บทคัดย่อ

การเพาะเลี้ยงปลิงทะเลขาว Holothuria scabra ในเชิงพาณิชย์นั้น จัดได้ว่าเป็นแนวทาง ใหม่ของการเพาะเลี้ยงสัตว์น้ำที่ยังไม่มีผู้ใดในประเทศไทยได้ทำมาก่อน ปลิงทะเลขาวเป็นปลิงที่มี อยู่ทั้งในแถบอ่าวไทยและทะเลอันดามัน เนื่องจากปลิงชนิดนี้เป็นที่นิยมบริโภคในประเทศจีน ได้หวัน เกาหลี และญี่ปุ่น ดังนั้นจึงมีผู้ที่จับปลิงชนิดนี้ส่งไปขายยังประเทศดังกล่าวในรูปแบบปลิง ตากแห้ง ที่เรียกว่า beche-de-mer ซึ่งมีราคาแพง จนทำให้ปลิงในท้องทะเลไทยตามธรรมชาติ เกือบ สูญหายไปหมด โดยอาศัยข้อมูลที่มีการรายงานไว้แล้วในวารสารทางวิชาการ คณะผู้วิจัยจึงได้ทำ การวิจัยเพาะเลี้ยงปลิงทะเลขาวในโรงเพาะฟัก และเพาะเลี้ยงให้โตเป็นขนาดจับขายร่วมกับสัตว์น้ำ อื่นๆ เช่นกุ้งและปลา เนื่องจากปลิงทะเลขาวเป็นสัตว์ที่โตช้า ใช้เวลาประมาณสองปีในการ เจริญเติบโตจากตัวอ่อนที่ฟักจากไข่ ไปสู่ขนาดประมาณ 300 กรัมขึ้นไป ซึ่งเป็นขนาดจับขาย ดังนั้น หากเพาะเลี้ยงสัตว์ชนิดนี้เพียงชนิดเดียว (monoculture) ในบ่อเพาะเลี้ยง เกษตรกรจะมีช่วงที่ขาด รายได้เป็นเวลานานและ ไม่สามารถจูงใจให้เกิดความต้องการเพาะเลี้ยงได้ ด้วยสาเหตุนี้จึงได้ วางแผนงานวิจัยเพาะเลี้ยงปลิงทะเลร่วมกับกุ้งทะเลและปลาทะเล (polyculture) บางชนิด เพื่อให้ สามารถเก็บเกี่ยวผลผลิตจากกุ้งและปลาไปก่อนที่จะได้ผลผลิตจากปลิงทะเล

เนื่องจากปลิงทะเลต้องได้รับการเพาะเลี้ยงที่ความเค็มเท่าน้ำทะเล คือประมาณ 30 ppt จึง จะเจริญเติบโตตามปกติได้ ดังนั้นจึงต้องหาสัตว์น้ำที่เพาะเลี้ยงที่ความเค็มเดียวกันนี้ แม้ว่ากุ้งและ ปลาทะเลหลายชนิดสามารถเพาะเลี้ยงได้ในที่ความเค็มดังกล่าว แต่การเพาะเลี้ยงในระดับ อุตสาหกรรมที่มีอยู่ในประเทศไทยนั้น กุ้งทะเล (เช่นกุ้งขาว Litopenaeus vannamei และกุ้งกุลาดำ Penaeus monodon) มักจะถูกเพาะเลี้ยงในน้ำที่มีความเค็มต่ำกว่า 30 ppt (โดยทั่วไปจะอยู่ในความ เค็มประมาณ 10-20 ppt) ซึ่งเป็นความเค็มที่ไม่สามารถเพาะเลี้ยงปลิงทะเลได้ คณะผู้วิจัยได้ทดลอง เพาะเลี้ยงปลิงทะเลในบ่อพักน้ำของฟาร์มกุ้งที่มีความเค็มสูงถึง 30 ppt แต่เมื่อฤดูกาลเปลี่ยนจากฤดู ร้อนมาเป็นฤดูฝน ความเค็มของน้ำได้ลดต่ำลง ทำให้อัตรารอดของปลิงต่ำและไม่เจริญเติบโต จึง เป็นความยากลำบากและไม่เหมาะสมในเชิงปฏิบัติที่จะเพาะเลี้ยงปลิงทะเลในฟาร์มกุ้งหรือฟาร์ม ปลาที่อยู่ใกลฝั่งทะเล (inland area)

