresses have a significant influence on elastic
fields of the layer especially in the vicinity of the top surface, and the material behavior becomes
size-dependent when the surface stresses are accounted. The developed numerical technique is an
alternative for studying the mechanical properties such as hardness and elastic modulus for nano-
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indentation applications. In addition, the present solution can be used as a benchmark for assessing
the accuracy of numerical models based on the finite element and boundary element methods to
analyze more complicated indentation problems in the presence of surface energy effects.

1.6 Organization of Report

The remaining part of this report is organized into five chapters. Chapter 2 presents the modeling
and analysis of layered elastic media under surface loading and the influence of surface energy
effect via Gurtin-Murdoch surface elasticity theory. Next, Chapter 3 summarizes the development
of an efficient numerical technique capable of simulating bending, buckling and post-buckling
responses of nano-scale elements with the consideration of both surface and nonlocal effects. The
modeling and analysis of nano-sized cracks with the integration of surface stress effects is also
reported in Chapter 4. In this chapter, a solution procedure adopted specifically for solving a
penny-shaped crack under axisymetric loading conditions and that implemented for cracks of
arbitrary geometry and under general loading conditions are presented. Next, the modeling and
analysis of nano-indentation problems with the incorporation of surface energy effects together
with a set of extensive results is presented in Chapter 5. Finally, all significant findings and
conluding remarks are addressed in Chapter 6.



CHAPTER |1
LAYERED ELASTIC MEDIA UNDER SURFACE
LOADING

In this chapter, the complete solution of displacements and stresses corresponding to the boundary
value problems involving layered elastic media under axisymmetric surface loading with
consideration of surface energy effects is presented. The basic equations are formulated based on
classical elasticity theory for the bulk and complete Gurtin-Murdoch constitutive relation for the
surface. The standard Love’s representation and Hankel integral transform are employed to obtain
the general solutions of the bulk material. An efficient numerical quadrature is then applied to
accurately evaluate all involved integrals. Selected numerical results are presented to portray the
influence of various parameters and size-dependency on elastic fields for a layered elastic half-
space and a multi-layered elastic medium. In addition, the obtained fundamental solution is useful
in the development of numerical solution scheme for the investigation of more complicated
problems under the influence of surface energy effects such as nano-indentation and contact
problems involving an elastic nanoplate.

2.1 Background and Review

Nanotechnology has received wide attention in recent years due to its vast applications in various
disciplines such as biology, chemistry, physics, medicines, material sciences, and engineering. In
the fields of material sciences and engineering, studies related to mechanical behavior of
nanostructured materials have also become a subject of numerous investigations due to the fact
that understanding fundamental aspects of their behaviors at nano-scale level is important for
optimum design of nano-sized devices and structures. There are two approaches that have
commonly been employed to theoretically investigate mechanical behaviors of materials at nano-
scale, namely, atomistic simulation and modified continuum-based model. Atomistic modeling
techniques require a very large computational effort, although they are considered very accurate.
A modified continuum-based model then becomes an attractive alternative in obtaining first-
approximation to predict mechanical behaviors of nanostructured materials. Due to their high
surface to volume ratio, nano-scale elements, usually exhibit high influence of surface/interface
free energy, which is the energy associated with atoms at or near a free surface (e.g., see Yakobson,
2003), consequently, their mechanical behavior becomes size-dependent (Wong et al., 1997).
Thus, surface energy effects, which are generally ignored in conventional continuum mechanics
problems, need to be taken into account in modified continuum-based simulation for nano-scale
systems. A theoretical framework based on continuum mechanics concepts was proposed by
Gurtin and Murdoch (1975, 1978) to take into consideration the influence of surface energy effects.
In their model, an elastic surface was formed as a mathematical layer of zero thickness perfectly
bonded to the underlying bulk material without slipping. Several studies were carried out to verify
that modified continuum-based simulations with surface energy effects and size-dependency can
be employed to model nanostructured elements with acceptable accuracy. For instance, Miller and
Shenoy (2000) examined the size-dependent behavior of nanostructured elements (i.e. bar, beam
and plate) by adopting the Gurtin-Murdoch model, and found that their results were in a good
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agreement with those obtained from direct atomistic simulations. Dingreville et al. (2005)
developed a continuum framework to incorporate the surface free energy in the framework of
continuum mechanics, and demonstrated that overall mechanical behaviors of nanostructured
elements such as particles, wires, films were found to be size-dependent. There also exist other
continuum-based theories that have been developed to take into account the size-dependent
material behaviors at the nano-scale level such as the strain gradient elasticity theory by Mindlin
(1964). The theory proposed by Mindlin has not been widely adopted in the modeling of nanoscale
systems since it involves several additional material parameters and higher-order governing
equations. Simplified versions of Mindlin’s theory have then been proposed, and analytical
solutions to various continuum mechanics problems were presented based on its simplified
versions (e.g., see Georgiadis and Anagnostou, 2008; Gao and Liu, 2012; Gao and Zhou, 2013).

Over the last two decades, several researchers have investigated a variety of continuum
mechanics problems by adopting the Gurtin-Murdoch theory of surface elasticity. For example,
Huang and Yu (2007) studied an elastic half-plane under surface loading with consideration of
surface energy effects. An elastic layer with finite thickness, subjected to surface loading under
plane-strain and axisymmetric conditions, was also considered by Zhao and Rajapakse (2009).
Intarit et al. (2010) derived fundamental solutions of an elastic half-plane under internal loading
and dislocations. An elastic half-plane under surface shear loading was also investigated by Lei et
al. (2012). Recently, nanocontact problem of layered viscoelastic solids with surface energy effects
was presented by Abdel Rahman and Mahmoud (2016). All these studies, however, considered the
surface stress tensor as a 2D quantity with its out-of-plane components being neglected. Wang et
al. (2010) showed that the out-of-plane terms of the surface displacement gradient could be
significant even in the case of small deformations particularly for curved and rotated surfaces. The
complete version of Gurtin-Murdoch model, with consideration of the out-of-plane term, has later
been employed to examine various continuum mechanics problems, for example, problems related
to internally loaded elastic layer under plane strain condition (Intarit et al., 2011) and axisymmetric
loading (Rungamornrat et al., 2016) respectively; contact problem (Zhou and Gao, 2013);
nanoindentation (Pinyochotiwong et al., 2013; Attia and Mahmoud, 2015); nanobeams (Azizi et
al., 2015); nanoplate (Sapsathiarn and Rajapakse, 2013); and nanosized cracks (Nguyen et al.,
2016; Intarit et al., 2017). In addition, the influence of surface energy effects is also significant in
problems related to soft elastic solids (He and Lim, 2006).

Stress analysis of a layered elastic medium under applied surface loading has a rich history
(e.g. see Gerrard, 1969; Burmister, 1945; Gupta and Walowit, 1974; Perriot and Barthel, 2004)
due to its close relevance to various engineering applications, such as characterization of
mechanical properties of layered materials: for example, protective coatings, multilayer capacitors
and layered composite materials; analysis and design of pavement and foundations; and in-situ
testing of soils and rocks and so forth. A review of literature indicates that studies related to a
layered elastic medium with consideration of surface energy effects based on the Gurtin-Murdoch
theory are very limited. This class of problems has extensive applications in the study of
nanocoatings and nanoscale surface layers that are used in electronic devices, tribological and
biomaterial applications, advanced industrial materials, communication devices, etc. The main
objective of this study is to present analytical solutions to a layered elastic half-space and a multi-
layered elastic medium under axisymmetric surface loading by adopting the complete Gurtin-
Murdoch theory of surface elasticity. The boundary value problems of a layered elastic media
under axisymmetric surface loading involving non-classical boundary conditions due to surface
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stress influence are formulated by employing the standard Love’s representation and Hankel
integral transform. Selected numerical results for displacements and stresses due to applied vertical
and radial loading are presented to portray the influence of various parameters and size-
dependency on elastic fields. The present fundamental solution is useful in the development of
boundary integral equation methods for the investigation of more complicated problems such as
nano-indentation and contact problems involving a layered elastic medium. In addition, the present
numerical results can also be employed as a benchmark solution in the development of numerical
techniques such as finite element and boundary element methods for analysis of a variety of
problems with the influence of surface energy such as nano-scale problems and soft elastic solids.

2.2 Basic Equations

Consider an elastic medium under the influence of surface energy effects. According to Gurtin-
Murdoch surface elasticity theory, the medium consists of two different parts, i.e. the bulk material
and the surface, which is a zero-thickness layer perfectly bonded to the bulk material without
slipping. In the absence of body forces, the equilibrium equations, the constitutive equations, and
the strain-displacement relationship of the bulk material under axisymmetric deformations are the
same as those in the classical elasticity theory, which are given respectively by

6O-rr + ao-rz + Oy — Oy =0 ao-rz + aGzz +& =0 (21)
or oz r or oz r
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where {orr, ooy, 0z, orz} denote the components of stress tensors; {err, €, €22, er:} denote the
components of strain tensors; and {ur, u;} denote the components of displacement tensors
respectively. In addition, zzand A are Lamé constants of a bulk material.

(2.4)

On the surface, the equilibrium conditions in terms of the generalized Young-Laplace
equation (Povstenko, 1993), the surface constitutive relations, and the strain-displacement
relationship can be expressed, respectively, as (Gurtin and Murdoch, 1975; Gurtin and Murdoch,
1978; Gurtin et al., 1998)
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where the superscript “s” is used to denote the quantities corresponding to the surface; A° and 2
are surface Lameé constants; z° is the residual surface stress (or surface tension) under unstrained
conditions. In addition, t’and t) denote the prescribed traction on the surface in the radial and
vertical directions respectively. Equation (2.7) can be viewed as the out-of-plane contribution of
the pre-existing surface tension z° in the deformed configuration whereas the surface gradient of
the displacement du,*/dr acts as the out-of-plane component of the unit vector tangent to the surface
in the deformed state. This term has been ignored in several previous studies even though the
contribution of z° could be significant even in the case of small deformations (e.g. see Intarit et al.,
2011; Pinyochotiwong et al., 2013; Rungamornrat et al., 2016).

2.3 General solution for bulk

For the axisymmetric case, the corresponding elastic fields can be obtained by solving the
following biharmonic equation (Sneddon, 1951) in a cylindrical coordinate system (r,6, z)

ViV (r,z)=0 (2.9)

2 2
aa +1§ ai denotes the Laplacian operator in a cylindrical coordinate and ®(r,z)
r’ ror Z

is Love’s strain potential.

where V? =

By applying Hankel integral transform into equation (2.9), we obtain,
Y
(F_ ] G(£,2)=0 (2.10)

where G(¢&,z) =j0°° rdJ,(&r)drand J, (£)denotes the Bessel functions of the first kind of order n.

The general solution of above equation may be written in the form
G(¢&,2)=(A+Bz)e* +(C+Dz)e” (2.11)
where A, B, C and D are arbitrary functions that can be determined from the boundary conditions.

Thereafter, the general solutions for bulk stresses and displacements of an elastic solid can be
expressed in the forms of Hankel integral transform as (Sneddon, 1951; Selvadurai, 2000)
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Finally, the substitution of the function G, given by Eq. (2.11), results in the stresses and
displacements, expressed in terms of the arbitrary functions A, B, C and D as,
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2.4 Solution for layered elastic half-space

Consider a layered elastic half-space consisting of two elastic materials with different properties
perfectly bonded together, in which the upper material is an elastic layer of finite thickness h and
subjected to axisymmetric vertical and radial surface loads denoted by p(r) and q(r) respectively,
as shown in Figure 2.1. To solve this problem, the layered half-space is divided into two domains.
The domain ‘1’ represents the upper layer and the domain 2’ represents the underlying half-space.
The general solutions of the bulk material in the domain ‘1°, are given by Egs. (2.18) to (2.23)
whereas those of the the domain ‘2’ can also be obtained from Egs. (2.18) to (2.23) by replacing
the arbitrary functions A to D with the arbitrary functions E to H respectively. Note that G = 0 and
H = 0 are imposed to ensure the regularity of the solutions at infinity for the domain ‘2’. In addition,
the subscript i =1, 2 is used to denote the quantities corresponding to the domains ‘1’ and ‘2’,
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respectively. The solutions of A to F can be determined by solving the following boundary and
continuity conditions.
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where x° =2, + 4° is a surface material constant. It should be noted that Eqgs. (2.24) to (2.27) are
non-classical boundary conditions obtained from Egs. (2.5) to (2.8). In view of Egs. (2.18) to (2.23)

together with the assumption that the surface residual stress z° is constant, the following six linear
algebraic equations are established to solve for the arbitrary functions Ato F.
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where the following non-dimensional quantities in the above equations are defined as: h = h/Aq;
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= [A; & =5 /A, and A, =« (4 +24) /2 (4 + ) . In addition, the functions P (&)
and Q(¢&) are obtained from the surface loads p(r) and q(r) respectively as

I

T (2.37)

“I
"I

(2.36)

in which p=p/s; =09/ ; and T =r/A, . The arbitrary functions A to F for given functions of

the applied surface loads p(r) and qg(r) can then be obtained separately by solving the linear
equation system, Egs. (2.30) to (2.35), and they are given by

AS=Ac+AS (2.38)
B=B, +B, (2.39)
Cé=C&+C¢& (2.40)
D=D, +D, (2.41)
AS
F b21 b22 b23 b24 Cg
D
AN § a‘22 ( a34 43) + a‘23 ( a328‘44 ) + a‘24 (3.323. a33a 42 )
BN —_ F_)(f) a21(a 4)+a23(a3 1)+a24(a33a41 a31 3) (2 43)
CNé: 252 |a-|J| l(aS 2)+a22( a‘31a4)+a24(a31 a32a 1) .
DN ( a32 43 ) + a'22 ( a33 41) + a'23 (a32 41 a‘31a‘42)
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ASl [P (BBe — kB ) + 8 (B — BBl ) + a1 (%8s — 3
B. [__ Q) 1(a3 3)+als(a3 4)+a14(a3 858, ) (2.44)
Cod|  28%-[ay| | A (aaas, - a32a44)+a12(a3a44 a34a41)+a14(a3 a41 a31a42)
Dy 8y, (B8 — By ) + A, (g — BBy ) + 85 (3518, — 8 )
a A, A Ay,
|aIJ | — aZl a22 a23 a24 (2-45)
A Ay Ay Ay

B = A Mﬂzf (2.46)
a, =1+7°¢ (2.47)
a13=—21’+@ (2.48)
a, =1-7¢ (2.49)
ay =4+ % (2.50)
8, =1- 4/ —A{%f (2.51)
=4 _@ (2.52)
8, =1+, —¥ (2.53)
1 —2h&
= 28— (71 -2, +2) (254)
B g "¢ =2\ —s o ohe A +2
= ((2+ RS ) (e - 2m) (24 24R¢ |+ e v (2.55)
8, =1 — A2 1 Jﬁ;f (2.56)
A +2m, 2
a34=—f;§( ”ﬂf}ﬁz(z HRE)+ (1 ARe) —[%] (257)
A +24,
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_ZH§ A’l’ + 2
A +2H,

(zi’ (Re-1)(2-27, + &)+ 2)—ﬁ22e

WS WAR,
2 2 +2h,

8y =(1+ ﬁé)[ﬂ; AR -@J—l_ i (ﬂf +2ﬂ;ﬁ§—2]

A =

2 2 +21,
b11 Zﬂ
Y
2, (ng-1)(4 -4m,)
% (4 +2m)

9 =

o W28, = 2, + 2R
% (% +2m,)

b, =—€

2 (2 A= AN+ 22 () + 2 e
% (4 +2)

b14 =—e’

b,y = ﬁzeZHé At 2&_,55 -2
&+ 2,

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

Substitution of the arbitrary functions A to F into Egs. (2.18) to (2.23) yields the displacement and
stress fields at an arbitrary point of the layered elastic half-space under axisymmetric surface

loading as shown in Figure 2.1.
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2.5 Exact Stiffness Matrix Method for Multi-Layered Elastic Medium

Consider a multi-layered elastic medium subjected to axisymmetric vertical and radial surface
loads denoted by p(r) and q(r), respectively, as shown in Figure 2.2. The layers and the surfaces
of the multi-layered medium are illustrated where the 2" surface to the N* surface could be called
“interface”. The stress boundary conditions at the top surface and the displacement boundary
conditions at the rigid base of the multi-layered medium are given below.

~{oQ+T2Y|,., =p(r) (2.70)
~{o®+T2}|,., =a(n) (2.71)
Uy |, =0 (2.72)

where o =r,z and

[ S s 2,8 S
L i T LA (2.73)
' dr { dr s dr®  r dr s

i S S 2.5 S S
= dz, 140 +i; d uzr +ldur _u_; (2.74)
: dr rj., dr rdr r .~

where «° =2, + A7 is a surface material constant corresponding to the 1% surface and u¢ and u¢
are the displacements of the surface in the n-direction (n =r, z). In addition, the terms T° and T®
represent the contribution from the surface energy effects in the normal and tangential directions
respectively. These terms are normally ignored in the macro-scale problems but for nano-scale
problems, these effects have to be considered at the top surface and every interface. Thus, the
traction and displacement continuity conditions at the n" surface, where n=2,3,..,N, can be
written as follows:

(ol o -]

24

S
z

S
r

" =0 (2.75)

(n-1) (n) S
{O- — Oy _Tr}

zr

=0 (2.76)

S
a

—yD

ul =u ¢ (2.77)

=1,

7=1, =1,

The terms on the right-hand side of Egs. (2.75) and (2.76) can be condsidered as the continuity of
traction at the n" surface. If there is traction applied at a layer interface, the right-hand side term
at that interface is non-zero and this calculation scheme is still viable.

To solve this boundary value problem, the continuity condition of traction and
displacements at each surface, Egs. (2.75) to (2.77) have to be considered with the boundary
conditions, Eqgs. (2.70) to (2.72). For the problem shown in Figure 2.2, the condition number of
the equation system is extremely large when using the high value of & for the equation system to

be solved conventionally due to the presence of mis-matching exponential terms in the equations
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system (Senjuntichai and Rajapakse, 1995). The large condition number indicates the ill-
conditioning of the system, which results in the low numerical stability of the system. To avoid
the low numerical stability, the exact stiffness matrix scheme, (Senjuntichai and Rajapakse, 1995;
Wang and Rajapakse, 1994), is adopted to solve this boundary value problem related to a multi-
layered medium with surface energy effects.

An exact stiffness matrix method is established to examine the behaviors of a multi-layered
elastic medium from the relationship between displacements and traction at each layer. A multi-
layered medium consisting of N layers of different properties and thicknesses over a rigid base is
considered as shown in Figure 2.2. The general solutions given by Egs. (2.18) to (2.23), can be
expressed in the Hankel transform space in the following matrix form.

(uED) wE2)] =RED (2.78)
(0262 ox(&D)] =S 2@ (2.79)
where
c(”)(E)z[A(”) B™M cm D(n)]T (2.80)
o o™ B S O
- —e* [—z— ﬁ)_Jeéz —e* [—z+%}e§z
R(“)(E,E){“’_Tﬂ @7e ore (2.81)
Pl (e o (i
€ Z+=|€ e Z+=|€

7 =] B ORI
e’ |z+ ’u()_ et e |—z+H _|e*
__ — & o"¢
S, z):(wm)g) - o (2.82)
oA e |3 &
e LI————|€ € Z+ = |€
w(“)g a)(”)f J
In addition, the dimensionless quantities from the above equations are defined by
K =248 + A (2.83)
s ﬂ,(l) 2 @
_ (240 (2.84)
24 ( 20 #a))
—a 0
" =% (2.85)
—m AW
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;S _ Kn
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S
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’Z' —_—
" LOA
o P
n 2/—1(n)
(ny -3
w T
% ="—m
2u
z=7/A
r=r/A
§=¢A

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

in which the superscript letter “T ” represents the transpose of a vector or a matrix. The superposed
bar symbol, “ 7, denotes the non-dimensional quantities with respect to the properties of the first
layer, Egs. (2.83) to (2.94), where the tilde symbol, “~ ”, denote the non-dimensional quantities in

their Hankel transform space.

For the n" layer, the displacements and traction at the top and bottom surfaces of the bulk can be

formulated by using Egs. (2.78) and (2.79) as follows:

HE | e

ez L _f ™ (Z) (2.95)
U (élfnﬂ) R™ (E,Em—l)

Ur (f, Zn+1)

—Oz (?,%n) - (E’En)

oG | c™ (&) (2.96)
I (f!f"*l) S(n) (E,En+l)

O (5, Zn+1)

In addition to the stresses in the bulk, due to the presence of the surface energy effects, the terms
corresponded to the surface effects, T and T, need to be considered in the same manner as the

stresses. By considering the displacements continuity condition, Eq. (2.77), together with the



general solutions of normal displacement, radial displacement and their derivatives, Eqgs. (2.18)
and (2.19), the surface stresses can be represented as shown in the following equation:

e T 7 @)

“Te(Gzn) o) c™ (&) (2.97)
0 0
0

where T:(&,z.) and T (&,za) are the Hankel transform of T and T, respectively, and the matrix
Z_ is given by

-5,e’ —[z +

2;(n)

a)(ﬂ)g:

—(n)
sef _seft |72
w(ﬂ)(;:

Jd,efz

(2.98)

2,E2-(¢)

_7ne7§Z

B
S S

Thereafter, the relationship between the displacements and traction at each layer is formulated.
The stresses expressed in this relationship are the stresses in the bulk combining with the surface
stresses of the interface between the layers. From Eqgs. (2.96) and (2.97), the stresses terms can be
merged as shown below.

