84

a P a ‘A ' o ' a A ed ' L A
IUNIUAY lummzﬂﬂ’]35Uﬂ'}u@uvLN3JNﬂaUqﬂﬁ@LﬂuLﬂqiuﬁqjauﬂiﬂﬂUaﬂaa’]ﬂx‘nﬂsﬁ\‘]w

a

RunIdnaniduuuaiitse (@13190 4.9)

9

450 A~
—e—n Control
400 A —s—n Sesbania
% ——n Indigo
P 350 4 d —e—n Dipterocarp
;U‘i —=—n Eucalyptus
© 300 o ---¢-- d Control
g’ ---&-- d Sesbania
= 250 A --&-- d Indigo
L‘: ---e--- d Dipterocarp
& 200 ---x-- d Eucalyptus
&
2
L 150 A
$ 100 {& I S et
s .
0 T T T T ]

o
w
~
=
B
N
o]

56 12

Days after residue incorporation

NN 419 UTINUNIRTINWIARNIEIA1TUBY (microbial biomass carbon) ludunlasu
aIBurdanigunn luanmwifinissuniu (disturbed — d) uazlifinas
JUNIUAH (non-disturbed — nd) 1uz2191281619 9 BadlaaIBUNIS
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a3 4.8 Usnoanaimwadunidaiiuen (MBC) anmsldiuasdunideng
qmmwﬁﬁmii‘umuuazvl,ajsurnuauluﬁ’mnm@m 9 BRI AE1IDUNIE
soil organic period (d)w
management  materials 3 7 14 28 56 112
S mg C kg [—— >
Non-disturb Control 82.31b 118.21 ¢ 78.72 bc 59.08 a 5732 b 67.61 cde
Sesbania 202.07 ab 42717 a 188.89 a 147.65a 11438 a 72.10 cde
Indigo 14117b  353.99 abc 179.82ab  126.07 a 9546 ab  87.80 abc
Dipterocarp  109.38 b 179.56 bc 75.47 bc 60.16 a 68.56 ab  41.82fg
Eucalyptus  119.50 b 234.15 abc  144.81 abc 109.67 a 76.95 ab 62.95 def
Disturb Control 84.70 b 189.52 abc 68.07 ¢ 55.26 a 60.25 b 2854 g
Sesbania 347.36 a 412.06 ab 137.64 abc 107.83 a 87.55ab 107.23 a
Indigo 188.10 b  348.63 abc 208.91 a 99.98 a 66.62 ab  54.19 ef
Dipterocarp 99.34 b 234.87 abc 140.19 abc 128.24 a 70.28 ab 84.05 bcd
Eucalyptus 171.45b  246.86 abc 69.47 ¢ 99.25 a 76.34ab  98.13 ab
HSD 155.66 245.18 105.98 100.45 52.12 22.52

1 o ' o A o [ [ ' ' ' o o and o
aanlutassausiideinunanumsansanilawnuliinnuuandsaielineiaunmsianszau

ANULTasI 95% (Tukey Honest Significant Different: Tukey HSD)

@1INN 4.9 danduaivauda lulasauluaiainiwgdunid (MBC/MBN) anms

"L@T%’umiauw‘%ﬁ@mqmmwﬁﬁmﬁumuLLazvl,mumu@u lugr9andne g

nadlaa1Iounss

soil organic period (d)w

management materials 3 7 14 28 56 112

Non-disturb Control 3.69 bcd 4.63 a 4.31 bc 4.48 ab 3.46 ab 4.03 bc
Sesbania 1.26 d 236 a 2.78 bc 1.60 ab 1.32b 2.05 de
Indigo 1.66 d 3.29 a 230c 2.56 ab 2.34 ab 2.70 de
Dipterocarp 4.27 bc 6.21 a 6.83 ab 2.18 ab 2.62 ab 1.84 ¢
Eucalyptus 4.40 bc 8.25a 9.63 a 3.83 ab 247 ab 2.96 cd

Disturb Control 4.41 bc 6.95 a 258 ¢ 2.71 ab 3.68 ab 1.63 e
Sesbania 1.58 d 283 a 117 c 0.99 b 1.66 b 4387 b
Indigo 1.83 cd 7.70 a 243 ¢c 1.79 ab 1.21b 2.42 de
Dipterocarp 575b 7.28 a 9.65 a 5.80 a 3.76 ab 5.11 ab
Eucalyptus 8.81a 7.23 a 4.15 be 3.00 ab 448 a 598 a

HSD 2.58 6.19 411 472 2.60 1.08

1 o i % { [ (% a i ' ' @ o @ Aaa
anavlusasaausifsnunaumesneanlannuliianuuandvainsiivefmanmesia

ﬁixﬁ'ﬂﬂ’nw,%aﬁ"u 95% (Tukey Honest Significant Different: Tukey HSD)
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4.1.2.5 UAnSmwannsdlwneudsugUm3ivai (metabolic quotient: gCO,)

a A a A 6 v o 1 1 ni 1 a ﬁ a

UrdnTmwadunid mldandanaiuszning Co, Mlanudasandudiiiaain

A a A 6 \ a a A6 & ) o AAdaA !
Aanyswvenduniddenhsanaiinmwaiunidaiven (MBC) uariiniianudanln,
(sensitive) &ANINVENTIANNLATHATAIIRUNIINAANNMIIUNIKIINTATEAEUEN
J2UUAU (Anderson and Domsch, 1990 §19@14 Walkel, 2550) 9A1 qCO, g wuNBA4

a A 6 aAa a A a a a oA A 6 6 % |
dunidifiaanuaivagenialdszininwlunsihdunidansuenanainaiu Mc
A [ 4 6 a =) c: Aa A Aa A %
wisanuamunlunmssuindarfveulilufuldn dezininmvesndunidlunisld

ANSUawINNNITH o EAULUR U LU NTI9IRITaINITEH o EANY Nadfe UTeENTANW

'
o

a { 1 [ J o a {
Qau‘n’%ﬂumnﬂﬁﬂugﬂﬂﬁuaum (f1 qCO, §4) 1u°ﬁ’NLL§ﬂLLa$§\‘1°lIuI@’IElﬂ’]@U WWanis
dasaapdninly (@139 4.10) iasnlugraninafuniddiudnnmsnszuuiing

0 a A 6 > tﬁq’ o v A a eA a a °| 1
ANIUNI @AINNTLEFIBuNITuazUSunNNTH) ml%qaumwﬂsmﬂﬁmwm el

a A 6 n' s s U 1 1 di ] o a ) va a a J
'gaumﬂLmﬁiuml,mgam;alﬁuLwamiﬂaﬂamﬂmmuvl,ﬂ mlvxuﬂszaﬂﬁmwgwu
ﬂsza'ﬂ%mwmaaﬁgauw%ﬁ‘%ﬁ@‘iﬂumiauw%ﬁﬁaiaﬂamU\‘hamdﬂumiauﬂ%‘ﬁﬁﬂ'ayamy

a

Y oA o A Ao A | A .
N DINNNUINLNBNIWEINT (qunuﬂa 179719 1INNU C NYURILNI1Y A3 labile C) E

=S

110 ﬂs::?m%mwmaagﬁum‘%zﬂumﬂ%w%’wmma]’nﬁé‘nn?nﬂaw%’wmﬂsﬁﬁ‘hﬁ'@ &
mﬁuw%ﬁqmmw@'hﬁmsmmﬂﬁﬁgauﬂ%ﬁﬁ‘hﬁ'@ndwmﬁuw%ﬁqmqua AMITUNINAK
liadunidllszininwlunsld ¢ das (d1 qCO, g9) nirduiligniuniu (@aaf

A a A oA a A ea a A a £
4.10) wyanadludnuinilefe RWNITAANULATLANNFITINGWNN D
a [ a G4 6 a
4.1.2.6 miamuau‘n?mmqw%auﬂ%'ﬂmiua%‘luﬂu

a A 6 P ' v a £ a a o A A A6 & a
msaummnﬂmu@aaNﬂl%&lﬂﬁl,wmwuaaaummmqmaaummmsuaulu@u
NIRLRNAWNIIANTUARAINAINTINFIRUDIAWNTUUIA <1 E wudwﬁgalu
RIIDUNIINLOFANLINY (LALRZATINYY) NINFITWNIENLBIRABLIN (WAIUAZHAN
AUGR) waadingsdunddndesaarsdreinldiiansszaudunidarsuauninnin
a A ega & a A & ' A 2 i i
F1IBUNITNLauFAIEIN NIDUNITATUaUEIWNLLUTY (particulate  organic matter)
saunagluilafuuazdunujisendueuniadn dlvwalaifiv 1 wa. (@11199 4.11)
2819 IIAAIURINNINTIINIFERNANTLAWINNMIA I LA T wias19189 C  Nl&aN
a A 6w A = ~ ' a A ea a
fIBUNIGAL C  NggiFsain Co, Niuaaldas ssBunIdndesaarsendmIazay
, a A ea \ & g A a A o A & o
YNNINENTIRNITNLas g8 mmwm:umummaummmqwLﬂmummcﬂlmymw 1

uu. ginsagludu (@an 4.11)



87

@13197 4.10 - UazEnTmmadunidlumadasuglaniuau (qCo,) anmsldansdunis

@iﬂdqmnﬂwiuanwwﬁﬁmﬁumuua:hifmnsumuau lugr91a1619 9

waslaasaunss
soll organic period (d)w
management materials 3 7 14 28 56 112
L — mg CO,-C mg MBC™" —-emememeemen >

Non-disturb Control 0.085c 0.030 c 0.068 a 0.107 a 0.067 ab 0.043 b
Sesbania 0.663 a 0.180 ab 0.163 a 0.127 a 0.020 b 0.097 ab
Indigo 0.613 ab 0.150 abc 0.130 a 0.140 a 0.053 ab 0.127 ab
Dipterocarp 0.140 ¢ 0.063 bc 0.090 a 0.180 a 0.080 ab 0.153 ab
Eucalyptus 0.393 abc 0.110 abc 0.123 a 0.087 a 0.130 ab 0.163 a

Disturb Control 0.158 ¢ 0.060 bc 0.198 a 0.087 a 0.053 ab 0.107 ab
Sesbania 0.460 abc 0.210 a 0.238 a 0.157 a 0.057 ab 0.063 ab
Indigo 0.458 abc 0.170 abc 0.128 a 0.147 a 0.100 ab 0.143 ab
Dipterocarp 0.210 c 0.070 abc 0.073 a 0.077 a 0.093 ab 0.137 ab
Eucalyptus 0.260 bc 0.150 abc 0.228 a 0.150 a 0.143 a 0.107 ab

HSD 0.38 0.14 0.21 0.13 0.11 0.12

1 o \ o A Y o A [ = ' ' Ao o w aa
@]'JLﬂ“lllu"ﬁﬂﬂﬁ@lllﬁl:aﬂ'!ﬂum(ﬂ"lllﬂ')ﬂﬂﬂﬁiLﬂNa%ﬂuvlﬁJllﬂ'J']ﬂJLL@]T]@]'NQ?J'Nl]uf_]ﬁ']ﬂfy‘ﬂ']\‘iaﬂ@]

fiszeuANLEBN 95% (Tukey Honest Significant Different: Tukey HSD)

mytumuaninarildmszandunidaivanansvasnelinodragnieeia s

A A v a A A . A X o = o |
sunuduiinaliydunidifnswnmstesamongedu aaduldnnmsdaaddas CO,-C
srauntsgazesnsdesaats (112 1) Ngslunsandisunuduannniinysuitld
JuMuanad s MAYNeaia (nwn 4.11) dsiumsTunuduinlid ¢ Jagadsy

a dl v (=3 [ A [ a a a 04 d' | qu A

nnduununazldiumaiuinniseuindliluduluzlvesdunisiagnidusu nielu
\iiadin (soil aggregate) 1wTznIILNIUARINRBUNIDTaga@ i duTudninasaniud

=3 a dqz d'n d' a A 6 v [l J = a o v
PaLinad ifaduiiNIfunifazddesaaouinau Usznauiunssuniudurild

v 1 (23 a { a v v a J

snWKaRaNTRiTaandlannIdwnIdwandainsarmaiinadnfaauniduindu

Yy

FL3INTHBHFANY LAaZNIITUMIRAR AL aa kLN ﬁﬁl%ﬂaaﬁuﬁuw%ﬂfmqma

[ A a

NN (physical protection) VBIAUFUTANT Su‘n’%mmqﬂgﬂﬂaanu‘liﬁwﬂmﬁ@@u 9

Lidinmziitsnnisdntessaa adqﬁuﬂ%ﬁ
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P a A6 € a Ay e a a6
M139N 4.11 MIRERNBUNILANILDW (VU1 < 1 VUX.) Iu@u‘ﬂvla@illa’]iﬂu'ﬂiﬂl@nﬁﬂMﬂ'—]W

1129 112 TunalgaIaunss

parameter
Organic materials 3
Total C (g kg ) %C increase

Control 0477 b -
Sesbania 0.568 a 15.965 a
Indigo 0.585 a 17613 a
Dipterocarp 0.521 ab 8.308 a
Eucalyptus 0.532 ab 10.344 a

a

1/ & a o d (% o o o ' ' ' o o5 @ aad
anavlunaanildsinuianumasdanwimlownn biflanuuandvadlvesaynesianszau
ANNLTONY 95 % (Tukey Honest Significant Different: Tukey HSD)

]
~

4.2 ns@anw1dndwazasmslznanluwszuunisivhsafiasedlugfidszinegn

A ¥ a

H 1 v @& [ A ‘g
AAWADNITNNLALLAZNIILAR aumﬂauﬂ’%mmq‘lummﬁamm

¥ ]
= =

[~ I3 a 1 s [3 &
4.2.1 m‘sﬁnmmsmufmm‘sua%sluﬂusl%qummmmansluwwngnﬂau

Waduvasdndn  (forest)  UANMUALABANINNINABADUAILAUIN 2, AADY

o '

FWAUIN 3, LAZAWUITNY (FIwrts 4) (@177190 4.12) TuudasduritsnaIn Ins T

WAaaUNLINARTULURTL R UREILNINNINAUTUES 889 bIRANN ATzauaNED
a d‘l» a a A AI J a a A 6 6 a g:

520104 60-95 LoUALNAT Lhaduazianunieonindu Usumdunddansuauluausu
1 { a 1 ] 1 { _1 0' { = o 1 {

vunuhdunnigaluduth (dunuen 1) fe 4.75 g kg uazdfigaluduaaudiuniien 2

'1 IA o 1 { =) U o 1 { =3
00709 kg luvneNduaaudiuniei 3 uazduuwitn  (Frunian 4) alUSunm

a

' o -1 o {
Bunidaniueuagluszaunand e 1.07 uaz 272 g kg aUGU (MW 4.20)

a ' a 1a a A 6 6 i a A A a a a A ed o '

Authidsumdunadganivangeninauang thasanidsunmasdunidgnang
SEUUINNNINAKEH ) LALAUDNTUNINEENINGUIL Y fanlunstivasduuinlySunm
A A6 € P a < & A v a A6 & P
durdaniueusnnirduaeunisasllsing hasannldsuunidasueungnozanain
Guiadluszdungenit (Tangtrakarnpong and Vityakon, 2002) #anan#NII&aILe7

“11aa'ﬁwﬂ%ﬂﬁ'@qluamwﬁ"rﬁ'aﬁ@‘hﬂdﬂuamwszmnmmﬂﬂﬂa
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Tuduth PHanudunidaniueuazgenganszaunnuan 0-15 ludluas (4.78 g

-1 i g { -1 -1 Aa
kg') U8z9RARITITZAUANENT 15-40 (0.75 g kg ) WAz 40-60 (0.46 g kg'') LHHGLUAT
o a a { a a -1 {
AUEIAL LAzl IaTRNBUNIIATUBUNTZAY 60-70 LUUAWAT (1.24 g kg ) (MWD
4.20a) @ndSuradunidansuanluduaaudiuniiN 2 TAARIANNTZAUAIMNAN
< & A 2 o ' a A a A6 € a & 4
AUNTZNIINAMUANGINTN 85 Loudluas azinsazandunsgansuandnasd (0329 kg ')
(MWN4.200) luvinuaadeiny luduaeudiunisn 3 YSunadunidansuauazanasany
JLAUANMNRNLTULALING AB N32AU 0-30 LAz 30-95 LTUaLNAT YT mduUNITansuau

1 L= ‘1 o = ] { 5 g; 1 a
WinnU 1.07 waz 0.15 g kg ANAIGU 819 13AAN ATzAUANNANAILG 95 LTURLNAT

=) QI J v —1 { o
ad lAimsasaudunIdaSuaninNIuantes e 0.24 g kg (ANN 4.20c) luriuas
a o a &a @ a a6 & o = o o oa A A
Weanu luduudduuwildunsazaudunidansuanlurinuedfoinunudud uwazdun
Aa% Ao DUNITAITLAUAARIANNIZALANNUAN wasinIasauNIzaUAINUANNINNIN 85

Lsﬁuﬁmm(mwﬁ' 4.20d)

USurmduwnsgarsuanludnuaazlUsIng Juwiliusaasa uainuan NawTwl%
A a a A 6 6 1A g; 1 di Qs a A 6 v 1 1
wﬂimmaumgmsuaugammmumaLuaamﬂ"l,mumiaummmgizuﬂ@nmo LT
LARTINAT TINAT wazanIRanadan 9 Ludu adrelsfiony AEauaUANLTINm 1 LuAT
a a A 6 & A £ A A a a a a £ A Y =<
LAMIFRVDWNITANTUAWANYY 139N HaAuTANUAZLAUALANTL NITAUAMNAN
o A = P 2 A L o A & a [ 2 o
dga @ua:&lmmmummﬂmwuwagmuamﬂﬂ Wuhe haduvadszauanuindga
2218% sandy clay loam ¥NaidIguineuny sandy loam Was loamy sand VaITHU

(@199 4.12)
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A139N 4.12 Qmauﬁ'@maa@ulmwiaﬂﬂivl,wﬁﬁv‘hm‘iwsimm%ﬁ’]ﬁ@auluéjwﬁwm@

LAN 8LNANRIBNING FIRIAVD LA

Depth Color Texture %Root pH SOC

(cm) (gkg")

Forest (profile 1)1/

0-15 7.5 YR 4/3-5/4 Sandy loam 60-70 6.7 4.78

15-40 7.5 YR 5/3-5/4 Sandy loam 20 6.6 0.75

40-60 7.5 YR 5/3-5/4 Sandy loam 20 6.4 0.46

60-100 7.5 YR 6/6-6/8 Sandy clay 15 6.4 1.24
loam

Upland | (profile 2)

0-20 7.5 YR 5/3-5/4 Loamy sand <10 5.8 0.70

20-70 75YR7/3 Loamy sand 0 6.4 0.10

70-85 7.5 YR 5/6, 6/6,6/8 Sandy loam 0 5.9 0.05

85-100 7.5 YR6/3 Sandy clay 0 55 0.32
loam

Upland Il (profile 3)

0-30 7.5 YR 4/3-5/4 Loamy sand <5 5.6 1.07

30-95 7.5YR5/3 Sandy loam 0 5.7 0.15

95+ 7.5 YR 6/4, 7/3 Sandy clay 0 5.8 0.24
loam

Lowland (profile 4)

0-20 10 YR 5/3-5/4 Sandy loam 0 4.7 2.72
7.5 YR 5.8 (mottle)

20-45 10.5 YR 5/2-3 Sandy loam 0 5.1 1.48
10.5 YR 5/8 (mottle)

45-85 75YR7/3-4 Sandy loam 0 5.9 0.15

85-100 7.5 YR 5/6, 7/2 Sandy clay 0 5.9 0.39

7.5 YR 5/8 (mottle) loam

1 o {
871909 AWN 3.2
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soil organic carbon (g kg™)

5 6 1 2 3 4 5 6
0-20

15-40 20-70

(b)

40-60 70-85

60-100 85-100
B
Ch
S
o
[0}
©
T—)
7] 1 2 3 4 5 6 1 2 3 4 5 6
0-20
0-30
20-45
30-95 © (d)
45-85
95+ 85-100

NNN 4.20  USunmdunddansuanluduin (a), NFunin 2 (b), NaaudILnien 3 (c),

WRZWITNIEIUWRUIN 4 (d) maaﬁjwﬁwmmﬁﬂ SILNBLVIFIBNIG IRIA

YU

A A = A 4w a A e & A A i
HBANLABDINNNIILITWN muna’mﬂuaumﬂmiuaugﬂmaﬂm? (recalcitrant
form) Glaser et al. (2001) ﬁmwmfmﬁuauﬁaQlugﬂmummmgﬂLﬁuﬁnvl,i‘luaum
o & % ' o o ., 2 & Ao = P a ' a
Tauawlauin 01 1 Wil lqummmmaﬂﬂmmiﬂﬂmu A W Laz NN a9
a &2 = v a & ' a ' & A A o A
mwmnnﬂ sﬁdLﬂuwal‘mmmmiazaumiuaulugﬂmuluﬂu mmﬂuaumm@qgﬂﬂ
= A& o & & £ & A £
WRAUINLAUNNANI LAY aan1IRzaNAIsUanluana Sadudnuuwinisnialun1Tussm
fymlaniouluiagiin

