บทคัดย่อ

การเลี้ยงปลาตะเพียนในบ่อเลี้ยงปลาเพื่อให้ปราสจากการติดเชื้อปรสิตโดยวิธีควบคุม
สิ่งแวดล้อม ในพื้นที่บ้านนาเพียง จังหวัดขอนแก่น โดยทดลองในบ่อทดลอง 2 บ่อและบ่อควบกุม 1
บ่อ และบ่อซีเมนต์ 1 บ่อ จากการสำรวจการติดเชื้อปรสิตในหอยและปลาที่เลี้ยงในบ่อปลาที่เลี้ยง
แบบชาวบ้านเพื่อเป็นข้อมูลพื้นฐาน จำนวน 27 บ่อ พบหอย 16 ชนิด ปลา 14 ชนิด พบการติดเชื้อ
พยาธิใบไม้ที่สามารถติดต่อสู่คนได้ในหอย ที่หอยเป็น first and second intermediate hosts คือ หอย
ใช (Bithynia siamensis goniomphalos) ติดเชื้อพยาธิใบไม้ตับชนิด Opisthorchis viverrini
(1/1,065, 0.09%) ในบ่อ 1 บ่อและหอยขมชนิด Idiopoma umbilicata พบการติดเชื้อ Echinostoma
revolutum metacercariae ใน 1 บ่อ พบการติดเชื้อในปลาซิวอ้าว (Luciosoma bleekeri) เป็นพยาธิ
ใบไม้ชนิด Centrocestus caninus และ Haplorchis yokogawai ใน 1 บ่อ

ผลการทคลองครั้งที่ 1 พบการติคเชื้อพยาธิใบไม้ลำไส้ขนาดเล็กชนิด $Haplorchis\ taichui$ และ $H.\ yokogawai$ ในบ่อทคลองทั้งสองบ่อ ในปลาตะเพียน แต่ไม่พบหอย Melanoides tuberculata ในบ่อทคลองทั้งสองบ่อ จึงได้ไปสำรวจในบ่อเพาะพันธุ์ลูกปลาตะเพียนที่นำมาเลี้ยง พบหอย $Melanoides\ tuberculata$ ที่เป็นโฮสต์กลางที่ 1 และสุนัขที่เป็นโฮสต์ธรรมชาติในบริเวณนั้น การเจริญเติบโตของปลาตะเพียน ($Puntius\ gonionotus$) ในบ่อทคลองที่ 1 และ 2 ปลามีขนาด ลำตัวยาวขึ้น โดย $Pearson\ Correlation\ ได้ค่า\ r^2=0.71\ และ 0.69\ ตามลำคับ โดยน้ำหนัก\ r^2=0.37\ และ 0.36\ ตามลำคับ เมื่อเทียบกับบ่อควบคุม โดยมีความยาวและน้ำหนัก <math>r^2=0.04\ และ$ $0.002\ ตามลำคับ$

ผลการทคลองครั้งที่ 2 ใช้ขาฆ่าหอยและปลาที่ตกล้างในบ่อด้วยสาร Bayluscide ในบ่อ ทคลองทั้งสองบ่อ ไม่พบหอยในบ่อทคลองทั้งสองบ่อตลอดการทคลอง ในการเตรียมบ่อเลี้ยงปลา เพื่อปล่อยลูกปลาตะเพียนรุ่นที่ 2 เนื่องจากการทคลองครั้งที่ 1 ปลาตะเพียนมีการติดเชื้อพยาธิใบไม้ ลำไส้ขนาดเล็กชนิด Haplorchis taichui และ H. yokogawai ซึ่งเชื่อว่ามีการติดเชื้อตั้งแต่ฟาร์ม เพาะพันธุ์ปลา จึงได้ทำการสำรวจลูกปลาตะเพียนจากฟาร์มปลาในอำเภอโกสุมพิสัย จังหวัด มหาสารกาม จำนวน 4 ฟาร์ม จำนวน 1400, 1450, 2200 และ 400 ตัว ตามลำดับ พบการติดเชื้อของ พยาธิใบไม้ลำไส้ขนาดเล็กชนิด Haplorchis taichui ในฟาร์มแรก จึงได้เลือกใช้พันธุ์ปลาตะเพียน จากแหล่งเพาะพันธุ์ปลาที่ปราสจากการติดเชื้อปรสิตในแหล่งที่ 3 นำมาปล่อยในบ่อทคลอง 2 บ่อ และบ่อควบกุม 1 บ่อ จำวน 6000, 4000 ตัว และ 4000 ตัวตามลำดับ รวมทั้งบ่อซีเมนต์ในโรงเรือน 200 ตัว พบว่าการเจริญเติบโตของปลาตะเพียนในบ่อทคลองจะเจริญได้ดีเมื่อเปรียบเทียบกับบ่อ ควบกุมซึ่งเลี้ยงแบบธรรมชาติที่ชาวบ้านให้อาหารเป็นรำหรือผักที่เพาะปลูกเป็นครั้งคราว ในบ่อ ทคลองที่ 1 และ 2 ปลามีขนาดลำตัวยาวขึ้น โดย Pearson Correlation ได้ค่า r²= 0.78 และ 0.64 ตามลำดับ น้ำหนัก r²= 0.64 และ 0.41 ตามลำดับ เมื่อเทียบกับบ่อควบคุม มีความยาวและน้ำหนัก

