บทคัดย่อ

พืชที่ใช้ผลิต biofuel – สปู่ดำ

จากการสำรวจความหลากหลายของเชื้อราอาร์บัสคูลาร์มายคอร์ไรซา (AMF) ที่เกี่ยวข้องกับสบู่ คำ โดยวิธีตรวจสปอร์ในดินบริเวณราก 10 แหล่ง ใน 6 จังหวัดของประเทศไทย ได้แก่ เชียงราย, เชียงใหม่, ลำพูน, เลย, ขอนแก่น และหนองคาย ระหว่างเดือนตุลาคม 2006-ธันวาคม 2007 พบ AMF 34 ชนิค คือ Acaulospora (17 ชนิค), Gigaspora (2 ชนิค), Glomus (10 ชนิค) และ Scutellospora (5 ชนิค) ซึ่งค่าดัชนีความหลากหลาย (DI) อยู่ในช่าง 0.18-0.95 (ค่าเฉลี่ย 0.49) และ ความอุดมสมบูรณ์ของชนิค AMF มีจำนวนตั้งแต่ 3-11 ชนิค (จำนวนเฉลี่ย 6.1 ชนิค) การเข้าอาศัยของ AMF ในรากสบู่คำ พบตั้งแต่ 38-94% ของพื้นที่ราก

การวิเคราะห์ยืน Terminal restriction fragment length polymorphism (T-RFLP) ในหน่วยช่อง ใหญ่ของ rRNA ในรากและคินบริเวณราก จากตัวอย่างที่เก็บแบบสุ่ม จำนวน 40 ตัวอย่าง จาก 6 แหล่ง ของจังหวัดเชียงใหม่ในเดือนเมษายน 2008 ทำการสกัด DNA และวิเคราะห์ พบว่า สังคมของ AMF ทั้ง ในรากและบริเวณรอบรากสบู่ดำ มีความหลากหลายและแตกต่างกัน บางชนิดที่พบในคินกลับไม่พบใน ราก ซึ่งตรงกันกับผลจากการวิเคราะห์ T-RF ซึ่งใช้เอนไซม์ตัดจำเพาะ 3 ชนิดคือ TaqI, Hinfl และ Hsp96 การใช้ TaqI ให้ความแตกต่างมากที่สุด ในรูปแบบของสังคม AMF ที่สึกษา

เมื่อใช้สบู่ดำเป็นเหยื่อล่อ AMF ที่เหมาะสมจากดินตัวอย่างและจากแปลงปลูก จำนวน 10 ตัวอย่างทำการศึกษาในโรงเรือน ช่วงเดือนมิถุนายน-กันยายน 2007 โดยใช้ดินบริเวณราก (500 กรัม) ผสมในดินทรายฆ่าเชื้อ 1.5 กิโลกรัมที่บรรจุในถุงพลาสติกสีดำสำหรับปลูก แล้วตรวจหาสปอร์หลัง ปลูก 90 วัน ได้สปอร์ชนิดเด่นที่สุด 2 ชนิด (จากดินตัวอย่างของจังหวัดเชียงใหม่บริเวณที่ 1 และ 3) คือ CMU05 และ CMU33

การศึกษาชนิดของพืชอาศัยที่เหมาะสมในการเพิ่มจำนวนสปอร์ของเชื้อ AMF ชนิด CMU05 และ CMU33 โดยวางแผนการทดลองแบบ factorial ใน complete randomized block design ประกอบด้วยพืช 4 ชนิด คือ ข้าว โพด ลูกเดือย ข้าว และข้าวฟ่าง, AMF treatment 3 แบบ และ ทำ 3 ซ้ำ โดยปลูกหัวเชื้อ AMF 50 สปอร์ เป็นเวลา 120 วัน เปรียบเทียบกับชุดควบคุมที่ไม่เติมหัวเชื้อ พบว่าเชื้อ AMF จะเพิ่มจำนวนสปอร์และเข้าสู่รากข้าวฟ่างใด้สูงที่สุด AMF ชนิด CMU05 และ CMU33 เร่งการ เจริญของพืชได้ เมื่อเปรียบเทียบกับชุดควบคุม ไม่พบการเพิ่มจำนวนของ CMU33 ในข้าวโพด ส่วน CMU05 ไม่เพิ่มจำนวนในข้าว ดังนั้นข้าวฟ่างจึงเป็นพืชอาศัยที่เหมาะสมในการผลิตและเก็บรักษาสปอร์ ของ AMF ทั้งสองชนิด

