2-Chloro-5,11-dihydro-11-ethyl-8-hydroxymethyl-4-methyl-6*H*-dipyrido[3,2-*b*:2',3'-e][1,4]diazepin-6-one (32)

นำสาร 2-chloro-5,11-dihydro-11-ethyl-8-formyl-4-methyl-6H-dipyrido[3,2-b.2',3'-e][1,4] dlazepin-6-one (31) (130 มิลลิกรัม, 0.41 มิลลิโมล) ละลายใน tetrahydrofuran (3 มิลลิลิตร) เติมน้ำ (2 หยด) คนสารละลายให้เข้ากัน เติม sodium borohydride (15.5 มิลลิกรัม, 0.41 มิลลิโมล) คนสารละลาย ที่อุณหภูมิห้องเป็นเวลา 15 นาที เติมน้ำกลั่น แล้วระเหยเอา tetrahydrofuran ออก จะเหลือตะกอนขาวซึ่ง ไม่ค่อยละลายใน dichloromethane กรองตะกอนขาว ล้างตะกอนด้วยน้ำกลั่น ทำให้แห้ง จะได้ผลผลิต หยาบของ 2-chloro-5,11-dihydro-11-ethyl-8-hydroxymethyl-4-methyl-6H-dipyrido[3,2-b.2',3'-e] [1,4]diazepin-6-one (16) ส่วนของ filtrate นำมาสกัดด้วย dichloromethane หลายๆครั้ง ล้างส่วยสกัด ด้วยน้ำกลั่น แล้วทำให้ปราศจากน้ำโดยเติม anhydrous sodium sulphate กรอง ระเหยตัวทำละลายออก ได้ผลผลิตหยาบของแข็งสีขาวทั้งหมดของ 2-chloro-5,11-dihydro-11-ethyl-8-hydroxymethyl-4-methyl -6H-dipyrido [3,2-b.2',3'-e][1,4]diazepin-6-one (32) (130 มิลลิกรัม, 99%) จุดหลอมเหลวอยู่ในช่วง 259-260 องศาเซลเซียส

FTIR (KBr), V_{max} cm⁻¹: 3352 (O-H), 3191 (<u>H-N</u>-CO), 1651 (C=O), 1594 (C≈N), 1477 (C=C), 1386 (C-N), 1228 (C=<u>C-H</u>), 1044 (C-O)

¹H NMR (DMSO-d_s, 200 MHz) δ: 10.01 (s, 1H, <u>HN</u>-C=O), 8.39 (d, J=2. $\overline{2}$ Hz, 1H, H-9), 7.97 (d, J=2.2 Hz, 1H, H-7), 7.19 (s, 1H, H-3), 5.33 (t, J=5.86 Hz, 1H, CH₂-OH), 4.48 (d, J=5.86 Hz, 2H, <u>CH</u>₂-OH), 3.99 (q, J=7.3 Hz, 2H, <u>CH</u>₂CH₃), 2.33 (s, 1H, CH₃, 1.14 (t, J=7.3 Hz, 3H, CH₂CH₄)

¹³C NMR (DMSO-d₆, 50 MHz): 166.9, 157.4, 153.0, 149.4, 144.7, 143.0, 138.7, 133.3, 124.6, 121.2, 120.7, 59.7, 41.0, 17.5, 14.0 ppm

MS (EI), m/z (relative intensity): 318 (M * , 100), 303 (45), 290 (88), 275 (20), 261 (9) HRMS (ESI-TOF) calcd. for $C_{15}H_{16}N_4O_2CI$ [M+H] * 319.0956; found: 319.0955

2-Chloro-5,11-dihydro-11-ethyl-8-chloromethyl-4-methyl-6*H*-dipyrido[3,2-*b*:2',3'-e][1,4] diazepin-6-one (33)

น้ำสาร 2-chloro-5,11-dihydro-11-ethyl-8-hydroxymethyl-4-methyl-6H-dipyrido [3,2-b.2',3'-e][1,4]diazepin-6-one (32) (110 มิลลิกรัม, 0.35 มิลลิโมล) ละลายใน dichloromethane (30 มิลลิลิตร) เติม thionyl chloride (0.2 มิลลิลิตร, 2.74 มิลลิโมล) ตามด้วย triethylamine (0.5 มิลลิลิตร, 3.6 มิลลิโมล) คนสารละลายให้เข้ากันจนเป็นสารละลายใส เมื่อปฏิกิริยาเกิดสมบูรณ์ เติมน้ำกลั่นและ สารละลายอิ่มตัวของ sodium hydrogencarbonate ในน้ำ สกัดด้วย dichloromethane ล้างส่วนสกัดด้วย น้ำกลั่น แล้วทำให้ปราศจากน้ำโดยเติม anhydrous sodium sulphate กรอง ระเหยตัวทำละลายออก ทำ ให้บริสุทธิ์โดยใช้คอลัมน์โครมาโทรกราฟี ซะด้วย 15% ethyl acetate/hexane จะได้ของแข็งสีขาวของ 2-chloro-5,11-dihydro-11-ethyl-8-chloromethyl-4-methyl-6H-dipyrido[3,2-b.2',3'-e][1,4]diazepin-6-one (33) (85.7 มิลลิกรัม, 74%) จุดหลอมเหลวอยู่ในช่วง 229-230 องศาเซลเซียส

FTIR (KBr), V_{max}, cm⁻¹: 3180 (<u>H-N</u>-CO), 2970 (C-H aliphatic), 1651 (C=O), 1603 (C=N), 1465 (C=C), 1382 (C-N), 1284 (C=<u>C-H</u>), 707 (C-Cl)

¹H NMR (CDCl₃, 200 MHz) δ: 8.57 (br s, 1H, <u>HN</u>-C=O), 8.45 (d, J=2.2 Hz, 1H, H-9), 8.14 (d, J=2.2 Hz, 1H, H-7), 6.96 (s, 1H, H-3), 4.56 (s, 2H, <u>CH₂-Cl</u>), 4.19 (q, J=7.3 Hz, 2H, <u>CH₂-CH₃</u>), 2.39 (s, 3H, CH₃), 1.24 (t, J=7.3 Hz, 3H, CH₃CH₃)

¹³C NMR (CDCl₃, 50 MHz): 168.2, 159.2, 152.4, 151.6, 145.2, 142.4, 141.0, 128.4, 123.9, 121.5, 120.1, 42.3, 42.1, 17.8, 13.7 ppm

MS (EI), m/z (refative intensity): 336 (M⁺, 79), 321 (56), 308 (75), 301 (38), 293 (19), 273 (100), 258 (15), 245 (18)

HRMS (ESI-TOF) calcd. for $C_{15}H_{15}N_4OCl_2[M+H]^4$ 337.0617; found: 337.0624

2-Chloro-5,11-dihydro-11-ethyl-4-methyl-8-(phenylthio)-methyl-6*H*-dipyrido[3,2-*b*:2',3'-e] [1,4]diazepin-6-one (T4)

น้ำ thiophenol (0.06 มิลลิลิตร, 0.58 มิลลิโมล) ละลายใน N,N-dimethylformamide (2 มิลลิลิตร) ภายใต้บรรยากาศของในโตรเจน เติม sodium hydride (37 มิลลิกรัม, 0.91 มิลลิโมล) ลงไป คน ของผสมที่อุณหภูมิห้องเป็นเวลา 10 นาที เติมสารละลายของสาร 2-chloro-5,11-dihydro-11-ethyl-8-chloromethyl-4-methyl-6H-dipyrido[3,2-b.2',3'-e][1,4]diazepin-6-one (33) (60 มิลลิกรัม, 0.18 มิลลิโมล) ใน N,N-dimethylformamide (3 มิลลิลิตร) คนของผสมที่อุณหภูมิห้องเป็นเวลา 1 ชั่วโมง เติมน้ำกลั่น สกัดด้วย dichloromethane ล้างส่วนสกัดด้วยน้ำกลั่น แล้วทำให้ปราศจากน้ำโดยเติม anhydrous sodium sulphate กรอง ระเหยตัวทำละลายออก ทำให้บริสุทธิ์โดยใช้คอลัมน์โครมาโทรกราพี ชะด้วย 15% ethylacetate/hexane จะได้ของแข็งสีขาวของ 2-chloro-5,11-dihydro-11-ethyl-4-methyl-8-(phenyl thio)-methyl-6H-dipyrido[3,2-b.2',3'-e][1,4]diazepin-6-one (T4) (45 มิลลิกรัม, 62%) จุดหลอมเหลว อยู่ในช่วง 166-167 องศาเซลเซียส

FTIR (KBr), V_{max}, cm⁻¹: 3174 (<u>H-N</u>-CO), 2965 (C-H aliphatic), 1651 (C=O), 1593 (C=N), 1461 (C=C), 1378 (C-N), 1231 (C=<u>C-H</u>), 737 (C-S), 689 (C-CI)

¹H NMR (CDCl₃, 200 MHz) δ: 8.60 (br s, 1H, <u>HN</u>-C=O), 8.27 (d, J=2.2 Hz, 1H, H-9), 8.05 (d, J=2.2 Hz, 1H, H-7), 7.31-7.19 (m, 5H, phenyl), 6.93 (s, 1H, H-3), 4.14 (q, \overline{J} =7.3 Hz, 2H, CH₂CH₃), 4.05 (s, 2H, CH₂S), 2.37 (s, 3H, CH₃), 1.21 (t, J=7.3 Hz, 3H, CH₂CH₃)

¹³C NMR (CDCl₃, 50 MHz): 168.5, 158.3, 152.6, 151.6, 145.0, 142.3, 140.9, 135.0, 130.5(2C), 129.1(2C), 128.6, 127.0, 124.0, 121.3, 120.1, 42.0, 35.6, 17.8, 13.6 ppm

MS (EI), m/z (relative intensity): 410 (M⁺, 10), 301 (100), 273 (30), 245 (6) HRMS (ESI-TOF) calcd. for $C_{21}H_{20}N_4OSCI$ [M+H]⁺ 411.1041; found: 411.1039 2-Chloro-5,11-dihydro-11-ethyl-4-methyl-8-(3-methoxyphenylthio)-methyl-6*H*-dipyrido[3,2-*b*:2',3'-e] [1,4]diazepin-6-one (T5)

น้ำ 3-methoxythiophenol (0.18 มิลลิลิตร, 1.49 มิลลิโมล) ละลายใน N,N-dimethylformamide (3 มิลลิลิตร) ภายใต้บรรยากาศของในโตรเจน เติม sodium hydride (37 มิลลิกรัม, 2.36 มิลลิโมล) ลงไป คนของผสมที่อุณหภูมิห้องเป็นเวลา 10 นาที เติมสารละลายของสาร 2-chloro-5,11-dihydro-11-ethyl-8-chloromethyl-4-methyl-6H-dipyrido[3,2-b.2',3'-e][1,4]diazepin-6-one (33) (155 มิลลิกรัม, 0.46 มิลลิโมล) ใน N,N-dimethylformamide (6 มิลลิลิตร) คนของผสมที่อุณหภูมิห้องเป็นเวลา 1 ขั่วโมง เติมน้ำ กลั่น สกัดด้วย dichloromethane ล้างส่วนสกัดด้วยน้ำกลั่น แล้วทำให้ปราศจากน้ำโดยเติม anhydrous sodium sulphate กรอง ระเหยตัวทำละลายออก ทำให้บริสุทธิ์โดยใช้คอลัมน์โครมาโทรกราพี ซะด้วย 20-30% ethyl acetate/hexane จะได้ของแข็งสีขาวของ 2-chloro-5,11-dihydro-11-ethyl-4-methyl-8-(3-methoxyphenylthio)-methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (T5) (165 มิลลิกรัม, 81%) จุดหลอมเหลวอยู่ในช่วง 176-177 องศาเซลเซียส

FTIR (KBr), V_{max}, cm⁻¹: 3187 (<u>H-N</u>-CO), 1661 (C=O), 1591 (C=C), 1571 (C=C), 1461, 1385 (C-N), 1235 (C=<u>C-H</u>), 765 (C-S), 684 (C-CI)

¹H NMR (CDCl₃, 200 MHz) δ: 8.29 (d, J=2.2 Hz, 1H, H-9), 8.25 (br s, 1H, $\frac{1}{2}$ HN-C=O), 8.05 (d, J=2.2 Hz, 1H, H-7), 7.18 (dd, J=8.1, 8.1 Hz, 1H, H-5 of Ph(*m*-OCH₃)), 6.94 (s, 1H, H-3), 6.90-6.71 (m, 3H of Ph(*m*-OCH₃), 4.14 (q, J=7.3 Hz, 2H, $\frac{CH_2}{CH_3}$), 4.05 (s, 2H, $\frac{CH_2}{CH_2}$ S), 3.72 (s, 3H, OCH₃), 2.35 (s, 3H, CH₃), 1.21 (t, J=7.3 Hz, 3H, CH₂CH₃)

¹³C NMR (CDCl₃, 50 MHz): 168.5, 159.9, 158.2, 152.6, 151.3, 145.0, 142.6, 141.0, 136.2, 129.9, 128.6, 124.0, 122.4, 121.3, 120.2, 115.7, 112.9, 55.2, 42.1, 35.3, 17.8, 13.6 ppm HRMS (ESI-TOF) calcd. for $C_{22}H_{22}N_4O_2SCI[M+H]^{\dagger}$ 441.1147; found: 441.1143

2-Chloro-5,11-dihydro-11-ethyl-4-methyl-8-(phenylthio)-methyl-5-methyl-6*H*-dipyrido[3,2-*b*:2',3'-e] [1,4]diazepin-6-one (T6)

นำสาร 2-chloro-5,11-dihydro-11-ethyl-4-methyl-8-(phenylthio)-methyl-6H-dipyrido[3,2-b.2',3'-e][1,4]diazepin-6-one (T4) (118 มิลลิกรัม, 0.29 มิลลิโมล) ละลายใน N,N-dimethylformamide (2 มิลลิลิตร) ภายใต้บรรยากาศของในโตรเจน เติม sodium hydride (17.3 มิลลิกรัม, 0.43 มิลลิโมล) ลง ไป คนของผสมที่อุณหภูมิ 50 °C เป็นเวลา 30 นาที จากนั้นทิ้งให้ของผสมเย็นลงที่อุณหภูมิห้อง เติม Mel (0.05 มิลลิลิตร, 0.80 มิลลิโมล) คนของผสมที่อุณหภูมิห้องเป็นเวลา 0.5 ชั่วโมง จากนั้นเติมน้ำกลั่น สกัด ด้วย ethyl acetate ล้างส่วนสกัดด้วยน้ำกลั่น แล้วทำให้ปราศจากน้ำโดยเติม anhydrous sodium suiphate กรอง ระเหยตัวทำละลายออก ทำให้บริสุทธิ์โดยใช้คอลัมน์โครมาโทรกราฟี ซะด้วย 20% ethyl acetate/hexane จะได้ของแข็งขาวของ 2-chloro-5,11-dihydro-11-ethyl-4-methyl-8-(phenylthio)-methyl-5-methyl-6H-dipyrido[3,2-b.2',3'-e][1,4]diazepin-6-one (T6) (106 มิลลิกรัม, 87%)

FTIR (KBr), V_{max}, cm⁻¹: 2970 (C-H aliphatic), 1645 (C=O), 1583 (C=N), 1452 (C=C), 1343 (C-N), 1247 (C=C-H), 733 (C-S), 690 (C-Cl)

¹H NMR (CDCl₃, 200 MHz) δ: 8.21 (d, J=2.2 Hz, 1H, H-9), 7.99 (d, J=2.2 Hz, 1H, H-7), 7.30-7.21 (m, 5H, phenyl), 6.96 (s, 1H, H-3), 4.14 (q, J=7.3 Hz, 1H, $\underline{\text{CH}}_2\text{CH}_3$), 4.12 (q, J=7.3 Hz, 1H, $\underline{\text{CH}}_2\text{CH}_3$), 4.05 (s, 2H, $\underline{\text{CH}}_2\text{S}$), 3.32 (s, 3H, N-CH₃), 2.32 (s, 3H, CH₃), 1.24 (t, J=7.3 Hz, 3H, CH₂ $\underline{\text{CH}}_3$)

¹³C NMR (CDCl₃, 50 MHz): 168.1, 158.7, 156.8, 150.0, 146.4, 145.8, 140.8, 135.1, 130.5(2C), 129.0(2C), 128.8, 128.5, 127.0, 122.0, 121.6, 41.2, 38.2, 35.7, 19.0, 13.5 ppm

MS (EI), m/z (relative intensity): 425 (M⁺, 3), 349 (21), 269 (100), 227 (30) HRMS (APCI-TOF) calcd. for $C_{22}H_{22}N_4OSCI$ [M+H]⁺ 425.1197; found: 425.1192 2-Chloro-5,11-dihydro-11-ethyl-4-methyl-8-(3-methoxyphenylthio)-methyl-5-methyl-6H-dipyrido[3,2-b:2',3'-e] [1,4]diazepin-6-one (T7)

