บทคัดย่อ

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อเพิ่มคุณภาพให้สมุนไพรไทยที่มีศักยภาพโดยอาศัยนา โนเทคโนโลยี พืชสมุนไพรที่ถูกเลือกมาศึกษาในโครงการนี้คือฝรั่ง โดยใช้ส่วนของใบใน การศึกษาตลอดโครงการเนื่องจากมีรายงานว่าใบฝรั่งมีฤทธิ์ต้านออกซิเดชันสูง

การวิจัยได้เริ่มโดยการศึกษาปัจจัยต่าง ๆ ที่อาจมีผลต่อสารสกัดใบฝรั่ง ได้แก่ ปัจจัยจาก ขบวนการทำให้แห้ง วิธีการสกัด และอายุของใบฝรั่ง ผลการทดลองด้านปัจจัยจากขบวนการทำ ให้แห้งโดยสภาวะต่าง ๆ พบว่าขบวนการทำให้แห้งที่ทำให้ได้สารสกัดที่มีฤทธิ์ดีที่สุดคือการลวก ใบฝรั่งก่อนแล้วนำไปอบแห้งที่อุณหภูมิ 50 องศาเซลเซียส ด้านปัจจัยจากวิธีการสกัด ได้ ทำการศึกษาเปรียบเทียบวิธีสกัด 5 วิธี ได้แก่ วิธี Maceration extraction, Stirring extraction, Sonication extraction, Soxhlet extraction และ Microwave extraction ผลการทดลองพบว่า วิธีการสกัดที่ทำให้ได้สารสกัดที่มีฤทธิ์ดีที่สุดและทำได้รวดเร็วที่สุดคือวิธี Sonication extraction สำหรับปัจจัยด้านอายุของใบฝรั่ง พบว่าใบฝรั่งที่มีอายุอ่อนให้สารสกัดที่มีฤทธิ์ดีที่สุด

ได้ทำการเตรียมสารสกัดแยกส่วนเพื่อทำให้ได้สารสกัดที่บริสุทธิ์มากขึ้น จากการเตรียม สารสกัดแยกส่วนของใบฝรั่ง โดยใช้ตัวทำละลายต่างขั้ว เริ่มต้นจากที่มีขั้วน้อยที่สุดไปสู่ที่มีขั้ว มากที่สุด คือ n-Hexane, Ethyl acetate, n-Butanol, Ethanol, Methanol และ น้ำกลั่นตามลำดับ พบว่าสารสกัดแยกส่วนของใบฝรั่งที่แยกได้จาก Ethanol และ Methanol ให้ฤทธิ์ Antioxidant สูง กว่าที่ได้จากตัวทำละลายชนิดอื่น ได้ทำการพัฒนาสภาวะ HPLC เพื่อสร้าง HPLC Finger print ของสารสกัดแยกส่วนจากใบฝรั่ง เพื่อใช้ในการควบคุมมาตรฐานของสารสกัด จาก Finger print ของสารสกัดแยกส่วนของใบฝรั่งที่แยกได้จาก Ethyl acetate พบว่ามี Quercetin ในปริมาณมาก ที่สุด รองลงมาเป็นสารสกัดแยกส่วนจาก Butanol, Ethanol และ Methanol ตามลำดับ สารสกัด แยกส่วนจาก Hexane ไม่มี Quercetin ผลการทดลองนี้แสดงให้เห็นว่า Quercetin เป็นสาร Antioxidant หลักในใบฝรั่ง แต่ยังมีสาร Antioxidant ตัวอื่นร่วมอยู่ด้วยอย่างน้อย 2 ชนิด ได้แก่ Gallic acid และ Ellagic acid ได้ทำการศึกษาสมบัติการละลายและพฤติกรรมเมื่อได้รับความ ร้อน ผลการทดลองพบว่าสารสกัดแยกส่วนของใบฝรั่งมีสมบัติการละลายที่ค่อนข้างแตกต่าง จากสารมาตรฐาน Quercetin อีกทั้งมีพฤติกรรมเมื่อได้รับความร้อนที่แตกต่างกัน ผลการทดลอง

นี้ทำให้พิจารณาสกัดสารบริสุทธิ์ Quercetin ออกจากใบฝรั่งเพื่อใช้ในการพัฒนาเป็นอนุภาคนาโน แทนสารสกัดแยกส่วนต่อไป

