## สัญญาเลขที่ DBG5180015

## โครงการ "การศึกษาฤทธิ์ต้านมะเร็งของสารผลิตภัณฑ์ธรรมชาติและสารสังเคราะห์ ที่เป็นอนุพันธ์ของสติลบีน" รายงานวิจัยฉบับสมบูรณ์

ช่วงระยะเวลาดำเหินการ: 30 มิถุนายน 2551 ถึง 29 มิถุนายน 2553

หัวหน้าโครงการวิจัยผู้รับทุน: ดร. มนทกานติ์ จิตต์แจ้ง

นักวิจัยที่ปรึกษาโครงการ: ศาสตราจารย์ ดร. สมศักดิ์ รุจิรวัฒน์

หน่วยงาน: สถาบันบัณฑิตศึกษาจุฬาภรณ์ และ สถาบันวิจัยจุฬาภรณ์

### บทคัดย่อ

เนื่องจากสารผลิตภัณฑ์ธรรมชาติจากทะเลในกลุ่มลาเมลลาริน เป็นสารอนุพันธ์ของสติลบีนที่มี ฤทธิ์ทางชีวภาพที่หลากหลาย ผู้วิจัยจึงได้เลือกศึกษาสารในกลุ่มนี้โดยเริ่มจากการทดสอบความเป็นพิษ ต่อเซลล์มะเร็ง 11 ชนิด ซึ่งสารลาเมลลารินหลายชนิดแสดงความเป็นพิษสูงต่อเซลล์มะเร็งที่ใช้ในการ ทดสอบโดยมีค่า IC<sub>50</sub> ระดับนาโนโมลาร์ และเมื่อนำผลที่ได้ไปศึกษาความสัมพันธ์ระหว่างสูตรโครงสร้าง กับความเป็นพิษต่อเซลล์มะเร็ง (structure-activity relationship หรือ SAR) อย่างเป็นระบบก็พบว่า มี 4 ตำแหน่งที่มีความสำคัญอย่างยิ่งต่อการออกฤทธิ์ฆ่าเซลล์มะเร็งของสารในกลุ่มนี้ นอกจากนี้ผู้วิจัย ยังได้ประเมินความเหมาะสมในการพัฒนาเป็นยา (drug-likeness) ของสารในกลุ่มลาเมลลาริน โดย พิจารณาจากคุณสมบัติทางเคมีกายภาพต่างๆ เมื่อเทียบกับยาและสารที่อยู่ในระหว่างการพัฒนาเป็นยา อีกด้วย ซึ่งพบว่าสารในกลุ่มนี้มีคุณสมบัติอยู่ในเกณฑ์ที่ยังสามารถปรับปรุงได้โดยการปรับเปลี่ยนสูตร โครงสร้าง เพื่อให้ได้สารที่มีประสิทธิภาพ มีความปลอดภัย และมีคุณสมบัติเหมาะสมที่จะพัฒนาเป็นยา รักษาโรคมะเร็งต่อไปในอนาคต

#### **Project Number DBG5180015**

# "Investigation of Anticancer Activity of Natural and Synthetic Compounds Containing Stilbene Motif"

#### **Final Report**

**Project Period:** 30 June 2008 – 29 June 2010

Principal Investigator: Dr. Montakarn Chittchang

Mentor: Professor Dr. Somsak Ruchirawat

Affiliations: Chulabhorn Graduate Institute and Chulabhorn Research Institute

#### **Abstract**

Lamellarins were selected as representatives of stilbene-containing natural products. These compounds have been shown to exhibit promising biological activities. In this study, twenty-two naturally occurring and three unnatural lamellarins synthesized in our laboratory were evaluated for their cytotoxic activity against eleven cancer cell lines derived from six different cancer types. The  $IC_{50}$  values of these compounds ranged from sub-nanomolar (0.08 nm) to micromolar (>97.0 μm). Structure-activity relationship (SAR) studies were then performed using matched molecular pairs analysis, by comparing the IC<sub>50</sub> values of several pairs of lamellarin structures that differ in selected substitution patterns. Our results not only reveal the importance of specific hydroxylation or methoxylation patterns around the lamellarin core for the first time, but also confirm prior findings and clarify some previous uncertainties. Additionally, drug-likeness of these compounds was also assessed using a range of physicochemical parameters in comparison with oral marketed drugs, drug molecules in development, as well as natural product derivatives in development and on the market. The results indicated that even though lamellarins are not particularly drug-like in the conventional sense, they still remain a good starting point for structural optimization to obtain lamellarin analogs that are more suitable for further development.