จากการตรวจสอบลักษณะสัณฐานพบว่า CMU05 คล้ายกับ Entrophospora colombiana ส่วน CMU33 คล้ายกับ Scutellospora heterogama ซึ่งจากการวิเคราะห์ทางอณูชีวภาพ โดยใช้สปอร์ 50 สปอร์จากราก และคินบริเวณรอบรากของข้าวฟ่าง และ ใช้ primers SSU (NS31-AM1) และ LSU rDNA (FLR-3-FLR-4) พบว่า SSU rDNA ของ CMU05 คล้ายกับ Entrophospora colombiana 99%; CMU33 คล้ายกับ Scutellospora heterogama 97% ความคล้ายกันของ LSU rDNA ของ CMU05 กับ E. colombiana 91% และ CMU33 กับ S. heterogama 97% เมื่อศึกษาความสัมพันธ์ทางพันธุกรรมโดยใช้ MEGA 4.1 BETA พบว่า CMU05 ไม่ได้อยู่ใน clade เดียวกับ E. colombiana และ CMU33 มีความ ใกล้ชิคกับ S. heterogama ซึ่งอยู่ใน clade เดียวกัน

การทดลองหาชนิดของ AMF ที่เหมาะสมกับสบู่คำ โดยใช้กล้าสบู่คำซึ่งปลูกในดินฆ่าเชื้อ ช่วง เดือนมกราคม-มีนาคม 2008 ทดสอบกับหัวเชื้อ AMF ท้องถิ่น 8 ชนิด จำนวน 100 สปอร์ ต่อ 1 กล้าสบู่ คำ และ วัดค่าการเจริญเติบ โต (ความสูงลำต้น, เส้นผ่านศูนย์กลางลำต้น, น้ำหนักสดของลำต้น) เปรียบเทียบกับชุดควบคุมที่ไม่ได้ปลูกเชื้อ เชื้อที่มีประสิทธิภาพในการเร่งการเจริญของสบู่คำสูงที่สุด คือ Scutellospora sp. CMU33

ผลของความหนาแน่นของสปอร์ต่อการเจริญของสบู่คำ ในคินที่มีการเติมฟอสฟอรัส ทำการ ทคลองในเคือนเมษายน-มิถุนายน 2009 วางแผนการทคลองแบบ Completely randomized factorial design ประกอบด้วย สปอร์ที่มีความหนาแน่น 4 แบบ คือ 0, 50, 100, 200 สปอร์ต่อพืช ให้ฟอสฟอรัส 4 ระคับ (0, 50,100, 200 mg P/kg ของคิน) ทำ 4 ซ้ำ พบว่า Scutellospora sp. CMU33 100 สปอร์กับคินที่ เติมปุ๋ยฟอสฟอรัส 100 mg P/kg ของคิน ทำให้กล้าสบู่คำมีการเจริญสูงที่สุดในสภาวะทคลอง

พืชเครื่องดื่ม-กาแฟ

การศึกษา AMF ที่มีความสัมพันธ์กับกาแฟอราบิก้า (Coffea arabica L.) จำนวน 5 แหล่งใน จังหวัดเชียงใหม่และ 4 แหล่งในจังหวัดเชียงราย เมื่อแยกสปอร์ออกจากดินตัวอย่าง โดยการกรองด้วยน้ำ และสารละลายน้ำตาล 50% และจัดจำแนก โดยใช้ลักษณะทางสัณฐาน พบ AMF จำนวน 29 ชนิด จัดอยู่ ใน 3 สกุล (Acaulospora spp., Ambispora spp. และ Glomus spp.) ของไฟล้ม Glomeromycota โดย พบว่า G. aggregatum เป็นชนิดที่พบจำนวนสปอร์มากที่สุด

จากการศึกษาผลของ AMF ต่อการเจริญเติบ โตของกล้ากาแฟอราบิก้าซึ่งปลูกในดินที่มี ฟอสฟอรัสต่ำ พบว่า การใช้สปอร์ AMF แบบผสม ทำให้ความสูงของต้นและความยาวของรากเพิ่มขึ้น อีกทั้งเชื้อบริสุทธิ์ของ Acaulospora morrowiae, Ac. mellea, G. etunicatum และ Ac. scrobiculata ที่เพิ่ม ปริมาณได้ ช่วยให้กล้ากาแฟที่ปลูกในดินขาดธาตุอาหาร เจริญเติบ โตได้ดีกว่าเชื้อผสม, เชื้อทางการค้า (Myco star®) และชุดควบคุม ปริมาณสปอร์ที่พืชได้รับเริ่มต้น (50 และ 200 สปอร์) ให้ผลไม่แตกต่างกัน

