บทคัดย่อ

การวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาชีวภัณฑ์แบคทีเรียปฏิปักษ์ *Bacillus megaterium* ใน รูปแบบเจลบีดเพื่อควบคุมโรคพืชที่เกิดจากเชื้อราในดิน เจลบีดที่มีเอนโดสปอร์ของ *B. megaterium* เตรียมจากอัลจิเนตหรือคาราจีแนนโดยวิธี ionotropic gelation

จากการเตรียมอัลจิเนตเจลบีด พบว่าปริมาณอัลจิเนตที่ใช้มีผลต่อความสามารถในการพองตัว และสลายตัวทางชีวภาพ โดยการเพิ่มความเข้มข้นของอัลจิเนตจะทำให้คุณสมบัติดังกล่าวเพิ่มขึ้น แต่ ปริมาณอัลจิเนตไม่มีผลต่ออัตราการปลดปล่อยเชื้อแบคทีเรียออกจากเม็ดบีด การปลดปล่อยเชื้อ แบคทีเรียทั้งในน้ำและในดินเป็นไปอย่างรวดเร็วในระยะแรก ตามด้วยการปลดปล่อยเชื้ออย่างช้า ๆ ภายในระยะเวลา 4 สัปดาห์ โดยแบคทีเรียที่ปลดปล่อยอกมาในดินที่เวลาต่าง ๆสามารถยับยั้งการ เจริญของเชื้อราก่อโรคพืช ได้แก่ Rhizoctonia solani และ Fusarium oxysporum (เปอร์เซ็นต์การ ยับยั้ง > 90 ตลอดระยะเวลา 4 สัปดาห์) การสลายตัวในดินของอัลจิเนตเจลบีดที่ระยะเวลา 2 สัปดาห์ (60 เปอร์เซ็นต์) เกิดขึ้นมากกว่าในน้ำ (26.8 เปอร์เซ็นต์) เนื่องจากจุลินทรีย์ในดินอาจมีส่วนช่วยใน การย่อยสลายด้วย อัลจิเนตเจลบีดสามารถเพิ่มการอยู่รอดของเชื้อแบคทีเรียต่อแสง UV pH และ อุณหภูมิสูง ชีวภัณฑ์เจลบีดมีปริมาณเชื้อแบคทีเรียอยู่รอด > 90 เปอร์เซ็นต์ หลังจากเก็บรักษาที่ อุณหภูมิห้อง (30±2 องศาเซลเซียส) เป็นเวลา 7 เดือน

จากการเตรียมคาราจีแนนเจลบีด พบว่าการลดปริมาณโพแทสเซียมคลอไรด์มีผลในการเพิ่ม ความสามารถในการพองตัว แต่ไม่มีผลต่อการสลายตัวหรือการปลดปล่อยเชื้อแบคทีเรียของเม็ดบีด การปลดปล่อยเชื้อแบคทีเรียทั้งในน้ำและในดินเป็นไปในลักษณะคล้ายคลึงกับอัลจิเนตเจลบีด โดย แบคทีเรียที่ปลดปล่อยออกมาในดินสามารถยับยั้งการเจริญของเชื้อราก่อโรค Rhizoctonia solani (เปอร์เซ็นต์การยับยั้ง > 90 ตลอดระยะเวลา 4 สัปดาห์) การสลายตัวในดินของคาราจีแนนเจลบีดที่ ระยะเวลา 2 และ 4 สัปดาห์ (48.8 และ 64 เปอร์เซ็นต์ ตามลำดับ) เกิดขึ้นมากกว่าในน้ำที่ระยะเวลา 4 สัปดาห์ (45 เปอร์เซ็นต์) คาราจีแนนเจลบีดสามารถเพิ่มการอยู่รอดของเชื้อแบคทีเรียต่อแสง UV และ pH ชีวภัณฑ์เจลบีดมีปริมาณเชื้อแบคทีเรียอยู่รอด > 90 เปอร์เซ็นต์ หลังจากเก็บรักษาที่อุณหภูมิห้อง เป็นเวลา 6 เดือน