—Oz (?,%n) —Tj(%;%ﬂ) -gm (g,zn)_zn (E,En)

| Lrigay| | O B e e
Oz (f,fwl) 0 S(n) (E,Em—l)

Oun (f, Zn+1) 0

In view of Egs. (2.95) and (2.99), the following relationships can be established for the n" layer:

6™ = KMy (2.100)
where
—[Uzz (E,En) +Ti(g,2n):|
o = —[ozr (£,20) +Tf(E,5n)} (2.101)
Oz (E,Em—l)
O zr (E,Em—l)
u; (g,gn)
o _J Ur(8iz0) (2.102)
U; (é, Zn+1)
Ur(g,inﬂ)
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SO(E,20)~Z,(&,20) || RV (E,20) |
K™ =| oo || eoveeereennn, (2.103)

S™ (&, zni1) R™ (&,2n1)

The advantage of using the exact stiffness matrix scheme is that the condition number of the
equation system is relatively low compared to the conventional technique (Senjuntichai and
Rajapakse, 1995). To assemble the global stiffness matrix of the multi-layered elastic medium, the
continuity conditions of traction and displacements at each surface are imposed. From the
continuity conditions in Egs. (2.75) to (2.77) and the relationship between the displacements and
traction at each layer in Eq. (2.100), the global equation system can then be established as

K'U =F (2.104)
in which

F*:Z_;z[p(g) Q® 00 - 00 (2.105)
U =[u.(G2) wEz) wEz) u@Ez) — u(zn ur(E,ZN+1)]T (2.106)

and the matrix K" is the global stiffness matrix established by assembling the matrix K™ from
Eqg. (2.103) with the consideration of the continuity conditions of traction and displacements from

Egs. (2.75) to (2.77) at each surface. The functions P(¢) and Q(&) are the Hankel transform of
the normalized surface loading, i.e. p(r)/ 4™ and q(r)/ 4@ respectively. The solution to the

above global equation system yields the Hankel transforms of the displacements at each layer
interface. Hankel transforms of the stresses at the layer interfaces can then be obtained by
substituting the solution to the displacements into Eq. (2.100). Finally, the displacement and stress
fields can be determined by applying an accurate numerical quadrature scheme. In the next chapter,
the procedure and the details of the numerical quadrature scheme are provided followed by the
verification of the scheme on existing solutions. Thereafter, parametric studies investigation are
conducted based on practical models to study the influence of various parameters on elastic fields
of the layered medium.

2.6 Numerical results

The numerical solutions of displacements and stresses for a layered elastic half-space and a multi-
layered elastic medium under axisymmetric surface loading as shown in Figure 2.1 and 2.2
respectively are presented to illustrate the nano-scale influence through the surface stress effects
and size dependent behaviors.

2.6.1 Numerical scheme

A computer code based on the boundary value problem described in the previous section has been
developed to evaluate all elastic fields of a layered elastic half-space and a multi-layered elastic
medium under axisymmetric surface loading. A closed-form solution to the displacement and
stress fields cannot be obtained in Egs. (2.18) to (2.23). Therefore it is essential to determine all
elastic fields by numerically evaluating the semi-infinite integrals appearing in Egs. (2.18) to
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(2.23). It is found that those semi-infinite integrals with respect to & can be accurately evaluated
by employing an adaptive numerical quadrature scheme. This scheme subdivides the interval of
integration and employs a 21-point Gauss—Kronrod rule (Piessens et al., 1983) to estimate the
integral over each subinterval. The error for each subinterval is estimated by comparing the
obtained results with those from a 10-point Gauss-Kronrod rule. The subdivision continues until
the error from the approximation is reached a specified tolerance.

2.6.2 Verification

The accuracy of the proposed solution scheme is first verified by comparing with the existing
solution given by Gerrard (1969), who presented the classical solutions (without the influence of
surface energy effects) of a layered elastic half-space subjected to axisymmetric surface loading.
Table 2.1 presents a comparison of normalized displacements at the surface (z = 0) and normalized
stresses at the interface (z = h) along the radial direction of a layered elastic half-space under
uniformly distributed normal traction po, acting over a circular area of radius a at the surface. The
comparison of surface displacements and stresses at the interface of the layered half-space under
linearly distributed shear traction g(F) = -gor/ ua applied over a circular area of radius a at the

surface is also presented in Table 2.2. In addition, a1/ = 5 with Poisson’s ratio v1 = v2 = 0.2, and
h/a=1 are considered for the numerical results given in both tables. The solutions for normalized
displacements and stresses from the present study are obtained by setting the parameters associated
with the surface energy effects to be zero, i.e., ° = 0 and «* = 0. It is evident that excellent
agreement between the two solutions is observed for both displacements and stresses shown in
Tables 2.1 and 2.2.

The proposed exact stiffness matrix scheme for a multi-layered medium is validated by
comparing with the solution by Katebi and Selvadurai (2013) for an elastic functionally graded
layer, called FG layer, over an underlying half-space subjected to uniformly distributed loading.
The FG layer is modelled as a multi-layered medium with their elastic material properties vary

through the layer thickness by the grading exponential function y(E)zyoe@’ﬂE where m is the
grading constantand , is the shear modulus corresponding to the material of the top surface with

the constant Poisson’s ratio of 0.5. The FG layer is divided into a number of sublayers where each
layer has the same thickness, the shear modulus within each layer is constant and it is computed at
the mid-height of the layer. The appropriate number of sublayers to represent the FG layer is
studied and as the normalized thickness of the layer is 1.0, ten sublayers are acceptable, in which
the error occurred from this model is less than 0.01%. To improve the accuracy, the FG layer can
be divided where the thickness of each layer is different corresponding to the gradient of the
grading function. The properties of the remaining half-space are the same as the properties of the
material at the lower surface of the layer. The half-space is modelled as 10 sublayers of elastic
layers with uniform thickness of 0.1 on a relatively large elastic layer over rigid base. The medium
is subjected to the internal axisymmetric uniform vertical loading applied at the interface between
FG layer and homogeneous half-space. The internal loading function is expressed in the following
equation:

p(r)=p,H(a-r) (2.107)
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where H(a-r) is the Heaviside step function, a is the loading radius and p, is the loading

magnitude. The ratio of the layer thickness to the radius of the loading H /a is set to 1.0. The
verification of the vertical displacement at the interface along the radial direction is illustrated in
Figure 2.3(a) for the case where m = 0.25, 1.0 and 1.5, and the normal stress along the vertical
direction when H /a ratio is set to 2.0 for the case when m = 0.0, 0.5 and 1.0 is presented in
Figure 2.3(b). Both solutions show excellent agreement with the corresponding existing solutions
given by Katebi and Selvadurai (2013).

2.6.3 Numerical solution for layered elastic half-space under surface loading

Numerical results for vertical and radial displacements, and vertical and shear stresses
corresponding to a layered elastic half-space with the influence of surface energy effects subjected
to axisymmetric surface loading as shown in Figure 2.1 are presented next. Two cases of
axisymmetric surface loading, namely, the vertical loading and the radial loading are considered
in the numerical study. The vertical loading denotes the case where uniformly distributed normal
traction po applied over a circular area of normalized radius a/A1 =@ = 10. The radial loading
represents the case where the layered half-space is subjected to linearly distributed tangential
traction g (¥) = qof/u@ over a circular area of normalized radius @ = 10, where qo is the

maximum traction at the edge of the loading region. The functions defined as shown in Egs. (2.36)
and (2.37) are given respectively for the vertical loading and the radial loading as follows,

5(§)=%§J1(§5) and Q=0 (2.108)
P=0 and 6(5):%\11(55)—%30(55) (2.109)

In addition, the numerical results presented hereafter correspond to the case where the material for
the upper layer (the domain “1°) is Si [100] whereas Al [111] is chosen for the underlying half-
space (the domain ‘2”) respectively. The material properties for both domains are given in Table
2.3 (Miller and Shenoy, 2000).

Figures 2.4 presents radial variations of non-dimensional displacements at the top surface
(z = 0) and non-dimensional stresses at the interface (z = h) of a layered elastic half-space under
the vertical loading for different values of normalized thickness of the top layer (h/a). Note that
the stress profiles in all figures presented in this section are computed at the interface (z = h) at the
bulk material of the underlying half-space. Figure 2.4(a) shows radial profiles of vertical and radial
surface displacements for various values of h/a whereas the profiles of normal and shear stresses
at the interface are illustrated in Figure 2.4(b). The classical solutions also presented in these
figures for comparison are obtained by setting the parameters associated with the surface energy
effects to be zero, i.e., z°= 0 and x°= 0. It is evident from Figure 2.4 that although the results from
the present study and the classical solution display similar trends for both displacements and
stresses at all values of h/a, the surface energy effects renders the layered medium stiffer. The
present solution yields lower surface displacements and stresses at the interface. The influence of
surface energy is however less significant in the interface stresses, especially in the case of the
shear stress. It is also found that the magnitude of all displacements and stresses decrease with
increasing the normalized thickness of the layer (h/a) since the upper layer is stiffer than the
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underlying half-space (Lamé constants of Si [100] are higher than those of Al [111]). In addition,
as the layer thickness increases both vertical and radial surface displacements move towards the
homogeneous half-space solutions presented by Intarit (2012), and both solutions are virtually
identical when h/a> 100.

Radial profiles of normalized surface displacements (z = 0) and normalized stress at the
interface (z = h) of the layered elastic medium under the vertical loading are shown in Figure 2.5
to demonstrate the influence of the residual surface stress (z°) on elastic fields. The values of the
residual surface stress in the underlying half-space are varied (i.e. z; = 0.1, 1, 5, 10 N/m) whereas

other material parameters associated with both upper layer and underlying half-space given in
Table 2.3 remain unchanged. In addition, the normalized thickness of h/a = 1 is considered in the
numerical results shown in this figure. Once again, the influence of the surface stress is clearly
observed from the displacement and stress solutions presented in Figure 2.5. The values of all
displacements and stresses from the present study are substantially reduced from their classical
elasticity counterparts as the value of the residual surface stress increases.

The next numerical results are presented to demonstrate the size-dependent behavior of the
present solution when the influence of surface energy effects is considered. Figure 2.6 shows radial
variations of vertical and radial surface displacements, and the vertical and shear stresses at the
interface of the layered half-space under the vertical loading for different values of the normalized
radius of loading area @ (i.e. @ = a/A1 =1, 5, 10). In addition, the thickness of the top layer
and the circular loading area are varied while their ratio is maintained at h/a = 1. Note that the
solution when @ = 1 corresponds to the case where the thickness of the layer is equal to the
characteristic length (A1). The corresponding non-dimensional solution for the classical elasticity
case is also shown, and it is size-independent. The size-dependency of the present solution is
clearly observed in all displacement and stress profiles. It is evident from the numerical results
presented in Figure 2.6 that the present solution accounting for surface energy effects approaches
the classical solution as the loading radius increases. This is consistent with the fact that a larger
loading area would produce higher displacements and stresses.

The final set of the numerical results corresponds to the case where the layered elastic half-
space is subjected to the radial loading, in which the tangential traction is applied linearly
distributed over a circular area of normalized radius a = 10. Figure 2.7 presents radial profiles
of non-dimensional displacements at the top surface (z = 0) and non-dimensional stresses at the
interface (z = h) for different values of h/a. It is evident from Figure 2.7 that both displacements
and stresses of the layered half-space under radial loading depend more significantly on surface
energy effects for all values of h/a when compared to the results presented in Figure 2.4 under
the vertical loading case. The presence of surface stresses significantly lowers the magnitude of
all displacements and stresses shown in Figure 2.7. In addition, all displacements and stresses are
reduced as the normalized thickness of the layer (h/a) increases. Once again, both vertical and
radial surface displacements are practically the same as the half-space solutions given by Intarit
(2012) when h/a > 100 similar to what observed in the vertical loading case.

2.6.4 Numerical solution for multi-layered medium over rigid base under vertical surface
loading

A model of Si/Al multi-layered medium resting on a rigid base is selected since Si/Al multi-layered
structure is one of the most well-known systems for micro- and nano-electronic materials
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(Nakayama et al., 1995). The multi-layered medium consists of two different materials stacking
alternately throughout the total thickness, H . The odd layers are Si [100] and the even layers are
Al [111] where the thicknesses of both layers, h, and h,, are both equal to 0.2 nm. The thickness

of the medium is equal to 1 um and subjected to top surface axisymmetric loading with the loading
function as shown in Eq. (2.107) where the normalized thickness a, a/A, equal to 1.0. The
boundary value problem is illustrated in Figure 2.8. The material properties of Si [100] and Al
[111] are shown in Table 2.3 where the surface properties of Si [100] are selected as the properties
of the top surface and the surface properties of Al [111] are hypothetically selected as the properties
of other interfaces. From Table 2.3, the material length scale A of Si [100] is equal to 0.16739 nm
which is used as the structure length scale to normalize every dimensional parameter. Therefore,
the normalized thickness of each layer is equal to 1.195 and the loading radius is equal to 0.16739
nm. In addition, the superposed bar symbol “ > implies that the parameter below the symbol is
normalized with the material length scale.

Figure 2.9 shows the vertical displacement and the normal stress of the Si/Al multi-layered
medium at different profiles along the radial direction for the cases where the surface energy
effects are considered and ignored. The monitoring profiles for the displacement are the top surface
where z = 0 nm, the second surface where z = 0.2 nm and the third surface where z = 0.4 nm
while for the stress, the same set of monitoring profiles are used except for the first profile, the
profile at the middle of the first layer where z = 0.1 nm is used instead. It can be implied from the
results that the influence of the surface energy effects is significant to the vertical displacement
and normal stress at all profiles shown in Figure 2.9, especially the profile close to the top surface
where the loading is applied.

The influence of the surface energy effects at the interface is investigated next by varying
the surface elastic properties at each interface. The residual surface stress of the interfaces z; is

varied whereas the residual surface stress of the top surface 77 remain the same. The results,

displacements at the top surface and stresses at the profile z = 0.1 nm, are obtained with the ratio
of the residual surface stress of the interface to the top surface, z,, being -0.5, 1.0, 2.0 and 5.0

while the value of x° remains the same for all cases. The similar trends can be observed in all the
results shown in Figure 2.10, i.e. the value at every points of all the results converged to zero when
the ratio increases. This means that the increment of the effects renders the medium stiffer than
those with lesser value of the 7, ratio, and the residual surface stress at every interface contributes

significantly to the results in this model. Note that the surface elastic constant «*° shows negligible
influence on the results compared to the residual surface stress z° (Intarit, 2012).

Although the size dependency effect has been studied by various researchers, the effect on
a multi-layered medium is the topic that has not been discussed yet. The numerical experiments
have been conducted on a default model to obtain vertical displacement and normal stress at the
depth of z =0.0 nm for the displacement, z = 0.1 nm for the stress and r/a = 0.5 for both fields
while varying the parameter a. The ratio H/a is kept constant for every a. The influence of the
size dependency effect is illustrated in Figure 2.11, which indicates the trend of the elastic fields
when the parameter & is changed. The differences between the elastic fields, with and without the
surface energy effects, are reduced when a is increased. However, the differences are significant
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when the value of a is small, approximately below 2.0. Additionally, the results of the present
study agree well with the work from Rungamornrat et al. (2016).

The capability of the numerical scheme in terms of applied loading cases is also
investigated in this study. Three different types of axisymmetric loading cases are chosen with the
same amount of total force, namely, uniformly distributed vertical loading as shown in Eq. (2.107),
the contact pressure from the flat-ended rigid punch and the contact pressure from the paraboloid
revolutionary rigid punch. The second and third loading cases are the assumed forms of loading
function, which provides the similar contact pressure to flat-ended rigid punch and paraboloid
revolutionary rigid punch indentation problem respectively, when applied to the homogeneous
half-space medium. The assumed form of loading function of the flat-ended rigid punch is
expressed in the following equation (Sneddon, 1965):

p(r)=(ps/u*a)/ [1-(r/a)) - (a-7) (2.110)

and the assumed form of loading function for paraboloid revolutionary case (Sneddon, 1965) is
p(7)=(po/4"a),[1-(F/a)")-H (a-T) (2111)

where H(a-T) is the Heaviside step function. The vertical displacement of the top surface and

the normal stress at the profile z = 0.1 nm are plotted in Figure 2.12. The vertical displacements
of the flat ended and paraboloid revolutionary cases shown in Figure 2.12 reflect the flat and
paraboloid shapes respectively. The influence of surface energy effects can be found at all results
corresponding to the three loading cases. The flat ended loading case provides the maximum
displacement whereas the paraboloid revolutionary case yields the minimum displacement. In
addition, the influence of the surface energy effects is significant only under the contact area of
the loading where 7/a < 1.0.

2.6.5 Numerical solution for functionally graded layer on a homogeneous elastic layer under
uniform vertical surface loading

The elastic properties of the FG layer vary in the z-direction from the elastic properties of Si [100]
at the depth Z = 0.0 to the elastic properties of Al [111] at the depth Z= h where h _is the
normalized thickness of the FG layer as shown in Figure 2.13. The variational pattern of the elastic
properties of the FG layer is determined by the grading function in which the exponential function,
L(Z) =L,e™’ where mis the grading constant and L, is the Lame’ constants of Si [100], is
selected for all cases. The value of the grading constant m is obtained by back calculation from
the known elastic properties at the depth Z = 0.0 and Z= h . The FG layer is divided into 10
sublayers where the elastic properties of each layer are assigned in the same manner as the
verification model. The underlying homogeneous elastic layer is a layer of Al [111] and its layer
thickness is equal to h,. The h /h, ratio is set to 9.0 where the ratio H/a and the loading radius
a are both setto 1.0. This model is subjected to the same loading case as the multi-layered model,
Eq. (2.107). The surface elastic properties of the top surface and the interface of this model are
equal to the surface properties of Si [100] and Al [111] respectively.
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The top surface vertical displacement corresponding to the variation of the thickness ratio
between upper and lower layer are illustrated in Figure 2.14 with H/a being fixed at 1.0. Since

Al [111] has lower elastic properties than Si [100], the obtained displacement then becomes
maximal when the thickness of Al [111] is 9.0, which is the largest thickness considered in the
Figure 2.14. The influence of the total thickness H on the top surface vertical displacement of the
FG layer model when the total thickness is increased whereas the first layer thickness remains the
same is presented in Figure 2.15. As the thickness increases, the influence of the surface energy
effects increases.

The vertical displacement profiles along the radial direction at each profile through the
thickness of the multi-layered medium have been plotted to study the surface energy influence
when the distance between the selected profiles and the top surface increases. The results
illustrated in Figure 2.16 can be implied in the same way as the multi-layered model, i.e. the
influence of the surface energy effects on the displacement is lower when the distance between the
profile and the top surface increases. The effect of the residual surface stress ° on the FG layer
problem is studied next. Figure 2.17 shows the displacements profiles at the top surface and the
stresses profiles at the interface between the FG layer and the homogeneous layer with the value
of 7, being -0.5, 1.0, 2.0 and 5.0. The similar trend to the Si/Al multi-layered model can be

observed in Figure 2.17 where the presence of the residual surface stress renders the medium
stiffer.

Finally, the influence of grading function on elastic fields of the FG layer is considered. To
investigate the difference between the grading function of the FG layer, three grading functions,
namely, linear, exponential and power law distributed grading function, have been employed to
observe the variation of the top surface vertical displacement and normal stress at the interface.
The linear grading function is given by

L(z)=L"(1+mz) (2.112)

where m=(L" - )/( Lh,).
In addition, the power law distributed grading function can be expressed as

L(zZ)=L"(1+7/R)" (2.113)
where m=log, (L"/L") and 7 <h,.

The special case of the FG layer has been introduced to emphasize the difference between the
results among gradation functions. The elastic properties of the top surface and the interface,
previously assigned as the properties of Si [100] and Al [111] respectively, are substituted by the
1% material and the 2" material for this special case, which are z, =100 GPa, 4, /x4, = 1.5 for the
1%t material and g, =10 GPa, 4,/u, = 1.5 for the 2" material. The ratio h, /h, for this special case
is set to 1.5, the thickness h, is 0.4, the ratio H/a is kept at 1.0 and the surface quantities at the
top surface and the interface remain unchanged from the FG model. The results show that the
grading function that yields the stiffest medium is the linear distribution, followed by the
exponential and the power law respectively as shown in Figure 2.18. However, the results also
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show that the selection of grading function is significant only for the extreme cases where the
variation of elastic properties and the thickness is large enough.
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Figure 2.1 Layered elastic half-space subjected to axisymmetric surface loading
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Figure 2.2 Multi-layered elastic medium over rigid base under axisymmetric surface loading
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Table 2.1 Comparison of normalized surface displacements and stresses at the interface of a
layered elastic half-space under uniformly distributed normal traction for s/ =5 and h/a = 1.

L1Uz/apo Luur/apo 022/ Po or2/po

r/a | Gerrard | Present | Gerrard | Present | Gerrard | Present | Gerrard | Present

(1969) | solution | (1969) | solution | (1969) | solution | (1969) | solution
0.0 | 0.9945 | 0.9944 | 0.0000 | 0.0000 | 0.4260 | 0.4260 | 0.0000 | 0.0000
0.5 | 0.9442 | 0.9440 | -0.0746 | -0.0746 | 0.3790 | 0.3790 | 0.0867 | 0.0867
1.0 | 0.7651 | 0.7649 | -0.1363 | -0.1363 | 0.2526 | 0.2526 | 0.1303 | 0.1303
2.0 | 0.4630 | 0.4629 | -0.1048 | -0.1048 | 0.0657 | 0.0657 | 0.0719 | 0.0719
3.0 | 0.3179 | 0.3177 | -0.0747 | -0.0748 | 0.0174 | 0.0174 | 0.0307 | 0.0307
5.0 | 0.1867 | 0.1866 | -0.0420 | -0.0421 | 0.0010 | 0.0010 | 0.0069 | 0.0069
10.0 | 0.0933 | 0.0932 | -0.0217 | -0.0218 | 0.0001 | 0.0000 | 0.0009 | 0.0009

Table 2.2 Comparison of normalized surface displacements and stresses at the interfaces of a
layered elastic half-space under linearly distributed tangential traction for w1/ =5 and h/a = 1.

