ABSTRACT

The purpose of this study is to identify and characterize the hemocytic patterns of two crustacean species including the freshwater prawn, Macrobrachium rosenbergii and the marine mud crab, Scylla olivacea in respond to viral infection. The anticoagulants for hemocyte collection of each species were optimized and used to study the types or sub-populations of hemocytes. Hemocytes were identified and characterized by using light, transmission electron microscope and Flow cytrometry. Prawn hemocyte was classified into three types; Hylaine hemocyte (HH) or cell (HC), small granular hemocytes (SGH or SGC) and large granular hemocyte (LGH or LGC), whereas four types were classified in crabs including HH, SGH, LGH and intermediate granular hemocyte (IGH or IGC). The normal range of total hemocyte number, and the number of each hemocyte types in circulation have been established. By using artificial MrNV/XSV infection and observed by immunofluorescent confocal microscopy, it was found that MrNV antigens were found mainly in the cytoplasm of the granule-containing hemocyte types (SGH and LGH), whereas XSV antigens were found mainly in the nucleus and cytoplasm of the hyaline cells. Similar results were observed in hemocytes collected from natural MrNV/XSV infection of prawn. In crabs, WSSV antigen was found in the nucleus of at least three types of hemocytes; HH or HC (Hylaine cells), SGH or SGC (Small granular cells) and LGH or LGC (Large granular cells). The order of highest to lowest signal intensity was in LGC >SGC >HC.

Further experiment were to compare the number of total hemocyte and each types in MrNV/XSV-infected and non-infected prawn could not be performed since the high number of prawns were persistently infected with MrNV/XSV (98%, 130/133) and very low number of viral-free prawns (2%, 3/133) were found. We also found the persistently WSSV-infected crabs (47-65%) purchased from the local markets in Thailand, but with a lesser degree to those of persistently MrNV/XSV-infected prawn (98%). The hemocytic response was studied in WSSV-negative crabs challenged with WSSV (acute infections) and in persistent infections. The numbers of total hemocytes and of each hemocyte type were not significantly different among natural crabs that were uninfected or persistently infected with WSSV (P>0.05). In contrast, the number of total hemocytes was reduced significantly in acutely-infected

crabs injected with WSSV, when compared to non-infected crabs (P<0.001) and persistently-infected crabs (P<0.05). HC and IGC were responsible for this reduction. When primary cultures of hemocytes from normal crab were exposed to hemocyte lysates prepared from non-infected crabs, WSSV acutely-infected crabs or WSSV persistently-infected crabs prior to challenge with WSSV, there was no significant difference in the number of WSSV-infected primary culture cells. By using LC-MS/MS analysis, a total number of 639 proteins were identified from hemocytes of normal crabs and crabs acutely or persistently infected with WSSV. Further analysis revealed 47 candidate proteins that showed significantly different expression in crabs acutely infected with WSSV when compare to uninfected or persistently infected crabs. Comparisons of the transcriptomic profiles by a suppressive subtraction hybridization technique revealed a number of candidate genes involved in persistent and acute infection. Taken together, there was no evidence that the number hemocytes or relative quantity of hemocyte types was involved in the ability of these crabs to tolerate WSSV infection. By using LC-MS/MS analysis, a total number of 639 proteins were identified from hemocytes of normal crabs and crabs acutely or persistently infected with WSSV. Further analysis revealed 47 candidate proteins that showed significantly different expression in crabs acutely infected with WSSV when compare to uninfected or persistently infected crabs. Comparisons of the transcriptomic profiles by a suppressive subtraction hybridization technique revealed a number of candidate genes involved in persistent and acute infection. Taken together, there was no evidence that the number hemocytes or relative quantity of hemocyte types was involved in the ability of these crabs to tolerate WSSV infection. Further investigation is needed on candidate proteins that might be involved in their ability to tolerate persistent infections.

