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ABSTRACT 

 

Project Code: BRG5880017 

Project Title: Modeling of engineering mechanics problems by integrating nano-scale influences 

Investigators: Teerapong Senjuntichai and Jaroon Rungamornrat, Department of Civil 

Engineering, Faculty of Engineering, Chulalongkorn University 

Email Address: Teerapong.S@chula.ac.th and Jaroon.r@chula.ac.th  

Project Period: 3 years 

Abstract: This research project presents accurate and efficient techniques for solving various 

engineering mechanics with consideration of nano-scale influence by employing a complete 

Gurtin-Murdoch model for surface elasticity. The concept of surface elasticity is adopted to take 

into account the influence of surface energy that has been considered essential for nano-sized 

elements and soft elastic solids. Existing mathematical models obtained from the previous project 

(BRG5480006) are refined and extended for solving various nano-scaled problems, which include 

multi-layered elastic media under surface loading, nano-beams, non-planar nano-sized cracks, and 

nano-indentation with adhesive contact. In each problem, the governing equations for both surface 

and bulk are properly formulated, and appropriate solution schemes are then implemented to 

efficiently and accurately determine the solutions of the fully coupled governing equations. A 

computer code is developed to obtain numerical solutions for each problem, and its accuracy is 

verified with available benchmark solutions. Selected numerical results from extensive parametric 

studies are presented to portray the influence of surface energy effects on elastic fields of nano-

mechanic problems under consideration. Presented results confirm the fact that the presence of 

surface stresses renders elastic media stiffer, and size-dependent behavior is also observed. Thus, 

the surface energy effects cannot be ignored in the analysis of engineering mechanics problems 

involving nano-scale influence and soft elastic materials. 
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CHAPTER I  

INTRODUCTION 

This chapter briefly summarizes the key motivation and significance of the current investigation. 

The objectives, scope of work, and the methodology and research procedures are then clearly 

addressed. Finally, the contribution of the present study is summarized. 

1.1 Motivation and Significance 

Nowadays, nanotechnology has become one of the most interesting research areas in various fields 

such as biology, chemistry, physics, medicine and engineering. Although nanotechnology deals 

with extremely tiny objects with their length scale of few nanometers (where one nanometer is 

approximately about 50,000 times smaller than the average of a human hair), its applications tend 

to be substantial. In the field of material science and engineering, advanced researches related to 

nano-science and nanotechnology such as nano-tubes, nano-wires, nano-composites and nano-

films have grown rapidly and continuously. The physical modeling and corresponding 

comprehensive analysis to gain an insight into the complex behavior of nano-sized devices and 

nano-structured materials become crucial aspects in the optimal design of nano-scale products. 

Besides the fundamental understanding of mechanical properties in the nano-scale level, 

failure/damage analysis and assessment has been found to be an essential step that must be properly 

considered to ensure their safety and integrity in the design procedure. 

 In the past three decades, various techniques have been applied to investigate mechanical 

properties and characteristics of nano-sized structures. It is generally acknowledged that 

experimental methods yield results reflecting actual response. However, it is still found highly 

dependent on experimental environments and, more importantly, expensive due to the requirement 

of sophisticated equipment and high-precision testing procedures. As a result, mathematical 

modeling and simulations has become an attractive alternative, and been widely employed to 

develop fundamental understanding to further investigate complex phenomena. In addition, once 

integrating essential features and properly calibrated with data from basic experiments, 

mathematical models are found capable of simulating responses under various practical conditions. 

Within the context of modeling nano-scale influence on solids, two predominant 

mathematical models, one known as the molecular or atomistic models whereas the other 

corresponding to the modified or enhanced continuum-based models, have been commonly 

employed in the literature. The molecular-based simulations have been verified to yield accurate 

prediction of responses of interest due to their effectiveness in detailing with bonds and atoms. 

However, such simulations require enormous computational effort and resources to treat billions 

of atoms at nano-scale. This therefore renders the discrete atomic-scale models impractical in 

various applications. As a result, modified or enhanced continuum-based models have become 

attractive due to their advantages in saving computational resources. Unlike macro-structures, the 

surface to volume ratio in the case of nano-sized objects (e.g., thin films, quantum dots, nano-

wires, nano-tubes and nano-composites) is much higher and, as a direct consequence, the surface 

free energy often plays a crucial role in the mechanical behavior. Therefore, the classical theory 

of continuum mechanics commonly used in the modeling of macroscopic bodies is not directly 
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applicable to accurately treat problems related to nano-scale structures and nano-sized cracks. 

While a conventional theory of linear elasticity has been well established and employed in the 

modeling of a variety of problems involving linear elastic uncracked and cracked bodies, the 

enhancement of classical continuum mechanics models to incorporate the nano-scale influence is 

essentially required. To be capable of capturing the surface free energy effect, a model that 

properly takes into account the influence of surface stresses must be utilized. 

The present research project aims to extend the work carried out in the previous TRF 

project (Grant BRG5480006) to treat more general class of boundary value problems in nano-

mechanics. Existing mathematical models are to be refined and adjusted as necessary to be well-

suited for modeling various nano-scale problems (e.g., nano-indentations and nano-cracks). In 

addition, an extensive numerical study is to be carried out to fully investigate the size dependent 

behavior and gain an insight into nano-scale influence on predicted solutions.  

1.2 objectives 

The main objectives of the present study are 

1. to refine and necessarily adjust the modified continuum model that takes into account 

influence of surface stresses, established in the previous TRF project, to enhance modeling 

capability to treat more general boundary value problems, 

2. to investigate more complex nano-indentation problems such as those associated with non-

smooth contact and interfaces, and indentation on thin layer substrates, and 

3. to investigate more complicated nano-size crack problems such as those involving non-planar. 

1.3 Scope of Work 

Scope of the present study and assumptions relevant to the development are summarized as follows: 

1. The boundary value problem considered in this investigation is linear and governed by the 

theory of linear elasticity; 

2. A body associated with the boundary value problem is three-dimensional with applications to 

layered elastic media; 

3. A body is assumed to be free of a body force; 

4. The influence of nano-scale in the local region near the boundary is modeled by properly 

incorporating the surface elasticity model (proposed by Gurtin and Murdoch (1975) into 

classical continuum theory for solid mechanics; 

5. Analytical and semi-analytical solutions are constructed for boundary value problems 

involving simple geometry, loading conditions and boundary conditions (e.g., surface 

axisymmetric loadings on layered elastic media, and indentation problems with consideration 

of frictionless and adhesive contacts, etc.); and  

6. A framework of numerical techniques (e.g., FEM, SGBEM, Coupling of FEM and SGBEM) 

capable of solving relatively complex boundary value problems induced by the presence of 

surface elasticity, embedded singularity such as cracks, complicated geometries, loadings and 

boundary conditions is developed. In house computer codes using FORTRAN 90 are 

implemented to demonstrate accuracy and capabilities of the proposed technique. 
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1.4 Methodology and Procedure 

The fundamental theories, key methodology and research procedure adopted and developed in the 

previous TRF project are used as the basis for the proposed study. Additional theories (e.g., a 

theory of non-local linear elasticity, a theory of curvature-dependent and curvature-independent 

residual surface tension, a dilute theory in micromechanics, etc.) and solution techniques (e.g., a 

potential-function-based approaches, solution representations, singular boundary integral equation 

techniques, etc.) are also integrated to enhance the modeling capability. The procedure and 

methodology can be briefly summarized below. 

1. A literature survey is conducted in addition to that reported in the previous TRF project to 

identify the most recent advances and state of the art in the relevant area and properly refine 

the scope of the current work. 

2. An enhanced continuum-based mathematical model is utilized to establish basic governing 

equations and formulate the associated boundary value problems. Similar to the previous 

project, the classical theory of linear elasticity is still employed to efficiently model the 

majority of the domain whereas the nano-scale influence due to the presence of the 

surface/boundary is captured by a well-established and extensively verified Gurtin-Murdoch 

surface elasticity theory. For certain class of problems when the inherent nonlocal effect for 

tiny-scale objects becomes significant, the theory of nonlocal elasticity is utilized to formulate 

the nonlocal constitutive relations. 

3. A singular boundary integral equation method will be developed to determine numerical 

solutions of general nano-indentation problems such as nano-indentors with axisymmetric 

profiles, nano-indentors with presence of friction, fully bonded nano-indentors, nano-

indentation on thin elastic substrates, etc. Required fundamental solutions derived in the 

previous TRF project are utilized in the formulation of the key governing integral equations, 

and both collocation technique and standard Galerkin method are adopted in the discretization. 

4. A two-dimensional asymptotic analysis will be conducted to investigate the behavior of near-

tip fields of nano-size cracks. A conventional technique of separation of variables, series 

representation, and existing fundamental results for classical crack problems are proposed to 

achieve this particular task. 

5. An existing coupling technique between a standard finite element method and a weakly 

singular Symmetric Galerkin boundary element method (developed in the previous project) 

will be generalized to solve non-planar cracks. The extension from planar to non-planar cracks 

is non-trivial and requires the modification of the governing equations for the curved crack 

surface. For the case where the residual surface tension does not vanish in the initial state, the 

residual stress within the bulk material is properly treated in the constitutive relations. In 

addition, results from the asymptotic analysis (performed in the procedure 4) will be used to 

develop the local basis functions near the crack front to enhance the accuracy of the 

approximation. 

6. Beside the development of solution techniques, an extensive numerical study will be carried 

out to fully investigate the influence of surface stresses and nonlocal parameters on predicted 

solutions and size-dependency for various boundary value problems. 
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1.5 Contribution 

The present study proposes the complete analytical solution of displacement and stresses 

corresponding to the boundary value problems involving layered elastic media under axisymmtric 

surface loading with consideration of surface energy effects. The influence of surface stresses in 

the mathematical model is considered by employing a complate Gurtin-Murdoch continuum model 

for surface elasticity. The present fundamental solution is useful in the development of boundary 

integral equation methods for the investigation of more complicated problems such as nano-

indentation and contact problems involving a layered elastic half-space and a multi-layered elastic 

medium. In addition, the present analytical solutions can also be employed as a benchmark solution 

in the development of numerical techniques such as finite element and boundary element methods 

for analysis of a variety of problems with the influence of surface energy such as nano-scale 

systems and soft elastic solids. 

The present investigation also offers a continuum-based mathematical model together with 

an efficient and accurate solution procedure for simulating bending, buckling, and post-buckling 

responses of nano-beams with consideration of the nano-scale influence such as the surface free 

energy and nonlocal effects. The former effect is simulated using Gurtin-Murdoch surface 

elasticity theory whereas the last one is modeled by the differential Eringen nonlocal theory. Due 

to the vast capability of the proposed technique, it should provide an attractive alternative tool, in 

addition to experimental methods and atomistic and molecular dynamic simulations, to explore the 

mechanical behavior of slender nano-scale elements. In addition, results and findings from the 

current parametric study should also enhance the fundamental understanding of the nano-scale 

influence on the size-dependent characteristics of predicted results. 

Within the context of modeling and analysis of fracture problems, the present research 

should enhance or strengthen the capability in the modeling of nano-sized crack problems using 

an alternative, computationally cheap continuum-based model along with the proper treatment of 

surface stress effects via Gurtin-Murdoch surface elasticity model. The developed mathematical 

model and the implemented numerical procedure allow more practical nano-sized fracture 

problems to be investigated, e.g. cracks of arbitrary shapes (including both planar and non-planar 

geometries) under general loading conditions. Availability of a computational tool of such high 

capability should be very significant in the parametric study to investigate and gain an insight into 

various crucial responses of interest in the nano-scale level such as the size-dependent behavior of 

all field quantities. 

The analysis of axisymmetric rigid indentation on a layered media with consideration of 

frictionless and adhesive contacts is investigated based on a complete Gurtin-Murdoch theory of 

surface elasticity. The fundamental solutions of a layered elastic medium with presence of surface 

stresses derived in this study are employed in the formulation of axisymmetric indentation 

problems as a mixed-boundary value problem. The displacement boundary condition is expressed 

in terms of a displacement Green’s function, which is constructed from the fundamental solutions 

of an elastic layer and a layered elastic half-space with consideration of surface stresses presented 

by Intarit (2012) and Tirapat et al. (2017). The unknown contact pressure distribution under an 

indenter of axisymmetric profiles is determined by employing either collocation or discretization 

method. Numerical results indicate that the surface stresses have a significant influence on elastic 

fields of the layer especially in the vicinity of the top surface, and the material behavior becomes 

size-dependent when the surface stresses are accounted. The developed numerical technique is an 

alternative for studying the mechanical properties such as hardness and elastic modulus for nano-
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indentation applications. In addition, the present solution can be used as a benchmark for assessing 

the accuracy of numerical models based on the finite element and boundary element methods to 

analyze more complicated indentation problems in the presence of surface energy effects. 

1.6 Organization of Report  

The remaining part of this report is organized into five chapters. Chapter 2 presents the modeling 

and analysis of layered elastic media under surface loading and the influence of surface energy 

effect via Gurtin-Murdoch surface elasticity theory. Next, Chapter 3 summarizes the development 

of an efficient numerical technique capable of simulating bending, buckling and post-buckling 

responses of nano-scale elements with the consideration of both surface and nonlocal effects. The 

modeling and analysis of nano-sized cracks with the integration of surface stress effects is also 

reported in Chapter 4. In this chapter, a solution procedure adopted specifically for solving a 

penny-shaped crack under axisymetric loading conditions and that implemented for cracks of 

arbitrary geometry and under general loading conditions are presented. Next, the modeling and 

analysis of nano-indentation problems with the incorporation of surface energy effects together 

with a set of extensive results is presented in Chapter 5. Finally, all significant findings and 

conluding remarks are addressed in Chapter 6.   
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CHAPTER II 

LAYERED ELASTIC MEDIA UNDER SURFACE 

LOADING 

In this chapter, the complete solution of displacements and stresses corresponding to the boundary 

value problems involving layered elastic media under axisymmetric surface loading with 

consideration of surface energy effects is presented. The basic equations are formulated based on 

classical elasticity theory for the bulk and complete Gurtin-Murdoch constitutive relation for the 

surface. The standard Love’s representation and Hankel integral transform are employed to obtain 

the general solutions of the bulk material. An efficient numerical quadrature is then applied to 

accurately evaluate all involved integrals. Selected numerical results are presented to portray the 

influence of various parameters and size-dependency on elastic fields for a layered elastic half-

space and a multi-layered elastic medium. In addition, the obtained fundamental solution is useful 

in the development of numerical solution scheme for the investigation of more complicated 

problems under the influence of surface energy effects such as nano-indentation and contact 

problems involving an elastic nanoplate. 

2.1 Background and Review 

Nanotechnology has received wide attention in recent years due to its vast applications in various 

disciplines such as biology, chemistry, physics, medicines, material sciences, and engineering. In 

the fields of material sciences and engineering, studies related to mechanical behavior of 

nanostructured materials have also become a subject of numerous investigations due to the fact 

that understanding fundamental aspects of their behaviors at nano-scale level is important for 

optimum design of nano-sized devices and structures. There are two approaches that have 

commonly been employed to theoretically investigate mechanical behaviors of materials at nano-

scale, namely, atomistic simulation and modified continuum-based model. Atomistic modeling 

techniques require a very large computational effort, although they are considered very accurate. 

A modified continuum-based model then becomes an attractive alternative in obtaining first-

approximation to predict mechanical behaviors of nanostructured materials. Due to their high 

surface to volume ratio, nano-scale elements, usually exhibit high influence of surface/interface 

free energy, which is the energy associated with atoms at or near a free surface (e.g., see Yakobson, 

2003), consequently, their mechanical behavior becomes size-dependent (Wong et al., 1997). 

Thus, surface energy effects, which are generally ignored in conventional continuum mechanics 

problems, need to be taken into account in modified continuum-based simulation for nano-scale 

systems. A theoretical framework based on continuum mechanics concepts was proposed by 

Gurtin and Murdoch (1975, 1978) to take into consideration the influence of surface energy effects. 

In their model, an elastic surface was formed as a mathematical layer of zero thickness perfectly 

bonded to the underlying bulk material without slipping. Several studies were carried out to verify 

that modified continuum-based simulations with surface energy effects and size-dependency can 

be employed to model nanostructured elements with acceptable accuracy. For instance, Miller and 

Shenoy (2000) examined the size-dependent behavior of nanostructured elements (i.e. bar, beam 

and plate) by adopting the Gurtin-Murdoch model, and found that their results were in a good 
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agreement with those obtained from direct atomistic simulations. Dingreville et al. (2005) 

developed a continuum framework to incorporate the surface free energy in the framework of 

continuum mechanics, and demonstrated that overall mechanical behaviors of nanostructured 

elements such as particles, wires, films were found to be size-dependent. There also exist other 

continuum-based theories that have been developed to take into account the size-dependent 

material behaviors at the nano-scale level such as the strain gradient elasticity theory by Mindlin 

(1964). The theory proposed by Mindlin has not been widely adopted in the modeling of nanoscale 

systems since it involves several additional material parameters and higher-order governing 

equations. Simplified versions of Mindlin’s theory have then been proposed, and analytical 

solutions to various continuum mechanics problems were presented based on its simplified 

versions (e.g., see Georgiadis and Anagnostou, 2008; Gao and Liu, 2012; Gao and Zhou, 2013). 

Over the last two decades, several researchers have investigated a variety of continuum 

mechanics problems by adopting the Gurtin-Murdoch theory of surface elasticity. For example, 

Huang and Yu (2007) studied an elastic half-plane under surface loading with consideration of 

surface energy effects. An elastic layer with finite thickness, subjected to surface loading under 

plane-strain and axisymmetric conditions, was also considered by Zhao and Rajapakse (2009). 

Intarit et al. (2010) derived fundamental solutions of an elastic half-plane under internal loading 

and dislocations. An elastic half-plane under surface shear loading was also investigated by Lei et 

al. (2012). Recently, nanocontact problem of layered viscoelastic solids with surface energy effects 

was presented by Abdel Rahman and Mahmoud (2016). All these studies, however, considered the 

surface stress tensor as a 2D quantity with its out-of-plane components being neglected. Wang et 

al. (2010) showed that the out-of-plane terms of the surface displacement gradient could be 

significant even in the case of small deformations particularly for curved and rotated surfaces. The 

complete version of Gurtin-Murdoch model, with consideration of the out-of-plane term, has later 

been employed to examine various continuum mechanics problems, for example, problems related 

to internally loaded elastic layer under plane strain condition (Intarit et al., 2011) and axisymmetric 

loading (Rungamornrat et al., 2016) respectively; contact problem (Zhou and Gao, 2013); 

nanoindentation (Pinyochotiwong et al., 2013; Attia and Mahmoud, 2015); nanobeams (Azizi et 

al., 2015); nanoplate (Sapsathiarn and Rajapakse, 2013); and nanosized cracks (Nguyen et al., 

2016; Intarit et al., 2017). In addition, the influence of surface energy effects is also significant in 

problems related to soft elastic solids (He and Lim, 2006). 

Stress analysis of a layered elastic medium under applied surface loading has a rich history 

(e.g. see Gerrard, 1969; Burmister, 1945; Gupta and Walowit, 1974; Perriot and Barthel, 2004) 

due to its close relevance to various engineering applications, such as characterization of 

mechanical properties of layered materials: for example,  protective coatings, multilayer capacitors 

and layered composite materials; analysis and design of pavement and foundations; and in-situ 

testing of soils and rocks and so forth. A review of literature indicates that studies related to a 

layered elastic medium with consideration of surface energy effects based on the Gurtin-Murdoch 

theory are very limited. This class of problems has extensive applications in the study of 

nanocoatings and nanoscale surface layers that are used in electronic devices, tribological and 

biomaterial applications, advanced industrial materials, communication devices, etc. The main 

objective of this study is to present analytical solutions to a layered elastic half-space and a multi-

layered elastic medium under axisymmetric surface loading by adopting the complete Gurtin-

Murdoch theory of surface elasticity. The boundary value problems of a layered elastic media 

under axisymmetric surface loading involving non-classical boundary conditions due to surface 
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stress influence are formulated by employing the standard Love’s representation and Hankel 

integral transform. Selected numerical results for displacements and stresses due to applied vertical 

and radial loading are presented to portray the influence of various parameters and size-

dependency on elastic fields. The present fundamental solution is useful in the development of 

boundary integral equation methods for the investigation of more complicated problems such as 

nano-indentation and contact problems involving a layered elastic medium. In addition, the present 

numerical results can also be employed as a benchmark solution in the development of numerical 

techniques such as finite element and boundary element methods for analysis of a variety of 

problems with the influence of surface energy such as nano-scale problems and soft elastic solids. 

2.2 Basic Equations 

Consider an elastic medium under the influence of surface energy effects. According to Gurtin-

Murdoch surface elasticity theory, the medium consists of two different parts, i.e. the bulk material 

and the surface, which is a zero-thickness layer perfectly bonded to the bulk material without 

slipping. In the absence of body forces, the equilibrium equations, the constitutive equations, and 

the strain-displacement relationship of the bulk material under axisymmetric deformations are the 

same as those in the classical elasticity theory, which are given respectively by 

0; 0rrrr rz rz zz rz

r z r r z r

     −   
+ + = + + =

   
   (2.1) 

( ) ( )2 ; 2rr rr zz rr zz             = + + + = + + +   (2.2) 

( )2 ; 2zz rr zz rz rz       = + + + =    (2.3) 
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  (2.4) 

where {σrr, σθθ, σzz, σrz} denote the components of stress tensors; {ɛrr, ɛθθ, ɛzz, ɛrz} denote the 

components of strain tensors; and {ur, uz} denote the components of displacement tensors 

respectively. In addition,  and  are Lamé constants of a bulk material.  

On the surface, the equilibrium conditions in terms of the generalized Young-Laplace 

equation (Povstenko, 1993), the surface constitutive relations, and the strain-displacement 

relationship can be expressed, respectively, as (Gurtin and Murdoch, 1975; Gurtin and Murdoch, 

1978; Gurtin et al., 1998) 

0 0

0 0
0; 0
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rrrr zr zr
zr r zz zz z

t t
r r r r
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where the superscript “s” is used to denote the quantities corresponding to the surface; s and s 

are surface Lamé constants;  s is the residual surface stress (or surface tension) under unstrained 

conditions. In addition, 0

rt and 0

zt  denote the prescribed traction on the surface in the radial and 

vertical directions respectively. Equation (2.7) can be viewed as the out-of-plane contribution of 

the pre-existing surface tension s  in the deformed configuration whereas the surface gradient of 

the displacement duz
s/dr acts as the out-of-plane component of the unit vector tangent to the surface 

in the deformed state. This term has been ignored in several previous studies even though the 

contribution of  s could be significant even in the case of small deformations (e.g. see Intarit et al., 

2011; Pinyochotiwong et al., 2013; Rungamornrat et al., 2016). 

2.3 General solution for bulk 

For the axisymmetric case, the corresponding elastic fields can be obtained by solving the 

following biharmonic equation (Sneddon, 1951) in a cylindrical coordinate system (r,, z) 

( )2 2 , 0r z   =    (2.9) 

where 
2 2

2

2 2

1

r r r z

  
 = + +

  
 denotes the Laplacian operator in a cylindrical coordinate and ( ),r z

is Love’s strain potential. 

By applying Hankel integral transform into equation (2.9), we obtain, 

( )
2

2
2

2
, 0

d
G z

dz
 

 
− = 

 
   (2.10) 

where ( ) ( )0
0

,G z r J r dr 


=  and ( )nJ  denotes the Bessel functions of the first kind of order n. 

The general solution of above equation may be written in the form 

( ) ( ) ( ), z zG z A Bz e C Dz e  −= + + +    (2.11) 

where A, B, C and D are arbitrary functions that can be determined from the boundary conditions. 

Thereafter, the general solutions for bulk stresses and displacements of an elastic solid can be 

expressed in the forms of Hankel integral transform as (Sneddon, 1951; Selvadurai, 2000) 

( )2

1

0

r

dG
u J r d

dz

 
  




+

=     (2.12) 

( )
2

2

02

0

2
z

d G
u G J r d

dz

 
   




 +

= − 
 

    (2.13) 

( ) ( )
( )

( )
3

2 2

0 13

0 0

2
2rr

d G dG dG
J r d J r d

dz dz r dz

 
          

 + 
= + + − 

 
    (2.14) 

( )
( )

( )
3

2 2

0 13

0 0

2d G dG dG
J r d J r d

dz dz r dz


 
        

 + 
= − + 

 
    (2.15) 
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( ) ( ) ( )
3

2

03

0

2 3 4zz

d G dG
J r d

dz dz
        


 

= + − + 
 

   (2.16) 

( ) ( )
2

2 2

12

0

2rz

d G
G J r d

dz
       


 

= + + 
 

    (2.17) 

Finally, the substitution of the function G, given by Eq. (2.11), results in the stresses and 

displacements, expressed in terms of the arbitrary functions A, B, C and D as, 

( ) ( )  ( )2

1

0

1 1z z

ru A z B e C z D e J r d  
      





−+
= − + −  +  + +       (2.18) 

( )2

0

0

2 2z z

zu A z B e C z D e J r d    
      

    



−
       +  

= − + + + − −       
+ +        

   (2.19) 

( )
( )

( )
( ) ( )  ( )

3

0

0

2

1

0

2 2 2 2

2
1 1

z zrr

z z

A z B e C z D e J r d

A z B e C z D e J r d
r

 

 

     
      

     

 
      





−



−

 +       + + 
= − + − + + +       

+ +        

+
− − + −  +  + +    





  (2.20) 

  ( )

( )
( ) ( )  ( )

3

0

0

2

1

0

2

2
1 1

z z

z z

Be De J r d

A z B e C z D e J r d
r

 

 

 
  

 

 
      





−



−

= +

+
+ − + −  +  + +    





  (2.21) 

( )
( )3

0

0

2
z zzz A z B e C z D e J r d    

      
     



−
 +        

= + + + − + −       
+ +        

   (2.22) 

( )
( )3

1

0

2
z zrz A z B e C z D e J r d    

      
     



−
 +        

= − − + + +       
+ +        

   (2.23) 

2.4 Solution for layered elastic half-space 

Consider a layered elastic half-space consisting of two elastic materials with different properties 

perfectly bonded together, in which the upper material is an elastic layer of finite thickness h and 

subjected to axisymmetric vertical and radial surface loads denoted by p(r) and q(r) respectively, 

as shown in Figure 2.1. To solve this problem, the layered half-space is divided into two domains. 