LuUz/aqo Luur/ado o210 orz/qo

r/a | Gerrard | Present | Gerrard | Present | Gerrard | Present | Gerrard | Present
(1969) | solution | (1969) | solution | (1969) | solution | (1969) | solution
0.0 | 0.1188 | 0.1189 | 0.0000 | 0.0000 | 0.1150 | 0.1150 | 0.0000 | 0.0000
0.5 | 0.0941 | 0.0941 | -0.0952 | -0.0952 | 0.0803 | 0.0803 | 0.0359 | 0.0359
1.0 | 0.0253 | 0.0253 | -0.0934 | -0.0934 | 0.0173 | 0.0173 | 0.0312 | 0.0312
2.0 | 0.0044 | 0.0044 | -0.0198 | -0.0198 | -0.0068 | -0.0068 | -0.0005 | -0.0005
3.0 | -0.0003 | -0.0003 | -0.0087 | -0.0087 | -0.0028 | -0.0028 | -0.0020 | -0.0020
4.0 | -0.0006 | -0.0005 | -0.0051 | -0.0051 | -0.0010 | -0.0010 | -0.0012 | -0.0012
5.0 | -0.0003 | -0.0003 | -0.0036 | -0.0036 | -0.0004 | -0.0004 | -0.0007 | -0.0007
10.0 | 0.0001 | 0.0001 | -0.0014 | -0.0014 | 0.0000 | 0.0000 | -0.0001 | -0.0001
Table 2.3 Material properties employed in numerical study.

Material Upper layer Underlying half-space

parameters Si [100] Al [111]

A (N/m?) 78.0849 x 10° 58.17 x 10°

1 (N/m?) 40.2256 x 10° 26.13 x 10°

7% (N/m) 0.6056 1

A3 (N/m) 4.4939 6.8511

15 (N/m) 27779 -0.376

& (N/m) 10.0497 6.0991
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CHAPTER IlI
MODELING OF NANO-BEAMS

This chapter presents the modeling and analysis of buckling, post-buckling, and bending responses
of nano-scale beams with the consideration of both surface and nonlocal effects. The chapter is
organized by first briefly summarizing background and relevant past studies, then presenting the
problem formulation, key governing equations and solution methodology, and finally reporting
significant findings and important remarks.

3.1 Background and Review

Nano-scale components and devices such as transistors, sensors, actuators and resonators used in
the nano-electro-mechanical systems (NEMS) and parts of nano-chips have been largely
developed due to their extraordinary physical and mechanical properties. As a result, studies
towards the characterization of mechanical properties at such a tiny scale have rapidly gained
interest from many investigators. Understanding the mechanical behavior and other related
properties (e.g., bending, buckling, post-buckling, and vibration) of slender nano-components,
which are commonly found as parts of nano-devices and nano-systems, is obviously essential and
generally required in the design procedure to ensure the integrity and safety throughout their usage.

Owing to the positive features which are based principally upon the simplicity of
fundamental governing physics and low requirement of computational resources, in comparison
with atomistic and molecular dynamics simulations, the classical continuum-based techniques
have been increasingly proposed and extensively employed, in the past three decades, to study
nano-beam problems. In general, existing classical beam theories (e.g., Timoshenko and Gere
1961; Reddy 2018) have been enhanced by integrating Eringen nonlocal constitutive law (e.g.,
Eringen 1976, 1983, 2002; Peddieson et al. 2003; Reddy 2007; Reddy and Pang 2008; Reddy et
al. 2014) and Gurtin-Murdoch surface elasticity model (e.g., Gurtin and Murdoch 1975, 1978;
Gurtin et al. 1998; Preethi et al. 2015) to be capable of handling nano-scale phenomena, such as
the surface and nonlocal effects and size-dependent behavior observed from experimental
investigations and atomistic calculations.

Results from an extensive literature survey have indicated that work towards the modeling
of mechanical properties of nano-scale elements using continuum-based theories has been
continuously grown in the last decade; however, most of existing studies were found limited to
certain nano-scale influences. For instance, the classical beam theory enhanced by Eringen
nonlocal constitutive law was proposed to predict the buckling loads, post-buckling shapes,
bending and vibration responses of nano-rods/tubes/ribbons (Wang et al., 2006; Reddy, 2007,
Wang and Liew, 2007; Pradhan and Phadikar, 2009), nano-wires (Janghorban, 2012), nano-
elements or nano-beams (Wang et al., 2008; Glavardanov et al., 2012; Potapov, 2013; Eltaher et
al., 2013; Simsek and Yurtcu, 2013; Emam, 2013; Koutsoumaris et al., 2017; Vila et al., 2017).
Results from those studies indicated that nonlocal parameters play a crucial role on both the value
and size-dependent behavior of predicted solutions when the characteristic length of elements is
within a nano-scale level. To capture the surface energy effects and size dependency commonly
found in nano-scale structures, Gurtin-Murdoch surface elasticity theory was also utilized, by
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several investigators, along with various beam theories such as Timoshenko, Euler-Bernoulli,
Levinson and Reddy models (Reddy, 2007) to examine buckling, post-buckling, vibration and
bending responses of nano-wires (He and Lilley, 2008; Wang and Feng, 2009; Jiang and Yan,
2010; Wang et al., 2010; Wang and Yang, 2011; Liu et al., 2012; Chiu and Chen, 2013; Li et al.,
2014; Dong et al., 2014), and nano-beams (Jian-Gang and Ya-Pu, 2007; Liu and Rajapakse, 2010;
Bar On et al., 2010; Liu et al., 2011; Sapsathiarn and Rajapakse, 2012; Ansari et al., 2013; Giunta
et al., 2013). In those studies, analytical, semi-analytical, and numerical techniques were proposed
to construct solutions of associated mathematical models and some predicted results were also
found in agreement with existing experimental evidences (He and Lilley, 2008; Jiang and Yan,
2010; Chiu and Chen, 2013). In addition, results from those investigations also confirmed the vital
role of the surface energy effect when the size of structures reduces to a nano-scale level and the
size-dependency characteristics of predicted responses.

By recognizing the significant role of both nonlocal and surface energy effects in the
modeling of nano-scale structures, only few investigators have simultaneously included both
Eringen nonlocal constitutive law and Gurtin-Murdoch surface elasticity theory in the simulations
of nano-scale elements. For instance, Juntarasaid et al. (2012) considered both effects together
with the linearized Euler-Bernoulli beam model to derive analytical solutions of buckling load and
small deflection of nano-beams subjected to different boundary conditions. It should be pointed
out that while their mathematical model can adequately capture the nano-scale influence but the
contribution of the residual stress within the bulk material due to the non-zero residual surface
tension present within the material surface was still not considered. Later, Mahmoud et al. (2012)
used both the surface and nonlocal elasticity models along with the linearized Euler-Bernoulli
beam theory to derive a key differential equation governing the deflected shape of nano-beams
under transverse loadings. A standard finite element procedure was adopted to construct
approximate solutions and an extensive parametric study was performed to examine the important
role of both surface and nonlocal parameters on the size dependency of predicted solutions. Hu et
al. (2014) integrated the nonlocal linear elasticity and surface stresses into the classical linearized
beam theory to examine the buckling load and vibration of nano-wires. Analytical solutions for
both cases were derived using a fundamental approach in the differential-equation theory. It is
worth noting that in their formulation, the initial residual stress within the bulk was completely
ignored and the effect of the residual surface tension was lumped into the fictitious longitudinal
force. Also, Wu et al. (2015) presented a continuum-based mathematical model by integrating
small-rotation Euler-Bernoulli beam theory, surface elasticity theory, and nonlocal linear elasticity
to examine the bending response of nano-wires under various boundary conditions. Most recently,
Preethi et al. (2015) presented a nonlocal nonlinear finite element formulation for the Timoshenko
beam theory accounting for the surface stress effects as well as Eringen’s nonlocal elasticity.
Hosseini-Hashemi et al. (2015) used both the Eringen nonlocal continuum field theory and the
Gurtin-Murdoch surface elasticity model to investigate the effect of the nano-beam length,
thickness to length ratio, mode number, amplitude of deflection to the radius of gyration ratio and
nonlocal parameters on the normalized natural frequencies of nano-beams with both positive and
negative surface elasticity.

While applications of both nonlocal and surface elasticity theories to the investigation of
mechanical responses of nano-scale elements have been well recognized in the literature, most of
existing studies were carried out mainly in the context of linearized beam theories and use of
nonlinear kinematics in the modeling is still relatively few (e.g., Preethi et al., 2015; Hosseini-
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Hashemi et al., 2015). Mathematical models relying upon small displacement and rotation
assumptions generally pose several restrictions in terms of responses to be predicted and, also, the
capability to simulate nano-elements which are often slender and undergo large deflections under
applied loads. In addition, the integration of both nonlocal and surface energy effects in the
simulations was still limited to certain scenarios, and contribution of the initial residual stress
within the bulk material, when Gurtin-Murdoch surface elasticity model was utilized, was fully
neglected in most of previous investigations. The contribution of the non-zero residual surface
tension was integrated mainly via the fictitious longitudinal force. This ignorance can lead to either
inaccurate or erroneous predicted solutions as pointed out by Wang et al. (2010).

The present study aims mainly to close this gap in the literature. An efficient numerical
solution procedure is established to determine nonlinear responses of nano-beams by integrating
both Eringen nonlocal constitutive law and Gurtin-Murdoch surface elasticity along with Euler-
Bernoulli beam theory. The influence of the residual stress within the bulk material induced by the
residual surface tension of the material layer is also incorporated into the modeling through the
moment-curvature relationship of the beam. The problem is formulated within the context of the
large displacement and rotation and the final set of exact governing equations is then solved by an
efficient nonlinear solver. One of the novel features of the proposed method is the solution
procedure that is free of discretization; as the direct consequence, the technique generally yields
very accurate results comparable to the analytical solution and then suitable for use as the reliable
benchmark solutions. The nano-scale influence and size-dependency of predicted solutions are
also fully examined and a selected set of results is reported and discussed.

3.2 Problem Formulation

In this section, a clear problem description is presented along with the integration of three basic
field equations (i.e., equilibrium equations, constitutive relations, and kinematics) to form a
complete set of nonlinear differential equations governing the deflected shape of a nano element
undergoing large displacements and rotations.

3.2.1 Problem Description

Consider a perfectly straight, prismatic, nano-beam of length | with a rectangular cross-section of
width b and depth h. The nano-beam can be divided into two regions, the bulk part which is made
of a homogeneous, isotropic, linearly elastic material governed by Eringen nonlocal constitutive
law and the material surface which is governed by Gurtin-Murdoch surface-elasticity model. All
material constants associated with both models are fully prescribed and assumed spatially
independent. In the present study, the nano-beam is free of interior loads and subjected to two
different sets of boundary conditions, a fixed-free nano-beam under longitudinal and transverse
concentrated forces at the free end (see Figure 3.1(a)) and a fixed-rollered nano-beam under a
longitudinal concentrated force and a concentrated moment at the rollered end (see Figure 3.1(b)).
The direction of all applied loads remains unchanged throughout the loading history.

The problem statement is to establish a solution procedure capable of determining the
mechanical response of the given nano-beams including buckling load, post-buckling, and bending
response with the consideration of both surface stresses and nonlocal effects. In addition, the size-
dependency and material parameters characterizing the nano-scale influence of predicted solutions
are also investigated.
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3.2.2 Basic Equations

A classical Euler-Bernoulli beam theory (e.g., Lowe, 1971; Reddy, 2004, 2018), Eringen nonlocal
linear elasticity theory (e.g., Eringen 1976, 1983, 2002; Peddieson et al. 2003; Reddy 2007; Reddy
and Pang 2008; Reddy et al., 2014) and the Gurtin-Murdoch surface elasticity model (e.g., Gurtin
and Murdoch 1975, 1978; Gurtin et al. 1998; Preethi et al. 2015) are integrated to form the basic
field equations governing responses of the nano-beam undergoing large displacements and
rotations.

A centroidal axis of a nano-beam in its undeformed state is shown schematically in Figure
3.2(a). This one-dimensional representation together with the information of the cross section fully
describes the three-dimensional aspect of the initial beam geometry. Under the action of external
loads, the beam displaces to a new configuration with a deformed centroidal axis defined by a
locus of points (x(S), y(S)) where S <[0,1] denotes the initial arc-length coordinate measured from
the left end to any cross section in its undeformed state. The deformed arc-length coordinate
measured from the left end to any cross section in its deformed state is denoted by s [0,1"] where
I” is the arc length of the deformed centroidal axis. Note that the information of the deformed
centroidal axis along with the assumed kinematics of the cross section gives the complete
description of the deformation of the entire beam. The displacements of any cross section located
atapoint (S,0) inthe x- and y- directions are denoted by u=u(S) and v=v(S), respectively, and
they are related to the coordinates x(S) and y(S) by

u(S)=x(8)-S; Vv(S)=y(S) 3.1)

Due to the slenderness of typical nano-beams, it is reasonable to neglect the contribution of the
axial deformation in the response prediction and the centroidal axis of the beam is assumed
inextensible in the present investigation. Based on such assumption along with the consideration
of the deformed centroidal axis of the beam, it leads to the following relationship among the
displacements u and v, the rotation of the cross section ¢, and the initial and deformed arc length
Sands:

ds/dS =1; sin@=dy/ds=dv/dS; cos@=dx/ds=1+du/dS (3.2)

The first relation of (3.2) indicates that there is no difference of using the initial or deformed arc
length S and s as the reference coordinate. From equilibrium of the deformed infinitesimal
element of length ds in the absence of interior loads (see free body diagram in Figure 3.2(b)), the
resultant forces in the x- and y- directions and the resultant bending moment at any cross section,

denoted by f,, f, and m, respectively, satisfy the following differential equations:
df, /dS =0; df, /dS=0 (3.3)
dm/dS = f,sin@+ f, cosé (3.4)

It is obviously seen from (3.3) that an element, that is free of interior loads, possesses the constant
resultant forces f, and f, along its entire length. The resultant axial force F and the resultant

shear force V (i.e., resultant forces normal and parallel to the deformed cross section, respectively)
can be related to the force resultants f _and f, by
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F(0)= f,cosf - f sing (3.5
V()= f,sin@+ f, cosd (3.6)

To establish the relationship between the resultant bending moment m and the deformation of the
cross section, the well-known kinematics assumption of the cross section (i.e., plane section
remains plane) together with Gurtin-Murdoch surface elasticity and Eringen nonlocal elasticity
theories is utilized. The beam element is treated as a composite consisting of the interior part,
called the bulk material, and the remaining zero-thickness material layer, called the material
surface (see Figure 3.3). The material surface is governed by the following Gurtin-Murdoch
constitutive relation (Gurtin and Murdoch 1975, 1978; Gurtin et al. 1998; Preethi et al. 2015):

O,y =10, +2(1° —1°)e,, + (X +7°)e, 0, +T°U; 5 03, =TU3, (3.7)
where the superscript “s ” is employed to designate quantities associated with the surface; Greek
indices range from 1 to 2 and repeated index implies the summation over its range; o3, and o,

denote components of the out-of-plane and in-plane surface stresses, respectively; ¢;, denotes
components of the in-plane surface strain; u; and uS denote components of the out-of-plane and
in-plane surface displacement, respectively; »° and A° denote surface Lamé constants; z°
denotes the residual surface tension in the unstrained state; and J,, is a two-dimensional

Kronecker symbol. For the bulk material, the bulk stress o are related to the bulk strain & via

Eringen nonlocal, isotropic constitutive relation (Eringen 1976, 1983, 2002; Peddieson et al. 2003;
Reddy 2007; Reddy and Pang 2008; Reddy et al., 2014)

[1- (eoa)zA]Gi? = zﬂbgikj) + /Ibé‘ij £ (3.8)

where g, is a non-dimensional constant; a denotes the internal intrinsic length of the material; A
denotes the Laplace operator; »° and A° denote bulk Lamé constants; and lower case indices

range from 1 to 3 and repeated index imply the summation over its range. It is worth noting that
due to the presence of the residual surface tension at the initial unstrained state, the bulk stress
does not vanish to maintain the equilibrium state and the presence of this bulk residual stress is
considered in the present study. By ignoring the boundary and corner effects, the bulk residual
stress, denoted by o;°, can be assumed homogeneous and obtained from static equilibrium of the
cross section at the unstrained state (see Figure 3.3). For the beam with the rectangular cross
section, the bulk residual stress takes the form

2(Wh+1b)z* 0 0
[0:°1= 0 2%/ 0 (3.9)
0 0 -2¢°b

where b and h are width and depth of the cross section. The resultant bending moment m at any
cross section can be obtained from
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m=m’+m® = —Io-lblxsdA— J. o5 X%,dT (3.10)
e oe

where m°,m* are resultant bending moment from the bulk and surface parts, respectively, and €
and o€ denote the cross section and its boundary, respectively. By enforcing kinematics of the
cross section from Euler-Bernoulli beam theory, the normal strains &, and ¢, at any coordinate
x, from the centroid of the cross section are given by

d—gx 85——d—9
ds ™ ™ ds

& =— X, (3.11)
By employing (3.10)-(3.11) along with (3.7)-(3.8) in the absence of the residual surface tension
and the bulk residual stress and then carrying out the integration over the cross section and its
boundary, it yields the relationship between the resultant bending moment m and the rotation
gradient do/ds as

,d’m dée

kY (3.12)

=) ger K s

where K denotes the modified flexural rigidity of the cross section defined by
K=(1+£+EJEI (3.13)
h b

in which E = 4" (24" +34°)/(1® +32°) denotes Young’s modulus of the bulk material, 1 =bh*/12
denotes the area moment of inertia of the cross section, h=h/A , b=b/A, A=E°/E, and
E* = (2u’ +34°)/ (1 +34°). To take the influence of the residual surface tension and the non-
zero bulk residual stress into account, a procedure based on the theory of elasticity with the residual
stress and the principle of virtual work similar to that employed by Wang et al. (2010) is adopted.
It is found that the final relationship between m and dé/dsS is identical to (3.12) except that the
modified flexural rigidity K changes to

=s I 2 12
K:{1+%+§+3\TB (sz%—%—zHEl (3.14)

where I =I/A, 7° =7°/E, and v is Poisson’s ratio of the bulk material. It is apparent from (3.13)
that in the absence of the residual surface tension (i.e., 7° =0), the modified flexural rigidity K is
always larger than that of the classical case El and such discrepancy becomes more significant
when the dimension of the cross section is relatively small in comparison with the intrinsic length
parameter A . On the contrary, presence of the positive residual surface tension can reverse the
effect due to the residual compressive stress generated within the bulk material and such influence
is substantially magnified when the slenderness ratio of the member increases. In various earlier
investigations (He, and Lilley, 2008; Wang and Feng, 2009; Jiang and Yan, 2010; Juntarasaid et
al., 2012), the modified flexural rigidity of the beam was computed from (3.13) which is free of
the residual surface tension. The influence of ¢° is treated separately by ignoring the bulk residual
stress and the equilibrium of the entire body in the unstrained state is maintained differently by
introducing a set of forces at the boundary of the surface. In this point of view, the treatment of
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the surface effect and the residual surface tension with the integration of the bulk residual stress
offered in the present study is more direct and should provide a more realistic mathematical model
for simulating responses of nano-beams.

By substituting the equilibrium equation (3.4) into the constitutive relation (3.12), it yields
the moment-curvature relationship

m:{nwﬁ(e)}g—? (3.15)

where =K/El m=ml/El , u=(ea)*N?, S=S/ and F(0)=f,cosd- f sind with F, =fI?/EI,

fy = fyIZIEI . By substituting (3.15) into (3.4), an alternative form of the moment equilibrium
equation is obtained as

;—S_[{nwﬁ(e)}j—g =V (6) (3.16)

where V (0) = f,sing+ f, cos@. To suit the direct integration of the equilibrium equation (3.16)
with respect to the rotation ¢, its left hand side is first re-expressed by using the chain rule as

d = wdé| do d =, do
afﬁﬂ+ﬁﬁ%9»a§}=a§'agﬁﬂ+lﬁxena§} (3.17)

By substituting the relation (3.17) into the equilibrium equation (3.16) and then multiplying both
sides by a function 7+ 1F (), the resulting differential equation can be subsequently integrated

to obtain
[{nwﬁ(ﬁ)}j—g} =C—-2nF(0) - uF?(9) (3.18)

where C is a constant of integration and can be determined from the boundary conditions. It is

apparent from (3.15) that the sign of both normalized bending moment m and the term
{77+ylf(9)}d9/ds_ must be identical; as a result, only one of the two solutions of dé/dS obtained

from (3.18) is physically admissible. The unigue solution can be, therefore, expressed in the form

dS  sgn(m){n+uF(6)}

—= = = (3.19)
d0\JC—2¢F () - uF*(0)
where sgn(m) is a moment-dependence function defined by
-1 if m<0
sgn(M)=40 if m=0 (3.20)
1 if m>0

Combining (3.19) and the geometric relations (3.2) yields the following two differential equations
governing the displacements u and v
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du _ sgn(m)(cos & —1){n + uF (0)}
0 Jc-24F(0)-uF* ()

(3.21)

dv _ sgn(m)sin 0{n+ uF(0)}
o JC-27F(6)-uF*(6)

(3.22)

where T=u/l and Vv=v/l . A set of three differential equations (3.19), (3.21) and (3.22) is
sufficient for obtaining the key governing equations of nano-beams under various end conditions.
It is worth noting that both » and . appearing in above equations are essential parameters related
to the surface stresses and nonlocal linear elasticity, respectively, and are used to simulate the
nano-scale influence on the mechanical response of nano-beams. By setting »=1 and xz=0,

above equations reduce directly to those obtained by Rungamornrat and Tangnovarad (2011) for
a classical beam in the absence of surface stresses and nonlocal elasticity. By performing the direct
integration of (3.19), (3.21) and (3.22) with respect to the independent variable ¢ from S =0 to
S =£€[0,], it leads to

f) sgn(m) 77+/4F(9)}

E= (3.23)
4 \JC—2nF(6) - uF? (9)
3(E) - = _[ ) sgn(m)(cos & — 1){77+,uF(0)} ” (3.24)
4  \C—27F(0)-uF*(0)
v a]; sgn(m)sin @ 77+yF(49)} (3.25)
4 \C—27F(0)- uF*(0)

where o, =(S=0), ¥, =v(S=0) and ¢, =6(S =0) . By setting £=1, the relations (3.23)-(3.25)

become

gn(m) n+uF(9)}
F(6)-uF*()

dé (3.26)

»55'—;;5:“

(3.27)

— ‘]zsgn(m)(cose 1){77+,uF(6’)} i
C 4 Je-2FO) - 1P o)

v _J.sgn(m)sme 77+,uF(<9)}d9
3 JC—27F(0) - uF?*(0)

where T, =0(S =1), V,=v(S=1) and 6,=6(S =1) . A system of nonlinear algebraic equations
(3.26)-(3.28) together with the well-posed essential and natural boundary conditions of the nano-
beam is sufficient for determining the unknown constant C and the kinematical unknowns from a
set {u,, 0,, v, v,, 4, 6,}. Once all primary unknowns at both ends of the member are solved, the

displacement and rotation of any cross section can be readily obtained from the relations (3.23)-

(3.28)

49



(3.25). The reactive forces can be also determined from equilibrium of the whole beam in the
deformed state whereas the internal forces at any cross section such as the axial force F, the shear
force V and the bending moment m are obtained from the method of sections.