การเพิ่มปริมาณสปอร์ในกระถางโคยใช้คินเป็นหัวเชื้อ ข้าวโพค (Zea mays L.) และข้าวฟ่าง (Sorghum vulgare Pers.) เป็นพืชอาศัย พบว่าสามารถเพิ่มปริมาณสปอร์ Ac. mellea ในข้าวโพคได้ดี ที่สุด ในขณะที่สามารถเพิ่มปริมาณสปอร์ Ac. morrowiae ได้ดีที่สุดในข้าวฟ่าง และเพิ่ม Ac. scrobiculata ในพืชทั้งสองได้ปานกลาง

พืชอาหาร ชัญพืช และถั่วกินเมล็ด

การตรวจเปอร์เซ็นต์การเข้ารากพืชของ AMF 5 สกุล คือ Acualospora, Scutellospora, Glomus, Paraglomus และ Achaeospora ใน ถั่วพุ่ม (Vigna unguiculata), ข้าวโพด (Zea mays), ลูกเดือย (Coix lacryma-jobi), ข้าวไร่ (Oryza sativa), ข้าวฟ่าง (Sorghum vulgare) และ ปะคะ (Macaranga denticulata) เพื่อหาเชื้อที่เหมาะสม พบว่า การติดเชื้อในรากสูง (60%-100%) ยกเว้นในข้าวไร่ คินที่ใส่ฟอสฟอรัส 30 กก./เฮกเตอร์ มีปริมาณสปอร์น้อยกว่าในคินที่ใส่ 3 กก.P/เฮกเตอร์ จากการวิจัยนี้เชื้อราในสกุล Acualospora เป็นชนิคเค่น แต่ทุกสกุลสามารถเพิ่มน้ำหนักยอคและรากของพืชทุกชนิคโดยเฉพาะเมื่อ ปลูกในคินที่มีฟอสฟอรัสต่ำ

พืชท้องถิ่นที่ใช้ในการปลูกป่า

ทำการสำรวจความหลากหลายของเชื้อราอาร์บัสคูลาร์มายคอร์ไรซา และความสัมพันธ์ของ AMF กับพืชท้องถิ่นในป่าเขตร้อนของอุทยานแห่งชาติดอยสุเทพ-ปุย ทางภาคเหนือของประเทศไทย แยกสปอร์จากดินและจัดจำแนกโดยใช้ลักษณะสัณฐานวิทยา ตรวจหาการติดเชื้อของเชื้อ AMF ในไม้ ยืนต้น 24 ชนิด (19 สกุล) พบสปอร์ของเชื้อ AMF ในดินรอบรากต้นไม้ทุกชนิด ซึ่งจัดจำแนกได้ทั้งหมด 21 ชนิด อยู่ในสกุล Acaulospora (6 ชนิด), Glomus (12 ชนิด) และ Scutellospora (3 ชนิด) โดยมีเชื้อราใน สกุล Glomus และ Acaulospora เป็นชนิดเด่น ส่วนชนิดที่พบมากคือ A. elegans, G. multicaule และ S. pellucid จากผลการวิจัยนี้แสดงให้เห็นว่า พืชพื้นเมืองทั้ง 24 ชนิด มีความสัมพันธ์กับเชื้อ AMF และเชื้อ AMF บางชนิดสามารถอาสัยร่วมกับพืชได้หลายชนิด

ผลการทดสอบเชื้อ AMF (Ac. elegans, G. etunicatum, G.mosseae) ร่วมกับการใช้ปุ๋ย ฟอสฟอรัส (KH2PO4) ที่มีต่อต้นกล้าก่อเดือย (Castanopsis acuminatissima) ในดินที่มีฟอสฟอรัสต่ำ และทดสอบภายในโรงเรือน พบว่า อัตราการให้ฟอสฟอรัสที่เพิ่มขึ้นสามารถเพิ่มการเจริญของต้นกล้า ได้ การใช้ G. etunicatum ร่วมกับการใช้ปุ๋ยฟอสฟอรัส ทำให้ความสูงของพืช น้ำหนักแห้งของยอดและ รากเพิ่มขึ้นมากที่สุด ในขณะที่พืชที่ไม่ได้รับเชื้อและฟอสฟอรัส มีความสูงของต้นต่ำกว่ามาก