The domain ‘1’ represents the upper layer and the domain ‘2’ represents the underlying half-space. 

The general solutions of the bulk material in the domain ‘1’, are given by Eqs. (2.18) to (2.23) 

whereas those of the the domain ‘2’ can also be obtained from Eqs. (2.18) to (2.23) by replacing 

the arbitrary functions A to D with the arbitrary functions E to H respectively. Note that G  0 and 

H  0 are imposed to ensure the regularity of the solutions at infinity for the domain ‘2’. In addition, 

the subscript i =1, 2 is used to denote the quantities corresponding to the domains ‘1’ and ‘2’, 



11 

 

respectively. The solutions of A to F can be determined by solving the following boundary and 

continuity conditions. 

( )
2

1 1
1 1 20

0

1s z z
zz z

z

d u du
p r

dr r dr
 

=

=

 
+ + = − 

 
   (2.24) 

( )
2

1 1 1
1 1 2 20

0

1s r r r
rz z

z

d u du u
q r

dr r dr r
 

=

=

 
+ + − = − 

 
   (2.25) 

2

2 2
1 2 2 2

1
0s z z

zz zzz h z h

z h

d u du

dr r dr
  

= =

=

 
− + + = 

 
   (2.26) 

2

2 2 2
1 2 2 2 2

1
0s r r r

rz rzz h z h

z h

d u du u

dr r dr r
  

= =

=

 
− + + − = 

 
   (2.27) 

1 2 0z zz h z h
u u

= =
− =    (2.28) 

1 2 0r rz h z h
u u

= =
− =    (2.29) 

where 2s s s

i i i  = +  is a surface material constant. It should be noted that Eqs. (2.24) to (2.27) are 

non-classical boundary conditions obtained from Eqs. (2.5) to (2.8). In view of Eqs. (2.18) to (2.23) 

together with the assumption that the surface residual stress  s is constant, the following six linear 

algebraic equations are established to solve for the arbitrary functions A to F. 

( ) ( )
( )

1 1 1 1
1 1 1 1 2

1 1
2 2 2

s s
s s

P
A B C D

     
       



    
    + + + + − + + − = −

   
   

  (2.30) 

( )

1 1 1 1 1 1
1 1 1

1 1
1 2

1
2 2 2

1
2 2

s s s

s

A B C

Q
D

        
    

  




       
       + + − + − + −

     
     

 
 + − − = −

 
 

  (2.31) 

( ) ( )1 1 1 1

2 2 2 2 2
2 2 2

2 22

1 1

2
0

2 2

h h h h

s s
h h

e A h e B e C h e D

e E h h e F

   

 

       

      
     

 

− −

− −

   + + − + −

     
     + − + + − − + + =

        

  (2.32) 

( ) ( )

( )

1 1 1 1 1 1

2 2 2 2
2 2 2 2

2 2

1 1

1 0
2 2

h h h h

s s
h h

e A h e B e C h e D

e E h h e F

   

 

         

     
      

 

− −

− −

     + − + + + + − +

    
     + − + + − − − − =

   
   

  (2.33) 
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( ) ( ) 2
1 1 1 1

2

2

2

2 2

2 0

h h h h h

h

e A h e B e C h e D e E

h e F

    




        








− − −

−

 
     − + − − − + − +

 
 

  
  + + =

  
  

  (2.34) 

( ) ( )

( )

2
1 1 1 1

2

2

2

1 1

1 0

h h h h h

h

e A h e B e C h e D e E

h e F

    




        








− − −

−

 
     − + − + + + +

 
 

 
 + − + =
 
 

  (2.35) 

where the following non-dimensional quantities in the above equations are defined as: h  = h/Λ1;

1 1 1  = + ; 2 2 2   = + ;
1 1 1  = ;

2 2 1  = ; 2 2 1  = ;
1 1 1 1

s s  =  ; 
2 2 1 1

s s  =  ; 

1 1 1 1

s s  =  ; 
2 2 1 1

s s  =  ; and ( ) ( )1 1 1 1 1 1 12 2s      = + + . In addition, the functions ( )P   

and ( )Q   are obtained from the surface loads p(r) and q(r) respectively as 

( ) ( ) ( )0

0

P p r J r rdr 


=     (2.36) 

( ) ( ) ( )1

0

Q q r J r rdr 


=     (2.37) 

in which 1 ;p p = 1q q = ; and 1r r=  . The arbitrary functions A to F for given functions of 

the applied surface loads p(r) and q(r) can then be obtained separately by solving the linear 

equation system, Eqs. (2.30) to (2.35), and they are given by 

N RA A A  = +    (2.38) 

N RB B B= +    (2.39) 

N RC C C  = +    (2.40) 

N RD D D= +    (2.41) 

11 12 13 14

21 22 23 24

A

b b b bE B

b b b bF C

D







 
 

    
=    

     
  

   (2.42) 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

22 33 44 34 43 23 34 42 32 44 24 32 43 33 42

21 34 43 33 44 23 31 44 34 41 24 33 41 31 43

2
21 32 44 34 42 22 34 41 31 44 24 31 42 32 41

21 33 42 32 4

2

N

N

N ij

N

A a a a a a a a a a a a a a a a

B a a a a a a a a a a a a a a aP

C a a a a a a a a a a a a a a aa

D a a a a a





 

− + − + − 
 

− + − + − 
= − 

− + − + − 
  −  ( ) ( ) ( )3 22 31 43 33 41 23 32 41 31 42a a a a a a a a a a

 
 
 
 
 
 + − + − 

  (2.43) 
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( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

12 34 43 33 44 13 32 44 34 42 14 33 42 32 43

11 33 44 34 43 13 34 41 31 44 14 31 43 33 41

11 34 42 32 44 12 31 44 34 41 14 32 41 31 42

11 32 43 33 4

22

R

R

R ij

R

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a

a a a a a a

A

B

a a a a a a a a

Q

C a

a a a a

a

aD





 

 


− + − + −

− +


 
= − 

 


− + −

− + − + −

−  ( ) ( ) ( )2 12 33 41 31 43 13 31 42 32 41a a a a a a a a a a

 
 
 
 


+ − + −


 


  (2.44) 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

ij

a a a a

a a a a
a

a a a a

a a a a

=    (2.45) 

1 1
11 1

2

s

a
  




= +    (2.46) 

12 11 sa  = +    (2.47) 

1 1
13 1

2

s

a
  




= − +    (2.48) 

14 11 sa  = −    (2.49) 

1 1
21 1

2

s

a
  




= +    (2.50) 

1 1
22 11

2

s

a
  




= − −    (2.51) 

1 1
23 1

2

s

a
  




= −    (2.52) 

1 1
24 11

2

s

a
  




= − + −    (2.53) 

( )
2

1
31 2 22 2

2

h
se

a


  
−

= − +    (2.54) 

( )( ) ( )( )
2

2 2 1
32 1 2 2 1 2

2 2

2
2 2 2 2

2 2

h
s he

a h h e


 
       

 

−
−

 +
 = + − + + +

 +
  (2.55) 

1 2 2 1 2
33 1

2 2
22

s

a
     


 

  
= − − +

 +
   (2.56) 

( ) ( ) 21 1 1
34 2 2 1 1 2

2 2

2 2
1 2 1

2 2

s h h
a h h

    
       

 

     + −
    = − − + − + − +

    +   

  (2.57) 
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( )
2

1
41 2 22 2

2

h
se

a


  
−

= − +    (2.58) 

( )( )( )
2

2 2 1
42 1 2 2 2

2 2

2
1 2 2 2

2 2

h
s he

a h e


 
     

 

−
−

 +
= − − + + −

 +
  (2.59) 

1 2 1 2 2
43 1

2 2
2 2

s

a
     


 

  
= − +

 +
   (2.60) 

( ) 21 2 1 1
44 1 1 2 2

2 2

2 2
1 1

2 2

s h
a h

     
    

 

     + −
    = + + − − −

    +   

  (2.61) 

1 2
11

2

b
 




=


  (2.62) 

( )( )
( )

2 2 1 2

12

2 2 2

2 1

2

h
b

    

  

 − −
= −

  +
   (2.63) 

( )
( )

1 2 2 2 2
2

13

2 2 2

2 2

2

h
h

b e 
     

  

  − +
= −

  +
   (2.64) 

( )( )
( )

2

2 2 1 2 2 1 2 1 2
2

14

2 2 2

2

2

h

h h h
b e 

           

  

     + − + +
= −

  +
  (2.65) 

21 0b =    (2.66) 

1
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2 2
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b




 

 +
=

 +
   (2.67) 

2 1 2
23

2 2

2

2

hb e   

 


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 +
   (2.68) 

2 1 1
24 2

2 2

2 2

2

h h
b e    


 

 + −
=

 +
   (2.69) 

Substitution of the arbitrary functions A to F into Eqs. (2.18) to (2.23) yields the displacement and 

stress fields at an arbitrary point of the layered elastic half-space under axisymmetric surface 

loading as shown in Figure 2.1. 
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2.5 Exact Stiffness Matrix Method for Multi-Layered Elastic Medium 

Consider a multi-layered elastic medium subjected to axisymmetric vertical and radial surface 

loads denoted by p(r) and q(r), respectively, as shown in Figure 2.2. The layers and the surfaces 

of the multi-layered medium are illustrated where the 2nd surface to the thN  surface could be called 

“interface”. The stress boundary conditions at the top surface and the displacement boundary 

conditions at the rigid base of the multi-layered medium are given below. 

 
1

(1) ( )s

zz z z zT p r =− + =               (2.70) 

 
1

(1) ( )s

zr r z zT q r =− + =               (2.71) 

1
0

Nz zu += =              (2.72) 

where ,r z =  and 

1

1 1

2

1
1 2

1
s s s s

s sz z z
z z z

z z z z

d du d u du
T

dr dr dr r dr


=

= =

    
 = + +   
     

        (2.73) 

1
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1
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s s s s s
s sr r r r

r z z

z z z z

d u d u du u
T

dr r dr r dr r


=

= =

    
 = + + + −   
     

          (2.74) 

where 
1 1 12s s s  = +  is a surface material constant corresponding to the 1st surface and s

zu  and s

ru  

are the displacements of the surface in the n-direction (n = r, z). In addition, the terms s

zT  and s

rT  

represent the contribution from the surface energy effects in the normal and tangential directions 

respectively. These terms are normally ignored in the macro-scale problems but for nano-scale 

problems, these effects have to be considered at the top surface and every interface. Thus, the 

traction and displacement continuity conditions at the thn  surface, where 2,3,...,n N= , can be 

written as follows: 

 ( 1) ( ) 0
n

n n s

zz zz z z zT −

=− − =            (2.75) 

 ( 1) ( ) 0
n

n n s

zr zr r z zT −

=− − =            (2.76) 

( ) ( 1)

n n n

n s n

z z z z z z
u u u  

−

= = =
= =            (2.77) 

The terms on the right-hand side of Eqs. (2.75) and (2.76) can be condsidered as the continuity of 

traction at the thn surface. If there is traction applied at a layer interface, the right-hand side term 

at that interface is non-zero and this calculation scheme is still viable.  

To solve this boundary value problem, the continuity condition of traction and 

displacements at each surface, Eqs. (2.75) to (2.77) have to be considered with the boundary 

conditions, Eqs. (2.70) to (2.72). For the problem shown in Figure 2.2, the condition number of 

the equation system is extremely large when using the high value of   for the equation system to 

be solved conventionally due to the presence of mis-matching exponential terms in the equations 
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system (Senjuntichai and Rajapakse, 1995). The large condition number indicates the ill-

conditioning of the system, which results in the low numerical stability of the system. To avoid 

the low numerical stability, the exact stiffness matrix scheme, (Senjuntichai and Rajapakse, 1995; 

Wang and Rajapakse, 1994), is adopted to solve this boundary value problem related to a multi-

layered medium with surface energy effects. 

 An exact stiffness matrix method is established to examine the behaviors of a multi-layered 

elastic medium from the relationship between displacements and traction at each layer. A multi-

layered medium consisting of N  layers of different properties and thicknesses over a rigid base is 

considered as shown in Figure 2.2. The general solutions given by Eqs. (2.18) to (2.23), can be 

expressed in the Hankel transform space in the following matrix form. 

( , ) ( , ) ( , ) ( )
T

z ru z u z z     =
 

R c           (2.78) 

( , ) ( , ) ( , ) ( )
T

zz zrz z z       =
 

S c           (2.79) 

where 

( ) ( ) ( ) ( ) ( )( )
T

n n n n nA B C D  =  c           (2.80) 
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    
 − +    
        

S       (2.82) 

In addition, the dimensionless quantities from the above equations are defined by 

2s s s

n n n  = +              (2.83) 

( )
( )

(1) (1)

1

(1) (1) (1)
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( ) ( )( ) n nn  = +             (2.87) 

(1)

s
s

n
n



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
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2

sn
n

n n

 



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/z z=               (2.92) 

 

/r r=               (2.93) 

 

 =                (2.94) 

in which the superscript letter “T ” represents the transpose of a vector or a matrix. The superposed 

bar symbol, “ ”, denotes the non-dimensional quantities with respect to the properties of the first 

layer, Eqs. (2.83) to (2.94), where the tilde symbol, “ ”, denote the non-dimensional quantities in 

their Hankel transform space. 

For the thn  layer, the displacements and traction at the top and bottom surfaces of the bulk can be 

formulated by using Eqs. (2.78) and (2.79) as follows: 
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          (2.96) 

In addition to the stresses in the bulk, due to the presence of the surface energy effects, the terms 

corresponded to the surface effects, s

zT  and s

rT , need to be considered in the same manner as the 

stresses. By considering the displacements continuity condition, Eq. (2.77), together with the 
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general solutions of normal displacement, radial displacement and their derivatives, Eqs. (2.18) 

and (2.19), the surface stresses can be represented as shown in the following equation: 

( )
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0 0
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where ( , )
s

z nT z  and ( , )
s

r nT z  are the Hankel transform of s

zT  and s

rT , respectively, and the matrix 

nZ  is given by 
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Thereafter, the relationship between the displacements and traction at each layer is formulated. 

The stresses expressed in this relationship are the stresses in the bulk combining with the surface 

stresses of the interface between the layers. From Eqs. (2.96) and (2.97), the stresses terms can be 

merged as shown below. 
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In view of Eqs. (2.95) and (2.99), the following relationships can be established for the thn  layer: 

( ) ( ) ( )n n n=σ K u            (2.100) 
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The advantage of using the exact stiffness matrix scheme is that the condition number of the 

equation system is relatively low compared to the conventional technique (Senjuntichai and 

Rajapakse, 1995). To assemble the global stiffness matrix of the multi-layered elastic medium, the 

continuity conditions of traction and displacements at each surface are imposed. From the 

continuity conditions in Eqs. (2.75) to (2.77) and the relationship between the displacements and 

traction at each layer in Eq. (2.100), the global equation system can then be established as 

* * *=K U F            (2.104) 

in which 
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1
( ) ( ) 0 0 0 0

2

T

P Q 

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 

F        (2.105) 

*
1 1 2 2 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )
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N Nz r z r z ru z u z u z u z u z u z     + + =
 

U    (2.106) 

and the matrix *
K  is the global stiffness matrix established by assembling the matrix ( )n

K  from 

Eq. (2.103) with the consideration of the continuity conditions of traction and displacements from 

Eqs. (2.75) to (2.77) at each surface. The functions ( )P   and ( )Q   are the Hankel transform of 

the normalized surface loading, i.e. (1)( ) /p r   and (1)( ) /q r   respectively. The solution to the 

above global equation system yields the Hankel transforms of the displacements at each layer 

interface. Hankel transforms of the stresses at the layer interfaces can then be obtained by 

substituting the solution to the displacements into Eq. (2.100). Finally, the displacement and stress 

fields can be determined by applying an accurate numerical quadrature scheme. In the next chapter, 

the procedure and the details of the numerical quadrature scheme are provided followed by the 

verification of the scheme on existing solutions. Thereafter, parametric studies investigation are 

conducted based on practical models to study the influence of various parameters on elastic fields 

of the layered medium. 

2.6 Numerical results 

The numerical solutions of displacements and stresses for a layered elastic half-space and a multi-

layered elastic medium under axisymmetric surface loading as shown in Figure 2.1 and 2.2 

respectively are presented to illustrate the nano-scale influence through the surface stress effects 

and size dependent behaviors. 

2.6.1 Numerical scheme 

A computer code based on the boundary value problem described in the previous section has been 

developed to evaluate all elastic fields of a layered elastic half-space and a multi-layered elastic 

medium under axisymmetric surface loading. A closed-form solution to the displacement and 

stress fields cannot be obtained in Eqs. (2.18) to (2.23). Therefore it is essential to determine all 

elastic fields by numerically evaluating the semi-infinite integrals appearing in Eqs. (2.18) to 
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(2.23). It is found that those semi-infinite integrals with respect to  can be accurately evaluated 

by employing an adaptive numerical quadrature scheme. This scheme subdivides the interval of 

integration and employs a 21-point Gauss–Kronrod rule (Piessens et al., 1983) to estimate the 

integral over each subinterval. The error for each subinterval is estimated by comparing the 

obtained results with those from a 10-point Gauss-Kronrod rule. The subdivision continues until 

the error from the approximation is reached a specified tolerance. 

2.6.2 Verification 

The accuracy of the proposed solution scheme is first verified by comparing with the existing 

solution given by Gerrard (1969), who presented the classical solutions (without the influence of 

surface energy effects) of a layered elastic half-space subjected to axisymmetric surface loading. 

Table 2.1 presents a comparison of normalized displacements at the surface (z = 0) and normalized 

stresses at the interface (z = h) along the radial direction of a layered elastic half-space under 

uniformly distributed normal traction p0, acting over a circular area of radius a at the surface. The 

comparison of surface displacements and stresses at the interface of the layered half-space under 

linearly distributed shear traction ( )q r  = -q0r/1a applied over a circular area of radius a at the 

surface is also presented in Table 2.2. In addition, 1/2 = 5 with Poisson’s ratio ν1 = ν2 = 0.2, and 

h/a = 1 are considered for the numerical results given in both tables. The solutions for normalized 

displacements and stresses from the present study are obtained by setting the parameters associated 

with the surface energy effects to be zero, i.e., τ s  0 and  s  0. It is evident that excellent 

agreement between the two solutions is observed for both displacements and stresses shown in 

Tables 2.1 and 2.2. 

 The proposed exact stiffness matrix scheme for a multi-layered medium is validated by 

comparing with the solution by Katebi and Selvadurai (2013) for an elastic functionally graded 

layer, called FG layer, over an underlying half-space subjected to uniformly distributed loading. 

The FG layer is modelled as a multi-layered medium with their elastic material properties vary 

through the layer thickness by the grading exponential function 0

0( )
m z

z e
 =  where m  is the 

grading constant and 0  is the shear modulus corresponding to the material of the top surface with 

the constant Poisson’s ratio of 0.5. The FG layer is divided into a number of sublayers where each 

layer has the same thickness, the shear modulus within each layer is constant and it is computed at 

the mid-height of the layer. The appropriate number of sublayers to represent the FG layer is 

studied and as the normalized thickness of the layer is 1.0, ten sublayers are acceptable, in which 

the error occurred from this model is less than 0.01%. To improve the accuracy, the FG layer can 

be divided where the thickness of each layer is different corresponding to the gradient of the 

grading function. The properties of the remaining half-space are the same as the properties of the 

material at the lower surface of the layer. The half-space is modelled as 10 sublayers of elastic 

layers with uniform thickness of 0.1 on a relatively large elastic layer over rigid base. The medium 

is subjected to the internal axisymmetric uniform vertical loading applied at the interface between 

FG layer and homogeneous half-space. The internal loading function is expressed in the following 

equation: 

( )0( )p r p H a r= −           (2.107) 
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where ( )H a r−  is the Heaviside step function, a  is the loading radius and 0p  is the loading 

magnitude. The ratio of the layer thickness to the radius of the loading /H a  is set to 1.0. The 

verification of the vertical displacement at the interface along the radial direction is illustrated in 

Figure 2.3(a) for the case where m  = 0.25, 1.0 and 1.5, and the normal stress along the vertical 

direction when /H a  ratio is set to 2.0 for the case when m  = 0.0, 0.5 and 1.0 is presented in 

Figure 2.3(b). Both solutions show excellent agreement with the corresponding existing solutions 

given by Katebi and Selvadurai (2013). 

2.6.3 Numerical solution for layered elastic half-space under surface loading 

Numerical results for vertical and radial displacements, and vertical and shear stresses 

corresponding to a layered elastic half-space with the influence of surface energy effects subjected 

to axisymmetric surface loading as shown in Figure 2.1 are presented next. Two cases of 

axisymmetric surface loading, namely, the vertical loading and the radial loading are considered 

in the numerical study. The vertical loading denotes the case where uniformly distributed normal 

traction p0 applied over a circular area of normalized radius ɑ/Λ1 = ͞a = 10. The radial loading 

represents the case where the layered half-space is subjected to linearly distributed tangential 

traction ( )q r  = q0 ͞r/1 ͞a over a circular area of normalized radius ͞a = 10, where q0 is the 

maximum traction at the edge of the loading region. The functions defined as shown in Eqs. (2.36) 

and (2.37) are given respectively for the vertical loading and the radial loading as follows, 

( ) ( )0
1

p a
P J a 


=  and 0Q =          (2.108) 

0P =  and ( ) ( ) ( )0 0
1 02

2q q a
Q J a J a  

 
= −         (2.109) 

In addition, the numerical results presented hereafter correspond to the case where the material for 

the upper layer (the domain ‘1’) is Si [100] whereas Al [111] is chosen for the underlying half-

space (the domain ‘2’) respectively. The material properties for both domains are given in Table 

2.3 (Miller and Shenoy, 2000). 

Figures 2.4 presents radial variations of non-dimensional displacements at the top surface 

(z = 0) and non-dimensional stresses at the interface (z = h) of a layered elastic half-space under 

the vertical loading for different values of normalized thickness of the top layer (h/a). Note that 

the stress profiles in all figures presented in this section are computed at the interface (z = h) at the 

bulk material of the underlying half-space. Figure 2.4(a) shows radial profiles of vertical and radial 

surface displacements for various values of h/a whereas the profiles of normal and shear stresses 

at the interface are illustrated in Figure 2.4(b). The classical solutions also presented in these 

figures for comparison are obtained by setting the parameters associated with the surface energy 

effects to be zero, i.e., τ s  0 and  s  0. It is evident from Figure 2.4 that although the results from 

the present study and the classical solution display similar trends for both displacements and 

stresses at all values of h/a, the surface energy effects renders the layered medium stiffer. The 

present solution yields lower surface displacements and stresses at the interface. The influence of 

surface energy is however less significant in the interface stresses, especially in the case of the 

shear stress. It is also found that the magnitude of all displacements and stresses decrease with 

increasing the normalized thickness of the layer (h/a) since the upper layer is stiffer than the 
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underlying half-space (Lamé constants of Si [100] are higher than those of Al [111]). In addition, 

as the layer thickness increases both vertical and radial surface displacements move towards the 

homogeneous half-space solutions presented by Intarit (2012), and both solutions are virtually 

identical when h/a ≥ 100. 

Radial profiles of normalized surface displacements (z = 0) and normalized stress at the 

interface (z = h) of the layered elastic medium under the vertical loading are shown in Figure 2.5 

to demonstrate the influence of the residual surface stress ( s) on elastic fields. The values of the 

residual surface stress in the underlying half-space are varied (i.e. 
2

s  = 0.1, 1, 5, 10 N/m) whereas 

other material parameters associated with both upper layer and underlying half-space given in 

Table 2.3 remain unchanged. In addition, the normalized thickness of h/a = 1 is considered in the 

numerical results shown in this figure. Once again, the influence of the surface stress is clearly 

observed from the displacement and stress solutions presented in Figure 2.5. The values of all 

displacements and stresses from the present study are substantially reduced from their classical 

elasticity counterparts as the value of the residual surface stress increases. 

The next numerical results are presented to demonstrate the size-dependent behavior of the 

present solution when the influence of surface energy effects is considered. Figure 2.6 shows radial 

variations of vertical and radial surface displacements, and the vertical and shear stresses at the 

interface of the layered half-space under the vertical loading for different values of the normalized 

radius of loading area ͞a (i.e. ͞a = ɑ/Λ1 = 1, 5, 10). In addition, the thickness of the top layer 

and the circular loading area are varied while their ratio is maintained at h/ɑ = 1. Note that the 

solution when ͞a = 1 corresponds to the case where the thickness of the layer is equal to the 

characteristic length (Λ1). The corresponding non-dimensional solution for the classical elasticity 

case is also shown, and it is size-independent. The size-dependency of the present solution is 

clearly observed in all displacement and stress profiles. It is evident from the numerical results 

presented in Figure 2.6 that the present solution accounting for surface energy effects approaches 

the classical solution as the loading radius increases. This is consistent with the fact that a larger 

loading area would produce higher displacements and stresses. 

The final set of the numerical results corresponds to the case where the layered elastic half-

space is subjected to the radial loading, in which the tangential traction is applied linearly 

distributed over a circular area of normalized radius a  = 10. Figure 2.7 presents radial profiles 

of non-dimensional displacements at the top surface (z = 0) and non-dimensional stresses at the 

interface (z = h) for different values of h/a. It is evident from Figure 2.7 that both displacements 

and stresses of the layered half-space under radial loading depend more significantly on surface 

energy effects for all values of h/a when compared to the results presented in Figure 2.4 under 

the vertical loading case. The presence of surface stresses significantly lowers the magnitude of 

all displacements and stresses shown in Figure 2.7.  In addition, all displacements and stresses are 

reduced as the normalized thickness of the layer (h/a) increases. Once again, both vertical and 

radial surface displacements are practically the same as the half-space solutions given by Intarit 

(2012) when h/a ≥ 100 similar to what observed in the vertical loading case. 

2.6.4 Numerical solution for multi-layered medium over rigid base under vertical surface 

loading 

A model of Si/Al multi-layered medium resting on a rigid base is selected since Si/Al multi-layered 

structure is one of the most well-known systems for micro- and nano-electronic materials 
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(Nakayama et al., 1995). The multi-layered medium consists of two different materials stacking 

alternately throughout the total thickness, H . The odd layers are Si [100] and the even layers are 

Al [111] where the thicknesses of both layers, 1h  and 2h , are both equal to 0.2 nm. The thickness 

of the medium is equal to 1 µm and subjected to top surface axisymmetric loading with the loading 

function as shown in Eq. (2.107) where the normalized thickness a , /a  , equal to 1.0. The 

boundary value problem is illustrated in Figure 2.8. The material properties of Si [100] and Al 

[111] are shown in Table 2.3 where the surface properties of Si [100] are selected as the properties 

of the top surface and the surface properties of Al [111] are hypothetically selected as the properties 

of other interfaces. From Table 2.3, the material length scale   of Si [100] is equal to 0.16739 nm 

which is used as the structure length scale to normalize every dimensional parameter. Therefore, 

the normalized thickness of each layer is equal to 1.195 and the loading radius is equal to 0.16739 

nm. In addition, the superposed bar symbol “ ” implies that the parameter below the symbol is 

normalized with the material length scale. 