3.2.3 Linearized Equations for Buckling Load Analysis

For a perfectly straight nano-beam under proper end restraints and subjected only to a pure axial
compression force P, it is apparent that the straight configuration (i.e., u=v=6=0) together with
the pure axial state (i.e., f, =—P, f,=m=0) is always an equilibrium configuration (i.e., equations

(3.2)-(3.4) and (3.12) are automatically satisfied). Besides this trivial solution, it is more
informative to determine the critical compression force P at the onset of the buckling, i.e., a state
that the beam begins to admit a non-straight equilibrium configuration. At the onset of the
buckling, the rotation of the cross section ¢ is infinitesimally small and, as a result, the first order
approximations such as sin@ ~ 6, cos@ ~1 are admissible. At this particular state, the kinematical

relations (3.2), the equilibrium equations (3.3)-(3.4), and the moment-curvature relationship (3.15)
can be reduced to

do/dS =0; dv/dS =6 (3.29)
df,/d5=0; df /dS=0 (3.30)
dm/dS = f,0+ f, (3.31)
m=(r7+uf )dOIS (3.32)

The first relation of (3.29) indicates that T must be constant throughout the beam and identically
vanishes if the longitudinal displacement is prevented at a particular point within the beam.
Similarly, the first equation of (3.30) along with the prescribed compression force P at the end of
the beam implies that f =—PI?/El =—p . By substituting f =—p and the second equation of

(3.29) into (3.31) and (3.32), it yields the normalized resultant force fy and normalized bending
moment m in terms of the normalized displacement v

- d’v dv

fy=(n-up) g5+ Pg (3.33)
d?v

Ti=(n— - 3.34

m=(n-up) S (3:34)

Finally, the linearized governing equation for the normalized displacement v is obtained, by
substituting (3.33) into the second equation of (3.30), as

d*v d?v
&t 2 5 =0 (3.35)

where 1=./p/(17— up) . A linear, homogeneous, fourth-order, ordinary differential equation (3.35)

along with the prescribed end conditions is sufficient for formulating an Eigen problem for finding
the buckling load and buckled shape of the nano-beam.
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3.3 Key Governing Equations

Basic equations established in the previous section are employed to formulate the key governing
equations essential for determining post-buckling and bending responses of nano-beams under
different end conditions illustrated in Figure 3.1. The enforcement of essential and natural
boundary conditions to obtain both the unknown constant C and a final set of governing equations
is clearly demonstrated.

3.3.1 Fixed-free Nano-Beams

Consider a nano-beam clamped at the left end and subjected to a longitudinal force P and a
transverse force Q at the right end as shown in Figure 3.1(a). Essential and natural boundary

conditions at the ends of the beam are given by @, =0, v,=0, =0, f (1)=—PI?*/El =—p,
f_y(l)z—QIZ/EI =—¢ and m(1) =0. From the two force natural boundary conditions and equilibrium

equations (3.3), the internal resultant forces f and fy at any cross section of the beam are
obtained as

f.(S)=-p f(S)=-q vSe[0]] (3.36)
The normalized axial and shear forces at any cross section, for this particular case, are given by

F(6)=—pcos@+qsiné (3.37)
V (0) =—psin@—qcoso (3.38)

The relation (3.15) together with the moment natural boundary condition m(1) =0 implies that
dé =
g & =D (3.39)

By applying the relation (3.18) at S =1 and then using the condition (3.39), the unknown constant
C can be obtained as

C =2nF(6,) + uF?*(6,) (3.40)

By substituting the constant C from (3.40) and all essential boundary conditions into (3.26)-
(3.28), it yields a system of nonlinear algebraic equations governing the unknown displacements
and rotation at the right end of the beam (i.e.,T, , v, and 4,)

0

n+ HF(©) do (3.41)

1=
!Jzn{ﬁ(ez)—ﬁ(e)}w{ﬁzwz)—ﬁ?(@}

{n+uF ()} (coso-1)

T R VAR i ) (3.42)
!Jzn{sz)—F(e)}w{FZ(ez)—FZ(e)}
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. {n+uF(6)sino 40 (3.43)

"3 [ {F0)-F0)) + u{F?(0,) - F(0))

Note that the moment-dependent function sgn(m) is taken equal to 1 without loss of generality
since the deflected shape possesses a single-curvature and the normalized bending moment m at
any cross section possesses the same sign. A system of nonlinear algebraic equations can be further
specialized to the bending and post-buckling cases by taking p=0 and q=0, respectively. Once
the displacements and rotation at the free end are solved, the displacement and rotation at any
interior point S =& <(0,1) can be obtained from

. (&) _ _77 + ylf(é’)_ _ 40 (3.44)
0 J20{F(6,)-F(O)}+ u{F*(6,) - F*(0))
. _p {n+ uF(6)}(cos6-1) ” (3.45)
0 \[2n1{F(6,)-F(0)}+ u{F*(6,) - F*(0)]
(&) E i
V@)= | l - £F©)jsing (3.46)

o [ {F0)-F0)) + u{F?(0,) - F(0))

where (&) denotes the rotation at any interior point S =& <(0,1) . Normalized support reactions
at the clamped end, denoted by R =R I?/EI, R, =R I’/El and R, =R, I/El , can be obtained, from
equilibrium of the whole beam in its deformed state, as

Re=p; R =-0; R,=-pv,—q@+0,) (3.47)

The normalized axial force F and the normalized shear force V' at any point S =&<(0,1) can be

determined from (3.37) and (3.38), respectively, whereas the normalized bending moment m can
be computed from

M=q(+0T, -&-U(£)+ p(V, -V(5)) (3.48)
3.3.2 Fixed-roller supported Nano-Beams

Consider a nano-beam beam clamped at the left end, roller-supported at the right end, and
subjected to a longitudinal force P and the moment M at the right end as shown in Figure 3.1(b).
The corresponding essential and natural boundary conditions at the ends of the beam are given by
0,=0, v,=0, =0, V,=0, f (1) =-PI?’/El =—p and M(l)=MI/El =m,. From the force natural
boundary condition along with the fact that the internal resultant forces f, is constant throughout
the member, it can be concluded that

f.(S)=—p, VS e[01] (3.49)

The normalized axial and shear forces at any cross section, for this particular case, are given by
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F(0)=—-pcosd- f,sind (3.50)
V(6) =—psind+ f, coso (3.51)

For this particular case, the member contains an interior inflection point and the vanishing of the
bending moment at that particular point implies

j—g(ezez) ~0 (3.52)

where 6, is the rotation at the inflection point. By enforcing (3.52) together with (3.18), the
constant C is obtained, for this particular case, by
C =2nF(0,)+ uF*(6,) (3.53)

By substituting (3.53) and all essential boundary conditions into (3.26)-(3.28), it leads to a system
of nonlinear algebraic equations

"2 sgn(m) {7 + uF (6)}

1= — — — — (3.54)
021 {F(0,)-F(O)}+u{F*(6,)-F*(0)}
- :92 s_gn(rﬁ){;_y+ylf(¢9)}_(cos6?—11 (355)
0 \[21{F(6,)-F(0)}+ u{F*(6,)-F*(0))
sgn(m){n + uF (6)}sin6 (356)

_J\/2f7 F(6,)-FO)}+u{F?(0)-F0)

By using the relations (3.15), (3.18), (3.53) along with the natural boundary condition m()=m,,
it yields

m; =2n{F(6,) - F(6,)}+ u{F*(6,)-F*(6,)} (3.57)
After properly incorporating the moment-dependent function sgn(m) to each part of the beam, the

nonlinear equations (3.54)-(3.56) now become

0

1= 1+ uF(6) n+ uF(6)

dé -
o W + 20 {F(6,) - F(0)} + u{F*(6,) - F*(0)} szy F(6,)-F(O)}+u{F*6,)-F*(0)]
(3.58)
L {n+ uF ()} (cos6-1) 02 I {n+uF(6)}(cos6-1)
oM 2n{F0)-FO+ulF@)-F @) 1 2n{F(0)-F@O)+u{F?6)-F(O)
(3.59)
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{n+uF(©O)}sing 2 {n+uF(6)}sing

0= [ _
l\/mg +27{F(6,)-F @)} +u{F*(6,)-F*©)} o \2n{F(6,)-F(0)}+ u{F*(6,) - F*(6)]
(3.60)

A final system of four nonlinear algebraic equations (3.57)-(3.60) is sufficient for determining four
unknown quantities 6,, 6,, U,, f_y and it can be specialized to the bending and post-buckling cases

by taking p=0 and m, =0, respectively. Once the unknowns é,, 6,, U,, fy are determined, the
displacement and rotation at any interior point S =& <(0,1) can be obtained from (3.23)-(3.25)
together with the value of moment-dependent function sgn(m) throughout the member. To
facilitate such calculations, the nano-beam is separated into three segments with sgn(m)

possessing the same value within each segment as follows: the first segment is taken from the
clamped end to the interior inflection point with the rotation at any normalized coordinate &

ranging from 0 to 6,; the second segment is taken from the interior inflection point to the point
of zero rotation with the rotation at any normalized coordinate ¢ ranging from 6, to 0; and the

last segment is taken from the point of zero rotation to the right end with the rotation at any
normalized coordinate ¢ ranging from 0 to 6,. Again, by enforcing equilibrium of the beam in

its deformed state, the normalized support reactions at the clamped end, denoted by R =R I*/EI ,
R, =R/J?/El and R, =R I/El, can be obtained as

R=p; R=-f; R,=—m-f@1+07,) (3.61)

y y m

and the reaction at the right end is simply fy. The normalized axial force and shear force F, V at

any point S=£¢(0,1) can be readily computed from (3.50)-(3.51) in terms of fy and 9(¢)
whereas the normalized bending moment m can be computed from

M=, + f,[1+T, - £ -T(£)] - pv(£) (3.62)
3.4 Solution Methodology

In this section, a solution procedure for determining the buckling load, post-buckling and bending
responses of the nano-beam is established. A selected, efficient numerical technique for solving a
system of nonlinear algebraic equations and the quadrature rule adopted in the numerical
evaluation of all involved integrals are briefly summarized.

3.4.1 Determination of Buckling Load

The buckling load of a nano-beam with prescribed end conditions can be determined using a
standard procedure analogous to that employed by Timoshenko and Gere (1961) in the
determination of the buckling load of elastic columns. The buckled shape of the nano-beam is
obtained, by solving the ordinary differential equation (3.35), as

V(S)=C,cosAS +C,sinAS +C,S +C, (3.63)
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where C,, C,, C, and C, are unknown constants depending on the prescribed end conditions. By

enforcing four boundary conditions, two at each end, it leads to a system of characteristic equations
governing the buckling load

A(1)C=0 (3.64)

where A(A1) is a 4x4-matrix whose entries depend only on 2 and prescribed end conditions;
c={C, C, C, CJ};and 0 isazero vector. Since the governing ordinary differential equation

(3.35), written in terms of 4, is of the same form as that of the classical case (without the surface
and nonlocal effects), the buckled shape (3.63) and the form of characteristic equations (3.64) are
identical to those of the classical case. In particular, all eigen pairs (4,C,),i=12,..., associated

with (3.64) are identical for both the present case and the classical case. Due to this fact, there is
no need to resolve the Eigen problem (3.64) again, and the eigen pairs (4,C,), i=12,... reported

in the literature for the buckling of columns equally apply (e.g., Timoshenko and Gere 1961). If
the lowest buckling load is of interest, the minimum eigenvalue A, from the set {4,4,,4,,..} is
required, and it takes the value =, /2, 2z, =, and 1.4303z for pinned-roller supported, fixed-
free, fixed-fixed, fixed-guided, and fixed-rollered beams, respectively. From the definition

A=y p/(n—up) and the available £_ , the normalized buckling load p takes the form

min ?

/12-77
_ i 3.65
ST (3.65)

The buckled shape corresponding to 4, can be obtained from (3.63) and the eigenvector C_,, .
For the classical case (without the surface and nonlocal effects, i.e., =1, =0), the normalized
buckling load, denoted by p°, simply takes the form p°® =42 . For the comparison purpose, we
also introduce the ratio p/p°® (or P,/P¢ where P,, P denote the buckling loads of the present

cr cr cr?

case and the classical case, respectively)

P

3.4.2 Nonlinear Solver

To obtain the response of fixed-free and fixed-roller supported nano-beams, the two systems of
nonlinear algebraic equations (3.41)-(3.43) and (3.57)-(3.60) must be solved. Due to the strong
nonlinearity of those governing equations and their fully coupled feature, their solution can be
obtained numerically using the well-known Newton-Raphson iterative scheme (e.g., Reddy,
2015). For a given loading history, an arc-length scheme is employed along with taking the
solution at the previous load step as the initial guess of the current step to accelerate the
convergence of numerical solutions.

3.4.3 Quadrature for Involved Weakly Singular Integrals

It is evident that integrands of all integrals contained in the governing nonlinear algebraic
equations (3.41)-(3.43) and (3.58)-(3.63) exhibit weakly singular behavior at points where the
bending moment vanishes, e.g., the free end of a nano-beam shown in Figure 3.1(a) and the interior
inflection point of a nano-beam shown in Figure 3.1(b). While such embedded singularity does
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not affect the convergence of those integrals in the sense of Riemann, it renders the numerical
integration by standard Gaussian quadrature computationally inefficient. To overcome such
difficulty, a standard technique based upon the integrand regularization through a variable
transformation is employed. For brevity, the proposed procedure is demonstrated only for the
governing equation (3.41) where the singularity exists at the right end of the beam; its application
to other governing equations and the singularity present at other locations is also valid. By first
introducing the following variable transformation

4= (0, -0y (3.67)

where y is a selected constant. The Jacobian of transformation (3.67) is given by

déo 1

J=—"=-2(0,-6)" (3.68)
d¢ 7~

By substituting (3.67) and (3.68) into (3.41), it leads to
1% {1+ 1F(0)}(6, - 0)7

1_

== — — = — (3.69)
7 o [2n{F(©,)-FO)}+u{F6,)-F 6

It is evident from (3.37) that the function h(6) = 2y{F(6,) - F(6)} + u{F*(6,)— F*(6)} appearing in
the square root sign of (3.69) is regular and zero at =6, and, by carrying out Taylor series
expansion about #=40,, h(¢) can be represented by

h(@) =h'(6)(8, — 8) + O((8, — 6)°) (3.70)

Using (3.70) together with the regularity of the function » + xF(0), the integrand of the integral
in (3.69) isof (@, —6)"*") . The weak singularity of such integral can be, therefore, removed by
choosing y =1/2. Once the integrand is completely regularized, the final integral can be integrated
accurately and efficiently by standard Gaussian quadrature.

3.5 Results and Discussion

In this section, a selected set of numerical results obtained from the proposed technigue is reported
and also compared with existing solutions of the classical case to verify both the formulation and
implementations. The influence of both surface stresses and nonlocal elasticity on the buckling
load, post-buckling and bending responses for both fixed-free and fixed-rollered nano-beams is
also discussed. In the numerical study, material parameters reported by Juntarasaid et al. (2012)
are employed; for instance, the modulus of elasticity and Poisson’s ratio of the bulk material are
taken as E =76GPa and v =0.3 whereas the surface modulus of elasticity and the residual surface
tension are taken as E°*=1.22N/m and z°=0.89N/m, respectively. In addition, the nonlocal
parameters suggested by Yang and Lim (2011) (i.e., #<0.04, e, <14) and e,a=10nm are
employed. To investigate the size dependency of solutions, the length I, the width b, and the
depth h of the nano-beam are scaled from the dimensions 1,, b, h, of a reference nano-beam by a
proportional ratio g (i.e., 1=pl,, b=pb, and h=ph;). In addition, four different models
including Model-1 without the surface and nonlocal effects (i.e., » =1,z =0), Model-2 considering

56



only the surface effect (i.e., ©=0), Model-3 considering only the nonlocal effect (i.e., =1), and
Model-4 considering both the surface and nonlocal effects are utilized in the simulations to clearly
demonstrate the role of both surface stresses and nonlocal elasticity on the response of nano-beams.

3.5.1 Modified Flexural Rigidity and Nonlocal Parameter

It is apparent from the above formulation that the role of the surface and nonlocal effects in the
governing equations is completely described by two parameters, one associated with the
normalized, modified flexural rigidity » and the other corresponding to the nonlocal parameter .

. As indicated by (3.14), the normalized, modified flexural rigidity » depends not only on the

dimensions of the cross section h, b but also on the surface modulus of elasticity E*, the residual
surface tension z°, and the length of the beam I. The relationship between » and E°® is shown in
Figure 3.4 for z* ={0,0.89} N/m, h,/b, ={0.5,1,2}, and |,/h, ={5,10,15} . It can be concluded that
increase of the surface modulus of elasticity tends to enhance the modified flexural rigidity for the
fixed value of residual surface tension. Clearly, the modified flexural rigidity is always greater
than the classical flexural rigidity (i.e., >1) for z° =0 whereas its value can be significantly
lower than that of the classical case when the positive z° is present. In addition, » depends on
both the aspect ratio of the cross section and the slenderness ratio of the beam for non-zero «* but
is independent of the slenderness ratio when z° =0. In summary, increase of the surface modulus
of elasticity tends to stiffen the nano-beam and this influence is more significant when the
slenderness ratio of the beam becomes smaller and the aspect ratio of the cross section becomes
larger. The relationship between ; and the residual surface tension z° for E* =1.22N/m is also
shown in Figure 3.5(a). Unlike the surface modulus of elasticity, increase of the residual surface
tension tends to soften the nano-beam and, apparently, such influence becomes more prominent
for the beam with small slenderness ratio and large aspect ratio of the cross section. The
relationship between the nonlocal parameter , and the length of the nano-beam is also reported
in Figure 3.5(b) for different values of (e,a)* = «(g,a)%; where (e,a),, =10nm and a ={0.1,1,10}.
As evident from these results, the nonlocal parameter . decreases as the beam length increases
and, therefore, the nonlocal effect can be neglected for a sufficiently long element.

ref

3.5.2 Buckling Load of Nano-beams

While the explicit buckling formula established in the present study applies for nano-beams with
any prescribed end conditions, results for the buckling load of two representative cases, the fixed-
free and fixed-rollered nano-beams, are presented, for brevity, to demonstrate the role of the
surface stresses and nonlocal elasticity. In addition, the size dependent behavior of predicted
buckling solutions is also explored.

To investigate the size dependency of solutions for this particular case, the reference aspect
ratio h,/b, =1 with h, =10nm is employed. The normalized buckling loads for both fixed-free and
fixed-rollered nano-beams are reported in Figure 3.6, for three different reference slenderness
ratios 1,/h, ={5,10,15} and all four models. It can be seen from these results that the predicted
normalized buckling loads from the Model-2 and the Model-4 exhibit strong size dependence and,
in particular, the discrepancy of solutions relative to the classical case is quite significant when the
size of the beam is in the range of nanometers. In addition, the Model-2 and the Model-4 predict
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lower buckling loads for both fixed-free and fixed-rollered nano-beams in comparison with that of
the classical case. Such finding is clearly different from the conclusion of the earlier work of
Juntarasaid et al. (2012). This is due mainly to the fact that the presence of the positive residual
surface tension generates the compressive residual stress in the bulk material and this, as a result,
reduces the modified flexural rigidity of the beam. Apparently, ignorance of such bulk residual
stress cannot capture the reduction of the beam stiffness.

The influence of the surface modulus of elasticity, the residual surface tension, and the
nonlocal parameter is also investigated. In such numerical experiments, the reference length of the
beam |,, the proportional ratio g, the reference slenderness ratio I,/h,, the reference aspect ratio

of the cross section h, /b, are taken as I, =100 nm, g =5, I,/h, ={5,10,15}, h,/b, =1, respectively.
The normalized buckling load P, /P¢ of the fixed-free and fixed-rollered nano-beams is reported
as a function of the surface modulus of elasticity in Figure 3.7 for z* =0.89N/m. It can be deduced

from these results that the increase in the surface modulus of elasticity tends to stiffen the nano-
beams. Also, the relationship between the normalized buckling load P_/P¢ and the residual surface

cr cr

tension is presented in Figure 3.8 for the fixed-free and fixed-rollered nano-beams with
E* =1.22N/m. Unlike the influence of the surface modulus, the increase in the residual surface

tension tends to soften the nano-beams or, equivalently, reduce the buckling load. Finally, the
normalized buckling load P, /P¢ as a function of the nonlocal parameter . is reported in Figure

3.9for E*=1.22 N/m and z°* =0.89 N/m. It can be concluded thatas  increases, the normalized
buckling load clearly reduces.

3.5.3 Post-buckling of Nano-beams

Now, let us consider the post-buckling response of the fixed-free and fixed-rollered nano-beams
subjected only to the pure axial compression. Specifically, the transverse force Q for the fixed-

free beam and the moment M for the fixed-rollered beam are taken to be zero.

Results for the tip rotation (6,) of the fixed-free and fixed-rollered nano-beams under various
values of the normalized tip load p obtained from the Model-1 are reported in Figure 3.10. These

results are compared with the analytical solution presented by Timoshenko and Gere (1961) for
the fixed-free case and with those obtained by the semi-analytical technique proposed by
Rungamornrat and Tangnovarad (2011) for the fixed-rollered nano-beam. It is apparent that the
proposed technique yields highly accurate numerical solutions for the classical case.

