บทคัดย่อ

งานวิจัยมีวัตถุประสงค์หลักคือเพื่อประยุกต์ใช้จุลินทรีย์ที่มีความสามารถในการย่อยสลายคาร์โบฟู ราน Burkholderia cepadia PCL3 ในการกู้ฟื้นฟูดินและน้ำที่มีการปนเปื้อนคาร์โบฟูราน โดยแบ่งการ ทดลองออกเป็น 4 ชุด ในชุดการทดลองที่ 1 ได้ศึกษาย่อยสลายคาร์โบฟูรานโดยเซลล์ตรึงของ PCL3 บนซังข้าวโพด ในอาหารเลี้ยงเชื้อ Basal Salt Medium (BSM) โดยใช้ถังปฏิกรณ์ชีวภาพแบบสลับเป็น กะ (Sequencing batch reactor, SBR) ที่เป็นขวดแก้วขนาด 2 ลิตร ความเข้มข้นของคาริโบฟูราน เริ่มต้นเท่ากับ 20 มก./ลิตร โดยศึกษาผลของระยะเวลากักเก็บ (14-6 วัน) ผลการทดลองพบว่า ที่ HRT 14-8 วัน คาร์โบฟูรานจะถูกย่อยสลายได้อย่างสมบูรณ์ (100%) เมื่อลด HRT เป็น 6 วัน ประสิทธิภาพ การย่อยสลายคาร์โบฟูรานลดลงเหลือเพียง 73.5% ดังนั้นจึงสามารถสรุปได้ว่า HRT ที่เหมาะสม สำหรับการบำบัดคาร์โบฟูรานใน SBR เท่ากับ 8 วัน จากนั้นได้ศึกษาผลของการกระตุ้นจุลินทรีย์โดย การเติมแหล่งอาหาร (โมลาส กากมัน รำข้าว และกากยีสต์จากอุตสาหกรรมผลิตเบียร์) แต่ละชนิดที่ HRT เท่ากับ ¾ เท่าของ HRT ที่เหมาะสม (6 วัน) ผลการทดลอง พบว่า รำข้าวช่วยเพิ่มประสิทธิภาพ การย่อยสลายคาร์โบฟูรานได้ดีที่สุด จากนั้นได้ศึกษาผลความเข้มข้นของคาร์โบฟูราน (20-80 มก./ ลิตร) ต่อประสิทธิภาพการย่อยสลายคาร์โบฟูรานใน SBR ที่มีการเติมรำข้าว ที่ HRT เท่ากับ 6 วัน ผล การทดลองพบว่า ความเข้มข้นคาร์โบฟูรานสูงสุดที่สามารถบำบัดได้ 100% คือ 40 มก./ล. และให้ ค่าคงที่อัตราการสลาย (\mathbf{k}_1) และค่าครึ่งชีวิต ($\mathbf{t}_{1/2}$) ของคาร์โบฟูรานใน BSM เท่ากับ 0.044 ต่อชม. และ 16 ชม.ตามลำดับ

ในชุดกการทดลองที่ 2 ได้ศึกษาประสิทธิภาพการย่อยสลายคาร์โบฟูรานในถังปฏิกรณ์ชีวภาพ แบบกึ่งแข็งกึ่งเหลว (soil slurry phase reactor) ที่ดำเนินการแบบสลับเป็นกะ ทำการทดลองใน reactor ที่เป็นขวดแก้วขนาด 2 ลิตร ปริมาตรทำการ 1.5 ลิตร ที่ระดับความเข้มข้นคาร์โบฟูรานเริ่มต้น เท่ากับ 20 มก./กก. ดินแห้ง แบ่งการทดลองออกเป็น 8 ชุด เพื่อศึกษาผลของจุลินทรีย์ประจำถิ่น การ เติมจุลินทรีย์ PCL3 และการกระตุ้นจุลินทรีย์โดยใช้โมลาส ผลการทดลองพบว่า ถังปฏิกรณ์ที่มีการ เติมเซลล์ตรึง PCL3 บนซังข้าวโพดให้ค่าประสิทธิภาพการย่อยสลายคาร์โบฟูรานสูงที่สุด 96.97% รองลงมาคือถังปฏิกรณ์ที่มีการเติมเซลล์ตรึง PCL3 และโมลาส (82.23%) ส่วนการย่อยสลายคาร์โบฟูรานใดยจุลินทรีย์ประจำถิ่นเพียงอย่างเดียวให้ค่าการย่อยสลายเพียง 67.69% แสดงให้เห็นว่าวิธีการ บำบัดทางชีวภาพเป็นวิธีที่มีประสิทธิภาพในการบำบัดคาร์โบฟูรานในดิน ใน