4.2.2 WANIIAN¥INITLARDWN LLKWIAIBaIAITUaRDWNS S N3 1T s Tanit

da . . & 4 4 . - “
NABUUVANY 9 n%waawuﬂgnﬂaﬁlumﬂmsfmaanmmmua
4221 a03NNIIFAILAIVDI MILATA

luuaaalaasnnsgae@Irinny 0.033 day-1 (AN 4.21)  lasflaasnig
@ \ = b v A A A a « ¢ = & & “ a o oA | @
aa8@l8e19 a5 lassihninnmaelefaiduiasifuduassinninisuduldnriny

2.8, 1.8, 1.4 uaz 1.2 wWosidud naslanauseluuaaaf 3, 7, 14 uaz 28 34
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1.5 + o>

1.0 4

(%)

y = 2.6209¢0037
0.5 - R?=0.8762

0.0 T T T T T 1
0] 5 10 15 20 25 30

Remaining litter ash free dry weight

Days after residue incorporation

d. e e
NINN 4.21 9aANIIRAN U@I’J"UE’JGI‘U ARG

anuzUINNl uINAAN S ZE21A 119 ,
3 L

3 days 7 dayl 14 days 28 days

AN 4.22 ANBHVAITINULAFANIARANIRT 3, 7, 14 LAZ 28 1%
a 6 a [V VRN
4.2.2.2 533 uanlnARamINRIINAAK

Wadtazsdsainm oc muluninaadunasannisialunazanwuin luaunlaly
=) 1 { o = a { [} 1 &
LARA VUSum OC gam’]Lﬁammsm%ymﬁUummﬁm%'ﬁvl,aﬂaaz"hmﬂ (control) &4
Ad:!l 1 A a a A 6 6 1 g; = a
330N R lULAER Ll LS N NIRRT A UNTTANTLABLANAIIANNTWANNRNUDIAL
LRZULANANANTITIRUTUWAY (MWD 4.22 Laza13190 4.13) lasfiann 3 W WUMI
awauawnmmsuammammanmamu 40-80 LTURLNAT EIRAIT 7 Tuiin WUFIFR
ATUANNEN 70 LTUGLUATV IS TINANTE 14 S wuma@wﬁummaﬂ 20 LTHALNAT WAz
naf 28 T4 wﬂsmmazawgqu 60 LTUALNAT
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YSuaw oC lunihaadunaslalunaaa wudn Aan 3 Tunaslalunaaalysunm
oc ganiludud lilaazlsias (915199 4.12) wazdSum oc Lifianuuand1anunig

U

v
Aaa v

1 ad =S cs' >3 % 1 3; a
RNANITZTNINNNITNIT UAZANNANAN MU 7 TwnadlalunasatulSuim OC
nl J { e a { s a { 1 g: a 1 a { 1 1
VNN B AsUNUUTIN N 3 % I@ﬁlu@uﬁ‘la‘luLLﬂa@uuﬁﬂsmmgdmmuﬁvl,w‘laazvli
a8 e LTANNLANAINUNIIFDA (p > 0.05)

wasnsiw 1l 14 Suludnilaluuase wuind3unmues oc Lﬁ&lgﬁuama
TALA% LALLANIZIUTI9ANEAN 0-20 LoudALNaT USumaes OC anaanindadauiaing
wanenanun9Eaa (o < 0.01) laafinnudn 10-20 LmuaLumiﬁLLuaIﬁugaﬁq@ Tuwmed
Tuaudlildozlsasinlidanuuandranwnisluningadu uazi 14 Sunuindany
LANGAIINRIZRINNITNATARDANUIAAG 1 Lfia'éuq@msmaaaﬁ 28 TUWARI LR LLLAES
wui1 U5unm OC FUSunandinduunn lofiounuf 3, 7 uas 14 Sunaslgausau
a3 OC danuuandrinuatnaibddynmiada lasddanagilugasnnudn o-
60 LTUALNAT Imgaﬁq@‘ﬁ'mmﬁﬂ 60 LTUALNAT WazlUTIIANVANAINED FLLAWIN

V3w oc egenidunlilaezlaan (nwh 4.23)

& g = @ a v o a & a |a a &
NIRIZLAR A1 USN1H209 OC ARARINIAAALTWIUTU I ANAUAINLIAN
1$899NLAANNTLAURANLVAI LULARADENIA DL LLazﬁmiﬂa@ﬂdamﬁuaug&ﬁué’a
1331 OC ﬁqdﬁﬁ’mﬁwaummﬁﬂ 20 L EWALNAT lagilaakiwllwudn USanm oc
QI ﬂg/ { = ) v QI J =)
LNNDULALLANIEN 0-60 LTWALNAT 1auUTunns OC Huwd ITUAL WO NAINNANYDIGH
e d‘lv a I a ﬁ 1 o v dll d' 1A 1 v s
ﬂi:ﬂamuLua@mﬂu@um’]smmwamlvxmmmmaauﬂgmuma% Usznaunu
& A A4 A £ A ' & A |- & A A o A '
mwmu’l,u@uumqugwumanmmﬂﬂ NIBYIu1w OC uugnwnmaauﬂﬂmmma
TagRiniluaiin

Dissolved organic C (%) Dissolved organic C (%)

0.00 .02 .04 .06 .08 0.00 0z .04 06 .08

o190
1020
2030
3040
4050
50-60
6070
7080
8090

90-100
100110

3 days 7 days

Soil depth (cm)

— —a — -  Control
——&—— Sesbania

0=10x] e 28 days| ] .~ 14 days
1020 ~-_ ] -

20-30 - *
30-40 » E +
4050 ‘/. ] e

50-60 ]

60-70 “u ] L
70-80 o

80-90 -

20100 -

100110 / : -

Soil depth (cm)

AN 4.23 U5 SUanluAua URINAaa%
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4223 ANNTWUDIAK

ANMILFEIRIUBRININ AR IUNITNI TN INARDINTULIANNAIN K NEAaN
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ABSTRACT

Particulate organic matter (POM) plays important role in soil organic carbon (SOC) retention and soil aggregation. This paper assesses how
quality (chemical composition) of four different-quality organic residues applied annually to a tropical sandy loam soil for 10 years has
affected POM pools and the development of soil aggregates. Water-stable aggregate size distribution (>2, 0-25-2, 0-106-0-25 mm) was
determined through wet sieving. Density fractionation was employed to determine POM (light—LF, and heavy—HF fractions, 0-05—-1 mm).
Tamarind leaf litter showed the highest SOC (<1 mm) accumulation, while rice straw showed the lowest. LF-C contents had positive
correlations with high contents of C and recalcitrant constituents, (i.e. lignin and polyphenols) of the residues. Dipterocarp, a resistant residue,
showed the highest LF-C, followed by the intermediate residues, tamarind, and groundnut, whereas HF was higher in groundnut and tamarind
than dipterocarp residues. Rice straw had the lowest LF- and HF-C contents. Tamarind had the highest quantity (51 per cent) of small
macroaggregates (0-25-2 mm), while dipterocarp had the most (2-1 per cent) large macroaggregates (>2 mm). Rice straw had the lowest
quantities of both macroaggregates. Similar to small-sized HF (0-05-0-25 mm), small macroaggregates had positive correlation with N and
negative correlation with C/N ratios, while large macroaggregates had positive correlations with C and recalcitrant constituents of the
residues. Tamarind, with intermediate contents of N and recalcitrant compounds, appears to best promote small macroaggregate formation.
Carbon stabilized in small macroaggregates accounted for the tamarind treatment showing the largest SOC accumulation. Copyright © 2010
John Wiley & Sons, Ltd.

KEY WORDS: particulate organic matter; size/density fractionations; soil structure; soil organic carbon

INTRODUCTION effect on carbon accumulation in sandy soils. The chemical
composition of organic residues with respect to their
constituent C compounds can be divided into two major
categories based on their ability to restore soil fertility (Tian
et al., 1992; Murata et al., 1995; Kumar and Goh, 2000,
2003). The first category consists of ‘labile’ C compounds,
including sugar, carbohydrate, and hemicelluloses that are
easily decomposable and provide a ready source of energy
for decomposer organisms. In the second category are those
compounds, such as lignin and polyphenols, that are
‘resistant’ or ‘recalcitrant’ to biological decomposition
and do not provide a ready source of energy. These different
compounds are involved in aggregate formation, i.e. stable
SOM formation, in different ways. According to the widely
used hierarchical theory of aggregate formation, proposed

Cropping of formerly forested sandy soils during the past
century in Northeast Thailand has resulted in severe land
degradation (Vityakon et al., 2004). These soils have
inherently low fertility and soil organic matter or carbon
(SOM or SOC) levels, as well as low water retention and
weak structure (aggregation). Amendment with some types
of organic residues over a prolonged term (10 years) can
improve SOC contents up to 64 per cent (Vityakon, 2007)
due to stabilization of carbon in the soil matrix, i.e. within
soil aggregates or bound to mineral particles, as well as in
the form of resistant particulate organic matter (POM) (Goh,
2004).

Organic residues have different qualities (especially

chemical compositions) that may influence their long-term
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by Tisdall and Oades (1982), microaggregates (<0-25 mm)
are joined together by binding agents to form macroag-
gregates (>0-25mm). Relatively easily decomposable C
compounds termed transient (i) (e.g. polysaccharides) or
temporary (ii) (e.g. roots and hyphae) binding agents are
involved in macroaggregate formation through binding of
microaggregates. Meanwhile, more resistant C compounds
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are precursors of humic substances that may act as persistent
(iii) binding agents in microaggregate formation (Stout
et al., 1981; Tisdall and Oades, 1982; Goh, 2004). These
three categories of binding agents are based on their
resistance to decomposition, which is related to the age and
quality of organic matter (Kumar and Goh, 2000). Some
recent studies support Tisdall and Oades (1982) model
relating aggregate size with major binding agents. For
example, Bossuyt et al. (2001) found that the suppression of
fungal biomass reduced large macroaggregate (>2mm)
formation. However, Martens (2000a) found contradictory
evidence that the polyphenol constituent of organic residues
(corn stems and leaves) led to SOC accumulation in large
macroaggregates (2 and 4 mm diameter) in a silty-clay loam
soil.

In addition to the hierarchical theory, several other
mechanisms of soil aggregation have been proposed, as
reviewed by Bronick and Lal (2005). Golchin et al. (1994a)
proposed an alternative model in which organic residues
form a core encrusted by mineral particles to form
microaggregates (0-02—0-25 mm). This mechanism can also
form macroaggregates which subsequently form microag-
gregates in their interiors. When these macroaggregates
loose their stability, as their decomposing organic cores
become more recalcitrant and cannot provide adequate
labile substrate for microbial activities, they begin to
disintegrate and release the internal microaggregates
(Bronick and Lal, 2005). This model contradicts the
hierarchical theory since it posits that aggregates are not
formed in a linear succession from microaggregates to
macroaggregates. Golchin et al. (1994a) found that the
occluded organic materials in aggregates were in various
stages of decomposition and had different degrees of
association with mineral particles. Aggregate stability was
more closely related to the young and active SOM fraction
than the total SOM content, which underlines the importance
of quality attributes of added organic residues.

Accumulation of SOM is influenced by soil texture while
soil mineralogy exerts a secondary influence (Zinn et al.,
2007a). In their review, Feller and Beare (1997) concluded
that SOM accumulation is more difficult in coarse-textured
(sandy) soils than in heavier-textured ones. This is because
the chemical and physical properties of the former are not
conducive to formation of stable aggregates which can
effectively protect SOM against microbial degradation.
They also concluded that aggregate-protected SOM is less
abundant in tropical low activity clay soils, which cover
about 60 per cent of the land area of the tropics (Feller et al.,
1996), than in temperate ones rich in high activity clay. This
conclusion is supported by the results of a short-term
incubation (<1 month) study of a sandy low activity clay
soil, which showed no effect of particle-size fractionation on
N mineralization (Bernhard-Reversat, 1981). However, Zinn

Copyright © 2010 John Wiley & Sons, Ltd.

et al. (2007a) have recently concluded from some published
work that tropical low activity clay soils do not necessarily
retain less SOC than their high activity clay-rich counter-
parts. They proposed that the considerable SOC retention in
kaolinitic soils was partly due to significant contents of Fe
and Al oxides in the clay fraction.

Physical fractionation is a technique that has been used
effectively to characterize the relations between SOM and
aggregation on the macro- and microaggregate scales (Feller
et al., 1996). This technique involves size fractionation
followed by density fractionation into light (LF) and heavy
(HF) fractions. Golchin et al. (1994b) employed density
fractionation to classify SOM, based on the spatial
distribution of organic materials within the soil matrix,
into free POM (outside aggregates), occluded POM (within
aggregates), and colloidal or clay-associated organic matter.
The LF corresponds to a freely existing POM pool, while the
HFs were those occluded in soil aggregates or bound on
active surfaces of soil particles, clay, or silt. The HF,
therefore, takes part in aggregate formation as an organic
binding agent or core (Six et al., 2000; Chan et al., 2002;
Rees et al., 2005).

This study was undertaken to investigate the effects of
continuous prolonged (10 years) application of organic
residues of different quality on SOC accumulation and
aggregate formation in a sandy soil in Northeast Thailand,
where extremely sandy (>85 per cent) soils cover an area of
approximately 16 million hectares (Land Development
Department, 2003). The mineralogy of these soils is dominated
by low-activity clays, i.e. 1:1 type clay as kaolinite associated
with Fe, Al, Mn oxides, and/or hydroxides (Yoothong et al.
1997). The main objective was to assess the relation of residue
quality, notably N, lignin, and polyphenols contents, as well as
C/N ratios with soil aggregation and aggregate size distribution
as related to the POM pools.

MATERIALS AND METHODS
Site and Soil

The site was located in the Research Station of the Office of
Agriculture and Co-operatives of Northeast Thailand in the Tha
Phra subdistrict of Khon Kaen Province (16°20' N; 102° 49’ E).
The soil was a Khorat Sandy Loam (fine loamy siliceous
isohyperthermic Oxic Paleustult), which represents approxi-
mately 21 per cent of the soils in Northeast Thailand. Details of
initial soil chemical composition are presented in Table I. The
climate is classified as savanna with distinct rainy (warm)
(April-October) and dry (cool) (November—March) seasons.
Typical annual rainfall is 1200mm with two peaks, one in
May—June and the other in August—September. The average
temperature is 28°C with a minimum of <15°C and a
maximum of ca. 40°C.

LAND DEGRADATION & DEVELOPMENT, 21: 463-473 (2010)
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Table I. Some initial chemical and physical properties of the
studied soil at 0-15 cm depth

Soil parameters Values
Sand (gkg™") 934
Silt (gkg™") 45
Clay (gkg™ " 21
pH (H,0) 55
CEC (cmolkg ™) 35
Total C (gkg™") 21
Bulk density (0—15cm depth) (g cm73) 1-45

Experiment

A field experiment was started in 1995 in a field, situated in a
typical gentle undulating terrain, that had previously been
used for experiments with field crops, i.e. cassava (Manihot
esculenta), kenaf (Hibiscus cannabinus) and sugarcane
(Saccharum). Five treatments were applied: control, rice
straw, groundnut (Arachis hypogea) stover, and tree litter
from Dipterocarpus tuberculatus, and tamarind (Tamar-
indus indica). Each residue was applied at 10t DMha ™'y~
Rice straw and groundnut stover were cut into 5-10cm
lengths. Tree residues included recently fallen leaves of
dipterocarp (cut into rectangles about 3 x 6cm), and
recently fallen leaves + small branches (ratio leaves/small
branches 7:1) of tamarind.

A randomized complete block (RCB) design with three
replicates arranged along a gentle slope (1 per cent) was
used. Each residue treatment was applied annually in April
or May from 1995 to 2004 (10 years) to 4 x 4 m plots. It was
evenly spread on the soil surface and manually incorporated,
by use of hoes, into the soil to the approximate depth of
15 cm. Although regular weeding (approximately monthly)
was done by lightly hoeing the soil surface, in rainy seasons
the plots sometimes developed partial weed cover, but never
for an extended period. Weeded materials were removed
from the plots. Soil sampling was conducted annually in
April of each year before application of the new residues.
Soil samples collected in April 2005 were used in this study.
At each soil sampling, 10 random samples (0—15 cm depth)
were collected in a 2 X 2m area in the center of each plot
using an auger (2-5 cm diameter). The ten soil samples were
bulked together as a composite sample.

Soil Physical Fractionation Analysis

Two methods were used to fractionate the soil: (i)
mechanical fractionation of water stable aggregates and
(i) manual fractionation of weak (unstable) aggregates.
Water stable aggregates were obtained using air-dried soil
samples that had been passed previously through an 8 mm
sieve. For each analysis, 25 g of soil were placed on the top
sieve in a nest of sieves with five mesh sizes (2, 1, 0-5, 0-25,

Copyright © 2010 John Wiley & Sons, Ltd.

and 0-106 mm) in a sieving machine. The soil was first
immersed in water for 10 min. To allow saturation by water,
followed by wet sieving for 30 min. The sieve nest was
moved up and down (1 cycle) to a vertical height of 3-8 cm
and at a rate of 30 cycles min~'. At the end of wet sieving,
the soil remaining on each sieve was collected and oven
dried at 105°C to a constant weight. Mean weight diameter
(MWD) was calculated employing the formula:
MWD = M

where X; is the mean diameter of any particular size range of
aggregates separated by sieving, W; is the weight of soil in
that size range, W is the total weight of soil used for the
analysis.

Fractionation of unstable or weakly bonded aggregates
was done in combination with soil litter (>1 mm) isolation
and density fractionation to yield POM. Size fractionation
was performed on whole composite soil samples according
to the procedure of Hassink (1995) as modified by Nguyen
(2004); Meepetch (2000); Tangtrakarnpong, (2002). Three
hundred grams of air-dried soil were rewetted slowly on a
wet filter paper prior to careful manual wet sieving through a
nest of four mesh-size (2, 1, 0-25, and 0-053 mm) sieves. The
manual wet sieving employed gently running water from a
hose placed at the top of the nest of sieves. The water was
allowed to run vertically down through the sieves without
overflowing from any sieve. Sieving of each sample took
approximately 30 min. Soil litter was separated by hand
picking from the 2 and 1 mm sieves. Subsequently, the soil
litter and materials remaining on each sieve were oven-dried
at 70°C to constant weights and weighed. This yielded the
quantities of two soil litter size fractions (>2 and 1-2 mm)
and those of the other four size fractions including >2
(without litter), 1-2 (without litter), 0-25-1, and 0-053—
0-25 mm. The sizes 0-25-1 and 0-053-0-25 mm were further
separated by density fractionation employing a solution of
sodium polytungstate at a density of 1-3 gcm . Thus, two
density fractions, i.e. light fraction (LF < 1-3gcm ) and
heavy fraction (HF > 1.3 gcm ) of each size fraction were
obtained. They were oven-dried at 70°C to constant weights.

Unstable aggregate quantity was calculated as the
difference between the weight of materials obtained from
mechanical and manual fractionation while the weight ratio
of the unstable to the stable aggregates was taken as a
measure of aggregate stability.

Soil Analysis

Carbon and N concentrations were determined in the soil
litter, POM, and whole soil. Carbon in the soil litter and POM
was determined by dry combustion (Elementar Analysensys-
teme GmbH Vario EL), while that in whole soil (<1 mm
particle size obtained by dry-sieving through a 1 mm mesh
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sieve), was determined titrimetrically employing Walkley and
Black dichromate digestion method (Nelson and Sommers,
1982). Given the sandy texture of the studied soil, it is highly
probable that the dichromate oxidation method was as effective
as the dry combustion in C determination. Meanwhile, all N
concentrations were determined by micro-Kjeldahl method.

Organic Residue Quality

The organic residues selected for this study covered a wide
range of chemical compositions or quality, notably C, N,
lignin, polyphenol, and cellulose contents, C/N ratios
(Table II). Groundnut stover represented what is conven-
tionally referred to as a ‘high quality’ organic residue with
respect to decomposition and N release. It has a high content
of N, a low C/N ratio, and low contents of resistant
compounds, i.e. lignin and polyphenols. The dipterocarp
leaf litter represented ‘low quality’ residue, with low N but
with high C, C/N ratio, and resistant compounds. Tamarind
litter was of ‘intermediate quality’, while rice straw was in a
category of its own with low N and high C/N comparable to
dipterocarp residues, but it had the lowest C, lignin, and
polyphenols, while its cellulose content was highest among
all the residues investigated.

The chemical composition of organic residues in the
experiment varied only slightly from year to year (refer to
data of year 1 in Vityakon et al., 2000). However, values
used in this study were those of year 10. Carbon
concentrations were determined by dry combustion (Ele-
mentar Analysensysteme GmbH Vario EL™), N by micro-
Kjeldahl method, lignin and cellulose by the acid—detergent
lignin method (Goering and Van Soest, 1970). Total
extractable polyphenols were assessed by colorimetric
method employing the Follin—Denis reagent with tannic
acid as a standard, after extraction with hot (77°C) 50 per
cent aqueous methanol at a plant material (mg) to extractant
(ml) ratio of 37-5:1 (w/v) (Anderson and Ingram, 1993).

Statistical Analysis

One factor ANOVA under an RCB design was used to
analyze the main effects of the plant residues treatments and
least significant different (LSD) was used for mean

comparisons (|p| < 0-05). Pearson correlation analysis was
performed using the GLM procedure of SAS (SAS Institute,
Cary, NC). Nonlinear curve fitting was employed where
appropriate, to study relationships of aggregate formation
with residue quality.