Next, results predicted by all four different models are investigated to study the influence of
both the surface stresses and nonlocal elasticity on the post-buckling response of nano-beams. In
the numerical study, various values of the proportional ratio g are considered while maintaining

the reference slenderness ratio 1,/h, =10 and the reference aspect ratio of the cross section h,/b, =1

in order to demonstrate the size-dependent behavior of the solution. The normalized maximum
longitudinal displacement of the nano-beam under two different values of the normalized
compression tip load, i.e., p={2.5,5} for the fixed-free case and p=4{20.5,21.5} for the fixed-

rollered case, is reported in Figure 3.11 as a function of the proportional ratio g and for all four

models. The post-buckling shapes are shown in Figures 3.12 and 3.13 for the fixed-free case with
p={25,5} and B ={0.55} and the fixed-rollered case with p={20.5,21.5} and B ={515},
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respectively. Results predicted by the models including the surface stresses (i.e., Model-2 and
Model-4) significantly deviate from those of the classical case and presence of the surface effect
considerably lowers the apparent bending stiffness of the beam if its length | is comparable to the
intrinsic length of the material surface A=E°®/E. Likewise, the role of the nonlocal elasticity
depends primarily on the length scale of the problem relative to the parameter , ; in particular, if

the length of the beam decreases to the nano-scale level, the effect in reducing the member stiffness
is prominent. It is also evident from this set of results that the discrepancy between responses
predicted by the model incorporating only the surface stresses (i.e., Model-2) and the classical
solution is much larger than that predicted by the model considering only the nonlocal effect (i.e.,
Model-3). In addition, the Model-4 vyields results nearly identical to those obtained from the
Model-2. Similar to the fixed-free case, all models incorporating the nano-scale influence (i.e.,
Model-2, Model-3 and Model-4) exhibit strong size-dependent behavior. In particular, as the size
of the member decreases to that comparable to the intrinsic length scale of the material surface,
the influence of both surface stresses and nonlocal elasticity are substantial and they must be
properly taken into account in the modeling to reasonably capture the nano-scale phenomena.

To further demonstrate the crucial role of the surface parameters on the post-buckling
behavior of fixed-free and fixed-rollered nano-beams, the normalized maximum longitudinal
displacement of the beam (T, =u,,/l) for various values of the surface modulus of elasticity and

the residual surface tension while maintaining value of the nonlocal parameter. Simulations are
carried out for h,/b, =1, I,/h,={5,10,15}, and =5, p=5 for the fixed-free nano-beam and

B=15, p=205 for the fixed-rollered nano-beam. The normalized maximum longitudinal

displacement is reported in Figure 3.14 as a function of the surface modulus of elasticity for a fixed
7°=0.89N/m and in Figure 3.15 as a function of the residual surface tension for a fixed

E®=1.22N /m. It can be deduced from obtained results that the increase in the surface modulus of

elasticity tends to stiffen the nano-beams whereas increase in the residual surface tension tends to
reverse such effect.

To also explore the role of the dimensionless nonlocal parameter ( ..) on the post-buckling
of nano-beams, the analysis is performed for various values of . with fixed values of
E°=1.22N/m and z°*=0.89N/m whereas other parameters are taken to be the same as the

previous simulations. Results for the normalized maximum longitudinal displacement are reported
as a function of , in Figure 3.16. It is seen that the post-buckling displacement is strongly
dependent on the nonlocal parameter and such influence becomes more prominent when the
slenderness ratio of the member increases.

3.5.4 Bending of Nano-beams

Now, the bending response of the fixed-free and fixed-rollered nano-beams is investigated; in
particular, the longitudinal load P at the end of the beam is taken to be zero for both cases. To
verify the proposed technique, solutions for the classical case (without the surface stresses and
nonlocal effects, i.e., =1 and x=0) are obtained first and then compared with available
benchmark solutions. Results generated by the Model-1 for the deflected shape of the fixed-free
nano-beam under a normalized transverse load q=2 and the fixed-rollered nano-beam under a

normalized end moment m, =1/3 are reported in Figure 3.17 along with the reference solution
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presented by Liu et al. (2012) and those generated by a reliable finite element software. The good
agreement between computed results and the benchmark solutions should confirm the formulation
and proposed solution technique.

To investigate the influence of the surface stresses and nonlocal elasticity on the bending
behavior of both fixed-free and fixed-rollered nano-beams, the analysis is carried out using all four
models (i.e., Model-1, Model-2, Model-3 and Model-4) and obtained results are compared. To
consider the size-dependent behavior of predicted solutions, various values of the proportional
ratio # with the fixed slenderness ratio I,/h, =10 and the fixed aspect ratio of the cross section
h,/b, =1 are considered. The normalized maximum transverse displacement (v =v, . /1) for the
fixed-free nano-beam under the normalized transverse load q={2,4} and the fixed rollered nano-
beam under the normalized end moment m, ={2,2.5} is reported in Figure 3.18. The deflected
shapes of the fixed-free nano-beam with q={2,4} and the fixed-rollered nano-beam with
m, ={2,2.5} are also shown in Figures 3.19 and 3.20, respectively. The proportional ratio
S ={0.5,5} with the reference length of the beam I, =100nm is used in this simulation. It is seen
that the presence of the surface stresses tends to soften the nano-beam (i.e., reduce the apparent
bending stiffness) whereas the nonlocal elasticity shows significantly less influence on the
deflected shape in comparison with the classical case. This, as a consequence, renders the solutions
predicted by the Model-2 and the Model-3 significantly different but those predicted by the Model-
2 and the Model-4 only slightly different. It is obviously seen from Figure 3.18 that when the
length of the nano-beam becomes smaller, results obtained from the Model-2, Model-3 and Model-
4 increasingly deviate from the classical solution and, when the beam length is relatively large in
comparison with the intrinsic length A, solutions predicted by all models are nearly identical. It is
worth emphasizing that the observed discrepancy, for a particular beam length I, is more
pronounced when the models incorporating the surface stresses (i.e., Model-2 and Model-4) are
utilized. Based on the characteristic of the displacements and deflected shapes observed in the
numerical study, the reduction of the apparent bending stiffness can become substantial when the
size of the beam decreases to a nano-scale (i.e., comparable to the intrinsic length A of the material
surface), and this implies the necessity to incorporate the surface stresses and the nonlocal effects
in the mathematical model to physically capture the nano-scale influence.

To further investigate the influence of the surface modulus of elasticity and the residual
surface tension on the bending behavior, responses of the beam for various values of E* and ¢*
are obtained and compared. In the simulations, I, =100nm, g=5, h,/b, =1, I,/h, ={5,10,15}, q=2
for the fixed-free nano-beam, and m, =2.5 for the fixed-roller-supported nano-beam are employed.
The relationship between the maximum transverse displacement v, of the fixed-free and fixed-

rollered nano-beams versus the surface modulus of elasticity E* for z* =0.89N/m is shown in

Figure 3.21. It can be deduced from this set of results that the increase in the surface modulus of
elasticity tends to stiffen the nano-beams or, equivalently, reduce the deflection of the beam
relative to the classical case. In addition, the maximum transverse displacement versus the residual
surface tension z° for E® =1.22N/m is reported in Figure 3.22 for both the fixed-free and fixed-
rollered nano-beams. Unlike the influence of the surface modulus of elasticity, the increase in the
residual surface tension tends to soften the nano-beam. It is also evident from these results that
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when the slenderness ratio of the member becomes larger, the influence of the surface effect is
more prominent.

To also examine the role of the nonlocal parameter . on the bending response of nano-
beams, results are obtained for various values of , while E* and z° remain fixed (i.e.,
E*=1.22N/m and z*=0.89N/m ). Similar to the previous case, |,=100nm, g=5, hy/b, =1,
l,/n, ={5,10,15} , q=2 for the fixed-free nano-beam, and m,=2.5 for the fixed-rollered nano-

beam are employed in the simulations. Results for the normalized maximum transverse
displacements are reported as a function of the nonlocal parameter , in Figure 3.23. As evident

from these results, the bending response of the nano-beams exhibits strong dependence on the
nonlocal parameter, and this influence is more significant when the slenderness ratio of the beam
increases.
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Figure 3.1 Schematic of (a) perfectly straight nano-beam clamped at the left end and subjected to
longitudinal force P and transverse force Q at the right end and (b) perfectly straight nano-beam clamped
at the left end, roller-supported at the right end and subjected to longitudinal force P and moment M at

the right end.
ds fy + dfy
> m + dm

) ds fx + dfy

fy &

m
X
S ka5, fy

(@ (b)

Figure 3.2 (a) Schematic of deformed and undeformed configurations of centroidal axis of nano-beam
and (b) free body diagram of infinitesimal deformed element.
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Figure 3.3 Schematic of beam element treated as composite consisting of bulk material and material
surface in unstrained state.
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Figure 3.4 Relationship between normalized flexural rigidity n and surface modulus of elasticity E°® for
E=76GPa, v=0.3, hy=10nm: (a) z° =0 and (b) z* =0.89N /m.
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Figure 3.6 Relationship between normalized buckling load P, / P; and proportional ratio £ of the nano-
beam with different slenderness ratio |, / h, €{5,10,15} for E=76GPa, v=0.3, E°=1.22N/m,
°=0.89N/m, e,a=10nm, h, /b, =1, hy =10nm: (a) fixed-free nano-beam and (b) fixed-roller

supported nano-beam.
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Figure 3.7 Relationship between normalized buckling load P, / P¢ and surface modulus of elasticity E®
with different slenderness ratio |, / h, €{5,10,15} for E=76GPa, v=0.3, *=0.89N /m, e,a=10nm,
h, /b, =1, I, =100nm, g =5: (a) fixed-free nano-beam and (b) fixed-roller supported nano-beam.
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Figure 3.8 Relationship between normalized buckling load P, / P: and residual surface tension z* with
different slenderness ratio 1, / h, ={5,10,15} for E=76GPa, v=0.3, E* =1.22N/m, e,a=10nm,
h, /b, =1, I, =100nm, g =5: (a) fixed-free nano-beam and (b) for fixed-roller supported nano-beam.
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Figure 3.12 Post-buckling shape of fixed-free nano-beam for E =76GPa, v=0.3, E*=1.22N/m,
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Figure 3.20 Deformed shape of fixed-roller supported nano-beam for E =76GPa, v=0.3,
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Figure 3.22 Relationship between normalized maximum transverse displacement V. and residual
surface tension 7° with different slenderness ratio 1, / h, ={5,10,15} for E=76GPa, v=0.3,
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CHAPTER IV
MODELING OF NANO-CRACKS

This chapter presents the modeling and analysis of nano-size cracks in an elastic whole space with
the consideration of surface effects via Gurtin-Murdoch surface elasticity theory. The chapter is
organized into two parts, the first part associated with the treatment of a penny-shaped crack under
axisymmetric loading on its surface and the second part corresponding to the development of an
efficient numerical technique capable of handling non-planar cracks of arbitrary shapes and
subjected to general loading conditions. For each part, the background and review indicating the
current advances in the area is briefly summarized, then the problem formulation and solution
procedure are clearly presented, and finally results and crucial findings are addressed.

4.1 Penny-shaped Crack

In this section, a penny-shaped crack in an infinite elastic medium subjected to vertical pressure
loading at the crack surface under the influence of surface stress is considered. The Gurtin-
Murdoch continuum theory of elastic material surfaces is adopted and the Hankel integral
transform is employed to solve this axisymmetric boundary-value problem. A set of simultaneous
dual integral equations is solved by employing an appropriate numerical solution scheme. Selected
numerical results are presented to portray the influence of the surface stress on the elastic field.

4.1.1 Background and Review

In recent years, studies on mechanics of nanomaterials and nanostructures have become
increasingly important in various advanced engineering applications. In nano-scale structures, the
influence of excess energy associated with the surface/interface atoms, called surface/interfacial
free energy, is significant due to their high surface-to-volume ratio (e.g., see Yakobson, 2003;
Huang and Wang, 2006). As a result, their mechanical behavior becomes size-dependent (Wong
etal., 1997). Atomistic simulations are powerful technigues to accurately analyze problems related
to nano-scale systems however they require a very large computational effort. Thus studying
problems at the nano-scale based on the modified continuum mechanics concepts accounting for
surface energy effects is an attractive option to obtain first-approximations for this class of
problems.

A rigorous theory based on the continuum mechanics concepts was developed to incorporate
the surface and interfacial energy effects by Gurtin and Murdoch (1975; 1978). The surface is
modeled as a zero thickness layer perfectly bonded to the underlying bulk material. Miller and
Shenoy (2000) examined the size effects of nano-scale plates and bars by employing the Gurtin-
Murdoch continuum model and found that the results were in excellent agreement with those
obtained from atomistic simulations. Several researchers analyzed nano-scale mechanics problems
based on the Gurtin-Murdoch theory and neglected the out-of-plane components of surface stress
(e.g. Tian and Rajapakse 2007; Zhao 2009; Zhao and Rajapakse 2009; Intarit et al. 2010; Zhao and
Rajapakse 2013; Rahman and Mahmoud 2016). Later, Wang et al. (2010) showed that the out-of-
plane components of surface stress could be significant even in the case of small deformations
particularly for curved and rotated surfaces. Intarit et al. (2011) considered the complete set of
surface stresses in the analysis of a two-dimensional elastic layer under buried loading and found
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that the elastic field depends significantly on the surface elastic constants and residual surface
stress. The complete version of the Gurtin-Murdoch model was also employed to study problems
of an elastic layer under axisymmetric surface loading (Rungamornrat et al., 2016) and rigid
frictionless indentation on an elastic half-space (Pinyochotiwong et al., 2013). In addition,
influence of surface stress is also important in problems involving soft elastic solids (He and Lim,
2006).

Fracture mechanics, which is concerned with the mechanical behavior of materials in the
presence of cracks, has important practical applications. The study of cracks in devices and
structures encountered in engineering applications is essential for both reliability and safety.
Several crack problems were studied in the context of classical continuum theory in the presence
of crack surface tension. Wu (1999), and Wu and Wang (2000, 2001) investigated the influence of
surface tension on cracks and proposed that surface tension induced a pair of point loads at the
crack tip. With the assumption of a blunt crack-tip, Wang et al. (2008) and Fu et al. (2008) found
that surface stress has a significant influence on stresses and displacements in the vicinity of crack
tip, especially when the curvature of the crack tip is in the nano-scale. The solutions of Mode-I, 11
and 111 cracks were derived with the consideration of surface stresses by assuming that the crack
tip stresses are finite by Kim et al. (2010a, 2011b). The above studies dealt exclusively with plane
crack (2-D) problems whereas it is useful to examine more practical crack geometries such as
penny-shaped cracks. The classical penny-shaped crack problem has been extensively studied (e.g.
Sneddon 1946; Florence and Goodier 1963; He and Hutchinson 1981; Fabrikant 1986) but studies
related to its counterpart with surface elasticity based on the Gurtin-Murdoch theory are very
limited. Recently, a numerical procedure based on the coupling of the standard finite element
technique and the boundary integral equation method was proposed by Nguyen et al. (2015) to
investigate nano-sized penny-shaped cracks in an infinite elastic medium under mode-I loading.
However, their formulation accounts only for the residual surface tension and ignores the influence
of the surface Lamé constants. A review of literature indicates that an analytical solution for the
penny-shaped crack problem with the complete version of the Gurtin-Murdoch theory has not yet
been reported.

4.1.2 Governing Equations and General Solutions

Consider a penny-shaped crack with radius a in an infinite elastic medium and subjected to
axisymmetric vertical loading p(r) as shown in Figure 4.1. In the present study, a sharp-crack-tip
model is applied and, as a result, the crack geometry can be fully described by two geometrically
identical, flat, circular surfaces on the plane z = 0. The elastic medium is governed by the Gurtin-
Murdoch continuum theory (Gurtin and Murdoch 1975, 1978). In the absence of body forces, the
equilibrium equations, constitutive laws and strain-displacement relations of an isotropic bulk
material are given by

i =0 (4.1)

O = 244 + A58, (4.2)
1

5”—5(“” +u;;) (4.3)
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where ui, aij and &ij denote respectively the components of displacement, stress and strain tensors;
and u and A are Lamé constants of the bulk material.

On the crack surface, the equilibrium equation, constitutive laws and strain-displacement
relations can be expressed as (Gurtin and Murdoch 1975, 1978):

oo toyn; =0 (4.4)
Oy =T 0py + 2( )gﬂa (/1s +Ts)8}75ﬂa +7°Uy (4.5)
=5 (U040, (4.6)

where the superscript ‘S’ is used to denote the quantities corresponding to the surface; x° and A° are
surface Lamé constants; «° is the residual surface stress (or surface tension) under unstrained
conditions; n; denotes the components of unit normal vector of the surface; and Greek subscripts
take the value of 1 or 2, while the Latin subscripts vary from 1 to 3.

Due to the symmetry of the system shown in Figure 4.1 about the z-axis, a cylindrical
coordinate system (r,6,z) is used in the formulation, and the elastic field is independent of q, i.e.
Ug = 0 and a9 = 020 = 0. The general solutions for the bulk stresses and displacements can be
expressed by using Hankel integral transforms as (Sneddon, 1951),

=g 45 (e 82 arya -2 [ 90 o @)
I { } O(gr)dg+@]§22—j)31(§r)dg (4.8)
.- Té[(mﬂ)‘ff’ (@1 )e 5, ey “9)
5 z dz
o, = ng [/1 Zzzq; +(2+ 2y)§2q>}l(§r)d§ (4.10)
r ﬂ;”jg 2995 (e (4.12)
:T [dq) AT 2K @}Jo(gr)dg (4.12)
where,
O(&,7) = (A+Bz)e ™ (4.13)

Note that Jn(¢) denotes the Bessel functions of the first kind of order n. In addition, A and B are
arbitrary functions to be determined from the boundary conditions.
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4.1.3 Solution of Boundary Value Problem

Due to the symmetry about z-axis and the assumption that surface tension is constant, the boundary
conditions on the crack surface (z = 0) can be expressed as,

2
azz+rs[%+%ddu;]=—p(r) when0<r<a (4.14)
u,=0 whena<r<ow (4.15)
2
o + K d’u, +lduf_u_f -0 when0<r<a (4.16)
" ar> rdr r?

o,=0 whena<r<ow (4.17)

rz

where « * = 2u4°+2° is a surface material constant. It is worth noting that the boundary conditions
(4.14) and (4.16) are only applicable to flat crack surfaces located on the plane z = 0 (resulting
directly from the sharp-crack-tip assumption). The treatment of crack-face conditions associated
with non-flat crack surfaces resulting from other crack models (e.g., a blunt crack model) is not
considered in the present study.

By substituting stresses and displacements from Egs. (4.7) — (4.12) into Egs. (4.14) - (4.17),
the boundary conditions can be expressed to a set of simultaneous dual integral equations as

7326, (2)1,(2), (r)dZ=n(r) wheno<T <1 (4.18)
jo‘”’id” (£),(£)9, (ér)dé=g,(r) whenl<r <co (4.19)
j=L
2(A+ )E4+ ”fés 2yg—:+2f§:
where i = 1, 2, 1= ¢, r = rla; c= ? B o

A+ uE & _
d= uﬂi_; 2?—; , f= A(f) : V=m; h{__p F)]; g=m and p(r)=ap(r).
24+ ﬂ)g _ui_ (<) 0
Egs. (4.18) and (4.19) can then be reduced to,
I, S (€ (2)2, (E7)az=n(7)  when0<F <1 4.20)
J, vi(€)3, (ér)ds=0 when 1 <r <o (4.21)
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2u(Atp)é & H
2 - A+2 2 A+2
where y/i(f):Zdij (5) fj(g) and e=cdi=| M ° . . T | To solve
j=1 H s § /1-}—3/1 s ‘}:
- K = 1+ ———«x =
A+2u a 2,u(/1+2u) a
Eqgs. (4.20) and (4.21), y; is defined as (Erdogan and Bahar, 1964),
vi(€)=E" 203 cames, (€) (4.22)
m=0

Eq. (4.21) will be automatically satisfied due to the following properties of Sonine-Schafheitlin
integrals (Magnus and Oberhettinger, 1954).

[FE73, (8r)3, samp, (£)dE =0 when r>1, 2(v+m+1) > 0 and > 0 (4.23)

Eq. (4.20) can then be written as

2

>3 0 X7y (0, (26)9, onp, (E)dE = (¥) whenO<T <1 (4.24)
m=0 j

4N

where gjm are the unknown coefficients to be determined. Multiplying both sides of Eq. (4.24) by
P (1—?2)’3‘71 S (vi+8.1+v,7?), k=0,1,2,....m and then integrating with respect to r from 0 to
1 yields (Tranter, 1951),

izq)jm Iow Xl_ﬂj 7 eij (g)‘Jvi+2k+ﬂi (é:)JvJ +2m+p; (E)dg = Qi (Vi ’ﬂi ! k) (425)
m=0 j=1

~ L(v, +k+1)
where Q (v;.5,.k)= 25T, + DI (K + B)

the following Jacobi polynomial, which is defined in terms of hypergeometric series (Magnus and
Oberhettinger, 1954) as,

(e (1-72)" 3, (v + AL FP)dF and 3, s

0 i n

S (. 7,x) =, R (-na+n;y;X) (4.26)
and 2F1(a,b;c;x) is the hypergeometric function.

The coefficients gjm can be obtained by solving Eq. (4.25). Note that the unspecified constant,
Si, in EQ. (4.25) must be positive to make the integral appearing in Eq. (4.25) to converge. Finally,
the arbitrary functions A and B can be expressed as:

= A a -\ a =
M) ) (2| @.27)
B() - [t 2o lE) o ) (4.2
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4.1.4 Numerical Results and Discussion

In this section, selected numerical results are presented to portray the influence of surface energy
effects on the elastic field. The solutions for stresses and displacements can be obtained from Eqgs.
(4.7)-( 4.12) with the arbitrary functions, A and B, given by Egs. (4.27) and (4.28). In this study,
the semi-infinite integrals in Egs. (4.7)-(4.12) are evaluated by using a globally adaptive numerical
quadrature scheme based on 21-point Gauss-Kronrod rule (Piessens et al., 1983). The surface
elastic constants can be obtained from atomistic simulations (Miller and Shenoy 2000; Shenoy
2005; Dingreville and Qu 2007). In particular, Si [100] is chosen, in the numerical study, as a
representative material with the bulk and surface properties A/u = 1.94, 1 = 40.2262 GPa, A° =
4.4939 N/m, 1° = 2.7779 N/m and z° = 0.6506 N/m (Miller and Shenoy, 2000). In addition,
following non-dimensional quantities, ro = /4o, Zo = z/40 and ao = a/Ao Where Ao = x*/u is a
reference length-scale parameter defined in terms of x* and x of Si [100]. The numerical results in
the present study correspond to the case of a penny-shaped crack in an infinite elastic medium
subjected to a uniformly distributed vertical load, po, applied on the crack surface (i.e. p(r) = po in
Figure 4.1).