การปลูกเชื้อให้พืช 5 ชนิค (ข้าวฟ่าง, ข้าว, ถั่วเหลือง, ข้าวโพค และ คาวเรือง) ด้วยสปอร์ 6 ชนิค เค่นจากพืชที่ใช้ปลูกป่า (A. elegans, A. mellea, A. scrobiculata, G.etunicatum, G. mosseae, S. heterogama) เป็นเวลา 4 เคือน พบว่าข้าวฟ่างและข้าวโพคสามารถเพิ่มปริมาณสปอร์ A. elegans, G. etunicatum และ G. mosseae ได้มากที่สุด

การคัดเลือกพืชอาศัยที่เหมาะสมในการเพิ่มปริมาณ AMF และการคัดเลือกวัสดุที่เหมาะสมในการเก็บกัก สปอร์ของ AMF

จากการปลูก AMF ในพืชอาศัยตระกูลหญ้า 3 ชนิด ได้แก่ ต้นเดือย หญ้ารูซี่ และข้าวฟ่าง เป็นเวลา 3 เดือน พบว่า พืชอาศัยทั้งหมด สามารถเพิ่มจำนวนสปอร์ของ AMF ทุกชนิดได้น้อย โดยข้าวฟ่างสามารถ เพิ่มจำนวนสปอร์ของเชื้อ Glomus sp., Scutellospora sp. และ $Mycostar^{\&}$ ได้มากกว่าต้นเดือยและ หญ้ารูซี่อย่างมีนัยสำคัญทางสถิติ (P < 0.05) แต่เปอร์เซนต์การเข้ารากของเชื้อต่ำ

การเพิ่มจำนวนสปอร์ในวัสดุเก็บกัก ทดสอบโดยใช้เชื้อราอาร์บัสกูลาร์ไมคอร์ไรซา 2 ชนิด ได้แก่ Glomus etunicatum และ Scutellospora sp. ใช้สปอร์ชนิคละ 50 สปอร์เป็นหัวเชื้อ สำหรับปลูกพืชอาศัย 2 ชนิด ได้แก่ เบญจมาส (Chrysanthemum morifolium) และหญ้ากินนี้สีม่วง (Panicum maximum TD58) ศึกษากับวัสดุปลูก 3 ชนิด ได้แก่ พีทฆ่าเชื้อ (2000 ml.), ดินผสมทรายในอัตราส่วน 1:1 ฆ่าเชื้อ และดินผสม ทรายและเพอร์ไลท์อัตราส่วน 1:0.5:0.5 ฆ่าเชื้อ ทดลอง 3 เดือนจำนวน 12 ชุดการทดลอง การทดลองละ 4 ซ้ำ วางแผนการทดลองแบบ Randomized Complete Block Design พบว่าหญ้ากินนี้สีม่วงที่ปลูกใน ดินผสม ทรายและเพอร์ไลท์อัตราส่วน 2:1:1 สามารถเพิ่มจำนวน G. etunicatum (1604 สปอร์/ดิน 100 กรัม) ได้ มากกว่า Scutellospora sp. (50 สปอร์/ดิน 100 กรัม) อย่างมีนัยสำคัญ ดังนั้น การใช้ดินผสมทรายและเพอร์ ไลท์เป็นวัสดุเพาะและเก็บกักเชื้อ G. etunicatum จึงมีศักยภาพสูงกว่าวัสดุอื่นที่ทำการทดลอง

Abstract

Biofuel crop - Physic nut

The biodiversity of AMF associated with physic nut at ten sites in six provinces of Thailand: Chiang Rai, Chiang Mai, Loei, Lumphun, Khon Kean and Nong Khai, was carried out between October 2006 – December 2007 by extracting spores from the rhizosphere soils of physic nut. The following 34 morpho-species of AMF were obtained: *Acaulospora* (17 species), *Gigaspora* (2 species), *Glomus* (10 species) and *Scutellospora* (5 species). The diversity index (DI) ranged from 0.18 to 0.95 (average 0.49) and the species richness of AMF ranged from 3 to 11 (average 6.1). Root colonization ranged from 38-94% suggesting that physic nut is readily colonized by AMF.