ในชุดการทดลองที่ 3 ได้ศึกษาการบำบัดดินที่ปนเปื้อนคาร์โบฟูรานโดยใช้เทคนิคการเติมจุลินทรีย์ (bioaugmentation) ในแปลงทดสอบขนาด 1x1.2x0.2 ม. โดยเปรียบเทียบระหว่างเซลล์ตรึงบนซังข้าวโพดกับเซลล์อิสระของ PCL3 ผลการทดลองพบว่า ในดินที่มีจุลินทรีย์ประจำถิ่นเพียงอย่างเดียวการย่อยสลายคาร์โบฟูรานเกิดขึ้นอย่างช้าๆ มีค่า t_{1/2} เท่ากับ 127 วัน การเติมเซลล์ตรึงของ PCL3 ช่วยให้ค่า t_{1/2} ของคาร์โบฟูรานในดินสั้นลง (16 วัน) ค่า t_{1/2} ของ คาร์โบฟูรานในดินที่เติมเซลล์อิสระของ PCL3 มีค่าเท่ากับ 28 วันซึ่งยาวนานกว่า เมื่อเปรียบเทียบกับการใช้เซลล์ตรึง ผลการทดลองแสดงให้ เห็นว่า PCL3 ในรูปเซลล์อิสระอาจไม่สามารถนำมาใช้ในการบำบัดคาร์โบฟูรานที่ปนเปื้อนใน สิ่งแวดล้อมจริงได้ นอกจากนี้ในการทดลองยังพบว่าประสิทธิภาพการย่อยสลายคาร์โบฟูรานที่เติมลองไปในดินที่อยู่รอดและเจริญในระบบ

การทดลองที่ 4 ได้ทำการส่งถ่ายยืน luxAB เข้าสู่ PCL3 ทำให้ได้จุลินทรีย์สายพันธุ์ใหม่ ให้ชื่อว่า PCL3:luxAB1 ซึ่งมีความสามารถในการปลดปล่อยแสง luminescence เมื่อสัมผัสกับ n-decanal โดยให้ค่าความเข้มแสง 1.6x10⁻³ RLU/cfu PCL3:luxAB1 มีรูปแบบการเจริญและประสิทธิภาพการ ย่อยสลายคาร์โบฟูรานไม่แตกต่างจาก PCL3 ความสามารถในการปลดปล่อยแสง luminescence ของ PCL3:luxAB1มีความสัมพันธ์กับช่วงของการเจริญ กล่าวคือ การปลดปล่อยแสงระหว่างการ เจริญในช่วง log phase มีค่าสูงกว่าช่วง stationary phase ประมาณ 10 เท่า ค่าความเป็นกรดด่าง อุณหภูมิ และความเข้มขนของ n-decanal ที่เหมาะสำหรับการปลดปล่อยแสงของ PCL3:luxAB1 คือ 7.0 35 °C และ 0.01% ตามลำดับ โดยการใช้ระบบ PCL3:luxAB1 ในการบำบัดดินหรือน้ำที่ปนเปื้อน คาร์โบฟูราน จะทำให้สามารถตรวจสอบการอยู่รอดของ PCL3:luxAB1 ที่เติมลงไปในระบบ ระหว่าง การทดลองซึ่งเป็นสัดส่วนโดยตรงกับประสิทธิภาพการย่อยสลายคาร์โบฟูรานได้ เนื่องจาก PCL3:luxAB1 มีความสามารถในการปลดปล่อยแสง luminescence ซึ่งแตกต่างจากจุลินทรีย์ประจำ ถิ่น