นำสาร 2-chloro-5,11-dihydro-11-ethyl-4-methyl-8-(3-methoxyphenylthio)-methyl-6H-dipyrido[3,2-b.2',3'-e][1,4]diazepin-6-one (T5) (52 มิลลิกรัม, 0.12 มิลลิโมล) ละลายใน N,N-dimethylformamide (2 มิลลิลิตร) ภายใต้บรรยากาศของในโดรเจน เติม sodium hydride (7 มิลลิกรัม, 0.18 มิลลิโมล) ลงไป คนของผสมที่อุณหภูมิ 50 °C เป็นเวลา 30 นาที จากนั้นทิ้งให้ของผสมเย็นลงที่อุณหภูมิห้อง เติม Mel (0.03 มิลลิลิตร, 0.48 มิลลิโมล) คนของผสมที่อุณหภูมิห้องเป็นเวลา 0.5 ชั่วโมง จากนั้นเติมน้ำกลั่น สกัดด้วย ethyl acetate ล้างส่วนสกัดด้วยน้ำกลั่น แล้วทำให้ปราศจากน้ำโดยเติม anhydrous sodium sulphate กรอง ระเหยตัวทำละลายออก ทำให้บริสุทธิ์โดยใช้คอลัมน์โครมาโทรกราพี ซะด้วย 20% ethyl acetate/hexane จะได้ของแข็งขาวของ 2-chloro-5,11-dihydro-11-ethyl-4-methyl-8-(3-methoxyphenylthio)-methyl-5-methyl-6H-dipyrido[3,2-b.2',3'-e][1,4]diazepin-6-one (T7) (44.5 มิลลิกรัม, 83%) จุดหลอมเหลวอยู่ในช่วง 120-121 องศาเซลเซียส

FTIR (KBr), V_{max}, cm⁻¹: 2935 (C-H aliphatic), 1642 (C=O), 1588 (C=C), 1455 (C=C), 1385 (C-N), 1249 (C=<u>C-H</u>), 782 (C-S), 689 (C-Cl)

¹H NMR (CĎCl₃, 200 MHz) δ: 8.23 (d, J=2.2 Hz, 1H, H-9), 8.01 (d, J=2.2 Hz, 1H, H-7), 7.27-6.71 (m, 4H of Ph(m-OCH₃)), 4.14 (q, J=7 Hz, 2H, CH_2 CH₃), 4.05 (s, 2H, CH_2 S), 3.70 (s, 3H, OCH₃), 3.32 (s, 3H, N-CH₃), 2.33 (s, 3H, CH₃), 1.25 (t, J=7 Hz, 3H, CH₂CH₃)

¹³C NMR (CDCl₃, 50 MHz): 168.0, 159.9, 158.5, 156.6, 149.8, 146.5, 145.8, 141.0, 136.2, 129.9, 128.8, 128.5, 122.5, 122.1, 121.7, 115.7, 113.0, 55.2, 41.3, 38.2, 35.5, 19.0, 13.5 ppm
 MS (EI), m/z (relative intensity): 454 (M⁺, 4), 315 (100), 287 (13)
 HRMS (APCI-TOF) calcd. for C₂₃H₂₄N₄O₂SCI [M+H]⁺ 455.1308; found: 455.1316

การสังเคราะห์ T8-T9

2-Hydroxy-5-nitronicotinic acid (35)

น้ำสาร 2-hydroxynicotinic acid (34) (3 กรัม, 21.6 มิลลิโมล) ละลายด้วยกรคซัลฟีวริกเข้มข้น (24 มิลลิลิตร) ให้เป็นสารละลายใส เติมกรดในตริก 69% (3 มิลลิลิตร) คนสารละลายให้เป็นเนื้อเดียวกัน จากนั้นให้ความร้อนที่ 50 องศาเซลเซียส เป็นเวลา 7 ชั่วโมง ทิ้งให้สารละลายเย็นลงที่อุณหภูมิห้อง เทลงใน น้ำแข็ง กรองตะกอนสีเหลืองอ่อนที่เกิดขึ้น ล้างตะกอนด้วยน้ำเย็น แล้วทำให้แห้ง จะได้ตะกอนสีเหลืองอ่อน ของ 2-hydroxy-5-nitronicotinic acid (35) (3.13 กรัม, 79%) ซึ่งจะใช้ในขั้นต่อไปได้; m.p. 241-242 °C.

FTIR (KBr), V_{mex}, cm⁻¹: 3027 (O-H), 2872 (O-H), 1717 (C=O), 1624 (C=N), 1572 (C=C), 1466 and 1356 (NO₂), 1147 (C-O), 896 (C-OH), 653 (O-C=O), 599 (NO₂), 509 (C-C=O)

¹H NMR (acetone-d₆, 200 MHz) δ: 9.16 (d, J=2.9 Hz, 1H, H-6), 9.00 (d, J=2.9, 1H, H-4) ¹³C NMR (acetone-d₆, 50 MHz): 165.7, 163.7, 142.1, 140.2, 133.4, 118.3 ppm • MS (EI), m/z(relative intensity): 184 (M⁺, 50), 140 (100), 127 (31), 108 (24), 94 (75)

2-Chloro-5-nitronicotinic acid (36)

นำสาร 2-hydroxy-5-nitronicotinic acid (35) (2 กรัม, 10.87 มิลลิโมล) ใส่ในขวดกันกลม เติม phosphorus oxychloride (6 มิลลิลิตร, 64.36 มิลลิโมล) ให้ความร้อนที่อุณหภูมิ reflux เป็นเวลา 4 ชั่วโมง ทิ้งให้สารละลายเย็นลงที่อุณหภูมิห้อง ค่อยๆหยดสารละลายลงในน้ำกลั่นพร้อมกับคนของผสมไป ด้วยโดยให้อุณหภูมิไม่เกิน 40 องศาเซลเซีย์ส โดยเติมน้ำแข็งเล็กน้อย จากนั้นคนของผสมที่อุณหภูมิห้อง ต่ออีก 1 คืน จากนั้นลกัดด้วย diethyl ether ล้างขั้น ether ด้วยน้ำกลั่น แล้วทำให้ปราศจากน้ำโดยเติม

anhydrous sodium sulphate กรอง และระเหยตัวทำละลายออก จะได้ของแข็งสีเหลืองนวลของ 2-chloro-5-nitronicotinic acid (36) (1.72 กรัม, 78%); m.p. 140-141 °C.

FTIR (KBr), V_{max} cm⁻¹: 2909 (O-H), 1718 (C=O), 1609 (C=C), 1575 (C \approx N), 1415 and 1358 (NO₂), 1273, 1240, 1135 (C-O), 732 (C-Cl)

¹H NMR (DMSO-d₆, 200 MHz) δ : 9.32 (d, J=2.9 Hz, 1H, H-6), 8.85 (d, J=2.9, 1H, H-4) ¹³C NMR (DMSO-d₆, 50 MHz): 163.9, 152.8, 146.5, 143.3, 134.9, 128.3 ppm MS (EI), m/z(relative intensity): 202 (M⁺, 100), 174 (53), 156 (74), 100 (65), 76 (67)

2-Chloro-4-methyl-3-nitropyridine (38)

นำสาร 2-hydroxy-4-methyl-3-nitropyridine (37) (600 มิลลิกรัม, 3.90 มิลลิโมล) ใส่ในขวด vial เติม phosphorus oxychloride (2 มิลลิลิตร, 21.4 มิลลิโมล) ปิดด้วยฝาเกลียวที่แน่นสนิท ให้ความร้อนที่ 150 องศาเซลเซียส (อุณหภูมิ oil bath) เป็นเวลา 6 ชั่วโมง ทิ้งให้สารละลายเย็นลงที่อุณหภูมิห้อง จากนั้น เทสารละลายลงในบีกเกอร์บรรจุน้ำแข็ง คนของผสมต่อเป็นเวลา 1 ชั่วโมง กรองตะกอนที่เกิดขึ้น ล้าง ตะกอนด้วยน้ำกลั่น จากนั้นละลายตะกอนด้วย dichloromethane ล้างด้วยสารละลาย sodium hydrogen carbonate อิ่มตัวในน้ำ นำขั้น dichloromethane มาล้างด้วยน้ำกลั่นอีกครั้ง แล้วทำให้ ปราศจากน้ำโดยเติม anhydrous sodium sulphate กรอง และระเหยตัวทำละลายออก นำส่วนที่เหลือมา ทำให้บริสุทธิ์โดยใช้คอลัมน์โครมาโทรกราพี ซะด้วย 15%ethyl acetate/hexane จะได้ของแข็งสีเหลืองนวล ของ 2-chloro-4-methyl-3-nitropyridine (38) (570 มิลลิกรัม, 85%) จุดหลอมเหลวอยู่ในช่วง 51-52 องศาเซลเซียส

FTIR (KBr), V_{max} cm⁻¹: 1590 (C=C), 1526 (C=N), 1359 (NO₂), 854 (C-N), 838 (C-CI)

 $^{1}\text{H NMR (CDCl}_{3},\ 200\ \text{MHz})$ $\pmb{\delta}$: 8.39 (d, J=5.1 Hz, 1H, H-6), 7.25 (d, J=5.1 Hz, 1H, H-5), 2.40 (s, 3H, CH $_{3}$)

¹³C NMR (CDCl₃, 50 MHz): 149.8 (2C), 142.0, 141.8, 125.1 (2C), 17.1 ppm MS (EI), *m/z* (relative intensity): **1**/3 (M⁺, 100), 156 (30), 128 (6) HRMS (APCI-TOF) calcd. for C₆H₆N₇O₇CI [M+H]⁺ 173.0112; found: 173.0113

2-(Cyclopropylamino)-4-methyl-3-nitropyridine (39)

นำสาร 2-chloro-4-methyl-3-nitropyridine (38) (550 มิลลิกรัม, 3.2 มิลลิโมล) ละลายด้วย xylene (1 ml) ใส่ในขวด vial เติม cyclopropylamine (0.9 มิลลิลิตร, 12.8 มิลลิโมล) ปิดฝาชวดให้แน่น สนิท ให้ความร้อนที่ 105 องศาเซลเซียส (อุณหภูมิ oil bath) เป็นเวลา 4 ขั่วโมง ทิ้งให้สารละลายเย็นลงที่ อุณหภูมิห้อง เทลงในน้ำกลั่น สกัดด้วย dichloromethane ล้างขั้น dichloromethane ด้วยน้ำกลั่น แล้วทำ ให้ปราศจากน้ำโดยเติม anhydrous sodium sulphate กรอง และระเหยตัวทำละลายออก นำส่วนที่เหลือ มาทำให้บริสุทธิ์โดยใช้คอลัมน์โครมาโทรกราฟี ซะด้วย 10%ethyl acetate/hexane จะได้ของเหลวสีเหลือง ส้มของ 2-cyclopropylamino-4-methyl-3-nitropyridine (39) (610 มิลลิกรัม, 99%)

FTIR (KBr), V_{max1} cm⁻¹: 3404 (N-H), 1596 (C=C), 1558 (C=N), 1359 (NO₂), 861 (C-N)

 1 H NMR (CDCl₃, 200 MHz) δ: 8.23 (d, J=5.1 Hz, 1H, H-6), 7.51 (br s, 1H, NH₂), 6.54 (d, J=5.1 Hz, 1H, H-5), 3.00-2.88 (m, 1H, CH-cyclopropyl), 2.53 (s, 3H, CH₃), 0.95-0.85 (m, 1H, CH₂-cyclopropyl), 0.62-0.54 (m, 1H, CH₂-cyclopropyl)

¹³C NMR (CDCl₃, 50 MHz): 153.6, 152.2, 146.0, 131.0, 116.3, 24.4, 21.4, 7.3 (2C) ppm MS (EI), *m/z*(relative intensity): 194 ((M+H)⁺, 100), 176 (76), 146 (60), 131 (20)

3-Amino-2-cyclopropylamino-4-methylpyridine (40)

นำสาร 2-cyclopropylamino-4-methyl-3-nitropyridine (39) (686 มิลลิกรัม, 3.55 มิลลิโมล) บรรจุลงในขวดกันกลม เติม acetic acid (7.4 มิลลิลิตร) คนสารละลายให้เป็นเนื้อเดียวกัน แช่ของผสมลง

ในอ่างน้ำแข็ง เตรียมสารละสายของ SnCl₂·2H₂O (2.68 กรัม, 11.9 มิลลิโมล) ในกรดไฮโดรคลอริกเข้มข้น (2.2 มิลลิลิตร) ค่อยๆเติมสารละลายของ SnCl₂·2H₂O ในกรด ลงในสารละลายของสารัตั้งต้นที่ 0 องศา เซลเซียส จากนั้นคนของผสมที่อุณหภูมิห้องเป็นเวลา 3 ชั่วโมง จากนั้นแข่ของผสมลงในอ่างน้ำแข็ง เติมน้ำ กลั่น คนของผสมต่ออีกลักพัก จะเกิดตะกอนสีขาว ค่อยๆเติมสารละลาย 50% sodium hydroxide ในน้ำ ลงไปจนตะกอนละลายหมด (pH ประมาณ 11-12) สกัดของผสมด้วย dichloromethane นำส่วนที่สกัด ได้มาล้างด้วยน้ำกลั่น จากนั้นนำขั้น dichloromethane มาทำให้ปราศจากน้ำโดยเติม anhydrous sodium sulphate ลงไป กรอง และระเหยตัวทำละลายออก จะได้ผลผลิตหยาบของ 3-amino-2-cyclopropyl amino-4-methyl pyridine (40) (481 มิลลิกรัม, 83%) ซึ่งสามารถนำไปใช้ในขั้นต่อไปได้ (m.p.148-150°C, K.G.Grozinger et al., 2000)

FTIR (KBr), V_{max} , cm⁻¹: 3334 (N-H), 1655 (NH₂), 1609 (C=C), 1558 (C=N), 1516, 1424, 1365, 1235 (C-N), 1019, 805 (CH)

 1 H NMR (CDCl₃, 200 MHz) δ: 7.72 (d, J=5.1 Hz, 1H, H-6), 6.49 (d, J=5.1 Hz, 1H, H-5), 4.63 (br s, 1H, NH), 3.19 (br s, 2H, NH₂), 2.84-2.77 (m, 1H, CH-cyclopropyl), 2.15 (s, 3H, CH₃), 0.84-0.75 (m, 1H, CH₂-cyclopropyl), 0.53-0.46 (m, 1H, CH₂-cyclopropyl)

¹³C NMR (CDCl₃, 50 MHz): 150.1, 138.0, 129.6, 127.0, 116.6, 24.5, 16.6, 7.1 (2**6**) ppm MS (EI), m/z(relative intensity): 164 ((M+H)⁺, 100), 148 (66), 134 (20), 80 (22) HRMS (APCI-TOF) calcd. for $C_9H_{14}N_3$ [M+H]⁺ 164.1182; found: 164.1182.

N-(2-cyclopropylamino-4-methyl-3-pyridinyl)-2-chloro-5-nitro-3-pyridinecarbox amide (42)

เตรียม acid chloride (41) โดยน้ำ 2-chloro-5-nitronicotinic acid (36) (250 มิลลิกรัม, 1.23 มิลลิโมล) ใส่ในขวดกันกลม เต็ม benzene (5 มิลลิลิตร) คนของผสมที่อุณหภูมิห้อง จากนั้นเติม oxalyl chloride (0.3 มิลลิลิตร, 3.90 มิลลิโมล) หยด N,N-dimethylformamide ลงไป (2 หยด) ปิดขวดกันกลม

ด้วย calcium chloride guard tube คนสารละลายที่อุณหภูมิห้องเป็นเวลา 1 ชั่วโมง ระเหยเอาตัวทำ ละลายออก จะได้ 2-chloro-5-nitronicotinyl chloride (41)

นำสาร 3-amino-2-cyclopropylamino-4-methylpyridine (40) (116 มิลลิกรัม, 0.71 มิลลิโมล) ละลายใน tetrahydrofuran (3 มิลลิดิตร) เติม N-ethyldiisopropylamine (0.37 มิลลิดิตร, 2.13 มิลลิโมล) คนสารละลายให้เข้ากัน แช่ลงในอ่างน้ำแข็ง จากนั้นค่อยๆหยดสารละลายของ 2-chloro-5-nitronicotinyl chloride (41) ใน tetrahydrofuran (2 มิลลิดิตร) ลงในสารละลายข้างต้น ปิดขวดกันกลมด้วย calcium chloride guard tube คนสารละลายต่อเป็นเวลา 5 ชั่วโมง เติมน้ำกลั่น และสารละลาย sodium hydrogen carbonate อิ่มตัวในน้ำ สกัดด้วย dichloromethane นำชั้น dichloromethane มาล้างด้วยน้ำ กลั่น แล้วทำให้ปราศจากน้ำโดยเติม anhydrous sodium sulphate กรอง และระเหยตัวทำละลายออก นำมาทำให้บริสุทธิ์โดยใช้คอลัมน์โครมาโทรกราพี ซะด้วย 30% ethyl acetate/hexane จะได้ของแข็งสี เหลืองของ N-(2-cyclopropylamino-4-methyl-3-pyridinyl)-2-chloro-5-nitro-3-pyridinecarboxamide (42) (105 มิลลิกรัม, 53%) (m.p. 185-186°C, K.G.Grozinger et al., 2000)

FTIR (KBr), V_{max} , cm⁻¹: 3230 (NH), 1650 (C=O), 1602 (C=C), 1568 (C=N), 1521 (N-H), 1352 (NO₂), 746 (C-Cl)

 1 H NMR (acetone-d₆, 200 MHz) δ: 9.30 (d, J=2.9 Hz, 1H, H-6'), 9.22 (br s, 1H, HN-CO), 8.95 (d, J=2.9, 1H, H-4'), 7.96 (d, J=5.1 Hz, 1H, H-6), 6.58 (d, J=4.4 Hz, 1H, H-5), 8.06 (br s, 1H, NH), 2.79.-2.71 (m, 1H, CH-cyclopropyl), 2.29 (s, 3H, CH₃), 0.73-0.63 (m, 1H, CH₂-cyclopropyl), 0.42-0.35 (m, 1H, CH₃-cyclopropyl)

¹³C NMR (acetone-d₆, 50 MHz): 163.2, 157.1, 153.4, 147.5, 146.5, 145.6, 144.7, 134.4, 134.2, 116.9, 115.9, 25.2, 18.2, 7.5 (2C) ppm

MS (EI), *m*/z(relative intensity): 348 ((M+H)⁺, 56), 332 (15), 314 (100), 233 (65), 162 (75) HRMS (APCI-TOF) calcd. for C₁₆H₁₅N₅O₃Cl [M+H]⁺ 348.0858; found: 348.0863.