Terminal restriction frangment length polymorphism (T-RFLP) analysis, based on the large subunit of the rRNA gene, was used to assess the AMF community in roots and rhizosphere soil. Chiang Mai province was chosen as the target area. Forty randomized samples of rhizosphere soil and root samples from physic nut were collected from 6 sites in April, 2008. DNA was extracted and T-RFLP data subjected to principle component analysis. This study indicated that AMF communities in root and rhizosphere of physic nut are diverse and distinct. Not all AMF species in the rhizosphere were detected in host roots. Similar conclusions were made from T-RF analysis using three restriction enzymes (*Taq*I, *Hinf*I, and *Hsp*96). *Taq*I revealed the strongest difference in T-RF patterns of the AMF community in this study.

Physic nut was used as a bait plant to trap compatible AMF in 10 field soil samples in a greenhouse from June-September 2007. A whole clod of rhizosphere soil (ca. 500 g) from each sample was place in the middle of 1.5 kg sterilized sandy soil in black plastic pots. The spores in the soil were recovered after 90 days and the two most abundant trapped AMF species from Chiang Mai site1 and Chiang Mai site3 were named CMU05 and CMU33.

The host preference of CMU05 and CMU33 was examined in a factorial experiment in a completely randomized block design consisting of 4 host species x 3 AMF treatments x 3 replications. Corn (*Zea mays* L.), jobs tears (*Coix lacryma-jobi* L.), rice (*Oryza sativa* L.) and sorghum (*Sorghum bicolor* (Linnacus) Moench) were inoculated with 50 spores of the AMF or were left uninoculated. Plants were grown in a screen-house for 120 days. Higher mycorrhizal colonization and spore production were

found in sorghum than with the other hosts. CMU05 and CMU33 promoted crop growth over the control. Spore production of CMU33 did not occur in corn and that of CMU05 was not observed in rice. It was concluded that sorghum is a suitable host plant to produce and maintain spores of the two AMF.

Identification of dominant species; CMU05 and CMU33 was based on morphology and molecular analysis. CMU05 was identified to either *Entrophospora* or *Acaulospora* and CMU33 to *Scutellospora* according to morphology. Molecular analysis was studied using 50 spores of each morphotype obtained from sorghum roots and the soil rhizosphere of sorghum, were extracted and DNA was amplified using AMF primers of SSU and LSU rDNA (NS31-AM1 and FLR3-FLR4, respectively). Sequences were obtained using all of forward and reverse primers and compared to the sequences in the internet databases. The percent similarity of SSU rDNA of CMU05 to *Entrophospora colombiana* was 99% and of CMU33 to *Scutellospora heterogama* was 97%. The percent similarity of LSU rDNA of CMU05 to *E. colombiana* was 91% and CMU33 to *S. heterogama* was 97%. Sequences were aligned and tree generated for phylogenetic analysis using MEGA 4.1 BETA. CMU05 was not obviously in the same clade with *E. colombiana* and CMU33 was close to *S. heterogama* in the same clade.

Compatible AMF species were selected on physic nut seedlings growth in sterile soil from January-March 2008. Eight indigenous AMF inocula were were evaluated for their effect on seedling growth in pot culture using 100 spores/seedling. AMF species significantly increased biomass of seedling (height, stem diameter and shoot fresh weight) compared to non-inoculated plants. *Scutellospora* sp. CMU33 was the most effective in promoting growth.

The effect of spore density of compatible species with external phosphorus supply was assessed in a preliminary trial April-June 2009. The design was a completely randomized factorial design consisting of 4 spore densities (0, 50, 100, 200 spores per plant) x 4 phosphorus levels (0, 50, 100, 200 mg P/kg of soil) x 4 replicates. It was found that 100 spores of *Scutellospora* sp. CMU33 together with 100 mg P/kg of soil was optimum for improving the growth of physic nut seedling in a greenhouse trial.

Coffee

The arbuscular mycorrhizal fungi (AMF) associated with arabica coffee (*Coffea arabica* L.) were discovered within rhizosphere soil samples of arabica coffee plantation from five and four study sites in Chiang Mai (CM) and Chiang Rai (CR) provinces, northern Thailand, respectively. Twenty-nine species belonging to three genera (*Acaulospora* spp., *Ambispora* spp. and Glomus spp.) in Glomeromycota were morphologically identified after wet sieving and sucrose centrifugation method. *G. aggregatum* was the most dominant AMF species.