RESULTS AND DISCUSSION

Soil Organic Carbon Accumulation

The annual application of all of the different quality organic
residues for 10 years led to significantly higher accumu-
lation of SOC compared to the control (Table III). The
highest SOC was found in the tamarind treatment, followed
by the groundnut and dipterocarp, while rice straw had the
lowest SOC accumulation (Table III). The SOC concen-
tration has a high negative correlation with C/N ratio
(r=-0-84, |p| <0-01, n=12) but a positive correlation
with N (r=0-77, |p|<0-004, n=12) of the organic
residues. Although the correlation results suggest that
SOC accumulation was favored by residues with low C/N
ratio and high N, the groundnut, which had the lowest C/N
ratio and highest N, did not accumulate the highest SOC.
Some later results (year 13) of this same experiment have
shown that groundnut treatment had the highest CO,—C loss
(91 per cent C added), while tamarind (another legume
treatment) showed much greater C conservation (only 33 per
cent CO,—C loss). This was a result of higher microbial
efficiency in C utilization (as measured by metabolic
quotient—¢gCO;) in the tamarind as compared to the
groundnut (Puttaso, A., personal communication).
Dipterocarp has the highest C content in large sized
(>2 mm) litter isolated from whole soil. The increase in the
large size litter relative to the control was highest (7-2 fold)
in the dipterocarp compared with the other residue
treatments in the following decreasing order of 2-8, 2-1,
and 1-9 fold for the tamarind, rice straw, and groundnut,
respectively. The quantity of >2mm soil litter showed
significant positive correlations with the ratio of polyphenol
to N (r=0-59, |p| <0-05) and lignin + polyphenol to N
(r=0-57, |p|<0:05) and a trend of correlation with
polyphenol content of the residues (r=0-546, |p| < 0-07).

Table II. Some major chemical quality characteristics of plant residues

Residues C N C/N Cellulose L* Ppb L/N Pp/N (L +Pp)/N
(gkg™) (gkg™

Rice straw 390 5:6 69-6 474 19 80 346 143 4.9

Groundnut stover 415 223 18-6 372 39 12-5 1.75 0-56 23

Dipterocarp 450 62 72-6 325 256 94.-4 41-3 15-23 56-5

Tamarind 439 10-0 43.9 356 198 50-0 19-8 5-0 24-8

“Lignin.

°Polyphenol.
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Table III. Quantities of carbon in whole soil, soil litter, and particulate organic matter in soil treated with different quality organic residues

Treatments Total C* (<1 mm) Soil litter—C* POM—C* (gkg ™' soil) C in fraction®
(g kgfl soil) (per cent total C)
LF HF LF HF
(gkg™ (tha Hh®  >2 1-2 0-25-1  0-05-0-25 0-25-1  0-05-0-25  (0-05-1mm)  (0-05-1 mm)
mm mm mm mm mm mm
Control 1-53d 36d 0-12b  0-15ab 004D 0-05 a 040 a 0-10 ¢ 6:1a 334 a
Rice straw 227 ¢ 53¢ 0-37b 0-06 b 0-08 b 0-03 a 040 a 0-18 be 4.8 a 252 a
Groundnut 3-30 ab 7-5ab  035b 0-12ab 020 a 0-04 a 0-38 a 0-45 a 74 a 257 a
Dipterocarp 3-00 b 6-7b 0-98 a 0-22 a 022 a 0-05 a 0-44 a 0-31 ab 85 a 24.8 a
Tamarind 3-66 a 82 a 0-46 b 0-21 a 023 a 0-04 a 0-50 a 0-48 a 73 a 26-6 a

“Means in the same column followed by the same letters are not significantly different at [p| <0-05 (LSD).
"Soil C (t ha’l) quantities were calculated employing bulk density (g cm’3) values of 1-59, 1-56, 1-53, 1-50, and 1-53 for the control, rice straw, groundnut,

dipterocarp, and tamarind, respectively.

This shows that lignin and polyphenol interact in retarding
decomposition and favoring residues to remain as POM.
However, interactions with N also influence the decompo-
sition. In the 1-2 mm size, there were no consistent effects of
residue amendments in comparison to the control.

Light fraction (LF) represents relatively unprotected or
free SOM that was not (yet) bound to clay surfaces or
occluded in aggregates. The large-sized (0-25—-1 mm) LFs
were significantly higher for the tamarind, dipterocarp, and
groundnut residues than for the rice straw and the control
(Table III). The LF-C was positively correlated with residue
C concentration (r=0-72, |p|<0-01), lignin (r=0-59,
|p] < 0-05), and polyphenols (r=0-51, |p| < 0-09). Similar
to the amount of >2 mm sized litter fractions, residues with
recalcitrant materials tend to contribute higher amounts of
large-sized LF fractions than those with easily decom-
posable constituents. However, lignin/N and polyphenols/N
were not found to influence the amount of large-sized LF in
soils. Quantities of the small-sized LF (0-053-0-25 mm) did
not differ from the control in all residue treatments.

Total contribution of LF (corresponding to sand size) to
the total C pool (per cent total C) was kept constant among
residue treatments, although total SOC and LF-C have
increased with amendments. The magnitude of these LF
contributions to total soil C were comparable to those
reported in other studies in different soils and land uses, e.g.
5-17 per cent total C in forest and field crops in Northeast
Thailand (Tangtrakarnpong, 2002), in natural fallow stages
(1-5 years fallow) of shifting cultivation in Vietnam’s
northern mountains (Nguyen, 2004), and in surface soil of
long-term crop rotation in Canada (Janzen et al., 1992).
However, different amounts were also reported elsewhere. In
her review on POM as a valuable SOM index of soil
management, Wander (2004) concluded that POM was
sensitive to soil management (i.e. plant inputs, soil mixing),
and varied with season, soil texture, and depth.

Copyright © 2010 John Wiley & Sons, Ltd.

The heavy fraction (HF) of SOM reflects the more
advanced stage of decomposition—humification processes
and represents the pool associated with the soil matrix, i.e.
soil aggregates and minerals. The large-sized HF-C (0-25—
I mm) was not significantly different among residue
treatments or compared to the control (Table III). On
the other hand, substantial increases relative to the control in
the small-sized (0-053-0-25 mm) HF-C fraction were found
in the following decreasing order: 3-8 fold in the tamarind,
3.5 in the groundnut, and 2-1 in the dipterocarp. The small-
sized HF fraction showed a significant negative correlation
with the ratio of C to N in the residues (r=—0-63,
|p] <0-05) and positive correlations with N content
(r=0-53, |p| <0-07) of the residues. This indicates that
easily decomposable residues, i.e. those possessing high N
and low C/N ratios, tend to promote C sequestration as
small-sized HF. The relations of the residue qualities with
the amount of HF are the opposite of those for the litter and
LF. These results agree with those of Hassink (1995) who
also found that resistant residues enhanced the LF pool,
whereas high-quality residues promoted HF.

The C/N ratios of SOM fractions were generally higher
than those of whole soil (Table IV). Similar results were
found by Hassink (1995). In the LF, C/N ratios reflect those
of the original plant residues, as shown by correlations,
r=0-54 (|p| <0-07) and r=0-76 (|p| < 0-001) for large- and
small-sized LF, respectively. These results showed that soils
treated with high quality residues have their free organic
matter (LF) in a slightly more decomposed states than those
treated with lower quality residues. Changes in C/N ratios in
POM fractions showed decreasing trends from litter to LF to
large-sized HF and from large sizes to small sizes, although
these trends were not consistent among different organic
residues. However, the C/N ratios of small-sized HF showed
a sharp increase over those of large-sized HF and small-sized
LF (Table IV). This can be attributed mainly to the almost
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Table IV. The ratios of carbon to nitrogen in whole soils and different fractions of soil litter and particulate organic matter

Treatments C/N of whole soil and some SOM fractions®

Whole Soil litter Soil litter LF LF HF HF

soil (>2mm) (1-2 mm) (0-25—-1 mm) (0-05-0-25 mm) (0-25—-1 mm) (0-05-0-25 mm)

Control 133 a 262 ab A 25-7a A 247 a A 13-6¢cd B 13-4b B nc
Rice straw 13-7 a 27-0 ab B 193aC 186 b C 149b C 15:6 ab C 340a A
Groundnut 12-1 a 33.0a A 17-1 a B 169b B 13-1dB 128 b B 264 b A
Dipterocarp 154 a 25-5ab A 24.5a A 24-1a A 169 aB 15-6 ab B 17.0c B
Tamarind 143 a 24.3 ab A 20-9 a ABC 1776 CD 142 bc D 18-8 a BCD 23-4b AB

nc = not calculable due to non-detectable N content.

“Means in the same column followed by the same lower case letters are not significantly different (|p| <0-05) (LSD).
"Means in the same row followed by the same upper case letters are not significantly different(|p| <0-05) (LSD).

300 fold lower N content of the HF (average value of
0-005gkg™") compared to the LF (average value of
14-3 gkg”) (detailed data not shown). In addition, the
HF might have higher lignin content than the LF. The HF in
our study was partly those formerly in soil aggregates
(occluded POM) that were disrupted during the manual wet
sieving. It was found that the POM occluded in soil
aggregates had a wider C/N ratio than the free fraction (LF)
in some soils from Australia (Golchin et al., 1994b) and
Brazil (Zinn et al., 2007b). They attributed this to a lower N
content and/or higher lignin or charcoal particle contents of
the occluded fraction.

Aggregate Size Distribution and SOC Occlusion

The mean weight diameter (MWD) was generally low
(<0-5mm) in the studied soil due to the very low
cementation by clays. Zinn et al. (2007b) found that only
SOC plays an important role in aggregate formation in the
top Scm depth while below this depth clay +silt is
increasingly important in aggregate formation. All soils
treated with residues produced significantly larger mean
sized soil aggregates (as shown by the mean weight
diameter—MWD) than the control (Table Va). The highest
MWD aggregates were found in the groundnut treatment
followed by the tamarind. Dipterocarp and rice straw had
significantly smaller MWD than the groundnut and
tamarind. The largest MWD in our studies (0-49 mm) is
smaller than the 0-67 mm reported by Tangtrakarnpong
(2002) in a sandy soil under dry dipterocarp forest in
Northeast Thailand. This difference may reflect the fact that
the forest soil has more root activity and suffers less
disturbance than the soil in our treatments which were not
under permanent vegetation and were disturbed by
incorporation of residues. Plant roots are classified as
temporary binding agents in aggregate formation, which
differ from the other two classes, i.e. transient (e.g.
polysaccharides or simple carbohydrate) and persistent
(aromatic compounds) (Tisdall and Oades, 1982). However,

Copyright © 2010 John Wiley & Sons, Ltd.

MWD values in this study are higher than the 0-22 mm
reported for the same soil under cassava and sugarcane
(Tangtrakarnpong, 2002). The larger mean aggregate size in
the tamarind and groundnut resulted from their aggregate
size distribution. The tamarind had the highest quantity of
small stable macroaggregates (0-25-2 mm) (50-9 per cent)
followed by the groundnut (45-3 per cent), which are higher
than the 34-5 per cent found by Tangtrakarnpong (2002)
under the dry dipterocarp forest. In addition, both residues
showed the highest increase in this aggregate size (21-5 and
159 per cent, respectively) relative to the control.
Furthermore, tamarind had the lowest quantity of small
unstable macroaggregates (8-6 per cent), while rice straw
and dipterocarp had over 30 per cent (Table Vb). This
showed that small macroaggregates formed under the
tamarind were bound together more strongly than those
under the other treatments.

Microaggregate (0-106-0-25 mm) weight of the tamarind
treatment showed a significantly greater decrease relative to
the control (13-8 per cent) than that of the groundnut (4-7 per
cent) (Table Va), which suggests that more of microag-
gregates underwent a cementing process to form small
macroaggregates in the tamarind treatment. This is
compatible with the hierarchical theory of aggregate
formation (Tisdall and Oades, 1982), according to which
macroaggregates are formed from the binding of micro-
aggregates by cementing agents. Meanwhile, the rice straw
showed a relatively large decrease in microaggregate weight
relative to the control (12-1 per cent), but the quantity of
small macroaggregates was not as high as in the other
residue treatments, with the exception of the dipterocarp. It
appears that the rice straw treatment still had its aggregates
and particles in the fraction <0-106 mm size (not analyzed in
this study) as seen in its lower value of sum of aggregates
(>0-106 mm in size) of only 67 per cent compared with the
other treatments (Table Va).

The groundnut, tamarind, and dipterocarp showed
significantly higher quantities of total aggregates larger
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Table V. Size and distribution of soil (a) water stable and (b) water-unstable aggregates as affected by different-quality organic residues
applied in the long term

(a) Water-stable aggregates

Treatment Quantities of aggregates of different sizes (per cent w/w)* (Changes in quantities relative to the control—per cent w/w)"
MWD Large Small Microaggregates Total aggregates
(mm) macroaggregates macroaggregates (0-106-0-25 mm) (0-106—> 2 mm)
(>2mm) (0-25-2 mm)
Control 0-25d 0-3 b (na)° 29-4 ¢ (na)° 39-4 a (na)° 69-1 cd (na)°
Rice straw 035¢ 1-1 ab (0-87 A) 38:5b (9.1 BO) 273 ¢ (—12-1 B) 669 d (—2-2 B)
Groundnut 049 a 1-4ab (1-12 A) 453 a (159 AB) 345b (47 A) 81-2a(12-1 A)
Dipterocarp 037 ¢ 2-1a(1-85A) 339 bc (45 C) 38-0 ab (—1-5 A) 74-0 be(4-9AB)
Tamarind 044 b 1.9 a (1-66 A) 509 a 215 A) 256 ¢ (—13-8 B) 78-4 ab (9-3 A)
(b) Unstable aggregates
Treatments Quantities of aggregates of different sizes (per cent w/w)*
Large Small
macroaggregates macroaggregates
(>2mm) (0-25-2 mm)
Control 02b 436 a
Rice straw 0-9 ab 33.7 ab
Groundnut 1-3 ab 187 be
Dipterocarp 1.7 a 30-5 ab
Tamarind 1-8a 86 ¢

“Mean in the same column followed by the same lower case letters are not significantly different at |p| <0-05 (LSD).
"Means in parentheses in the same column followed by the same upper case letters are not significantly different at |p| <0-05 (LSD).

“na = not applicable.

than 0-106 mm than the rice straw, which was comparable to
the control. The results showed that groundnut, tamarind,
and dipterocarp residues brought about the formation of
aggregates while rice straw did not show any increase over
the control. Although much previous work has shown that
addition of crop residues has positive effects on soil
aggregation (Kumar and Goh, 2000), our results highlight
the extent to which the differing chemical compositions of
the residues exert control on the degree of aggregation and
aggregate size distribution. Martens (2000b) showed that
high phenolic acid contents of corn and prairie grass residues
had significant positive influence on large macroaggregate
formation whereas low phenolic acid but high protein
contents in soybean residues exerted positive influence on
small macroaggregates and microaggregates. However, on
the whole, soybean treated soil was found to have lower
structural stability than soils under corn and prairie grass.

The dipterocarp showed the lowest decrease in micro-
aggregates (1-5 per cent) and increase in small macro-
aggregates (4-5 per cent) relative to the control. However,
residues of dipterocarp, followed by the tamarind, showed
the highest quantity of large stable macroaggregates and the
highest increase over the control (Table Va). The dipterocarp
and tamarind also had higher quantities of large unstable

Copyright © 2010 John Wiley & Sons, Ltd.

macroaggregates than the other treatments, although only
significantly higher than the control (Table Vb). The higher
amounts of large macroaggregates (both stable and unstable)
found in the dipterocarp and tamarind showed that these two
residues offered the highest and second highest capacities
for large macroaggregate formation. The high lignin and
polyphenol contents of both residues were likely factors
bringing about large macroaggregate formation through at
least two mechanisms. One is through polyphenol induced
fungal community formation. The fungal hyphae, which are
considered a temporary binding agent (Tisdall and Oades,
1982), bind microaggregates and organomineral particles to
form macroaggregates (Kumar and Goh, 2000, Christensen,
2001). The other mechanism is formation of humic
substances through decomposition of residues that are rich
in lignins and polyphenols (Martens, 2000b). Humic
substances are a persistent binding agent in aggregate
formation (Tisdall and Oades, 1982). Tangtrakarnpong
(2002) found the quantity of large stable macroaggregates in
the dry dipterocarp forest of the Northeast to be 5 per cent,
which is more than double that under the dipterocarp
treatment (2-1 per cent) found in this study. It appears that
although the natural forest had a lower quantity of small
macroaggregates than the dipterocarp treated soil, it had a
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higher capacity for large macroaggregate formation, which
is probably due to the additional root associated processes.
In the tamarind and groundnut, proportions of unstable/
stable large macroaggregates (0-9 for both) were signifi-
cantly higher than for small macroaggregates (0-2 and 0-4 in
the tamarind and groundnut, respectively.) This showed that
mechanisms that bind small macroaggregates together under
the tamarind and groundnut treatments render stronger
binding than those of large macroaggregates. For the
dipterocarp this proportion was lowest (0-8) among
(although not significantly different than) other treatments
for the large macroaggregates indicating that large macro-
aggregates under the dipterocarp were more strongly bound
together than those of the tamarind and groundnut. The high
polyphenol content in the dipterocarp may have been
responsible for the high amount of stable large macro-
aggregates found in this treatment. Polyphenols are a
precursor of humic substances which serve as binding agents
for the cohesion of clay particles to form aggregates. The
binding mechanisms involve various bondings such as
bonding of a clay-polyvalent metal-humus complex
(Stevenson, 1994: p. 446), which are harder to disrupt in
macroaggregates than microaggregates (Stout et al., 1981: p.
44). Martens (2000a) found that the residue (maize) with the
highest phenolic acid content showed the greatest amount of
large macroaggregates (2—4 mm) when compared to those
with lower phenolic acid contents (alfalfa and rapeseed).
Meanwhile, the rice straw showed low quantities and low
increase in quantities of the large macroaggregates.
Figure 1 shows that MWD was strongly correlated with C/
N ratio (r=—-0-90, |p| <0-001) and N content (r=0-86,
|p| <0-001) in residues. The residues with relatively low to
intermediate C/N ratio and intermediate to high N, i.e.
groundnut and tamarind, brought about large MWD
aggregates through formation of small macroaggregates.
A significant negative linear correlation was found
between quantities of small macroaggregates and the C/N
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Figure 1. Diagram of relations between MWD with C/N of plant residues.
(RS =rice straw, GN = groundnut stover, DP = dipterocarp, and TM =
tamarind).
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ratio of the residues (r=—0-66, |p| < 0-05) and a trend of
positive linear correlation with N content of the residues was
also found (r=0-45, |p|<0-14). However, polynomial
function can bring about higher correlations than the linear
function for the relations between small macroaggregates
and C/N (Figure 2a) and N (#*=0-69, |[p| <0-01) in
residues and also with other quality parameters including
C (Figure 2b), lignin (> =0-82, |p| < 0-001), polyphenols
(Figure 2c), lignin/N (+* = 0-64, |p| < 0-01), polyphenols/N
(=060, |p|<0-05) and (lignin + polyphenols)/N
(Figure 2d). This shows that residues with intermediate
values of these quality parameters, i.e. the tamarind, formed
high quantities of small macroaggregates, which, in turn, led
to the increased MWD. Tamarind residues also brought
about large MWD aggregates resulting from formation of a
large quantity of small macroaggregates from microaggre-
gates as shown earlier in the significant decreased of its
microaggregates relative to the control (Table Va). There
was a trend of negative linear correlation between the
quantity of small macroaggregates and the ratio of
polyphenol/N (r=—0-51, |p| < 0-09). The critical concen-
trations of different residue quality parameters for maximum
small aggregate formation (Y;,,x) of 50-60 per cent soil
weight found in this study as calculated from the polynomial
equation corresponding to each residue quality parameter
(Figure 2) were as follows: C (422 gkgfl) for Yiax 50 per
cent w/w, N (16 gkg ") for ¥nay 55 per cent, C/N (43 gkg ™)
for Yax 50 per cent, lignin (130 g kgfl) for Y. 58 per cent,
polyphenols (50 gkg ") for Yy 51 per cent, lignin/N (20)
for Y.« 50 per cent, polyphenols/N (6) for Y., 50 per cent,
(lignin + polyphenols)/N (25) for Y,,.x 50 per cent. For most
of these parameters, with the exception of N and lignin, the
tamarind came the closest to having the optimum values to
bring about the highest quantity of small macroaggregates.
Meanwhile, the groundnut had a higher level of N than the
critical value which does not favor the formation of large
quantities of small and large macroaggregates. It has been
shown that high mineral N in soils inhibits fungal growth,
which in turn, lessens the production of binding agents, e.g.
fungal mycelia (Bossuyt et al., 2001). In addition, the
groundnut had lower amounts of recalcitrant materials while
the dipterocarp had lower N relative to the critical values
which did not favor the formation of large quantities of small
macroaggregates. As for the rice straw, it had lower N and
recalcitrant materials than the critical values which is
unfavorable for the formation of the small macroaggregates.

