บทคัดย่อ

ซีสเตอื่นโปรติเนสของไวรัสโคโรนา (CoVMpro) เป็นเอนไซม์เป้าหมายเพื่อการวิจัยและ พัฒนายาต้านไวรัสโรคระบบทางเดินหายใจรุนแรง (ซาร์ส) บริเวณเร่งปฏิกิริยาของเอนไซม์เป็นร่อง ขนาดใหญ่ซึ่งสามารถแบ่งออกเป็นหน่วยย่อยได้หลายบริเวณ วัตถุประสงค์ของงานวิจัยนี้เพื่อศึกษา ลักษณะเฉพาะของบริเวณเร่งปฏิกิริยาของเอนไซม์ด้วยวิธีการจำลองแบบโมเลกุล กลไกการยึดเหนี่ยว ของเอนไซม์กับซับสเตรท octapeptide ด้วย molecular docking และพลวัติ เชิงโมเลกุลเป็นเวลาเท่ากับ 2,000 พิโควินาที (ps) ผลการศึกษาบ่งชี้ว่า S3 มีความเหมาะสมกับ กรดอะมิโน Lys ซึ่งสอดคล้องกับการทดลองจริง ค่าพลังงานรวมของระบบ enzyme-octapeptide substrate complexed มีค่าสูงกว่าระบบ free form ในขณะที่ทั้งสองระบบเข้าใกลัสภาวะสมดุลที่ เวลา 1,000 ps Root Mean Square Deviation (RMSD) และ Root Mean Square Fluctuation (RMSF) บ่งชี้ว่าสายโปรตีน one turn α-helix และสาย long loop ของ SARS CoVMpro complexed form มีความยืดหยุ่นสูงกว่า SARS CoVMpro free form กรดอะมิโนของเอนไซม์ บริเวณหน่วยที่ 41 ถึง 49 และ 187 ถึง 192 ที่ยึดเหนี่ยว P3Lys มีความยืดหยุ่นสูงกว่าบริเวณอื่น สายโปรตีน one turn lpha-helix ถูกเหนี่ยวนำเข้าหาซับสเตรท octapeptide ด้วยอันตรกิริยาทางประจุ ไฟฟ้าและพันธะไฮโดรเจนที่ตำแหน่ง S3Glu47 กับ P3Lys ปลาย C-terminal ของ octapeptide จำเพาะกับ S4'Thr-cluster (residues 21, 24-26 และ 45) ด้วยพันธะไฮโดรเจน ขณะที่น้ำจำนวน หนึ่งในรัศมี 5 Å ของ P5Thr มีส่วนในการช่วยให้เอนไซม์ยึดเหนี่ยวกับ octapeptide ซับสเตรทได้ดี

Structural Model for Binding Mechanism of SARS Cysteine Proteinase Complex with Octapeptide: A Computational Approach of Active Site by Docking and Molecular Dynamics Simulation

Abstract

Coronavirus main cysteine proteinase (CoVMpro) plays a key target for drug development against severe acute respiratory syndrome virus (SARS). Active site of the enzyme displays large cleft and divided to several subsites. The purpose of the research was studied characteristics of active site SARS CoVMpro using molecular modeling technique. Molecular docking and molecular dynamics (MD) simulation were used to investigate binding mechanism of the enzyme-octapeptide substrate complexed. The best result of docking was carried out to MD 2,000 picoseconds (ps) simulation times. The docking results strongly suggested that S3 suitable for Lys. Total energy of enzyme-octapeptide substrate complexed displays higher than free form and both systems became to equilibrium state after 1,000 ps. Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) of their COL atoms indicated that one turn α-helix and long loop chain of the enzyme complex form were flexible greater than free form. The amino acid residues 41-49 and 187-192 of the enzyme complex form and the octapeptide P3Lys are display highly flexible. One turn α -helix chain was induced to fit with octapeptide through hydrogen bond and electrostatic interactions between S3Glu47 and P3Lys. C-terminus of octapeptide was continuously fixed to S4'Thr-cluster (residues 21, 24-26 and 45) through hydrogen bonds at all simulations. Several waters within 5 Å of P5Thr related to binding mechanism of SARS CoVMpro with octapeptide substrate.