The effect of AMF to coffee seedling growing in low phosphorus (P) soil revealed that mixed AMF spore species can improve shoot height and root length. Four AMF species; *G. etunicatum*, *Acaulospora mellea*, *Ac. morrowae* and *Ac. scrobiculata* propagated *in vitro* enhanced coffee seedlings growth in sterilized infertile soil. Each AMF species enhanced plant growth better than mixed inoculum, commercial and the control (non-inoculated). There were no significant differences between plant growth in using 50 and 200 spores.

The soil samples were inoculated by trap pot culture procedure with maize (*Zea mays* L.) and sorghum (*Sorghum vulgare* Pers.). *Acaulospora mellea* could be abundantly propagated with maize while *Acaulospora morrowiae* could be better propagated with sorghum and *Acaulospora scrobiculata* spores were moderately increased in both plants.

Food crops

The root colonization percentages of *Acualospora*, *Scutellospora*, *Paraglomus*, *Glomus*, and *Achaeospora* in cowpea (*Vigna unguiculata*), corn (*Zea mays*), job's tears (*Coix lachrymal-jobi*), upland rice (*Oryza sativa* cv. Bue Bang), sorghum (*Sorghum bicolor*) and pada (*Macaranga denticulata*) found that range from 60% to 100% except in upland rice. The spore density in added soil with phosphorus 30 kg/hector less than added soil with 3 kg P /hector. Although *Acaulospora* was dominant in this research but all AMF genus tested also can improve shoot and root weight of plants, especially in soil with low phosphorus.

The indigenous AMF for forest restoration plants

Arbuscular mycorrhizal (AM) fungal diversity was surveyed in the forest restoration area of Doi Suthep-Pui Nation Park, northern Thailand. Twenty four indigenous tree species, used for forest restoration in a degraded watershed area were examined. Rhizosphere soil sample were collected and AMF spore were counted and identified morphologically. AM spores were found in the rhizosphere soils of all tree species. Twenty one AM species were identified: *Acualospora* (6 species), *Glomus* (12 species) and *Scutellospora* (3 species). AM fungi belonging to the genera *Glomus* and *Acualospora* were dominant. Abundant species present were *Acaulospora elegans*, *G. multicaule* and *S. pellucid*. These result showed that all 24 indigenous tree species were associated with AM fungi and some AM species had a broad host range.

The effect of AM inoculation (*Acaulospora elegans, Glomus etunicatum, Glomus mosseae*) together with phosphate fertilization (KH₂PO₄) on *Castanopsis acuminatissima* seedling in a P-deficient soil were studied under greenhouse condition. Increasing P-application rates greatly enhanced seedling growth. Growth was most rapid with *G. etunicatum*-colonized plants with P application; whereas much lower height was found with non-AM plants without P added.

The six AM fungi dominant species for forest restoration plants (A. elegans, A. mellea, A. scrobiculata, G. etunicatum, G. mosseae, S. heterogama) were used as inoculums for spore propagate on 5 plants species; sorghum (Sorghum vulgare), rice (Oryza sativa), soy bean (Glycine max), corn (Zea mays) and marigold (Tegetes erecta). After 4 month found that S. vulgare and Z. Mays were the best host plant for spore propagation of A. elegans, G. etunicatum and G. mosseae.

Selection of host plants to increase AMF spores and suitable materials for storage spores of AMF

The effects of AMF on 3 grass plants were evaluated after 3 months. The results showed that the propagation of AMF spores in 3 grass plant was low. Propagation of *Glomus* sp., *Scutellospora* sp. and Mycostar[®] spores in sorghum were significantly higher than Job's tear and Ruzi (P < 0.05) but root colonization and and spore production were low.

The propagation of *Glomus etunicatum* and *Scutellospora* sp. was carried out. Fifty spores of *Glomus etunicatum* and *Scutellospora* sp. were applied and used as inoculum using 2 host plants; *Chrysanthemum morifolium* and *Panicum maximum* TD58 in 3 suitable

carriers; sterilized peat (2000 ml.), sterilized soil mixed with sand (1:1), sterilized soil mixed with sand and perlite (2:1:1). All the experiments were carried out for 3 months based on Randomized Complete Block Design. There were 12 experiments with 4 replications.

Panicum maximum TD58 grew in soil mixed with sand and perlite significantly increased the number of *G. etunicatum* (1604 spores/100 g.soil) with was higher than *Scutellospora* sp. (55 spores/100 g.soil). It was found that the use of soil mixed with sand and perlite as carrier for *G. etunicatum* provided high potential for AMF inoculum production.