The arbitrary functions A and B, given by Egs. (4.27) and (4.28), are expressed as the
combination of y1 and w2, which are given in terms of infinite series as shown in Eq. (4.22). The
convergence and accuracy of the present solution are first verified by plotting vertical stress in the
vicinity of the crack tip to determine the appropriate number of terms, m, used in the series
expansion defined in Eq. (4.22). Figure 4.2 shows a comparison of non-dimensional vertical stress
in the vicinity of crack obtained from the present scheme with no surface stress effects (i.e. ¥* = 7°
= 0) for different m values with the classical solution given by Fabrikant (Fabrikant, 1989). It is
seen that accurate results are obtained from the present solution scheme for m > 60. In Figure 4.3,
the present solutions for vertical stress and crack opening displacement are compared with the
classical solutions provided by Fabrikant (Fabrikant, 1989) and the numerical solutions given by
Nguyen et al. (2015), which ignore the surface Lamé constants (i.e. ¥* = 0), to confirm the high
accuracy of the present solution scheme.

Figures 4.4 and 4.5 show the influence of surface energy effects on elastic field in the vicinity
of crack. A non-dimensional crack radius of ap = 1.0 is considered in the numerical study.
Variations of non-dimensional vertical stresses and non-dimensional crack opening displacement
along the r-direction are shown in Figures 4.4 and 4.5 for different values of surface residual stress
(z°) and surface material constant (x°) respectively. Note that the broken lines in Figure 4.4 denote
the classical elasticity solution (Fabrikant, 1989) and, during the variation of either z° or «°, all
other material parameters associated with Si [100] remain unchanged.

The solutions for non-dimensional vertical stress close to the crack tip given in Figures 4.4(a)
and 4.5(a) show the effects of surface residual stress and surface elastic constants respectively.
Surface residual stress has a major influence on the crack tip vertical stress field whereas the
influence of surface elastic constants is negligible. Note that the difference observed in Figure
4.5(a) between the classical elasticity solution and the present solution is primarily due to the effect
of surface residual stress. It is observed that the presence of surface stress results in a substantial
reduction of the crack tip vertical stress. Similar behavior was also observed in the 2-D crack
solution by Kim et al. (2011), in which the assumption of finite stress at crack tip is considered.
The present solutions in Figures 4.4 and 4.5 also indicate that the order of singularity of stress is
lower than the square root singularity corresponding to the classical solutions. This finding is
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consistent with that pointed out by several investigators (e.g., Sendova and Walton 2010; Walton
2012; Kim and Ru 2013; Walton 2014; Ferguson et al. 2015), in particular, the stress singularity
along the crack front reduces from the square-root to logarithmic singularity when the surface
stresses are accounted for in the mathematical model. The crack opening displacement solutions
presented in Figures 4.4(b) and 4.5(b) indicates that the magnitude of crack opening displacement
is substantially reduced due to the presence of surface stress. This is physically realistic as a
stretched (tensioned) crack face would be stiffer similar to a cable under tension. Here again, the
surface elastic constants show almost negligible influence on the crack opening displacement.

In Figure 4.6, a set of numerical results are shown to demonstrate the size-dependent
behavior of the present solution when the influence of surface energy effects (surface stress and
surface elastic constants) is included. Solutions are presented for the radial variation of crack tip
vertical stress and crack opening displacement across the crack surface for Si [100]. The
corresponding non-dimensional solution for the classical elasticity case is also shown, and it is
size-independent. It is found that as the crack size increases the current solution accounting for
surface energy effects moves toward the classical solution. This is physically realistic as a stretched
larger crack would show increasing crack opening displacements. The results show that a smaller
crack has a lower crack tip stress and crack opening displacement.

The influence of surface residual stress and crack radius respectively on non-dimensional
vertical stress at the vicinity of crack tip, i.e. at r/a= 1.01, and non-dimensional crack opening
displacements at the center of crack are presented in Figures 4.7 and 4.8. The corresponding
solutions for the classical elasticity case are also shown in both figures. It is evident from Figure
4.7 that the residual surface stress (z°) displays strong influence on the crack tip stress and the
central crack opening displacement. The stress and displacement both rapidly decrease, from their
classical elasticity counterparts, with increasing the surface residual stress before approaching their
limiting values. The size-dependent behavior due to the presence of surface stress effects can be
clearly observed in Figure 4.8. Both crack tip stress and central crack opening displacement
obtained from the current model accounting for surface stress effects depend significantly on the
crack size (ao) for relatively small values of ao. Such size-dependency gradually vanishes as ao
increases, and both stress and displacement converge to the corresponding classical solutions,
which are shown as the broken lines in Figure 4.8.
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Figure 4.2 Convergence of vertical stress solution in the vicinity of crack tip
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Figure 4.3 Comparison with existing solutions: (a) Vertical stress; (b) Crack opening displacement.
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4.2 Non-planar Cracks

This section presents an efficient and accurate numerical technique for the analysis of non-planar,
nano-sized cracks in three-dimensional, linearly elastic, infinite media. The continuum theory of
linear elasticity together with Gurtin—Murdoch surface elasticity theory is employed to form a
mathematical model capable of simulating non-planar cracks with the influence of surface stresses.
The governing equation for the bulk medium is established in terms of weakly singular boundary
integral equations containing only unknowns on the crack surface whereas that governing the
curved material surfaces attached to the crack is formulated in a weak-form using the weighted
residual technique and tangential derivative operators. A fully coupled system of governing
equations is then solved numerically via a coupling between the weakly singular, boundary integral
equation method and the standard finite element procedure. A numerical study is performed for
certain scenarios and preliminary results are compared with existing benchmark cases to not only
verify the implemented scheme but also demonstrate its computational efficiency and robustness.
In addition, the role and influence of surface parameters such as the surface elastic constants and
residual surface tensions on the behavior of predicted solutions are fully investigated and
significant findings are reported.

4.2.1 Background and Review

The Gurtin-Murdoch surface elasticity model has also been employed in the modeling of nanosized
cracks; however, based-on an extensive literature survey, most of existing studies were still
restricted to problems of relatively simple settings, simplified formulations and limited-capability
solution techniques. For instance, investigations of nanosized cracks under various loading
conditions using either the two-dimensional, blunt-crack models (e.g., Wang et al., 2007; Fu et al.,
2008, 2010; Fang et al., 2009; Wang and Li, 2013) and two-dimensional, classical sharp-crack
models (e.g., Kim et al., 2010b, 20114, 2011b; Nan and Wang, 2012, 2013, 2014; Walton, 2012,
2014; Ferguson et al., 2015) can be found. In those investigations, analytical, semi-analytical or
numerical techniques were proposed to solve the associated boundary value problem. It should be
noted that while the use of two-dimensional models in the simulation significantly reduces both
theoretical and computational efforts, it, at the same time, poses several major drawbacks including
the loss of information in the out-of-plane direction and the limited capability to treat cracks with
general geometry and loading conditions. Recently, Intarit et al. (2012) and Intarit (2013)
successfully established an analytical technique based on Love’s strain potential and the Hankel
integral transform to examine the influence of surface stresses, via the Gurtin-Murdoch model, on
the near-front field of nanosized cracks in three-dimensional elastic media. Nevertheless, due to
the key limitation of their solution technique, only a penny-shaped crack under axisymmetric loads
can be considered. In practical situations, problems of nanosized cracks can be very complex in
terms of geometries, loading conditions, and influences to be treated (e.g., the surface free energy
and residual surface tension). As a result, the development of a fully three-dimensional model
together with efficient and powerful numerical procedures to enhance the capability of existing
techniques is essential and still requires rigorous investigations. Recently, Nguyen et al. (2015)
proposed a computational procedure based on the coupling of the standard finite element technique
and the boundary integral equation method to model nanosized planar cracks in an infinite elastic
medium. While their technique is applicable to planar cracks of arbitrary shapes, the formulation
is still restricted to a limited version of Gurtin-Murdoch model accounting only the residual surface
tension and the implementation was carried out within the context of pure mode-I loading
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conditions. The contribution of the in-plane surface elasticity and the mixed-mode condition to the
elastic near-front field was fully disregarded. Later, Nguyen et al. (2016) extended the work of
Nguyen et al. (2015) to model three-dimensional nano-sized, planar cracks in an infinite elastic
medium. While their technique is applicable to treat the full version of Gurtin—-Murdoch model for
arbitrary shapes and mechanical loading conditions, the formulation was still derived specifically
for planar crack surfaces. The treatment of arbitrary, non-planar cracks is still required further
investigations.

4.2.2 Problem Description

Consider a three-dimensional infinite elastic medium Q containing an isolated, arbitrary-shape,
non-planar crack as illustrated in Figure 4.9(a). Both the crack surfaces are represented by two
geometrically identical non-planar smooth surfaces S and S_ with the corresponding outward

unit normal n* and n-, respectively. The medium Q is considered free of the body force and
remote loading but subjected to prescribed arbitrary tractions on the crack surfaces S; and S_,

which are denoted by t; and t,, respectively (see Figure 4.9(b)). An infinitesimally thin material
layer on each crack surface possesses a constant residual surface tension z, and surface elastic
constants u, and A, whereas the bulk cracked medium is made of a homogeneous, isotropic,
linear elastic material with the shear modulus ;. and Poisson’s ratio v . The problem statement is

to determine the complete elastic field within the bulk cracked medium by taking the influence of
surface stresses on both material layers into account. Fracture-related information such as the
relative crack-face displacement and local stress field in the vicinity of the crack front is also of
primary interest.

4.2.3 Problem Formulation and Solution Technique

In the formulation of the boundary value problem, the whole medium is decomposed into three
parts: the bulk cracked medium (see Figure 4.9(c)), the zero-thickness material layer S’ and the
zero-thickness material layer S; (see Figure 4.9(d)). The bulk cracked medium is simply the
whole medium without the two infinitesimally thin material layers lying on the crack surfaces.
Since both material layers possess zero thickness, the geometry of the bulk cracked medium is
clearly identical to that of the whole cracked medium. The key difference between the bulk cracked
medium and the original cracked medium is that the formed is homogeneous and the non-planar
crack surfaces S¢ and S; in the bulk cracked medium are subjected to unknown tractions (exerted
directly by the two material layers) t; and t,, respectively. The material layer S/ is treated as a
two-sided surface with one side subjected to the prescribed general traction t; and the other side
subjected to the unknown traction t exerted by the bulk cracked medium (see Figure 4.9(d)).
Similarly, the material layer S_ is treated as a two-sided surface with one side subjected to the
prescribed general traction t, and the other side subjected to the unknown traction t; exerted by
the bulk cracked medium (see Figure 4.9(d)). Mechanical responses of the bulk medium are
governed by a classical theory of linear elasticity and the final governing equations are formulated
in terms of a pair of weakly singular, weak-form boundary integral equations for the displacement
and traction (e.g., Li and Mear 1998; Rungamornrat and Mear 2008). For the two non-planar
material layers, their behavior is modeled by the full version of Gurtin—-Murdoch surface elasticity
theory (Gurtin and Murdoch 1975; Gurtin and Murdoch 1978; Murdoch 2005) and the standard
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weighted residual technique is adopted to derive the governing weak-form equations (see details
in the work of Nguyen et al. 2015 and Nguyen et al. 2016). The two systems of governing equations
are then coupled by enforcing the continuity of the displacement and traction across the interface
of the bulk cracked medium and the two non-planar material layers. The final system governing
equations for the infinite medium containing the non-planar crack with the consideration of surface
stress effects is given by

d(usz’uz) —hZ’(LNjSZ,tZ) Z.@(GSZ)
BE U +eE ) +2(E,ud) =0 (4.29)
2(t*,0%) +&£@O",ut) =2 (0%)
where the bilinear integral operators &, 2, €, 2, & are defined by
BOY) = [ X, 0V, 0)d5() (4.30)
e(X,Y)=- f X, () f UP(E-Y)Y, ()dS(E)dS(y) (4.31)
D(X,Y)=- j X, () j G2 (E—Y)D,Y, (B)AS(E)AS(Y) + [ X ,(v) [ HY (E—y)n, (B)Y; (E)dS(E)dS(y)
C C C C (4.32)
EX,Y)==[ DX, (y) j Cii (E—Y)D, Y, (B)dS(8)dS(y) + F(X,Y) (4.33)
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s
and the linear integral operators {4, %} are defined, in terms of the prescribed data t> and t;, by

R (X) = j X, ()t ()dS(y) +27° [ X, (y)n, (y)dS(y) (4.36)

¢

@(X)=§j X, ()t (v)dS(y) (4.37)
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where V, denotes the surface gradient; D is the tangential derivative; i is the initial mean

curvature of the non-planar crack surface; | is the inclusion map which is defined by 1=P" with
P=1-n®n, 1 denoting the identity matrix, and ® denoting the exterior product; v is a vector
contained in the crack surface and normal to the crack front; and all other remaining notations are
the same as those defined in the work of Nguyen et al. (2016). To determine numerical solutions
of the resulting fully coupled system (4.29), the BIEM-FEM coupling technique is utilized as
follows. The weakly singular BIEM is employed to discretize the boundary integral equations for
the bulk cracked medium (see details in Rungamornrat and Mear, 2008). The standard Galerkin
FEM is utilized to discretize the weak-form equations for the two non-planar material layers; the
treatment is similar to that employed in the analysis of a curved membrane (see details in Hansbo
and Larson, 2014; Hansbo et al., 2015).

4.2.4 Preliminary Results and Discussion

To verify the present formulation and numerical implementations of the proposed solution scheme,
a representative problem associated with an isolated, planar crack is considered and computed
results are then compared with the benchmark solutions generated by a technique proposed by
Nguyen et al. (2016). Consider a penny-shaped crack of radius a embedded in an isotropic, linear
elastic unbounded media as shown schematically in Figure 4.10(a). The cracked medium is
subjected to a uniformly distributed, self-equilibrated, normal traction t; =—t; = o, at the crack

surface (see Figure 4.10(b)). In the numerical study, properties of the bulk cracked medium and
the material layers are chosen identical to those utilized by Nguyen et al. (2016) (i.e., E =107 GPa

, v=0.33; A, =4.4939 N/m, u, =2.7779 N/m, and z, =0.6056 N/m). Three meshes of the crack

surface used in the analysis are presented in Figure 4.10(d) where meshes 1, 2 and 3 contain 20
elements and 77 nodes, 88 elements and 297 nodes, 216 elements and 665 nodes, respectively.
This problem has been previously solved by Nguyen et al. (2016) using the FEM-SGBEM
coupling technique and their results are used as the reference solutions to validate the current
proposed technique in the particular case involving planar cracks.

The normalized crack opening displacements (CODs) and the normalized vertical stresses
near the crack front, when the influence of surface stresses is considered, are reported in Figure
4.11 along with the benchmark numerical solution generated by FEM-SGBEM coupling technique
proposed by Nguyen et al. (2016) and the exact solution for the classical case given by Tada et al.
(2000) and Kachanov et al. (2003). It is seen that numerical results obtained from the proposed
BIEM-FEM coupling technique are slightly mesh dependent, highly accurate, and almost
indistinguishable from the reference solutions for both the crack opening displacement and the
near-front vertical stresses o, . It can also be demonstrated from the results shown in Figure 4.11

that the model incorporating the surface stresses yield results significantly different from those
predicted by the classical theory. The medium tends to be much stiffer than the classical case,
when the influence of surface stresses is taken into account. Let us consider, next, the same circular
crack subjected to the self-equilibrated, uniformly distributed, shear traction t =—t -z as

illustrated in Figure 4.10(c). The same material properties and meshes as those considered in the
previous case are used in the analysis. Results for the crack sliding displacements (CSDs) and the
stresses in the vicinity of the crack front along the x;-direction (the direction of the applied shear
traction) are reported in Figure 4.12. It is seen that numerical solutions exhibit very good
convergence and excellent agreement with both the reference solution generated by Nguyen et al.
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(2016) and the exact solution given by Kachanov et al. (2003) for the classical case. It can be seen
from results in Figure 4.12(a) that the surface stresses significantly influence the CSDs. It can also
be argued from Figure 4.12(b) that the shear stress o, in the vicinity of the crack front is strongly

influenced by the surface stresses. The magnitude of the predicted stresses near the crack front
reduces considerably from the classical solution when the surface stresses are present.
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Figure 4.9 Schematics of (a) non-planar crack embedded in three-dimensional, linear elastic, infinite
medium, (b) prescribed general tractions on crack surfaces, (c) bulk cracked medium, (d) zero-thickness
layers S¢ and S¢ .
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Figure 4.10 (a) Schematic of circular crack of radius a embedded in linear elastic unbounded media; (b)
crack surface subjected to uniform normal traction t’ = . = &, ; () crack surface subjected to uniform

shear traction t’ =-t, =7, ; and (d) meshes adopted in analysis.
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Figure 4.11 Results for (a) normalized crack opening displacements and (b) normalized vertical
stresses in the vicinity of the crack-front.
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CHAPTER V
NANO-INDENTATION

This chapter presents the analysis of axisymmetric indentation with consideration of surface
energy effects under frictionless and adhesive contacts by adopting a complete Gurtin-Murdoch
continuum model theory of surface elasticity. The indentation problem with arbitrary
axisymmetric profiles is formulated by employing the displacement Green’s functions, derived
with the aid of Hankel integral transform technique. The unknow contact pressure distribution
under an indenter of axisymmetric profiles is determined by using Green’s functions, which are
defined by the solutions of surface displacements of an elastic medium. The accuracy of the
proposed solution scheme is verified by comparing with existing solutions. Selected numerical
results are presented to portray the influence of surface stresses on elastic fields of an elastic layer
and a layered elastic half-space under nano-indentation.

5.1 Background and Review

Indentation techniques have been widely used in practice to obtain the mechanical properties such
as hardness and elastic modulus. For example, Doerner and Nix (1986); and Oliver and Pharr
(1992) determined plastic and elastic properties of thin films by using depth-sensing indentation,
in which Young’s modulus can be calculated from the slope of the linear portion of the unloading
curve while hardness can be obtained from the load-displacement data. In the past, several
researchers presented elastic solutions of indentation problems by employing continuum
mechanics models. The classical solution of axisymmetric contact problem of an elastic half-space
is obtained by Boussinesq (1885). Harding and Sneddon (1945); and (Sneddon, 1965) established
a solution of the axisymmetric Boussinesq problem, which enabled them to deduce simple
formulas giving the penetration of a punch of arbitrary profile by using Hankel integral transform
techniques. The indentation problem related to flat-ended rigid cylindrical punch for an elastic
layer perfectly bonded to a rigid base was considered by Lebedev and Ufliand (1958). Dhaliwal
and Rau (1970; 1972) presented axisymmetric rigid indentation on elastic layer lying over an
elastic foundation under a rigid punch of arbitrary profiles. Chen and Engel (1972) analyzed rigid
indentation on one and two elastic layers bonded to a homogeneous half-space. In addition, Yang
(2003) investigated the effect of thickness for an elastic thin film on a rigid base under a rigid flat-
ended cylindrical indenter. In his paper, the frictionless condition on both contact interfaces, i.e.
between the indenter and the film, and between the film and the rigid base, is assumed.

The above solutions to indentation problem were obtained based on the assumption of
frictionless contact surface. If the coefficient of friction between a rigid indenter and an elastic
medium is large enough, the indenter is prevented from any sliding on the contact area. This
condition is known as an adhesive contact problem, and it is mathematically more complicated
than the case of frictionless contact. For the indentation with adhesive contact, the top surface of
elastic medium is decomposed into a surface outside the contact region on which both normal and
shear stresses are identically zero, and a surface inside the contact region on which the normal
displacement is prescribed in terms of the indentation depth and the radial displacement is zero at
every point of the contact region. The analysis of indentation with adhesive contact was first
performed incrementally for a growth in the contact radius (Goodman, 1962; Mossakovskii, 1954,
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1963). Spence (1968a, b) introduced a self-similarity approach for a flat-ended cylinder and a
parabolic punch, corrected some misprints in the Mossakovskii examples (Mossakovskii, 1963),
and also presented the solution for a conical punch. By adopting Mossakovskii approach, Borodich
and Keer (2004) obtained the exact solution to the axisymmetric adhesive elastic contact problem
for punches whose shapes are described by monomial functions. A detailed and comprehensive
analysis of the literature related to the adhesive contact problems is given by Galin and Gladwell
(2008); and Borodich (2014). Recently, Selvadurai and Katebi (2015) examined the axisymmetric
adhesive contact problem between a rigid circular plate and an incompressible elastic half-space
where the shear modulus of the elastic material varies exponentially with depth.

Nowadays, nanoindentation is employed to investigate the mechanical properties of
various devices such as nanoelectromechanical systems (NEMS). For nano-scale systems, the
influence of excess energy associated with the surface/interface atoms, called surface/interfacial
free energy, is significant due to their high surface-to-volume ratio, and the mechanical behavior
then becomes size-dependent (Wong et al., 1997). Based on continuum mechanics models, the
surface energy effects, which are generally ignored in studying the mechanical behavior, must be
taken into account in modified continuum-based simulations for nanoscale problems. Several
continuum-based models have been proposed to account the surface stress and the size-dependent
material behaviors such as the couple stress theory (Mindlin and Tiersten, 1962; Toupin, 1964),
the strain gradient elasticity theory (Mindlin, 1964; Gao and Zhou, 2013) and the surface elasticity
theory (Gurtin and Murdoch 1975, 1978). Over the last twenty years, the Gurtin-Murdoch model
has been widely employed for studying various continuum mechanics problems. For example,
problems related to an elastic medium under surface loading (Zhao and Rajapakse, 2009; Zhao
and Rajapakse, 2013; Rungamornrat et al., 2016; Tirapat et al., 2017; Mi, 2017); contact problem
(Gao et al., 2013; Zhou and Gao, 2013; Gao et al., 2014); nanobeam (Ansari et al., 2014; Azizi et
al., 2015); nanoplate (Sapsathiarn and Rajapakse, 2013; Ansari and Gholami, 2016); and nanosized
cracks (Intarit et al., 2017).