ในการศึกษาเตรียมอนุภาคนาโนของสารออกฤทธิ์ของใบฝรั่ง คือ Quercetin ซึ่งต่อไปนี้ อาจเรียกว่า "สารสำคัญ" ได้พิจารณาใช้ใคโตซานเป็นสารช่วยหลักในการก่ออนุภาคนาโน ได้ สึกษาปัจจัยต่าง ๆ ที่อาจมีผลต่อสมบัติทางเคมีกายภาพของอนุภาคนาโน ผลการทดลองพบว่า ชนิดของใกโตซานและสภาวะของขบวนการก่ออนุภาคมีผลต่อ ขนาด การกระจายขนาด zeta potential และประสิทธิภาพการกักเก็บสารสำคัญของอนุภาคนาโนที่เตรียมได้ พบว่าไคโตซาน ที่ได้จากเปลือกกุ้งเหมาะสมที่สุดในการนำมาเตรียมอนุภาคนาโน ไคโตซานที่มี MW ต่ำสามารถ เตรียมอนุภาคที่มีขนาดเล็กกว่าและมีประสิทธิภาพในการกักเก็บสารสำคัญมากกว่าที่มี MW สูง ใกโตซานที่มี DD ต่ำสามารถเตรียมอนุภาคที่มีขนาดเล็กกว่าแต่มีประสิทธิภาพในการกักเก็บ สารสำคัญน้อยกว่าที่มี DD สูง ได้ทำการศึกษาการปลดปล่อยสารสำคัญ ผลการทดลองพบว่า ความสามารถในการปลดปล่อยสารสำคัญของอนุภาคนาโนที่เตรียมได้ก็ขึ้นกับ MW และ DD ของไคโตซานเช่นกัน ใคโตซานที่มี MW สูงจะสามารถปลดปล่อยสารสำคัญได้น้อยและช้ากว่า ที่มี MW ต่ำ และใคโตซานที่มี DD สูงจะสามารถปลดปล่อยสารสำคัญได้มากและเร็วกว่าที่มี DD ต่ำ นอกจากนั้นยังพบว่าความสามารถในการปลดปล่อยสารสำคัญของอนุภาคนาโนยัง ขึ้นกับสมบัติการละลายของใคโตซานด้วย ได้ศึกษาความคงสภาพของอนุภาคนาโนและ สาระสำคัญที่ถูกกักเก็บในอนภาคโดยเก็บตัวอย่างไว้ในสภาวะถูกแสงและไม่ถูกแสงและที่ อุณหภูมิต่าง ๆ ผลการทคลองพบว่าอนุภาคนาโนที่เตรียมได้มีความคงสภาพดีเมื่อเก็บในสภาวะ ต่าง ๆ ส่วนสารสำคัญที่ถูกกักเก็บในอนุภาคนาโนมีความคงสภาพมากกว่าที่ไม่ถูกกักเก็บ พบว่า สารสำคัญเกิดการสลายตัวเร็วขึ้นเมื่อเก็บที่สภาวะอุณหภูมิสูงและถูกแสง

โครงการวิจัยนี้แสดงให้เห็นถึงความสำเร็จในการพัฒนาคุณภาพให้กับสารสกัดใบฝรั่ง และสามารถรักษาความคงสภาพให้กับสารสำคัญออกฤทธิ์ต้านออกซิเคชันจากใบฝรั่งโดยอาศัย นาโนเทคโนโลยีได้

คำลำคัญ: สารต้านออกซิเดชัน ใบฝรั่ง พืชสมุนไพร ใคโตซาน กากเหลือใช้ อนุภาคนาโน

ABSTRACT

This research project is aimed to improve the quality of the potential Thai medicinal plant extract by using the principle of nanotechnology. Guava (*Psidium guajava*) was selected as the potential plant used in this study. The part of guava plant used in the whole study was the leaf because it was reported that guava leaves possess high antioxidant activity.

The research work started from the study of factors that might influence physicochemical properties of guava leaf extract i.e. drying process, method of extraction, and leaf age. Drying process with various conditions was applied to the fresh guava leaf samples. The result indicated that blanching of fresh guava leaves followed by drying at 50 °C for 20 h was the best drying condition that yielded the extract with the highest antioxidant activity. Five extraction methods; maceration extraction, stirring extraction, sonication extraction, soxhlet extraction, and microwave extraction were compared and the results demonstrated that guava leaf extract obtained from the sonication extraction possessed the highest antioxidant activity. Among three age of guava leaves, it was found that the youngest leaves gave the highest antioxidant activity.

Fractionated extraction was carried out to obtain the extract with higher purity. Five different solvents; n-hexane, ethyl acetate, n-butanol, ethanol, methanol, and water were used as extracting solvents with lower to higher polarity respectively. The results showed that guava leaf fractionated extracts obtained from ethanol and methanol possessed higher antioxidant activity than the others. The suitable condition of HPLC was investigated for developing the HPLC finger print of the fractionated extracts. The result from the finger prints obtained indicated that the fractionated extract from ethyl acetate possessed the highest amount of quercetin followed by that from butanol, ethanol, and methanol, respectively. It was found that the fractionated extract from hexane contained no quercetin. The results from this study also revealed that beside quercetin, there were at least 2 other antioxidant compounds; gallic acid and ellagic acid existing in the guava leaves.

The solubility and thermal behavior of the fractionated extract was quite different from the standard quercetin. Hence, quercetin extracted from the samples was considered to be used for further study instead of the fractionated extract. The development of chitosan nanoparticles was performed and quercetin was used as an active ingredient. Factors that might affect the physicochemical properties of the nanoparticles were investigated. The results indicated that chitosan type and the conditions concerning in nanoparticles forming process influenced the size, size distribution, zeta potential, and entrapment efficiency of the nanoparticles obtained. It was found that chitosan from shrimp was the most suitable for developing the desirable nanoparticles. Chitosan with lower MW could produce nanoparticles with smaller size and higher entrapment efficiency that those with higher MW. Moreover, the result showed that chitosan with lower DD gave the nanoparticles with smaller size but lower entrapment efficiency that those with higher DD. The release study was performed and the results exhibited that the release characteristic of the obtained nanoparticles was depended on the MW and DD of chitosan. It was found that the nanoparticles from chitosan with lower MW could release the active constituent faster and higher amount than those with higher MW. Moreover, the nanoparticles with higher DD could release the active constituent faster and higher amount than those with lower DD. The stability study of the samples was performed under various temperatures with light and no light conditions. The results demonstrated that quercetin loaded nanoparticles prepared were physicochemical stable under all tested condition. Quercetin entrapped in the nanoparticles was more stable than the non-entrapped quercetin. It was found that quercetin was more rapidly degradable in conditions with high temperature and light exposal.

This research project showed the achievement how the quality of guava leaf extract could be improved and the antioxidant compound from guava leaves could be stabilized via nanotechnology.

Keywords: Antioxidant, guava leaves, Medicinal plant, chitosan, waste, nanoparticles