4-Methyl-8-nitro-5,11-dihydro-11-cyclopropyl-6*H*-dipyrido[3,2-*b*:2',3'-*e*][1,4] diazepin-6-one (43)

นำสาร N-(2-cyclopropylamino-4-methyl-3-pyridinyl)-2-chloro-5-nitro-3-pyridine carboxamide (42) (378 มิลลิกรัม, 1.09 มิลลิโมล) ละลายใน hexamethyldisilazane (36 มิลลิลิศร) ได้เป็น suspension ให้ความร้อนที่ 110 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง จะได้เป็นสารละลายใสสีน้ำตาล ทิ้ง ให้เย็นลงที่อุณหภูมิห้อง เติมน้ำกลั่น สกัดด้วย dichloromethane นำชั้น dichloromethane มาล้างด้วยน้ำ กลั่น แล้วทำให้ปราศจากน้ำโดยเติม anhydrous sodium sulphate กรอง และระเหยตัวทำละลายออกให้ แห้ง ตกผลึกใน acetone จะได้ของแข็งสีเหลืองของ 4-methyl-8-nitro-5,11-dihydro-11-cyclopropyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin -6-one (43) (305 มิลลิกรัม, 90%) จุดหลอมเหลวอยู่ในช่วง 266.5-268 องศาเซลเซียส (dec.) (m.p.259-266°C,K.G.Grozinger et al., 2000)

FTIR (KBr), V_{max} , cm⁻¹: 3197 (NH), 1659 (C=O), 1592 (C=C), 1519 (C=N), 1460 (N-H), 1336 (NO₂)

 1 H NMR (CDCl₃, 200 MHz) δ: 9.23 (d, J=2.2 Hz, 1H, H-9), 8.89 (d, J=2.2, 1H, H-7), 8.20 (d, J=5.1 Hz, 1H, H-2), 8.10 (br s, 1H, NH), 7.04 (d, J=5.1 Hz, 1H, H-3), 3.80-3.70 (m, 1H, CH-cyclopropyl), 2.42 (s, 3H, CH₃), 1.10-1.00 (m, 1H, CH₂-cyclopropyl), 0.60-0.50 (m, 1H, CH₂-cyclopropyl)

¹³C NMR (CDCl₃, 50 MHz): 166.4, 163.9, 151.8, 147.5, 144.9, 140.1, 139.6, 136.5, 124.4, 123.0, 118.8, 30.8, 17.6, 9.3 (2C) ppm

HRMS (ESI-TOF) calcd. for $C_{15}H_{14}N_5O_3$ [M+H]⁺ 312.1091; found: 312.1087.

8-Amino-4-methyl-5,11-dihydro-11-cyclopropyl-6*H*-dipyrido[3,2-*b*:2',3'-e][1,4]diazepín-6-one hydrochloride salt (T8)

นำสาร 4-methyl-8-nitro-5,11-dihydro-11-cyclopropyl-6*H*-dipyrido[3,2-*b:2*',3'-e][1,4] diazepin-6-one (43) (80 มิลลิกรัม, 0.25 มิลลิโมล) บรรจุลงในขวดกันกลม เติม acetic acid (2.8 มิลลิลิตร) คนสารละลายให้เป็นเนื้อเดียวกัน แข่ของผสมลงในอ่างน้ำแข็ง เตรียมสารละลายของ SnCl₂.2H₂O (190 มิลลิกรัม, 0.84 มิลลิโมล) ในกรดไฮโดรคลอริกเข้มข้น (0.7 มิลลิลิตร) ค่อยๆเติม สารละลายของ SnCl₂.2H₂O ในกรด ลงในสารละลายของสารตั้งต้นที่ 0 องศาเซลเซียส จะเกิดตะกอนสี เหลือง จากนั้นคนของผสมที่อุณหภูมิห้องเป็นเวลา 1 ชั่วโมง กรองตะกอนสีเหลือง ล้างตะกอนด้วย tetrahydrofuran ทำให้แห้ง จะได้ผลผลิตหยาบของ 8-amino-4-methyl-5,11-dihydro-11-cyclopropyl-6*H*-dipyrido[3,2-*b:2*',3'-e][1,4]diazepin-6-one hydrochloride salt (T8) (60 mg, 73%)

FTIR (KBr), V_{max} cm⁻¹: 3519 (NH), 2587 (N-H of NH₃⁺), 1668 (C=O), 1620 (C=C), 1539 (NH of NH₃⁺), 1468 (N-H), 1254 (C-N)

 1 H NMR (DMSO-d₆, 200 MHz) δ: 10.12 (s, 1H, HN-C=O), 8.47 (d, J=2.2 Hz, 1H, H-9), 8.12 (d, J=5.1 Hz, 1H, H-2), 7.99 (d, J=2.2 Hz, 1H, H-7), 7.18 (d, J=5.1 Hz, 1H, H-3), 5.63 (br s, NH₃), 3.63 (m, 1H, CH-cyclopropyl), 2.37 (s, 3H, CH₃), 0.92-0.89 (m, 1H, CH₂-cyclopropyl), 0.50-0.30 (m, 4 H, CH₂-cyclopropyl)

¹³C NMR (DMSO-d₆, 50 MHz): 165.6, 156.6, 152.6, 143.6, 142.6, 142.4, 133.4, 128.0, 125.2, 122.7, 121.1, 29.5, 17.7, 8.8, 8.6 ppm

HRMS (ESI-TOF) calcd. for C₁₅H₁₆N₅O [M+H]⁺ 282.1349; found: 282.1354.

8-Amino-4-methyl-5,11-dihydro-11-cyclopropyl-6H-dipyrido[3,2-b:2',3'-e][1,4] diazepin-6-one (T9)

นำสาร 8-amino-4-methyl-5,11-dihydro-11-cyclopropyl-6*H*-dipyrido[3,2-*b.2*',3'-e][1,4] diazepin-6-one hydrochloride salt (T8) ละลายในน้ำ เติมสารละลาย 50%aq.NaOH ปรับให้มีค่า pH ประมาณ 12 สกัดด้วย dichloromethane หลายๆครั้ง แล้วล้างขึ้น dichloromethane ด้วยน้ำกลั่น แล้วทำ ให้ปราศจากน้ำโดยเติม anhydrous sodium sulphate กรอง และระเหยดัวทำละลายออก จะได้ผลผลิต หยาบสีเหลืองของ 8-amino-4-methyl-5,11-dihydro-11-cyclopropyl-6*H*-dipyrido[3,2-*b.2*',3'-e][1,4] diazepin-6-one (T9) (90%) (m.p. 294-296 °C,K.G.Grozinger et al., 2000)

FTIR (KBr), V_{max} , cm⁻¹: 3362 (NH₂), 3317 (N-H), 1662 (C=O), 1640 (NH₂), 1602 (C=C), 1472 (N-H), 1237 (C-N)

 1 H NMR (DMSO-d₆, 200 MHz) δ: 9.69 (s, 1H, HN-C=O), 8.01 (d, J=4.4 Hz, 1H, H-2), 7.84 (d, J=2.2 Hz, 1H, H-9), 7.20 (d, J=2.9 Hz, 1H, H-7), 6.98 (d, J=5.1 Hz, 1H, H-3), 5.25 (s, 2H, NH₂), 3.60-3.40 (m, 1H, CH-cyclopropyl), 2.28 (s, 3H, CH₃), 0.80-0.60 (m, 1H, CH₂-cyclopropyl), 0.30-0.10 (m, 1H, CH₂-cyclopropyl)

¹³C NMR (DMSO-d₆, 50 MHz): 167.4, 155.3, 149.9, 143.2, 141.6, 140.1, 137.2, 124.8, 123.1, 121.5, 121.0, 28.8, 17.5, 8.5, 8.4 ppm

HRMS (APCI-TOF) calcd. for C₁₅H₁₆N₅O [M+H]⁺ 282.1360; found: 282.1352.

การศึกษาการออกฤทธิ์ด้านเชื้อเอชไอวีในหลอดทดลอง

- 1. ไวรัสที่ใช้เป็น DA5 (HIV-1 subtype E) ได้มาจากหญิงตั้งครรภ์ซึ่งติดเชื้อ HIV และได้มาฝากครรภ์ ณ โรงพยาบาลศิริราช ไวรัสที่ได้สายพันธ์ X4 ซึ่งมีคุณสมบัติของทางชีววิทยาเป็น syncytia inducing (Si) formation โดยเซลล์ที่ติดเชื้อมีรูปร่างเปลี่ยนแปลงไป (cytopathic effect)
- 2. เซลล์ที่ใช้เพาะเลี้ยง
- 2.1 เซลล์เม็ดขาวชนิดนิวเคลียสเดี่ยว (Pheripheral blood mononuclear cell) จากเลือดผู้บริจาค โลหิต สำหรับการแยกเชื้อไวรัส HIV จากเลือดผู้ติดเชื้อ
- 2.2 เซลล์เม็คเลือดขาวชนิด H9 cell line ซึ่งเป็นT-lymphoblastoid cell line ซึ่งได้รับบริจาคมาจาก สถาบัน Medical research Centre, UK เพื่อเตรียมเป็นไวรัสจำนวนมาก (viral stock)
- 2.3 เซลล์เม็ดเลือดขาวชนิด C8166 cell line ซึ่งเป็นT-lymphoblastoid cell line ใช้ในการทดสอบ ฤทธิ์ของสารตัวอย่าง ตลอดโครงการศึกษา
- สารตัวอย่าง ซึ่งละลายอยู่ใน 70%-95% DMSO จำนวน 5 ตัวอย่าง (ดารางที่ 2)
- 4. ยารีโทรไวรัส 3 ชนิดซึ่งเป็น reversed transcriptase (RT) inhibitor ชององค์การเกลัชกรรม เพื่อใช้ เป็นตัวควบคุมเทคนิคการทดสอบตลอดโครงการ ประกอบด้วย
 - 4.1 ANTIVIR (AZT 100 mg)
- 4.2 GPO-vir ซึ่งเป็น analog ของ RT inhibitors 3 ชนิด (Nevirapine 200mg, Lamivudine 150mg และ Stavudine 30 mg)
 - 4.3 NERAVIR (Nevirapine 200 mg) ซึ่งเป็น analog ของ RT inhibitors

วิธีการทดสอบ

 การศึกษาความเป็นพิษของสารตัวอย่าง, ยารีโทรไวรัส และ DMSO ที่มีผลดีอเชลล์เม็ด เลือดขาวเพาะเลี้ยง

เจือจาง สารที่ต้องการทดสอบและยารีโทรไวรัส ในน้ำเลี้ยงเซลล์ให้ได้ความเข้มข้นที่ระดับ 10, 1, 0.1 ug/ml และเจือจาง DMSO ที่ระดับ 1%, 0.1% และ, 0.01% ใส่ใน tissue culture plate ตามลำดับ โดยทำซ้ำ 2 ชุด (duplicate) หลังจากนั้นเติม C8166 cells ลงทุกหลุม และติดตามทุก วันเป็นเวลา 7 วัน ในขณะทดสอบตรวจสอบความสมบูรณ์ของเซลล์ทุกครั้ง โดยนับจำนวนและย้อม ดูเซลล์ที่มีชีวิตด้วย 1% tryphan blue ใน D0 (วันที่ 0), D4 และ D7โดยใช้กล้องจุลทรรศน์ เปรียบเทียบกับเซลล์ควบคุมที่ไม่มี bioactive

2. การศึกษาผลต่อการยับยั้งเชื้อไวรัสเข้าสู่เซลล์(virustatic) และต่อการม่าเชื้อไวรัส (virucidal)

ไวรัสที่ใช้มีค่า 100 TCID50 (50% Tissue cell infectivity dose ซึ่งเป็นค่าความแรงของ ไวรัสที่ก่อให้เกิดการติดเชื้อในเซลล์ 50%) ซึ่งได้จากการเจือจางไวรัสและทำซ้ำ 4 หลุม คำนวณหา คำความแรงไวรัสด้วยสูตร Karber equation แต่ละครั้งที่ทดสอบมีตัวควบคุมทั้งหมด 5 ชนิด

- 2.1 ตัวควบคุ**มไวร**ัส (virus control) โดยเจือจางที่ 100, 10 และ 1 TCID50 เพื่อติดตามไวรัส ที่ใช้ในการทดสอบต้องได้ที่ 100 TCID50 ทุกครั้ง
- 2.2 ตัวควบคุมเชลล์ C8166 (cell control) เพื่อตรวจสอบคุณภาพของเชลล์ตลอดการ
- 2.3 ตัวควบคุม Bioactive (Bioactive control) เพื่อตรวจสอบผลของสารต่อเชลล์ทคสอบ
- 2.4 ตัวควบคุมสาร DMSO (DMSO control) เพื่อตรวจสอบผลกระทบต่อการเพิ่ม จำนวนของไวรัสในเซลล์เพาะเลี้ยง
- 2.5 ตัวควบคุมชุดยารีโทรไวรัส (AZT, GPO-vir และ Nevirapine controls) เพื่อตรวจสอบ ผลกระทบต่อเซลล์เพาะเลี้ยง

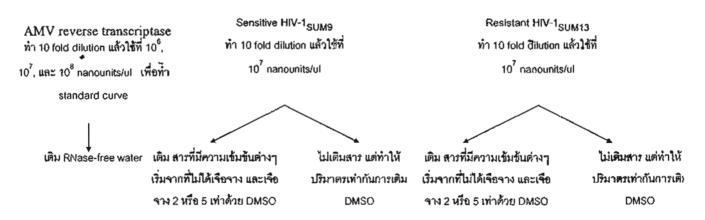
การศึกษาผลของสารสังเคราะห์ที่มีต่อการยับยั้งเชื้อไวรัสเข้าสู่เซลล์ (virustatic)

ในการทดสอบ อบสารละลายตัวอย่างกับเซลล์ C8166 เป็นเวลา 30 นาที โดยทำง้ำ 2 ชุด (duplicate) จึงใส่ไวรัสที่ระดับ 100 TCID50 อบไว้ 3 ชั่วโมง แล้วล้าง 4 ครั้ง หลังจากนั้น เลี้ยงในน้ำเลี้ยง ที่มีสาร ตัวอย่างที่มีความเข้มข้น10 เท่า ติดตามเป็นเวลานาน 7 วัน ซึ่งมีการเปลี่ยนน้ำเลี้ยงเซลล์ในวันที่ 3 โดยที่ D4 และ D7 ติดตามการเปลี่ยนแปลงของเซลล์เพาะเลี้ยง (cytopathic effect) และใน D7 ติดตามการสร้าง p24 Ag ในน้ำเลี้ยงเซลล์ ด้วยชุดตรวจ ELISA สำเร็จรูป คำนวณออกมาเป็น EC50 (50% effective concentration ซึ่งเป็นค่าความเข้มข้นของ สารตัวอย่างที่สามารถยับยั้งไวรัสได้ 50%)

การศึกษาผลของสารสังเคราะห์ที่มีต่อการฆ่าเชื้อไวรัส (virucidal)

ในการทดสอบ อบสารละลาย ตัวอย่างกับไวรัสที่ระดับ 100 TCID50 ไว้ 1 ชั่วโมงโดยทำซ้ำ 2 ชุด (duplicate) เช่นเดียวกัน จึงใส่เซลล์ C8166 อบไว้เป็นเวลา 1 ชั่วโมง แล้วล้าง 4 ครั้ง หลังจากนั้นติดตาม เป็นเวลานาน 7 วันซึ่งมีการเปลี่ยนน้ำเลี้ยงเซลล์ในวันที่ 3 โดยที่ D4 และ D7 ติดตามการเปลี่ยนแปล่ง ของเซลล์เพาะเลี้ยง และใน D7 ติดตามการสร้าง p24 Ag ในน้ำเลี้ยงเซลล์เช่นเดียวกัน

 การศึกษาความสามารถของสารสังเคราะห์ในการยับยั้ง reverse transcriptase activity ของ เชื้อ HIV-1


เชื้อ HIV-1 ท**ี่ใช้ใน**การทดสอบ

- 1. HIV-1_{รบพอ} เป็นเชื้อ HIV ที่ได้จากการทำ Transfection plasmid HIV-1_{รบพอ} ซึ่งเป็น Molecular clone HIV wild type ไม่มี mutation ใน Reverse Transcriptase (RT) sequence ทำให้เป็น HIV ที่ไวต่อยา
- HIV-1_{SUM13} เป็นเชื้อ HIV ที่ได้จากการทำ Transfection plasmid HIV-1_{SUM13} ซึ่งเป็น Molecular clone HIV มี mutations ใน RT sequence คือ A62V/V75I/F77L/ F116Y/Q151M ทำให้เป็น HIV ที่ดื้อต่อยาชนิด Nucleoside RT Inhibitor (NRTI) ได้แก่ 3'-azido-3'-deoxythymidine (AZT), 2',3'-dideoxycytidine (ddC), 2', 3'-dideoxy inosine (ddI)⁵.