r²= 0.06 และ 0.03 ตามลำคับ แต่ยังพบการติดเชื้อของพยาธิใบไม้ลำไส้ขนาดเล็กชนิด Haplorchis taichui และ H. pumilio ในบ่อทดลองและบ่อควบคุมเช่นเคย แม้ว่าไม่พบหอยโฮสต์กลางที่ 1 ในบ่อ ทดลองทั้งสอง จึงเชื่อว่าปลาติดเชื้อตั้งแต่ลูกปลาจากฟาร์มปลา การเลี้ยงปลาในบ่อซีเมนต์ใน โรงเรือน ปล่อยปลาไป 200 ตัว ขนาดเฉลี่ย น้ำหนัก 4.61 กรัม กว้าง 2.31 ซม ยาว 7.32 ซม พบว่า เหลือปลาอยู่ในบ่อ 43 ตัวปลา มีขนาดเพิ่มขึ้นโดยเฉลี่ย น้ำหนัก 13.03 กรัม กว้าง 3.22 ซม ยาว 10.54 ซม จากการตรวจหาระยะเมตาเซอร์คาเรียโดยการย่อยด้วยน้ำย่อยเปปซิน พบระยะเมตาเซอร์ กาเรียของพยาธิ Haplorchis taichui และ H. pumilio เหมือนในบ่อดินที่ทำการทดลองและบ่อ ควบคุม

การทดลองสารเคมีที่ใช้ในการฆ่าหอย B. siamensis goniomphalos โดยใช้สาร Bayluscide ต่อโฮสต์กลางที่ 1 ของพยาธิใบไม้ตับ Opisthorchis viverrini พบว่าความเข้มข้นที่ฆ่าหอยตัวเต็ม วัยและ young adult ที่อุณหภูมิห้องได้ร้อยละ $50(LC_{s_0})$ และร้อยละ $95(LC_{s_5})$ ที่ทำการวิเคราะห์ด้วย Probit Analysis program มีค่า 0.166602 และ 0.490553 และ 0.278490 และ 0.604199 มก./ล. ตามลำคับ ความเข้มข้นที่ใช้ฆ่าหอย B. siamensis goniomphalos ได้ผลได้นำมาทุดสอบต่อ การมีชีวิตรอดของสัตว์น้ำที่ไม่ใช่เป้าหมาย เช่น หอยขม (Filopaludina martensi martensi) ปรากฏว่าไม่มีผลการฆ่าสัตว์เหล่านี้มากนัก แต่ฆ่าปลาหางนกยูง ((Poecilia reticulata) และปลาซิว ข้าวสารแคระ (Oryzias mekongensis) โดยปลาซิวข้าวสารแคระ ตายหมดทุกความเข้มข้นที่ทำการ ทคลองที่เวลา 24 ชม. การเปลี่ยนแปลงของเนื้อเยื่อหอย B. siamensis goniomphalos หลังจากสัมผัส สารเคมีโดยเปรียบเทียบกับกลุ่มควบคุมพบ ว่าเยื่อบุทางเดินอาหารมีรอยแยกกับกล้ามเนื้อ เซล สืบพันธุ์ฝ่อ เซลของต่อมย่อยอาหารและเยื่อบุทางเดินอาหารบวม การทคลองสารเคมี Bayluscide ทคลองฆ่าหอยในภาคสนาม โดยทำการทคลองในบ่อน้ำสาธารณะเป็นบ่อย้ำข้างถนน 3 บ่อ ขนาด บ่อที่ 1, 2 และ 3 มีขนาดพื้นผิว 300, 110 และ 160 ตารางเมตร มีปริมาตรน้ำ 150,000; 110,000 และ 19,200 ถิตร ใส่สารให้ได้ความเข้มข้นสุดท้าย 20, 10 และ 5 มก/ลิตร ตามลำดับ ตรวจวัดการ กระจายของสารหลังการใส่สารเคมีลงไปประมาณ 50 นาที สุ่มเก็บตัวอย่างหอยหลังจากประยุกต์ใส่ สารเคมี 1,7 และ 14 วัน พบว่าหอยไซ B. siamensis goniomphalos และหอยร่วมนิเวศอื่นๆ ตายใน จำนวนที่น้อย ส่วนสัตว์ที่ไม่ใช่เป้าหมายอื่นๆ ไม่มีการตาย เช่นปลา ลูกอ๊อด กุ้งฝอย เป็นต้นถึงแม้ จะใช้ความเข้มข้นของสารสูงถึง 20, 10 และ 5 เท่าของ lethal concentration ในห้องปฏิบัติการ หลังจากใส่สาร 14 วัน การสำรวจหอยพบว่าหอย B. siamensis goniomphalos ตาย ในบ่อที่ 1,2 และ 3 ประมาณ 31.25, 20.00 และ 10.94% ตามลำดับ