 Figure 2.9 shows the vertical displacement and the normal stress of the Si/Al multi-layered 

medium at different profiles along the radial direction for the cases where the surface energy 

effects are considered and ignored. The monitoring profiles for the displacement are the top surface 

where z  = 0 nm, the second surface where z  = 0.2 nm and the third surface where z  = 0.4 nm 

while for the stress, the same set of monitoring profiles are used except for the first profile, the 

profile at the middle of the first layer where z  = 0.1 nm is used instead. It can be implied from the 

results that the influence of the surface energy effects is significant to the vertical displacement 

and normal stress at all profiles shown in Figure 2.9, especially the profile close to the top surface 

where the loading is applied. 

 The influence of the surface energy effects at the interface is investigated next by varying 

the surface elastic properties at each interface. The residual surface stress of the interfaces 
2

s  is 

varied whereas the residual surface stress of the top surface 
1

s  remain the same. The results, 

displacements at the top surface and stresses at the profile z  = 0.1 nm, are obtained with the ratio 

of the residual surface stress of the interface to the top surface, R , being -0.5, 1.0, 2.0 and 5.0 

while the value of s  remains the same for all cases. The similar trends can be observed in all the 

results shown in Figure 2.10, i.e. the value at every points of all the results converged to zero when 

the ratio increases. This means that the increment of the effects renders the medium stiffer than 

those with lesser value of the R  ratio, and the residual surface stress at every interface contributes 

significantly to the results in this model. Note that the surface elastic constant s shows negligible 

influence on the results compared to the residual surface stress s  (Intarit, 2012). 

 Although the size dependency effect has been studied by various researchers, the effect on 

a multi-layered medium is the topic that has not been discussed yet. The numerical experiments 

have been conducted on a default model to obtain vertical displacement and normal stress at the 

depth of z  = 0.0 nm for the displacement, z  = 0.1 nm for the stress and r a   = 0.5 for both fields 

while varying the parameter a . The ratio H a  is kept constant for every a . The influence of the 

size dependency effect is illustrated in Figure 2.11, which indicates the trend of the elastic fields 

when the parameter a  is changed. The differences between the elastic fields, with and without the 

surface energy effects, are reduced when a  is increased. However, the differences are significant 
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when the value of a  is small, approximately below 2.0. Additionally, the results of the present 

study agree well with the work from Rungamornrat et al. (2016). 

 The capability of the numerical scheme in terms of applied loading cases is also 

investigated in this study. Three different types of axisymmetric loading cases are chosen with the 

same amount of total force, namely, uniformly distributed vertical loading as shown in Eq. (2.107), 

the contact pressure from the flat-ended rigid punch and the contact pressure from the paraboloid 

revolutionary rigid punch. The second and third loading cases are the assumed forms of loading 

function, which provides the similar contact pressure to flat-ended rigid punch and paraboloid 

revolutionary rigid punch indentation problem respectively, when applied to the homogeneous 

half-space medium. The assumed form of loading function of the flat-ended rigid punch is 

expressed in the following equation (Sneddon, 1965): 

( ) ( )( ) ( )( ) ( )
21

0 1p r p a r a H a r= −  −        (2.110) 

and the assumed form of loading function for paraboloid revolutionary case (Sneddon, 1965) is 

( ) ( )( ) ( )( ) ( )
21

0 1p r p a r a H a r= −  −        (2.111) 

where ( )H a r−  is the Heaviside step function. The vertical displacement of the top surface and 

the normal stress at the profile z  = 0.1 nm are plotted in Figure 2.12. The vertical displacements 

of the flat ended and paraboloid revolutionary cases shown in Figure 2.12 reflect the flat and 

paraboloid shapes respectively. The influence of surface energy effects can be found at all results 

corresponding to the three loading cases. The flat ended loading case provides the maximum 

displacement whereas the paraboloid revolutionary case yields the minimum displacement. In 

addition, the influence of the surface energy effects is significant only under the contact area of 

the loading where r a  ≤ 1.0. 

2.6.5 Numerical solution for functionally graded layer on a homogeneous elastic layer under 

uniform vertical surface loading 

The elastic properties of the FG layer vary in the z-direction from the elastic properties of Si [100] 

at the depth z  = 0.0 to the elastic properties of Al [111] at the depth z = 
1h where 

1h  is the 

normalized thickness of the FG layer as shown in Figure 2.13. The variational pattern of the elastic 

properties of the FG layer is determined by the grading function in which the exponential function, 
0

0( )
mL z

L z L e=  where m is the grading constant and 0L  is the Lame’ constants of Si [100], is 

selected for all cases. The value of the grading constant m  is obtained by back calculation from 

the known elastic properties at the depth z  = 0.0 and z = 
1h . The FG layer is divided into 10 

sublayers where the elastic properties of each layer are assigned in the same manner as the 

verification model. The underlying homogeneous elastic layer is a layer of Al [111] and its layer 

thickness is equal to 2h . The 
1 2h h  ratio is set to 9.0 where the ratio H a  and the loading radius 

a   are both set to 1.0. This model is subjected to the same loading case as the multi-layered model, 

Eq. (2.107). The surface elastic properties of the top surface and the interface of this model are 

equal to the surface properties of Si [100] and Al [111] respectively. 
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 The top surface vertical displacement corresponding to the variation of the thickness ratio 

between upper and lower layer are illustrated in Figure 2.14 with H a   being fixed at 1.0. Since 

Al [111] has lower elastic properties than Si [100], the obtained displacement then becomes 

maximal when the thickness of Al [111] is 9.0, which is the largest thickness considered in the 

Figure 2.14. The influence of the total thickness H on the top surface vertical displacement of the 

FG layer model when the total thickness is increased whereas the first layer thickness remains the 

same is presented in Figure 2.15. As the thickness increases, the influence of the surface energy 

effects increases. 

 The vertical displacement profiles along the radial direction at each profile through the 

thickness of the multi-layered medium have been plotted to study the surface energy influence 

when the distance between the selected profiles and the top surface increases. The results 

illustrated in Figure 2.16 can be implied in the same way as the multi-layered model, i.e. the 

influence of the surface energy effects on the displacement is lower when the distance between the 

profile and the top surface increases. The effect of the residual surface stress s  on the FG layer 

problem is studied next. Figure 2.17 shows the displacements profiles at the top surface and the 

stresses profiles at the interface between the FG layer and the homogeneous layer with the value 

of R  being -0.5, 1.0, 2.0 and 5.0. The similar trend to the Si/Al multi-layered model can be 

observed in Figure 2.17 where the presence of the residual surface stress renders the medium 

stiffer. 

 Finally, the influence of grading function on elastic fields of the FG layer is considered. To 

investigate the difference between the grading function of the FG layer, three grading functions, 

namely, linear, exponential and power law distributed grading function, have been employed to 

observe the variation of the top surface vertical displacement and normal stress at the interface. 

The linear grading function is given by 

( ) ( ) ( )1
1L z L mz= +            (2.112) 

where ( ) ( )( ) ( )( )1 1

1

N
m L L L h= − . 

In addition, the power law distributed grading function can be expressed as 

( ) ( ) ( )1

11
m

L z L z h= +            (2.113) 

where ( ) ( )( )1

2log
N

m L L=  and 
1z h . 

The special case of the FG layer has been introduced to emphasize the difference between the 

results among gradation functions. The elastic properties of the top surface and the interface, 

previously assigned as the properties of Si [100] and Al [111] respectively, are substituted by the 

1st material and the 2nd material for this special case, which are 1  = 100 GPa, 1 1   = 1.5 for the 

1st material and 2  = 10 GPa, 2 2  = 1.5 for the 2nd material. The ratio 
2 1h h  for this special case 

is set to 1.5, the thickness 
1h  is 0.4, the ratio H a  is kept at 1.0 and the surface quantities at the 

top surface and the interface remain unchanged from the FG model. The results show that the 

grading function that yields the stiffest medium is the linear distribution, followed by the 

exponential and the power law respectively as shown in Figure 2.18. However, the results also 



26 

 

show that the selection of grading function is significant only for the extreme cases where the 

variation of elastic properties and the thickness is large enough. 

 

Figure 2.1 Layered elastic half-space subjected to axisymmetric surface loading 

 

 

Figure 2.2 Multi-layered elastic medium over rigid base under axisymmetric surface loading 
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(a) 

 

 

(b) 

Figure 2.3 Comparisons of (a) normalized vertical displacement profiles at the interface; and (b) 

normalized normal stress profiles along the z-axis of a FG layer over an elastic half-space 

 

 

(2013) 

(2013) 
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(a) 

 

   

(b) 

 

Figure 2.4 Radial variations of elastic fields under the vertical loading for different values of layer 

thickness (h/a): (a) surface displacements (z = 0) and (b) stresses at the interface (z = h). 

 

 

 

 

 



29 

 

  
(a) 

 

  

(b) 

 

Figure 2.5 Radial variations of elastic fields under the vertical loading for h/a = 1 and different 

magnitudes of residual surface stress ( s
2): (a) surface displacements (z = 0) and (b) stresses at the 

interface (z = h). 
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(a) 

 

   

(b) 

 

Figure 2.6 Radial variations of elastic fields under the vertical loading for h/a = 1 and different values of 

loading radius ( a ): (a) surface displacements (z = 0) and (b) stresses at the interface (z = h). 
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(a) 

 

  

(b) 

 

Figure 2.7 Radial variations of elastic fields under the radial loading for different values of layer 

thickness (h/a): (a) surface displacements (z = 0) and (b) stresses at the interface (z = h). 
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Figure 2.8 Multi-layered medium consisting of Si [100] and Al [111] under vertical surface loading 
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(a) 

 

(b) 

Figure 2.9 Radial profiles of elastic fields of the Si/Al multi-layered medium at defferent depths: (a) 

normalized vertical displacement; and (b) normalized normal stress 
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(a)  (b) 

 

   

         (c)                     (d) 

Figure 2.10 Radial profiles of elastic fields of the Si/Al multi-layered medium with different R  ratios: 

(a) normalized vertical surface displacement; (b) normalized radial surface displacement; (c) normalized 

normal stress at z  = 0.1 nm; (d) normalized shear stress at z  = 0.1 nm 
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(a) 

 

(b) 

Figure 2.11 Variation of elastic fields of the Si/Al multi-layered medium with normalized loading radius 

a  at different depths: (a) normalized vertical displacement; (b) normal stress 
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(a) 

 

(b) 

Figure 2.12 Radial profiles of elastic fields of the Si/Al multi-layered medium under different types of 

surface loading: (a) normalized vertical surface displacement; and (b) normalized normal stress at z = 0.1 

nm 
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Figure 2.13 FG layer over an elastic medium under uniform vertical surface loading 

 

 

Figure 2.14 Radial profiles of normalized vertical surface displacement of the FG elastic medium with 

different 
2 1h h  ratios 
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Figure 2.15 Radial profiles of normalized vertical surface displacement of the FG elastic medium with 

different H a  ratios 

 

Figure 2.16 Radial profiles of normalized vertical displacement of the FG elastic medium at different 

depths 
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(a)          (b) 

  

   (c)            (d) 

Figure 2.17 Radial profiles of elastic fields of the FG elastic medium with different R  ratios: (a) 

normalized vertical surface displacement, (b) normalized radial surface displacement; (c) normalized 

normal stress at the interface, (d) shear stress at the interface 
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(a) 

 

(b) 

Figure 2.18 Radial profiles of elastic fields of the FG elastic medium with different grading functions: (a) 

normalized vertical surface displacement; and (b) normalized normal stress at the interface 
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Table 2.1 Comparison of normalized surface displacements and stresses at the interface of a 

layered elastic half-space under uniformly distributed normal traction for 1/2 = 5 and h/a = 1. 

r/a 

1uz/ap0 1ur/ap0 zz/p0 rz/p0 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

0.0 0.9945 0.9944 0.0000 0.0000 0.4260 0.4260 0.0000 0.0000 

0.5 0.9442 0.9440 -0.0746 -0.0746 0.3790 0.3790 0.0867 0.0867 

1.0 0.7651 0.7649 -0.1363 -0.1363 0.2526 0.2526 0.1303 0.1303 

2.0 0.4630 0.4629 -0.1048 -0.1048 0.0657 0.0657 0.0719 0.0719 

3.0 0.3179 0.3177 -0.0747 -0.0748 0.0174 0.0174 0.0307 0.0307 

5.0 0.1867 0.1866 -0.0420 -0.0421 0.0010 0.0010 0.0069 0.0069 

10.0 0.0933 0.0932 -0.0217 -0.0218 0.0001 0.0000 0.0009 0.0009 

Table 2.2 Comparison of normalized surface displacements and stresses at the interfaces of a 

layered elastic half-space under linearly distributed tangential traction for 1/2 = 5 and h/a = 1. 

r/a 

1uz/aq0 1ur/aq0 zz/q0 rz/q0 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

0.0 0.1188 0.1189 0.0000 0.0000 0.1150 0.1150 0.0000 0.0000 

0.5 0.0941 0.0941 -0.0952 -0.0952 0.0803 0.0803 0.0359 0.0359 

1.0 0.0253 0.0253 -0.0934 -0.0934 0.0173 0.0173 0.0312 0.0312 

2.0 0.0044 0.0044 -0.0198 -0.0198 -0.0068 -0.0068 -0.0005 -0.0005 

3.0 -0.0003 -0.0003 -0.0087 -0.0087 -0.0028 -0.0028 -0.0020 -0.0020 

4.0 -0.0006 -0.0005 -0.0051 -0.0051 -0.0010 -0.0010 -0.0012 -0.0012 

5.0 -0.0003 -0.0003 -0.0036 -0.0036 -0.0004 -0.0004 -0.0007 -0.0007 

10.0 0.0001 0.0001 -0.0014 -0.0014 0.0000 0.0000 -0.0001 -0.0001 

Table 2.3 Material properties employed in numerical study. 

Material 

parameters 

Upper layer 

Si [100] 

Underlying half-space 

Al [111] 

  (N/m2) 78.0849 × 109 58.17 × 109 

 (N/m2) 40.2256 × 109 26.13 × 109 

 s (N/m) 0.6056 1 

 s (N/m) 4.4939 6.8511 

 s (N/m) 2.7779 -0.376 

 s (N/m) 10.0497 6.0991 
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CHAPTER III  

MODELING OF NANO-BEAMS 

This chapter presents the modeling and analysis of buckling, post-buckling, and bending responses 

of nano-scale beams with the consideration of both surface and nonlocal effects. The chapter is 

organized by first briefly summarizing background and relevant past studies, then presenting the 

problem formulation, key governing equations and solution methodology, and finally reporting 

significant findings and important remarks. 

3.1 Background and Review 

Nano-scale components and devices such as transistors, sensors, actuators and resonators used in 

the nano-electro-mechanical systems (NEMS) and parts of nano-chips have been largely 

developed due to their extraordinary physical and mechanical properties. As a result, studies 

towards the characterization of mechanical properties at such a tiny scale have rapidly gained 

interest from many investigators. Understanding the mechanical behavior and other related 

properties (e.g., bending, buckling, post-buckling, and vibration) of slender nano-components, 

which are commonly found as parts of nano-devices and nano-systems, is obviously essential and 

generally required in the design procedure to ensure the integrity and safety throughout their usage. 

Owing to the positive features which are based principally upon the simplicity of 

fundamental governing physics and low requirement of computational resources, in comparison 

with atomistic and molecular dynamics simulations, the classical continuum-based techniques 

have been increasingly proposed and extensively employed, in the past three decades, to study 

nano-beam problems. In general, existing classical beam theories (e.g., Timoshenko and Gere 

1961; Reddy 2018) have been enhanced by integrating Eringen nonlocal constitutive law (e.g., 

Eringen 1976, 1983, 2002; Peddieson et al. 2003; Reddy 2007; Reddy and Pang 2008; Reddy et 

al. 2014) and Gurtin-Murdoch surface elasticity model (e.g., Gurtin and Murdoch 1975, 1978; 

Gurtin et al. 1998; Preethi et al. 2015) to be capable of handling nano-scale phenomena, such as 

the surface and nonlocal effects and size-dependent behavior observed from experimental 

investigations and atomistic calculations. 

Results from an extensive literature survey have indicated that work towards the modeling 

of mechanical properties of nano-scale elements using continuum-based theories has been 

continuously grown in the last decade; however, most of existing studies were found limited to 

certain nano-scale influences. For instance, the classical beam theory enhanced by Eringen 

nonlocal constitutive law was proposed to predict the buckling loads, post-buckling shapes, 

bending and vibration responses of nano-rods/tubes/ribbons (Wang et al., 2006; Reddy, 2007; 

Wang and Liew, 2007; Pradhan and Phadikar, 2009), nano-wires (Janghorban, 2012), nano-

elements or nano-beams (Wang et al., 2008; Glavardanov et al., 2012; Potapov, 2013; Eltaher et 

al., 2013; Şimşek and Yurtcu, 2013; Emam, 2013; Koutsoumaris et al., 2017; Vila et al., 2017). 

Results from those studies indicated that nonlocal parameters play a crucial role on both the value 

and size-dependent behavior of predicted solutions when the characteristic length of elements is 

within a nano-scale level. To capture the surface energy effects and size dependency commonly 

found in nano-scale structures, Gurtin-Murdoch surface elasticity theory was also utilized, by 
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several investigators, along with various beam theories such as Timoshenko, Euler-Bernoulli, 

Levinson and Reddy models (Reddy, 2007) to examine buckling, post-buckling, vibration and 

bending responses of nano-wires (He and Lilley, 2008; Wang and Feng, 2009; Jiang and Yan, 

2010; Wang et al., 2010; Wang and Yang, 2011; Liu et al., 2012; Chiu and Chen, 2013; Li et al., 

2014; Dong et al., 2014), and nano-beams (Jian-Gang and Ya-Pu, 2007; Liu and Rajapakse, 2010; 

Bar On et al., 2010; Liu et al., 2011; Sapsathiarn and Rajapakse, 2012; Ansari et al., 2013; Giunta 

et al., 2013). In those studies, analytical, semi-analytical, and numerical techniques were proposed 

to construct solutions of associated mathematical models and some predicted results were also 

found in agreement with existing experimental evidences (He and Lilley, 2008; Jiang and Yan, 

2010; Chiu and Chen, 2013). In addition, results from those investigations also confirmed the vital 

role of the surface energy effect when the size of structures reduces to a nano-scale level and the 

size-dependency characteristics of predicted responses. 

By recognizing the significant role of both nonlocal and surface energy effects in the 

modeling of nano-scale structures, only few investigators have simultaneously included both 

Eringen nonlocal constitutive law and Gurtin-Murdoch surface elasticity theory in the simulations 

of nano-scale elements. For instance, Juntarasaid et al. (2012) considered both effects together 

with the linearized Euler-Bernoulli beam model to derive analytical solutions of buckling load and 

small deflection of nano-beams subjected to different boundary conditions. It should be pointed 

out that while their mathematical model can adequately capture the nano-scale influence but the 

contribution of the residual stress within the bulk material due to the non-zero residual surface 

tension present within the material surface was still not considered. Later, Mahmoud et al. (2012) 

used both the surface and nonlocal elasticity models along with the linearized Euler-Bernoulli 

beam theory to derive a key differential equation governing the deflected shape of nano-beams 

under transverse loadings. A standard finite element procedure was adopted to construct 

approximate solutions and an extensive parametric study was performed to examine the important 

role of both surface and nonlocal parameters on the size dependency of predicted solutions. Hu et 

al. (2014) integrated the nonlocal linear elasticity and surface stresses into the classical linearized 

beam theory to examine the buckling load and vibration of nano-wires. Analytical solutions for 

both cases were derived using a fundamental approach in the differential-equation theory. It is 

worth noting that in their formulation, the initial residual stress within the bulk was completely 

ignored and the effect of the residual surface tension was lumped into the fictitious longitudinal 

force. Also, Wu et al. (2015) presented a continuum-based mathematical model by integrating 

small-rotation Euler-Bernoulli beam theory, surface elasticity theory, and nonlocal linear elasticity 

to examine the bending response of nano-wires under various boundary conditions. Most recently, 

Preethi et al. (2015) presented a nonlocal nonlinear finite element formulation for the Timoshenko 

beam theory accounting for the surface stress effects as well as Eringen’s nonlocal elasticity. 

Hosseini-Hashemi et al. (2015) used both the Eringen nonlocal continuum field theory and the 

Gurtin-Murdoch surface elasticity model to investigate the effect of the nano-beam length, 

thickness to length ratio, mode number, amplitude of deflection to the radius of gyration ratio and 

nonlocal parameters on the normalized natural frequencies of nano-beams with both positive and 

negative surface elasticity. 

While applications of both nonlocal and surface elasticity theories to the investigation of 

mechanical responses of nano-scale elements have been well recognized in the literature, most of 

existing studies were carried out mainly in the context of linearized beam theories and use of 

nonlinear kinematics in the modeling is still relatively few (e.g., Preethi et al., 2015; Hosseini-
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Hashemi et al., 2015). Mathematical models relying upon small displacement and rotation 

assumptions generally pose several restrictions in terms of responses to be predicted and, also, the 

capability to simulate nano-elements which are often slender and undergo large deflections under 

applied loads. In addition, the integration of both nonlocal and surface energy effects in the 

simulations was still limited to certain scenarios, and contribution of the initial residual stress 

within the bulk material, when Gurtin-Murdoch surface elasticity model was utilized, was fully 

neglected in most of previous investigations. The contribution of the non-zero residual surface 

tension was integrated mainly via the fictitious longitudinal force. This ignorance can lead to either 

inaccurate or erroneous predicted solutions as pointed out by Wang et al. (2010).  

The present study aims mainly to close this gap in the literature. An efficient numerical 

solution procedure is established to determine nonlinear responses of nano-beams by integrating 

both Eringen nonlocal constitutive law and Gurtin-Murdoch surface elasticity along with Euler-

Bernoulli beam theory. The influence of the residual stress within the bulk material induced by the 

residual surface tension of the material layer is also incorporated into the modeling through the 

moment-curvature relationship of the beam. The problem is formulated within the context of the 

large displacement and rotation and the final set of exact governing equations is then solved by an 

efficient nonlinear solver. One of the novel features of the proposed method is the solution 

procedure that is free of discretization; as the direct consequence, the technique generally yields 

very accurate results comparable to the analytical solution and then suitable for use as the reliable 

benchmark solutions. The nano-scale influence and size-dependency of predicted solutions are 

also fully examined and a selected set of results is reported and discussed. 

3.2 Problem Formulation 

In this section, a clear problem description is presented along with the integration of three basic 

field equations (i.e., equilibrium equations, constitutive relations, and kinematics) to form a 

complete set of nonlinear differential equations governing the deflected shape of a nano element 

undergoing large displacements and rotations. 

3.2.1 Problem Description 

Consider a perfectly straight, prismatic, nano-beam of length l  with a rectangular cross-section of 

width b  and depth h . The nano-beam can be divided into two regions, the bulk part which is made 

of a homogeneous, isotropic, linearly elastic material governed by Eringen nonlocal constitutive 

law and the material surface which is governed by Gurtin-Murdoch surface-elasticity model. All 

material constants associated with both models are fully prescribed and assumed spatially 

independent. In the present study, the nano-beam is free of interior loads and subjected to two 

different sets of boundary conditions, a fixed-free nano-beam under longitudinal and transverse 

concentrated forces at the free end (see Figure 3.1(a)) and a fixed-rollered nano-beam under a 

longitudinal concentrated force and a concentrated moment at the rollered end (see Figure 3.1(b)). 

The direction of all applied loads remains unchanged throughout the loading history.  

The problem statement is to establish a solution procedure capable of determining the 

mechanical response of the given nano-beams including buckling load, post-buckling, and bending 

response with the consideration of both surface stresses and nonlocal effects. In addition, the size-

dependency and material parameters characterizing the nano-scale influence of predicted solutions 

are also investigated. 



45 

 

3.2.2 Basic Equations 

A classical Euler-Bernoulli beam theory (e.g., Lowe, 1971; Reddy, 2004, 2018), Eringen nonlocal 

linear elasticity theory (e.g., Eringen 1976, 1983, 2002;  Peddieson et al. 2003; Reddy 2007; Reddy 

and Pang 2008; Reddy et al., 2014) and the Gurtin-Murdoch surface elasticity model (e.g., Gurtin 

and Murdoch 1975, 1978; Gurtin et al. 1998; Preethi et al. 2015) are integrated to form the basic 

field equations governing responses of the nano-beam undergoing large displacements and 

rotations. 