In addition, tamarind also formed high quantities of large
macroaggregates second only to (but not significantly different
from) dipterocarp. It appears that organic residues that are
most resistant to decomposition favor the formation of large
macroaggregates. This can be seen by positive linear
correlations between the quantities of large macroaggregates
with lignin (r=0-53, |p|<0-08), polyphenol (r=0-50,
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Figure 2. Diagram of curvilinear (polynomial) relations of small macroaggregates with qualities of organic residues: C/N (a), C (b), polyphenols (c), and
(lignin 4 polyphenols)/N (d). (RS =rice straw, GN = groundnut stover, DP = dipterocarp, and TM = tamarind).

|p| < 0-09). Monreal et al. (1995) found a correlation between
lignin dimers such as phenylcoumaran, biphenyl, and resinol-
type structures, with macroaggregates (>250 mm), but not
with lignin monomers, in a Mollisol soil. They pointed out that
lignin dimers were the chemical structures of SOM best
reflecting the effect of roots on the temporal stability of
macroaggregates. Unlike the tamarind, the high quantity of
large macroaggregates in the dipterocarp did not result in large
MWD aggregates, as the dipterocarp had higher C/N ratio and
lower N content than the critical values, which do not favor
formation of a large quantity of small macroaggregates. Later
work (year 13) of the same long-term experiment reported
herein has found that SOC accumulation depends on residue
quality factor which led to microbial availability of energy rich
substrate including, notably, the presence of sufficient amount
of N and recalcitrant compounds (Puttaso, A., personal
communication). In addition to the quality of organic residues
per se, their decomposition products were found to influence
soil aggregation. Martens (2000b) found that mean aggregate
size was lower in lower humic substances soil under soybean
(lower content of phenols precursor of humic substances) than
higher humic substances soil under maize (Zea mays) or
prairie grass (higher phenolic contents).
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Table VI shows that MWD was strongly correlated with
SOC concentration (<1 mm) (r=0-89, |p|<0-001) and
HF-C (0-053-1 mm) (r=0-69, |p|<0-001) especially in
small sizes (0-053-0-25mm). Similarly, small sized HF
showed a high and significant correlation with the amounts
of large and small macroaggregates. These results show that
C in small-sized HF was associated with formation of larger
soil aggregates and might play a role as an organic
cementing agent in the aggregates (occluded POM). Golchin
et al. (1994a) found that the occluded organic materials in
POM were in various stages of decomposition and had
different degrees of association with mineral particles. Since
the smaller-sized HF C is more decomposed and humified
than the larger-sized (Golchin et al., 1994b), the latter might
not have played as prominent a role in aggregate formation.

Both small-sized HF-C and small-sized macroaggregates
had negative correlations (r= —0-63 and —0-66, |p| < 0-05,
respectively) with the C/N ratio of the residues. It can be
deduced that residues, such as tamarind and, to a smaller
extent, groundnut, with relatively low C/N ratio and high N
contents lead to formation of POM in an advanced stage of
decomposition and act as a core for the formation of small
macroaggregates.

LAND DEGRADATION & DEVELOPMENT, 21: 463-473 (2010)
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Table VI. Correlations between quantities of macroaggregates and carbon in HF

Parameters Statistical Large HF-C Small HF-C
parameters” (gkg™") (gkg ™"

MWD (mm) r|p| 0-11 (0-68) 0-77 (0-0008)

Large macroaggregates (> 2 mm) r|p| 0-45 (0-06) 0-52 (0-05)

quantities (per cent w/w)

Small macroaggregates (0-25-2 mm) r|p| 0-19 (0-49) 0-65 (0-01)

quantities (per cent w/w)

“r is the correlation coefficient and |p| is the probability value.

CONCLUSIONS ACKNOWLEDGEMENTS

This study clearly shows that the quality or chemical
composition of organic materials applied continuously in
the long term to coarse-textured low activity clay soils strongly
affects SOM accumulation. Accumulation of SOC (<1 mm)
was due partly to the free existing POM or LF intrinsically
resistant to decomposition, and partly to those bound in soil
matrix (HF and different sized aggregates). As for the LF, the
organic residues with resistant carbonaceous compounds
(lignin and polyphenols), like the dipterocarp, tended to
produce a relatively more resistant form of LF. On the other
hand, more HF was formed by residues containing relatively
more labile (N) and less recalcitrant compounds, like the
tamarind and, to a lesser extent, the groundnut. Similar to HF,
small macroaggregate formation was also favored by residues
with moderate values of quality parameters like the tamarind
followed by groundnut. On the other hand, large macro-
aggregate formation was more favored by the residues with
high polyphenol content, like the dipterocarp. This study
provides additional evidence for some proposed aggregation
mechanisms, i.e. small-sized HF (0-05-0-25 mm) acting as
binding agents and/or as central cores in macroaggregate
formation. Tamarind followed by groundnut residues showed
high SOC accumulation due to C stabilized in the soil matrix,
notably in small macroaggregates which provides for the
highest proportion of stabilized form of C in the long term in a
coarse-textured soil, whereas dipterocarp did not produce as
high an accumulation because most of the SOC remained in
the litter and LF pool while little was stabilized in the soil
matrix. The chemical composition of rice straw (high
cellulose, but low N and rescalcitrant compound contents)
did not favor SOC stabilization in any SOM pools.

To improve SOM levels of sandy tropical soils employing
organic amendments, care must be taken in selecting organic
amendments with appropriate quality. Residues with quality
comparable to the tamarind residues employed in this study
should be used. However, because rice straw is relatively
abundant in farming systems like those of Northeast Thailand,
farmers can still make use of it if they mix it with other residues
containing some recalcitrant and nitrogenous compounds, like
tamarind residues, in order to build up SOM in the long term.
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Abstract The objectives of this study were to
investigate decomposition patterns and soil organic
matter (SOM) accumulation of incorporated residues
(10 Mg ha™' year™") of different quality, and identify
microbiological parameters sensitive to changes in
SOM dynamics, in a 13-year-old field experiment on a
sandy soil in Northeast Thailand. Mass loss was fastest
in groundnut stover (high N), followed by rice straw
(high cellulose) and tamarind (intermediate quality),
and slowest in dipterocarp (high lignin and polyphenol)
following a double exponential pattern. The decompo-
sition rate k; (fast pool) was positively correlated with
cellulose (r = 0.70*) while k, (slow pool) was nega-
tively related to lignin (r = —0.85%**) and polyphenol
(r = —0.81**) contents of residues. Residue decom-
position was sensitive to indigenous soil organic
nitrogen (SON), particularly during later stages
(R* = 0.782%*). Thirteen years’ addition of tamarind
residues led to largest soil organic carbon (SOC)
(8.41 Mg hafl) accumulation in topsoil (0-20 cm),
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while rice straw yielded only 5.54 Mg ha™' followed
by the control (2.72 Mg ha™'). The highest SON
(0.78 Mg N ha™") was observed in the groundnut
treatment. Increases in SOC were negatively correlated
with cellulose content of residues (r = —0.92***) and
microbial respiration (CO,-C) losses, while SON was
governed by organic N added. During later decompo-
sition stages, there was a high efficiency of C utilization
(low gCO,) of decomposer communities especially
under tamarind with the lowest ¢gCO, and CO,-C
evolution loss. This study suggests that N-rich residues
with low cellulose and moderate lignin and polyphenol
contents are best suited to improve SOM content in
tropical sandy soils.

Keywords Metabolic quotient (gCO5,) -
Microbial respiration - Northeast Thailand -
Organic residue quality - Soil microbial biomass -
Soil organic matter accumulation

Introduction

Long term addition of plant residues with interme-
diate to slow degradability has been found to favor
soil organic matter (SOM) accumulation in degraded
sandy soils in the tropics (Vanlauwe et al. 2002;
Vityakon et al. 2000). In this paper, we seek to
explain the reasons why application of residues of
different quality results in different levels of SOM
accumulation, which has implications for how these
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locally available residues, or other organic residues of
comparable quality, may be used to improve degraded
sandy soils. In Northeast Thailand the dominant sandy
upland soils have low SOM contents due to a
combination of land-use changes from forest to
agriculture, which reduced the amounts of organic
residues returning to the soil, and increased soil
disturbances through cultural practices, such as tillage
(Vityakon 2007). Because sandy soils have low cation
exchange capacity (CEC) and a weak coarse soil
structure they provide less protection for SOM, both
chemically and physically, than their more clayey
textured counterparts. Organic matter is often closely
associated with clay particles, or encapsulated in
micro- and meso-aggregates, while non-protected
organic material is mainly present in the sand fraction
(Hassink et al. 1993) resulting in fast turnover and
hence low SOM accumulation in sandy soils. Appli-
cation of organic residues can sustain SOM (Palm et al.
2001), improve soil physical (soil aggregation) and
chemical (CEC) properties, retain nutrients and also
enhance microbial activity. Past studies in Northeast
Thailand have employed addition of locally available
organic residues, which can be a source of N to plants
upon their decomposition, in order to restore soil
fertility in the short term (e.g., Naklang et al. 1999;
Thippayarugs et al. 2008; Vityakon and Dangthaisong
2005; Vityakon et al. 2000). However, few studies
have investigated their longer-term effectiveness in
very sandy soils.

SOM accumulation mainly originates from above-
ground organic inputs, root residues and exudates,
and also residues remaining after the harvest in
agricultural systems. The decomposition rate of such
organic residues is governed by the chemical com-
position (N, lignin and polyphenol contents) of the
residues, presence of decomposer organisms, envi-
ronmental conditions (e.g., rainfall and temperature)
and soil characteristics (Swift et al. 1979). These
factors control the pattern of residue decomposition
resulting in altered nutrient (C and N) availability,
due to their release or immobilization, and SOM
formation. While the relationship of residue quality
with decomposition processes has been extensively
documented (e.g., Palm et al. 2001), few studies have
linked it successfully with alterations in long-term
soil organic matter accumulation. Samahadthai et al.
(2010) showed that SOC accumulation in a sandy
soil, after 10 years of annual application of residues

@ Springer

varying in quality, was favored by residues which
promoted C stabilization in small macro-aggregates,
e.g., residues that had moderate contents of both N
and resistant carbonaceous compounds (lignin and
polyphenol) like tamarind litter. However, they did
not relate SOM accumulation to decomposition
patterns and microbiological attributes of the soil
treated with the residues.

The decomposition rate is also influenced by
nutrient availability in the soil. Microbes require
nutrients and energy from added residues and sur-
rounding soil (Haynes 1986) to maintain their activ-
ities (Swift et al. 1979). Some studies indicate that
elevated initial nutrient availability and N additions
stimulate the decomposition rate (Berg et al. 1982; Liu
et al. 2006), but their effect is negative in later
decomposition stages. However, other studies found
no response to N addition (Prescott 1995). Liu et al.
(2006) found that low quality litter was more sensitive
to inherent soil nutrient availability as compared to
high quality residues. Long-term application of
organic residues is bound to change soil nutrient status
to different degrees depending on the quality of the
residues and may thus affect decomposition of
recently added residues and accumulation of SOM.

Increases in SOM and nutrient availability are soil
attributes indicating improved soil quality. Addition-
ally, microbe-related parameters, including the ratio of
CO,-C evolution to microbial biomass C, or metabolic
quotient C (¢gCO,) also have been suggested as
indicators of soil quality (Anderson 2003; Anderson
and Domsch 1986). They are considered to be an index
for the efficiency of substrate utilization by soil
microbial communities. Soil microbial biomass is
more sensitive than total SOC and SON to changing
soil conditions, and to newly added substrates or
residues. Powlson et al. (1987) found that soil
microbial biomass responded much more strongly
than SOC and SON to management involving annual
straw incorporation for 18 years. In addition, increases
in soil microbial biomass C were frequently associated
with increased SOC. A high ratio of microbial biomass
C to SOC indicates that more carbon substrate in the
soil was available for microbial biomass production
(Anderson and Domsch 1986).

Up to this point, some information has emerged
about the most promising types of locally available
organic residues, and the range of chemical compo-
sition they represent, which can result in significant
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SOM accumulation in upland sandy soils in tropical
environments. While there have been many short-
term studies on organic residue decomposition, few
studies have assessed the impact of residue quality on
decomposition patterns in longer term conditions in a
field experiment, and the resulting potential effects of
feedback from altered SOM on decomposition pro-
cesses. The objectives of this study were thus to
investigate (1) the link between long-term SOM
accumulation in a sandy soil with decomposition
patterns of organic residues of different quality
applied to the soil, (2) the effect of indigenous
SOM content on decomposition of newly added
organic residues and, (3) the relationship between
microbial efficiencies in residue decomposition and
SOM accumulation in response to long-term contin-
uous residue incorporation in a sandy soil under field
conditions in Northeast Thailand.

Materials and methods
Study site and soil

The study site was selected based primarily on its
representative physical characteristics, i.e., undulat-
ing terrain, coarse-textured soil, and savanna type
climate, of the Northeast of Thailand, and which are
similar to some other regions in the tropics, such as
West Africa. It was located at the research station of
the Office of Agriculture and Co-operatives of the
Northeast at Tha Phra subdistrict of Khon Kaen
province, Thailand (16°20’ N; 102°49" E). The soil
was a Khorat sandy loam (Oxic Paleustults) repre-
senting approximately 21% of soils of Northeast
Thailand. The proportions of sand, silt and clay in the
topsoil (0-15 cm depth) were 90, 5 and 5%, respec-
tively. Initial topsoil chemical characteristics were:
pH (H,0) 5.5, CEC 3.5cmol kg”', total C
2.1 g kg™" and bulk density 1.45 g cm™> (Vityakon
et al. 2000). Weather conditions during the experi-
mental year 2007 are shown in Fig. 1.

Experimental design and treatments

The long-term field experiment was established in
1995 (Vityakon et al. 2000) in a field that had
previously been used for experiments with field
crops, i.e., kenaf, cassava and sugarcane. The goal of

the long-term experiment was to investigate residue
quality factor regulating decomposition and identify
appropriate quality parameters leading to restoration
of SOM of a degraded tropical sandy soil through the
use of locally available organic materials. This paper
is based on data collected during April 2007-May
2008 (year 13). There were six residue treatments
applied in early May 2007 including: no organic
material applied (control), rice straw (Oryza sativa),
groundnut stover (Arachis hypogeae) (aboveground
parts and depodded pulled roots), dipterocarp
(Dipterocarpus tuberculatus) leaf litter and tamarind
(Tamarindus indica) leaf + petiole litter (DW
ratio of leaves to petioles = 7:1) at the rate of
10 Mg ha~' year™" to bare soil plots.

The materials were air dried and the rice straw and
groundnut stover cut up to pieces of 5—10 cm in length,
while dipterocarp leaf litter was cut up to a rectangular
shape of approximate size of 3—5 x 7-10 cm”. Chem-
ical composition of the organic residues used in year
13 is shown in Table 1. Based on their chemical
compositions, the four organic materials can be
categorized into four groups as follows: (1) high N
but low lignin, polyphenols and C/N, e.g., groundnut
stover, (2) medium N, lignin, and polyphenols, e.g.,
tamarind, (3) low N, lignin and polyphenols but high
C/N and cellulose, e.g., rice straw, and (4) low N but
high lignin, polyphenols, and C/N, e.g., dipterocarp.
The organic materials were incorporated to a depth of
20 cmina4 x 4 m? plot once a year in early May. A
randomized complete block design (RCBD) with three
replications was employed. Weeds were controlled
manually by lightly hoeing the soil surface at approx-
imately monthly intervals.

Residue decomposition (litter bag study)

Air-dried and cut-up residue material according to the
treatments was placed into 20 cm x 20 cm polyeth-
ylene litter bags (2 mm mesh), which were subse-
quently buried (15 cm soil depth) into the soil
approximately 1.5 m from the center of each plot to
leave the center 2 x 2 m? area for soil sampling for
analysis. Two litter bags from each treatment were
retrieved at 1, 2, 4, 8, 16, 26, and 52 weeks after
burial. In the laboratory, extraneous matter, such as
adhering and non-adhering soil particles and small
animals (macrofauna), were handpicked and brushed
off the remaining organic residues in the litter bags.
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Table 1 Chemical quality characteristics of organic residues locally available in Northeast Thailand

Residues C(gkeg™ N(gkg™) CN L*(@gkg™ LN Pp®(gkg™) Pp/N (L +Pp)/N Cellulose (g kg™")
Rice straw 367 4.7 784  28.7 6.1 6.5 14 7.5 507

Groundnut stover 388 22.8 17.1  67.6 296 129 0.6 35 178

Dipterocarp 453 5.7 79.5 1755 30.8 64.9 114 422 306

Tamarind 427 13.6 315 877 64 315 23 88 143

* L, Lignin

° Pp, Total extractable polyphenols

The samples from later sampling stages which were
fine particulates were further subject to winnowing by
being manually agitated in a flat tray in order to
separate the lighter organic materials from the
heavier soil particles. The clean remaining litters
were subsequently oven-dried at 70°C for 48 h to
determine the remaining dry mass. Sub samples of
0.5-1.0 g were ashed at 550°C for 8 h to determine
ash content which was used to adjust dry weight to an
ash-free basis to account for soil contamination.

Soil and residue analysis

For soil sampling, ten subsamples were randomly
collected (employing a coordinate point sampling
technique) at 0—15 cm depth from a 2 x 2 m? area in
the center of the plot, and composited. Soil samplings
were performed before incorporation of organic
residues, and at 1, 2, 4, 8, 16, 26, and 52 weeks after
residue addition. Gravimetric soil moisture content
(Fig. 2) was determined at each sampling time. Bulk

@ Springer

density (0-15 cm depth) was determined in undis-
turbed soil samples (employing cores, 5 cm in diam.
and height) before and 52 weeks after residue
incorporation.

Total SOC and SON, representing SOM accumu-
lation, were determined on air-dried soil, sieved
through a 1 mm mesh sieve, by dichromate oxidation
(Allison 1965) and micro Kjeldahl methods, respec-
tively. Accumulated amounts of SOC and SON in
0-15 cm depth were calculated taking into account soil
bulk density. Plant material analyses consisted of total
C by Walkley and Black wet digestion method, total N
by micro Kjeldahl, lignin by acid detergent lignin
method (Van Soest and Wine 1968) and total extract-
able polyphenols according to Tropical Soil Biology
and Fertility Handbook (Anderson and Ingram 1993).

Microbial biomass

Microbial biomass C and N were measured in fresh
soil immediately after sampling by the chloroform
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Fig. 2 Temporal pattern of topsoil (0-15 cm) moisture
content (%) before and after incorporation of different residues.
Vertical bars represent SED

fumigation-extraction technique (Amato and Ladd
1988). Chloroform was washed and distilled before
use, to remove ethanol. For microbial biomass C
(MBC), 20 g of fumigated and unfumigated soil were
extracted with 100 ml of 0.5 M K,SO,. Microbial
biomass C in the extracts was determined after
oxidation with K,Cr,O,. For microbial biomass N,
after 36 h fumigation, 20 g of soil was extracted with
100 ml of 1 M KCI. Additionally, non-fumigated
samples were extracted immediately after sampling.
Microbial biomass N was determined by the ninhy-
drin-reactive N method (Amato and Ladd 1988).
Microbial biomass C and N were calculated as the
difference between fumigated and unfumigated val-
ues and employing kgc and kgy factors of 0.33
(Sparling and West 1988) and 3.1 (Amato and Ladd
1988) to convert extracted organic C and N to
microbial C and N, respectively.

Soil respiration

Field carbon dioxide evolution measurements were
conducted employing the alkaline trap method. A small
glass jar (6 cm diameter and 5.5 cm height) containing
20 ml 1.0 M NaOH was placed in a closed metal
cylinder (16 cm diameter and 29 cm height); two of
which were installed diagonally opposite each other in
2 corners of the area outside the 2 x 2 m? sampling
area approximately one meter from the border (to avoid
border effects) in each field plot. At each sampling
period (1, 2, 4, 8, 16, 16, 26 and 52 weeks after the
residue incorporation) alkaline traps were left in the

closed chambers for 24 h. The evolved CO, trapped
was subsequently determined by back titration with
0.5 M HCl after precipitating the carbonate with excess
0.5 M BaCl,. Soil respiration, i.e., evolved CO,-C, was
computed according to the equation described by
Anderson (1982) as shown below:

CO,-C(mg) = (B— V)NE

where B is the volume (ml) of acid (HCl) used to
titrate the alkali (NaOH) of blank (no soil and
residue), V is the volume (ml) of acid used to titrate
the soil sample, N is the normality of acid (HCl), and
E is equivalent weight of CO,-C. The metabolic
quotient gCO, (Anderson and Domsch 1986) of each
sampling period was calculated as follows:

¢CO, = CO,-C/MBC,

where CO,-C (mg kg™' soil) is soil respiration and
MBC (mg kg~' soil) is microbial biomass C.

Statistical analysis

Analysis of variance pertaining to a randomized
complete block design (RCBD) and related statistical
analysis were performed employing Statistics 8.0
(Analytical Software 2003). Means comparison of
different treatments were done by least significant
difference (LSD), standard error of the means (SEM)
and standard error of the difference (SED). Correla-
tion analysis was conducted to study relationships
between various soil and residue factors in N
transformation processes.