ABSTRACT

Fish cultivation of *Puntius gonionotus* in fish ponds for free parasitic infection was done in Ban Napiang, Khon Kaen province by control of environment. The study was done in 2 experiment and 1 control ponds and experiment cement well in close building. The baseline data on parasitic infection were surveyed in snail and fish intermediate hosts in 27 fish ponds in the villages were investigated. There were 16 species of snails and 14 species of fish were collected. Parasitic infection was found in snails and was able to infect to human by using snails as first or second intermediate hosts i.e. *Bithynia siamensis goniomphalos* was infected with *Opisthorchis viverrini* in one snail (1/1,065, 0.09%) in a fish pond and infection of *Echinostoma revolutum* in *Idiopoma umbilicata* in one fish pond. In fish, *Luciosoma bleekeri* was infected with minute intestinal flukes namely *Centrocestus caninus* and *Haplorchis yokogawai* was found in one fish pond.

In the first experiment, the infection of minute intestinal flukes of *Haplorchis yokogawai* and *H. taichui* was found in *P. gonionotus* in both experiment ponds even though there was no *Melanoides tuberculata*, the first intermediate host of those flukes. But there were animal host (dogs) and snail host (M. tuberculata) existing in that area of fish nursery. The growth of the cyprinoid fish (P. gonionotus) was found greater than the fish in control fish pond (Pearson Correlation: length r^2 =0.71 and 0.69, weight r^2 =0.37 and 0.36 for experiment fish pond 1 and 2, respectively, compared to control r^2 =0.04 and 0.002 for length and weight, respectively).

Second experiment, due to the infection of minute intestinal flukes in first experiment the experiment fish ponds were applied with the molluscide, Bayluscide for eradication of snail and fish which may miss of catching. The fish was survey for parasitic infection from 4 fish nursery farms in Kosumpisai, Maha Sarakham province, 1400, 1450, 2200 and 400 young P. gonionotus. The first farm was found H. taichui where the snail first intermediate host and natural host, dogs were available in this farm. The young P. gonionotus was bought from the third farm for cultivation. However after cultivation for few months the infection of H. taichui and H. pumilio were found in three of ponds. No snail intermediate host still found in those ponds. The infection should be occurred in young fish. The growth of fish in experiment ponds were greater than the control which rearing given rice bran by villagers. In experiment pond 1 and 2 the growth in length $r^2=0.78$ and 0.64, weight $r^2 = 0.64$ and 0.41, respectively and length and weight of the control r²=0.06 and 0.03, respectively. The fish in cement well was also found infected with H. taichui and H. pumilio. Only 43 (from 200 young fish released) P. gonionotus were found and their growth increasing in length from

7.32 to 10.54 cm, in width from 2.31 to 3.22 cm and in weight from 4.61 to 13.03 gm for 8 months.

Molluscicide, namely Bayluscide was tested to, B. siamensis goniomphalos, the first intermediate host of O. viverrini for young and adult stages for lethal concentration of 50% (LC50) and 95% (LC95). The lethal effects were analyzed by Probit Analysis program, LC50 and LC95 of adult and young snails were 0.166602 and 0.490553, 0.278490 and 0.604199 mg/l, respectively. The lethal concentration for B. siamensis goniomphalos was tested to non-target animals such as Filopaludina martensi martensi, guppy fish (Poecilia reticulata) and Oryzias mekongensis. No serious lethal effect to F. martensi martensi but high lethal effect to guppy fish (*Poecilia reticulata*) and *Oryzias mekongensis* for 24 hours testing period. Bayluscide caused tissue changed in B. siamensis goniomphalos such as separation of epithelial layer to muscle, degeneration of reproductive cells and swelling of digestive glands and epithelial lining of digestive system. Bayluscide was tested also in the field in 3 roadside ditches. The snail collection was done before and after application 1, 7 and 14 days for comparison. The surface areas of the 3 ditches were 300, 110 and 160 sq.m contained water approximately 150,000; 110,000 and 19,200 L. The chemical was applied to final concentration as 20, 10 and 5 mg/L, respectively and measured the concentration after 50 min of application. The non-target snails died with small number and no effect to other animals was detected such as tadepole, fish, shrimps etc. even though the concentrations used was up to 20 folds of laboratory lethal concentration. After 14 days application B. siamensis goniomphalos in fish pond 1, 2 and 3 had percentage of mortality as 31.25, 20.00 and 10.94%, respectively.