A centroidal axis of a nano-beam in its undeformed state is shown schematically in Figure 

3.2(a). This one-dimensional representation together with the information of the cross section fully 

describes the three-dimensional aspect of the initial beam geometry. Under the action of external 

loads, the beam displaces to a new configuration with a deformed centroidal axis defined by a 

locus of points ( ( ), ( ))x S y S  where [0, ]S l  denotes the initial arc-length coordinate measured from 

the left end to any cross section in its undeformed state. The deformed arc-length coordinate 

measured from the left end to any cross section in its deformed state is denoted by [0, ]s l  where 

l   is the arc length of the deformed centroidal axis. Note that the information of the deformed 

centroidal axis along with the assumed kinematics of the cross section gives the complete 

description of the deformation of the entire beam. The displacements of any cross section located 

at a point ( ,0)S  in the -x  and -y directions are denoted by ( )u u S=  and ( )v v S= , respectively, and 

they are related to the coordinates ( )x S  and ( )y S  by 

( ) ( )u S x S S= − ;   ( ) ( )v S y S=  (3.1) 

Due to the slenderness of typical nano-beams, it is reasonable to neglect the contribution of the 

axial deformation in the response prediction and the centroidal axis of the beam is assumed 

inextensible in the present investigation. Based on such assumption along with the consideration 

of the deformed centroidal axis of the beam, it leads to the following relationship among the 

displacements u  and v , the rotation of the cross section  , and the initial and deformed arc length 

S

 

and s : 

/ 1ds dS = ;     sin / /dy ds dv dS = = ;     cos / 1 /dx ds du dS = = +  (3.2) 

The first relation of (3.2) indicates that there is no difference of using the initial or deformed arc 

length S

 

and s  as the reference coordinate. From equilibrium of the deformed infinitesimal 

element of length ds  in the absence of interior loads (see free body diagram in Figure 3.2(b)), the 

resultant forces in the -x  and -y directions and the resultant bending moment at any cross section, 

denoted by xf ,  yf  and m , respectively, satisfy the following differential equations:  

 / 0xdf dS = ;   / 0ydf dS =              (3.3) 

/ sin cosx ydm dS f f = +  (3.4) 

It is obviously seen from (3.3) that an element, that is free of interior loads, possesses the constant 

resultant forces xf  and yf  along its entire length. The resultant axial force F  and the resultant 

shear force V  (i.e., resultant forces normal and parallel to the deformed cross section, respectively) 

can be related to the force resultants xf  and yf  by  
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 ( ) cos sinx yF f f  = −              (3.5) 

( ) sin cosx yV f f  = +  (3.6) 

To establish the relationship between the resultant bending moment m  and the deformation of the 

cross section, the well-known kinematics assumption of the cross section (i.e., plane section 

remains plane) together with Gurtin-Murdoch surface elasticity and Eringen nonlocal elasticity 

theories is utilized. The beam element is treated as a composite consisting of the interior part, 

called the bulk material, and the remaining zero-thickness material layer, called the material 

surface (see Figure 3.3). The material surface is governed by the following Gurtin-Murdoch 

constitutive relation (Gurtin and Murdoch 1975, 1978; Gurtin et al. 1998; Preethi et al. 2015): 

, 3 3,2( ) ( )   ;   s s s s s s s s s s s s su u                    = + − + + + =  (3.7) 

where the superscript “ s ” is employed to designate quantities associated with the surface; Greek 

indices range from 1 to 2 and repeated index implies the summation over its range; 
3

s

  and s

  

denote components of the out-of-plane and in-plane surface stresses, respectively; s

  denotes 

components of the in-plane surface strain; 
3

su

 

and su
 denote components of the out-of-plane and 

in-plane surface displacement, respectively; s  and s  denote surface Lamé constants; s  

denotes the residual surface tension in the unstrained state; and   is a two-dimensional 

Kronecker symbol. For the bulk material, the bulk stress b

ij  are related to the bulk strain b

ij  via 

Eringen nonlocal, isotropic constitutive relation (Eringen 1976, 1983, 2002; Peddieson et al. 2003; 

Reddy 2007; Reddy and Pang 2008; Reddy et al., 2014)   

2

0[1 ( ) ] 2b b b b b

ij ij ij kke a      −  = +  (3.8) 

where 0e  is a non-dimensional constant; a  denotes the internal intrinsic length of the material;   

denotes the Laplace operator; b  and b  denote bulk Lamé constants; and lower case indices 

range from 1 to 3 and repeated index imply the summation over its range. It is worth noting that 

due to the presence of the residual surface tension at the initial unstrained state, the bulk stress 

does not vanish to maintain the equilibrium state and the presence of this bulk residual stress is 

considered in the present study. By ignoring the boundary and corner effects, the bulk residual 

stress, denoted by 0b

ij , can be assumed homogeneous and obtained from static equilibrium of the 

cross section at the unstrained state (see Figure 3.3). For the beam with the rectangular cross 

section, the bulk residual stress takes the form 

0

2(1/ 1/ ) 0 0

[ ] 0 2 / 0

0 0 2 /

s

b s

ij

s

h b

h

b



 



 − +
 

= − 
 − 

 (3.9) 

where b and h are width and depth of the cross section. The resultant bending moment m  at any 

cross section can be obtained from   
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11 3 11 3

b s b sm m m x dA x d 


= + = − −  
C C

 (3.10) 

where ,b sm m  are resultant bending moment from the bulk and surface parts, respectively, and C  

and C  denote the cross section and its boundary, respectively. By enforcing kinematics of the 

cross section from Euler-Bernoulli beam theory, the normal strains 
11

b  and 
11

s  at any coordinate 

3x  from the centroid of the cross section are given by   

11 3 11 3,   b sd d
x x

dS dS

 
 = − = −  (3.11) 

By employing (3.10)-(3.11) along with (3.7)-(3.8) in the absence of the residual surface tension 

and the bulk residual stress and then carrying out the integration over the cross section and its 

boundary, it yields the relationship between the resultant bending moment m  and the rotation 

gradient /d dS  as  

2
2

0 2
( )

d m d
m e a K

dS dS


= +  (3.12) 

where K  denotes the modified flexural rigidity of the cross section defined by 

6 2
1K EI

h b

 
= + + 

 
 (3.13) 

in which (2 3 )/( 3 )b b b b bE     = + +  denotes Young’s modulus of the bulk material, 3 /12I bh=  

denotes the area moment of inertia of the cross section, /h h=  , /b b=  , /sE E = , and 

(2 3 ) / ( 3 )s s s s s sE     = + + . To take the influence of the residual surface tension and the non-

zero bulk residual stress into account, a procedure based on the theory of elasticity with the residual 

stress and the principle of virtual work similar to that employed by Wang et al. (2010) is adopted. 

It is found that the final relationship between m  and /d dS  is identical to (3.12) except that the 

modified flexural rigidity K  changes to   

2 2
2

2 2

6 2 2
1 2

s b l
K EI

h b b h h




  
= + + + −  

   
 (3.14) 

where /l l=  , /s s E = , and   is Poisson’s ratio of the bulk material. It is apparent from (3.13) 

that in the absence of the residual surface tension (i.e., 0s = ), the modified flexural rigidity K is 

always larger than that of the classical case EI and such discrepancy becomes more significant 

when the dimension of the cross section is relatively small in comparison with the intrinsic length 

parameter  . On the contrary, presence of the positive residual surface tension can reverse the 

effect due to the residual compressive stress generated within the bulk material and such influence 

is substantially magnified when the slenderness ratio of the member increases. In various earlier 

investigations (He, and Lilley, 2008; Wang and Feng, 2009; Jiang and Yan, 2010; Juntarasaid et 

al., 2012), the modified flexural rigidity of the beam was computed from (3.13) which is free of 

the residual surface tension. The influence of s  is treated separately by ignoring the bulk residual 

stress and the equilibrium of the entire body in the unstrained state is maintained differently by 

introducing a set of forces at the boundary of the surface. In this point of view, the treatment of 
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the surface effect and the residual surface tension with the integration of the bulk residual stress 

offered in the present study is more direct and should provide a more realistic mathematical model 

for simulating responses of nano-beams. 

By substituting the equilibrium equation (3.4) into the constitutive relation (3.12), it yields 

the moment-curvature relationship 

 ( )
d

m F
dS


  = +      (3.15) 

where /K EI =  /m ml EI= , 2 2

0( ) /e a l = , /S S l=  and ( ) cos sinx yF f f  = −  with 2 /x xf f l EI= ,  

2 /y yf f l EI= . By substituting (3.15) into (3.4), an alternative form of the moment equilibrium 

equation is obtained as 

 ( ) ( )
d d

F V
dS dS


   

 
+ = 

 
 (3.16) 

where ( ) sin cosx yV f f  = + . To suit the direct integration of the equilibrium equation (3.16) 

with respect to the rotation  , its left hand side is first re-expressed by using the chain rule as 

   ( ) ( )
d d d d d

F F
dS dS dS d dS

  
     



   
+ =  +   

   
 (3.17) 

By substituting the relation (3.17) into the equilibrium equation (3.16) and then multiplying both 

sides by a function ( )F  + , the resulting differential equation can be subsequently integrated 

to obtain 

 
2

2( ) 2 ( ) ( )
d

F C F F
dS


      

 
+ = − − 

 
   (3.18) 

where C  is a constant of integration and can be determined from the boundary conditions. It is 

apparent from (3.15) that the sign of both normalized bending moment m  and the term 

 ( ) /F d dS   +  must be identical; as a result, only one of the two solutions of /d dS  obtained 

from (3.18) is physically admissible. The unique solution can be, therefore, expressed in the form 

 
2

( ) ( )

2 ( ) ( )

sgn m FdS

d C F F

  

    

+
=

− −
 (3.19) 

where ( )sgn m  is a moment-dependence function defined by 

1 if 0

( ) 0 if 0

1 if 0

m

sgn m m

m

− 


 =
 

 (3.20) 

Combining (3.19) and the geometric relations (3.2) yields the following two differential equations 

governing the displacements u  and v  
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 
2

( )(cos 1) ( )

2 ( ) ( )

sgn m Fdu

d C F F

   

    

− +
=

− −
 (3.21) 

 
2

( )sin ( )

2 ( ) ( )

sgn m Fdv

d C F F

   

    

+
=

− −
 (3.22) 

where /u u l=  and /v v l= . A set of three differential equations (3.19), (3.21) and (3.22) is 

sufficient for obtaining the key governing equations of nano-beams under various end conditions. 

It is worth noting that both   and   appearing in above equations are essential parameters related 

to the surface stresses and nonlocal linear elasticity, respectively, and are used to simulate the 

nano-scale influence on the mechanical response of nano-beams. By setting 1 =  and 0 = , 

above equations reduce directly to those obtained by Rungamornrat and Tangnovarad (2011) for 

a classical beam in the absence of surface stresses and nonlocal elasticity. By performing the direct 

integration of (3.19), (3.21) and (3.22) with respect to the independent variable   from 0S =  to 

[0,1]S =  , it leads to 

 

1

( )

2

( ) ( )

2 ( ) ( )

sgn m F
d

C F F

 



  
 

   

+
=

− −
  (3.23) 

 

1

( )

1
2

( )(cos 1) ( )
( )

2 ( ) ( )

sgn m F
u u d

C F F

 



   
 

   

− +
− =

− −
  (3.24) 

 

1

( )

1
2

( )sin ( )
( )

2 ( ) ( )

sgn m F
v v d

C F F

 



   
 

   

+
− =

− −
  (3.25) 

where 
1 ( 0)u u S= = , 

1 ( 0)v v S= =  and 
1 ( 0)S = = . By setting 1 = , the relations (3.23)-(3.25) 

become 

 2

1

2

( ) ( )
1

2 ( ) ( )

sgn m F
d

C F F





  


   

+
=

− −
  (3.26) 

 2

1

2 1
2

( )(cos 1) ( )

2 ( ) ( )

sgn m F
u u d

C F F





   


   

− +
− =

− −
  (3.27) 

 2

1

2 1
2

( )sin ( )

2 ( ) ( )

sgn m F
v v d

C F F





   


   

+
− =

− −
  (3.28) 

where 
2 ( 1)u u S= = , 

2 ( 1)v v S= =  and 
2 ( 1)S = = . A system of nonlinear algebraic equations 

(3.26)-(3.28) together with the well-posed essential and natural boundary conditions of the nano-

beam is sufficient for determining the unknown constant C  and the kinematical unknowns from a 

set 1 2 1 2 1 2{ , , , , , }u u v v   . Once all primary unknowns at both ends of the member are solved, the 

displacement and rotation of any cross section can be readily obtained from the relations (3.23)-
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(3.25). The reactive forces can be also determined from equilibrium of the whole beam in the 

deformed state whereas the internal forces at any cross section such as the axial force F , the shear 

force V  and the bending moment m  are obtained from the method of sections. 

3.2.3 Linearized Equations for Buckling Load Analysis 

For a perfectly straight nano-beam under proper end restraints and subjected only to a pure axial 

compression force P , it is apparent that the straight configuration (i.e., 0u v = = = ) together with 

the pure axial state (i.e., , 0x yf P f m= − = = ) is always an equilibrium configuration (i.e., equations 

(3.2)-(3.4) and (3.12) are automatically satisfied). Besides this trivial solution, it is more 

informative to determine the critical compression force P  at the onset of the buckling, i.e., a state 

that the beam begins to admit a non-straight equilibrium configuration. At the onset of the 

buckling, the rotation of the cross section   is infinitesimally small and, as a result, the first order 

approximations such as sin , cos 1     are admissible. At this particular state, the kinematical 

relations (3.2), the equilibrium equations (3.3)-(3.4), and the moment-curvature relationship (3.15) 

can be reduced to 

/ 0du dS = ;     /dv dS =       (3.29) 

/ 0xdf dS = ;     / 0ydf dS =         (3.30) 

/ x ydm dS f f= +  (3.31) 

( ) /xm f d dS  = +  (3.32) 

The first relation of (3.29) indicates that u  must be constant throughout the beam and identically 

vanishes if the longitudinal displacement is prevented at a particular point within the beam. 

Similarly, the first equation of (3.30) along with the prescribed compression force P  at the end of 

the beam implies that 2 /xf Pl EI p= −  − . By substituting 
xf p= −  and the second equation of 

(3.29) into (3.31) and (3.32), it yields the normalized resultant force yf   and normalized bending 

moment m  in terms of the normalized displacement v    

( )
3

3y

d v dv
f p p

dS dS
 = − +  (3.33) 

( )
2

2

d v
m p

dS
 = −  (3.34) 

Finally, the linearized governing equation for the normalized displacement v  is obtained, by 

substituting (3.33) into the second equation of (3.30), as    

4 2
2

4 2
0

d v d v

dS dS
+ =             (3.35) 

where /( )p p  = − . A linear, homogeneous, fourth-order, ordinary differential equation (3.35) 

along with the prescribed end conditions is sufficient for formulating an Eigen problem for finding 

the buckling load and buckled shape of the nano-beam.  
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3.3 Key Governing Equations 

Basic equations established in the previous section are employed to formulate the key governing 

equations essential for determining post-buckling and bending responses of nano-beams under 

different end conditions illustrated in Figure 3.1. The enforcement of essential and natural 

boundary conditions to obtain both the unknown constant C  and a final set of governing equations 

is clearly demonstrated. 

3.3.1 Fixed-free Nano-Beams 

Consider a nano-beam clamped at the left end and subjected to a longitudinal force P  and a 

transverse force Q  at the right end as shown in Figure 3.1(a). Essential and natural boundary 

conditions at the ends of the beam are given by 1 0u = , 1 0v = , 1 0 = , 2(1) /xf Pl EI p= −  − , 
2(1) /yf Ql EI q= −  −  and (1) 0m = . From the two force natural boundary conditions and equilibrium 

equations (3.3), the internal resultant forces 
xf   and yf  at any cross section of the beam are 

obtained as 

( ) ,    ( )     [0,1]x yf S p f S q S= − = −     (3.36) 

The normalized axial and shear forces at any cross section, for this particular case, are given by 

( ) cos sinF p q  = − +  (3.37) 

( ) sin cosV p q  = − −  (3.38) 

The relation (3.15) together with the moment natural boundary condition (1) 0m =  implies that 

( 1) 0
d

S
dS


= =  (3.39) 

By applying the relation (3.18) at 1S =  and then using the condition (3.39), the unknown constant 

C  can be obtained as 

2

2 22 ( ) ( )C F F   = +  (3.40) 

By substituting the constant C  from (3.40) and all essential boundary conditions into (3.26)-

(3.28), it yields a system of nonlinear algebraic equations governing the unknown displacements 

and rotation at the right end of the beam (i.e., 2u  , 2v  and 2 ) 

   

2

2 2
0 2 2

( )
1

2 ( ) ( ) ( ) ( )

F
d

F F F F


  


     

+
=

− + −
     (3.41) 

 

   

2

2
2 2

0 2 2

( ) (cos 1)

2 ( ) ( ) ( ) ( )

F
u d

F F F F

    


     

+ −
=

− + −
   (3.42) 
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 

   

2

2
2 2

0 2 2

( ) sin

2 ( ) ( ) ( ) ( )

F
v d

F F F F

    


     

+
=

− + −
     (3.43) 

Note that the moment-dependent function ( )sgn m  is taken equal to 1 without loss of generality 

since the deflected shape possesses a single-curvature and the normalized bending moment m  at 

any cross section possesses the same sign. A system of nonlinear algebraic equations can be further 

specialized to the bending and post-buckling cases by taking 0p =  and 0q = , respectively. Once 

the displacements and rotation at the free end are solved, the displacement and rotation at any 

interior point (0,1)S =   can be obtained from 

   

( )

2 2
0 2 2

( )

2 ( ) ( ) ( ) ( )

F
d

F F F F

 
  

 
     

+
=

− + −
  (3.44) 

 

   

( )

2 2
0 2 2

( ) (cos 1)
( )

2 ( ) ( ) ( ) ( )

F
u d

F F F F

     
 

     

+ −
=

− + −
  (3.45) 

 

   

( )

2 2
0 2 2

( ) sin
( )

2 ( ) ( ) ( ) ( )

F
v d

F F F F

     
 

     

+
=

− + −
  (3.46) 

where ( )   denotes the rotation at any interior point (0,1)S =  . Normalized support reactions 

at the clamped end, denoted by 2 /x xR R l EI= , 2 /y yR R l EI=  and /m mR R l EI= , can be obtained, from 

equilibrium of the whole beam in its deformed state, as  

xR p= ;    yR q= − ;    
2 2(1 )mR pv q u= − − +      (3.47) 

The normalized axial force F  and the normalized shear force V  at any point (0,1)S =   can be 

determined from (3.37) and (3.38), respectively, whereas the normalized bending moment m  can 

be computed from 

2 2(1 ( )) ( ( ))m q u u p v v  = + − − + −   (3.48) 

3.3.2 Fixed-roller supported Nano-Beams 

Consider a nano-beam beam clamped at the left end, roller-supported at the right end, and 

subjected to a longitudinal force P  and the moment M  at the right end as shown in Figure 3.1(b). 

The corresponding essential and natural boundary conditions at the ends of the beam are given by 

1 0u = , 1 0v = , 1 0 = , 2 0v = , 2(1) /xf Pl EI p= −  −  and 0(1) /m Ml EI m=  . From the force natural 

boundary condition along with the fact that the internal resultant forces 
xf  is constant throughout 

the member, it can be concluded that 

( ) ,   [0,1]xf S p S= −     (3.49) 

The normalized axial and shear forces at any cross section, for this particular case, are given by 
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( ) cos sinyF p f  = − −  (3.50) 

( ) sin cosyV p f  = − +  (3.51) 

For this particular case, the member contains an interior inflection point and the vanishing of the 

bending moment at that particular point implies  

( ) 0z

d

dS


 = =   (3.52) 

where z  is the rotation at the inflection point. By enforcing (3.52) together with (3.18), the 

constant C  is obtained, for this particular case, by 

22 ( ) ( )z zC F F   = +  (3.53) 

By substituting (3.53) and all essential boundary conditions into (3.26)-(3.28), it leads to a system 

of nonlinear algebraic equations 

 

   

2

2 2
0

( ) ( )
1

2 ( ) ( ) ( ) ( )z z

sgn m F
d

F F F F

   


     

+
=

− + −
     (3.54) 

 

   

2

2
2 2

0

( ) ( ) (cos 1)

2 ( ) ( ) ( ) ( )z z

sgn m F
u d

F F F F

    


     

+ −
=

− + −
   (3.55) 

 

   

2

2 2
0

( ) ( ) sin
0

2 ( ) ( ) ( ) ( )z z

sgn m F
d

F F F F

    


     

+
=

− + −
     (3.56) 

By using the relations (3.15), (3.18), (3.53) along with the natural boundary condition 0(1)m m= , 

it yields  

   2 2 2

0 2 22 ( ) ( ) ( ) ( )z zm F F F F     = − + −    (3.57) 

After properly incorporating the moment-dependent function ( )sgn m

 

to each part of the beam, the 

nonlinear equations (3.54)-(3.56) now become 
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 (3.60) 

A final system of four nonlinear algebraic equations (3.57)-(3.60) is sufficient for determining four 

unknown quantities 2 2, , ,z yu f   and it can be specialized to the bending and post-buckling cases 

by taking 0p =  and 0 0m = , respectively. Once the unknowns 2 2, , ,z yu f   are determined, the 

displacement and rotation at any interior point (0,1)S =   can be obtained from (3.23)-(3.25) 

together with the value of moment-dependent function ( )sgn m  throughout the member. To 

facilitate such calculations, the nano-beam is separated into three segments with ( )sgn m  

possessing the same value within each segment as follows: the first segment is taken from the 

clamped end to the interior inflection point with the rotation at any normalized coordinate   

ranging from 0  to z ;  the second segment is taken from the interior inflection point to the point 

of zero rotation with the rotation at any normalized coordinate   ranging from z  to 0 ; and the 

last segment is taken from the point of zero rotation to the right end with the rotation at any 

normalized coordinate   ranging from 0  to 2 . Again, by enforcing equilibrium of the beam in 

its deformed state, the normalized support reactions at the clamped end, denoted by 2 /x xR R l EI= , 
2 /y yR R l EI=  and /m mR R l EI= , can be obtained as  

xR p= ;    y yR f= − ;    0 2(1 )m yR m f u= − − +      (3.61) 

and the reaction at the right end is simply yf . The normalized axial force and shear force F , V  at 

any point (0,1)S =   can be readily computed from (3.50)-(3.51) in terms of yf  and ( )   

whereas the normalized bending moment m  can be computed from 

0 2[1 ( )] ( )ym m f u u pv  = + + − − −   (3.62) 

3.4 Solution Methodology 

In this section, a solution procedure for determining the buckling load, post-buckling and bending 

responses of the nano-beam is established. A selected, efficient numerical technique for solving a 

system of nonlinear algebraic equations and the quadrature rule adopted in the numerical 

evaluation of all involved integrals are briefly summarized. 

3.4.1 Determination of Buckling Load 

The buckling load of a nano-beam with prescribed end conditions can be determined using a 

standard procedure analogous to that employed by Timoshenko and Gere (1961) in the 

determination of the buckling load of elastic columns. The buckled shape of the nano-beam is 

obtained, by solving the ordinary differential equation (3.35), as  

1 2 3 4( ) cos sinv S C S C S C S C = + + +   (3.63) 
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where 1C , 2C , 3C  and 4C  are unknown constants depending on the prescribed end conditions. By 

enforcing four boundary conditions, two at each end, it leads to a system of characteristic equations 

governing the buckling load 

( ) =A C 0   (3.64) 

where ( )A  is a 4x4-matrix whose entries depend only on   and prescribed end conditions; 

1 2 3 4{ }TC C C C=C ; and 0  is a zero vector. Since the governing ordinary differential equation 

(3.35), written in terms of  , is of the same form as that of the classical case (without the surface 

and nonlocal effects), the buckled shape (3.63) and the form of characteristic equations (3.64) are 

identical to those of the classical case. In particular, all eigen pairs ( , ), 1,2,...i i i =C ,  associated 

with (3.64) are identical for both the present case and the classical case. Due to this fact, there is 

no need to resolve the Eigen problem (3.64) again, and the eigen pairs ( , ), 1,2,...i i i =C  reported 

in the literature for the buckling of columns equally apply (e.g., Timoshenko and Gere 1961). If 

the lowest buckling load is of interest, the minimum eigenvalue min  from the set 1 2 3{ , , ,...}    is 

required, and it takes the value  , /2 , 2 ,  , and 1.4303  for pinned-roller supported, fixed-

free, fixed-fixed, fixed-guided, and fixed-rollered beams, respectively. From the definition 

/( )p p  = −  and the available min , the normalized buckling load p  takes the form 

2

min

2

min1
p

 

 
=

+
  (3.65) 

The buckled shape corresponding to min  can be obtained from (3.63) and the eigenvector minC . 

For the classical case (without the surface and nonlocal effects, i.e., 1, 0 = = ), the normalized 

buckling load, denoted by cp , simply takes the form 2

min

cp = . For the comparison purpose, we 

also introduce the ratio / cp p  (or / c

cr crP P  where crP , c

crP  denote the buckling loads of the present 

case and the classical case, respectively)  

2

min1

cr

c c

cr

Pp

p P



 
= =

+
  (3.66) 

3.4.2 Nonlinear Solver 

To obtain the response of fixed-free and fixed-roller supported nano-beams, the two systems of 

nonlinear algebraic equations (3.41)-(3.43) and (3.57)-(3.60) must be solved. Due to the strong 

nonlinearity of those governing equations and their fully coupled feature, their solution can be 

obtained numerically using the well-known Newton-Raphson iterative scheme (e.g., Reddy, 

2015). For a given loading history, an arc-length scheme is employed along with taking the 

solution at the previous load step as the initial guess of the current step to accelerate the 

convergence of numerical solutions.   

3.4.3 Quadrature for Involved Weakly Singular Integrals 

It is evident that integrands of all integrals contained in the governing nonlinear algebraic 

equations (3.41)-(3.43) and (3.58)-(3.63) exhibit weakly singular behavior at points where the 

bending moment vanishes, e.g., the free end of a nano-beam shown in Figure 3.1(a) and the interior 

inflection point of a nano-beam shown in Figure 3.1(b). While such embedded singularity does 
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not affect the convergence of those integrals in the sense of Riemann, it renders the numerical 

integration by standard Gaussian quadrature computationally inefficient. To overcome such 

difficulty, a standard technique based upon the integrand regularization through a variable 

transformation is employed. For brevity, the proposed procedure is demonstrated only for the 

governing equation (3.41) where the singularity exists at the right end of the beam; its application 

to other governing equations and the singularity present at other locations is also valid.  By first 

introducing the following variable transformation  

2( )  = −   (3.67) 

where   is a selected constant. The Jacobian of transformation (3.67) is given by 

1

2

1
( )

d
J

d


 

 

−= = − −   (3.68) 

By substituting (3.67) and (3.68) into (3.41), it leads to 

 

   

2
1( )

2

2 2
0 2 2

( ) ( )1
1

2 ( ) ( ) ( ) ( )

F
d

F F F F

      

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     (3.69) 

It is evident from (3.37) that the function    2 2

2 2( ) 2 ( ) ( ) ( ) ( )h F F F F       − + −  appearing in 

the square root sign of (3.69) is regular and zero at 2 =  and, by carrying out Taylor series 

expansion about 2 = , ( )h   can be represented by  

2

2 2( ) ( )( ) (( ) )h h     = − + −O     (3.70) 

Using (3.70) together with the regularity of the function ( )F  + , the integrand of the integral 

in (3.69) is of  1/2

2(( ) )  −−O . The weak singularity of such integral can be, therefore, removed by 

choosing 1 / 2 = . Once the integrand is completely regularized, the final integral can be integrated 

accurately and efficiently by standard Gaussian quadrature. 