วิธีการแบ่งเป็น 3 ส่วน คือ การทำ Reverse transcription⁶, real-time polymerase chain reaction (PCR), และ การหาค่า %inhibition of RT และ IC50 ⁷

1. Reverse transcription

เริ่มจากการเตรียม Master mix ของ 5X Buffer, DTT, dNTP, EMCV primer, RNase-inhibitor, EMCV RNA template, RNase-free water และ NP40 แล้วแบ่งใส่ หลอดทดลองหลอดละเท่าๆกัน จากนั้นนำแต่ละหลอดไปเติม standard enzyme (AMV reverse transcriptase (10U/ul), QIAGEN) หรือ HIV-1 และ สารดังนี้

เมื่อผสม Master mix, AMV-RT หรือ HIV-1 และ สารที่ต้องการทดสอบในหลอดทดลอง แล้ว นำไป incubate ใน water bath ที่อุณหภูมิ 42 °C เป็นเวลา 1 ชั่วโมง ชั้นตอนนี้ RT activity ของ AMV-RT หรือ HIV-1 จะเปลี่ยน EMCV RNA template ให้เป็น EMCV cDNA ในสภาวะที่มีหรือไม่มีสารที่มีความเข้มข้นต่างๆ ถ้าหากสารที่ทดสอบมีความ สามารถในการยับยั้งการทำงานของ RT จะทำให้ปริมาณของ EMCV cDNA ในหลอด ทดลองน้อยลงหรือไม่มีเลย เมื่อครบ 1 ชั่วโมง RT activity จะถูกทำลายโดยการ incubate ใน heat block ที่อุณหภูมิ 95°C เป็นเวลา 5 นาที

2. Real-time polymerase chain reaction (PCR)

เตรียม Master mix โดยผสม 10X Buffer, MgCl₂, dNTP, Probe, EMCV forward and reward primers, Hot Tag DNA polymerase และ Distill water แล้วแบ่งใส่หลอด ทดลองหลอดละเท่าๆกัน จากนั้นนำแต่ละหลอดไปเติม product ที่ได้จากการทำ Reverse transcription นำไปเข้าเครื่อง real-time PCR (Rotor Gene) เป็นเวลา 2 ชั่วโมง เพื่อที่ DNA polymerase จะเพิ่มจำนวน EMCV cDNA ในแต่ละหลอดให้มาก ขึ้นแบบ exponential และ จำนวน EMCV DNA product จะถูก detect ด้วย Probe ซึ่ง จะแสดงผลใน program ใน computer

3. การหาค่า % Inhibition of RT และ IC50

โดยการใช้ Program จะสามารถหาค่า RT activity (nanounits/ul) ของ HIV-1_{รบพร} และHIV-1_{รบพาร} ในหลอดที่มีสารและหลอดที่ไม่มีสารได้ เมื่อเทียบกับ RT activity ของ AMV RT จากนั้นนำค่า RT activity ที่ได้มาคำนวณความสามารถของสารในหน่วย เปอร์เซ็นต์ในการขับขั้ง RT activity ได้จากสตร

% Inhibition of RT = (RT activity ของ HIV-1 ู ที่ไม่ได้เดิมสาร - RT activity ของ HIV-1 ู ที่เดิมสาร) X 100 RT activity ของ HIV-1 ู ที่ไม่ได้เดิมสาร

HIV-1_A ≃ HIV-1_{sums} หรือ HIV-1_{sum13}

น้ำค่า % Inhibition และ ความเข้มข้นของสาร (M) ไป plot graph แบบ Nonlinear regression โดยใช้ program GraphPad Prism เพื่อหาความสัมพันธ์ดังสมการข้างล่าง

$$Y=1/(1+10^{((Log1C50-X)Slope}))$$
เมื่อ
$$Y=(\% inhibition) X 0.01$$

$$X=compound concentration (M)$$

หลังจากการใส่ข้อมูลของ Y และ X ของสารลงใน Prism program แล้วสั่งวิเคราะห์ผล program จะคำนวณและแสดงค่า IC50

เอกสารอ้างอิง

- Luzuriaga, K.; Bryson, Y.; Krostad, P.; Robinson, J.; Stechenberg, B; Lamson, M.; Cort, S.; Sullivan J. L. Combination Treatment With Zidovudine, Didanosine, and Nevirapine In Infants With Human Immunodeficiency Virus Type I Infection. N. Engl. J. Med. 1997, 336, 1343-1349.
- 2. (a) Merluzzi, V. J.; Hagrave, K. D.; Labadia, M.; Grozinger, K.; Skoog, M.; Wu, J. C.; Shih, C. –K.; Eckner, K.; Hattox, S.; Adams. J.; Rosenthal, A. S.; Faanes, R.; Eckner, R. J.; Koup, R. A.; Sullivan, J. L. Inhibition of HIV-1 Replication by a Non-Nucleoside Reverse Transcriptase Inhibitor. *Science* 1990, 250,1411-1413. (b) Hargrave, K. D.; Proudfoot, J. R.; Grozinger, K. G.; Kapadia, S. R.; Patel, U. R.; Fuchs, V. U.; Mauldin, S. C.; Vitous, J.; Behnke, M. L.; Klunder, J. M.; Pai, K.; Skiles, J. W.; McNeil, D. W.; Rose, J. M.; Chòw, G. C.; Skoog, M. T.; Wu, J. C.; Schmidt, G.; Engel, W.; Eberlein, W. G.; Saboe, T. D.; Campbell, S. J.; Rosenthal, A. S.; Adams, J. Novel Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase. 1. Tricyclic Pyridobenzo- and Dipyridodiazepinones. *J. Med. Chem.* 1991, 34, 2231-2241.
- 3. Richman, D.; Havlir, D.; Corbell, J.; Looney, D.; Ignacio, C.; Spector, S. A.; Sullivan, J.; Cheeseman, S.; Barringer, K.; Pauletti, D.; Shih, C.-K.; Myers, M.; Griffin, J. Nevirapine Resistance Mutations Of Human Immunodeficiency Virus Type 1 Selected During Therapy. *J. Virol.* 1994, 68, 1660-1666.
- 4. (a) Klunder, J. M.; Hoermann, M.; Cywin, C. L.; David, E.; Brickwood, J. R.; Schwartz, R.; Barringer, K. J.; Pauletti, D.; Shih, C-K.; Erickson, D. A.; Sorge, C. L.; Joseph, D. P.; Hattox, S. E.; Adams, J.; Grob, P. M.; Novel Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase. 7. 8-Arylethyldipyrido diazepinones as Potent Broad-Spectrum Inhibitors of Wild-Type and Mutant Enzymes. *J. Med. Chem.* 1998, 41, 2960-2971. (b) Cywin, C. L.; Klunder, J. M.; Hoermann, M.; Brickwood, J. R.; David, E.; Grob, P. M.; Schwartz, R.; Pauletti, D.; Barringer, K. J.; Shih, C-K.; Sorge, C. L.; Erickson, D. A.; Joseph, D. P.; Hattox, S. E.; Novel Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase. 8. 8-Aryloxymethyl- and 8-Arylthiomethyldipyridodiazepinones. *J. Med. Chem.* 1998, 41, 2972-2984.

- Shirasaka T, Kavlick MF, Ueno T, Gao WY, Kojima E, Alcaide ML, et al. Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. Proc Natl Acad Sci U S A 1995;92(6):2398-402.
- Lerma JGG, Heneine W. Ultrasensitive detection of reverse transcriptase activity by the Amp-RT assay. In: Kinchington D, Schinazi RF, editors. Antiviral methods and protocols. Totowa, New Jersey; 2000.
- Ferreira S, Crumb WJ, Jr., Carlton CG, Clarkson CW. Effects of cocaine and its major metabolites on the HERG-encoded potassium channel. J Pharmacol Exp Ther 2001;299(1):220-6.

Out put จากโครงการที่ได้รับทุนจากสำนักงานกองทุนสนับสนุนการวิจัย

ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

- 1.1 Chaosuancharoen N, Chimnoi N, Leeprasert T, Thitithanyanont A, Hannongbua S, Techasakul, S. Synthesis and Anti-HIV-1 Reverse Transcriptase Activity of Dipyridodiazepinone derivatives. Manuscript in preparation.
- 1.2 Chaosuancharoen N, Chimnoi N, Pungpo P, Louisirirotchanakul S, Hannongbua S, Techasakul, S. Novel 2-chloro-8- arylthiomethyldipyridodiazepinone derivatives with activity against HIV-1 reverse transcriptase. Molecule 2007; 12, 218-230.
- 1.3 Vailikhit V, Bunsawansong P, Techasakul S, Hannongbua S. Conformational analysis of nevirapine in solutions based on nmr spectroscopy and quantum chemical calculations. JTCC 2006; 4: 913-24.

การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงสาธารณะ ได้มีเครือข่ายความร่วมมือในการทำงานวิจัยกับ คณะวิทยาศาสตร์ ม[ี]หาวิทยาลัย มหิดล และ คณะแพทยศาสตร์ ศิริราชพยาบาล

การเสนอผลงานในที่ประชุมวิชาการ

- 3.1 การประชุมนักวิจัยรุ่นใหม่พบเมธิวิจัยอาวุโล สกว. วันที่ 13-15 ตุลาคม 2548 ณ โรงแรมรี เจนท์ ชะอำ จ.เพชรบุรี ในหัวช้อ "Novel 2-chloro-8-arylthiomethyl dipyridodiazepinone derivatives with activity against HIV-1 reverse transcriptase".
- 3.2 Chaosuancharoen N, Chimnoi N, Saparpakom P, Thitithanyanont A, Pungpo P, Louisirirotchanakul S, Hannongbua S, Techasakul S. Novel 2-chloro-8-arylthiomethyl dipyridodiazepinone derivatives with activity against HIV-1 reverse transcriptase. 1st International Conference on Cutting-Edge Organic Chemistry in Asia, Naha, Okinawa, Japan, October 16-20, 2006.

3.3 Chaosuancharoen N, Techasakul S, Hannongbua S. An Efficient and Facile Synthetic Approach to Dipyridodiazepinone Derivatives. The International Conference on Biodiversity and Natural Products: Chemistry and Medical Applications, Delhi, India, January, 26-31, 2004.

ภาคผนวก

Full Paper

Novel 2-Chloro-8-arylthiomethyldipyridodiazepinone Derivatives with Activity against HIV-1 Reverse Transcriptase[†]

Nisachon Khunnawutmanotham ¹, Nitirat Chimnoi ¹, Patchareenart Saparpakorn ², Pornpan Pungpo ³, Suda Louisirirotchanakul ⁴, Supa Hannongbua ² and Supanna Techasakul ^{1,2,*}

- ¹ Chulabhorn Research Institute, Vibhavadee-Rangsit Highway, Bangkok 10210, Thailand; E-mails: cnisachon@yahoo.com; E-mail: nitirat@yahoo.com
- ² Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand; E-mails: p_saparpakorn@yahoo.com, fscisph@ku.ac.th, supanna@cri.or.th
- ³ Department of Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani 34190, Thailand; E-mail: pompan_ubu@yahoo.com
- ⁴ Department of Microbiology, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; E-mail: sudaloui@yahoo.com

* Author to whom correspondence should be addressed; E-mail:supanna@cri.or.th

Received: 22 December 2006; in revised form: 18 February 2007 / Accepted: 19 February 2007 / Published: 20 February 2007

Abstract: Based on the molecular modeling analysis against Y181C HIV-1 RT, dipyridodiazepinone derivatives containing an unsubstituted lactam nitrogen and 2-chloro-8-arylthiomethyl were synthesized via an efficient route. Some of them were evaluated for their antiviral activity against HIV-1 RT subtype E and were found to exhibit virustatic activity comparable to some clinically used therapeutic agents.

Keywords: Dipyridodiazepinone, HIV-1 RT, antiviral activity

[†] Paper presented at ECSOC-10, 1-30 November 2006

Introduction

The introduction of antiretroviral therapy results in delayed progression of HIV-1. The majority of existing therapy methods have targeted the viral replication at reverse transcriptase (RT) and protease enzyme [1,2]. However, the emergence of drug resistance has been observed [3,4], therefore, new therapeutic agents are still needed. Recently, a new class of therapeutic agents has focused on inhibiting HIV entry into cells, CD4 binding, coreceptor binding and membrane fusion such as T-20 [5]. A number of bioactive nucleoside-based compounds against HIV virus have been clinically used [6].

In the clinic, nevirapine (1, Figure 1) [7] monotherapy results in relatively rapid drug resistance due to mutation of the RT enzyme. In an effort to develop a second generation inhibitor with improved activity against mutant RT enzyme, a number of dipyridodiazepinone derivatives have been synthesized and evaluated their activities against HIV-1 RT enzymes [8]. On the basis of a molecular modeling analysis of activity against Y181C HIV-1 RT aimed at modifying the nevirapine structure for higher antiviral activity (Table 1), it was shown that the dipyridodiazepinone derivatives containing unsubstituted lactam nitrogens and a 2-chloro-8-arylthiomethyl (T1 and T2) moiety are effective inhibitors for this mutant enzyme when compared with 68nv, used as reference [9]. The result prompted us to develop an efficient synthetic route to prepare 2-chloro-5,11-dihydro-11-ethyl-8-(phenylthio)methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (T1) and 2-chloro-5,11-dihydro-11-ethyl-8-(3-methoxy-phenylthio)methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (T2) and to evaluate their anti-HIV-1 activity as well as verifying our hypothesis.

Figure 1. Structure of nevirapine.

Nevirapine (1)

Table 1. Structure of the proposed compounds and calculated Y181C HIV-1-RT inhibitory affinities.

$$R^1$$
 R^2
 N
 N
 N
 R^3

	_1	5 2	n3 -	Y181C log (1/C)				
Cpds	R'	R ²	R³	Expt. ^a	Calc.b	Calc.c	Calc.4	
68nv	н	CH ₃	CH₂SPh	8.0	7.83	7 .77	7.79	
T1	Н	Н	CH ₂ SPh		8.19	7.96	8.01	
T2	Н	Н	CH ₂ SPh(m-OCH ₃)		8.25	8.05	8.17	

Table 1. Cont.

Code	R ¹	\mathbb{R}^2	R³	Y181C log (1/C)				
Cpds			K	Expt.*	Calc.b	Calc.c	Calc.d	
Т3	Н	CH ₂ OH	CH ₂ SPh		7.70	7.55	7.79	
T4	CH ₃ CH ₂	Н	CH ₂ SPh		7.91	7.62	7.80	
T5	OCH ₃	Н	CH ₂ SPb(m-OCH ₃)		7.70	7.47	7.58	

^a[ref. 9], ^bCalculated by CoMFA, ^cCalculated by CoMSIA, ^dCalculated by HQSAR [ref. 10].

Results and Discussion

Chemistry

Synthesis of T1 and T2 was accomplished from commercially available 2-chloronicotinic acid (2) and 2,6-dichloro-3-nitropyridine (3). The intermediate aminopyridine 4 was prepared as shown in Scheme 1. Reaction of 2-chloronicotinyl chloride (5) and 3-amino-2,6-dichloropyridine (6), obtained from reduction of 3, provided pyridinecarboxamide 7. Treatment of 7 with ethylamine in xylene produced not only the desired 2'-displacement but also competing substitutions of the 2-chloro and 6-chloro substituents as significant side reactions. To improve the yield of aminopyridine 4, it appears that ethylamine should be introduced before carboxamide formation. Thus, 2 was treated with ethylamine in a sealed tube to give 2-(ethylamino)-3-pyridinecarboxylic acid (8) in quantitative yield. Then, acid chloride 9 produced from 8 was condensed with 6 to yield 4 in good yield. By this method, an increased and satisfactory yield of 4 was obtained.

Scheme 1. Synthesis of the intermediate aminopyridine 4.