Description of ash free dry weight remaining in the
litter bags is commonly done using the first order
kinetic model (Olsen 1963), Wr = Woe ¥, where W,
is the initial mass, Wt is mass remaining at a given
time (t) and k is the overall rate constant with the
reciprocal unit of t. However, the regression model
that best described decomposition rate from the litter
bags was of the form:

W=C(1-—e™)+C(1—e ™)

where W is the total weight remaining, 7 is the time
period of decomposition. The coefficients C, and C,
give estimates of amounts of active and recalcitrant
carbon fractions in residues, respectively. The coef-
ficient of k; and k, are the decomposition rate
constants for each corresponding carbon fraction.
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Results
Residue decomposition

During the early decomposition stages, especially the
first 4 weeks, groundnut stover showed the fastest
relative dry weight loss (19.9% of the initial weight
remaining) followed by the rice straw (42.3%) and
tamarind (51.7%), while the lowest loss occurred in
dipterocarp residues (73.2%) (Fig. 3). The initial
rapid weight loss in all residues was associated with
initial high C loss through microbial respiration
(CO,-C evolution, Fig. 4) and hence reflecting high
amounts of available carbon that were readily utilized
by decomposers. During later stages of decomposi-
tion, the patterns of weight loss of the different
residues were more similar. At 52 weeks after
incorporation, 37.5, 11.8 and 2.2% of initial dry
weight were recovered in dipterocarp, tamarind and
groundnut, respectively, while no residue material
was recovered in the rice straw treatment. This
suggests that after 52 weeks incubation more than
one third of dipterocarp residues still remained in the
form of soil litter, i.e., not physically or chemically
reacted with the soil matrix. Soil litter, according to
some schools of thought, is not yet considered SOM,
but a part of the soil profile (Theng et al. 1989).

The fast early decomposition stage (first 4 weeks)
may have been influenced by high soil moisture and
rainfall (Figs. 1, 2). The pattern of soil moisture
content (Fig. 2) followed the typical yearly bimodal
pattern of rainfall (Fig. 1) with residue-amended soil
having higher soil moisture contents than the control
52 weeks after residue addition.

The single exponential model (Wt = Woefk’) fitted
the patterns of residue decomposition well only for
rice straw (Fig. 3, dashed lines). However, a double
pool model with four parameters was able to describe
the decomposition pattern of all residues more
accurately (Fig. 3, solid lines) indicating the presence
of different labile and recalcitrant carbon fractions
among residues, which is in conformity with similar
observations by Urquiaga et al. (1998) and Mungai
and Motavalli (2006). The decomposition rate, ky,
was higher than k,. Reduced decomposition rates (k;)
evident in the later decomposition stages were
consistent with the increase in size and activity of
recalcitrant fractions of the residues, such as lignin
and polyphenols. Several studies have reported on the
link of initial lignin and polyphenol contents to
reduced mass loss of organic residues over time
(Muller et al. 1988; Thomas and Asakawa 1993;
Urquiaga et al. 1998). Meanwhile the recalcitrant
pool C, was larger than the labile pool C; in
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dipterocarp, tamarind and rice straw, but not in
groundnut. The rate constant k, was highest for rice
straw and lowest for dipterocarp residues (Fig. 3).
The remaining ash free dry weight of residues was
negatively correlated with initial residue N content,
especially during the first 4 weeks (r = —0.745%* to
—0.899***)_and positively correlated with C/N ratio
and recalcitrant substrates, such as lignin and poly-
phenols. During week 8-52, the weight remaining
was highly positively correlated with C, lignin, and
polyphenol contents (r = 0.905%*-0.989***) as well
as with the ratios between lignin and polyphenol to N.
Decomposition rates k; and k, of the double pool
model were highly negatively correlated with C and
positively correlated with cellulose. Meanwhile only
k>, was significantly correlated with lignin (r =
—0.845*%**) and polyphenols (r = —0.814**) and
the ratio of lignin and polyphenols to N (r = —0.551

to —0.601), however no direct relationship between k,
and residue N content was found (Table 2). In
addition, the labile pool (C;) of the double pool model
was highly positively correlated with N and negatively
correlated with C/N ratio (r = 0.999***)_and ratios of
lignin and polyphenol to N (r = —0.559 to —0.534)
and cellulose (r = —0.784*%). Meanwhile, the recal-
citrant pool (C,) was highly negatively correlated with
N (r = —0.997***) and positively correlated with
C/N ratio (r = 0.976%*%), ratios of lignin and poly-
phenol to N (r = 0.562-0.535) and cellulose
(r = 0.791%%).

Soil organic matter

Amounts of SOC and SON (<1 mm) accumulated
over 13 years were significantly higher in soils
amended with residues than in the control (no addi-
tion) (Table 3). Our experiment, therefore, demon-
strated that longer term application of residues is an
effective measure to promote accumulation of SOC
and SON over the control in this very sandy soil. In
addition, we were able to show that plant quality
affects the build-up of SOC as well as SON. SOC was
highest in the tamarind treatment (8.41 Mg ha™")
followed by groundnut and dipterocarp treatments.
Addition of rice straw led to lowest (5.54 Mg ha "
SOC among the residue treatments. SON content was
highest in the groundnut treatment, followed by
tamarind, dipterocarp and rice straw. The soil C/N
ratio was largest in the control (16.4) and tamarind
(12.7) treatments, and lowest in the groundnut treat-
ment (9.9). SOC and SON after 13 experimental years
were related to the chemical compositions of added
residues. Among the residue treatments, SOC content

Table 2 Pearson correlation coefficients (r) between residue chemical compositions and decomposition rates, soil organic C (SOC),
N (SON) and soil C/N ratio (<1 mm) at 52 weeks after residue incorporation, in a 13-year-old experiment

Parameters C N C/N Lignin (L) Polyphenol (Pp) L/N Pp/N L + Pp/N  Cellulose
Decomposition rate
ky —0.609* —0.147 0378 —0.310 —0.374 —-0.024 -0.083 —0.071 0.698*
ko —0.930%*%* —0.206 0246  —0.845%** —0.814%* —0.551 —0.601* —0.591%* 0.747%*
Soil properties
SOC 0.629* 0468 —0.616%  0.396 0.385 0.013  0.076 0.063 —0.915%%%*
SON 0.080 0.630* —0.606*  0.046 —0.044 —-0.211 —-0.185 —0.190 —0.582*
Soil C/N ratio  0.050 —0.298 0.198 0.224 0.295 0232 0.245 0.242 —0.012

* kxkkk Sionificantly different at P < 0.05, 0.01, 0.001, respectively
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Table 3 Soil organic C (SOC), soil organic N (SON) and soil C/N ratio (<1 mm) after 13 years of yearly residue incorporation

Residue treatment C added N added SOC SON Soil C/N ratio
Mg ha™! yearfl) Mg ha™! yearfl) Mg hafl) Mg hafl)

No addition - - 2.72 0.17 16.39

Rice straw 3.67 0.047 5.54 0.49 11.36

Groundnut stover 3.88 0.228 7.10 0.78 9.91

Dipterocarp 4.53 0.057 7.06 0.59 12.23

Tamarind 4.27 0.136 8.41 0.67 12.69

SED - - 0.08%#%* 0.05%#* 1.60*

C.V. (%) - - 39 25 16

SED Standard error of the differences between means

* kx Rk Sionificantly different at P < 0.05, 0.001, respectively

was highly positively correlated with residue C
(r = 0.629%) but negatively correlated with C/N ratio
(r = —0.616%) (Table 2). SON content was positively
correlated with residue N content (» = 0.630%), but
was negatively correlated with C/N ratio (r =
—0.606%). Cellulose content showed highly signif-
icant negative correlations with both soil organic C
(r = —0.915%**%) and N (r = —0.582%) (Table 2).

SON accumulation was influenced by amounts of
N added as shown by the highest SON in groundnut
followed by tamarind, dipterocarp and rice straw
treatments suggesting a positive link between residue
C and N and the stabilization of organic matter.
Similarly, Sisti et al. (2004) concluded that the
contribution of fixed-N by the leguminous green
manure (vetch) in the cropping system was the
principal factor responsible for the observed C
accumulation in the soil under zero tillage in
Southern Brazil. Accumulation of SOC and SON
led to lower soil C/N ratios in the residue treatments
as compared to the control indicating preferential
increases in SON under N-rich residue treatments
especially legume residues (i.e., groundnut). This
result is similar to that of Wang et al. (2007) who
found relatively low C/N ratios in soils amended with
leguminous cover crops compared to non-leguminous
counterparts.

Soil respiration (CO,-C evolution)
Carbon dioxide-C evolution rate (mg kg™ ' day ")
increased immediately during the first 2 weeks after

residue incorporation (Fig. 4). Initial CO,-C evolu-
tion rate was highest in the groundnut followed by

@ Springer

rice straw and tamarind treatments and lowest in the
dipterocarp treatment. After week 2, the rate of CO,-
C evolution continuously declined until week 26 and
then rose slightly to the end of the experiment
(52 weeks) with the tamarind treatment exhibiting the
lowest respiration rates. CO,-C evolution during the
first 2 weeks was positively correlated with residue N
content (r = 0.746**-0.784**), but significantly
negatively correlated with C, lignin, polyphenol
contents, and C/N, lignin/N, polyphenol/N and
(lignin + polyphenol)/N ratios (r = —0.702*% to
—0.904***) during the first 4 weeks (Table 4).
CO,-C evolution was linearly correlated with residue
dry weight remaining and with soil moisture content
(Fig. 2) at the first week after residue addition
(Table 5). In addition, it had a significant positive
correlation with indigenous SON and a negative
correlation with soil C/N ratio after 52 weeks
(Table 6).

Dynamics of microbiological parameters

Soil microbial biomass C and N responded signif-
icantly (P < 0.01) to residue incorporation (Fig. 5Sa,
b). Microbial biomass increased immediately after
residue incorporation in all residue treatments during
the first 2 weeks. Largest microbial biomass C and N
were measured in groundnut stover treatment followed
by tamarind, rice straw and dipterocarp treatments,
respectively at week 2. Thereafter, the microbial
biomass C decreased in all treatments at least until
week 8 but least so in the tamarind treatment which
maintained the largest microbial biomass C content
until week 26. One year after residue incorporation,
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Table 4 Pearson correlation coefficients (r) relating residue chemical compositions to microbial biomass C, microbial biomass N

and CO,-C evolution

Soil parameters Period C N C/N Lignin Polyphenol L/N Pp/N L + Pp/N  Cellulose
(weeks) (Pp)
Microbial biomass 1 —0.541 0.769%* —0.706%  —0.531 —0.639%  —0.697%  —0.694*  —0.695* —0.318
C (mg Ckg™") 2 —0415 0407  —0466  —0517 —0532  —0.617* 0.609*  —0.611*  —0.185
4 —0.029 0519  —0.733% —0334 —0307  —0.627% —0579  —0.589%  —0.651*
8 —0.039 0325  —0516  —0218 —0.180  —0439  —0.401 —0409  —0.495
16 —0.155  —0.059  —0.169  -0.112 —0013  —0220  —0.188  —0.195  —0.255
26 —0.166 0.115  —0.228 0.019 0.048 0.111  —0.086  —0.091  —0.305
52 0339  —0272 0.305 0.398 0.409 0.449 0.447 0.448 0.082
Microbial biomass 1 —0.401 0.904%+% —0.869%%* —0441 —0.557  —0.702% —0.685% —0.689%  —0.545
N@mgNkg™) 5 —0.521 0.856%% —0.800%%% —054]1  —0.653%  —0.752%% —0.743%% —0.745%% —0.422
4 —0.487 0.858+#+ —(0.875%%% —(.582% —0.669%  —0.828%* —0.803** —0.814** —0.503
8 —0.634% 0525  —0351  —0468 —0.589%* —0469  —0494  —0489  —0.059
16 —0.279 0.544  —0.713%% —0527 —0.516  —0.758%% —0.725% —0.732% —(0.488
26 —0.209 0059  —0324  —0.113 0015  —0295  —0252  —0261  —0.426
52 0.402 0707+  —0.741*  —0.050 0.567  —0.717** —0.699%  —0.703*  —0.435
CO,-C evolution 1 —0.739%%  0.784%%  —0.736%  —0.746%% —0.844%%% () .882%*x —(.885%kx _(.885kkF —(.233
(mg Ckg™) 2 —0777F%%  0746%%  —0.702%  —0.783%% —(.875%kF —(.899%%% _0.904**x —0.903%%% —0.183
4 —0.902%#% 0441 —0.320  —0.786%*% —0.868% —0.720% —0.753%% —0.746*%  0.234
8 —0.446 0541  —0313  —0221 —0372  —0245  —0268  —0264  —0.009
16 —0.344 0.679%*  —0464  —0.171 —0325  —0277  —0287  —0285  —0.204
26 —0.465 0.576* —0419  —0328 —0453  —0392  —0406  —0403  —0.099
52 —0.591* 0275  —0.115  —0418 —0504  —0334  —0366  —0.359 0.243

# ek Rk Sienificantly different at P < 0.05, 0.01, 0.001, respectively

Table 5 Linear regression (R?) between soil microbiological parameters and soil moisture content at the first week after residue

incorporation

Soil microbiological parameters

Soil moisture content (%)

Regression model R Probability (P)
Soil microbial biomass C y = 54.49x — 201.56 0.746 <0.0001
Soil microbial biomass N y = 15.74x — 69.06 0.598 0.0002
CO,-C evolution y = 6.06x — 26.85 0.662 <0.0001
Metabolic quotient (gCO,) y = 0.02x — 0.06 0.695 <0.0001

microbial biomass C and N in the residue treated soils
were significantly larger (P < 0.01) than in the control
treatment soil but not significantly different among
residue treatments. Relative microbial biomass (mg
microbial C g~' C added) was largest in groundnut
and rice straw treatments during the first 2 weeks,
thereafter it was largest in the tamarind treatment until
week 16 (Table 7). During the first week, microbial
biomass C was positively correlated with residue N
content (r = 0.769**) and up to 4 weeks it was

significantly negatively correlated with C/N, lignin/N,
polyphenol/N and (lignin + polyphenol)/N ratios
(r = —0.589* to —0.733**) (Table 4). A similar
(although more significant) pattern was observed in
microbial biomass N; however, in contrast to micro-
bial biomass C, significant relationships with various
residue quality indicators were also found at week 52.

The C/N ratios of the microbial biomass in the
residue treatments before residue incorporation (rang-
ing from 5.0 to 6.6) were lower than in the control
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Table 6 Pearson
correlation coefficients (r)

relating soil organic C
(SOC), soil organic N
(SON) and soil C/N ratio
(<1 mm) before residue
addition to soil parameters
as affected by residue
incorporation

* kx kkk Sionificantly
different at P < 0.05, 0.01,

0.001, respectively

Soil parameters Period (week) SOC SON Soil C/N ratio
Microbial biomass C 1 0.708% 0.6987%:* —0.584*
2 0.7749%%* 0.797%%% —0.747%5%%
4 0.8827%%* 0.766%** —0.573*
8 0.774%%% 0.654%* —0.553*
16 0.7297%%* 0.621%* —0.479*
26 0.873%* 0.789%#* —0.662%*
52 0.8037%:* 0.7 14 —0.596%*
Microbial biomass N 0.776%** 0.875%::% —0.648**
2 0.769%:* 0.8797#:* —0.691**
0.804 % 0.84 1% —0.646%*
0.716%** 0.7847#%% —0.598%*
16 0.809%** 0.851 %% —0.564*
26 0.836%** 0.717%%* —0.283
52 0.8097%* 0.851 %% —0.638**
CO,-C evolution (mg C kg™" 1 0.676% 0.7897%: —0.657*
2 0.675%: 0.7897%x —0.657%*
0.647%#: 0.7527%:%* —0.615%*
8 0.684** 0.786%** —0.624%*
16 0.578* 0.734%# —0.667%**
26 0.7297%* 0.787%%* —0.604%*
52 0.339 0.497* —0.542*
Discussion

(8.5) (Fig. 5c). After residue incorporation, the
microbial biomass C/N ratios decreased in the first
week until week 16, particularly in the groundnut
treatment (3.2) but they were not significantly
(P < 0.05) different than those in the rice straw,
tamarind and dipterocarp treatments at week 16.
After week 16, microbial biomass C/N ratio increased
in all treatments, but remained lowest in the tamarind
(6.2) compared to the other residue treatments.
Microbial biomass C and N were positively corre-
lated with SOC and SON after residue application as
shown in Table 6. Additionally, the ratio of CO,-C
evolution to microbial biomass C, termed metabolic
quotient (¢CO,), was significantly (P < 0.001) higher
in soils with incorporated residues compared to the
control during the first 2 weeks (Table 7). Among the
residue treatments gCO, was highest in the groundnut
treatment followed by rice straw and dipterocarp, and
lowest in the tamarind treatment, at all periods with
the exception of the 1-2 week period (Table 7). After
the first 2 weeks, gCO, decreased particularly in the
tamarind treatment. In addition, microbial biomass C
and N and ¢CO, had linear relationships with soil
moisture content at week 1 (Table 5).

@ Springer

Decomposition as affected by residue cellulose
composition

Our results confirmed that C/N ratio of a residue
alone was not an accurate predictor of its decompo-
sition rate. Although rice straw had a high C/N ratio
(78), it decomposed (weight loss, CO,-C evolution)
more rapidly than dipterocarp (C/N = 80) and tam-
arind (C/N = 32). This likely resulted from the rice
straw’s high available C content in the form of
cellulose (507 g kg™ ') which has significant positive
correlation with the decomposition rate of the labile
pool (k;). Hadas et al. (2004) also reported that
although the C/N ratio of corn was 2.5-3 times larger
than those of rape and tobacco, they all decomposed
at similar rates. In addition, there was no significant
relationship between k; and N content suggesting that
N was not a major limiting factor at this initial stage.
However, on removing the cellulose dominated rice
straw from the correlation analysis, we found a high
and significant positive correlation between k, and N.
This result is explained by the fact that lignin
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Fig. 5 Temporal pattern of soil microbial biomass C (a), soil
microbial biomass N (b), and microbial biomass C to N ratio
(c) as affected by different residue treatments. Vertical bars
represent SED

physically protects most of the more easily decom-
posable compartments, e.g., cellulose and hemicellu-
loses, from enzymatic hydrolysis, while polyphenols
react with N compounds in residues to form more
recalcitrant complexes (Handayanto et al. 1995). The
fact that rice straw does not have high lignin content
to protect its cellulose from decomposition led to its
fast decomposition. Rice straw decomposition, hence
cannot be explained solely by the usual set of quality
parameters commonly used, i.e., N, C/N ratio, lignin,

polyphenols, the ratios of lignin and polyphenols to
N, hence inclusion of cellulose is required to more
fully explain its decomposition pattern.

Soil organic C and N accumulation as affected
by different quality residues

The improvement of SOM by long-term residue
additions confirms similar results of other studies on
sandy soils, including a modeling study of SOC based
on a 3-year ley-cassava rotation field experiment in
Northeast Thailand which predicted gradual overall
SOC accumulation over 20 years resulting from the
SOC accumulation during the pasture phase (Wu et al.
1998), and SOC accumulation under plantations of
fast-growing trees as compared to native savanna in
Senegal and the Congo (Bernhard-Reversat et al.
2005). However, Nardi et al. (2004) found that
incorporation of crop residues for 40 years was not
very effective in altering SOC level. This difference
may be attributed to the more intensive plot manage-
ment (e.g., tillage) used in many agricultural long-term
experiments stimulating microbial decomposition of
SOC (Reeves 1997; Vance 2000). Our observations
that differences in residue quality (cellulose, lignin
content or C/N ratio) may also influence the level of C
accumulation in soils is supported by a similar
observation that different manure qualities influence
C storage in soils (FlieBbach et al. 2007). In addition,
results of a rice—wheat rotation long-term (20-year)
experiment in a loamy sand soil in tropical India have
also shown differential SOC accumulation among
organic residue treatments, i.e., farmyard manure
(FYM) showed higher SOC than sesbania green
manure (GM) and wheat straw treatments (Tirol-Padre
et al. 2007). These authors attributed the high SOC to
higher lignin content of FYM relative to the other
residues. However, residue quality was not found to
influence C accumulation in aggregates and silt/clay
particles in both clayey and loamy sand soils from
Kenya treated for 3 years with organic residues
(Gentile et al. 2008) corresponding to three of the
four classes proposed by Palm et al. (2001). These
authors suggested that soil disturbance, wetting and
drying cycles and effects of crop root residues may
have overridden the residue quality influence. How-
ever, the ranges of some key parameters were much
wider in our study, where (lignin + polyphenols)/N
ratio ranged from 3.5 to 42, than in theirs (3.3-9.4).
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Table 7 Relative microbial biomass and metabolic quotient (¢CO,) during 1-2, 4-16 and 26-52 weeks after residue incorporation

Relative microbial biomass
(mg microbial C mg~' C added

Residue treatment

)

Metabolic quotient (¢CO,)
(mg CO,-C g~ ' microbial biomass C day™")

Weeks after incorporation

Weeks after incorporation

1-2 4-16 26-52 1-2 4-16 26-52
Control NA NA NA 0.047 0.068 0.031
Rice straw 6.47 3.67 4.84 0.087 0.077 0.031
Groundnut stover 7.52 3.51 4.53 0.102 0.097 0.036
Dipterocarp 2.81 2.26 4.31 0.055 0.073 0.023
Tamarind 5.79 5.69 4.70 0.074 0.038 0.019
SED 0.605%%* 0.391%%* 0.575ns 0.005%%** 0.004%** 0.007*

13.12 12.65 15.32 12.71 6.55 18.99

NA Not applicable, SED standard error of the differences between means, ns not significantly different (P > 0.05)
* Rk Rk Significantly different at P < 0.05, 0.01, 0.001, respectively

Additionally, their study was much shorter (3 years)
than ours (13 years).