3.5 Results and Discussion 

In this section, a selected set of numerical results obtained from the proposed technique is reported 

and also compared with existing solutions of the classical case to verify both the formulation and 

implementations. The influence of both surface stresses and nonlocal elasticity on the buckling 

load, post-buckling and bending responses for both fixed-free and fixed-rollered nano-beams is 

also discussed. In the numerical study, material parameters reported by Juntarasaid et al. (2012) 

are employed; for instance, the modulus of elasticity and Poisson’s ratio of the bulk material are 

taken as 76E GPa=  and 0.3 =  whereas the surface modulus of elasticity and the residual surface 

tension are taken as 1.22 /sE N m=  and 0.89 /s N m = , respectively. In addition, the nonlocal 

parameters suggested by Yang and Lim (2011) (i.e., 0.04  , 0 14e  ) and 0 10e a nm=  are 

employed. To investigate the size dependency of solutions, the length l , the width b , and the 

depth h  of the nano-beam are scaled from the dimensions 0 0 0, ,l b h  of a reference nano-beam by a 

proportional ratio   (i.e., 0l l= , 0b b=  and 0h h= ). In addition, four different models 

including Model-1 without the surface and nonlocal effects (i.e., 1, 0 = = ), Model-2 considering 
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only the surface effect (i.e., 0 = ), Model-3 considering only the nonlocal effect (i.e., 1 = ), and 

Model-4 considering both the surface and nonlocal effects are utilized in the simulations to clearly 

demonstrate the role of both surface stresses and nonlocal elasticity on the response of nano-beams. 

3.5.1 Modified Flexural Rigidity and Nonlocal Parameter 

It is apparent from the above formulation that the role of the surface and nonlocal effects in the 

governing equations is completely described by two parameters, one associated with the 

normalized, modified flexural rigidity   and the other corresponding to the nonlocal parameter 

. As indicated by (3.14), the normalized, modified flexural rigidity   depends not only on the 

dimensions of the cross section h , b  but also on the surface modulus of elasticity sE , the residual 

surface tension s , and the length of the beam l . The relationship between   and sE  is shown in 

Figure 3.4 for {0,0.89} /s N m = , 0 0/ {0.5,1,2}h b = , and 0 0/ {5,10,15}l h = . It can be concluded that 

increase of the surface modulus of elasticity tends to enhance the modified flexural rigidity for the 

fixed value of residual surface tension. Clearly, the modified flexural rigidity is always greater 

than the classical flexural rigidity (i.e., 1  ) for 0s =  whereas its value can be significantly 

lower than that of the classical case when the positive s  is present. In addition,   depends on 

both the aspect ratio of the cross section and the slenderness ratio of the beam for non-zero s  but 

is independent of the slenderness ratio when 0s = . In summary, increase of the surface modulus 

of elasticity tends to stiffen the nano-beam and this influence is more significant when the 

slenderness ratio of the beam becomes smaller and the aspect ratio of the cross section becomes 

larger. The relationship between   and the residual surface tension s  for 1.22 /sE N m=  is also 

shown in Figure 3.5(a). Unlike the surface modulus of elasticity, increase of the residual surface 

tension tends to soften the nano-beam and, apparently, such influence becomes more prominent 

for the beam with small slenderness ratio and large aspect ratio of the cross section. The 

relationship between the nonlocal parameter   and the length of the nano-beam is also reported 

in Figure 3.5(b) for different values of 2 2

0 0( ) ( )refe a e a=  where 0( ) 10refe a nm=  and {0.1,1,10} = . 

As evident from these results, the nonlocal parameter   decreases as the beam length increases 

and, therefore, the nonlocal effect can be neglected for a sufficiently long element. 

3.5.2 Buckling Load of Nano-beams 

While the explicit buckling formula established in the present study applies for nano-beams with 

any prescribed end conditions, results for the buckling load of two representative cases, the fixed-

free and fixed-rollered nano-beams, are presented, for brevity, to demonstrate the role of the 

surface stresses and nonlocal elasticity. In addition, the size dependent behavior of predicted 

buckling solutions is also explored.  

To investigate the size dependency of solutions for this particular case, the reference aspect 

ratio 0 0/ 1h b =  with 0 10h nm=  is employed. The normalized buckling loads for both fixed-free and 

fixed-rollered nano-beams are reported in Figure 3.6, for three different reference slenderness 

ratios 0 0/ {5,10,15}l h =  and all four models. It can be seen from these results that the predicted 

normalized buckling loads from the Model-2 and the Model-4 exhibit strong size dependence and, 

in particular, the discrepancy of solutions relative to the classical case is quite significant when the 

size of the beam is in the range of nanometers. In addition, the Model-2 and the Model-4 predict 
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lower buckling loads for both fixed-free and fixed-rollered nano-beams in comparison with that of 

the classical case. Such finding is clearly different from the conclusion of the earlier work of 

Juntarasaid et al. (2012). This is due mainly to the fact that the presence of the positive residual 

surface tension generates the compressive residual stress in the bulk material and this, as a result, 

reduces the modified flexural rigidity of the beam. Apparently, ignorance of such bulk residual 

stress cannot capture the reduction of the beam stiffness.  

The influence of the surface modulus of elasticity, the residual surface tension, and the 

nonlocal parameter is also investigated. In such numerical experiments, the reference length of the 

beam 0l , the proportional ratio  , the reference slenderness ratio 0 0/l h , the reference aspect ratio 

of the cross section 0 0/h b  are taken as 0 100 l nm= , 5 = , 0 0/ {5,10,15}l h = , 0 0/ 1h b = , respectively. 

The normalized buckling load / c

cr crP P  of the fixed-free and fixed-rollered nano-beams is reported 

as a function of the surface modulus of elasticity in Figure 3.7 for 0.89 /s N m = . It can be deduced 

from these results that the increase in the surface modulus of elasticity tends to stiffen the nano-

beams. Also, the relationship between the normalized buckling load / c

cr crP P  and the residual surface 

tension is presented in Figure 3.8 for the fixed-free and fixed-rollered nano-beams with 

1.22 /sE N m= . Unlike the influence of the surface modulus, the increase in the residual surface 

tension tends to soften the nano-beams or, equivalently, reduce the buckling load. Finally, the 

normalized buckling load / c

cr crP P  as a function of the nonlocal parameter   is reported in Figure 

3.9 for 1.22 /sE N m=  and 0.89 /s N m = . It can be concluded that as   increases, the normalized 

buckling load clearly reduces. 

3.5.3 Post-buckling of Nano-beams 

Now, let us consider the post-buckling response of the fixed-free and fixed-rollered nano-beams 

subjected only to the pure axial compression. Specifically, the transverse force Q  for the fixed-

free beam and the moment M  for the fixed-rollered beam are taken to be zero.   

Results for the tip rotation ( 2 ) of the fixed-free and fixed-rollered nano-beams under various 

values of the normalized tip load p  obtained from the Model-1 are reported in Figure 3.10. These 

results are compared with the analytical solution presented by Timoshenko and Gere (1961) for 

the fixed-free case and with those obtained by the semi-analytical technique proposed by 

Rungamornrat and Tangnovarad (2011) for the fixed-rollered nano-beam. It is apparent that the 

proposed technique yields highly accurate numerical solutions for the classical case.  

Next, results predicted by all four different models are investigated to study the influence of 

both the surface stresses and nonlocal elasticity on the post-buckling response of nano-beams. In 

the numerical study, various values of the proportional ratio   are considered while maintaining 

the reference slenderness ratio 0 0/ 10l h =  and the reference aspect ratio of the cross section 0 0/ 1h b =  

in order to demonstrate the size-dependent behavior of the solution. The normalized maximum 

longitudinal displacement of the nano-beam under two different values of the normalized 

compression tip load, i.e., {2.5,5}p =  for the fixed-free case and {20.5,21.5}p =  for the fixed-

rollered case, is reported in Figure 3.11 as a function of the proportional ratio   and for all four 

models. The post-buckling shapes are shown in Figures 3.12 and 3.13 for the fixed-free case with 

{2.5,5}p =  and {0.5,5} =  and the fixed-rollered case with {20.5,21.5}p =  and {5,15} = , 
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respectively. Results predicted by the models including the surface stresses (i.e., Model-2 and 

Model-4) significantly deviate from those of the classical case and presence of the surface effect 

considerably lowers the apparent bending stiffness of the beam if its length l  is comparable to the 

intrinsic length of the material surface /sE E = . Likewise, the role of the nonlocal elasticity 

depends primarily on the length scale of the problem relative to the parameter  ; in particular, if 

the length of the beam decreases to the nano-scale level, the effect in reducing the member stiffness 

is prominent. It is also evident from this set of results that the discrepancy between responses 

predicted by the model incorporating only the surface stresses (i.e., Model-2) and the classical 

solution is much larger than that predicted by the model considering only the nonlocal effect (i.e., 

Model-3). In addition, the Model-4 yields results nearly identical to those obtained from the 

Model-2. Similar to the fixed-free case, all models incorporating the nano-scale influence (i.e., 

Model-2, Model-3 and Model-4) exhibit strong size-dependent behavior. In particular, as the size 

of the member decreases to that comparable to the intrinsic length scale of the material surface, 

the influence of both surface stresses and nonlocal elasticity are substantial and they must be 

properly taken into account in the modeling to reasonably capture the nano-scale phenomena. 

To further demonstrate the crucial role of the surface parameters on the post-buckling 

behavior of fixed-free and fixed-rollered nano-beams, the normalized maximum longitudinal 

displacement of the beam ( max max /u u l= ) for various values of the surface modulus of elasticity and 

the residual surface tension while maintaining value of the nonlocal parameter. Simulations are 

carried out for 0 0/ 1h b = , 0 0/ {5,10,15}l h = , and 5 = , 5p =  for the fixed-free nano-beam and 

15 = , 20.5p =  for the fixed-rollered nano-beam. The normalized maximum longitudinal 

displacement is reported in Figure 3.14 as a function of the surface modulus of elasticity for a fixed 

0.89 /s N m =  and in Figure 3.15 as a function of the residual surface tension for a fixed 

1.22 /sE N m= . It can be deduced from obtained results that the increase in the surface modulus of 

elasticity tends to stiffen the nano-beams whereas increase in the residual surface tension tends to 

reverse such effect.  

To also explore the role of the dimensionless nonlocal parameter (  ) on the post-buckling 

of nano-beams, the analysis is performed for various values of   with fixed values of 

1.22 /sE N m=  and 0.89 /s N m =  whereas other parameters are taken to be the same as the 

previous simulations. Results for the normalized maximum longitudinal displacement are reported 

as a function of   in Figure 3.16. It is seen that the post-buckling displacement is strongly 

dependent on the nonlocal parameter and such influence becomes more prominent when the 

slenderness ratio of the member increases. 

3.5.4 Bending of Nano-beams 

Now, the bending response of the fixed-free and fixed-rollered nano-beams is investigated; in 

particular, the longitudinal load P  at the end of the beam is taken to be zero for both cases. To 

verify the proposed technique, solutions for the classical case (without the surface stresses and 

nonlocal effects, i.e., 1 =  and 0 = ) are obtained first and then compared with available 

benchmark solutions. Results generated by the Model-1 for the deflected shape of the fixed-free 

nano-beam under a normalized transverse load 2q =  and the fixed-rollered nano-beam under a 

normalized end moment 0 1/ 3m =  are reported in Figure 3.17 along with the reference solution 
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presented by Liu et al. (2012) and those generated by a reliable finite element software. The good 

agreement between computed results and the benchmark solutions should confirm the formulation 

and proposed solution technique.  

To investigate the influence of the surface stresses and nonlocal elasticity on the bending 

behavior of both fixed-free and fixed-rollered nano-beams, the analysis is carried out using all four 

models (i.e., Model-1, Model-2, Model-3 and Model-4) and obtained results are compared. To 

consider the size-dependent behavior of predicted solutions, various values of the proportional 

ratio   with the fixed slenderness ratio 0 0/ 10l h =  and the fixed aspect ratio of the cross section 

0 0/ 1h b =  are considered. The normalized maximum transverse displacement ( max max /v v l= ) for the 

fixed-free nano-beam under the normalized transverse load {2,4}q =  and the fixed rollered nano-

beam under the normalized end moment 0 {2,2.5}m =  is reported in Figure 3.18. The deflected 

shapes of the fixed-free nano-beam with {2,4}q =  and the fixed-rollered nano-beam with 

0 {2,2.5}m =  are also shown in Figures 3.19 and 3.20, respectively. The proportional ratio 

{0.5,5} =  with the reference length of the beam 0 100l nm=  is used in this simulation. It is seen 

that the presence of the surface stresses tends to soften the nano-beam (i.e., reduce the apparent 

bending stiffness) whereas the nonlocal elasticity shows significantly less influence on the 

deflected shape in comparison with the classical case. This, as a consequence, renders the solutions 

predicted by the Model-2 and the Model-3 significantly different but those predicted by the Model-

2 and the Model-4 only slightly different. It is obviously seen from Figure 3.18 that when the 

length of the nano-beam becomes smaller, results obtained from the Model-2, Model-3 and Model-

4 increasingly deviate from the classical solution and, when the beam length is relatively large in 

comparison with the intrinsic length  , solutions predicted by all models are nearly identical. It is 

worth emphasizing that the observed discrepancy, for a particular beam length l , is more 

pronounced when the models incorporating the surface stresses (i.e., Model-2 and Model-4) are 

utilized. Based on the characteristic of the displacements and deflected shapes observed in the 

numerical study, the reduction of the apparent bending stiffness can become substantial when the 

size of the beam decreases to a nano-scale (i.e., comparable to the intrinsic length   of the material 

surface), and this implies the necessity to incorporate the surface stresses and the nonlocal effects 

in the mathematical model to physically capture the nano-scale influence. 

To further investigate the influence of the surface modulus of elasticity and the residual 

surface tension on the bending behavior, responses of the beam for various values of sE  and s  

are obtained and compared. In the simulations, 0 100l nm= , 5 = , 0 0/ 1h b = , 0 0/ {5,10,15}l h = , 2q =  

for the fixed-free nano-beam, and 0 2.5m =  for the fixed-roller-supported nano-beam are employed. 

The relationship between the maximum transverse displacement maxv  of the fixed-free and fixed-

rollered nano-beams versus the surface modulus of elasticity sE  for 0.89 /s N m =  is shown in 

Figure 3.21. It can be deduced from this set of results that the increase in the surface modulus of 

elasticity tends to stiffen the nano-beams or, equivalently, reduce the deflection of the beam 

relative to the classical case. In addition, the maximum transverse displacement versus the residual 

surface tension s  for 1.22 /sE N m=  is reported in Figure 3.22 for both the fixed-free and fixed-

rollered nano-beams. Unlike the influence of the surface modulus of elasticity, the increase in the 

residual surface tension tends to soften the nano-beam. It is also evident from these results that 
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when the slenderness ratio of the member becomes larger, the influence of the surface effect is 

more prominent.  

To also examine the role of the nonlocal parameter   on the bending response of nano-

beams, results are obtained for various values of   while sE  and s  remain fixed (i.e., 

1.22 /sE N m=  and 0.89 /s N m = ). Similar to the previous case, 0 100l nm= , 5 = , 0 0/ 1h b = , 

0 0/ {5,10,15}l h = , 2q =  for the fixed-free nano-beam, and 0 2.5m =  for the fixed-rollered nano-

beam are employed in the simulations. Results for the normalized maximum transverse 

displacements are reported as a function of the nonlocal parameter   in Figure 3.23. As evident 

from these results, the bending response of the nano-beams exhibits strong dependence on the 

nonlocal parameter, and this influence is more significant when the slenderness ratio of the beam 

increases. 
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Figure 3.1 Schematic of (a) perfectly straight nano-beam clamped at the left end and subjected to 

longitudinal force P and transverse force Q at the right end and (b) perfectly straight nano-beam clamped 

at the left end, roller-supported at the right end and subjected to longitudinal force P and moment M  at 

the right end. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 (a) Schematic of deformed and undeformed configurations of centroidal axis of nano-beam 

and (b) free body diagram of infinitesimal deformed element. 
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Figure 3.3 Schematic of beam element treated as composite consisting of bulk material and material 

surface in unstrained state. 

 

0.00 1.00 2.00 3.00 4.00 5.00
0.98

1.00

1.02

1.04

1.06

1.08

Model-1

h
0
/b

0
=2

h
0
/b

0
=1

h
0
/b

0
=0.5



( / )sE N m

0.00 1.00 2.00 3.00 4.00 5.00
-1

0

1

2

3

4
Model-1

l
0
/h

0
=5

l
0
/h

0
=10

l
0
/h

0
=15

h
0
/b

0
=2

h
0
/b

0
=1

h
0
/b

0
=0.5

( / )sE N m  

 (a)  (b) 

Figure 3.4 Relationship between normalized flexural rigidity   and surface modulus of elasticity 
sE  for 

76E GPa= , 0.3 = , 0 10h nm= : (a) 0s =  and (b) 0.89 /s N m = . 
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Figure 3.5 (a) Relationship between normalized flexural rigidity   and the residual surface tension s  of 

nano-beam with different slenderness ratio 0 0/ {5,10,15}l h   and different aspect ratio of cross section 
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Figure 3.6 Relationship between normalized buckling load / c

cr crP P  and proportional ratio   of the nano-

beam with different slenderness ratio 0 0/ {5,10,15}l h   for 76E GPa= , 0.3 = , 1.22 /sE N m= , 

0.89 /s N m = , 0 10e a nm= , 0 0/ 1h b = , 0 10h nm= : (a) fixed-free nano-beam and (b) fixed-roller 

supported nano-beam. 
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Figure 3.7 Relationship between normalized buckling load / c

cr crP P  and surface modulus of elasticity 
sE  

with different slenderness ratio 0 0/ {5,10,15}l h   for 76E GPa= , 0.3 = , 0.89 /s N m = , 0 10e a nm= , 

0 0/ 1h b = , 0 100l nm= , 5 = : (a) fixed-free nano-beam and (b) fixed-roller supported nano-beam.  
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Figure 3.8 Relationship between normalized buckling load / c

cr crP P  and residual surface tension s  with 

different slenderness ratio 0 0/ {5,10,15}l h =  for 76E GPa= , 0.3 = , 1.22 /sE N m= , 0 10e a nm= , 

0 0/ 1h b = , 0 100l nm= , 5 = : (a) fixed-free nano-beam and (b) for fixed-roller supported nano-beam. 
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Figure 3.9 Relationship between normalized buckling load / c

cr crP P  and nonlocal parameter   with 

different slenderness ratio 0 0/ {5,10,15}l h =  for 76E GPa= , 0.3 = , 1.22 /sE N m= , 0.89 /s N m = , 

0 0/ 1h b = , 0 100l nm= , 5 = :  (a) fixed-free nano-beam and (b) fixed-roller supported nano-beam. 
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Figure 3.10 Relationship between normalized tip load p  and tip rotation 2  for (a) fixed-free beam and 

(b) fixed-roller supported beam. Obtained results are compared with the available benchmark solution.
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Figure 3.11 Relationship between proportional ratio   and normalized maximum longitudinal 

displacement maxu for 76E GPa= , 0.3 = , 1.22 /sE N m= , 0.89 /s N m = , 0 10e a nm= , 0 0/ 1h b = , 

0 0/ 10l h = , 0 100l nm= : (a) fixed-free nano-beam under normalized compression force {2.5,5}p = and 

(b) fixed-roller supported nano-beam under normalized compression force {20.5,21.5}p = . 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Model-1

Model-2

Model-3

Model-4

 = 0.5

 = 5

/x l

/y l

-0.6 -0.4 -0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

Mode-1

Mode-2

Mode-3

Mode-4

 = 0.5

 = 5

/y l

/x l
 

 (a)  (b) 

Figure 3.12 Post-buckling shape of fixed-free nano-beam for 76E GPa= , 0.3 = , 1.22 /sE N m= , 

0.89 /s N m = , 0 10e a nm= , 0 0/ 1h b = , 0 0/ 10l h = , 0 100l nm=  with two values of proportional ratio 

{0.5,5} =  and two values of normalized compression force: (a) 2.5p =  and (b) 5p = . 
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Figure 3.13 Post-buckling shape of fixed-roller supported nano-beam for 76E GPa= , 0.3 = , 

1.22 /sE N m= , 0.89 /s N m = , 0 10e a nm= , 0 0/ 1h b = , 0 0/ 10l h = , 0 100l nm=  with two values of 

proportional ratio {5,15} =  and two values of normalized compression force: (a) 20.5p =  and (b) 

21.5p = . 
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Figure 3.14 Relationship between normalized maximum longitudinal displacement maxu  and surface 

modulus of elasticity 
sE  with different slenderness ratio 0 0/ {5,10,15}l h =  for 76E GPa= , 0.3 = , 

0.89 /s N m = , 0 10e a nm= , 0 0/ 1h b = , 0 100l nm= : (a) fixed-free nano-beam with 5 = , 2.5p =  and 

(b) fixed-roller supported nano-beam with 15 = , 20.5p = . 
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Figure 3.15 Relationship between normalized maximum longitudinal displacement maxu  and residual 

surface tension s  with different slenderness ratio 0 0/ {5,10,15}l h =  for 76E GPa= , 0.3 = , 

1.22 /sE N m= , 0 10e a nm= , 0 0/ 1h b = , 0 100l nm= :  (a) fixed-free nano-beam with 5 = , 2.5p =  and 

(b) fixed-roller supported nano-beam with 15 = , 20.5p = . 
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Figure 3.16 Relationship between normalized maximum longitudinal displacement maxu  and the nonlocal 

parameter   with different slenderness ratio 0 0/ {5,10,15}l h = for 76E GPa= , 0.3 = , 1.22 /sE N m= , 

0.89 /s N m = , 0 0/ 1h b = , 0 100l nm= :  (a) fixed-free nano-beam with 5 = , 2.5p =  and (b) fixed-

roller supported nano-beam with 15 = , 20.5p = . 
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Figure 3.17 Deformed shape of nano-beams obtained from Model-1 for (a) fixed-free nano-beam 

subjected to normalized transverse force 2q =  and (b) fixed-roller supported nano-beam subjected to 

normalized end moment 0 1/ 3m = . 
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Figure 3.18 Relationship between proportional ratio   and normalized maximum transverse 

displacement maxv  for 76E GPa= , 0.3 = , 1.22 /sE N m= , 0.89 /s N m = , 0 10e a nm= , 0 0/ 1h b = , 

0 0/ 10l h = , 0 100l nm= : (a) fixed-free nano-beam under normalized end transverse load {2,4}q =  and 

(b) fixed-rolle supported nano-beam under normalized end moment 0 {2,2.5}m = . 
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Figure 3.19 Deformed shape of fixed-free nano-beam for 76E GPa= , 0.3 = , 1.22 /sE N m= , 

0.89 /s N m = , 0 10e a nm= , 0 0/ 1h b = , 0 0/ 10l h = , 0 100l nm=  with two values of proportional ratio 

{0.5,5} =  and two values of normalized end transverse force (a) 2q =  and (b) 4q = . 
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Figure 3.20 Deformed shape of fixed-roller supported nano-beam for 76E GPa= , 0.3 = , 

1.22 /sE N m= , 0.89 /s N m = , 0 10e a nm= , 0 0/ 1h b = , 0 0/ 10l h = , 0 100l nm=  with two values of 

proportional ratio {0.5,5} =  and two values of normalized end moment (a) 0 2m =  and (b) 0 2.5m = . 



71 

 

0.00 1.00 2.00 3.00 4.00 5.00
0.44

0.46

0.48

0.50

0.52

0.54

0.56

Model-1

l
0
/h

0
=5

l
0
/h

0
=10

l
0
/h

0
=15

maxv

( / )sE N m

0.00 1.00 2.00 3.00 4.00 5.00
-0.065

-0.060

-0.055

-0.050

-0.045

-0.040

Model-1

l
0
/h

0
=5

l
0
/h

0
=10

l
0
/h

0
=15

maxv

( / )sE N m  

 (a) (b) 

Figure 3.21 Relationship between normalized maximum transverse displacement maxv  and surface 

modulus of elasticity 
sE  with different slenderness ratio 0 0/ {5,10,15}l h =  for 76E GPa= , 0.3 = , 

0.89 /s N m = , 0 10e a nm= , 0 0/ 1h b = , 0 100l nm= , 5 = : (a) fixed-free nano-beam with 2q =  and 

(b) fixed-roller supported nano-beam with 0 2.5m = . 
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Figure 3.22 Relationship between normalized maximum transverse displacement maxv  and residual 

surface tension s  with different slenderness ratio 0 0/ {5,10,15}l h =  for 76E GPa= , 0.3 = , 

1.22 /sE N m= , 0 10e a nm= , 0 0/ 1h b = , 0 100l nm= , 5 = : (a) fixed-free nano-beam with 2q =  and 

(b) fixed-roller supported nano-beam with 0 2.5m = . 
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CHAPTER IV  

MODELING OF NANO-CRACKS 

This chapter presents the modeling and analysis of nano-size cracks in an elastic whole space with 

the consideration of surface effects via Gurtin-Murdoch surface elasticity theory. The chapter is 

organized into two parts, the first part associated with the treatment of a penny-shaped crack under 

axisymmetric loading on its surface and the second part corresponding to the development of an 

efficient numerical technique capable of handling non-planar cracks of arbitrary shapes and 

subjected to general loading conditions. For each part, the background and review indicating the 

current advances in the area is briefly summarized, then the problem formulation and solution 

procedure are clearly presented, and finally results and crucial findings are addressed. 

4.1 Penny-shaped Crack 

In this section, a penny-shaped crack in an infinite elastic medium subjected to vertical pressure 

loading at the crack surface under the influence of surface stress is considered. The Gurtin-

Murdoch continuum theory of elastic material surfaces is adopted and the Hankel integral 

transform is employed to solve this axisymmetric boundary-value problem. A set of simultaneous 

dual integral equations is solved by employing an appropriate numerical solution scheme. Selected 

numerical results are presented to portray the influence of the surface stress on the elastic field.  

4.1.1 Background and Review 

In recent years, studies on mechanics of nanomaterials and nanostructures have become 

increasingly important in various advanced engineering applications. In nano-scale structures, the 

influence of excess energy associated with the surface/interface atoms, called surface/interfacial 

free energy, is significant due to their high surface-to-volume ratio (e.g., see Yakobson, 2003; 

Huang and Wang, 2006). As a result, their mechanical behavior becomes size-dependent (Wong 

et al., 1997). Atomistic simulations are powerful techniques to accurately analyze problems related 

to nano-scale systems however they require a very large computational effort. Thus studying 

problems at the nano-scale based on the modified continuum mechanics concepts accounting for 

surface energy effects is an attractive option to obtain first-approximations for this class of 

problems. 