Reagents and conditions: (a) (COCl)₂, benzene, DMF, rt, 1h; (b) 6, dioxane, cyclohexane, pyridine, rt, 16h, 60%(from 5 to 7) and 80%(from 9 to 4); (c) EtNH₂, xylene, 120°C, 0.5h, 40%; (d) EtNH₂, 120°C, 4h, 99%

Scheme 2. Synthesis of compounds T1 and T2.

Reagents and conditions: (a) Br₂, HOAc, KOAc, rt, 1h, 99%; (b) NaHMDS, py, 90 °C, 1h, 90%; (c) CH₂=CH-SnBu₃, Pd(PPh₃)₄, DMF, 90 °C, 1h, 75%; (d) O₃, CH₂Cl₂/MeOH, -78 °C then PPh₃, rt, 1h, 85%; (e) NaBH₄, THF, H₂O, rt, 0.5h, 93%; (f) SOCl₂, CH₂Cl₂, Et₃N, rt, 87%; (g) NaH, RSH, DMF, rt, 1h, 70% (T1) and 87% (T2)

The aminopyridine 4 was regioselectively brominated to afford N-(2,6-dichloro-3-pyridinyl)-5-bromo-2-ethylamino-3-pyridinecarboxamide (10) (Scheme 2). The azepinone ring was formed by treatment with sodium hexamethyldisilazane in pyridine to yield 8-bromo-2-chloro-5,11-dihydro-11-ethyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (11). Such a ring closure using sodium hydride led to the undesired debrominated product. Coupling of 11 with vinyltributyltin in the presence of tetrakis(triphenylphosphine)palladium(0) provided the 8-vinyl compound 12, which underwent ozonolysis to give aldehyde 13 in good yield. Reduction of 13 with NaBH₄ afforded alcohol 14, which was converted to the corresponding chloride 15 by treatment with thionyl chloride in dichloromethane. Reaction of 15 with thiophenolate and 3-methoxythiophenolate in DMF yielded T1 and T2, respectively. Thus T1 and T2 were synthesized from 2-chloronicotinic acid (2) and 2,6-dichloro-3-nitropyridine (3) in 10 steps with 26% and 32% overall yields, respectively.

Biological Testing

Compounds T1 and T2, together with some intermediates, were evaluated for their virustatic and virucidal activities against HIV-1 subtype E (CRF01 AE). In addition, the toxicity of the compounds, DMSO and cell controls were also examined. The biological activity of T1 and T2 as well as of intermediates 14 and 15 is summarized in Table 2. Compound T1 exhibited virustatic activity at EC₅₀ $\leq 1 \mu g/mL$ for seven days. On the other hand, compound T2 exhibited virustatic activity at EC₅₀ $\leq 1 \mu g/mL$ during the first four days, but the activity decreased to EC₅₀ $\leq 10 \mu g/mL$ by the seventh day.

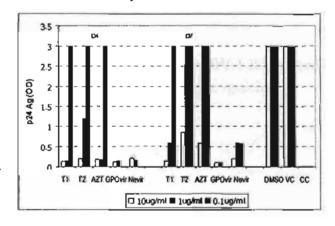

Other intermediates did not show virustatic activity. This result suggested that thioaryl group could be involved in regulating virustatic activity. However, all compounds did not show virucidal activity.

Table 2.	Virustatic	and	virucidal	activities	at	50%	effective	concentration
(EC ₅₀) aga	ainst HIV-l	sub	type E.					

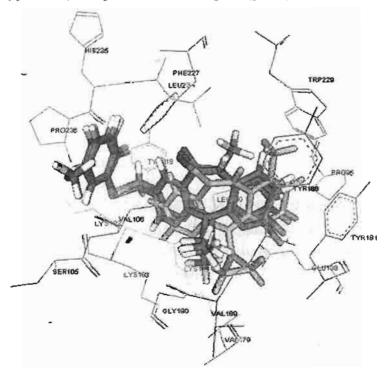
C-do		ustatic	Virucidal		
Cpds _	EC ₅₀ , μg/mL Day4 Day7		EC ₅₀ , μg/mL Day4 Day		
14	>10	>10	>10	Day7 >10	
15	>10	>10	>10	>10	
T 1	< 1	1	>10	>10	
T2	≤ 1	≤ 10	>10	>10	

Virustatic activity of T1 and T2 against HIV-I subtype E observed in seven days is shown in Figure 2. T1 exhibited comparable virustatic activity to that of AZT, GPOvir and nevirapine at concentration of 1 μ g/mL on the fourth day. On the seventh day, T1 exhibited comparable activity to that of nevirapine at a concentration of 1 μ g/mL and to that of GPOvir at 10 μ g/mL, but showed higher activity than AZT at 1 μ g/mL. T2 was less potent than T1 (~6-fold) at concentration of 1 μ g/mL.

Figure 2. Virustatic activity of T1 and T2 observed in seven days.

AZT = azidothymidine, GPOvir = analog of three RT inhibitors (nevirapine, lamivudine and stavudine), Nevir = nevirapine, DMSO = DMSO control, VC = virus control and CC = cell control.

Molecular Docking


In order to investigate the orientation and estimated binding energies of the inhibitors in the enzyme binding site, molecular docking by using Lamarckian genetic algorithm AutoDock 3.05 program [11] was used to dock 68nv, T1 and T2 into the binding pocket of HIV-1 RT (pdb code 1KLM) and the results were compared with that of nevirapine, as shown in Table 3. The grid size was set to 80x80x80. A grid spacing of 0.375 Å was used and the numbers of docking runs were set to 50.

Superimposition of the binding pocket of HIV-1 RT with docked 68nv, T1 and T2, compared with nevirapine (green), is shown in Figure 3. The obtained results demonstrate clearly that 68nv and both T1 and T2 oriented their structures in the HIV-1 RT binding site similar to nevirapine. However, the final docked energies and free energies of binding of both T1 and T2 which are the same as those of 68nv with the value of about \pm 0.5 kcal/mol are much lower than that of nevirapine by about 4 kcal/mol. The explanation for this might be the fact that rotatable thiophenyl side chain in the three compounds can interact with the residues in the binding site such as Lys103, Leu234, His235 and Tyr318. However, the docked orientations of T1 and T2 revealed that the lack of methyl group at R2 caused a slight move upwards of the T1 and T2 structures and make the adjustment of ethyl group attached at diazepinone ring to form the attractive interaction with Val189. Furthermore, methoxy group attached in thiophenyl side chain of T2 also interacts with Val106. This can significantly contribute to the conformational change of the whole enzyme structure, and consequently reduce catalytic efficiency of the enzyme.

Table 3. The docked energy and free energy of binding (kcal/mol) of T1 and T2 as compared with nevirapine and 68nv.

Cpds	Final Docked Energy (kcal/mol)	Free Energy of Binding (kcal/mol)			
Nevirapine	-11.88	-11.24			
68nv	-15.92	-15.03			
T 1	-15.58	-14.47			
T2	-16.37	-14.82 ◆			

Figure 3. The binding pocket of enzyme HIV-1 RT with 68nv, T1 and T2 (atom type color) compared with nevirapine (green).

Conclusions

In summary, two dipyridodiazepinone derivatives, T1 and T2, were synthesized based on a molecular modeling study and were found to exhibit virustatic activity against HIV-I RT subtype E at 2.5 μ M (1 μ g/mM) and 23.5 μ M (10 μ g/mL), respectively.

Experimental Section

General

The ¹H- and ¹³C-NMR spectra were recorded on a Varian Gemini 2000 spectrometer operating at 200 and 50 MHz, respectively. Chemical shifts were recorded as δ values in ppm referenced to the solvent. Coupling constants (*J*) are given in Hertz. Infrared (IR) spectra were recorded in cm⁻¹ on a Perkin Elmer 1760x FT-IR spectrometer. Mass spectra were obtained on a Finnigan Polaris GCQ mass spectrometer and accurate masses (HRMS) were obtained on a Bruker Micro TOF in ESI positive mode. Melting points (m.p.) were determined on a SMP3 melting point apparatus and are reported in ^oC uncorrected. Column chromatography was performed on Scharlau silica gel 60 (70-230 mesh).

3-Amino-2,6-dichloropyridine (6)

A solution of SnCl₂·2H₂O (970 mg, 4.3 mmol) in concentrated HCl (0.8 mL) was added dropwise to a stirred solution of 2,6-dichloro-3-nitropyridine (250 mg, 1.3 mmol) in acetic acid (2.6 mL) and the mixture was stirred for 3 hours at room temperature. Then the mixture was cooled in ice bath, and water was added. After stirring for an additional half an hour, the mixture was made basic (pH 12) with aqueous 50% sodium hydroxide. The reaction mixture was extracted with CH₂Cl₂ and the combined organic layers were washed with water, dried (Na₂SO₄) and concentrated under reduced pressure to give 6 (200 mg, 94.8%) as white solid which could be used directly in the next step. Recrystallization from hexane/CH₂Cl₂ afforded needles, m.p. 121-122 °C; FTIR (KBr) v_{max}: 3460, 3338, 1619; 1559, 1454, 1311, 1145, 720 cm⁻¹; ¹H-NMR (CDCl₃) δ: 7.06 (d, *J*=1.47, 2H); ¹³C-NMR (CDCl₃) δ: 138.8, 137.3, 134.6, 125.1, 123.6; MS (EI), *m/z* (relative intensity): 162 (M⁺, 100), 126 (20), 99 (10), 64 (30); HRMS (ESI-TOF) calcd. for C₃H₅Cl₂N₂ [M+H]⁺ 162.9824; found: 162.9824.

2-(Ethylamino)-3-pyridine carboxylic acid (8)

A stirred mixture of 2-chloronicotinic acid (2) (300 mg, 1.9 mmol), ethylamine (1.3 mL, 19.1 mmol) was heated at 120 °C in a sealed vessel for 4 hours. After cooling down the ethylamine was removed and the residue was purified by silica gel column chromatography (30% methanol/ethyl acetate) to give 8 (315 mg, 99.7%) as a white solid, m.p. 178-180 °C; FTIR (KBr) v_{max} : 3474, 3228, 1636, 1557, 1341, 1239; ¹H-NMR (DMSO-d₆) δ : 8.20 (dd, J=4.8, 1.8, 1H), 8.04 (dd, J=7.7, 1.8 Hz, 1H), 6.50 (dd, J=7.6, 5.1, 1H), 4.81 (br s, 1H), 3.43 (q, J=6.9, 2H), 1.15 (t, J=6.9, 3H); ¹³C-NMR (DMSO-d₆) δ : 169.3, 158.4, 153.0, 140.1, 110.8, 106.9, 35.1, 15.0; MS (EI), m/z (relative intensity):

167 (M⁺+1, 20), 151 (60), 133 (100), 122 (30), 93 (50), 78 (96); HRMS (ESI-TOF) calcd. for $C_8H_{11}N_2O_2$ [M+H]⁺ 167.0815; found: 167.0812.

N-(2,6-Dichloro-3-pyridinyl)-2-ethylamino-3-pyridinecarboxamide (4)

A stirred solution of 8 (315 mg, 1.9 mmol), in benzene (10 mL) was treated with oxalyl chloride (0.35 ml, 4.1 mmol) followed by a catalytic amount of DMF (2 drops) and the mixture was stirred at room temperature for 1 hour. Then the solvent was removed under reduced pressure to afford acid chloride 9 as yellow solid. This acid chloride was redissolved in 1,4-dioxane (10 mL) and added dropwise to a solution of 6 (200 mg, 1.2 mmol) in 1,4-dioxane (3 mL), cyclohexane (2 mL) and pyridine (0.2 mL, 2.4 mmol). After stirring at room temperature for 16 hours, the resultant precipitate was filtered. The solid was redissolved in CH₂Cl₂ and washed with saturated aqueous NaHCO₃. The organic layer was washed with water, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (15% EtOAc/hexane) to yield 4 (308 mg, 80.7%) as a pale yellow solid, m.p. 119-120 °C; FTIR (KBr) ν_{max}: 3431, 3351, 1660, 1572, 1504, 1301, 1235, 1122, 770; ¹H-NMR (CDCl₃) δ: 8.77 (d, *J*=7.3, 1H), 8.33 (d, *J*=4.4, 1H), 8.20 (s, 1H), 7.97 (br t, 1H), 7.74 (d, *J*=7.3, 1H), 7.34 (d, *J*=8.1, 1H), 6.60 (dd, *J*=7.3, 4.4, 1H), 3.61-3.48 (m, 2H), 1.29 (t, *J*=7.0, 3H); ¹³C-NMR (CDCl₃) δ: 166.4, 158.1, 153.4, 143.5, 138.7, 135.3, 131.2, 130.9, 123.6, 110.5, 108.0, 35.8, 14.7; MS (EI), *m/z* (relative intensity): 310 (M⁺, 20), 275 (25), 149 (35), 131 (100), 119 (20); HRMS (ESI-TOF) calcd. for C₁₃H₁₃Cl₂N₄O [M+H]⁺ 311.0461; found: 311.0464.

N-(2,6-Dichloro-3-pyridinyl)-5-bromo-2-ethylamino-3-pyridinecarboxamide (10)

A solution of Br₂ (0.06 mL, 1.17 mmol) in acetic acid (1 mL) was added dropwise to a stirred solution of 4 (355 mg, 1.14 mmol), and potassium acetate (134 mg, 1.36 mmol) in acetic acid (15 mL). After 15 minutes, to the reaction mixture was added water and the precipitate was collected by suction filtration and washed with water for several times to provide 10 (435 mg, 98.0%) as a yellow solid, m.p. 193-194 °C; FTIR (KBr), v_{max} : 3439, 3336, 1673, 1575, 1506, 1302, 1248,-787, 528; ¹H-NMR (CDCl₃) δ : 8.69 (d, J=8.8, 1H), 8.33 (d, J=2.2, 1H), 8.10 (br s, 1H), 7.89 (br t, 1H), 7.79 (d, J=2.2, 1H), 7.30 (d, J=8.1, 1H), 3.58-3.44 (m, 2H), 1.27 (t, J=7.3, 3H); ¹³C-NMR (CDCl₃) δ : 165.4, 156.5, 154.2, 139.1, 137.4, 131.7, 130.7, 123.8, 109.6, 103.9, 36.1, 14.6; MS (EI), m/z (relative intensity): 388 (M⁺, 60), 373 (15), 353 (20), 227 (70), 209 (60); HRMS (ESI-TOF) calcd. for C₁₃H₁₂BrCl₂N₄O [M+H]⁺ 388.9566; found: 388.9579.

8-Bromo-2-chloro-5,11-dihydro-11-ethyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (11)

A solution of 10 (440 mg, 1.13 mmol) in pyridine (10 mL) was heated at 90°C under a nitrogen atmosphere. Then the solution was added 0.6 M sodium bis(trimethylsilyl)amide in toluene (6.3 mL, 3.7 mmol) and the mixture was stirred at 90 °C for 15 minutes. After cooling down, the mixture was poured into ice water and stirred for additional 2 hours. The precipitate was filtered and washed with water to afford 11 (370 mg, 92.8%) as a yellow solid, m.p. 263-264 °C; FTIR (KBr) v_{max} : 3195, 3074, 2972, 1665, 1575, 1456, 1381, 1226, 687, 630; ¹H-NMR (CDCl₃) δ : 8.53 (br s, 1H), 8.49 (d, J=2.2,

1H), 8.24 (d, J=2.2, 1H), 7.27 (d, J=8.1, 1H), 7.06 (d, J=8.1, 1H), 4.81 (q, J=7.3, 2H), 1.25 (t, J=7.3, 3H); ¹³C-NMR (DMSO-d₆) δ : 165.4, 156.8, 151.8, 150.5, 143.0, 142.6, 133.3, 126.3, 122.2, 120.4, 113.6, 41.5, 13.4; MS (EI), m/z (relative intensity): 352 (M⁺, 80), 337 (42), 324 (75), 309 (20); HRMS (ESI-TOF) calcd. for $C_{13}H_{11}BrClN_4O$ [M+H]⁺ 352.9799; found: 352.9803.

2-Chloro-5,11-dihydro-11-ethyl-8-vinyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (12)

A solution of 11 (500 mg, 1.4 mmol) in DMF (7 mL) was treated with tetrakis(triphenylphosphine)palladium(0) (70 mg, 0.06 mmol) followed by vinyl tributyltin (1 mL, 3.42 mmol) and heated at 100 °C under nitrogen atmosphere for half an hour. After cooling down, the reaction mixture was poured into water and extracted with ethyl acetate. The combined organic layers were washed with 15% aqueous ammonia, brine and water, then dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (30% EtOAc/hexane) to provide 12 (318 mg, 74.6%) as a yellow solid, m.p. 201-202 °C; FTIR (KBr) v_{max} : 3195, 2965, 1665, 1585, 1455, 1383, 1239, 688; ¹H-NMR (CDCl₃) δ : 9.37 (s, 1H), 8.46 (d, J=2.2, 1H), 8.20 (d, J=2.2, 1H), 7.35 (d, J=8.1, 1H), 7.04 (d, J=8.1, 1H), 6.66 (dd, J=17.6, 11.0, 1H), 5.78 (d, J=17.6, 1H), 5.35 (d, J=11.0, 1H), 4.22 (q, J=7.3, 2H), 1.27 (t, J=7.3, 3H); ¹³C-NMR (CDCl₃) δ : 168.8, 157.9, 151.9, 150.1, 145.1, 137.7, 131.9, 131.8, 128.8, 125.0, 119.7, 119.6, 115.8, 42.1, 13.7; MS (EI), m/z (relative intensity): 300 (M⁺, 100), 285 (35), 272 (92), 257 (35); HRMS (ESI-TOF) calcd. for C₁₅H₁₄ClN₄O [M+H]⁺ 301.0851; found: 301.0855.