The most notable effect of residue quality on SOC
accumulation was observed in the case of tamarind
residues which led to the highest SOC after 13 years.
This was due to the low CO,-C respiration loss
(estimated 33% of C added over 52 weeks) in the
tamarind treatment and confirmed by the negative
correlation between increased SOC and cumulative
CO,-C (Fig. 6). The low CO,-C loss was only partly
related to reduced decomposition (i.e., weight loss,
Fig. 3) but strongly related to its high microbial
substrate use efficiency, i.e., low ¢gCO,. Tamarind
treatment showed a significantly more pronounced

700

600

500

400 ¥=T41.66 - 667.51x

R?=0754%%% ,r=-0.860%+
300
200 -

100 4

Cumulative COo-C (g m™ year™)

0

0.0 2 4 6

Increased soil organic C (g kg"soil)
Fig. 6 Relationship between increase of soil organic C
(g kg_l soil, calculated by difference of soil organic C before

and after 52 weeks of residue incorporation) and cumulative
CO,-C (g m~2 year_l)
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reduction in gCO, than other residues at the later
stages of decomposition, indicating a highly efficient
microbial C utilization of recalcitrant substrates.
Thus, it appears that a low gCO, is an important
indicator of the effectiveness of residues to contribute
to SOC build-up in sandy soils, together with the
presence of a moderate amount of recalcitrant
compounds (lignin and polyphenols). In addition,
the high microbial biomass C but low CO,-C
evolution in the tamarind treatment lent further
support to the high efficiency of microbial C utiliza-
tion under this treatment. Tirol-Padre et al. (2007)
found in an incubation experiment of a loamy sand
soil that gCO, was significantly lower under FYM
than sesbania GM treatments. FYM had higher
contents of recalcitrant compound (lignin) and lower
labile organic compounds than the sesbania GM.
Thus, these relationships also found under tamarind
treatment appear highly relevant and point to future
research needs. Caamal-Maldonado et al. (2001)
confirmed that mulch of wild tamarind incorporated
into the soil significantly contributed to SOM build
up. They further suggested that if applied as mulch it
helped to control weed growth, and may reduce other
harmful pests (such as nematodes and probably some
insects). This points to potential effects of some
secondary metabolites, notably polyphenolic com-
pounds, which are toxic to soil communities and
hence deter decomposition (Swift et al. 1979: 148).
Additionally, it appears that tamarind residues can
lead to an improved physical protection of SOC by
promoting the formation of micro- and small macro-
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aggregates (Puttaso et al. unpublished) and hence
favoring accumulation of SOC.

Among the residues, rice straw led to the lowest
SOC content over the 13 years. This was partly due to
the fact that the amount of C added in rice straw was
the lowest, despite equal amounts of dry matter added,
probably due to its high silica content (Yoshida et al.
1959). Furthermore, rice straw had the highest cellu-
lose content, which is a relatively labile C compound
and is readily decomposed (i.e., high respiration
losses) by a wide range of microorganisms (Mungai
and Motavalli 2006). The mass loss data (Fig. 3) of
incorporated rice straw residues further showed a very
fast disappearance from the litter bag, even faster than
that from the low C/N ratio groundnut residues. This
lack of resistance and stabilization of organic C was
associated with very low lignin and polyphenol
contents. Meanwhile, the low SOC accumulation
found in the rice straw treatment corresponded to
low aggregate formation as observed by Samahadthai
et al. (2010), and hence low physical protection, under
this treatment. Additionally, there was probably not
enough N available in this high C/N ratio residue
which would be required to form stable SOM
complexes as suggested by the positive relationship
of applied residue N and SON.

The higher accumulation of SOC under groundnut
relative to rice straw, despite their comparable
amounts of residue added C, as well as the higher
CO,-C loss in the groundnut treatment, suggest that
some other factors may have caused additional C loss
under rice straw. One possible factor is leaching loss of
dissolved organic C (DOC). Rice straw exhibited the
fastest decomposition rates, especially during the first
stages of decomposition (k;) which occurred during
the high soil moisture and high rainfall period. Rapid
decomposition of rice straw during early stages
(3 days) under submerged conditions has been found
to result in significant production of DOC (Katoh et al.
2005).

Although continuous application of tamarind litter
over 13 years has brought about a major increase in
SOM accumulation over the control, it is likely that,
if continued application of appropriate quality resi-
dues were to be discontinued, SOM would decline.
This is due to the break down of macro-aggregates
which constitute a major portion of stabilized C in
this sandy soil (Samahadthai et al. 2010) through
gradual microbial decomposition of organic matter

acting as aggregate cementing agent. Furthermore,
under tillage practices, the break down of macroag-
gregates, with the consequent exposure of occluded
SOM to microbial attack, is enhanced. It is, therefore,
imperative in this coarse-textured soil that measures
must be devised to provide continuous input of organic
residues; e.g., measures that generate organic materi-
als in situ or bring in residues from external sources.
Although, in our study we used organic inputs at a rate
of 10 Mg ha™', the large increase in SOC observed in
the tamarind treatment suggests that by using appro-
priate residue quality, lower amounts would be
sustainable. At present, farmers in the region have
increasingly used organic materials, for example filter
cake from sugarmills, and non-harvestable parts of
crops. Studies in the region have shown that the rate of
10 Mg ha™" as used in this study is achievable, at least
in the short-term, in practical farming system terms.
For example, in a sugarcane-legume rotation system
9.4 and 7-8.5 Mg ha™" of sugarcane non-harvestable
part and of groundnut and soybean stover + fallen
leaves, respectively were reported. In addition, this
system also produced weed biomass of 2.5-4.5
Mg ha™' (Hemwong et al. 2008). In intensive vege-
table production systems, cattle manure is used in the
range of 12.5-18.8 Mg ha™' (Vityakon et al. 1988),
but this level of application is only possible in small
areas. Meanwhile, it has been shown that in a rice-
groundnut rotation system in typical rice paddies with
sandy soils, a combination of rice straw (3.7-5.5
Mg ha™') and of groundnut residues (5 Mg ha™")
(Kaewpradit et al. 2009) can produce a yearly organic
input in the vicinity of 10 Mg ha™"'.

Residues decomposition as governed
by indigenous soil organic N

SON is a source of available nutrients required by
microbial decomposers to maintain their activities in
a nutrient limited environment. Our results confirmed
an influence of SON on microbial related mecha-
nisms in residue decomposition processes through a
good relationship between overall decomposition rate
(k) and indigenous SON (Table 8), and between soil
microbial biomass C, N and CO,-C evolution and
indigenous SON throughout the 52 weeks after
residue incorporation (Table 6). This indicated that
elevated indigenous SON enhanced microbial decom-
position resulting in increasing decomposition of
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Table 8 Linear regression (R%) between initial soil organic N (<1 mm) before residue incorporation and residue decomposition rate

constant (week ')

Residue decomposition rate

Soil organic N

Regression model R? Probability (P)
First order kinetic model
Annual decomposition rate (k) y = 8.344x — 1.85 0.637 0.0099
Double exponential equation
Labile pool (k) y = 0.856x + 0.884 0.005 0.8599
Recalcitrant (k) y = 0.874x — 0.179 0.782 0.0015

newly added residues. Berg and McClaugherty (2003)
and Gosz (1981) also reported that the rates of litter
decomposition were higher in N rich sites than on
N-poor sites. When decomposition was separated into
2 stages, initial (represented by k) and late (k;), only
k, showed a significant positive correlation with SON
(Table 8) suggesting that indigenous soil N was
required and could be utilized as a nutrient and/or
energy source by microbes to decompose recalcitrant
substances during the later stages. During these stages,
N derived from the residues declined and recalcitrant
compounds became dominant. As a result, SON
became an important N source for decomposition.
Various soil microbiological factors associated with
residue decomposition lent support to the positive
relation of k, and SON. Low quality residues, like rice
straw and dipterocarp, which had low N contents led to
N immobilization (Vityakon et al. 2000). High SON,
as found in groundnut and tamarind treatments (0.33
and 0.28 g kg™, respectively) compared to those in
dipterocarp and rice straw treatments (0.21-0.25
g kg™ 1), was associated with a lower C/N ratio of the
former microbial biomass (5.8 and 7.8, in groundnut
and tamarind, respectively compared to 8.7 and 9.0 in
rice straw and dipterocarp, respectively) resulting also
in higher microbial biomass N in the former treat-
ments. On the other hand, it has been proposed that
high soil mineral N suppresses the growth of fungi.
For example, Fog (1988) suggested that added N
(exogenous) retards the overall rate of decomposition
due to inhibition of lignin decomposition, either by
suppressing the synthesis of lignolytic enzymes or by
promoting the formation of additional recalcitrant
compounds. However, it appears that in our case the
positive effects of nutrient and energy provision by
indigenous soil N outweighed any negative effects of
N on part of the community, maybe also in part
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because the amounts of available N were relatively
small (data not presented) due to leaching during the
main decomposition phase during the rainy season.

Conclusions

The factors which determined longer-term SOC
accumulation in this very sandy soil were (1) quantity
of residue-C, but in particular residue quality induced
changes in (2) microbial availability of energy-rich
substrate of residue-C, as well as (3) substrate use
efficiency of microbial communities (gCO,), and (4)
the presence of sufficient amounts of N and
recalcitrant compounds.

Thus, residues with sufficient N content (>1.3%),
low cellulose content and moderate amounts of lignin
and polyphenols, like tamarind residues, were most
effective in accumulating SOC. These attributes were
also associated with a high microbial biomass but the
lowest metabolic quotient (gCO,) during later stages
of decomposition, i.e., high substrate use efficiency.
On the other hand, residues with high cellulose
content, like rice straw, were detrimental to SOC
accumulation, particularly in combination with low
amounts of lignin and polyphenols.

Additionally, use of N rich leguminous residues led
to the highest SON accumulation. C and N mineral-
ization were governed by C compounds such as labile
C and recalcitrant C (lignin and polyphenol contents)
as well as by indigenous soil N regulated residue
decomposition. For high quality residues, indigenous
SON did not have significant influence at the initial
stage of decomposition, while for low quality residues
it had significant influence during both stages.

This study has shown conclusively that accumu-
lation of SOM in sandy soils is possible with the
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continuous application of appropriate quality residues
leading to an enhanced microbial stabilization of C
and N in soil storage locations (aggregates and
resistant POM pools), and efficient microbial nutrient
cycling within the soil system.
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Abstract

We studied the effects of long term (13 years) annual applications of different quality
organic residues on physical and chemical properties of an upland sandy soil as related to
soil organic C (SOC) accumulation. At the end of year 13, SOC accumulation was highest
in tamarind litter (intermediate contents of N, lignin (L) and polyphenol (Pp)) (8.41 Mg
ha) treatment, followed by the dipterocarp leaf litter (low N, high L and Pp), groundnut
stover (high N, low L and Pp), and rice straw (low N, L and Pp but high cellulose), which
were 7.06, 7.10 and 5.54 Mg ha’, respectively. Application of plantresidues significantly
reduced soil bulk density (Db) and increased mean weight diameter (MWD) (0.25-0.30 mm)
over the control (0.21 mm). The infiltration rate under plant residues addition (1.54-2.87 cm
min) was higher than the control treatment (0.97 cm min?). In addition, the effective CEC
(ECEC) was 2-5 times higher under the plant residue treatments than the control (1.58 cmol
kg1). ECEC was highest under intermediate quality residue, like the tamarind but lowest
under the rice straw. The SOC content was negatively correlated with Db (R?= -0.49**) but
was positively correlated with MWD (R?= 0.57**), and ECEC (R?= 0.89***). We concluded
that long-term continuous application of organic residues especially those with
intermediate contents of N, L and Pp, like tamarind, led to increase SOC accumulation,

which, in turn, improve physical and chemical properties of tropical sandy soils.

Keywords: plant residue quality, soil organic carbon, sandy soil and soil property

1. Introduction fertility. This, coupled with land use and
Sandy soils of Northeast Thailand are improper land management and conserva-

highly weathered and have intrinsically low tion, have brought about soil degradation.
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Land use change from forest to agriculture
has been shown to further lower soil
physical fertility as indicated by lower soil
aggregation and chemical fertility as
indicated by lower soil organic matter
(SOM) and nutrients as compared to forest
soil (Tangtrakarnpong and Vityakon, 2002).
In addition, management practices that alter
the living and nutrient conditions of soil
organisms, such as repetitive tillage or
burning of vegetation, result in degradation
of their microenvironment (Bot and Benites,
2005). The declining SOM levels generally
lead to deterioration of soil physical
properties, notably soil aggregation, and
bulk density and chemical, notably cation
exchange capacity (CEC), properties. The
SOM content and its conservation are
deeply negatively affected by conventional
practices (especially tillage), which not only
decrease SOM but also infiltration rates
resulting in increases in the potential for
rainwater runoff and soil erosion. These are
the consequences of destruction of natural
soil aggregates and channels that connect
the surface with the subsoil, leaving the soil
susceptible to erosion. Soil organic C is
commonly recognized as one of the key
parameters of soil quality. Soil quality is
defined as the capacity of a specific kind of
soil to function effectively as a component of
a healthy ecosystem. Soil chemical, phy-
sical, and biological properties have been
proposed and are included as basic indica-
tors of soil quality.

Maintaining residues on the soil is

effective for improving soil quality. Several

KKU Res. J. 2011; 16(4)

studies found that application of organic

amendments, such as animal manure
(Schjonning et al., 2002; Bhattacharyya et al.,
2007), and compost improved soil physical
properties as indicated by reduction in bulk
density, increase in hydraulic conductivity,
and improvement in soil structure and
chemical properties as indicated by increase
in SOC content and CEC. The relative
contribution of clay and SOM to soil CEC is
largely determined by the amount of SOM.
SOM plays an important role in sorbing soil
minerals; in addition, SOM is responsible for
25-90% of the total CEC of surface horizons
of mineral soils (Van Dijk, 1971; Oades et al.,
1989). Increase in CEC of soil resulted from
Thus,

recycling of plant residues is important in

increased organic C concentration.

maintaining SOC leading to maintenance
and improvement of soil physical and
chemical properties. Little information is
available on SOC accumulation and its
relations to soil physical and chemical
properties especially sandy soils of North-
east Thailand as affected by long-term
application of plant residues varying in their
chemical composition. Our hypothesis was
that SOC and soil physical and chemical
properties would be influenced by applica-
tion of different quality plant residues;
furthermore, the soil properties would be
related to SOC content. The objectives of
this study were to assess the effect of
different quality plant residues applied
annually for more than 10 years on physical

and chemical properties of a sandy soil as

related to SOC accumulation.
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2. Materials and methods
2.1 Study site and soil

The study site was a long-term field
experiment on soil organic matter located at
a research station of the Office of Agri-
culture and Co-operatives of the Northeast
at Tha Phra subdistrict of Khon Kaen
province, Thailand (16°20/ N; 102° 49/ E).
The experiment had been conducted for 13
years. Soil was Korat series (Oxic Pale-
ustults). The soil textural class is sand (93.4%
sand, 4.5% silt and 2.1% clay) (Vityakon et
al., 2000).
2.2 Experimental design and treatments

The long-term field experiment was
established in 1995 and the current evalua-
tions were performed at the end of year 13
in late April 2008. A randomized completely
block design (RCBD) with three replications
were employed due to a gentle slope
(approx. 1%). Manual weed control was
employed at approximately monthly inter-
vals. There were five treatments including
(1) rice (Oryza sativa) straw and (2) ground-
nut (Arachis hypogaea) stover which were
non-harvestable parts of the crops, (3) leaf
litter of dipterocarp (Dipterocarpus obtuse-
folius) (4) leaf + petiole litter (7:1 leaf:petiole)
of tamarind (Tamarindus indica) and control
(no plant residue added). All plant residues
were applied at the rate of 10 Mg ha' dry
weight. The materials were air dried and cut
into pieces of 5-10 cm size (rice straw and
groundnut), while dipterocarp leaf litter was
cut to a rectangular shape of approximate
size of 5x10 cm2. Chemical composition

parameters of the plant residues used are
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determined as shown in Table 1. Ground-
nut was considered a high quality residue
with high N and low lignin (L) and
polyphenols (Pp) contents. On the other
hand, dipterocarp was deemed low quality
with its contents of three key chemical
compositions in contrast to the groundnut.
Meanwhile, tamarind had intermediate
quality with its contents of N, L and Pp in a
middle range between the groundnut and
dipterocarp. Rice straw was considered in a
category of its own with low N, L and Pp
contents, but it had highest cellulose con-
tent. The organic residues had been incor-
porated into top soils at 15 cm depth in a 4x4
m? plot once a year in early May since 1995.
Soil samples were randomly collected
employing an auger at 52 weeks after
residue application from the plots (at 0-15
cm depth) and composited.
2.3 Soil parameter measurements

Soil organic carbon (SOC) was deter-
mined on air-dried soil, sieved through a 1
mm mesh sieve, by dichromate oxidation
(Allison, 1965). Exchangeable basic cation
was determined by the ammonium acetate
(IN  NH4OAc). The

including Ca?, Mg?*, K*, and Na*, were

method cations,
determined in the soil extract by atomic
adsorption spectroscopy (AAS). Effective
cation exchange capacity (ECEC) was the
sum of basic cations (Ca?*, Mg?*, K*, and
Na*) and exchangeable acidity (AlI** and H*)
(Thomas, 1982).

Soil infiltration rate was determined

employing a double ring (ASTM, 1998). The

double ring type constituted of an inner and
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an outer ring. The rate of fall of the water
level in the inner ring was measured by a
steel gauge (hook gauge). Soil bulk density
(0-15 cm depth) was determined in un-
disturbed soil samples at 52 weeks after
residue application.

Mean weight diameter (MWD): Twenty
grams of an air dried soil sample that passed
through an 8 mm sieve was gradually
rewetted employing capillary rise. Then it
was placed on the top sieve of a nest of
sieves with opening sizes of 2, 1, 0.5, 0.25,
and 0.106 mm and wet sieved for 30 minutes
in a tumbler shaker (Daiki 2000). The mean
weight diameter (MWD) of water stable
aggregates was determined as the sum of
the percentage of soil on each sieve
multiplied by the mean diameter of the size
classes (mm) ie. MWD =

sample on sieve x mean diameter of the size

Y (percent of

classes) (modified procedure of Tangtra-
karnpong, 2002).
2.4 Organic residues analysis

Plant residue analyses consisted of total
C and total N by dry combustion (CN
analyzer), lignin by acid detergent lignin
method (Van Soest and Wine, 1968) and
polyphenol (ratio of plant to 50% methanol
was 1:50) by the recommended method in
the Tropical Soil Biology and Fertility
Handbook (Anderson and Ingram, 1993).
2.5 Statistical analysis

Analysis of variance was employed
under RCBD, while mean comparisons of
different treatments were done by least
significant difference (LSD). Correlation

analysis was conducted to study relation-
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ships between various factors. The statistical
package used was statistix version 8.0
(Analytical Software, 2003).
3. Results and discussion
3.1 Soil organic carbon

Soil organic carbon (SOC) contents at
the end of 13 years were significantly higher
in soils amended with residues than the
control (no addition) (Table 2).
Samahadthai et al. (2010) found that SOC

increased after annual application of plant

Similarly,

residues for 10 years. Long-term application
of tamarind had highest SOC (8.41 Mg ha)
followed by provision of groundnut, and
dipterocarp. This resulted from both the
different amounts of residue C added and
chemical composition of the residues. SOC
content was positively correlated with
residue C contents (r= 0.629%) but negatively
correlated with C/N ratio (r= -0.616*). The
higher SOC accumulation under the
tamarind than the groundnut despite the
higher C/N ratio of the former than the
latter residue was to do with higher
microbial efficiency in C utilization under
the tamarind. This was indicated by the
tamarind’s lower metabolic quotient values
than groundnut (Puttaso et al., 2010).
Addition of rice straw led to lowest SOC
content (5.54 Mg ha") partly because of its
lowest amount of C added. In addition, rice
straw had highest cellulose content which
was negatively correlated with SOC (r=
-0.92**) (Puttaso et al., 2010). Cellulose is a
relatively labile C compound and is readily
This
resulted in high C loss as CO; (as found by

decomposed by microorganisms.
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Table 1. Chemical compositions of organic residues locally available in Northeast of Thailand.

Residue chemical Groundnut stover Tamarind Rice straw Dipterocarp
compositions (Arachis hypogaen) (Tamarindus indica) ~ (Oryza sativa) (Dipterocarpus
tuberculatus)
C(gkg?) 388 427 367 453
N (g kg?) 228 13.6 4.7 5.7
C/N 17 315 784 79.5
Lignin (g kg1) 67.6 87.7 28.7 175.5
Polyphenol (g kg?) 129 31.5 6.5 64.9
Cellulose (g kg?) 178 143 507 306

Table 2. Soil organic C (SOC), mean weight diameter (MWD), bulk density (0-15 cm) and infiltration
rate at the end of year 13 after different plant residue application.