In the context of nanoindentation problems, Zhao (2009) derived an analytical solution of
a frictionless nanoindentation problem, in which elastic fields within the half-space caused by flat-
ended cylindrical, conical and spherical rigid indenters are presented. Although Gurtin-Murdoch
continuum model used in the formulation is not complete (e.g. no out-of-plane term), numerical
result showed a size-dependent behavior due to the surface energy effect, i.e. when the contact
area becomes smaller, the material becomes stiffer. Pinyochotiwong et al. (2013) later generalized
the work of Zhao (2009) to investigate mechanical response of an elastic half-space under rigid
axisymmetric indentation by adopting a complete version of Gurtin-Murdoch model and the
Hankel integral transform. The finite element method was also employed by Attia and Mahmoud
(2015) to consider a frictionless nanoindentation problem on a functionally graded layered elastic
medium with the influence of surface stresses.

This study presents the analysis of axisymmetric rigid indentation with consideration of
surface energy effects under frictionless and adhesive contacts by adopting a complete Gurtin-
Murdoch continuum model for theory of surface elasticity. The foundamental solutions of an
elastic layer and a layered elastic half-space with consideration of surface stresses derived by
Intarit (2012) and Tirapat et al. (2017), respectively are employed in the formulation of
axisymmetric indentation problem as a mixed-boundary value problem. The displacement
boundary condition at the top surface is expressed in terms of displacement Green’s function,
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obtained by employing the Hankel integral transform method. The unknow contact pressure
distribution under an indenter of axisymmetric profiles is determined by using Green’s functions,
which are defined by the solutions of surface displacements of an elastic layer and a layered elastic
half-space. The accuracy of the proposed solution scheme is verified by comparing with existing
solutions. Selected numerical results are presented to portray the influence of surface stresses on
an elastic layer and a layered elastic half-space under nano-indentation.

5.2 Formulation of Nano-Indentation Problems

Consider an elastic medium subjected to axisymmetric rigid punch under the action of a vertical
force P. According to Gurtin-Murdoch surface elasticity theory (Gurtin and Murdoch, 1975;
Gurtin and Murdoch, 1978), the elastic medium consists of two different parts, i.e. the bulk
material and the surface, which is a zero-thickness layer perfectly bonded to the bulk material
without slipping. The field equations of the bulk material are identical to those given by the
classical elasticity for axisymmetric deformations. On the surface, the generalized Young-Laplace
equation (Povstenko, 1993), the surface constitutive relations and the strain-displacement
relationship (Gurtin and Murdoch, 1975; Gurtin and Murdoch, 1978; Gurtin et al., 1998) are given
by Egs. (2.5) to (2.8).

5.2.1 Nano-Indentation on Elastic Layer

Consider an elastic layer of finite thickness t perfectly bonded to a rigid base subjected to
axisymmetric frictionless indentation under the action of a vertical force P with an arbitrary
indenter profile fully described by vP(r) as shown in Figure 5.1. For convenience, the profile of the
indenter is defined such that v°(r) = 0 along the axis of the indenter (r = 0) whereas the final radius
of the contact region and the indentation depth resulting from the force P at the center of the
indenter are represented by a and d, respectively. In the present study, the indenter profile is
assumed to be smooth at any interior point of the contact region (i.e., the unit normal vector to the
surface of the indenter, or equivalently, dd/dr is well-defined for r < a) whereas along the boundary
r = a, the profile could be non-smooth. An indenter with a well-defined dv"(r)/dr for » < a [see
Figure 5.1(a)] is termed here a smooth-contact indenter, whereas an indenter with a well-defined
dvP(r)/dr only for r < a, such as a flat-ended cylindrical indenter shown in Figure 5.1(b), is called
a non-smooth-contact indenter.

For the indentation problem shown in Figure 5.1, the top surface of the layer is decomposed
into a surface outside the contact region (r > a) on which the traction (both normal and shear) is
identically zero, and a surface inside the contact area (» < a) on which the vertical displacement is
defined in terms of the indentation depth d and the indenter profile vP(r). In addition, the shear
traction at any point of the contact region is also vanished due to the assumption of frictionless
contact surface. According to the Gurtin-Murdoch model, the continuity of displacement and
traction is enforced along the interface of the surface and the bulk material of the elastic layer. The
mixed boundary value problem for the indentation shown in Figure 5.1 can then be expressed for
the bulk material as,

ul,,=d-vP(r), 0<r<a 5.1)
2

o-zzlz:O-’_TS d_uzz—"_lduz :0, a<r<o (5.2)
dr rdr) .
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2
O'n|ZO+KS[d Ur +1dur —u—rj =0, 0<r<w (53)
0

U], =0, 0<r<ow (5.4)

=0, 0<r<w (5.5)
where x®° denotes a surface material constant, in which x° = 2.° + 2°. Note that the residual surface
stress is assumed to be constant in the present study.

By using the method of superposition, the vertical displacements on the contact surface can
be expressed in the form of an integral equation, and Eq. (5.1) can then be written as,

JOaGZZ(r,r*)p(r*)dr*zd —5(r) (5.6)

where p(r’) is the normal traction distribution in the contact region and Gzz(r,r*) denotes the

Green'’s function corresponding to the vertical displacement at any distance r on the contact surface
due to a unit vertical ring load applied on the elastic layer at the radius r”. The Green’s function,

G, (r, r*) , can be obtained from the boundary value problem given by Egs. (5.3) to (5.5) together
with the following boundary condition,

.(d?u, 1du, N
GZZ|Z:0 +7 [F_{_FWJZ_O:é‘(r_r ) (57)

To solve this boundary value problem for the required Green’s function, the Hankel integral
transform technique was employed, and it can be shown that (Intarit, 2012)

(/1+2;1)(/1+23,u)sinh(2t§)_t§(/1+2/1) * *
dtupe|  20(A+w) Aty r3,(r) 3, (ér)

G,(r.r")= 0 0 ae T(e3n I dé  (5.8)
+ H 2 g2
ﬂ,+2,u[ 20+ 1) (cosh(2t&)-1)-t?¢ (ﬁv+,u)}
where
| . 2 12+4iﬂ+5ﬂ2
=(A+3u)[ cosh(2t£)+ A&sinh(2t&) |+ 2t& (/1+,u)(A+t)+T
(A+3u) X (A+2u) . ~ (A+3u) 5
y (l+3ﬂ){—2y(l+2y)/\§ cosh(2t§)+—Zu(ﬂJrﬂ)gsmh(Ztg) —Zy(/1+2y)A§ (5.9)
_(/1+2/l)t 2 (ﬂ""/u)z AL2ES
H H(A+2p)

In order to obtain the normal contact traction, the pressure distribution in the contact region,
denoted by p(r”), is represented by the following equation.
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P(”Fi% f(r) (5.10)

where ¢ (j = 1,...,m) denotes a set of undetermined coefficients and f; is a given function of r".
Substituting the contact pressure distribution, given by Eq. (5.10), into Eq. (5.6) leads to

ZaijaGu(r,r*)fj(r*)dr*:d—vp(r), O<r<a (5.11)
j=1

By applying a collocation technique, the above integral equation can be expressed as,

Doy [ G () f (r)dr =d ") forall r, i =1,2,..,m (5.12)
j=1

The coefficient ¢; can be obtained by solving Eq. (5.12), and the normal contact traction can then
be determined. In the present study, the unknown pressure distribution is approximated in terms
of axisymmetric polynomial functions such that

P(r*)Ziaj(r*)j‘l (5.13)

Once the normal traction distribution in the contact area, p(r*), is obtained, all elastic fields
at any point in the layer under axisymmetric indentation can be determined from the following
equation.

R(r,z):I:RZ(r,z,r*)p(r*)dr* (5.14)

where R(r,z) denotes displacements and stresses at a point (r, z) of an elastic layer under
axisymmetric indentation on the top surface; and Rz(r,z,r*) denotes the Green functions

corresponding to displacements and stresses at a point (r, z) of an elastic layer due to a unit normal
ring load applied at the top surface of the layer at the radius r". In addition, the Green function

Rz(r,z,r*), expressed in the forms of Hankel integral transforms, is given elsewhere
(Rungamornrat et al., 2016; Intarit, 2012).
5.2.2 Nano-Indentation on Layered Elastic Medium

Consider a layered elastic half-space consisting of two elastic materials with different properties
perfectly bonded together, in which the upper material is an elastic layer of finite thickness h and
subjected to axisymmetric indentation of a radius a under the action of a vertical force P as shown
in Figure 5.2. If the coefficient of friction between a rigid flat-ended cylindrical punch and a
layered elastic half-space is high enough, the indenter is prevented from any sliding on the contact
area. This condition is known as an adhesive contact. For axisymmetric adhesive indentation, the
surface of the upper layer can be decomposed into a surface outside the contact region (r > a) on
which both normal and shear stresses are identically zero, and a surface inside the contact region
( < a) on which the normal displacement is prescribed in terms of the indentation depth d and the
radial displacement is zero at every point of the contact region. To solve this indentation problem,
the subscript “1” is used to represent the quantities corresponding to the bulk of the upper layer
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and the surface. In addition, the subscript “2” is employed to represent the quantities associated
with the bulk of the half-space and the interface between the layer and the half-space. The mixed
boundary conditions at the top surface for the adhesive contact problem can then be expressed as,

Uyl ,=d; 0<r<a (5.15)

Uy, =0; 0<r<a (5.16)
o d?u, 1du,

Gzzl|z:0+rl [del-FFd—rlj 0 :0, a<r<oo (517)
J(d?u, 1du, u, _

Grzl|zO+Kl( i +?d_rl_r_zll 0=01 a<r<o (5.18)

The continuity of displacements and stresses at the interface between the layer and the half-space
can then be expressed as,

Uyl ~Upof,, =0; T>0 (5.19)

Uy, =Upol,, =0 r>0 (5.20)
o( d?u,, 1ldu, _

o-zzl|Z:h _O-zzz|2:h +7, ( dr22 +Fd_r2j i = 01 r>0 (521)
s(d?u, 1du, u, _

Grzl|zzh _Gr22|z:h tK, [dTZZJFFd_rZ_r_ZZ]Z_h :O; r>0 (522)

where {0z, or;} denote the stress components of the bulk; and {ur, u;} denote the displacement
components of the bulk. In addition, * =2,° + 4° (i = 1,2).

By using the method of superposition, the normal and radial surface displacements are
given by Egs. (5.15) and (5.16), can be expressed in the form of integral equations as,

jOaUZN(r,r’)- p(r’)dr'+IOan(r,r')-q(r’)dr’:d; 0<r<a (5.23)
IOaUrN(r,r’)- p(r')dr'+J'0aUrR(r,r')-q(r’)dr':O; 0<r<a (5.24)

where U/ (r,r") denotes the Green’s function corresponding to the normal (i = z) or radial (i = r)

surface displacement at any distance r on the contact surface due to a unit normal (j = N) or a unit
radial (j = R) ring load acting on the surface of the upper layer at the radius r’. The Green’s
functions corresponding to the normal and radial surface displacements of a layered elastic half-
space with consideration of surface energy effects can be expressed in the form of Hankel integral
transform respectively as,

us(r,r)=—(4 +1)A1fow§2 {Ae“r B(%ﬂ}rcf— D(%ﬂj}%(ff)df (5.25)
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U (r.r)=(4+1)A jg ~AZ+B+CE+ D), (EF)dE (5.26)

where I, =4 /4 ; T=r/A,;and A, =« (4 +244)/2u (4 +4) . In addition, A, B, C and D are the

arbitrary functions of the applied surface loads at any the radius r’, which are given explicitly in
Egs. (2.38) to (2.41), and the superscript “k” is used to denote a unit normal ring load (k = N) or a
unit radial ring load (k = R) acting on the surface of the upper layer.

For the analysis of the adhesive contact problem, the normal traction p(r) and the shear
traction q(r) can be represented as discrete regions of uniform traction acting over annular
elements. The contact surface under the indenter is discretized into a number of Ne annular
elements. It is assumed that p(r) and g(r) are constant within each ring element. The vertical and
radial surface displacements at the contact surface, Egs. (5.25) and (5.26), can then be expressed
as,

uY uf|[p| [d
i ol {o 620

where the elements U} (r,,r,)and U (r.r;) (i,j= 1, 2,...,Ne) of the matrices U! and U},

respectively denote the Green’s functions corresponding to the normal and radial surface
displacements of a layered elastic half-space at the center of the i ring element subjected to a
uniform annular normal load (k = N) or a uniform annular radial load (k = R) over the j” ring
element. In addition,

=(p(r) p(r)-p(r)) (5.28)
a=(a(r) a(r).-a(r.)) (5.29)
d=(d d .. d) (5.30)

If a frictionless contact between a rigid flat-ended cylindrical punch and a layered elastic half-
space is considered, the shear traction vanishes and the surface displacement at the top surface in
Eq. (5.27) is then reduced to

Ne

YU () p(r)=d (5.31)

j=1

Once the normal traction p(r)and the shear traction q(r) in the contact area are obtained,

all elastic fields within the bulk material of the layered half-space under axisymmetric indentation
as shown in Figure 5.2 can be determined from the following equation:

R(r,2) :.[:RN (r.z; r’)~p(r’)dr’+.[0°°RR (r.z;r")q(r")dr’ (5.32)

where R(r,z) denotes elastic fields, which are displacements and stresses, at any point (r, z) of the
layered half-space; R" (r,z;r") and R"(r,z;r")are the Green’s functions corresponding to elastic
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fields at any point (r, z) within the bulk due to a unit normal load and a unit radial load (ring or
annular) respectively acting on the surface of the upper layer at the radius r’. Note that the elastic
fields within the bulk of the layered half-space, expressed in the form of Hankel integral
transforms, are given elsewhere (Tirapat et al., 2017).

5.3 Numerical results

A computer program based on the solution procedure described in the previous section has been
developed to study axisymmetric rigid indentation on an elastic layer and a layered elastic half-
space with consideration of surface energy effects under frictionless and adhesive contacts.

5.3.1 Verification

First, the accuracy of Green’s functions employed in the formulation of the indentation problem is
validated by considering the case of an elastic layer with finite thickness t with a rigid base
subjected to uniformly distributed normal traction po over a circular area of radius a with

consideration of surface energy effects. It is noted that the Green’s function G,, (r,r*), given by

Eqg. (5.8), is expressed as a semi-infinite integral with respect to £ where a closed form solution
cannot be obtained. The evaluation of Green’s functions is then performed by employing a globally
adaptive numerical quadrature scheme (Piessens et al., 1983) that subdivides the interval of
integration and employs a 21-point Gauss—Kronrod rule to estimate the integral over each
subinterval. The subdivision continues until the error from the approximation is less than a
specified tolerance. In the numerical study, it is convenient to introduce the following non-
dimensional quantities: ro = r/A; zo = z/A; to = t/A; a0 = a/A; do = d/A; and a0 = A, where A =
k*(A+2u)/2u(A+p), and it has the dimension of length. Aluminum was used for the layer

material with A/u =2.226 (Meyers and Chawla, 1999), and Al [1 1 1] was employed for the surface
with A = 0.153 nm and z°* = 1 N/m (Miller and Shenoy, 2000). The surface elastic constants can
be obtained from atomistic simulations (Miller and Shenoy, 2000; Dingreville et al., 2005). Figure
5.3(a) presents comparison of normalized vertical displacements at the surface along the radial
direction between the present solution and the solution given by Zhao (2009) for the case when
the out-of-plane contribution of the residual surface stress is ignored. Comparison between the
current solution and the existing solution (Rungamornrat et al., 2016) for the layer with the
complete Gurtin-Murdoch surface elasticity model is also shown in Figure 5.3(b). It is evident
from both figures that the present solutions are in excellent agreement with the two benchmark
solutions.

The accuracy of the present solution is then verified with existing solution for nano-
indentation problem. Figure 5.4 presents a comparison for axisymmetric indentation on an elastic
half-space between the present solutions (with t/a = 200) and the solutions by Pinyochotiwong et
al. (2013). The half-space material properties are identical to those of the elastic layer considered
in Figure 5.3. Profiles of normalized contact traction and surface vertical displacement along the
radial direction are presented under flat-ended cylindrical (non-smooth-contact) indenter in Figure
5.4(a) and paraboloidal (smooth-contact) indenter with a0 = 0.5 in Figure 5.4(b), respectively.
Since the contact pressure distribution in the present study is assumed as a series of axisymmetric
polynomial functions, profiles of normalized contact pressure in Figures 5.4(a) and 5.4(b) are then
plotted for different numbers of terms employed in the series, m, to show the convergence and
accuracy of the present solution. It is noted that under a flat-ended cylindrical indenter a vertical
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ring load has to be applied at r = a in the current study to account for a ring load induced at the
edge of a non-smooth-contact indenter in the presence of the residual surface stress. The applied
vertical force P would then be supported by the ring load together with the contact pressure
generated under this type of indentation. Comparison presented in Figure 5.4 reveals that the
present solutions show a good agreement with the benchmark solutions given by Pinyochotiwong
et al. (2013) when m > 15 for a flat-ended cylindrical indenter and m > 10 for a paraboloidal
indenter, respectively. The appropriate number of terms, m, required in the approximation of the
contact pressure is higher for non-smooth-contact indenter due to the singular pressure that exists
along the edge of the cylindrical indenter (Pinyochotiwong et al., 2013). Comparison of
normalized vertical displacement profiles at the top surface is also shown in Figure 5.4 for both
flat-ended cylindrical and paraboloid indenters. The displacement profiles are approximated by
using m = 15 and 10, respectively, for the flat-ended cylindrical and paraboloidal indenters. It is
clearly seen from Figure 5.4 that a good agreement is also obtained for the comparison of
normalized displacement profiles between the present solution and the benchmark solution
(Pinyochotiwong et al., 2013) for both types of indenters. All numerical solutions presented
hereafter are thus calculated by using m = 15 and m = 10 for the flat-ended cylindrical and the
paraboloidal indenters, respectively.

In addition, numerical solution scheme based on the discretization approach outlined in the
previous section is implemented into a computer program to study flat-ended cylindrical punch on
a layered elastic half-space under adhesive contact as shown in Figure 5.2 The unknown contact
traction (both normal and shear) between the rigid indenter and the layered medium can be
represented as discrete regions of uniform tractions acting over annular regions as expressed in
Eq. (5.27). The required Green’s functions, U} (r,r’) are determined from a layered elastic half-

space subjected to a uniform annular load of unit intensity, which are expressed as semi-infinite
integrals with respect to & [see Eqgs. (5.25) and (5.26)] and the numerical evaluation of Green’s
function is previously discussed.

The accuracy of the obtained numerical results are validated with existing solutions. The
present solution is specialized for the case of the adhesive contact between flat-ended cylindrical
punch of radius a and an elastic half-space without surface energy effects. Figure 5.5 shows
comparisons between the numerical solutions from the present study and the existing solutions
given by Spence (1968). The following material parameters are employed: 4, = 4, = 58.17 GPa
and g, = u, =26.13 GPa. In addition, the surface parameters are set to be negligibly small in the
present solution (i.e. 7 =7; ~0and « =«; ~0). Comparisons of normalized contact pressure and
surface displacement profiles at the top surface are shown in Figures 5.5(a) and 5.5(b) respectively.
Numerical results presented in Figure 5.5(a) indicate that a very good agreement between the
present and benchmark solutions is obtained when Ne = 40 for the normalized contact pressures.

In addition, both normal and radial surface displacements obtained from the current study agree
very closely with the benchmark solutions with Ne = 40 as shown in Figure 5.5(b).

5.3.2 Numerical solution for nano-indentation on elastic layer

Numerical solutions for an elastic layer with constant thickness t perfectly bonded to a rigid base
subjected to axisymmetric rigid frictionless indentation under an applied vertical load P on its
surface are presented in this section for particular punch profiles. Selected numerical results are
then presented to portray the influence of surface stresses on elastic fields of a finite layer with
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rigid base under axisymmetric indentation from flat-ended cylinder (non-smooth-contact) indenter
and paraboloidal (smooth-contact) indenter. For the case of flat-ended cylindrical indenter [see
Figure 5.1(b)], the contact radius “a” is prescribed and the punch profile is set to be zero, i.e.,
vP(r) =0. Inaddition, for paraboloidal punch, v’ (r)=ar?where « is a positive constant and the

radius of contact region “a” is unknown a priori [see Figure 5.1(a)]. The influence of surface
energy effects on axisymmetric indentation on an elastic layer with rigid base is presented for the
flat-ended cylindrical indenter with the contact radius of ap= 0.5, and for the paraboloidal indenter
with ap = 0.5. An elastic layer, with a finite thickness of t/a=5 and material properties of A/u =
2.226; A =1 nm;and 7° =5 N/m, is considered in the numerical study.

Figures 5.6 to 5.8 present elastic fields of the elastic layer subjected to the flat-ended
cylindrical indenter. Note that the broken lines in all Figures presented hereafter denote the
classical solutions corresponding to the indentation on an elastic layer with no surface stress effects
(i.e. *= 3= 0). For the classical solution, a square root singularity exists in the contact pressure
along the edge of the flat-ended cylindrical indenter (Sneddon, 1965). Equation (5.13) has to be
modified by adding another function with square root singularity at r = a in the modeling of the
contact pressure for the classical solution. Normalized contact pressure and vertical displacement
profiles at the surface along the radial direction are presented in Figure 5.6(a) for different layer
thicknesses, i.e., t/a=2, 5and 10, with ap= 0.5. Figure 5.6(b) presents radial profiles of normalized
contact pressure and vertical displacement of an elastic layer with t/a=5 for different values of
contact radii, i.e., a0 = 0.5, 1.0 and 1.5, to demonstrate the size-dependent behavior of the present
solution. Numerical results shown in Figure 5.6(a) indicate that the contact pressure increases
when the layer thickness decreases, and the singularity is observed in the profiles near the edge of
the indenter for both classical and present solutions. In addition, the contact pressure in the current
study is lower due to the presence of surface stresses. The normalized displacement profiles shown
in Figure 5.6(a) reveal that the vertical displacements outside the contact region obtained from the
current study are higher than those from the classical elasticity due to the fact that larger
indentation force is required in the present solutions to produce the same indentation depth. It is
obvious from Figure 5.6(b) that with the consideration of surface stress effects the size-dependency
is clearly observed on normalized contact pressure and vertical displacement whereas the classical
elasticity solutions are size-independent. In addition, the influence of surface stresses decreases
when the radius of the indenter a increases, and the present solution will eventually converge to
the corresponding classical solution.