2-Chloro-5,11-dihydro-11-ethyl-8-formyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin -6-one (13)

A cooled (-78 °C) solution of 12 (343 mg, 1.14 mmol) in 1:1 CH₂Cl₂-MeOH (20 mL) was treated with O₃ for 30 minutes. After the completion of reaction, the solution was purged with O₂ for 5 minutes. Then the reaction mixture was stirred with triphenylphosphine (598 mg, 2.28 mmol) for additional 1 hour at room temperature. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (30%EtOAc/hexane) to yield 13 (295 mg, 85.4%) as a yellow solid, m.p. 216-217 °C; FTIR (KBr) v_{max} : 3203, 2939, 1702, 1674, 1596, 1456, 1354, 1231, 975, 692; ¹H-NMR (CDCl₃) δ : 10.02 (s, 1H), 9.53 (s, 1H), 8.60 (d, J=2.2, 1H), 8.64 (d, J=2.2, 1H), 7.41 (d, J=8.1, 1H), 7.13 (d, J=8.1, 1H), 4.34 (q, J=7.0, 2H), 1.32 (t, J=7.0, 3H); ¹³C-NMR (CDCl₃) δ : 188.6, 168.1, 162.1, 153.8, 149.9, 145.3, 142.3, 132.3, 126.9, 125.0, 120.8, 118.8, 43.0, 13.7; MS (EI), m/z (relative intensity): 302 (M⁺, 80), 287 (30), 274 (100), 260 (30), 245 (35); HRMS (ESI-TOF) calcd. for C₁₄H₁₂ClN₄O₂ [M+H]⁺ 303.0643; found: 303.0645.

$2-Chloro-5,11-dihydro-11-ethyl-8-hydroxymethyl-6H-dipyrido \cite{A},2-b:2',3'-e\cite{A}diazepin-6-one (14)$

To a solution of 13 (228 mg, 0.75 mmol) in THF (12 mL) were added water (0.1 mL) and sodium borohydride (28.5 mg, 0.75 mmol). The mixture was stirred for half an hour, then diluted with water. THF was removed under reduced pressure and the precipitate was filtered and washed with water to yield 14 (214 mg, 93%) as a white solid, m.p. 197-198 °C; FTIR (KBr) v_{max} : 3319, 3191, 2959, 1666, 1590, 1456, 1390, 1232, 1041; ¹H-NMR (acetone-d₆) δ : 9.50 (br s, 1H), 8.46 (d, J=2.2, 1H), 8.11 (d,

J=2.2, 1H), 7.60 (d, J=8.1, 1H), 7.18 (d, J=8.1, 1H), 4.65 (d, J=5.13, 2H), 4.56 (t, J=5.86, 1H), 4.15 (q, J=7.3, 2H), 1.21 (t, J=7.3, 3H); ¹³C-NMR (acetone-d₆) δ: 167.8, 158.7, 152.7, 151.0, 144.5, 140.3, 134.1, 133.4, 127.3, 121.2, 120.5, 61.5, 42.4, 14.0; MS (EI), m/z (relative intensity): 304 (M⁺, 69), 289 (39), 276 (100), 261 (29), 247 (20), 164 (31); HRMS (ESI-TOF) calcd. for $C_{14}H_{14}ClN_4O_2$ [M+H]⁺ 305.0800; found: 305.0805.

2-Chloro-5,11-dihydro-11-ethyl-8-chloromethyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (15)

A suspension of 14 (177 mg, 0.58 mmol) in CH₂Cl₂ (100 mL) was treated with thionyl chloride (0.3 mL) followed by triethylamine (1 mL). The reaction mixture was stirred at room temperature for 1 hour and a clear solution was obtained. Then, saturated aqueous NaHCO₃ was added and the mixture was extracted with CH₂Cl₂. The organic layer was washed with water, then dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20%EtOAc/hexane) to give 15 (163 mg, 87%) as a pale yellow solid, m.p. 226-227 °C; FTIR (KBr) v_{max} : 3195, 2969, 1671, 1588, 1455, 1382, 1247, 699; ¹H-NMR (CDCl₃) δ : 9.15 (br s, 1H), 8.47 (d, J=2.9, 1H), 8.19 (d, J=2.9, 1H), 7.34 (d, J=8.1, 1H), 7.06 (d, J=8.1, 1H), 4.58 (s, 2H), 4.23 (q, J=7.3, 2H), 1.27 (t, J=7.3, 3H); ¹³C-NMR (CDCl₃) δ : 168.3, 158.7, 151.7, 151.5, 145.2, 141.4, 131.9, 128.3, 125.0, 119.9, 119.6, 42.3, 42.2, 13.7; MS (EI), m/z (relative intensity): 322 (M⁺, 54), 307 (31), 294 (62), 287 (37), 259 (100), 244 (28), 231 (21); HRMS (ESI-TOF) calcd. for C₁₄H₁₃Cl₂N₄O [M+H]⁺ 323.0461; found: 323.0470.

2-Chloro-5,11-dihydro-11-ethyl-8-(phenylthio)-methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (T1)

A solution of thiophenol (0.1 ml, 0.97 mmol) in DMF (2 mL) was treated with 60% sodium hydride (65 mg, 1.6 mmol) under a N_2 atmosphere. After 10 minutes, a solution of 15 (100 mg, 0.31 mmol) in DMF (3 mL) was added and the mixture was stirred at room temperature for 1 hour. The reaction was quenched by addition of water and the mixture was extracted with EtOAc. The organic layer was washed with-water, then dried (Na_2SO_4) and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20%EtOAc/hexane) to give T1 (85.5 mg, 70%) as a yellow solid, m.p. 188.5-189.5 °C; FTIR (KBr) v_{max} : 3182, 2965, 1665, 1585, 1455, 1383, 1239, 739, 688; 1 H-NMR (CDCl₃) δ : 9.33 (s, 1H), 8.29 (d, J=2.2, 1H), 8.09 (d, J=2.2, 1H), 7.34-7.20 (m, 6H), 7.04 (d, J=8.1, 1H), 4.18 (q, J=7.3, 2H), 4.05 (s, 2H), 1.23 (t, J=7.3, 3H); 13 C-NMR (CDCl₃) δ : 168.6, 157.8, 151.8, 145.1, 141.2, 134.9, 131.8, 130.6(2C), 129.1(2C), 128.6, 127.0(2C), 125.1, 119.7, 119.6, 42.0, 35.6, 13.6; MS (EI), m/z (relative intensity): 396 (M⁺, 7), 287 (100), 259 (52), 231 (14); HRMS (ESI-TOF) calcd. for $C_{20}H_{18}$ CIN₄OS [M+H]⁺ 397.0884; found: 397.0894

2-Chloro-5,11-dihydro-11-ethyl-8-(3-methoxyphenylthio)-methyl-6H-dipyrido[3,2-b:2',3'-e][1,4] diazepin-6-one (T2)

A solution of 3-methoxythiophenol (0.14 ml, 1.14 mmol) in DMF (2 mL) was treated with 60% sodium hydride (76 mg, 1.88 mmol) under a N₂ atmosphere. After 10 minutes, a solution of 15 (122

mg, 0.38 mmol) in DMF (3 mL) was added and the mixture was stirred at room temperature for 1 hour. The reaction was quenched by addition of water and the mixture was extracted with EtOAc. The organic layer was washed with water, then dried (Na₂SO₄) and concentrated under reduced pressure. The residue was recrystallized from hexane/EtOAc to afford T2 (140 mg, 87%) as yellow crystals, m.p. 188-189°C; FTIR (KBr) v_{max} : 3181, 2965, 1662, 1589, 1458, 1385, 1229, 1044, 767, 693; ¹H-NMR (CDCl₃) δ : 9.56 (br s, 1H), 8.30 (d, J=2.2, 1H), 8.08 (d, J=2.2, 1H), 7.33 (d, J=8.1, 1H), 7.18 (t, J=8.1, 1H), 7.04 (d, J=8.1, 1H), 6.90-6.72 (m, 3H), 4.06 (s, 2H), 3.73 (s, 3H), 1.23 (t, J=7.3, 3H); ¹³C-NMR (CDCl₃) δ : 168.8, 159.9, 157.9, 151.8(2C), 145.1, 141.2, 136.2, 131.8, 129.9, 128.6, 125.2, 122.6, 119.7, 119.6, 115.8, 112.9, 55.3, 42.1, 35.4, 13.6; MS (EI), m/z (relative intensity): 426 (M⁺, 6), 287 (100), 259 (57), 231 (15); HRMS (ESI-TOF) calcd. for C₂₁H₂₀ClN₄O₂S [M+H]⁺ 427.0990; found: 427.0988.

Biological methods: Materials

DA5 (HIV-1 subtype E) cells were obtained from HIV-1 infected pregnant women. These viruses were X4 strain with the syncytium-inducing (SI) formation property, causing morphological changes (cytopathic effect) in infected cells. White blood cells: peripheral blood mononuclear cells were obtained from blood donors and used for HIV virus isolation. H9 T-lymphoblastoid cell line obtained from Medical Research Centre, UK, was used to prepare the viral stock. C8166 T-lymphoblastoid cell line was used to test the activities of bioactive compounds in all experiments. Bioactive compounds were dissolved in 70-95% DMSO. Three anti-retroviral drugs (reverse transcriptase inhibitors) manufactured by the Government Pharmaceutical Organization (GPO), including ANTIVIR (100 mg AZT), GPO-vir (containing 200 mg nevirapine, 150 mg lamivudine, and 30 mg stavudine), and NERAVIR (200 mg nevirapine), were used as controls in all experiments. All experiments were performed in duplicate.

Toxicity of bioactive compounds, anti-retroviral drugs, and DMSO against white blood cell culture.

The solutions of the bioactive compounds and anti-retroviral drugs (diluted to 10, 1, and 0.1 μ g/mL in the culture medium), as well as DMSO (diluted to 1%, 0.1%, and 0.01%), were dispensed into tissue culture plates in duplicates. C8166 cells were then added into each well and examined everyday for 7 days. Moreover, the cells were counted, stained with 1% tryphan blue in order to examine for cell viability under the microscope on day 0, day 4, and day 7, and compared with drug-free control cells.

Virustatic and virucidal tests

The viruses were used at 100 TCID₅₀ (50% tissue cell infectivity dose) level, which was determined by diluting the viruses in quadruplicates, and the potency of the viruses was calculated using Karber equation. Additionally, the following controls were used in all experiments: control viruses diluted to 100, 10, and 1 TCID₅₀ in order to verify that the viruses used in all experiments were at 100 TCID₅₀ level. C8166 control cells were used for cell examination throughout the experiments. Bioactive control was used to investigate the effect of the compounds on the cells. DMSO control was

used to evaluate the effect of DMSO on virus proliferation in the cells. Anti-retroviral drug controls (AZT, GPO-vir, and Nevirapine) were used to investigate the effect of the drugs on the cells.

Virustatic test

C8166 cells were incubated with the solutions of bioactive compounds for 30 minutes. The viruses were then added into each well at 100 TCID₅₀ level, and the samples were further incubated for 3 hours. After that, the cells were washed 4 times, and maintained for 7 days. The culture medium was changed on day 3, and the cells were examined for cytopathic effect on days 4 and 7. Additionally, the level of the p24 antigen in the culture medium was determined on day 7 using commercially-available ELISA kits in order to determine the EC₅₀, which was the concentration of each bioactive compound that inhibited the viruses by 50%.

Virucidal test

The viruses at 100 TCID50 level were incubated with the solutions of bioactive compounds for 1 hour. C8166 cells were then added to each well, and the samples were further incubated for 1 hour. After that, the cells were washed 4 times, and maintained for 7 days. The culture medium was changed on day 3, and the cells were examined for cytopathic effect on days 4 and 7. Additionally, the level of the p24 antigen in the culture medium was also determined on day 7 using commercially-available ELISA kits.

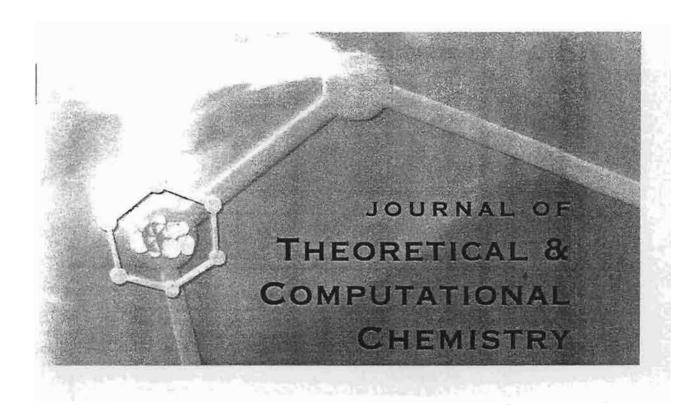
Acknowledgements

We are grateful to the Thailand Research Fund (DBG4780009 for S.T., BRG4780007 for S.H., TRG4580072 for P.P. and RGJ-Ph.D. Program (3.C.KU/45/B.1) for P.S.) and to the Ministry of Education for financial support. Grateful acknowledgement is also due to Dr. Poonsakdi Ploypradith, Chulabhorn Research Institute, for his valuable suggestions.

References

- 1. Loveday, C. Nucleoside reverse transcriptase inhibitor resistance. J. Acquir. Immune. Defic. Syndr. 2001, 26 (Suppl1), S10-S24.
- 2. Deeks, S. G. Nonnucleoside reverse transcriptase inhibitor resistance. J. Acquir. Immune. Defic. Syndr. 2001, 26 (Suppl1), \$25-\$33.
- 3. Wainberg, M. A.; Friedland, G. Public health implications of antiretroviral therapy and HIV drug resistance. J. Am. Med. Assoc. 1998, 279, 1977-1983.
- 4. Volberding, P.; Lange, J. International perspectives on antiretroviral resistance. Introduction. J. Acquir. Immune. Defic. Syndr. 2001, 26 (Suppl1), S1-S2.
- Cooley, L. A.; Lewin, S. R. HIV-1 cell entry and advances in viral entry inhibitor therapy. J. Clin. Virol. 2003, 26, 121-132.
- 6. De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol. 2004, 30, 115-133.

Molecules 2007, 12 230


Hargrave, K. D.; Proudfoot, J. R.; Grozinger, K. G.; Cullen, E.; Kapadia, S. R.; Patel, U. R.; Fuchs, V. U.; Mauldin, S. C.; Vitous, J.; Behnke, M. L.; Klunder, J. M.; Pal, K.; Skiles, J. W.; McNeil, D. W.; Rose, J. M.; Chow, G. C.; Skoog, M. T.; Wu, J. C.; Schmidt, G.; Engel, W. W.; Eberlein, W. G.; Saboe, T. D.; Campbell, S. J.; Rosenthal, A. S.; Adams, J. Novel non-nucleoside inhibitors of HIV-1 reverse transcriptase. 1. Tricyclic pyridobenzo- and dipyridodiazepinones. J. Med. Chem. 1991, 34, 2231-2241.

- O'Meara, J. A.; Yoakim, C.; Bonneau, P. R.; Bos, M.; Cordingley, M. G.; Deziel, R.; Doyon, L.; Duan, J.; Garneau, M.; Guse, I.; Landry, S.; Malenfant, E.; Naud, J.; Ogilvie, W. W.; Thavonekham, B.; Simoneau, B. Novel 8-substituted dipyridodiazepinone inhibitors with a broad-spectrum of activity against HIV-1 strains resistant to non-nucleoside reverse transcriptase inhibitors. J. Med. Chem. 2005, 48, 5580-5588.
- Cywin, C. L.; Klunder, J. M.; Hoermann, M.; Brickwood, J. R.; David, E.; Grob, P. M.; Schwartz, R.; Pauletti, D.; Barringer, K. J.; Shih, C. -K.; Sorge, C. L.; Erickson, D. A.; Joseph, D. P.; Hattox, S. E. Novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 8. 8-Aryloxymethyland 8-arylthiomethyldipyridodiazepinones. J. Med. Chem. 1998, 41, 2972-2984.
- Pungpo, P.; Hannongbua, S.; Wolschann, P. Hologram quantitative structure-activity relationships investigations of non-nucleoside reverse transcriptase inhibitors. Curr. Med. Chem. 2003, 10, 1661-1677.
- Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639-1662.

Sample availability: Contact the authors.

© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

Vol. 5, No. 4 December 2006

Conformational Analysis of Nevirapine in Solutions Based on NMR Spectroscopy and Quantum Chemical Calculations

V. Vailikhit, P. Bunsawansong, S. Techasakul and S. Hannongbua

CONFORMATIONAL ANALYSIS OF NEVIRAPINE IN SOLUTIONS BASED ON NMR SPECTROSCOPY AND QUANTUM CHEMICAL CALCULATIONS

V. VAILIKHIT, P. BUNSAWANSONG, S. TECHASAKUL and S. HANNONGBUA*

Department of Chemistry, Faculty of Science Kasetsart University, Bangkok 10900, Thailand *fscisph@ku.ac.th

> Received 1 August 2005 Accepted 3 November 2005

The conformational analysis of HIV-1 Reverse Transcriptase Inhibitor, nevirapine, 11-cyclopropyl-5,-11dihydro-4-methyl-6H-dipyrido[3,2-b2',3'-e][1,4]diazepin-6-one, was investigated using ab initio and density functional theory calculations. The fully optimized structures and rotational potential energies of the nitrogen and carbon bonds in the cyclopropyl ring (C15-N11-C17-C19, α) were examined in detail. Geometries obtained from all applied calculations show similarities to the complex structure with HIV-1 reverse transcriptase. To obtain more information on the structure, conformational minima of nevirapine, optimized at the B3LYP/6-31G** level, were calculated for the ¹H, ¹³C, and ¹⁵N-NMR chemical shifts at the B3LYP/6-311++G** level using the G1AO approach in DMSO and chloroform IEFPCM solvation models. The calculated ¹H, ¹³C-NMR chemical shifts agree well with the experimental data, which indicates that the geometry of nevirapine in solution is similar to that of the molecule in the inhibition complex. Solvation free energies (ΔG_{sol}) of nevirapine in DMSO and chloroform were also obtained.

Keywords: Nevirapine; NMR; IR; quantum chemical calculations; GIAO; IEFPCM.

1. Introduction

HIV-1 reverse transcriptase (RT) continues to be a major target for anti-AIDS chemotherapies and has been since the early design of pharmaceutical compounds against HIV. Two groups of RT inhibitors have been extensively investigated: nucleoside-analog inhibitors (NRTIs) and non-nucleoside RT inhibitors (NNRTIs). NNRTIs are chemically diverse, generally hydrophobic, and relatively non-cytotoxic compounds. Generally, they have a butterfly-like shape and bind strongly into a pocket of HIV-1 RT. The crystal structures of HIV-1 RT itself and complexes with some different NNRTIs have been published. NNRTIs such as nevirapine, HEPT, 12 and TIBO, 13 which are pharmacologically active, have been studied. The information of a single preferred conformation of a drug molecule in solution to the

Fig. 1. Chemical structure of nevirapine and its atomic numbering.

conformational requirements of the binding site in the inhibition complex is important. It appears that the majority of HIV-1 RT inhibitors that act on the binding site show a pronounced dependence for their action on seemingly major changes in their molecular conformation.¹⁴ The role of the molecular structures of NNRTIs on HIV-1 inhibition and conformational analyses of the potent NNRTIs have been previously studied. 15,16 Nevirapine (Fig. 1), an NNRTI which has already passed pre-clinical and clinical tests and is available on the market, 17 shows a rotation of the cyclopropyl ring around the carbon nitrogen single bond (N11-C17) that determines the conformational space of nevirapine. It is found that alpha angle of cyclopropyl ring (C15-N11-C17-C19, α) plays an important role in determining the structure of nevirapine, where only a limited flexibility of the ring system exists. 18 As NMR spectroscopy is a useful technique to investigate conformations of compounds because it can be used to characterize the conformation assumed by the molecule in solution that could be different in respect to the conformation assumed in the solid form, several approaches to overcome the so-called gauge-origin problem have been developed, such as GIAO (gauge including atomic orbitals), 19 IGLO (individual gauge for localized orbitals),20 and LORG (localized orbitals-localized origin).²¹ Sometimes the interpretation of experimental NMR spectra may be difficult, especially in assigning the correct conformation assumed by the molecule in analysis. The use of computational techniques can help interpret ambiguous experimental NMR spectra. As experimental NMR spectra are most commonly measured from condensed-phase samples (solutions or powders) at ambient temperature, the self-consistent reaction field (SCRF)²² method, using integral equation formalism polarized continuum model (IEFPCM), 23,24 which solves the electrostatic solvation problem at the QM level with the aid of apparent surface charges (ASC), was expected to improve the calculated NMR chemical shifts in solution.

In the present study, conformational analysis has been performed to investigate the role of the nevirapine, 11-cyclopropyl-5,-11dihydro-4-methyl-6H-dipyrido[3,2-b2',3'-e][1,4|diazepin-6-one, structure. The nevirapine structure and the atomic numbering used in this study are shown in Figs. 1 and 2. Furthermore, the ¹H, ¹³C, and ¹⁵N-NMR chemical shifts in DMSO and chloroform solvation models of

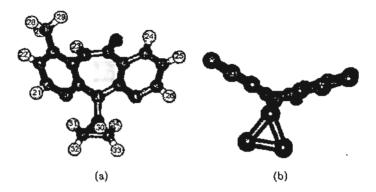


Fig. 2. (a) Three-dimensional structure of nevirapine and (b) butterfly-like-shape of nevirapine.

structural energy minima were calculated at the B3LYP/6-311++G**//B3LYP/6-31G** level and compared to the experimental data in order to conceptualize the structure of the molecule in solutions. The solvation free energies ($\Delta G_{\rm sol}$) of nevirapine in DMSO and chloroform were also studied. The information of the three-dimensional structures of nevirapine based on this theoretical study will be useful in structure activity relationship studies and the design of new potent NNR-TIs compounds.

2. Methods

2.1. Experimental

Nevirapine was extracted from Viramune® and recrystallized from CH2Cl2. 1H-NMR spectra were recorded in deuterated dimethyl-d6 sulfoxide (DMSO-d6) and CDCl₃ with a Varian INOVA 400 spectrometer operating at 300 K. The typical spectral conditions used were a spectral width of 6387.7 Hz and 16-64 scans per spectrum. Digital resolution was 0.195 Hz per point. Deuterium from the solvent-was used as the lock signal and TMS as the internal standard. Nevirapine concentration was $10-20 \,\mathrm{mg} \,\mathrm{ml}^{-1}$.

¹³C proton decoupled spectra were recorded with the same spectrometer, also in DMSO-d6 and CDCl3. The spectral conditions used were a spectral width of 25157.2Hz and 2560-25, 600 scans per spectrum. The concentration was 20-30 mg ml⁻¹, and the digital resolution was 0.7677 Hz per point.

2.2. Methods of calculations

The starting geometry of nevirapine was obtained from X-ray crystallographic data at 2.2 Å resolution of the enzyme-inhibitor complex structure (lvrt).25 First, the conformational analysis of nevirapine was determined in the gas phase with a stepsize of 10° of rotational bond between the nitrogen atom of the tricyclic system and the carbon atom of the cyclopropyl group (C15-N11-C17-C19, α) by keeping the α angle constant based on ab initio at HF/3-21G and HF/6-31G level, and DFT

at the B3LYP/6-31G** level. Second, full geometrical optimization was performed by all the methods of calculations and all possible alpha conformations were fully optimized at the B3LYP/6-31G** level. Theoretical calculations were compared to the experimental geometry, in particular to X-ray diffraction data of the reverse transcriptase and nevirapine complex, as available from the PDB (1vrt).

The ^1H , ^{13}C , and ^{15}N chemical shielding constants, and $\sigma(^1\text{H}_i)$, $\sigma(^{13}\text{C}_i)$, and $\sigma(^{15}\text{N}_i)$ in DMSO and chloroform were calculated by the GIAO method at the B3LYP/6-311++G** level of theory utilizing the SCRF method with IEFPCM on the structure optimized at the B3LYP/6-31G** level. The ^1H and ^{13}C chemical shifts $\delta(^1\text{H}_i)$ and $\delta(^{13}\text{C}_i)$ are referred to the usual standard tetramethylsilane (TMS) and the ^{15}N chemical shifts $\delta(^{15}\text{N}_i)$ are referred to nitromethane through the relation

$$\delta(^{1}H_{i}) = \sigma(^{1}H)_{TMS} - \sigma(^{1}H_{i})_{Nevirapine}, \tag{1}$$

$$\delta(^{13}C_i) = \sigma(^{13}C)_{\text{TMS}} - \sigma(^{13}C_i)_{\text{Nevirapine}}, \tag{2}$$

$$\delta(^{15}N_i) = \sigma(^{15}N)_{\text{nitromethane}} - \sigma(^{15}N_i)_{\text{Nevirapine}}.$$
 (3)

To give accurate chemical shifts, the isotropic shielding constant of hydrogen and carbon in TMS, $\sigma(^1\mathrm{H})_{\mathrm{TMS}}$ and $\sigma(^{13}\mathrm{C})_{\mathrm{TMS}}$, and the isotropic shielding constant of nitrogen in nitromethane $\sigma(^{15}N)_{\mathrm{nitromethane}}$ were calculated at the same computation level of the nevirapine compound. In addition, solvation energies of nevirapine were calculated on the optimized geometries. For the IEFPCM model, the solvent is assumed to be a continuous medium with a dielectric constant ε that surrounds a cavity, adjusted to fit the shape of the solute molecule to afford more accurate solvation energies. The dielectric constants for DMSO ($\varepsilon \simeq 46.7$) and chloroform ($\varepsilon = 4.9$) were used in the calculations. The calculated ¹H and ¹³C-NMR chemical shifts were compared to experimental data. These calculations were done using Gaussian03²⁶ on a 2.53 GHz Pentium IV PC running on Redhat Linux 9.

3. Results and Discussion

The determination of conformational minima of nevirapine where the dihedral angles determine the position of the cyclopropyl ring (C15-N11-C17-C19, α) was analyzed by using HF/3-21G, HF/6-31G, and B3LYP/6-31G** methods as shown in Fig. 3. From the results, it can be seen that all the methods of calculations lead to the same conformational minimum where the dihedral angle α is equal to 220°. Moreover, at α angles around 100° and 340°, two other energy minima can be observed, with not too high energy barriers between them (2-3 kcal/mol).

The conformation of nevirapine was fully optimized from the X-ray crystallographic starting geometry, based on different methods, and also the three conformational minima at $\alpha = 100^{\circ}$, 220°, and 340° from the conformation analysis were fully optimized at the B3LYP/6-31G** level. The obtained structural parameters with the lowest energy conformation calculated were compared with X-ray diffraction data of nevirapine complex with RT and are presented in Table 1.

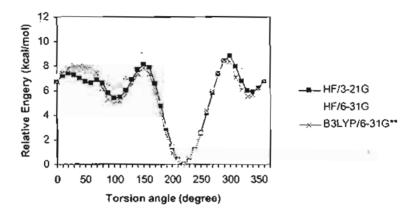


Fig. 3. Rotational potential (keal/mol) of dihedral angle a obtained from the HF/3-21G level, the HF/6-31G level, and the B3LYP/6-31G** level of calculations.

This indicates that all considered methods provide good results for the torsional angles of the fully optimization of the starting geometry obtained from X-ray crystallographic data. 27,28 For the full optimization of the starting geometries of each conformational minima of nevirapine at $\alpha = 100^{\circ}$, 220°, and 340° at the B3LYP/6-31G** level, it shows that the energy minimum at $\alpha = 217.4^{\circ}$ $(\alpha_{\rm Expt.} = 208.5^{\circ})$ from the $\alpha = 220^{\circ}$ starting geometry gives the smallest standard deviation (7.7), and it gives the same optimum structure of the full optimization at the B3LYP/6-31G** level. Superimposition of the geometry optimization at the B3LYP/6-31G** level on the crystal structure of nevirapine in the complex shows good agreement (root mean square deviation of 0.08). From these results, it can be seen that the dihedral angle α is restricted to the one minimum at $\alpha = 217.4^{\circ}$. Considering the position of the energy minimum at $\alpha = 217.4^{\circ}$ in more detail and by comparing to the experimental values obtained by X-ray investigation, it shows that the calculated values are nearly the same as the experimental ones. This can be seen to suggest that the conformation of nevirapine in the inhibition complex is rather close to its energy minimum conformation.

To test the correlation between the conformational analysis results and structures in solution, the NMR shifts of nevirapine in solution were calculated. The ¹H and ¹³C-NMR chemical shifts of the three conformational minima were calculated using DMSO and chloroform solvation models and compared to experimental results. Comparison between our experimental data to the previously reported experimental ¹H-NMR chemical shifts for nevirapine in DMSO²⁹ and ¹³C-NMR chemical shifts in CDC130 showed standard deviations of about 0.01 and 0.02 for the ¹H and ¹³C-NMR chemical shifts, respectively.

The NMR calculations typically benefit from an accurate geometry and a large basis set such as at the 6-311++G** level of the theory. Moreover, for the large basis sets, errors for ¹H chemical shifts could be consistently less than 1 ppm and

Table 1. Comparison of selected torsion angles in degrees of the fully optimized geometries of nevirapine, obtained by different methods and three different starting values of alpha angle compared to experimental X-ray crystallographic data.

		Startin	ig Geometry Crystallog	Starting Geometry Obtained from X-ray Crystallographic Data ^a	om X-ray	Starting G a = 100	Starting Geometry Obtained from $\alpha = 220$ $\alpha = 30$	uned from $\alpha = 340$
Torsion Angle	Expt.	3-21G	HF/ 6-31G	6-31G**	B3LYP/ 6-31G**		B3LYP/ 6-31G**	
O20-C6-C14-C7	30.0	21.1	24.6	24.1	21.2	19.2	21.2	23.4
C12-N11-C17-C19	68.7	9.69	1.69	73.3	71.2	305.4	71.2	179.5
C12-N11-C17-C18	136.8	137.7	138.1	142.0	139.9	22.8	139.9	257.1
C14-C15-N11-C17	168.3	154.8	153.1	157.0	159.9	152.0	159.9	151.5
C13-C12-N11-C17	200.1	208.3	209.3	206.9	205.4	215.2	205.4	215.2
C15~N11~C17~C19	208.5	220.6	220.1	216.4	217.4	101.8	217.4	334.3
C15-N11-C17-C18	276.6	288.7	289.7	285.1	286.1	175.7	286.1	51.9
C6-N5-C13-C14	144.4	135.8	137.6	131.1	134.8	129.5	134.8	135.9
N5-C6-C14-C7	212.9	202.2	205.4	204.1	201.1	197.9	201.1	204.2
C15-N11-C12-N1	238.8	237.6	238.1	243.3	238.0	239.2	238.0	236.5
C12-N11-C15-N10	126.7	127.4	126.0	122.2	127.9	132.4	127.9	126.8
SDb		0.6	8.7	80	7.7	95.8	7.7	96.8

*Date obtained from Refs. 27 and 28 with a resolution of 2.2 Å. bStandard deviation (SD) = $[\sum (X_{\text{Cal. } \vec{p}} X_{\text{Expt.}})^2/n - 1]^{1/2}$.

Table 2. Comparison of experimental and calculated ¹H-NMR chemical shifts (ppm) at different α angles (degree) of the cyclopropyl ring (C15-N11-C17-C19) calculated at the B3LYP/6-311++G**//B3LYP/6-31G** level with DMSO and chloroform IEFPCM solvation models.

	Che	emical Shifts	s δ (ppm) in	DMSO	Chem	ical Shifts δ	(ppm) in C	hloroform
¹H-NMR	Expt.	$\alpha = 101.8$	$\alpha = 217.4$	$\alpha = 334.3$	Expt.	$\alpha = 101.8$	$\alpha = 217.4$	$\alpha = 334.3$
21H	8.06	8.40	8.59	8.59	8.16	8.33	8.53	8.54
22H	7.04	7.52	7.56	7.42	6.94	7.36	7.40	7.25
24H	8.00	8.67	8.63	8.55	8.11	8.62	8.58	8.50
25H	7.17	7.43	. 7.51	7.46	7.07	7.29	7.36	7.31
26H	8.50	8.98	8.98	8.79	8.54	8.91	8.90	8.70
27H	2.32	2.43	2.36	2.43	2.41	2.38	2.30	2.37
28H	2.32	2.26	2.27	2.29	2.41	2.21	2.22	2.24
29H	2.32	2-41	2.33	2.43	2.41	2.42	2.33	2.43
30H	3.61	3.41	3.80	3.26	3.77	3.35	3.84	3.18
31H	0.33	1.96	0.46	1.74	0.50	2.01	0.42	1.75
32H	0.86	0.83	0.98	0.48	1.00	0.82	0.95	0.43
33H	0.86	0.50	1.02	0.77	1.00	0.46	1.00	0.75
34H	0.33	1.42	0.48	2.11	0.50	1.41	0.46	2.16
SD^a		0.65	0.34	0.73		0.60	0.27	0.68

^aStandard deviation (SD) = $\left[\sum (X_{\text{Cal.}} - X_{\text{Expt.}})^2/n - 1\right]^{1/2}$.

Table 3. Comparison of experimental and calculated ¹³C-NMR chemical shifts (ppm) at different α angles (degree) of the cyclopropyl ring (C15-N11-C17-C19) calculated at the B3LYP/6-311++G**//B3LYP/6-31G** level with DMSO and chloroform IEFPCM solvation models.