Residue treatment SOC MWD Bulk density Infiltration rate
(Mg ha') (mm) (g cm3) (cm min-?)
Initial stage Later stage

No addition 2.72d 0.21b 1.61a 0.968¢ 0.011
Rice straw 5.54c¢ 0.25ab 1.57bc 2.866a 0.017
Groundnut stover 7.10b 0.28a 1.55bc 1.542bc 0.009
Dipterocarp 7.06b 0.29a 1.58ab 1.965ab 0.019
Tamarind 8.41a 0.30a 1.56bc 2.359ab 0.112
SED 0.08** 0.02* 0.02* 0.375** 0.027ns

*, **= significantly different at p < 0.05, 0.01, SED = standard error of the differences between means,

ns = not significantly different at p > 0.05

Puttaso et al., 2010) and, possibly, as
dissolved organic C (Katoh et al., 2005).
3.2 Changes in soil physical properties
3.2.1 Mean weight diameter

The mean weight diameter (MWD) is
an indicator of soil structure. The
application of plant residue increased MWD
over the control (no addition) (Table 2). This
was also found in Samahadthai et al. (2010)
that all residues including dipterocarp,
tamarind, groundnut and rice straw brought
about larger MWD than the control. Among
the treatments with residue application, rice
straw showed the lowest MWD, but was not
significantly different (p>0.05) from other
residue treatments. We also found positive
correlation between MWD and L (r= 0.44)

and Pp (r= 0.43) but negative correlation

with cellulose (r= -0.47). This indicates that
residues with high L and Pp may lead to
large MWD; on the other hand those with
high cellulose may lead to small MWD.
Martens (2000) reported that MWD was
positively correlated with phenol and lignin
contents of plant residues. Improvement in
MWD as a consequence of an increase in
SOC concentration was reflected as a
positive the

properties (y= 0.18-0.03x, R?= 0.57**). Chenu

correlation between two
et al. (2000) also found high correlation
between MWD sOC (MWD=
0.051x+0.069, R2=0.665). SOC is an important

and

factor controlling aggregate formation as
SOC contributes to binding of primary
particles to form aggregates (Tisdall and

Oades, 1982; Bhattacharaya et al., 2007). In
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addition, decomposing particulate organic
matter fraction of SOC can act as nucleus or
core upon which mineral components are
adsorbed leading to aggregate formation
(Golchin et al., 1994).
3.2.2 Soil bulk density

Application of different plant residues
significantly decreased bulk density (Db) as
compared to the control at the end of year 13
(Table 2). Samahadthai et al. (2010) in year
10 of the same experiment also found that
Db significantly decreased, especially in
tamarind (1.48 g cm3) treatment relative to
the control treatment. It had significant
positive correlation with C/N ratio (r =
0.71*) and negative correlation with N (r= -
0.69%). This showed that residues with high
C/N ratios have led to increases in Db (as
shown by rice straw and dipterocarp), while
those with high N contents have led to
decreases in Db. The Db had significant
negative correlation with SOC (R?= -0.49*).
The

aggregation under groundnut and tamarind

resulting significantly higher soil
than rice straw led to lower Db in the former
residues than the latter one. Other studies
also showed that application of plant
residues, such as maize straw, wheat straw
and green manure led to increases in SOC
and soil aggregates and decreases in Db
(Blanco-Canqui and Lal, 2007; Zhao et al.,
2009). On the contrary, under dipterocarp
treatment, larger MWD (higher soil aggrega-
tion) did not translate into lower Db relative
to rice straw (Table2). Dipterocarp produced
the

aggregates (>2 mm), but it had significantly

highest quantity of large macro-
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lowest microaggregates (0.053-0.25 mm)
among residue treatments (Puttaso, un-
published). Dipterocarp’s large MWD may
have resulted from the contribution of the
the

resulted from

large macroaggregates. However,
reduced Db may have
contributions of the microaggregates which
constituted more than 60% of soil dry
weight compared with <2.5% contribution
of large macroaggregates (Puttaso, un-
published). Although our results generally
indicated that decrease in Db was closely
associated with MWD as shown by negative
correlation between Db and MWD (R?=
-0.42*%), our results also point out to the fact
that microaggregates played a more im-
portant role at decreasing Db than larger
sized aggregates.
3.2.3 Soil infiltration rate

Infiltration rates (IR) are divided into
two stages, i.e. initial rapid stage and later
slow stage (approaching a steady state)
(Figure 1). The long-term application of
residue for 13 years significantly increased
initial IR over the control treatment (Table
2). The IR was 1.5-3.0 folds higher in soil
with residues addition relative to the control
treatment. The initial IR was highest in rice
straw treatment followed by tamarind,
groundnut and dipterocarp (Table 2). Initial
rates of infiltration were positively cor-
related with SOC (R?= 0.29%) but only
showed highly significant correlation (n=12,
R?= 0.82***) when rice straw was removed.
This showed that SOC in the topsoil

improved soil structure through increase in

MWD and decrease in Db resulting in high
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IR in the soil treated with plant residues in
the long term. Rice straw behaved dif-
ferently than the other residue treatments
because it showed high initial IR despite its
low SOC. This was probably due to its
highest quantity of microaggregates among
all (Puttaso,
published). The presence of a high quantity

residue treatments un-
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of microaggreagtes may have led to better
pore size distribution and continuity under
rice straw with a consequent higher in-
filtration rate. Meanwhile, infiltration rates
at the later stages (steady state) were not
significantly ~different among treatments
(Table 2). At this stage, water percolation

was slow because it had reached deeper soil
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Figure 1. Infiltration rate (cm min) in sandy soil after year 13 as affected by longterm application of

different plant residues.
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layers with finer texture relative to that of
the topsoil which water percolated through
during the initial stage.

3.3 Influence of plant residues application
on effective CEC (ECEC)

The ECEC at the end of year 13 was
significantly (p< 0.001) different in soil
treated with plant residues compared to the
control (1.58 cmol kg?) (Figure 2). The
ECEC was increased by application of plant
residues (Lathwell and Peech, 1964). The
highest ECEC was found in long-term
application of tamarind (8.1 cmol kg7)
followed by groundnut and dipterocarp.
The ECEC was lowest under rice straw
(Figure 2). Chemical composition of residues
played an important role in increasing
ECEC. We found significant non-linear
relations between ECEC
contents of C (R?= 0.886**), N (R?= 0.944***),
L (R*= 0.736**) and Pp (R?= 0.909***) and
C/N ratio (R?= 0.878**) (Figure 3a-e). These
relations show critical values (in g kg1) of C
(417.3), N (14.5), L (112.4) and Pp (38.5) and

and residue

10.0
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C/N ratio of 46 to result in maximum ECEC
range of 7.52-8.89 kgl
Tamarind had the closest contents of C, N, L

in the cmol
and Pp, and C/N ratio to the critical values.
These results showed that residues with
intermediate contents of lignin, polyphenols,
N, and C/N ratio, like tamarind, led to
increased ECEC. Lignin and polyphenols
have been proposed as precursors of humic
substances. Humic substances are a stable
SOM pool, which is bound to clay colloid
and results in increased reactive surface area
for cation adsorption (such as Ca?*, Mg?*,
Nat*, K*, H* and AI**). In addition, we also
found high positive correlation between
ECEC and SOC (R?= 0.89***) (Figure 4). This
confirms that increases in SOC led to
increases in CEC. Our results showed that
1% increase in SOC could increase ECEC by
2.5 cmol kg1, This is lower than an increase
of 7 cmol kg per 1% SOC increase in sandy
soils in Northeast Thailand reported by
(1991).

ECEC may lead to increased soil aggregate

Vityakon Moreover, increase in

x
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Figure 2. Effective CEC (Cmol kg?) in sandy soil as affected by different plant residue application.

Vertical bars represent SE.
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formation, through clay-polyvalent cations-
organic matter bonding.
4. Conclusions

Physical and chemical properties of the
sandy soil were significantly improved
under prolonged (13 years) application of

different residues as compared to treatment

10
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that did not receive the residues. The
residue with intermediate quality as far as
C/N ratio and contents of N, lignin and
polyphenols are concerned, i.e. tamarind,
brought about the greatest improvement in
physical (aggregation, bulk density and to

some extent infiltration rate) and chemical
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(effective CEC) properties of the sandy soil.
Aggregation is highly desirable in sandy
soils which usually do not form stable
aggregate easily due to their low clay
contents. In addition, increase in cation
exchange capacity as indicated by ECEC, is
also highly desirable as it leads to higher
buffering capacity of sandy soils to retain
nutrients and maintain stable soil pH. The
improvement in physical and chemical
properties was in parallel with the highest
accumulation of SOC under the tamarind
treatment. The SOC accumulation is through
C stabilized in soil aggregates, as seen in the
higher soil aggregation as indicated by
larger MWD under the tamarind treatment.
Intermediate  quality organic residues
(tamarind) can bring about accumulation of
SOC which, in turn, leads to improved soil
physical and chemical properties desirable
in sandy soils. In addition, our results
showed that some more refined soil quality
indicators than SOC contents and MWD

may be required to more thoroughly explain
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some changes in soil properties resulting
from residue application. This is with
regards to the use of microaggregate quan-
tities in explaining fast infiltration rates
under rice straw treatment despite its low
SOC and the use of quantities of macro- and
microaggregates in place of the average
nature of MWD to explain the high bulk
density under dipterocarp. Input of appro-
priate quality organic residues into sandy
soils is a highly beneficial management
option to improve and maintain soil
physical and chemical fertility which leads
to sustainability of production in sandy
soils.
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Effects of different quality organic residues applied yearly for the long term on

dissolved organic matter dynamics in a sandy soil

Benjapon Kunlanit' and Patma Vityakonl*

Abstract: The objectives of this study were to investigate the effects of different quality (chemical composition) organic
residues applied yearly for the long term on dissolved organic matter (DOM) dynamics in a sandy soil. This study consisted of
five organic residue treatments: 1) no residue addition, 2) rice straw (low quality) which had low N, lignin, and polyphenols but
high C/N ratio and cellulose, 3) groundnut stover (high quality) with high N but low lignin, polyphenols, and C/N ratio, 4)
dipterocarp leaf litter (low quality) containing low N but high lignin, polyphenols, and C/N ratio, and 5) tamarind (leaf +
petiole) litter (medium quality) with medium N, lignin, and polyphenols. The results showed that soil treated with tamarind
residue yielded higher dissolved organic carbon (DOC) concentration than other treatments, while soil treated with rice straw
had the lowest DOC concentration. For dissolved organic nitrogen (DON) concentration, soil treated with groundnut stover
gave higher DON concentration than the other treatments. However, soil treated with rice straw residue which contained high
cellulose content had the lowest DOC concentration (at 0-15 cm of soil depth). It was speculated that cellulose led to
production of low molecular weight-DOC, which had low affinity for adsorption, and hence, may be leached into subsoil (>15
cm of soil depth). Therefore, future research should focus on identifying DOM forms (i.e., low and high molecular weight-
DOM) and their respective contents, retention and movement in soils under different organic residue applications applied in the
long term.

Key words: dissolved organic matter, chemical composition of organic residues, decomposition

Land Resources and Environment Section, Department of Plant Science and Agricultural Resources, Faculty of Agriculture,
Khon Kaen University, Khon Kaen 40002

*Corresponding author: patma@kku.ac.th
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Introduction

Sandy soils of Northeast Thailand have low
fertility partly due to low soil organic matter (SOM).
To improve soil fertility, an effective solution is
organic residue management. The quality or chemical
composition (i.e., carbohydrates, cellulose, lignin, and
polyphenols) of organic residues is an important
factor affecting decomposition rate and the
accumulation of SOM. Soil organic matter consists of
rapidly-changing  (labile), and slowly-changing
(stable) pools. The labile pool brings about nutrient
release and cycling. Dissolved organic matter is a
crucial part of the labile pool of SOM. It significantly
contributes to the C and N cycles in terrestrial
ecosystems, soil aggregate formation, and pollutant
mobilization by chelation process in soils (Kalbitz et
al., 2000)

Chemical composition of organic residue
determines attributes of DOM. Upon degradation,
recalcitrant compounds (i.e., lignin and polyphenols)
provide higher quantity of high molecular weight
(HMW) (> 10,000 Da) than low molecular weight
(LMW) (< 10,000 Da)-DOM. Meanwhile, the
degrading labile compounds (i.e., cellulose, sugars,
and amino acids) yield higher quantity of LMW-
DOM than HMW-DOM. In general, HMW-DOM has
higher affinity to be adsorbed to soil solid phase than
LMW-DOM. Puttaso et al. (2010) investigated SOC
accumulation resulted from incorporation of different
quality organic residues (e.g., groundnut stover, rice
straw, tamarind, and dipterocarp). The highest soil
organic carbon (SOC) accumulation was found in
groundnut (added C of 3.88 Mg ha” year ), while the
lowest SOC accumulation was found in rice straw

(added C of 3.67 Mg ha” year-l). Meanwhile, CO,-C

UAUAEAT 39 RUUNIAY : 279-284 (2554).

loss was highest in the groundnut treatment (91% of
initial C added) followed by rice straw (71% of initial
C added) (Puttaso, 2010). They hypothesized that
most C from rice straw (high cellulose) may have
been lost by leaching process in the form of low
molecular weight-DOC; in particular, at the initial
stage of the decomposition occurring during high soil
moisture and high rainfall conditions. So far, few
studies have focused on the effects of organic residues
quality on in situ DOM dynamics in tropical sandy
soils. Therefore, the aim of this study was to
investigate the effects of different quality organic
residues applied yearly for the long term on DOM

dynamics in a sandy soil.

Materials and Methods

Soil samples were collected (0-15 cm depth)
from a long term SOM field experiment in Khon
Kaen province, Northeast Thailand. Treatments
consisted of five treatments: 1) no residue addition, 2)
rice straw (low quality) with low N, lignin, and
polyphenols but high C/N ratio and cellulose, 3)
groundnut stover (high quality) with high N but low
lignin, polyphenols, and C/N ratio, 4) dipterocarp leaf
litter (low quality) containing low N but high lignin,
polyphenols, and C/N ratio, and 5) tamarind (leaf +
petiole) litter (medium quality) with medium N,
lignin, and polyphenols. The contents of these
compounds chemical composition of the residues
varied to some extent in residues used from year to
year. Those of year 10 and 13 are shown in Table 1.
The residues were incorporated into the soil at
approximately 15 cm depth at the rate of 10 Mg ha’
1yearrl. Soil samples from each treatment in year 2, 3,

4,5,6,10,and 13 at week 0, 1, 2,4, 8, 16, 26, and 52
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were extracted by K,SO, for DOC and and KCI for
DON. Dissolved organic carbon in the extract was
determined by K,Cr,0, oxidation and DON was
determined by the ninhydrin-reactive N method
(Amato and Ladd, 1988).

Analysis of variance pertaining to a randomized
complete block design (RCBD) and related statistical
analysis were performed employing Statistics 8.0
(Analytical Software, 2003). Means comparisons of
different treatments were done by least significant
difference (LSD) and standard error of the difference

(SED).

Results and Discussion

Dissolved organic carbon

Concentrations of DOC were higher in soils
amended with residues than the control (no residue
addition) (Figurela, b). For year 10, the highest DOC
concentrations were found in tamarind treatment
throughout the decomposition period. DOC
concentrations under all residue treatments peaked at
week 8, at which tamarind had the highest DOC
concentrations followed by groundnut, rice straw, and
dipterocarp (Figure 1a). For year 13 at week 1 and 8,
tamarind and groundnut treatments had higher DOC
concentrations than rice straw and dipterocarp
treatments, respectively. Thereafter, the DOC
concentrations decreased in all treatments until week
16 in both years. After week 16 of both years, DOC
concentrations slightly increased in all treatments.
Among the treatments receiving residues, rice straw
had the lowest DOC concentrations at week 52
(Figure 1b).

At the end of decomposition period (52

weeks) DOC concentrations were higher under

281

tamarind than the other treatments at year 2, 5 and 13
(Figure 2a). The highest DOC concentrations under
tamarind may have been due to the highest SOC
accumulation in stable form (humic substances) which
may have been a major source of high molecular
weight-DOC. High molecular weight-DOC had high
affinity for adsorption on soil colloid; therefore, soil
treated with tamarind residue produced high DOC
concentrations in topsoil. Meanwhile, rice straw
treatment showed trend of lower DOC concentrations
in topsoil than the other treatments receiving residues.
This was likely due to the fact that the degrading rice
straw produced high concentrations of low molecular
weight-DOC with low affinity for adsorption on soil
colloids and therefore, may have been leached into
subsoil of soil profile.
Dissolved organic nitrogen

Concentrations of DON in year 10 were
higher in soils amended with residues than the control
(no  residue addition) (Figure 3a). DON
concentrations under groundnut residue treatment
peaked at week 2. Second peaks of DON
concentrations were found at week 16 under all
residues; however, these peaks were than the first
peak at week 2 under soil treated with groundnut
residue. Thereafter, the DON concentrations
decreased in all treatments until week 52. During the
early phase of decomposition, groundnut had highest
DON among all residue treatments although it was
significant only at week 4. Groundnut also had the
highest DON concentrations among all residue
treatments in year 13 although they were significant in
week 2 and 26 (Figure 3b).

At the end of decomposition period (52
weeks) of year 2 and 13, DON concentrations under

groundnut treatment were higher than the other
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treatments (Figure 2b). The general higher DON
concentrations under groundnut treatment than the
other treatments were likely due to its highest nitrogen
content and highest indigenous SON (Puttaso et al.,

2010) which led to high soil DON concentrations.

Conclusions

Soil treated with tamarind yielded higher
DOC concentrations than the other residue treatments
because tamarind treatment produced high indigenous
SOC, which was a major source of DOC. The DOC
under tamarind is thought to have high molecular
weight. However, the soil treated with high-cellulose
rice straw produced low DOC concentration (at 0-15
cm of soil depth). This was because cellulose
composition of rice straw led to production of low
molecular weight-DOC, which had low affinity to
adsorption, and hence may have been leached out to
subsoil (>15 cm of soil depth) of soil profile. For
DON concentration, soil treated with groundnut
stover produced higher DON concentrations than the
other residue treatments. This was because the
highest nitrogen content in groundnut stover and the
highest indigenous SON among all residue treatments
may have resulted in high concentrations of both low
and high molecular weight DON concentrations.
Therefore, future research should focus on identifying
DOM forms (i.e., low and high molecular weight-
DOM) and their respective contents, retention and
movement in soils under different organic residue

applications applied in the long term.

UAUAEAT 39 RUUNIAY : 279-284 (2554).
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Table 1 Chemical composition of organic residues in year 10 and 13
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Residues C(gkg") N(gkg") C/N ratio “L(gkg") "Pp(gkg’)  Cellulose (gkg')
Years Years Years Years Years Years
10 13 10 13 10 13 10 13 10 13 10 13
Rice straw 390 367 5.6 4.7 69.6 784 19.4 28.7 8.0 6.5 474 507
Groundnut stover 415 388 223 228 18.6 17.1 39.1 67.6 12.5 12.9 372 178
Dipterocarp 450 453 6.2 5.7 72.6 795 2558 1755 944 649 325 306
Tamarind 439 427 10.0 136 439 315 198.0 87.7 50.0 315 356 143
* L, lignin
’ Pp, Total extractable polyphenols
Sources: Samahadthai et al. (2010) and Puttaso et al. (2010)
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Figure 1 Changes in DOC concentrations at different periods after incorporation of organic residues into the soil (a) year 10

and (b) year 13. Vertical bars represent SED. *, ** significantly different at P< 0.05, 0.001, respectively
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Figure 2 Changes in DOC concentrations at week 52 after residue incorporation of year 2, 4, 5, 6, and 13 (a) and changes in
DON concentrations at week 52 after residue incorporation of year 2, 4, 5, 6, and 13 (b) as affected by different

quality organic residues incorporated into the soil. Vertical bars represent SED. * significantly different at P< 0.05
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Figure 3 Changes in DON concentrations at different periods after incorporation of organic residues into the soil (a) year 10

and (b) year 13. Vertical bars represent SED. *, ** significantly different at P < 0.05, 0.001, respectively.
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Abstract

Soil is the largest terrestrial carbon (C) pool in the biosphere. It stores 2-3 times more C than the vegetation. Study of
soil C sequestration should reflect accurately its potential for this purpose which may vary with land uses and soil depths. The
objectives of this study were to quantifying SOC contents under different land uses and at different soil depths in soil profiles.
The study was conducted in a mini-watershed agro ecosystem situated in a typical undulating terrain of Northeast Thailand. The
mini-watershed had different land uses: forest, upland crop cultivation, and paddy fields. Four soil profiles were characterized
under these land uses down to 1 m depth. SOC content of top soils was highest in forest (4.78 g kg'l) followed by paddy field
272¢g kg']) and lowest in an upland cultivated land use (0.70 g kg']). In general, SOC decreased with depth but increased at the
deepest layer. The SOC accumulation in the deepest layer corresponded to changes in soil texture to finer one (sandy clay loam)
in these sandy soils. Assessing soil C sequestration in sandy soils of the undulating terrain should be done in soil profiles beyond
top soils to include sub soils down to at least 1 m.
Key words: soil organic carbon, land uses, soil depths
Introduction

Soil is the largest terrestrial carbon pool in the biosphere. It stores 1500-2000 PgC [1 Pg (petagram) = 10° g = 10°
tonnes] in a top meter which is 2-3 times more than those in the vegetation (Houghton, 2007). Changes of soil system and its
environment lead to alteration of soil organic carbon (SOC) content which is related to atmospheric C concentration. Land use is
a factor influencing SOC content (Tangtrakarnpong and Vityakon, 2002). A mini-watershed is a dominant agroecosystem in
typical undulating topography of Northeast Thailand (KKU-Ford Cropping Systems Project, 1982). It contains different land uses
as determined by the terrain; e.g., forest, cassava, sugarcane, and eucalyptus in the upper lying lands, and rice paddies in the
lower lands. Usually, studies of SOC are conducted in the top soils (0 to 15-30 cm depths). However, research on soil C
sequestration should be performed on greater soil depths than the top soils as the deeper layer soils have potential to sequester
more C. Assessing the potential will bring about more accurate values of soil C sequestration. We hypothesize that different land
uses lead to different SOC contents which, in turn, vary with soil depths.