The influence of surface stress is further investigated for different residual surface stress
(7°) and surface material parameter (A) in Figure 5.7(a) and 5.7(b) respectively. In Figure 5.7(a),
normalized contact pressure profiles are presented for a material with residual surface stress being
varied from 1.0 to 10 N/m and A =1 nm. The influence of surface material parameter is illustrated
in Figure 5.7(b) by employing a material with the surface material parameter being varied from
0.1to 100 and z° =5 N/m. It can be seen from both figures that the normalized contact pressure
obtained from the current study is lower than the classical solution for all values of residual surface
stress and surface material parameter. In addition, the contact pressure shows more dependence on
the residual surface stress when compared to the surface material parameter. The contact pressure
significantly decreases by increasing the residual surface stress since a larger ring load is generated
for higher residual surface stress resulting in smaller contact pressure being developed under the
indenter. On the contrary, normalized contact pressure increases with increasing the surface

103



material parameter. This is physically realistic as a material with increased surface material
parameter would possess a stronger surface. As a result, a lower ring load is induced along the
indenter edge and higher contact pressure is then generated under the indenter.

Figures 5.8(a) and 5.8(b) show radial profiles of normalized displacements and stresses
respectively along the radial direction of an elastic layer under axisymmetric indentation at
different depths. It is clearly seen from both Figures. that the surface stress has a notable influence
on elastic fields especially in the vicinity of the top surface. In Figure 5.8(a), both vertical and
radial displacements from the current study are higher than their classical counterparts. Numerical
results shown in Figure 5.8(b) indicate that the presence of surface stresses causes the reduction in
stresses under the contact region, whereas outside the contact region the increase of stresses is
observed. In addition, the influence of the surface stress becomes negligible when r/a > 3.

A set of numerical solutions presented in Figures 5.9 to 5.11 correspond to the case of an
elastic layer compressed by a rigid paraboloidal indenter with v’ (r) =0.5r2. It is noted that under

a smooth-contact indenter the contact radius “a@” is unknown a priori, and it can be determined by
enforcing the continuity condition of the vertical stress under the indenter at r =a and z = 0. In
addition, no ring load is induced under smooth-contact indentation. Figures 5.9(a) and 5.9(b)
demonstrates the influence of surface stresses on radial profiles of normalized contact pressure and
vertical displacements of an elastic layer with different thicknesses and different contact radii
respectively. Numerical results for normalized contact pressure profiles presented in Figure 5.9(a)
indicate that no singularity is observed in the contact pressure under a smooth-contact indenter.
The maximum contact stresses, from both current study and classical elasticity, are found under
the center of the indenter, and the pressure gradually decreases with the radial distance. Note that
the contact pressure from the classical solution vanishes at r = a, whereas the current solution
shows a finite value at that location due to the presence of surface stresses. Similar behavior was
also observed for smooth-contact indentation on an elastic half-space (Pinyochotiwong et al.,
2013). Similar to the case of non-smooth-contact indenter shown in Figure 5.6(a), both classical
and present solutions shows a strong dependence on the layer thickness. The contact pressure
decreases with the increase of the layer thickness whereas the normalized vertical displacement
decreases when the layer thickness decreases. In addition, larger contact pressure and displacement
are observed in the current study when compared to the classical solutions since the surface stresses
render the layer stiffer and larger indentation force is then required to yield the same indentation
depth. To observe the size dependent behavior, the variations of contact pressure and vertical
displacement along the radial direction are presented in Figure 5.9(b) for different values of contact
radii, i.e., ap=10.5, 1.0 and 1.5. As expected, the contact pressure and vertical displacement in the
current study depend significantly on the size of the contact radius “@” whereas the classical
counterparts are once again size-independent. It is clearly observed from Figure 5.9(b) that the
influence of surface stress effects becomes smaller as the contact radius becomes larger and both
contact pressure and displacement converge to their classical counterparts.

In Figures 5.10(a) and 5.10(b), the influence of residual surface stress (z°) and surface
material parameter (A) are investigated by varying z° = 1.0 - 10 N/m and A = 0.1 — 100 nm
respectively. Note that other material parameters remain unchanged during the variation of either
7° or A. Unlike the non-smooth-contact indentation shown in Figure 5.7, the present contact
pressure is larger than the classical solution for all values of z° or A. Once again, the contact
pressure under smooth-contact indentation also shows more dependence on the residual surface
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stress. The normalized contact pressure from the current study increases with increasing the
residual surface stress and the surface material parameter. Figure 5.11 presents the radial variations
of normalized displacements and stresses at various depths under smooth-contact indentation.
Numerical results shown in this Figure indicate that the surface stresses display similar influence
on radial profiles of elastic fields to those shown in Figure 5.8 for non-smooth-contact indentation.
Once again, both vertical and radial displacements from the current study are larger than the
corresponding classical solutions and the presence of surface energy effects results in discrepancy
in normal and shear stresses between the present and classical solutions.

The final set of numerical solutions demonstrates the influence of the thickness of an elastic
layer and the contact radius on the indentation force. Figure 5.12 presents variation of normalized
indentation force with the contact radius ao for different layer thicknesses. Note that P corresponds
to the indentation force on an elastic half-space for the classical case, which is obtained from the
current study by ignoring the surface energy effects (i.e., x°* = ¢° = 0) with t/a = 200. The flat-
ended cylindrical and paraboloidal indenters are presented in Figures 5.12(a) and 5.12(b),
respectively. Note that for the paraboloidal indenter, a punch profile with ao = 0.01 is used so that
the obtained indentation depths are valid for all layer thicknesses under consideration. Numerical
results presented in Figure 5.12 indicate that the indentation forces from both current study and
classical elasticity depend significantly on the thickness of the layer and the contact radius. It is
evident that higher indentation force is required to produce the same indentation depth for a thinner
layer. The size-dependency is clearly observed from the present solution for all layer thicknesses
under both non-smooth-contact and smooth-contact indentations. In addition, the present solution
for the flat-ended cylindrical punch approaches the half-space solution given by Pinyochotiwong
et al. (2013) when the layer becomes thicker. A notable feature observed from Figure 5.12 is the
fact that the classical solutions for both non-smooth-contact and smooth-contact indentations also
display size-dependent behavior for a thin layer (to < 10). This behavior was also observed by
Yang (2003) who considered the case of flat-ended cylindrical indenter with frictionless condition
on both contact interfaces and no surface stress influence.

5.3.3 Numerical solution for nano-indentation on layered elastic half-space

The influence of surface energy effects on rigid indentation with adhesive contact on a layered
elastic half-space is investigated for a flat-ended cylindrical indenter as shown in Figure 5.2. For
convenience, the following non-dimensional quantities: 7 = z/A1; h = h/A1; @ =a/A1and d =
d/A1, together with Ne = 40 are used for the numerical results of the adhesive contact problem
presented hereafter. In addition, the material properties employed in the top surface and the bulk
in the top layer are identical to those considered by Pinyochotiwong et al. (2013) whereas 4> =
78.08 GPa, 1 = 40.23 GPa for the bulk of the underlying half-space; and z;=0.3944 N/m, «; = -

3.9506 N/m at the interface. Note that the broken lines in all figures presented in this section denote
the classical solutions corresponding to the indentation on the layered elastic half-space with no
surface energy effects (i.e. 7°= x* ~ 0). Figures 5.13(a) and 5.13(b), respectively display radial
profiles of contact pressure and vertical surface displacement under the indenter for both adhesive
and frictionless contacts with a =1 and h/a = 1. It is evident from Figure 5.13 that the numerical
results from the present study and the classical solution exhibit similar trends for both pressure and
displacement profiles, and the surface energy influence renders the layered medium stiffer.
Numerical results presented in Figure 5.13(a) indicates that both classical and present solutions
show singular contact traction close to the indenter edge. In addition, the traction developed under
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the adhesive contact is comparatively higher than that under the frictionless contact due to the
presence of adhesion resulting in higher indentation force being required for the same indentation
depth.

Figures 5.14(a) and 5.14(b) respectively present radial variations of normalized
displacements and stresses of a layered elastic half-space under indentation with adhesive contact
at different depths for the contact radius of a= 1.0 and the layer thickness of h/a = 1. Once again,
the solutions for elastic fields from the present study and the classical elasticity shown in Figure
5.14 display similar trends. Figure 5.14(a) indicates that both vertical and radial displacements
from the present study are higher than the classical elastic solutions. Numerical results for the
normalized vertical and shear stresses at various depths shown in Figure 5.14(b) reveal that the
presence of surface stresses causes the reduction in stresses under the contact region, whereas
outside the contact region the increase of stresses is observed. In addition, the influence of the
surface stress becomes negligible when r/a > 2.5.

To demonstrate the effect of the contact area for indentation with adhesive contact and the
influence of surface energy effects, Figures 5.15(a) and 5.15(b) show radial variations of
normalized contact pressure and surface displacements of the layered half-space with h/a = 1 for

different values of the normalized contact radius, i.e. @ = a/A, = 0.5, 1.0 and 1.5. Note that the

solution with a = 1.0 corresponds to the case where the thickness of the layer is equal to the
characteristic length (A,). It can be obviously seen from Figure 5.15(a) that the singularity of

contact traction (both normal and shear) is observed close to the edge of indenter for both classical
and present solutions. It should be noted that under the adhesive contact the normal and radial ring
loads have to be applied at r = a in the present solution to account for the two ring loadings induced
at the indenter edge due to the presence of the residual surface stress. The applied vertical force P
would then be supported by both ring loads together with the contact pressure generated under the
indenter. The size-dependency of the present solution is clearly observed in contact pressure and
displacement profiles shown in Figure 5.15 whereas the classical elasticity solution is size-
independent. It is also found that the influence of surface stress is reduced when the radius of the
indenter becomes larger and the present solution eventually converges to the classical solution.

The influence of the residual surface stress (z°) on the normalized contact pressure and
surface displacement under indentation with adhesive contact are investigated respectively in
Figures 5.16(a) and 5.16(b) with @ = 1 and h/a = 1. The ratio of the residual surface stresses at the
top surface and interface is varied, i.e. z7/z; = 0.5, 1, 2, 4 whereas other material parameters

associated with the upper layer and the underlying half-space remain unchanged. It is obvious that
the normal traction and the vertical surface displacement are larger than the shear traction and
radial surface displacement respectively. Profiles of normal contact pressure presented in Figure
5.16(a) indicate that the current solutions are lower than the contact pressure from the classical
elasticity. The normal pressure significantly decreases by increasing the ratio of residual surface
stresses. In addition, the numerical results shown in Figure 5.16(b) reveal that the normalized
vertical surface displacements outside the contact area obtained from the present study are higher
than the classical solution due to the presence of the residual surface stress, and the layered half-
space becomes stiffer with increasing the ratio z7 /z; .

To study the influence of shear moduli in the layered medium, radial variations of
normalized vertical contact pressure and vertical surface displacement with @ = 1 and h/a = 1 for
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different values of pa/p2 are shown in Figure 5.17. It is evident from numerical results on contact
pressure and vertical displacement shown in Figure 5.17 that the present and classical solutions
display similar behaviors for all values of pi/p2, and the surface energy influence renders the
layered medium stiffer. Numerical results presented in Figure 5.17(a) reveal that the normal
contact traction under the surface energy effects is lower than the classical one. Figure 5.17(b) also
shows that the vertical surface displacement outside the contact area obtained from the present
study is higher than the classical solution since higher indentation force is required to produce the
same indentation depth due to the existence of surface effects.

To demonstrate the size-dependent behavior, the final set of numerical solutions is
concerned with the indentation force on a layered elastic half-space with surface energy effects.
Figure 5.18 presents variations of normalized indentation force, P/Pc, with the normalized contact
radius a for different values of the layer thickness h/a. The dotted lines in the figure indicate the
normalized indentation forces corresponding to the frictionless contact where the surface energy
effects are considered while the dash line corresponds to the classical adhesive contact where the
surface energy effects are ignored (i.e. z* = x° ~ 0). In addition, P¢ indicates the indentation force
on an elastic half-space (h/a— «) for the classical frictionless case. It is obviously seen from
Figure 5.18 that the normalized indentation forces show a significant dependence on the thickness
of the upper layer and the contact radius for both adhesive and frictionless contacts due to the
influence of surface energy effects. The indentation force increases when the layer thickness
decreases. This is physically realistic since the upper layer is softer than the underlying half-space
the reduction in the upper layer thickness then renders the layered half-space stiffer. In addition,
the indentation force decreases with increasing the contact radius converging to the classical one.
Thus, size-dependent behavior is once again observed from the results shown in Figure 5.18, and
it is evident that for the same contact area the indentation force under adhesive contact is higher
than that under frictionless contact.
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Figure 5.1 Elastic layer with finite thickness under frictionless axisymmetric: (a) smooth-contact
profile; (b) non-smooth-contact profile
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Figure 5.2 Indentation on a layered elastic half-space under rigid flat-ended cylindrical punch of radius a
with adhesive contact.
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Figure 5.3 Validation of Green’s functions for an elastic layer under surface energy effects: (a) without
out-of-plane contribution of z°; (b) with complete Gurtin-Murdoch model
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Figure 5.4 Comparison with existing nanoindentation solutions: (a) flat-ended cylindrical indenter; (b)

paraboloidal indenter.
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CHAPTER VI
CONCLUSIONS AND REMARKS

This chapter summarizes both analytical and numerical techniques established in the present
investigation for solving various nano-scale problems, i.e., layered media under surface loading,
bending and post-buckling of nano-beams, nano-sized cracks and nano-indentations with
consideration of surface energy effects. Major findings regarding to both the computational
performance of the developed techniques and the extensive parametric study on the influence of
the surface stresses and size-dependency of the predicted solutions are presented. Limitations of
the current development and the possible extensions for each particular problem are also indicated.

6.1 Layered Media under Surface Loading

The analysis of layered elastic media under the action of axisymmetric surface loading and the
influence of the surface energy effects is presented. The boundary value problem corresponding
to a layered elastic half-space and a multi-layered elastic medium subjected to axisymmetric
normal and tangential traction is formulated based on the complete Gurtin-Murdoch theory of
surface elasticity. The analytical solutions using Love’s representation and the Hankel integral
transform are obtained for both displacement and stress fields. The complete solutions of
displacements and stresses corresponding to a layered elastic half-space with the arbitrary
functions are obtained by solving the boundary value problem. In addition, an exact stiffness
matrix scheme is used to solve the boundary value problem of a multi-layered elastic medium. The
solutions are expressed in terms of semi-infinite integrals for problems involving different loading
cases, in which, closed-form solutions cannot be obtained due to the complexity of the integrands.
The integral with respect to  is evaluated by using the numerical quadrature scheme based on 21-
point Gauss-Kronrod rule. The validity and accuracy of the present solution schemes are
comfirmed by comparing with available benchmark solutions. Selected numerical results for radial
profiles of displacements and stresses are presented to portray the influence of various parameters
on elastic fields for both layered elastic half-space and multi-layered elastic media.

The numerical results indicate that the surface energy effects play an important role in both
stress and displacement fields of layered elastic media. The presence of surface stresses renders
the layered medium stiffer. Unlike the classical elasticity solution, the present study shows
substantial size-dependency of elastic fields. The application of the obtained fundamental solution
for nano-indentation is also presented in Chapter V. In addition, the present solution can also be
used as a benchmark solution for assessing the accuracy of numerical models such as the finite
element and boundary element methods, which can be used to investigate more complicated
problems in the presence of surface energy effects.

6.2 Bending and Post-buckling of Nano-beams

A mathematical model and the efficient and accurate solution technique for the nonlinear analysis
of nano-beams considering the influence of both surface stresses and nonlocal elasticity have been
established. The formulation has been carried out within the regime of large displacements and
rotations by combining Euler-Bernoulli beam theory, Gurtin-Mudoch surface elasticity and
Eringen nonlocal elasticity. The beam has been treated as a composite consisting of both bulk
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material and surface layer in the development of the moment-curvature relationship. The key
governing nonlinear differential equations have been developed using the elliptic integral
technique and then their linearized version has been summarized and used as a basis for the
buckling load analysis. The nonlinear differential equations have been further integrated along
with the prescribed boundary conditions to obtain a system of exact nonlinear algebraic equations
sufficient for the bending and post-buckling analysis. A solution procedure based on Newton
iterative scheme and a selected quadrature has been implemented to solve the fully coupled system
of nonlinear equations whereas the explicit analytical expression has been derived for the buckling
load. It has been confirmed from numerical experiments that the proposed technique is
computationally robust and offers highly accurate numerical solutions without the requirement of
discretization.

Results from an extensive numerical study have revealed that the model incorporating both
the surface stresses and nonlocal linear elasticity tends to lower the bending stiffness of the beam.
The influence of the surface stresses, found in the present study, is quite different from that
reported in earlier work. This is due mainly to that the residual stress induced within the bulk
material to maintain equilibrium at the initial state has been taken into account in the modeling via
the modified flexural rigidity of the beam. The decrease of the beam stiffness as a result of the
residual stress within the bulk has been found more prominent than the enhancement of the
stiffness by the in-plane modulus of the material surface. Clearly, the enlargement of the surface
modulus tends to stiffen the nano-beams while the increase in the residual surface tension leads to
the reverse effect. Obtained results also indicate that the nonlocal parameter plays a crucial role on
the response prediction and its influence becomes more prominent when the slenderness ratio of
the beam increases. The buckling loads, post-buckling and bending response predicted by the
proposed model (incorporating both the surface and nonlocal effects) have been found highly size-
dependent. It can be also remarked that as the size of the nano-beam is comparable to the intrinsic
length scale of the material surface, solutions predicted by the proposed model are significantly
different from those associated with the classical case. This finding clearly emphasizes the
necessity to properly incorporate both the surface stresses and nonlocal effect in the modeling of
nano-scale problems. While the modeling strategy and the solution procedure have been
successfully established in the present study, problems treated are still limited to single nano-
elements without interior loads. The enhancement of the modeling capability to handle more
complex nano-systems consisting of multiple elements and subjected to general applied loads
should be the potential extension and requires further investigation.

6.3 Nano-size Cracks

A theoretical model is first presented for a penny-shaped crack in an infinite elastic medium in the
presence of surface energy effects. The formulation is based on the the Gurtin-Murdoch continuum
theory and the application of Hankel integral transforms. It is shown that the solution to the crack
problem can be reduced to a set of simultaneous dual integral equations similar to the classical
elasticity case. The integral equation system is solved numerically and shows good convergence.
The numerical results indicate that the surface energy effects have a significant influence on both
stress and displacement fields of a medium with crack. The surface residual stress has a far
significant influence on the elastic field compared to the surface elastic constants. Surface residual
stress reduces the crack opening displacement and the near-front vertical stress. As a result, the
strength of stress singularity along the crack front is clearly lowered when compared to the
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classical case. In contrast to the classical crack solution, the present study shows substantial size-
dependency of elastic field. Both crack tip stress field and crack opening displacement show
substantial dependency on the crack size and the magnitude of non-dimensional vertical stress,
and crack opening displacement increase with increasing crack length. For larger cracks, the
influence of surface energy is smaller. The present solution can be used as a benchmark for
assessing the accuracy of numerical models based on the finite element and boundary element
methods that can be used to analyze more complicated crack problems in the presence of surface
energy effects.

Also, an accurate and computationally efficient numerical procedure capable of modeling
isolated non-planar cracks in three-dimensional, linearly elastic, infinite media has been
established by integrating the influence of surface stresses into the underlying mathematical model.
The key governing equations have been formulated by combing the classical theory of linear
elasticity for the cracked bulk medium and the full version of Gurtin—Murdoch surface elasticity
model for the infinitesimally thin, material layers on the top of the non-planar crack surfaces. A
fully coupled system of governing equations, obtained by enforcing the continuity along the
material interface, has been solved numerically by the BIEM-FEM coupling procedure. Results
for a penny-shaped crack problem have been obtained and compared with the benchmark solutions
to confirm the validity of the formulation and numerical implementations. Based on those
preliminary results for the fracture related data (e.g., relative crack-face displacement and the near-
front stress field), the proposed technique yields highly accurate numerical solutions and the good
convergence behavior. The computational performance of the proposed technique when applied
to the case of non-planar cracks is still under investigation.

6.4 Nano-indentation on Layered Media

The influence of surface energy effects on layered media under rigid indentation with
consideration of frictionless and adhesive contacts is investigated based on Gurtin-Murdoch theory
of surface elasticity. The mixed-boundary value problem is formulated with the displacement
Green’s functions constructed from the fundamental solutions of an elastic layer and a layered
elastic half-space with consideration of surface stresses derived by Intarit (2012) and Tirapat et al.
(2017). The unknown contact pressure distribution under an indenter of axisymmetric profiles is
determined by using either collocation or discretization method. The accuracy of the proposed
solution scheme is confirmed by comparing with existing solutions. Presented numerical results
indicate a significant influence of surface energy effects on elastic fields in the layered media,
especially in the vicinity of the contact area. The presence of surface stresses renders the layered
media stiffer, and size-dependent behavior is observed. In addition, the indentation force depends
significantly on the layer thickness, the shear moduli in the layered medium, and the contact radius
under the influence of surface stresses. The present solution can be used as a benchmark solution
in the development of numerical techniques such as the finite element and boundary element
methods for analysis of more complicated problems related to nano-indentation on a layered media
under the influence of surface energy effects.
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