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์หลักคือการแยกและวิเคราะห์แบบแผนของเซลล์เม็ดเลือดของสัตว์ในกลุ่มครัส เตเชียน 2 ชนิดคือกุ้งก้ามกราม (Macrobrachium rosenbergii) และปุทะเล (Scylla olivacea) ในการ ตอบสนองต่อการติดเชื้อไวรัส โดยเริ่มจากการปรับปรุงสารป้องกันเลือดแข็งตัวให้เหมาะสมกับการนำไปใช้ในการ เก็บเลือดของสัตว์ทั้งสองชนิด หลังจากนั้นจะทำการวิเคราะห์ชนิดของเซลล์เม็ดเลือดโดยใช้เทคนิคการย้อมและตู ภายใต้กล้องจุลทรรศน์ธรรมดาและดูด้วยกล้อง TEM รวมถึงการใช้เทคนิค Flow cytometry ผลการศึกษาพบว่า เซลล์เม็ดเลือดของกุ้งก้ามกรามมี 3 ชนิดคือ Hyaline hemocytes, (HH or HC), small granular hemocytes (SGH or SGC) and large granular hemocyte (LGH or LGC) ในขณะที่ในปูทะเลมี 4 ชนิดโดยเพิ่มชนิด Intermediate granular cells (IGH or IGC) ด้วย ได้ทำการศึกษาค่าปกติของจำนวนเซลล์เม็ดเลือดในกุ้ง ก้ามกรามและปูทะเลเพื่อนำมาใช้ในการเปรียบเทียบเมื่อมีการติดเชื้อไวรัส เมื่อทำการ challenge กุ้งก้ามกราม ด้วยเชื้อไวรัส MrNV/XSV และตรวจดด้วยเทคนิค immunofluorescent confocal microscopy พบแอนติเจนของ MrNV ในไซโตพลาสซึมของเซลล์ชนิด SGH และ LGH เท่านั้น ส่วนแอนติเจนของ XSV พบได้ทั้งในนิวเคลียสและ ไซโตพลาสซึมของเชลล์ชนิด HH เป็นส่วนใหญ่ กุ้งก้ามกรามที่ติดเชื้อไวรัสจากธรรมชาติภุ้พบการติดเชื้อของ เซลล์ในลักษณะเดียวกัน ส่วนการศึกษาในปพบแอนติเจนของไวรัสตัวแดงดวงขาวในนิวเคลียสของเซลล์อย่าง น้อย 3 ชนิดคือ HH. SGH และ LGH โดยพบปริมาณแอนติเจนไม่เท่ากัน โดยจะพบใน LGH>SGH>HH การศึกษาเปรียบเทียบจำนวนเซลล์เม็ดเลือดรวมและจำนวนเซลล์เม็ดเลือดแต่ละชนิดในกุ้งก้ามกรามไม่สามารถ ทำได้ เนื่องจากพบว่ากุ้งก้ามกรามที่ซื้อมาจากตลาดหลายๆแห่งมีการติดเชื้อไวรัส MrNV/XSVอยู่แล้ว โดยมีการ ติดเชื้อไวรัสถึง 98% ของกุ้งที่ได้ ทำให้ไม่สามารถหากุ้งที่ปลอดเชื้อมาทำการศึกษาเปรียบเทียบได้ ในปูทะเลก็พบ การติดเชื้อไวรัสตัวแดงดวงขาวในประขากรปที่จับจากธรรมชาติเช่นกัน (47-65%) แต่มีอัตราส่วนที่น้อย กว่าที่พบในกุ้งก้ามกราม เมื่อเปรียบเทียบจำนวนเซลล์เม็ดเลือดทั้งหมดและเซลล์เม็ดเลือดแต่ละชนิดพบว่าไม่มี ความแตกต่างระหว่างปูปลอดเชื้อและปูติดเชื้อไวรัสแบบคงอยู่(P>0.05) แต่ในทางกลับกันพบว่าจำนวนเซลล์ เม็ดเลือดทั้งหมดและเซลล์เม็ดเลือดชนิด HC และ IGC มีการลดลงอย่างมีนัยสำคัญทางสถิติในปูที่ติดเชื้อไวรัส แบบเฉียบพลันเมื่อเทียบกับปูปลอดเชื้อ เซลล์เม็ดเลือดกุ้งที่เลี้ยงในอาหารเลี้ยงเชื้อถูกนำมาบุ่มด้วยสารที่ได้จาก เลือดปูทั้ง 3 กลุ่ม (ปลอดเชื้อ ปูติดเชื้อแบบเฉียบพลันและปูติดเชื้อแบบเชื้อคงอยู่) ก่อนเติมเชื้อไวรัสตัวแดงดวง ขาว จากผลการทดลองพบว่าไม่มีความแตกต่างของการเพิ่มจำนวนไวรัสตัวแดงดวงขาวในปูทุกกลุ่มการทดลอง จากการวิเคราะห์ด้วยเทคนิค LC-MS/MS สามารถแยกโปรตีนได้ทั้งหมด 639 เปปไทด์ ซึ่งได้จากปูปลอดเชื้อ ปู ติดเชื้อแบบเฉียบพลันและปูติดเชื้อแบบเชื้อคงอยู่PNP+ เมื่อเปรียบเทียบในปูติดเชื้อแบบเฉียบพลัน และพบว่า 47 เปปไทด์ ไม่มีการแสดงออกที่แตกต่างระหว่างจากปูปลอดเชื้อและปูติดเชื้อแบบเชื้อคงอยู่ทั้งแบบ PNP+ และ แต่มีความแตกต่างในปูติดเชื้อแบบเฉียบพลัน การศึกษาการแสดงออกของยีนโดยใช้เทคนิค suppressive subtraction hybridization พบกลุ่มของยืนตอบสนองต่อการติดเชื้อทั้งสองแบบแตกต่างกัน จาก งานวิจัยนี้คาดว่าจำนวนของเซลล์เม็ดเลือดปูอาจไม่มีความเกี่ยวข้องกับการทนต่อการติดเชื้อไวรัสตัวแดงดวงขาว งานวิจัยต่อไปคือศึกษาเปปไทด์ที่แยกได้จากการติดเชื้อไวรัสทั้ง 4 แบบ ถึงความเกี่ยวข้องต่อการติดเชื้อไวรัสในปู ทะเล