A rigorous theory based on the continuum mechanics concepts was developed to incorporate 

the surface and interfacial energy effects by Gurtin and Murdoch (1975; 1978). The surface is 

modeled as a zero thickness layer perfectly bonded to the underlying bulk material. Miller and 

Shenoy (2000) examined the size effects of nano-scale plates and bars by employing the Gurtin-

Murdoch continuum model and found that the results were in excellent agreement with those 

obtained from atomistic simulations. Several researchers analyzed nano-scale mechanics problems 

based on the Gurtin-Murdoch theory and neglected the out-of-plane components of surface stress 

(e.g. Tian and Rajapakse 2007; Zhao 2009; Zhao and Rajapakse 2009; Intarit et al. 2010; Zhao and 

Rajapakse 2013; Rahman and Mahmoud 2016). Later, Wang et al. (2010) showed that the out-of-

plane components of surface stress could be significant even in the case of small deformations 

particularly for curved and rotated surfaces. Intarit et al. (2011) considered the complete set of 

surface stresses in the analysis of a two-dimensional elastic layer under buried loading and found 
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that the elastic field depends significantly on the surface elastic constants and residual surface 

stress. The complete version of the Gurtin-Murdoch model was also employed to study problems 

of an elastic layer under axisymmetric surface loading (Rungamornrat et al., 2016) and rigid 

frictionless indentation on an elastic half-space (Pinyochotiwong et al., 2013). In addition, 

influence of surface stress is also important in problems involving soft elastic solids (He and Lim, 

2006). 

Fracture mechanics, which is concerned with the mechanical behavior of materials in the 

presence of cracks, has important practical applications. The study of cracks in devices and 

structures encountered in engineering applications is essential for both reliability and safety. 

Several crack problems were studied in the context of classical continuum theory in the presence 

of crack surface tension. Wu (1999), and Wu and Wang (2000, 2001) investigated the influence of 

surface tension on cracks and proposed that surface tension induced a pair of point loads at the 

crack tip. With the assumption of a blunt crack-tip, Wang et al. (2008) and Fu et al. (2008) found 

that surface stress has a significant influence on stresses and displacements in the vicinity of crack 

tip, especially when the curvature of the crack tip is in the nano-scale. The solutions of Mode-I, II 

and III cracks were derived with the consideration of surface stresses by assuming that the crack 

tip stresses are finite by Kim et al. (2010a, 2011b). The above studies dealt exclusively with plane 

crack (2-D) problems whereas it is useful to examine more practical crack geometries such as 

penny-shaped cracks. The classical penny-shaped crack problem has been extensively studied (e.g. 

Sneddon 1946; Florence and Goodier 1963; He and Hutchinson 1981; Fabrikant 1986) but studies 

related to its counterpart with surface elasticity based on the Gurtin-Murdoch theory are very 

limited. Recently, a numerical procedure based on the coupling of the standard finite element 

technique and the boundary integral equation method was proposed by Nguyen et al. (2015) to 

investigate nano-sized penny-shaped cracks in an infinite elastic medium under mode-I loading. 

However, their formulation accounts only for the residual surface tension and ignores the influence 

of the surface Lamé constants. A review of literature indicates that an analytical solution for the 

penny-shaped crack problem with the complete version of the Gurtin-Murdoch theory has not yet 

been reported. 

4.1.2 Governing Equations and General Solutions 

Consider a penny-shaped crack with radius a in an infinite elastic medium and subjected to 

axisymmetric vertical loading p(r) as shown in Figure 4.1. In the present study, a sharp-crack-tip 

model is applied and, as a result, the crack geometry can be fully described by two geometrically 

identical, flat, circular surfaces on the plane z = 0. The elastic medium is governed by the Gurtin-

Murdoch continuum theory (Gurtin and Murdoch 1975, 1978). In the absence of body forces, the 

equilibrium equations, constitutive laws and strain-displacement relations of an isotropic bulk 

material are given by 

, 0ij j =    (4.1) 

2ij ij ij kk   = +    (4.2) 

( ), ,

1
=

2
ij i j j iu u +    (4.3) 
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where ui, σij and εij denote respectively the components of displacement, stress and strain tensors; 

and  μ and λ are Lamé constants of the bulk material.  

On the crack surface, the equilibrium equation, constitutive laws and strain-displacement 

relations can be expressed as (Gurtin and Murdoch 1975, 1978): 

, 0s

i ij jn  + =    (4.4) 

( ) ( ) ,2s s s s s s s su                = + − + + +    (4.5) 

( ), ,

1
=

2

s s su u     +    (4.6) 

where the superscript ‘s’ is used to denote the quantities corresponding to the surface; μs and λs are 

surface Lamé constants; τs is the residual surface stress (or surface tension) under unstrained 

conditions; ni denotes the components of unit normal vector of the surface; and Greek subscripts 

take the value of 1 or 2, while the Latin subscripts vary from 1 to 3. 

Due to the symmetry of the system shown in Figure 4.1 about the z-axis, a cylindrical 

coordinate system (r,θ,z) is used in the formulation, and the elastic field is independent of q, i.e. 

uθ = 0 and σrθ = σzθ = 0. The general solutions for the bulk stresses and displacements can be 

expressed by using Hankel integral transforms as (Sneddon, 1951),  

( ) ( )
( )

( )
3

2 2

0 13

0 0

2
2

rr

d d d
J r d J r d

dz dz r dz

 
          

 
+ 

= + + −
 
 
 

     (4.7) 

( )
( )

( )
3

2 2

0 13

0 0

2d d d
J r d J r d

dz dz r dz


 
        

 
+ 

= − +
 
 
 

     (4.8) 
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 
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


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 
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where,  

Φ( , ) ( )
z

z A Bz e



−

= +    (4.13) 

Note that Jn(ξ) denotes the Bessel functions of the first kind of order n. In addition, A and B are 

arbitrary functions to be determined from the boundary conditions. 
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4.1.3 Solution of Boundary Value Problem 

Due to the symmetry about z-axis and the assumption that surface tension is constant, the boundary 

conditions on the crack surface (z = 0) can be expressed as, 

( )
2

2

1s z z
zz

d u du
p r

dr r dr
 

 
+ + = − 

 
  when 0 < r < a (4.14) 

0zu =                                             when a < r < ∞ (4.15) 

2

2 2

1
0s r r r

rz

d u du u

dr r dr r
 

 
+ + − = 

 
  when 0 < r < a (4.16) 

0rz =                                           when a < r < ∞ (4.17) 

where κ s = 2μs+λs is a surface material constant. It is worth noting that the boundary conditions 

(4.14) and (4.16) are only applicable to flat crack surfaces located on the plane z = 0 (resulting 

directly from the sharp-crack-tip assumption). The treatment of crack-face conditions associated 

with non-flat crack surfaces resulting from other crack models (e.g., a blunt crack model) is not 

considered in the present study.     

By substituting stresses and displacements from Eqs. (4.7) – (4.12) into Eqs. (4.14) - (4.17), 

the boundary conditions can be expressed to a set of simultaneous dual integral equations as 

( ) ( ) ( ) ( )
2

0
1

iij j i

j

c f J r d h r   


=

=       when 0 < r  < 1 (4.18) 
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=
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where i = 1, 2; î = ξa;  r = r/a; 
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Eqs. (4.18) and (4.19) can then be reduced to, 
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2

0
1

iij j i

j
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
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0
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. To solve 

Eqs. (4.20) and (4.21), ψj is defined as (Erdogan and Bahar, 1964),   

( ) ( )1

2
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j

j jj jm m

m

J

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

−

+ +

=

=         (4.22) 

Eq. (4.21) will be automatically satisfied due to the following properties of Sonine-Schafheitlin 

integrals (Magnus and Oberhettinger, 1954). 

( ) ( )1

2
0

0j

j j jmJ r J d


     
 −

+ + =     when r > 1, 2(νj+m+1) > 0 and βj > 0   (4.23) 

Eq. (4.20) can then be written as  
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where φjm are the unknown coefficients to be determined. Multiplying both sides of Eq. (4.24) by
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1 2 21 ,1 ,
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k i i ir r r
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−
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−  + + , k = 0,1,2,…,m and then integrating with respect to r from 0 to 

1 yields (Tranter, 1951), 
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the following Jacobi polynomial, which is defined in terms of hypergeometric series (Magnus and 

Oberhettinger, 1954) as, 

( ) ( )2 1, , , ; ;n x F n n x    = − +        (4.26) 

and 2F1(a,b;c;x) is the hypergeometric function. 

The coefficients φjm can be obtained by solving Eq. (4.25). Note that the unspecified constant, 

βj, in Eq. (4.25) must be positive to make the integral appearing in Eq. (4.25) to converge. Finally, 

the arbitrary functions A and B can be expressed as: 
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4.1.4 Numerical Results and Discussion 

In this section, selected numerical results are presented to portray the influence of surface energy 

effects on the elastic field. The solutions for stresses and displacements can be obtained from Eqs. 

(4.7)-( 4.12) with the arbitrary functions, A and B, given by Eqs. (4.27) and (4.28). In this study, 

the semi-infinite integrals in Eqs. (4.7)-( 4.12) are evaluated by using a globally adaptive numerical 

quadrature scheme based on 21-point Gauss-Kronrod rule (Piessens et al., 1983). The surface 

elastic constants can be obtained from atomistic simulations (Miller and Shenoy 2000; Shenoy 

2005; Dingreville and Qu 2007). In particular, Si [100] is chosen, in the numerical study, as a 

representative material with the bulk and surface properties λ/μ = 1.94, μ = 40.2262 GPa, λs = 

4.4939 N/m, μS = 2.7779 N/m and τs = 0.6506 N/m (Miller and Shenoy, 2000). In addition, 

following non-dimensional quantities, r0 = r/Λ0, z0 = z/Λ0 and a0 = a/Λ0 where Λ0 = κs/μ is a 

reference length-scale parameter defined in terms of κs and μ of Si [100]. The numerical results in 

the present study correspond to the case of a penny-shaped crack in an infinite elastic medium 

subjected to a uniformly distributed vertical load, p0, applied on the crack surface (i.e. p(r) = p0 in 

Figure 4.1). 

The arbitrary functions A and B, given by Eqs. (4.27) and (4.28), are expressed as the 

combination of ψ1 and ψ2, which are given in terms of infinite series as shown in Eq. (4.22). The 

convergence and accuracy of the present solution are first verified by plotting vertical stress in the 

vicinity of the crack tip to determine the appropriate number of terms, m, used in the series 

expansion defined in Eq. (4.22). Figure 4.2 shows a comparison of non-dimensional vertical stress 

in the vicinity of crack obtained from the present scheme with no surface stress effects (i.e. κs = τs 

= 0) for different m values with the classical solution given by Fabrikant (Fabrikant, 1989). It is 

seen that accurate results are obtained from the present solution scheme for m ≥ 60. In Figure 4.3, 

the present solutions for vertical stress and crack opening displacement are compared with the 

classical solutions provided by Fabrikant (Fabrikant, 1989) and the numerical solutions given by 

Nguyen et al. (2015), which ignore the surface Lamé constants (i.e. κs = 0), to confirm the high 

accuracy of the present solution scheme. 

Figures 4.4 and 4.5 show the influence of surface energy effects on elastic field in the vicinity 

of crack. A non-dimensional crack radius of a0 = 1.0 is considered in the numerical study. 

Variations of non-dimensional vertical stresses and non-dimensional crack opening displacement 

along the r-direction are shown in Figures 4.4 and 4.5 for different values of surface residual stress 

(τs) and surface material constant (κs) respectively. Note that the broken lines in Figure 4.4 denote 

the classical elasticity solution (Fabrikant, 1989) and, during the variation of either τs or κs, all 

other material parameters associated with Si [100] remain unchanged. 

The solutions for non-dimensional vertical stress close to the crack tip given in Figures 4.4(a) 

and 4.5(a) show the effects of surface residual stress and surface elastic constants respectively. 

Surface residual stress has a major influence on the crack tip vertical stress field whereas the 

influence of surface elastic constants is negligible. Note that the difference observed in Figure 

4.5(a) between the classical elasticity solution and the present solution is primarily due to the effect 

of surface residual stress. It is observed that the presence of surface stress results in a substantial 

reduction of the crack tip vertical stress. Similar behavior was also observed in the 2-D crack 

solution by Kim et al. (2011), in which the assumption of finite stress at crack tip is considered. 

The present solutions in Figures 4.4 and 4.5 also indicate that the order of singularity of stress is 

lower than the square root singularity corresponding to the classical solutions. This finding is 
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consistent with that pointed out by several investigators (e.g., Sendova and Walton 2010; Walton 

2012; Kim and Ru 2013; Walton 2014; Ferguson et al. 2015), in particular, the stress singularity 

along the crack front reduces from the square-root to logarithmic singularity when the surface 

stresses are accounted for in the mathematical model. The crack opening displacement solutions 

presented in Figures 4.4(b) and 4.5(b) indicates that the magnitude of crack opening displacement 

is substantially reduced due to the presence of surface stress. This is physically realistic as a 

stretched (tensioned) crack face would be stiffer similar to a cable under tension. Here again, the 

surface elastic constants show almost negligible influence on the crack opening displacement.  

In Figure 4.6, a set of numerical results are shown to demonstrate the size-dependent 

behavior of the present solution when the influence of surface energy effects (surface stress and 

surface elastic constants) is included. Solutions are presented for the radial variation of crack tip 

vertical stress and crack opening displacement across the crack surface for Si [100]. The 

corresponding non-dimensional solution for the classical elasticity case is also shown, and it is 

size-independent. It is found that as the crack size increases the current solution accounting for 

surface energy effects moves toward the classical solution. This is physically realistic as a stretched 

larger crack would show increasing crack opening displacements. The results show that a smaller 

crack has a lower crack tip stress and crack opening displacement. 

The influence of surface residual stress and crack radius respectively on non-dimensional 

vertical stress at the vicinity of crack tip, i.e. at r/a = 1.01, and non-dimensional crack opening 

displacements at the center of crack are presented in Figures 4.7 and 4.8. The corresponding 

solutions for the classical elasticity case are also shown in both figures. It is evident from Figure 

4.7 that the residual surface stress (τs) displays strong influence on the crack tip stress and the 

central crack opening displacement. The stress and displacement both rapidly decrease, from their 

classical elasticity counterparts, with increasing the surface residual stress before approaching their 

limiting values. The size-dependent behavior due to the presence of surface stress effects can be 

clearly observed in Figure 4.8. Both crack tip stress and central crack opening displacement 

obtained from the current model accounting for surface stress effects depend significantly on the 

crack size (a0) for relatively small values of a0. Such size-dependency gradually vanishes as a0 

increases, and both stress and displacement converge to the corresponding classical solutions, 

which are shown as the broken lines in Figure 4.8. 

 

 



80 

 

 

 

Figure 4.1 Penny-shaped crack in infinite elastic medium under vertical loading 

 

 

Figure 4.2 Convergence of vertical stress solution in the vicinity of crack tip 
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Figure 4.3 Comparison with existing solutions: (a) Vertical stress; (b) Crack opening displacement. 
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Figure 4.4 Variation of elastic field for different magnitudes of surface residual stress (τs): (a) Vertical 

stress; (b) Crack opening displacement. 

(a) 

(b) 

 (Fabrikant, 1989) 

 (Fabrikant, 1989) 
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Figure 4.5 Variation of elastic fields for different magnitudes of surface material constant (κs): (a) 
Vertical stress; (b) Crack opening displacement. 

(a) 

(b) 

 (Fabrikant, 1989) 

 (Fabrikant, 1989) 
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Figure 4.6 Variation of elastic fields for different crack sizes (a0): (a) Vertical stress; (b) Crack 

opening displacement.

(a) 

(b) 

 
(Fabrikant, 1989) 

 
(Fabrikant, 1989) 
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Figure 4.7 Non-dimensional elastic fields under vertical loading against residual surface stresses (τs) for 

difference crack sizes (a0): (a) Vertical stresses in the vicinity of crack tip; (b) Crack opening 

displacements at the center of crack. 

(a) 

(b) 

 (Fabrikant, 1989) 

 (Fabrikant, 1989) 
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Figure 4.8 Size-dependency of non-dimensional (a) crack tip stress at r/a = 1.01; and (b) central crack 

opening displacement for different magnitudes of surface residual stress (τs).  

(a) 

(b) 

 (Fabrikant, 1989) 

 (Fabrikant, 1989) 
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4.2 Non-planar Cracks 

This section presents an efficient and accurate numerical technique for the analysis of non-planar, 

nano-sized cracks in three-dimensional, linearly elastic, infinite media. The continuum theory of 

linear elasticity together with Gurtin–Murdoch surface elasticity theory is employed to form a 

mathematical model capable of simulating non-planar cracks with the influence of surface stresses. 

The governing equation for the bulk medium is established in terms of weakly singular boundary 

integral equations containing only unknowns on the crack surface whereas that governing the 

curved material surfaces attached to the crack is formulated in a weak-form using the weighted 

residual technique and tangential derivative operators. A fully coupled system of governing 

equations is then solved numerically via a coupling between the weakly singular, boundary integral 

equation method and the standard finite element procedure. A numerical study is performed for 

certain scenarios and preliminary results are compared with existing benchmark cases to not only 

verify the implemented scheme but also demonstrate its computational efficiency and robustness. 

In addition, the role and influence of surface parameters such as the surface elastic constants and 

residual surface tensions on the behavior of predicted solutions are fully investigated and 

significant findings are reported. 

4.2.1 Background and Review 

The Gurtin-Murdoch surface elasticity model has also been employed in the modeling of nanosized 

cracks; however, based-on an extensive literature survey, most of existing studies were still 

restricted to problems of relatively simple settings, simplified formulations and limited-capability 

solution techniques. For instance, investigations of nanosized cracks under various loading 

conditions using either the two-dimensional, blunt-crack models (e.g., Wang et al., 2007; Fu et al., 

2008, 2010; Fang et al., 2009; Wang and Li, 2013) and two-dimensional, classical sharp-crack 

models (e.g., Kim et al., 2010b, 2011a, 2011b; Nan and Wang, 2012, 2013, 2014; Walton, 2012, 

2014; Ferguson et al., 2015) can be found. In those investigations, analytical, semi-analytical or 

numerical techniques were proposed to solve the associated boundary value problem. It should be 

noted that while the use of two-dimensional models in the simulation significantly reduces both 

theoretical and computational efforts, it, at the same time, poses several major drawbacks including 

the loss of information in the out-of-plane direction and the limited capability to treat cracks with 

general geometry and loading conditions. Recently, Intarit et al. (2012) and Intarit (2013) 

successfully established an analytical technique based on Love’s strain potential and the Hankel 

integral transform to examine the influence of surface stresses, via the Gurtin-Murdoch model, on 

the near-front field of nanosized cracks in three-dimensional elastic media. Nevertheless, due to 

the key limitation of their solution technique, only a penny-shaped crack under axisymmetric loads 

can be considered. In practical situations, problems of nanosized cracks can be very complex in 

terms of geometries, loading conditions, and influences to be treated (e.g., the surface free energy 

and residual surface tension). As a result, the development of a fully three-dimensional model 

together with efficient and powerful numerical procedures to enhance the capability of existing 

techniques is essential and still requires rigorous investigations. Recently, Nguyen et al. (2015) 

proposed a computational procedure based on the coupling of the standard finite element technique 

and the boundary integral equation method to model nanosized planar cracks in an infinite elastic 

medium. While their technique is applicable to planar cracks of arbitrary shapes, the formulation 

is still restricted to a limited version of Gurtin-Murdoch model accounting only the residual surface 

tension and the implementation was carried out within the context of pure mode-I loading 
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conditions. The contribution of the in-plane surface elasticity and the mixed-mode condition to the 

elastic near-front field was fully disregarded. Later, Nguyen et al. (2016) extended the work of 

Nguyen et al. (2015) to model three-dimensional nano-sized, planar cracks in an infinite elastic 

medium. While their technique is applicable to treat the full version of Gurtin–Murdoch model for 

arbitrary shapes and mechanical loading conditions, the formulation was still derived specifically 

for planar crack surfaces. The treatment of arbitrary, non-planar cracks is still required further 

investigations. 

4.2.2 Problem Description 

Consider a three-dimensional infinite elastic medium   containing an isolated, arbitrary-shape, 

non-planar crack as illustrated in Figure 4.9(a). Both the crack surfaces are represented by two 

geometrically identical non-planar smooth surfaces 
CS+  and 

CS−  with the corresponding outward 

unit normal +
n  and −

n , respectively. The medium   is considered free of the body force and 

remote loading but subjected to prescribed arbitrary tractions on the crack surfaces 
CS+  and 

CS− , 

which are denoted by 
0

+
t  and 

0

−
t , respectively (see Figure 4.9(b)). An infinitesimally thin material 

layer on each crack surface possesses a constant residual surface tension S  and surface elastic 

constants S  and S , whereas the bulk cracked medium is made of a homogeneous, isotropic, 

linear elastic material with the shear modulus   and Poisson’s ratio  . The problem statement is 

to determine the complete elastic field within the bulk cracked medium by taking the influence of 

surface stresses on both material layers into account. Fracture-related information such as the 

relative crack-face displacement and local stress field in the vicinity of the crack front is also of 

primary interest. 

4.2.3 Problem Formulation and Solution Technique 

In the formulation of the boundary value problem, the whole medium is decomposed into three 

parts: the bulk cracked medium (see Figure 4.9(c)), the zero-thickness material layer 
CS+  and the 

zero-thickness material layer 
CS−  (see Figure 4.9(d)). The bulk cracked medium is simply the 

whole medium without the two infinitesimally thin material layers lying on the crack surfaces. 

Since both material layers possess zero thickness, the geometry of the bulk cracked medium is 

clearly identical to that of the whole cracked medium. The key difference between the bulk cracked 

medium and the original cracked medium is that the formed is homogeneous and the non-planar 

crack surfaces 
CS+  and 

CS−  in the bulk cracked medium are subjected to unknown tractions (exerted 

directly by the two material layers) 
b

+
t  and 

b

−
t , respectively. The material layer 

CS+  is treated as a 

two-sided surface with one side subjected to the prescribed general traction 
0

+
t  and the other side 

subjected to the unknown traction 
s

+
t exerted by the bulk cracked medium (see Figure 4.9(d)). 

Similarly, the material layer 
CS−  is treated as a two-sided surface with one side subjected to the 

prescribed general traction 
0

−
t  and the other side subjected to the unknown traction 

s

−
t  exerted by 

the bulk cracked medium (see Figure 4.9(d)). Mechanical responses of the bulk medium are 

governed by a classical theory of linear elasticity and the final governing equations are formulated 

in terms of a pair of weakly singular, weak-form boundary integral equations for the displacement 

and traction (e.g., Li and Mear 1998; Rungamornrat and Mear 2008). For the two non-planar 

material layers, their behavior is modeled by the full version of Gurtin–Murdoch surface elasticity 

theory (Gurtin and Murdoch 1975; Gurtin and Murdoch 1978; Murdoch 2005) and the standard 
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weighted residual technique is adopted to derive the governing weak-form equations (see details 

in the work of Nguyen et al. 2015 and Nguyen et al. 2016). The two systems of governing equations 

are then coupled by enforcing the continuity of the displacement and traction across the interface 

of the bulk cracked medium and the two non-planar material layers. The final system governing 

equations for the infinite medium containing the non-planar crack with the consideration of surface 

stress effects is given by 

 

1
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( , )   ( , )   ( , ) 0

                      ( , )   ( , ) ( )

s s s    

     

    

+ =

+ + =

+ =

u u u t u

t u t t t u

t u u u u

A B R

B C D

D E R

 (4.29) 
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and the linear integral operators 1 2{ , }R R  are defined, in terms of the prescribed data 
0


t  and 

0


t , by  

1 0

1
( ) ( ) ( ) ( ) 2 ( ) ( ) ( )
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S S
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where S  denotes the surface gradient; SD  is the tangential derivative;   is the initial mean 

curvature of the non-planar crack surface; I  is the inclusion map which is defined by 
T=I P  with 

= − P 1 n n , 1  denoting the identity matrix, and   denoting the exterior product; ν  is a vector 

contained in the crack surface and normal to the crack front; and all other remaining notations are 

the same as those defined in the work of Nguyen et al. (2016). To determine numerical solutions 

of the resulting fully coupled system (4.29), the BIEM-FEM coupling technique is utilized as 

follows. The weakly singular BIEM is employed to discretize the boundary integral equations for 

the bulk cracked medium (see details in Rungamornrat and Mear, 2008). The standard Galerkin 

FEM is utilized to discretize the weak-form equations for the two non-planar material layers; the 

treatment is similar to that employed in the analysis of a curved membrane (see details in Hansbo 

and Larson, 2014; Hansbo et al., 2015). 

4.2.4 Preliminary Results and Discussion 

To verify the present formulation and numerical implementations of the proposed solution scheme, 

a representative problem associated with an isolated, planar crack is considered and computed 

results are then compared with the benchmark solutions generated by a technique proposed by 

Nguyen et al. (2016). Consider a penny-shaped crack of radius a embedded in an isotropic, linear 

elastic unbounded media as shown schematically in Figure 4.10(a). The cracked medium is 

subjected to a uniformly distributed, self-equilibrated, normal traction 
3 3 0t t + −= − =  at the crack 

surface (see Figure 4.10(b)). In the numerical study, properties of the bulk cracked medium and 

the material layers are chosen identical to those utilized by Nguyen et al. (2016) (i.e., 107E GPa=

, 0.33 = ; 4.4939 / ,S N m =  2.7779 /S N m = , and 0.6056 / )S N m = . Three meshes of the crack 

surface used in the analysis are presented in Figure 4.10(d) where meshes 1, 2 and 3 contain 20 

elements and 77 nodes, 88 elements and 297 nodes, 216 elements and 665 nodes, respectively. 

This problem has been previously solved by Nguyen et al. (2016) using the FEM-SGBEM 

coupling technique and their results are used as the reference solutions to validate the current 

proposed technique in the particular case involving planar cracks. 

The normalized crack opening displacements (CODs) and the normalized vertical stresses 

near the crack front, when the influence of surface stresses is considered, are reported in Figure 

4.11 along with the benchmark numerical solution generated by FEM-SGBEM coupling technique 

proposed by Nguyen et al. (2016) and the exact solution for the classical case given by Tada et al. 