	Che	mical Shifts	δ (ppm) in	DMSO	Chemi	cal Shifts δ	(ppm) in C	hloroform
¹³ C-NMR	Expt.	$\alpha = 101.8$	$\alpha = 217.4$	$\alpha = 334.3$	Expt.	$\alpha = 101.8$	$\alpha = 217.4$	$\alpha = 334.3$
2C	140.73	151.77	152.22	153.62	140.36	151.26	151.87	153.23
3C	120.91	129.29	128.80	129.06	120.22	128.55	128.04	128.30
4C	140.01	148.05	146.99	146.87	139,47	146.93	145.71	145.58
6C	167.02	178.08	176.74	177.11	168.85	177.25	175.96	176.28
7C	143.59	149.99	149.39	149.37	144.31	149.63	148. 9 9	149.07
8Ç	119.35	124.03	124.88	124.92	118.97	123.41	124.21	124.28
9Č	151.33	161.73	161.83	160.88	152.10	161.11	161.22	160.16
12C	154.20	159.12	162.27	162.41	153.95	159.15	162.24	162.34
13C	124.92	135.69	135.13	134.67	124.90	135.47	134.76	134.31
14C	122.27	125.81	126.81	128.18	122.08	125.54	126.53	128.02
15C	159.99	170.54	169.83	167.91	160.55	170.23	169.58	467.71
16C	17.57	19.80	19.73	20.02	17.80	19.78	19.70	19.99
17C	29.29	42.65	35.64	43.27	29.61	42.72	35.59	43.40
18C	8.52	1.47	13.24	8.97	8.82	1.50	13.26	9.07
19C	8.75	9.75	12.57	0.80	9.11	9.83	12.60	0.90
SD^a		8.65	7.93	8.71		8.10	6.43	8.22

^{*}Standard deviation (SD) = $\{\sum (X_{Cal.} - X_{Expt.})^2/n - 1\}^{1/2}$.

sometimes less than 0.10 ppm.31 Therefore, in this study, the chemical shifts were calculated at the B3LYP/6-311++G** level using the SCRF-IEFPCM solvation model and used the corresponding at the B3LYP/6-31G** level for optimizing the structure. The comparison of chemical shifts between experimental and calculated ¹H and ¹³C-NMR chemical shifts are presented in Tables 2 and 3.

As expected, it was found that the optimum geometry at $\alpha = 217.4^{\circ}$ shows an excellent agreement between calculated ¹H chemical shifts and experimental data, except the ¹H chemical shift of the 23H atom attached to the nitrogen atom of the seven membered ring, which was not observed in the measured NMR spectra. Because this proton is an acidic proton, hydrogen bonding strongly influences the electronic environment of this proton in solution, and hence, it is difficult to observe the chemical shift of this proton. The 30H, 31H, 32H, 33H, and 34H calculated chemical shifts that are influenced by the rotation around the alpha angle, are completely different at $\alpha = 101.8^{\circ}$ and $\alpha = 334.3^{\circ}$, but similar at $\alpha = 217.4^{\circ}$, to the experimental data. The same with the 17C, 18C, and 19C calculated chemical shifts, in that they are similar to the experimental data only at $\alpha = 217.4^{\circ}$. It can be seen that the chemical shifts of cyclopropyl rings are very sensitive to the rotation around the alpha angle. Plots of the ¹H- and ¹³C-NMR chemical shifts in DMSO and chloroform as calculated against experimental data are shown in Fig. 4. With $\alpha = 217.4^{\circ}$, correlation coefficients are $R^2 = 0.991$ for ¹H-NMR in chloroform, and $R^2 = 0.999$ for ¹H-NMR in DMSO and ¹³C-NMR in both solvents. This shows

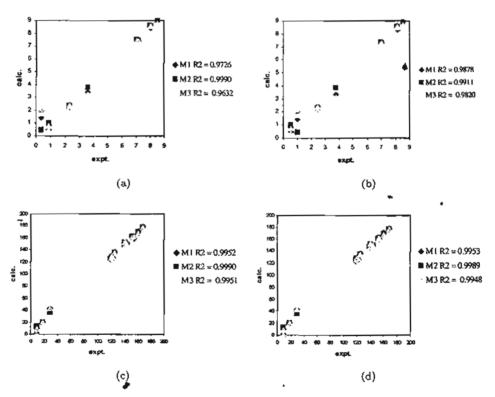


Fig. 4. Correlation plots between calculated and experimental chemical shifts (ppm) for $\alpha=101.8$ (M1), $\alpha=217.4$ (M2), and $\alpha=334.3$ (M3): (a) ¹H-NMR chemical shifts in DMSO, (b) ¹H-NMR chemical shifts in chloroform, (c) ¹³C-NMR chemical shifts in DMSO, and (d) ¹³C-NMR chemical shifts in chloroform.

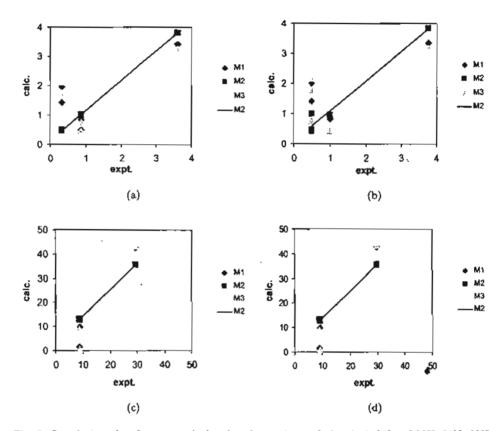


Fig. 5. Correlation plots between calculated and experimental chemical shifts of 30H, 31H, 32H, 33H, 34H, 17C, 18C, and 19C for $\alpha = 101.8$ (M1), $\alpha = 217.4$ (M2), and $\alpha = 334.3$ (M3): (a) ¹H-NMR chemical shifts in DMSO, (b) ¹H-NMR chemical shifts in chloroform, (c) ¹³C-NMR chemical shifts in DMSO, and (d) 13C-NMR chemical shifts in chloroform.

good agreement and the presence of a conformation of nevirapine in DMSO and chloroform solutions consistent with the optimized geometry at a dihedral angle α of about 217.4°.

To investigate in more detail, the plots between calculated and experimental chemical shifts of protons and carbons located in the cyclopropyl ring 30H, 31H, 32H, 33H, 34H, 17C, 18C, and 19C at different alpha angles in DMSO and chloreform were considered. From the plots in Fig. 5, it is obviously seen that the rotation around alpha angle effects the shifts of atoms in the cyclopropyl ring, and it shows the best agreement between calculated and experimental chemical shifts at $\alpha = 217.4^{\circ}$.

The calculated free energy changes of solvation of nevirapine at all three alpha conformations are shown in Table 4. The solvation free energy (ΔG_{sol}) is defined as the free energy change to transfer a molecule from gas to solvent. The $\Delta G_{\rm sol}$ can be considered to have three components: ΔG_{elec} , ΔG_{cav} , and ΔG_{dis} and ΔG_{rep} ;

Table 4. Calculated energies of nevirapine at the B3LYP/6-311++G** B3LYP/6-31G** level in the gas phase and solution.^a

Nevirapine	$\Delta E^{\rm gasphase}$	$\Delta E^{\mathrm{iefpem}}$	ΔG_{sol} b	$\Delta G_{ m elec}$	$\Delta G_{\sf cav}$	$\Delta G_{ exttt{dis}}$	ΔG_{rep}
DMSO, $\epsilon = \epsilon$	46.7						
$\alpha = 101.8^{\circ}$	5.53	6.13	-1.18	-11.44	32.92	-24.12	1.46
$\alpha \simeq 217.4^{\circ}$	0	0	-1.77	-12.25	33.07	-24.07	1.49
$\alpha = 334.3^{\circ}$	6.03	6.21	-1.59	-11.85	32.94	-24.14	1.46
CDCl ₃ , $\epsilon = 4$	1.9						
$\alpha = 101.8^{\circ}$	5.53	5.85	-0.13	-8.07	24.77	-17.79	0.95
$\alpha = 217.4^{\circ}$	0	0	-0.44	~8.55	24.88	` 一17.74	0.97
$\alpha = 334.3^{\circ}$	6.03	6.11	-0.37	-8.31	24.79	-17.80	0.95

^{*}Energies (E) and all free energy changes (ΔG) are in kcal/mol.

Table 5. 15 N-NMR chemical shifts (ppm) at different α angles (degree) of the cyclopropyl ring (C15-N11-C17-C19) calculated at the B3LYP/6-311++G**//B3LYP/6-31G** level with DMSO and chloroform IEFPCM solvation models.

	Chemical	Shifts & (ppm)	in DMSO	Chemical Shifts δ (ppm) in Chloroform			
15 N-NMR	$\alpha = 101.8$	$\alpha = 217.4$	$\alpha = 334.3$	$\alpha = 101.8$	$\alpha = 217.4$		$\alpha = 334.3$
1N	-99.75	-108.52	-105.25	-100.92	-101.67		-98.82
5N	-270.50	-272.70	-272.32	-274.68	-271.04	•	-270.66
10N	-105.18	-107.65	-104.27	-105.78	~101.82	•	-100.13
IIN	-291.61	-280.78	-297.45	-294.38	-277.47		-294.09

where $\Delta G_{\rm elec}$ stands for the electrostatic component, $\Delta G_{\rm cav}$ is the free energy required to form the solute cavity within the solvent, $\Delta G_{\rm dis}$ and $\Delta G_{\rm rep}$ are the dispersion and repulsion contribution (van der Waals interaction between the solute and the solvent).²¹ It is shown that the different alpha conformational angles present different energies in gas phase and in solution models. The range of ΔE of nevirapine in gas phase is between 5.53 and 6.03 kcal/mol and the range of ΔE of nevirapine in DMSO and chloroform IEFPCM models are 6.13–6.21 and 5.85–6.11-kcal/mol, respectively. As expected, different alpha angles show different $\Delta G_{\rm sol}$ values. It can be concluded that the rotational alpha angle influences the solvation energies of nevirapine in DMSO and chloroform.

As ¹⁵N-NMR chemical shifts are very sensitive to environmental changes, considering the ¹⁵N-NMR chemical shifts of nevirapine at all three conformational angles was of great interest. The prediction of the ¹⁵N-NMR chemical shifts is shown in Table 5. The results indicate that 1N, 10N, and 11N were affected by the rotational angle. This is especially so for 11N, which forms the single bond to carbon (N11–C17), which rotates, and shows completely different chemical shifts at the three different alpha angles. The ranges of 11N chemical shifts are -280.78 to -297.45 ppm in DMSO and -277.47 to -294.38 ppm in chloroform solutions. In contrast, 5N, being distant from the cyclopropyl ring, has chemical shifts that do not seem

 $^{^{}b}\Delta G_{\rm sol} = \Delta G_{\rm elec} + \Delta G_{\rm cav} + \Delta G_{\rm dis} + \Delta G_{\rm rep}$.

to be much affected. As there are no 15N-NMR experimental data available, due to its sensitivity and instrumentation limitations, calculating ¹⁵N-NMR chemical shifts of nevirapine is a convenient choice for predicting and studying ¹⁵N-NMR chemical shifts.

4. Conclusions

The conformational analysis of nevirapine was performed based on quantum chemical calculations, ab initio, and density functional theory methods. The optimized local minima structure at the B3LYP/6-31G** level, regarding the energetic structure, indicates that the dihedral angle $\alpha = 217.4^{\circ}$. The ¹H- and ¹³C-NMR chemical shift calculations of nevirapine in DMSO and chloroform solutions agree well with the experimental results and show an almost identical structure to the geometry of the molecule in the complex with HIV-1 RT. The predicted ¹⁵N-NMR chemical shifts of nevirapine in DMSO and chloroform are presented. The chemical shifts of atoms in the cyclopropyl ring and 1N, 10N, and 11N are affected by the rotation of the alpha conformational angle. Solvation free energies ($\Delta G_{\rm sol}$) of nevirapine in DMSO and chloroform show the different values due to the different of alpha angles.

Acknowledgments

This work was supported by the Thailand Research Fund (BRG 4780007 and DBG 4780009). The Commission of Higher Education and the Postgraduate on Education and Research in Petroleum and Petrochemical Technology (ADB-MUA) are gratefully acknowledged for financial support and research facilities. Thesis-in-aid of the Graduate School is acknowledged for partial financial support. The authors thank LCAC, Department of Chemistry, Faculty of Science, and the computing center, KU, for providing computing facilities throughout this work.

References

- 1. Ren J, Esnouf RM, Hopkins AL, Warren J, Balzarini J, Stuart DI, Stammers DK, Biochemistry 37:14394, 1998.
- Kohlstaedt A, Wang J, Friedman MJ, Rice AP, Steitz TA, Science 256:1783, 1992.
- Ren J, Esnouf RM, Hopkins AL, Stuart DI, Stammers DK, J Med Chem 42:3845,
- 4. Das K, Ding J, Hsiou Y, Clark Jr AD, Moereels H, Koymans L, Andries K, Pauwels R, Janssen PAJ, Boyer PL, Clark P, Smith Jr RH, Kroeger Smith MB, Michejda CJ, Hughes SH, Arnold E, J Mol Biol 264:1085, 1996.
- 5. Stammers DK, Somers DO, Ross CK, Kirby I, Ray PH, Wilson JE, Norman M, Ren JS, Esnouf RM, German EF, Jones EY, Stuart DI, J Mol Biol 242:586, 1994.
- 6. Hopkins AL, Ren J, Esnouf RM, Willcox BE, Jones EY, Ross C, Miyasaka T, Walker RT, Tanaka H, Stammers DK, Stuart DI, J Med Chem 39:1589, 1996.
- Hsiou Y, Ding J, Das K, Clark AD, Hughes SH, Arnold E, Structure 4:853, 1996.
- 8. Jaeger J, Smerdon SJ, Wang J, Boisvert CD, Steitz AT, Structure 2:869, 1994.
- 9. Najmudin S, Cote ML, Sun D, Yohannan S, Montano SP, Gu J, Georgiadis MM, J Mol Biol 296:613, 2000.

- Ding J, Das K, Moereels H, Koymans L, Andries K, Janssen PAJ, Hughes SH, Arnold E, Nat Struct Biol 2:407, 1995.
- Merluzzi VJ, Hargrave KD, Labadia KJ, Grozinger K, Skoog M, Wu JC, Shinh C, Shih CK, Eckner K, Hattox S, Adams J, Rosethal AS, Faanes R, Eckner RJ, Koup RA, Sullivan LL, Science 250:1411, 1990.
- Tanaka H, Takashima H, Ubasawa M, Sekiya K, Nitta I, Baba M, Shigeta S, Walker RT, De Clercq E, Miyasaka T, J Med Chem 35:4713, 1992.
- Pauwels R, Andries K, Desmyter J, Schols D, Kukla MJ, Breslin HJ, Raeymaeckers A, Vangelder J, Wostenborghs R, Heykants J, Schellekens K, Janessen MAC, De Clercq E, Janssen PAJ, Nature 343:470, 1990.
- 14. De Clercq E, AIDS Res Hum Retroviruses 8:119, 1992.
- Lawtrakul L, Hannongbua S, Beyer A, Wolschann P, Monatshefte Chem 130:1347, 1999.
- 16. Saen-oon S, Hannongbua S, Wolschann P, J Chem Inf Comput Sci 43:1412, 2003.
- 17. http://www.rxlist.com/cgi/generic2/nevira.htm.
- Hannongbua S, Prasithichokekul S, Pungpo P, J Comput Aided Mol Des 15:997, 2001.
- 19. Wolinksi K, Hinton JF, Pulay P, J Am Chem Soc 112:8215, 1990.
- Schindler M, Kutzelnigg W, J Chem Phys 76:1919, 1982.
- Hansen AE, Bouman TD, J Chem Phys, 82:5035, 1985.
- Cramer CJ, Truhlar DG, in Lipkowitz KB, Boyd DB (eds.), Review in Computational Chemistry, Vol. 6, VCH, New York, pp. 1-72, 1995.
- 23. Tomasi J, Mennucci B, Cancs E, J Mol Struct (Theochem) 464:211, 1999.
- Mennucci B, Martinez JM, Tomasi J, J Phys Chem A 105:7287, 2001.
- Berman HM, Westbrook J, Feng Z, Gililand G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE, Nucleic Acids Res 28:235, 2000.
- 26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian G3, Gaussian Inc., Wallingford, CT, 2004.
- Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D, Stammers D, Struct Biol 2:293, 1995.
- http://alpha.vmc.uu.sc/~gerard/hetero/NEV.html.
- Hargrave KD, Proudfoot JR, Grozinger KG, Cullen E, Kapadia SR, Petal UR, Fuchs VU, Mauldin SC, Vitous J, Behnke ML, Klunder JM, Pal K, Skiles JW, McNeil DW, Rose JM, Chow GC, Skoog MT, Wu JC, Schmidt G, Engel WW, Eberlein WG, Saboe TD, Campbell SJ, Rosenthal AS, Adams J, J Med Chem 34:2231, 1991.
- 30. Norman MH, Minick DJ, Martin GE, J Heterocycl Chem 30:771, 1993.
- 31. Vaara J, Ruud K, Vahtras O, Ågren H, Jokisaari J, J Chem Phys 109:1212, 1998.