Abstract

The main objective of this study is to demonstrate the application of carbofuran degrader *Burkholderia cepacia* PCL3 in remediation of carbofuran contaminated water and soil. The experiments were divided into 4 parts. In part (1), the performance of Sequencing Batch Reactors (SBRs) augmented with immobilized PCL3 on corncob for biodegradation of carbofuran in Basal Salt Medium (BSM) was studied. The effect of Hydraulic Retention Time (HRT) (14-6 d) on carbofuran degradation efficiency was investigated at a carbofuran concentration in the feed medium of 20 mg Γ^1 . The shortest HRT of 8 d resulted in complete degradation of carbofuran. At 75% of the optimum HRT (6 d), the effects of biostimulation using carbon sources, i.e. molasses and cassava pulp and nitrogen sources, i.e. rice bran and spent yeast as well as the effect of carbofuran concentration in the feed medium (20-80 mg Γ^1) were investigated. The optimum conditions for SBRs were achieved with an initial carbofuran concentration of 40 mg Γ^1 by using 0.1 g Γ^1 of rice bran as a biostimulated amendment. The carbofuran degradation efficiency of SBR at the optimum conditions was 100% with a k_1 value and $t_{1/2}$ of 0.044 h^{-1} and 15.57 h, respectively.

In part (2), the effectiveness of bioremediation technology in the removal of carbofuran from contaminated soil using a bioslurry phase sequencing batch reactor (SBR) was investigated. A 2-L laboratory glass bottle was used as a bioreactor with a working volume of 1.5 L. The carbofuran concentration in the soil was 20 mg kg⁻¹ soil. One total cycle period of the SBR was comprised of 1 h of fill phase, 82 h of react phase, and 1 h of decant phase. Immobilized PCL3 on corncob was used as the inoculum. The results revealed that bioaugmentation treatment (addition of PCL3) gave the highest percentage of carbofuran removal (96.97%), followed by bioaugmentation together with biostimulation (addition of molasses) treatment (88.23%). Abiotic experiments, i.e. autoclaved soil slurry with corncob and no PCL3 treatment and autoclaved soil slurry with no PCL3 treatment, could adsorb 31.86% and 7.70% of carbofuran, respectively, which implied that soil and corncob could act as sorbents for the removal of carbofuran.

In part (3), the small-scale field studies of *in situ* bioaugmentation by using free and immobilized PCL3 on corncob were conducted in the plots with a dimension of 1 m x 1.25 m x 0.20 m. In the soil with the presence of only indigenous microorganisms, the degradation of carbofuran was slow with the long $t_{1/2}$ of 127 d. Bioaugmented the soil with immobilized PCL3 could shorten the $t_{1/2}$ of carbofuran in soil to be 16 d. The significant longer $t_{1/2}$ of 28 d in soil was observed when the free cells of PCL3 were used in comparison to immobilized cells which suggested that bioaugmentation of carbofuran by using PCL3 in free cell form might not applicable. Growth and survival of carbofuran degraders in soil and in support materials were examined and the results indicated that the efficiency of carbofuran degradation directly correlated with the number of introduced carbofuran degrader surviving in the system.

In part (4), the *luxAB*-mutant of PCL3:*luxAB*1 was constructed with the capability to emit the luminescence signal of 1.6x10⁻³ RLU cfu⁻¹. The mutant has the growth pattern and carbofuran degradation ability similar to PCL3 wild-type. The luminescent emission by PCL3:*luxAB*1 is directly in correlation with the metabolic activity of the cells in which the exponential growth cells gave 100-fold higher value of light output in comparison to the cell in stationary phase. The optimal pH, temperature and n-decanal concentration on luminescence emission are 7.0, 35 °C and 0.01%, respectively. With the luciferase system, the degradative fraction of the augmented PCL3:*luxAB*1 and the difference between the active augmented PCL3:*luxAB*1 and indigenous microorganisms at the contaminated site could be indicated.