(2000) and Kachanov et al. (2003). It is seen that numerical results obtained from the proposed 

BIEM-FEM coupling technique are slightly mesh dependent, highly accurate, and almost 

indistinguishable from the reference solutions for both the crack opening displacement and the 

near-front vertical stresses 33 . It can also be demonstrated from the results shown in Figure 4.11 

that the model incorporating the surface stresses yield results significantly different from those 

predicted by the classical theory. The medium tends to be much stiffer than the classical case, 

when the influence of surface stresses is taken into account. Let us consider, next, the same circular 

crack subjected to the self-equilibrated, uniformly distributed, shear traction 
1 1 0
t t 

+ −
= − =  as 

illustrated in Figure 4.10(c). The same material properties and meshes as those considered in the 

previous case are used in the analysis. Results for the crack sliding displacements (CSDs) and the 

stresses in the vicinity of the crack front along the x1-direction (the direction of the applied shear 

traction) are reported in Figure 4.12. It is seen that numerical solutions exhibit very good 

convergence and excellent agreement with both the reference solution generated by Nguyen et al. 

file:///G:/report/EASEC-15_Full_Paper%20(ver.%2020170531).doc%23_ENREF_41
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(2016) and the exact solution given by Kachanov et al. (2003) for the classical case. It can be seen 

from results in Figure 4.12(a) that the surface stresses significantly influence the CSDs. It can also 

be argued from Figure 4.12(b) that the shear stress 13  in the vicinity of the crack front is strongly 

influenced by the surface stresses. The magnitude of the predicted stresses near the crack front 

reduces considerably from the classical solution when the surface stresses are present. 
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Figure 4.9 Schematics of (a) non-planar crack embedded in three-dimensional, linear elastic, infinite 

medium, (b) prescribed general tractions on crack surfaces, (c) bulk cracked medium, (d) zero-thickness 

layers 
CS+  and 

CS− . 
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Figure 4.10 (a) Schematic of circular crack of radius a embedded in linear elastic unbounded media; (b) 

crack surface subjected to uniform normal traction 
3 3 0

t t 
+ −

= − = ; (c) crack surface subjected to uniform 

shear traction 
1 1 0
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+ −
= − = ; and (d) meshes adopted in analysis. 
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Figure 4.12 Results for (a) normalized crack sliding displacements and (b) normalized near-tip shear 
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CHAPTER V  

NANO-INDENTATION 

This chapter presents the analysis of axisymmetric indentation with consideration of surface 

energy effects under frictionless and adhesive contacts by adopting a complete Gurtin-Murdoch 

continuum model theory of surface elasticity. The indentation problem with arbitrary 

axisymmetric profiles is formulated by employing the displacement Green’s functions, derived 

with the aid of Hankel integral transform technique. The unknow contact pressure distribution 

under an indenter of axisymmetric profiles is determined by using Green’s functions, which are 

defined by the solutions of surface displacements of an elastic medium. The accuracy of the 

proposed solution scheme is verified by comparing with existing solutions. Selected numerical 

results are presented to portray the influence of surface stresses on elastic fields of an elastic layer 

and a layered elastic half-space under nano-indentation. 

5.1 Background and Review 

Indentation techniques have been widely used in practice to obtain the mechanical properties such 

as hardness and elastic modulus. For example, Doerner and Nix (1986); and Oliver and Pharr 

(1992) determined plastic and elastic properties of thin films by using depth-sensing indentation, 

in which Young’s modulus can be calculated from the slope of the linear portion of the unloading 

curve while hardness can be obtained from the load-displacement data. In the past, several 

researchers presented elastic solutions of indentation problems by employing continuum 

mechanics models. The classical solution of axisymmetric contact problem of an elastic half-space 

is obtained by Boussinesq (1885). Harding and Sneddon (1945); and (Sneddon, 1965) established 

a solution of the axisymmetric Boussinesq problem, which enabled them to deduce simple 

formulas giving the penetration of a punch of arbitrary profile by using Hankel integral transform 

techniques. The indentation problem related to flat-ended rigid cylindrical punch for an elastic 

layer perfectly bonded to a rigid base was considered by Lebedev and Ufliand (1958). Dhaliwal 

and Rau (1970; 1972) presented axisymmetric rigid indentation on elastic layer lying over an 

elastic foundation under a rigid punch of arbitrary profiles. Chen and Engel (1972) analyzed rigid 

indentation on one and two elastic layers bonded to a homogeneous half-space. In addition, Yang 

(2003) investigated the effect of thickness for an elastic thin film on a rigid base under a rigid flat-

ended cylindrical indenter. In his paper, the frictionless condition on both contact interfaces, i.e. 

between the indenter and the film, and between the film and the rigid base, is assumed. 

The above solutions to indentation problem were obtained based on the assumption of 

frictionless contact surface. If the coefficient of friction between a rigid indenter and an elastic 

medium is large enough, the indenter is prevented from any sliding on the contact area. This 

condition is known as an adhesive contact problem, and it is mathematically more complicated 

than the case of frictionless contact. For the indentation with adhesive contact, the top surface of 

elastic medium is decomposed into a surface outside the contact region on which both normal and 

shear stresses are identically zero, and a surface inside the contact region on which the normal 

displacement is prescribed in terms of the indentation depth and the radial displacement is zero at 

every point of the contact region. The analysis of indentation with adhesive contact was first 

performed incrementally for a growth in the contact radius (Goodman, 1962; Mossakovskii, 1954, 
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1963). Spence (1968a, b) introduced a self-similarity approach for a flat-ended cylinder and a 

parabolic punch, corrected  some misprints in the Mossakovskii examples (Mossakovskii, 1963), 

and also presented the solution for a conical punch. By adopting Mossakovskii approach, Borodich 

and Keer (2004) obtained the exact solution to the axisymmetric adhesive elastic contact problem 

for punches whose shapes are described by monomial functions. A detailed and comprehensive 

analysis of the literature related to the adhesive contact problems is given by Galin and Gladwell 

(2008); and Borodich (2014). Recently, Selvadurai and Katebi (2015) examined the axisymmetric 

adhesive contact problem between a rigid circular plate and an incompressible elastic half-space 

where the shear modulus of the elastic material varies exponentially with depth. 

Nowadays, nanoindentation is employed to investigate the mechanical properties of 

various devices such as nanoelectromechanical systems (NEMS). For nano-scale systems, the 

influence of excess energy associated with the surface/interface atoms, called surface/interfacial 

free energy, is significant due to their high surface-to-volume ratio, and the mechanical behavior 

then becomes size-dependent (Wong et al., 1997). Based on continuum mechanics models, the 

surface energy effects, which are generally ignored in studying the mechanical behavior, must be 

taken into account in modified continuum-based simulations for nanoscale problems. Several 

continuum-based models have been proposed to account the surface stress and the size-dependent 

material behaviors such as the couple stress theory (Mindlin and Tiersten, 1962; Toupin, 1964), 

the strain gradient elasticity theory (Mindlin, 1964; Gao and Zhou, 2013) and the surface elasticity 

theory (Gurtin and Murdoch 1975, 1978). Over the last twenty years, the Gurtin-Murdoch model 

has been widely employed for studying various continuum mechanics problems. For example, 

problems related to an elastic medium under surface loading (Zhao and Rajapakse, 2009; Zhao 

and Rajapakse, 2013; Rungamornrat et al., 2016; Tirapat et al., 2017; Mi, 2017); contact problem 

(Gao et al., 2013; Zhou and Gao, 2013; Gao et al., 2014); nanobeam (Ansari et al., 2014; Azizi et 

al., 2015); nanoplate (Sapsathiarn and Rajapakse, 2013; Ansari and Gholami, 2016); and nanosized 

cracks (Intarit et al., 2017). 

In the context of nanoindentation problems, Zhao (2009) derived an analytical solution of 

a frictionless nanoindentation problem, in which elastic fields within the half-space caused by flat-

ended cylindrical, conical and spherical rigid indenters are presented. Although Gurtin-Murdoch 

continuum model used in the formulation is not complete (e.g. no out-of-plane term), numerical 

result showed a size-dependent behavior due to the surface energy effect, i.e. when the contact 

area becomes smaller, the material becomes stiffer. Pinyochotiwong et al. (2013) later generalized 

the work of Zhao (2009) to investigate mechanical response of an elastic half-space under rigid 

axisymmetric indentation by adopting a complete version of Gurtin-Murdoch model and the 

Hankel integral transform. The finite element method was also employed by Attia and Mahmoud 

(2015) to consider a frictionless nanoindentation problem on a functionally graded layered elastic 

medium with the influence of surface stresses. 

This study presents the analysis of axisymmetric rigid indentation with consideration of 

surface energy effects under frictionless and adhesive contacts by adopting a complete Gurtin-

Murdoch continuum model for theory of surface elasticity. The foundamental solutions of an 

elastic layer and a layered elastic half-space with consideration of surface stresses derived by 

Intarit (2012) and Tirapat et al. (2017), respectively are employed in the formulation of 

axisymmetric indentation problem as a mixed-boundary value problem. The displacement 

boundary condition at the top surface is expressed in terms of displacement Green’s function, 
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obtained by employing the Hankel integral transform method. The unknow contact pressure 

distribution under an indenter of axisymmetric profiles is determined by using Green’s functions, 

which are defined by the solutions of surface displacements of an elastic layer and a layered elastic 

half-space. The accuracy of the proposed solution scheme is verified by comparing with existing 

solutions. Selected numerical results are presented to portray the influence of surface stresses on 

an elastic layer and a layered elastic half-space under nano-indentation. 

5.2 Formulation of Nano-Indentation Problems 

Consider an elastic medium subjected to axisymmetric rigid punch under the action of a vertical 

force P. According to Gurtin-Murdoch surface elasticity theory (Gurtin and Murdoch, 1975; 

Gurtin and Murdoch, 1978), the elastic medium consists of two different parts, i.e. the bulk 

material and the surface, which is a zero-thickness layer perfectly bonded to the bulk material 

without slipping. The field equations of the bulk material are identical to those given by the 

classical elasticity for axisymmetric deformations. On the surface, the generalized Young-Laplace 

equation (Povstenko, 1993), the surface constitutive relations and the strain-displacement 

relationship (Gurtin and Murdoch, 1975; Gurtin and Murdoch, 1978; Gurtin et al., 1998) are given 

by Eqs. (2.5) to (2.8). 

5.2.1 Nano-Indentation on Elastic Layer 

Consider an elastic layer of finite thickness t perfectly bonded to a rigid base subjected to 

axisymmetric frictionless indentation under the action of a vertical force P with an arbitrary 

indenter profile fully described by vP(r) as shown in Figure 5.1. For convenience, the profile of the 

indenter is defined such that vP(r) = 0 along the axis of the indenter (r = 0) whereas the final radius 

of the contact region and the indentation depth resulting from the force P at the center of the 

indenter are represented by a and d, respectively. In the present study, the indenter profile is 

assumed to be smooth at any interior point of the contact region (i.e., the unit normal vector to the 

surface of the indenter, or equivalently, d/dr is well-defined for r < a) whereas along the boundary 

r = a, the profile could be non-smooth. An indenter with a well-defined dvP(r)/dr for r ≤ a [see 

Figure 5.1(a)] is termed here a smooth-contact indenter, whereas an indenter with a well-defined 

dvP(r)/dr only for r < a, such as a flat-ended cylindrical indenter shown in Figure 5.1(b), is called 

a non-smooth-contact indenter.  

For the indentation problem shown in Figure 5.1, the top surface of the layer is decomposed 

into a surface outside the contact region (r > a) on which the traction (both normal and shear) is 

identically zero, and a surface inside the contact area (r ≤ a) on which the vertical displacement is 

defined in terms of the indentation depth d and the indenter profile vP(r). In addition, the shear 

traction at any point of the contact region is also vanished due to the assumption of frictionless 

contact surface. According to the Gurtin-Murdoch model, the continuity of displacement and 

traction is enforced along the interface of the surface and the bulk material of the elastic layer. The 

mixed boundary value problem for the indentation shown in Figure 5.1 can then be expressed for 

the bulk material as,   

0
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where  s denotes a surface material constant, in which  s = 2 
s + s. Note that the residual surface 

stress is assumed to be constant in the present study. 

By using the method of superposition, the vertical displacements on the contact surface can 

be expressed in the form of an integral equation, and Eq. (5.1) can then be written as, 

( ) ( )* * *

0
( ),

a

zz rG r r p r dr d −=                     (5.6) 

where p(r*) is the normal traction distribution in the contact region and ( )*,zzG r r  denotes the 

Green’s function corresponding to the vertical displacement at any distance r on the contact surface 

due to a unit vertical ring load applied on the elastic layer at the radius r*. The Green’s function, 

( )*,zzG r r , can be obtained from the boundary value problem given by Eqs. (5.3) to (5.5) together 

with the following boundary condition, 
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To solve this boundary value problem for the required Green’s function, the Hankel integral 

transform technique was employed, and it can be shown that (Intarit, 2012) 
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In order to obtain the normal contact traction, the pressure distribution in the contact region, 
denoted by p(r*), is represented by the following equation.  
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where j (j = 1,…,m) denotes a set of undetermined coefficients and fj is a given function of r*. 

Substituting the contact pressure distribution, given by Eq. (5.10), into Eq. (5.6) leads to 
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By applying a collocation technique, the above integral equation can be expressed as,  

( ) ( )* * *

0
1

( ),,
m a

p

j zz i j i

j

d rG r r f r dr 
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The coefficient j can be obtained by solving Eq. (5.12), and the normal contact traction can then 

be determined. In the present study, the unknown pressure distribution is approximated in terms 

of axisymmetric polynomial functions such that  
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Once the normal traction distribution in the contact area, p(r*), is obtained, all elastic fields 

at any point in the layer under axisymmetric indentation can be determined from the following 

equation. 

( ) ( ) ( )* * *

0
, , ,zR r z R r z r p r dr



=                       (5.14) 

where ( ),R r z  denotes displacements and stresses at a point (r, z) of an elastic layer under 

axisymmetric indentation on the top surface; and ( )*, ,zR r z r  denotes the Green functions 

corresponding to displacements and stresses at a point (r, z) of an elastic layer due to a unit normal 

ring load applied at the top surface of the layer at the radius r*. In addition, the Green function

( )*, ,zR r z r , expressed in the forms of Hankel integral transforms, is given elsewhere 

(Rungamornrat et al., 2016; Intarit, 2012). 

5.2.2 Nano-Indentation on Layered Elastic Medium 

Consider a layered elastic half-space consisting of two elastic materials with different properties 

perfectly bonded together, in which the upper material is an elastic layer of finite thickness h and 

subjected to axisymmetric indentation of a radius a under the action of a vertical force P as shown 

in Figure 5.2. If the coefficient of friction between a rigid flat-ended cylindrical punch and a 

layered elastic half-space is high enough, the indenter is prevented from any sliding on the contact 

area. This condition is known as an adhesive contact. For axisymmetric adhesive indentation, the 

surface of the upper layer can be decomposed into a surface outside the contact region (r > a) on 

which both normal and shear stresses are identically zero, and a surface inside the contact region 

(r ≤ a) on which the normal displacement is prescribed in terms of the indentation depth d and the 

radial displacement is zero at every point of the contact region. To solve this indentation problem, 

the subscript “1” is used to represent the quantities corresponding to the bulk of the upper layer 
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and the surface. In addition, the subscript “2” is employed to represent the quantities associated 

with the bulk of the half-space and the interface between the layer and the half-space. The mixed 

boundary conditions at the top surface for the adhesive contact problem can then be expressed as, 

1 0
; 0z z
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=
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The continuity of displacements and stresses at the interface between the layer and the half-space 

can then be expressed as, 
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where {σzz, σrz} denote the stress components of the bulk; and {ur, uz} denote the displacement 

components of the bulk. In addition, 2s s s

i i i  = +  (i = 1,2). 

 By using the method of superposition, the normal and radial surface displacements are 

given by Eqs. (5.15) and (5.16), can be expressed in the form of integral equations as, 

( ) ( ) ( ) ( )
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where ( ),j

iU r r  denotes the Green’s function corresponding to the normal (i = z) or radial (i = r) 

surface displacement at any distance r on the contact surface due to a unit normal (j = N) or a unit 

radial (j = R) ring load acting on the surface of the upper layer at the radius r. The Green’s 

functions corresponding to the normal and radial surface displacements of a layered elastic half-

space with consideration of surface energy effects can be expressed in the form of Hankel integral 

transform respectively as, 
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where 
1 1 1  = ; 1r r=  ; and ( ) ( )1 1 1 1 1 1 12 2s      = + + . In addition, A, B, C and D are the 

arbitrary functions of the applied surface loads at any the radius r, which are given explicitly in 

Eqs. (2.38) to (2.41), and the superscript “k” is used to denote a unit normal ring load (k = N) or a 

unit radial ring load (k = R) acting on the surface of the upper layer. 

For the analysis of the adhesive contact problem, the normal traction p(r) and the shear 

traction q(r) can be represented as discrete regions of uniform traction acting over annular 

elements. The contact surface under the indenter is discretized into a number of Ne annular 

elements. It is assumed that p(r) and q(r) are constant within each ring element. The vertical and 

radial surface displacements at the contact surface, Eqs. (5.25) and (5.26), can then be expressed 

as, 
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where the elements ( ),k

z i jU r r and ( ),k

r i jU r r  ( ,i j    1, 2,…, Ne  ) of the matrices k

zU   and k

rU  , 

respectively denote the Green’s functions corresponding to the normal and radial surface 

displacements of a layered elastic half-space at the center of the ith ring element subjected to a 

uniform annular normal load (k = N) or a uniform annular radial load (k = R) over the jth ring 

element. In addition, 
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If a frictionless contact between a rigid flat-ended cylindrical punch and a layered elastic half-

space is considered, the shear traction vanishes and the surface displacement at the top surface in 

Eq. (5.27) is then reduced to 
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Once the normal traction ( )p r and the shear traction ( )q r  in the contact area are obtained, 

all elastic fields within the bulk material of the layered half-space under axisymmetric indentation 

as shown in Figure 5.2 can be determined from the following equation: 

( ) ( ) ( ) ( ) ( )
0 0

, , ; , ;N RR r z R r z r p r dr R r z r q r dr
 

     =  +     (5.32) 

where ( ),R r z  denotes elastic fields, which are displacements and stresses, at any point (r, z) of the 

layered half-space; ( ), ;NR r z r  and ( ), ;RR r z r are the Green’s functions corresponding to elastic 
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fields at any point (r, z) within the bulk due to a unit normal load and a unit radial load (ring or 

annular) respectively acting on the surface of the upper layer at the radius r. Note that the elastic 

fields within the bulk of the layered half-space, expressed in the form of Hankel integral 

transforms, are given elsewhere (Tirapat et al., 2017). 

5.3 Numerical results 

A computer program based on the solution procedure described in the previous section has been 

developed to study axisymmetric rigid indentation on an elastic layer and a layered elastic half-

space with consideration of surface energy effects under frictionless and adhesive contacts. 

5.3.1 Verification 

First, the accuracy of Green’s functions employed in the formulation of the indentation problem is 

validated by considering the case of an elastic layer with finite thickness t with a rigid base 

subjected to uniformly distributed normal traction p0 over a circular area of radius a with 

consideration of surface energy effects. It is noted that the Green’s function ( )*,zzG r r , given by 

Eq. (5.8), is expressed as a semi-infinite integral with respect to   where a closed form solution 

cannot be obtained. The evaluation of Green’s functions is then performed by employing a globally 

adaptive numerical quadrature scheme (Piessens et al., 1983) that subdivides the interval of 

integration and employs a 21-point Gauss–Kronrod rule to estimate the integral over each 

subinterval. The subdivision continues until the error from the approximation is less than a 

specified tolerance. In the numerical study, it is convenient to introduce the following non-

dimensional quantities: r0 = r/; z0 = z/; t0 = t/; a0 = a/; d0 = d/; and 0 = , where  = 

( ) ( )2 2s     + + , and it has the dimension of length. Aluminum was used for the layer 

material with  = 2.226 (Meyers and Chawla, 1999), and Al [1 1 1] was employed for the surface 

with  = 0.153 nm and  s = 1 N/m (Miller and Shenoy, 2000). The surface elastic constants can 

be obtained from atomistic simulations (Miller and Shenoy, 2000; Dingreville et al., 2005). Figure 

5.3(a) presents comparison of normalized vertical displacements at the surface along the radial 

direction between the present solution and the solution given by Zhao (2009) for the case when 

the out-of-plane contribution of the residual surface stress is ignored. Comparison between the 

current solution and the existing solution (Rungamornrat et al., 2016) for the layer with the 

complete Gurtin-Murdoch surface elasticity model is also shown in Figure 5.3(b). It is evident 

from both figures that the present solutions are in excellent agreement with the two benchmark 

solutions. 

The accuracy of the present solution is then verified with existing solution for nano-

indentation problem. Figure 5.4 presents a comparison for axisymmetric indentation on an elastic 

half-space between the present solutions (with t/a = 200) and the solutions by Pinyochotiwong et 

al. (2013). The half-space material properties are identical to those of the elastic layer considered 

in Figure 5.3. Profiles of normalized contact traction and surface vertical displacement along the 

radial direction are presented under flat-ended cylindrical (non-smooth-contact) indenter in Figure 

5.4(a) and paraboloidal (smooth-contact) indenter with 0 = 0.5 in Figure 5.4(b), respectively. 

Since the contact pressure distribution in the present study is assumed as a series of axisymmetric 

polynomial functions, profiles of normalized contact pressure in Figures 5.4(a) and 5.4(b) are then 

plotted for different numbers of terms employed in the series, m, to show the convergence and 

accuracy of the present solution. It is noted that under a flat-ended cylindrical indenter a vertical 
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ring load has to be applied at r = a in the current study to account for a ring load induced at the 

edge of a non-smooth-contact indenter in the presence of the residual surface stress. The applied 

vertical force P would then be supported by the ring load together with the contact pressure 

generated under this type of indentation. Comparison presented in Figure 5.4 reveals that the 

present solutions show a good agreement with the benchmark solutions given by Pinyochotiwong 

et al. (2013) when m ≥ 15 for a flat-ended cylindrical indenter and m ≥ 10 for a paraboloidal 

indenter, respectively. The appropriate number of terms, m, required in the approximation of the 

contact pressure is higher for non-smooth-contact indenter due to the singular pressure that exists 

along the edge of the cylindrical indenter (Pinyochotiwong et al., 2013). Comparison of 

normalized vertical displacement profiles at the top surface is also shown in Figure 5.4 for both 

flat-ended cylindrical and paraboloid indenters. The displacement profiles are approximated by 

using m = 15 and 10, respectively, for the flat-ended cylindrical and paraboloidal indenters. It is 

clearly seen from Figure 5.4 that a good agreement is also obtained for the comparison of 

normalized displacement profiles between the present solution and the benchmark solution 

(Pinyochotiwong et al., 2013) for both types of indenters. All numerical solutions presented 

hereafter are thus calculated by using m = 15 and m = 10 for the flat-ended cylindrical and the 

paraboloidal indenters, respectively. 

In addition, numerical solution scheme based on the discretization approach outlined in the 

previous section is implemented into a computer program to study flat-ended cylindrical punch on 

a layered elastic half-space under adhesive contact as shown in Figure 5.2 The unknown contact 

traction (both normal and shear) between the rigid indenter and the layered medium can be 

represented as discrete regions of uniform tractions acting over annular regions as expressed in 

Eq. (5.27). The required Green’s functions, ( ),j

iU r r  are determined from a layered elastic half-

space subjected to a uniform annular load of unit intensity, which are expressed as semi-infinite 

integrals with respect to  [see Eqs. (5.25) and (5.26)] and the numerical evaluation of Green’s 

function is previously discussed. 

The accuracy of the obtained numerical results are validated with existing solutions. The 

present solution is specialized for the case of the adhesive contact between flat-ended cylindrical 

punch of radius a and an elastic half-space without surface energy effects. Figure 5.5 shows 

comparisons between the numerical solutions from the present study and the existing solutions 

given by Spence (1968). The following material parameters are employed: 1  = 2  = 58.17 GPa 

and 1  = 2  = 26.13 GPa. In addition, the surface parameters are set to be negligibly small in the 

present solution (i.e. 
1 2 0s s =  and 

1 2 0s s =  ). Comparisons of normalized contact pressure and 

surface displacement profiles at the top surface are shown in Figures 5.5(a) and 5.5(b) respectively. 

Numerical results presented in Figure 5.5(a) indicate that a very good agreement between the 

present and benchmark solutions is obtained when Ne = 40 for the normalized contact pressures. 

In addition, both normal and radial surface displacements obtained from the current study agree 

very closely with the benchmark solutions with Ne = 40 as shown in Figure 5.5(b). 

5.3.2 Numerical solution for nano-indentation on elastic layer 

Numerical solutions for an elastic layer with constant thickness t perfectly bonded to a rigid base 

subjected to axisymmetric rigid frictionless indentation under an applied vertical load P on its 

surface are presented in this section for particular punch profiles. Selected numerical results are 

then presented to portray the influence of surface stresses on elastic fields of a finite layer with 
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rigid base under axisymmetric indentation from flat-ended cylinder (non-smooth-contact) indenter 

and paraboloidal (smooth-contact) indenter. For the case of flat-ended cylindrical indenter [see 

Figure 5.1(b)], the contact radius “a” is prescribed and the punch profile is set to be zero, i.e., 

( )pv r  = 0.  In addition, for paraboloidal punch, ( ) 2pv r r= where  is a positive constant and the 

radius of contact region “a” is unknown a priori [see Figure 5.1(a)]. The influence of surface 

energy effects on axisymmetric indentation on an elastic layer with rigid base is presented for the 

flat-ended cylindrical indenter with the contact radius of a0 = 0.5, and for the paraboloidal indenter 

with 0 = 0.5. An elastic layer, with a finite thickness of t/a = 5 and material properties of  = 

2.226;  = 1 nm; and  s = 5 N/m, is considered in the numerical study.  