การนำอัลจิเนตเจลบีดที่เตรียมจากแคลเซียมคลอไรด์ในความเข้มข้นแตกต่างกันมาเคลือบ ด้วยไคโตซานเพื่อหวังผลในการควบคุมการปลดปล่อยแบคทีเรียให้ดีขึ้น ผลการทดลองพบว่า การใช้ แคลเซียมคลอไรด์ความเข้มขันสูง (0.05 โมลาร์) สามารถลดการปลดปล่อยแบคทีเรียในระยะแรก อย่างมีนัยสำคัญ ขณะที่การเคลือบด้วยไคโตซานความเข้มขันสูงสามารถชะลอการปลดปล่อย แบคทีเรียในระยะแรกได้ในระดับหนึ่ง อย่างไรก็ตาม ในเวลาต่อมา ปัจจัยดังกล่าวเป็นตัวขัดขวางการ ปลดปล่อยเชื้อแบคทีเรีย เป็นผลให้ปริมาณเชื้อแบคทีเรียที่ปลดปล่อยอาจมีน้อยเกินไปไม่เหมาะสมต่อ การควบคุมโรคพืช

การทดสอบในสภาพเรือนทดลอง โดยวางแผนการทดลองแบบสุ่มสมบูรณ์ (CRD) มี 7 กรรมวิธี จำนวน 6 ซ้ำ พบว่า การใช้ชีวภัณฑ์อัลจิเนตเจลบีดสามารถควบคุมโรคเหี่ยวของพริกที่เกิด จากเชื้อรา F. oxysporum ได้ดีใกล้เคียงกับกรรมวิธีที่ใช้สารฆ่าเชื้อราเบโนมิล ผลการศึกษาวิจัยนี้แสดง ให้เห็นว่า เจลบีดที่มีเชื้อแบคทีเรีย B.megaterium เป็นชีวภัณฑ์ที่มีคุณสมบัติออกฤทธิ์นานและ สลายตัวทางชีวภาพ สามารถนำไปใช้ในการควบคุมโรคพืชที่เกิดจากเชื้อราในดิน

Abstract

This research project aimed to develop gel beads of *Bacillus megaterium*, a bacterial biological control agent, to control plant diseases caused by soil-borne plant pathogenic fungi. The gel beads containing endospores of *B. megaterium* were prepared from alginate or k-carrageenan by ionotropic gelation method.

The amount of alginate used for preparing gel beads influenced the swelling ability and biodegradation. Increasing the concentration of sodium alginate resulted in an increase in both swelling ability and gel erosion. However, the amount of alginate had no effect on the bacterial release. The rapid release of cells of this bacterium from the encapsulation in the initial time period was observed in both water and soil, followed by a slow release over a period of 4 weeks. The released bacteria at each time point had an ability to inhibit mycelial growth of fungal pathogens *Rhizoctonia solani* and *Fusarium oxysporum* (% mycelial inhibition was > 90% up to 4 weeks). The bead degradation in soil (at 60% in 2 weeks) was enhanced by soil microorganism, comparing to the degradation of the bead in water (at 26.8%). Encapsulation was found to protect the endospores of *B. megaterium* against physical factors, such as UV light, high temperature and pH. The bacteria remained viable (> 90%) in the dry alginate gel beads for 7 months at room temperature (30±2°C)

Carragenan gel beads prepared with lower potassium chloride concentration demonstrated high swelling ability. However, the amount of potassium chloride used did not affect the rate of bacterial release from encapsulation in the beads. The rapid release of bacteria from encapsulation of the carrageenan gel beads had a similar pattern to the release of the bacteria from encapsulation of the alginate beads. The releasing bacteria at each point in time had ability to inhibit mycelial growth of fungal pathogens *Rhizoctonia solani* (% mycelial inhibition > 90% up to 4 weeks). The degradation of bead in soil (at 48.8 and at 64% in 2 and 4 weeks, respectively) was higher than the degradation of bead in water (at 45% in 4 weeks). Encapsulation of bacteria with carragenan gel matrix also increased the viability of the endospores against physical factors, such as UV light and pH. The bacteria remained viable (> 90%) in the dry gel beads for 6 months at room temperature.

Alginate beads prepared with different concentration of calcium chloride were coated by chitosan. The high concentration of calcium chloride (0.05 M) significantly reduced the initial release of bacterial cells, while the high concentration of chitosan coating also decreased the initial cell release to some extent. However, both factors prevented further cell release resulting in an insufficient amount of overall cell release for plant disease control.

In the greenhouse experiment, in randomized complete design (CRD), with 7 treatments and 6 replications, the selected formulation of alginate gel bead was effective to control the wilt disease of chili caused by *F. oxysporum*. The results from this study indicated that the biodegradable gel bead of *B. megaterium* had potential for controlling fungal soilborne plant diseases with their long- acting efficacy.