Therefore, objectives of this study were to i) quantifying SOC contents under different land uses and ii) at different soil

depths in soil profiles.

Materials and Methods

Study site
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The study site is located in a mini-watershed agroecosystem of Khum Muang village, Khao Suan Kwang district, Khon
Kaen province (16°48'-16°49' N and 102°52'-102°53' E). The slope in north-south direction is on the average 2.8%. The altitude
ranges from 190-208 m above sea level (Tangtrakarnpong and Vityakon, 2002). Land uses consisted of forest in uppermost areas
and cultivated lands in middle and lower upper areas for rubber (Hevea brasiliensis) and paddy rice (Oryza sativa) in lower lying
areas. The forest stand is dry dipterocarp type dominated by Dipterocarp trees, e.g., Pluang (Dipterocarpus tuberculatus), Teng
(Shorea obtusa), Ma-kok luam (Canarium kerrii), and some grasses such as Yaa Peg (Arundinaria pusillia).

Soil profile description and soil sampling

Geographic Positioning System (GPS) was used to determine positions of soil profiles to be characterized. The mini-
watershed was divided along its slope into 3 sections, upper slope (forest), middle upper slope (rubber), and lower slope (paddy).
Four soil profiles; i.e., forest, upland I, upland II, and paddy field, were characterized. Soil color was determined by using
Munsel’s color chart, while soil texture by feel method (Brady, 1990). Percent root was estimated by visual method. Soils were
sampled for laboratory analyses including pH and SOC.

Laboratory analysis

Air dry soil samples were sieved through a 1-mm mesh sieve for SOC and a 2-mm mesh sieve for pH analysis. SOC
was analyzed by wet digestion employing Walkley and Black method, while pH was analyzed by a pH meter (soil:H,0 = 1:2.5)
(Anderson and Ingram, 1993).

Results

Forest soil texture was finer than those of upland I, upland II, and paddy field soils (Table 1). In each position, top soils
were coarser textured than sub soils. At greater depths beyond the range of 60-95 cm; however, the soil became more clayey
(sandy clay loam).

Soil organic carbon content of top soils were highest in forest soils (4.78 g kg ) and lowest in upland T (0.70 g kg")
while upland II and paddy field soils were intermediate at 1.07 and 2.72 g kg'l, respectively. Forest soil, SOC content was highest
in 0-15 cm depth (4.78 g kg-l). It decreased at 15-40, 40-60 cm to 0.75, and 0.46 g kgil, respectively and show some
accumulation at 60-100 cm (1.24 g kg'l) (Figure 1). SOC content of Upland I soil decreased with depth to 85 cm beyond which it
shows some accumulation (0.32 g kgrl). SOC contents of Upland II soil also decreased with depth, i.e. 1.07, and 0.15 g kgrl, at
0.30 and 30-95 cm, respectively. Beyond 95 cm depth, it showed some slight increase (0.24 g kg'l). Paddy field soil also showed
similar trend of SOC precipitous decreases with depth down to 85 cm beyond which it slightly increased (Table 1).

Discussion

Forest has higher SOC content than the other land uses because it had higher input of organic materials and it was less
disturbed than cultivated land. Lowland paddy rice had higher SOC content than upland I and II because it received eroded
organic materials from higher slope (Tangtrakarnpong and Vityakon, 2002).

In a soil profile, SOC contents tended to decrease with depth. Top soils have highest SOC contents because they
received direct input of organic materials; for instance, plant residues and dead roots and their exudates. However, SOC content
increased at greater depth due to the finer soil texture (Parton et al., 1987). At the lowest soil layers, the soils became more clayey
than upper horizons, i.e. the texture turned sandy clay loam in the deepest horizons compared with sandy loam and loamy sand in

the upper horizons (Table 1).
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Charcoal carbon is a recalcitrant form included in the SOC reported. It is sequestered in a soil for a long period of time.
Glaser et al. (2001) stated that charcoal carbon can be sequestered in a humid tropical soil for more than a millennium. In this
mini-watershed, forest wild fire and conscious burning of cultivated land take place every year. Consequently, charcoal is
produced and stored in these soils. It is a stable form of organic carbon which store C and contributes to reducing atmospheric C
and, hence, global warming.
Conclusions and Suggestion
Forest soil had higher SOC content than cultivated soil. Among the cultivated soils, lowland paddy field had higher
SOC than those of upper slopes. Top soils had higher SOC contents than sub soils; however, SOC accumulated in the lowest soil
depths due to changes to finer soil texture in these deep horizons. For the purpose of assessing soil C sequestration in sandy soils
of the undulating terrain of the Northeast, this study showed that SOC should be determined in soil profiles beyond top soils to
include sub soils down to at least 1 m.
Future work is to isolate charcoal in these soils for charcoal C quantification in these soils under different land uses and
soil depths.
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Table 1. Characteristics of soil profiles of a mini-watershed agroecosystem in Khao Suan Kwang district, Khon Kaen province

Depth Color Texture %Root pH SoC
(cm) (gke)
Forest

0-15 7.5 YR 4/3-5/4 Sandy loam 60-70 6.7 4.78

15-40 7.5 YR 5/3-5/4 Sandy loam 20 6.6 0.75

40-60 7.5 YR 5/3-5/4 Sandy loam 20 6.4 0.46

60-100 7.5 YR 6/6-6/8 Sandy clay loam 15 6.4 1.24
Upland I

0-20 7.5 YR 5/3-5/4 Loamy sand <10 5.8 0.70

20-70 7.5YR7/3 Loamy sand 0 6.4 0.10

70-85 7.5 YR 5/6, 6/6, 6/8 Sandy loam 0 59 0.05

85-100 7.5 YR 6/3 Sandy clay loam 0 5.5 0.32
Upland II

0-30 7.5 YR 4/3-5/4 Loamy sand <5 5.6 1.07

30-95 7.5YR5/3 Sandy loam 0 5.7 0.15

95+ 7.5YR6/4,7/3 Sandy clay loam 0 5.8 0.24
Lowland

0-20 10 YR 5/3-5/4 Sandy loam 0 4.7 2.72

7.5 YR 5.8 (mottle)
20-45 10.5 YR 5/2-3 Sandy loam 0 5.1 1.48
10.5 YR 5/8 (mottle)
45-85 7.5 YR 7/3-4 Sandy loam 0 59 0.15
85-100 7.5YR5/6,7/2 Sandy clay loam 0 5.9 0.39

7.5 YR 5/8 (mottle)
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Figure 1 Mean SOC content of forest (a); upland I (b); upland II (c); and lowland (d) in different soil depths at Khum Muang

village, Khao Suan Kwang district, Khon Kaen province
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Abstract: Long term addition of residue has been found to favor soil organic matter (SOM) accumulation in
degraded sandy soils in the tropics. Little information is SOM and its related to some soil properties as affected by
long-term application of different quality residue. The objective of this study was to investigate residue
decomposition, organic carbon, and properties of sandy soil as affected by residue quality (chemical composition).
Mass loss was fastest in groundnut stover (high N), followed by rice straw (high cellulose), tamarind and slowest in
dipterocarp (high lignin and polyphenolss) following a double exponential pattern. The weight remaining of residues
was negatively correlated with residue N. Soil organic carbon was highest in tamarind litter (8.41 Mg ha'l)
treatment, while the lowest was found in rice straw (5.54 Mg ha) treatment. Application of residues increased mean
weight diameter (MWD). In addition, the effective cation exchange capacity (ECEC) was 2-5 times higher under
the residue treatments than the control. The ECEC was highest under the tamarind (intermediate quality) but lowest
under the rice straw. The soil organic carbon was positively correlated with MWD, infiltration rate and ECEC.
This study suggests that long-term application of residue quality especially those with intermediate contents of N,
lignin and polyphenols led to increase soil organic carbon accumulation and improve physical and chemical
properties of tropical sandy soils.
Key words: residue decomposition, soil organic matter, residue quality, soil property, sandy soil
Introduction

Sandy soils of Northeast Thailand are highly weathered and intrinsically low fertility. This coupled with
land use and improper land management and conservation have brought about soil degradation (Tangtrakarnpong
and Vityakon, 2002). The declining soil organic matter (SOM) levels generally lead to deterioration of soil physical
(such as soil aggregate) and chemical (cation exchange capacity, CEC) properties. Soil organic carbon (SOC) is
commonly recognized as one of the key parameters of soil quality. Maintaining residues on the soil is effective for
improving soil quality. The maintenance and improvement of soil quality in continuous cropping system is critical
to sustaining agricultural productivity and environmental quality for future generation (Reeves, 1997). Little

information is residue decomposition, SOC accumulation and soil properties both physical and chemical properties
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especially sandy soils of Northeast Thailand as affected by long-term application of different quality residue
(chemical composition). The objectives of this study were to investigate: 1) residue decomposition as affected by
their chemical composition, and 2) influence of residue quality on SOC accumulation and properties of sandy soil.
Materials and Methods

The study site was a long-term field experiment on soil organic matter (established in 1995) located at a
research station of the Office of Agriculture and Co-operatives of the Northeast at Tha Phra subdistrict of Khon
Kaen province, Thailand (16020/ N; 102° 49 E). The current evaluations were performed during April 2007-May
2008. Soil was Khorat series (Oxic Paleustults). A randomized complete block design (RCBD) with three
replications was employed. Manual weed control was employed at approximately monthly intervals. There were
five treatments including: no organic residue applied (control), rice straw and groundnut stover which were non-
harvestable parts of the crops, leaf litter of dipterocarp and leaf + petiole litter of tamarind at the rate of 10 Mg ha'.
These residues were incorporated into top soils at 15 cm depth in a 4x4 m’ plot once a year in early May. Soil
samples were randomly collected employing an auger at 52 weeks after residue application from the plots (at 0-15
cm depth) and composited. Litter bag technique was used for residue decomposition study. Soil organic carbon
was determined on air-dried soil by dichromate oxidation (Allison, 1965). Mean weight diameter were determined.
Effective cation exchange capacity was the sum of basic cations and exchangeable acidity (Al3+ and H') (Thomas,
1982). Residue material analyses consisted of total C by Walkley and Black wet digestion method, total N by micro
Kjeldahl, lignin by acid detergent lignin method (Van Soest and Wine, 1968) and polypheonol according to Tropical
Soil Biology and Fertility Handbook (Anderson and Ingram, 1993). Analysis of variance was employed under
RCBD, while means comparison of different treatments were done by least significant difference (LSD).
Correlation analysis was conducted to study relationships among various factors. The statistical package used was
statistix version 8.0 (Analytical Software, 2003). The regression model that best described decomposition rate from
the litter bags was of the form: W = C, (1 -e’kr) +C, (1 -e’kr), where W is the total weight remaining, t is the time
period of decomposition. The coefficients C, and C, give estimates of amounts of active and recalcitrant carbon
fractions in residues, respectively. The coefficient of k, and k, are the decomposition rate constants for each
corresponding carbon fraction.
Results and discussion
Residue quality (chemical composition)

Groundnut was considered a high quality residue with high N and low lignin and polyphenols contents (Table 1).
Dipterocarp was deemed low quality with its contents of three key chemical compositions in contrast to the
groundnut. Meanwhile, tamarind had intermediate quality with its contents of N, Ln and Pp in a middle range
between the groundnut and dipterocarp. Rice straw was considered in a category of its own; it had low N, Ln and
Pp contents. Rice straw had highest cellulose (51%) content (Table 1).

Table 1. Chemical compositions of organic residues locally available in Northeast of Thailand
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Groundnut stover Tamarind Rice (Oryza Dipterocarp
Chemical compositions (Arachis hypogeae) (Tamarindus indica) sativa) straw (Dipterocarpus
obtusifolius)
C (%) 38.8 42.7 36.7 453
N (%) 2.28 1.36 0.47 0.57
C/N 17 31.5 78.4 79.5
Lignin (L, %) 6.76 8.77 2.87 17.55
Polyphenols (Pp, %) 1.29 3.15 0.65 6.49
Cellulose (%) 17.8 14.3 50.7 30.6

Residue decomposition

During the early decomposition (k) stages, especially the first 4 weeks, groundnut showed the fastest relative
dry weight loss (Figure 1). The remaining weight of residues was negatively correlated with initial residue N (r= -
0.75*%-0.90**). A double pool model with four parameters was able to describe the decomposition pattern of all
residues (Figure 1) indicating the presence of different labile and recalcitrant carbon fractions among residues.
Many studies have reported on the link of initial lignin and polyphenols contents to reduced mass loss of organic
residues over time (Muller et al. 1988; Urquiaga et al., 1998). Our results confirmed that C/N ratio of a residue
alone was not an accurate predictor of its decomposition rate. Although rice straw had high C/N ratio (78), it
decomposed more rapidly than dipterocarp and tamarind. During later stages of decomposition (%), all residues
showed the lower relative dry weight loss as compared to initial stages. Reduced decomposition rate (k,) values
were evident in the later decomposition stages governed by recalcitrant fractions of the residues, such as Ln and Pp

which became concentrated.
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Figure 1. Temporal pattern of ash free dry weight remaining (% of origin) in litterbags after different
residues incorporation.
Soil organic carbon accumulation
Soil organic carbon (SOC) contents were significantly higher in soils amended with residues than those in the
control. Long-term application of tamarind leaf litter had highest SOC (8.4 Mg harl) followed by groundnut (7.10
Mg harl), and dipterocarp (7.06 Mg harl), and rice straw (5.54 Mg hail), respectively. This was resulted from both
the different amounts of residue C added and chemical composition of residues. SOC content was positively
correlated with residue C (= 0.63*) but negatively correlated with C/N ratio (= -0.62*). In addition, SOC content
was related to cellulose as labile C compound (Mungai and Motavalli 2006), resulting in high C loss as CO, (as
found by Puttaso et al., in press).
Changes in some soil properties as affected by long-term application of residue quality
1. Mean weight diameter: The application of plant residue increased MWD over the control (Table 2).
Among the treatments with residue application, rice straw showed the lowest MWD. We also found positive
correlation between MWD and Ln (= 0.44) and Pp (= 0.43), indicating the residues with high Ln and Pp may lead
to large MWD. This is similar to Martens (2000) who reported that MWD was positively correlated with Pp and Ln
contents of plant residues. Improvement in MWD as a consequence of an increase in SOC concentration (RZ:
0.57*%*), indicating that SOC is an important factor controlling aggregate formation.
Table 2. Effective cation exchange capacity (ECEC), mean weight diameter (MWD, mm), bulk density and

infiltration rate at the end of year 13 after different of plant residue application.
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Residue treatment MWD ECEC
(mm) (Cmol kg-l)
No addition 0.21b* 1.6d**
Rice (Oryza sativa) straw 0.25ab 3.6¢c
Groundnut stover (Arachis hypogeae) 0.28a 5.3b
Dipterocarp (Dipterocarpus obtusifolius) 0.29a 5.1b
Tamarind (Tamarindus indica) 0.30a 8.1a

* **=significantly different at p < 0.05, 0.01.

2. Effective cation exchange capacity (ECEC): ECEC was significantly different in soil treated with
plant residues compared to that of the control (1.58 Cmol kg-l) (p<0.001) (Table 2). The ECEC was increased by
residues added (Lathwell and Peech, 1964; Puttaso, 2003), as a result of increases in SOM. The highest ECEC was
found in tamarind treatment. Chemical composition of residues played an important role in increasing ECEC as
shown by relations between ECEC and residue C (RZ: 0.89**), N (RZ: 0.94%%) Ln (RZ: 0.74**) and Pp (R'7:
0.91**) and C/N (RZZ 0.88**). Lignin and polyphenols have been proposed as precursors of humic substance,
which is bound to clay colloid and results in increased reactive surface area. In addition, we also found high
positive correlation between ECEC and SOC (RZ: 0.89***) (Figure 2). Our result confirms that increases in SOC

led to increases in ECEC; 1% increase in SOC could increase ECEC by 2.5 Cmol kgfl.

10

°
8 %
y=249x-172
R% =0.89%#=

ECEC (Cmol kg™ soil)

Soil organic carbon (g kg "soil)

Figure 2. Relationship between soil organic carbon and effective cation exchange capacity .
Conclusion

The patterns of residue decomposition were governed by their quality (chemical composition) , especially
initial residue N, lignin, polyphenols and cellulose contents . The residues with sufficient N content (> 1.3%), low
cellulose content and moderate amounts of lignin and polyphenolss, like tamarind residues, were most effective in
accumulating SOC. The residue with intermediate quality as far as C/N ratio and contents of N, lignin and
polyphenolss are concerned, i.e. tamarind, brought about the greatest improvement in physical (aggregation as

shown by mean weight diameter) and chemical (effective cation exchange capacity) properties of the sandy soil.
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Increase in effective cation exchange capacity is also highly desirable as it leads to higher buffering capacity of

sandy soils to retain nutrients and maintain stable soil pH. In addition, intermediate quality organic residues can

bring about accumulation of SOC which, in turn, leads to improved soil physical and chemical properties desirable
in sandy soils.
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Abstract
The objectives of this study were to assess activities of some decomposition enzymes in a sandy soil continuously
treated with different quality organic residues for 14 years which led to different degrees of soil organic matter accumulation.
Highest activity of invertase was found in groundnut (high quality with high N, and low lignin and polyphenol contents) and
tamarind (intermediate quality) treatments (0.40-0.41 mg GE g'1 h'). Highest activity of B-glucosidase (59.5 g p-nitrophenol g'l
soil DW h") was also found in tamarind treatment. Highest activity of phenoloxidase was found in dipterocarp (low N, but high
lignin and polyphenol contents) followed by mixture of rice straw + groundnut and tamarind in the range of 3.1-3.4 Llmol
substrate converted h' g>l soil DW. On the other hand, rice straw had the lowest activities of all enzymes among residue
treatments. The results of this study serve to show the link between enzyme activities and SOM accumulation (highest SOM
under tamarind and lowest under rice straw treatments) and bring about in-depth understanding of soil microbial functions in
decomposition of different quality organic residues through enzyme activities.
Keywords: long-term study, residue quality, soil microorganisms, soil enzymes, residue decomposition
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Figure 1. Activities of enzymes (a) invertase and B-glucosidase (b) in the soil that received different quality organic residues

for 14 years continuously.
Treatment having the same letters are not significantly different at P<0.05 by LSD

Bars indicate standard errors of means (SEM)
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Figure 2. Activities of phenoloxidase (dark color) and peroxidase (light color) in the soil that received different quality organic

residues for 14 years continuously.

Treatment having the same letters are not significantly different at P<0.05 by LSD Bars indicate standard errors of means (SEM)
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Wet sieving machine:

Mechanically move the sieves vertically up and down

at 3 cm. height and 30 times per minutes

Gradually wet the soil Place on the top of 5
employing capillary rise sieves

Add water to the tanks until
the top sieve

Water level

P & [ aa . .
ATNAANKBINN 2 ?l%@la%ﬂ']illﬂﬂ?.l%']ﬂluﬂﬂutﬂEl']ﬁ Wet sieving

a ¢ g < A
(NMIFIAATIEHNITNILINYAIVDILAN AR )
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Extraction of humic substances

sieve soil sample to pass a 200
mesh (0.074mm) sieve

Add 0.1 M NaOH to give a final
extractant to soil ratio of 10:1

Centrifuge

| Acidification |

2202220222

PH meter

®0cccccssTNTIsssTTSTSTTS
acidity with 2 M HCI to pH = 2.0

Precipitated (humic acid) Supernatant (fulvic acid)

AMWANANWIANT 3 b

|| Carbon analysis ||

Total Organic Carbon ;TOC
(FA-C + HA-C)

-

Humic acid-C ;HA-C Fulvic acid-C; FA-C
(Walkley and Black) (TOC - HA-C)

=
AMNAANBINN 3 ¢

ANANARUINT 3 N13NATRUSHMaI3TNN uaza1suanlwa1sdadin
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Infiltration measurement

Double ring type

Inner ring and outer ring, Hook gauge
: water level was recorded at 0.5, 1, 2, 5, 10, 15, 30, 60, 90

an

The drop in water i
i measured in the

inner ring

d 120 minutes

o 2Wem __,

T T

Infiltrometer principle

Water in outer ring
acts as a guard,
preventing lateral
water moverment

Central bulb

] v
MNAANKINGT 4 ﬂﬁiﬁﬂﬁ'\@]‘mﬁuﬂaﬂ'\\‘lﬂﬁﬂﬂﬁw ( ﬂ'l‘i'Jﬂﬂ@li']ﬂ']iLL‘Yliﬂ%N%’]‘I%

Awlaa3s Double ring) Tuulainaassnisdnrarsdunidans
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