Figures 5.6 to 5.8 present elastic fields of the elastic layer subjected to the flat-ended 

cylindrical indenter. Note that the broken lines in all Figures presented hereafter denote the 

classical solutions corresponding to the indentation on an elastic layer with no surface stress effects 

(i.e.  s =  s  0). For the classical solution, a square root singularity exists in the contact pressure 

along the edge of the flat-ended cylindrical indenter (Sneddon, 1965). Equation (5.13) has to be 

modified by adding another function with square root singularity at r = a in the modeling of the 

contact pressure for the classical solution. Normalized contact pressure and vertical displacement 

profiles at the surface along the radial direction are presented in Figure 5.6(a) for different layer 

thicknesses, i.e., t/a = 2, 5 and 10, with a0 = 0.5. Figure 5.6(b) presents radial profiles of normalized 

contact pressure and vertical displacement of an elastic layer with t/a = 5 for different values of 

contact radii, i.e., a0 = 0.5, 1.0 and 1.5, to demonstrate the size-dependent behavior of the present 

solution. Numerical results shown in Figure 5.6(a) indicate that the contact pressure increases 

when the layer thickness decreases, and the singularity is observed in the profiles near the edge of 

the indenter for both classical and present solutions. In addition, the contact pressure in the current 

study is lower due to the presence of surface stresses. The normalized displacement profiles shown 

in Figure 5.6(a) reveal that the vertical displacements outside the contact region obtained from the 

current study are higher than those from the classical elasticity due to the fact that larger 

indentation force is required in the present solutions to produce the same indentation depth. It is 

obvious from Figure 5.6(b) that with the consideration of surface stress effects the size-dependency 

is clearly observed on normalized contact pressure and vertical displacement whereas the classical 

elasticity solutions are size-independent. In addition, the influence of surface stresses decreases 

when the radius of the indenter a increases, and the present solution will eventually converge to 

the corresponding classical solution.  

 The influence of surface stress is further investigated for different residual surface stress 

( s) and surface material parameter () in Figure 5.7(a) and 5.7(b) respectively. In Figure 5.7(a), 

normalized contact pressure profiles are presented for a material with residual surface stress being 

varied from 1.0 to 10 N/m and  = 1 nm. The influence of surface material parameter is illustrated 

in Figure 5.7(b) by employing a material with the surface material parameter being varied from 

0.1 to 100 and  s = 5 N/m. It can be seen from both figures that the normalized contact pressure 

obtained from the current study is lower than the classical solution for all values of residual surface 

stress and surface material parameter. In addition, the contact pressure shows more dependence on 

the residual surface stress when compared to the surface material parameter. The contact pressure 

significantly decreases by increasing the residual surface stress since a larger ring load is generated 

for higher residual surface stress resulting in smaller contact pressure being developed under the 

indenter. On the contrary, normalized contact pressure increases with increasing the surface 
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material parameter. This is physically realistic as a material with increased surface material 

parameter would possess a stronger surface. As a result, a lower ring load is induced along the 

indenter edge and higher contact pressure is then generated under the indenter. 

Figures 5.8(a) and 5.8(b) show radial profiles of normalized displacements and stresses 

respectively along the radial direction of an elastic layer under axisymmetric indentation at 

different depths. It is clearly seen from both Figures. that the surface stress has a notable influence 

on elastic fields especially in the vicinity of the top surface. In Figure 5.8(a), both vertical and 

radial displacements from the current study are higher than their classical counterparts. Numerical 

results shown in Figure 5.8(b) indicate that the presence of surface stresses causes the reduction in 

stresses under the contact region, whereas outside the contact region the increase of stresses is 

observed. In addition, the influence of the surface stress becomes negligible when r/a > 3.  

A set of numerical solutions presented in Figures 5.9 to 5.11 correspond to the case of an 

elastic layer compressed by a rigid paraboloidal indenter with ( )pv r  = 0.5 r2. It is noted that under 

a smooth-contact indenter the contact radius “a” is unknown a priori, and it can be determined by 

enforcing the continuity condition of the vertical stress under the indenter at r = a and z = 0. In 

addition, no ring load is induced under smooth-contact indentation. Figures 5.9(a) and 5.9(b) 

demonstrates the influence of surface stresses on radial profiles of normalized contact pressure and 

vertical displacements of an elastic layer with different thicknesses and different contact radii 

respectively. Numerical results for normalized contact pressure profiles presented in Figure 5.9(a) 

indicate that no singularity is observed in the contact pressure under a smooth-contact indenter. 

The maximum contact stresses, from both current study and classical elasticity, are found under 

the center of the indenter, and the pressure gradually decreases with the radial distance. Note that 

the contact pressure from the classical solution vanishes at r = a, whereas the current solution 

shows a finite value at that location due to the presence of surface stresses. Similar behavior was 

also observed for smooth-contact indentation on an elastic half-space (Pinyochotiwong et al., 

2013). Similar to the case of non-smooth-contact indenter shown in Figure 5.6(a), both classical 

and present solutions shows a strong dependence on the layer thickness. The contact pressure 

decreases with the increase of the layer thickness whereas the normalized vertical displacement 

decreases when the layer thickness decreases. In addition, larger contact pressure and displacement 

are observed in the current study when compared to the classical solutions since the surface stresses 

render the layer stiffer and larger indentation force is then required to yield the same indentation 

depth. To observe the size dependent behavior, the variations of contact pressure and vertical 

displacement along the radial direction are presented in Figure 5.9(b) for different values of contact 

radii, i.e., a0 = 0.5, 1.0 and 1.5. As expected, the contact pressure and vertical displacement in the 

current study depend significantly on the size of the contact radius “a” whereas the classical 

counterparts are once again size-independent. It is clearly observed from Figure 5.9(b) that the 

influence of surface stress effects becomes smaller as the contact radius becomes larger and both 

contact pressure and displacement converge to their classical counterparts. 

In Figures 5.10(a) and 5.10(b), the influence of residual surface stress ( s) and surface 

material parameter () are investigated by varying  s = 1.0 - 10 N/m and  = 0.1 – 100 nm 

respectively. Note that other material parameters remain unchanged during the variation of either 

 s or . Unlike the non-smooth-contact indentation shown in Figure 5.7, the present contact 

pressure is larger than the classical solution for all values of  s or . Once again, the contact 

pressure under smooth-contact indentation also shows more dependence on the residual surface 
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stress. The normalized contact pressure from the current study increases with increasing the 

residual surface stress and the surface material parameter. Figure 5.11 presents the radial variations 

of normalized displacements and stresses at various depths under smooth-contact indentation. 

Numerical results shown in this Figure indicate that the surface stresses display similar influence 

on radial profiles of elastic fields to those shown in Figure 5.8 for non-smooth-contact indentation. 

Once again, both vertical and radial displacements from the current study are larger than the 

corresponding classical solutions and the presence of surface energy effects results in discrepancy 

in normal and shear stresses between the present and classical solutions. 

The final set of numerical solutions demonstrates the influence of the thickness of an elastic 

layer and the contact radius on the indentation force. Figure 5.12 presents variation of normalized 

indentation force with the contact radius a0 for different layer thicknesses. Note that Pc corresponds 

to the indentation force on an elastic half-space for the classical case, which is obtained from the 

current study by ignoring the surface energy effects (i.e., κ s = τ s  0) with t/a = 200. The flat-

ended cylindrical and paraboloidal indenters are presented in Figures 5.12(a) and 5.12(b), 

respectively. Note that for the paraboloidal indenter, a punch profile with 0 = 0.01 is used so that 

the obtained indentation depths are valid for all layer thicknesses under consideration. Numerical 

results presented in Figure 5.12 indicate that the indentation forces from both current study and 

classical elasticity depend significantly on the thickness of the layer and the contact radius. It is 

evident that higher indentation force is required to produce the same indentation depth for a thinner 

layer. The size-dependency is clearly observed from the present solution for all layer thicknesses 

under both non-smooth-contact and smooth-contact indentations. In addition, the present solution 

for the flat-ended cylindrical punch approaches the half-space solution given by Pinyochotiwong 

et al. (2013) when the layer becomes thicker. A notable feature observed from Figure 5.12 is the 

fact that the classical solutions for both non-smooth-contact and smooth-contact indentations also 

display size-dependent behavior for a thin layer (t0 ≤ 10). This behavior was also observed by 

Yang (2003) who considered the case of flat-ended cylindrical indenter with frictionless condition 

on both contact interfaces and no surface stress influence. 

5.3.3 Numerical solution for nano-indentation on layered elastic half-space 

The influence of surface energy effects on rigid indentation with adhesive contact on a layered 

elastic half-space is investigated for a flat-ended cylindrical indenter as shown in Figure 5.2. For 

convenience, the following non-dimensional quantities: z  = z/1; h  = h/1; a  = a/1 and d  = 

d/1, together with Ne = 40 are used for the numerical results of the adhesive contact problem 

presented hereafter. In addition, the material properties employed in the top surface and the bulk 

in the top layer are identical to those considered by Pinyochotiwong et al. (2013) whereas 2 = 

78.08 GPa, 2 = 40.23 GPa for the bulk of the underlying half-space; and 
2

s = 0.3944 N/m,
2

s  = -

3.9506 N/m at the interface. Note that the broken lines in all figures presented in this section denote 

the classical solutions corresponding to the indentation on the layered elastic half-space with no 

surface energy effects (i.e.  s =  s   0). Figures 5.13(a) and 5.13(b), respectively display radial 

profiles of contact pressure and vertical surface displacement under the indenter for both adhesive 

and frictionless contacts with a  = 1 and h/a = 1. It is evident from Figure 5.13 that the numerical 

results from the present study and the classical solution exhibit similar trends for both pressure and 

displacement profiles, and the surface energy influence renders the layered medium stiffer. 

Numerical results presented in Figure 5.13(a) indicates that both classical and present solutions 

show singular contact traction close to the indenter edge. In addition, the traction developed under 
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the adhesive contact is comparatively higher than that under the frictionless contact due to the 

presence of adhesion resulting in higher indentation force being required for the same indentation 

depth. 

Figures 5.14(a) and 5.14(b) respectively present radial variations of normalized 

displacements and stresses of a layered elastic half-space under indentation with adhesive contact 

at different depths for the contact radius of a = 1.0 and the layer thickness of h/a = 1. Once again, 

the solutions for elastic fields from the present study and the classical elasticity shown in Figure 

5.14 display similar trends. Figure 5.14(a) indicates that both vertical and radial displacements 

from the present study are higher than the classical elastic solutions. Numerical results for the 

normalized vertical and shear stresses at various depths shown in Figure 5.14(b) reveal that the 

presence of surface stresses causes the reduction in stresses under the contact region, whereas 

outside the contact region the increase of stresses is observed. In addition, the influence of the 

surface stress becomes negligible when r/a > 2.5. 

To demonstrate the effect of the contact area for indentation with adhesive contact and the 

influence of surface energy effects, Figures 5.15(a) and 5.15(b) show radial variations of 

normalized contact pressure and surface displacements of the layered half-space with h/a = 1 for 

different values of the normalized contact radius, i.e. a  = 1a   = 0.5, 1.0 and 1.5. Note that the 

solution with a  = 1.0 corresponds to the case where the thickness of the layer is equal to the 

characteristic length ( 1 ). It can be obviously seen from Figure 5.15(a) that the singularity of 

contact traction (both normal and shear) is observed close to the edge of indenter for both classical 

and present solutions. It should be noted that under the adhesive contact the normal and radial ring 

loads have to be applied at r = a in the present solution to account for the two ring loadings induced 

at the indenter edge due to the presence of the residual surface stress. The applied vertical force P 

would then be supported by both ring loads together with the contact pressure generated under the 

indenter. The size-dependency of the present solution is clearly observed in contact pressure and 

displacement profiles shown in Figure 5.15 whereas the classical elasticity solution is size-

independent. It is also found that the influence of surface stress is reduced when the radius of the 

indenter becomes larger and the present solution eventually converges to the classical solution. 

The influence of the residual surface stress ( s ) on the normalized contact pressure and 

surface displacement under indentation with adhesive contact are investigated respectively in 

Figures 5.16(a) and 5.16(b) with a  = 1 and h/a = 1. The ratio of the residual surface stresses at the 

top surface and interface is varied, i.e. 
1 2

s s  = 0.5, 1, 2, 4 whereas other material parameters 

associated with the upper layer and the underlying half-space remain unchanged. It is obvious that 

the normal traction and the vertical surface displacement are larger than the shear traction and 

radial surface displacement respectively. Profiles of normal contact pressure presented in Figure 

5.16(a) indicate that the current solutions are lower than the contact pressure from the classical 

elasticity. The normal pressure significantly decreases by increasing the ratio of residual surface 

stresses. In addition, the numerical results shown in Figure 5.16(b) reveal that the normalized 

vertical surface displacements outside the contact area obtained from the present study are higher 

than the classical solution due to the presence of the residual surface stress, and the layered half-

space becomes stiffer with increasing the ratio
1 2

s s  . 

To study the influence of shear moduli in the layered medium, radial variations of 

normalized vertical contact pressure and vertical surface displacement with a  = 1 and h/a = 1 for 
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different values of µ1/µ2 are shown in Figure 5.17. It is evident from numerical results on contact 

pressure and vertical displacement shown in Figure 5.17 that the present and classical solutions 

display similar behaviors for all values of µ1/µ2, and the surface energy influence renders the 

layered medium stiffer. Numerical results presented in Figure 5.17(a) reveal that the normal 

contact traction under the surface energy effects is lower than the classical one. Figure 5.17(b) also 

shows that the vertical surface displacement outside the contact area obtained from the present 

study is higher than the classical solution since higher indentation force is required to produce the 

same indentation depth due to the existence of surface effects. 

To demonstrate the size-dependent behavior, the final set of numerical solutions is 

concerned with the indentation force on a layered elastic half-space with surface energy effects. 
Figure 5.18 presents variations of normalized indentation force, P/Pc, with the normalized contact 

radius a  for different values of the layer thickness h/a. The dotted lines in the figure indicate the 

normalized indentation forces corresponding to the frictionless contact where the surface energy 

effects are considered while the dash line corresponds to the classical adhesive contact where the 

surface energy effects are ignored (i.e. s  = s   0). In addition, Pc indicates the indentation force 

on an elastic half-space ( /h a →  ) for the classical frictionless case. It is obviously seen from 

Figure 5.18 that the normalized indentation forces show a significant dependence on the thickness 

of the upper layer and the contact radius for both adhesive and frictionless contacts due to the 

influence of surface energy effects. The indentation force increases when the layer thickness 

decreases. This is physically realistic since the upper layer is softer than the underlying half-space 

the reduction in the upper layer thickness then renders the layered half-space stiffer. In addition, 

the indentation force decreases with increasing the contact radius converging to the classical one. 

Thus, size-dependent behavior is once again observed from the results shown in Figure 5.18, and 

it is evident that for the same contact area the indentation force under adhesive contact is higher 

than that under frictionless contact. 
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           (a)                                                                                 (b) 

Figure 5.1 Elastic layer with finite thickness under frictionless axisymmetric: (a) smooth-contact 

profile; (b) non-smooth-contact profile 

 

 

Figure 5.2 Indentation on a layered elastic half-space under rigid flat-ended cylindrical punch of radius a  

with adhesive contact. 
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(a) 

 

(b) 

 

Figure 5.3 Validation of Green’s functions for an elastic layer under surface energy effects: (a) without 

out-of-plane contribution of  s; (b) with complete Gurtin-Murdoch model 
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(a) 

 

(b) 

Figure 5.4 Comparison with existing nanoindentation solutions: (a) flat-ended cylindrical indenter; (b) 

paraboloidal indenter. 
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(a) 

 

 

(b) 

 

Figure 5.5 Comparison of elastic fields in an elastic half-space under indentation with adhesive contact 

(no surface energy effect): (a) normalized contact pressure and (b) normalized surface displacements. 
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(a) 

 

(b) 

 

Figure 5.6 Radial profiles of contact pressure and surface vertical displacement under flat-ended 

cylindrical indenter for: (a) a0= 0.5 and different layer thicknesses; (b) t/a = 5 and different contact radii.  
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(a) 

 

(b) 

 

Figure 5.7 Radial profiles of contact pressure under flat-ended cylindrical indenter with a0= 0.5 for: (a) 

different residual surface stresses; (b) different surface material parameters. 
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(a) 

 

(b) 

 

Figure 5.8 Radial profiles of elastic fields at different depths under flat-ended cylindrical indenter with 

t/a = 5 and 0a = 0.5: (a) normalized displacements (b) normalized stresses. 

 

 

 



115 

 

  

(a) 

 

(b) 

 

Figure 5.9 Radial profiles of contact pressure and surface vertical displacement under paraboloidal 

indenter for: (a) a0= 0.5 with different layer thicknesses; (b) t/a = 5 with different contact radii.  
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(a) 

 

(b) 

Figure 5.10 Radial profiles of contact pressure under paraboloidal indenter with a0= 0.5 for: (a) different 

residual surface stresses; (b) different surface material parameters. 
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(a) 

 

(b) 

 

Figure 5.11 Radial profiles of elastic fields at different depths under paraboloidal indenter with t/a = 5 

and 0a = 0.5: (a) normalized displacements (b) normalized stresses.  
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(a) (b) 

 

Figure 5.12 Variations of normalized indentation force with 0a for different layer thicknesses: (a) flat-

ended cylindrical indenter (b) paraboloidal indenter.  

 

  

(a) (b)  

 

Figure 5.13 Radial variations of elastic fields for different contact conditions with h/a = 1 and a  = 1: (a) 

normalized contact pressure and (b) normalized vertical surface displacement. 
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(a) 

  

(b) 

 

Figure 5.14 Radial variations of elastic fields at different depths with h/a = 1 and a  = 1: (a) normalized 

displacements and (b) normalized stresses. 

 

 



120 

 

  

(a) 

  

(b) 

 

Figure 5.15 Radial variations of elastic fields for different contact radii a with h/a = 1: (a) normalized 

contact pressure and (b) normalized surface displacement. 

 

 



121 

 

 

(a) (b) 

Figure 5.16 Radial variations of elastic fields for different values of 
1 2

s s  with h/a = 1 and a  = 1: (a) 

normalized contact pressure and (b) normalized surface displacement. 

 

  

(a) (b) 

Figure 5.17 Radial variations of elastic fields for different values of 1 2  with h/a = 1 and a  = 1: (a) 

normalized contact pressure and (b) normalized surface displacement. 
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Figure 5.18 Variations of normalized indentation force with a  for different layer thicknesses and contact 

conditions. 
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CHAPTER VI  

CONCLUSIONS AND REMARKS 

This chapter summarizes both analytical and numerical techniques established in the present 

investigation for solving various nano-scale problems, i.e., layered media under surface loading, 

bending and post-buckling of nano-beams, nano-sized cracks and nano-indentations with 

consideration of surface energy effects. Major findings regarding to both the computational 

performance of the developed techniques and the extensive parametric study on the influence of 

the surface stresses and size-dependency of the predicted solutions are presented. Limitations of 

the current development and the possible extensions for each particular problem are also indicated.  

6.1 Layered Media under Surface Loading 

The analysis of layered elastic media under the action of axisymmetric surface loading and the 

influence of the surface energy effects is presented. The boundary value problem corresponding 

to a layered elastic half-space and a multi-layered elastic medium subjected to axisymmetric 

normal and tangential traction is formulated based on the complete Gurtin-Murdoch theory of 

surface elasticity. The analytical solutions using Love’s representation and the Hankel integral 

transform are obtained for both displacement and stress fields. The complete solutions of 

displacements and stresses corresponding to a layered elastic half-space with the arbitrary 

functions are obtained by solving the boundary value problem. In addition, an exact stiffness 

matrix scheme is used to solve the boundary value problem of a multi-layered elastic medium. The 

solutions are expressed in terms of semi-infinite integrals for problems involving different loading 

cases, in which, closed-form solutions cannot be obtained due to the complexity of the integrands. 

The integral with respect to  is evaluated by using the numerical quadrature scheme based on 21-

point Gauss-Kronrod rule. The validity and accuracy of the present solution schemes are 

comfirmed by comparing with available benchmark solutions. Selected numerical results for radial 

profiles of displacements and stresses are presented to portray the influence of various parameters 

on elastic fields for both layered elastic half-space and multi-layered elastic media. 

The numerical results indicate that the surface energy effects play an important role in both 

stress and displacement fields of layered elastic media. The presence of surface stresses renders 

the layered medium stiffer. Unlike the classical elasticity solution, the present study shows 

substantial size-dependency of elastic fields. The application of the obtained fundamental solution 

for nano-indentation is also presented in Chapter V. In addition, the present solution can also be 

used as a benchmark solution for assessing the accuracy of numerical models such as the finite 

element and boundary element methods, which can be used to investigate more complicated 

problems in the presence of surface energy effects. 

6.2 Bending and Post-buckling of Nano-beams 

A mathematical model and the efficient and accurate solution technique for the nonlinear analysis 

of nano-beams considering the influence of both surface stresses and nonlocal elasticity have been 

established. The formulation has been carried out within the regime of large displacements and 

rotations by combining Euler-Bernoulli beam theory, Gurtin-Mudoch surface elasticity and 

Eringen nonlocal elasticity. The beam has been treated as a composite consisting of both bulk 
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material and surface layer in the development of the moment-curvature relationship. The key 

governing nonlinear differential equations have been developed using the elliptic integral 

technique and then their linearized version has been summarized and used as a basis for the 

buckling load analysis. The nonlinear differential equations have been further integrated along 

with the prescribed boundary conditions to obtain a system of exact nonlinear algebraic equations 

sufficient for the bending and post-buckling analysis. A solution procedure based on Newton 

iterative scheme and a selected quadrature has been implemented to solve the fully coupled system 

of nonlinear equations whereas the explicit analytical expression has been derived for the buckling 

load. It has been confirmed from numerical experiments that the proposed technique is 

computationally robust and offers highly accurate numerical solutions without the requirement of 

discretization. 

Results from an extensive numerical study have revealed that the model incorporating both 

the surface stresses and nonlocal linear elasticity tends to lower the bending stiffness of the beam. 

The influence of the surface stresses, found in the present study, is quite different from that 

reported in earlier work. This is due mainly to that the residual stress induced within the bulk 

material to maintain equilibrium at the initial state has been taken into account in the modeling via 

the modified flexural rigidity of the beam. The decrease of the beam stiffness as a result of the 

residual stress within the bulk has been found more prominent than the enhancement of the 

stiffness by the in-plane modulus of the material surface. Clearly, the enlargement of the surface 

modulus tends to stiffen the nano-beams while the increase in the residual surface tension leads to 

the reverse effect. Obtained results also indicate that the nonlocal parameter plays a crucial role on 

the response prediction and its influence becomes more prominent when the slenderness ratio of 

the beam increases. The buckling loads, post-buckling and bending response predicted by the 

proposed model (incorporating both the surface and nonlocal effects) have been found highly size-

dependent. It can be also remarked that as the size of the nano-beam is comparable to the intrinsic 

length scale of the material surface, solutions predicted by the proposed model are significantly 

different from those associated with the classical case. This finding clearly emphasizes the 

necessity to properly incorporate both the surface stresses and nonlocal effect in the modeling of 

nano-scale problems. While the modeling strategy and the solution procedure have been 

successfully established in the present study, problems treated are still limited to single nano-

elements without interior loads. The enhancement of the modeling capability to handle more 

complex nano-systems consisting of multiple elements and subjected to general applied loads 

should be the potential extension and requires further investigation. 

6.3 Nano-size Cracks 

A theoretical model is first presented for a penny-shaped crack in an infinite elastic medium in the 

presence of surface energy effects. The formulation is based on the the Gurtin-Murdoch continuum 

theory and the application of Hankel integral transforms. It is shown that the solution to the crack 

problem can be reduced to a set of simultaneous dual integral equations similar to the classical 

elasticity case. The integral equation system is solved numerically and shows good convergence. 

The numerical results indicate that the surface energy effects have a significant influence on both 

stress and displacement fields of a medium with crack. The surface residual stress has a far 

significant influence on the elastic field compared to the surface elastic constants. Surface residual 

stress reduces the crack opening displacement and the near-front vertical stress. As a result, the 

strength of stress singularity along the crack front is clearly lowered when compared to the 
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classical case. In contrast to the classical crack solution, the present study shows substantial size-

dependency of elastic field. Both crack tip stress field and crack opening displacement show 

substantial dependency on the crack size and the magnitude of non-dimensional vertical stress, 

and crack opening displacement increase with increasing crack length. For larger cracks, the 

influence of surface energy is smaller. The present solution can be used as a benchmark for 

assessing the accuracy of numerical models based on the finite element and boundary element 

methods that can be used to analyze more complicated crack problems in the presence of surface 

energy effects. 

Also, an accurate and computationally efficient numerical procedure capable of modeling 

isolated non-planar cracks in three-dimensional, linearly elastic, infinite media has been 

established by integrating the influence of surface stresses into the underlying mathematical model. 

The key governing equations have been formulated by combing the classical theory of linear 

elasticity for the cracked bulk medium and the full version of Gurtin–Murdoch surface elasticity 

model for the infinitesimally thin, material layers on the top of the non-planar crack surfaces. A 

fully coupled system of governing equations, obtained by enforcing the continuity along the 

material interface, has been solved numerically by the BIEM-FEM coupling procedure. Results 

for a penny-shaped crack problem have been obtained and compared with the benchmark solutions 

to confirm the validity of the formulation and numerical implementations. Based on those 

preliminary results for the fracture related data (e.g., relative crack-face displacement and the near-

front stress field), the proposed technique yields highly accurate numerical solutions and the good 

convergence behavior. The computational performance of the proposed technique when applied 

to the case of non-planar cracks is still under investigation. 

6.4 Nano-indentation on Layered Media 

The influence of surface energy effects on layered media under rigid indentation with 

consideration of frictionless and adhesive contacts is investigated based on Gurtin-Murdoch theory 

of surface elasticity. The mixed-boundary value problem is formulated with the displacement 

Green’s functions constructed from the fundamental solutions of an elastic layer and a layered 

elastic half-space with consideration of surface stresses derived by Intarit (2012) and Tirapat et al. 

(2017). The unknown contact pressure distribution under an indenter of axisymmetric profiles is 

determined by using either collocation or discretization method. The accuracy of the proposed 

solution scheme is confirmed by comparing with existing solutions. Presented numerical results 

indicate a significant influence of surface energy effects on elastic fields in the layered media, 

especially in the vicinity of the contact area. The presence of surface stresses renders the layered 

media stiffer, and size-dependent behavior is observed. In addition, the indentation force depends 

significantly on the layer thickness, the shear moduli in the layered medium, and the contact radius 

under the influence of surface stresses. The present solution can be used as a benchmark solution 

in the development of numerical techniques such as the finite element and boundary element 

methods for analysis of more complicated problems related to nano-indentation on a layered media 

under the influence of surface energy effects. 
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