ดังนั้นจึงได้เปลี่ยนแผนการทดลองมาเป็นการอนุบาลลูกปลิงทะเลในบ่องนาดเล็ก (บ่อ พล๊าสติกกลม เส้นผ่าสูนย์กลาง 12 เมตร ลึก 1 เมตร) ที่สามารถควบกุมความเก็มได้ โดยเริ่มจากปลิง ระยะวัยรุ่น (ขนาด 10-20 กรัม) เพาะเลี้ยงร่วมกับลูกปลานิลแดงทะเล (ขนาด 30-100 กรัม) ซึ่งเป็น ปลาที่ได้รับการพัฒนาสายพันธุ์ให้เจริญเติบโตได้ดีในน้ำทะเลที่ความเก็ม 30 ppt พบว่าสัตว์น้ำทั้ง สองชนิดนี้เจริญเติบโตและมีอัตรารอดที่ดี โดยที่ปลิงทะเลสามารถเจริญเติบโตและมีอัตรารอด ดีกว่าเมื่อถูกเพาะเลี้ยงเดี่ยว อย่างมีนัยสำคัญทางสถิติ ข้อมูลที่ได้ถูกนำไปสู่การเพาะเลี้ยงปลิงทะเล ในอีกรูปแบบหนึ่ง นั่นคือหลังจากที่ผลิตได้ในโรงเพาะฟักแล้ว เพาะเลี้ยงให้เจริญเติบโตเป็นลูก ปลิงวัยรุ่น หลังจากนั้นจึงถูกนำไปอนุบาลกับลูกปลานิลแดงทะเลจนมีขนาดประมาณ 30-40 กรัม

ต่อมาได้นำปลิงทะเลนี้ไปเพาะเลี้ยงต่อในคอกทะเล (ขนาด 0.3-1.0 ไร่) ในท้องทะเลที่เป็นแหล่งที่ ปลิงทะเลเจริญเติบโตได้ตามธรรมชาติ (บริเวณเกาะจัม จังหวัดกระบี่) ปรากฏว่าปลิงทะเลสามารถ เจริญเติบโตได้เร็ว สามารถจับขายได้ภายในหนึ่งปี (แทนที่จะเป็นสองปี) ส่วนปลานิลแดงทะเลนั้น ถูกนำไปเพาะเลี้ยงต่อในระบบฟาร์มที่ทำเป็นเชิงพาณิชย์ และได้ผลดีเป็นที่น่าพอใจ ดังนั้น เกษตรกรสามารถได้ผลกำไรจากการขายสัตว์น้ำทั้งสองชนิดจากการลงทุนเท่ากับการลงทุน เพาะเลี้ยงสัตว์น้ำชนิดเดียว

ในระหว่างการทดลองเพาะเลี้ยงดังกล่าว ได้มีการศึกษาในเชิงลึกของปลิงทะเล ได้แก่ ระบบสืบพันธุ์ อาหารของลูกปลิงวัยอ่อน ระบบภูมิคุ้มกันของปลิงทะเล ระบบประสาทของ ปลิงทะเล และการสกัดสารป้องกันมะเร็งจากปลิงทะเล แม้ว่างานวิจัยเหล่านี้ยังอยู่ในระหว่างการ ทดลอง แต่ผลที่ได้มีแนวโน้มว่าสามารถนำไปใช้ให้เกิดประโยชน์ในเชิงวิชาการและในเชิงพาณิชย์ ได้ในอนาคต

คำหลัก ปลิงทะเล การเพาะเลี้ยงร่วม ปลานิลแคง การเจริญเติบโต อัตรารอค อนุบาล

Abstract

In Thailand, up to 2012, culture of sea cucumber Holothuria scabra for commercial purpose has not been developed. This species of sea cucumber is found naturally in the Gulf of Thailand and Andaman Sea. This high-priced species is consumed widely in China, Taiwan, Korea and Japan; therefore they have been caught from the wild, dried (known as beche-de-mer) and exported to these countries for many years, resulting in scarcity of the H. scabra in the sea bottom around Thailand. We therefore tried to culture this species from hatchery production to growout ponds, using techniques available and published elsewhere, as well as with our own created technologies. The hatchery work was successful and larvae were produced and raised to juvenile stage. At the beginning, we planned to co-culture the juvenile sea cucumbers with Pacific whiteleg shrimp Litopenaeus (Penaeus) vannamei or the black tiger shrimp Penaeus monodon. The idea was based on a reason that raising sea cucumber to marketing size (300g individuals) usually takes two years, a considerably long period for most farmers to invest without financial return. By co-culturing with other species, like the two shrimp species mentioned that have been cultured widely in the country, the farmers would receive some profit along the way and gain a big profit of selling sea cucumber at the end.

Since sea cucumber requires 30ppt seawater to survive and grow, the intended co-cultured species need to be raised in the same salinity as well. Although the two shrimp species can grow in 30ppt seawater, they are normally raised in 10-20ppt seawater in commercial farms. The difficulty of finding places to do the commercial co-culture of sea cucumber and shrimp has been a big problem. Stocking juvenile *H. scabra* in a shrimp farm reservoir was found unsuccessful because of fluctuation in water salinity during one-year trial.

The research plan was changed into nursing juvenile sea cucumber in small round plastic ponds (12m diameter and 1m depth) that water salinity could be controlled at 30 ppt. Juvenile *H. scabra* (10-20g size) were either mono-cultured or co-cultured with juvenile seawater red tilapia (30-100g size). The red tilapia was from a special breed that grew well in 30ppt seawater. After one month, both species grew and survived well. For *H. scabra*, co-culturing with the red tilapia made them grow significantly faster and survive better than being mono-cultured. When the sea cucumber reached 30-40g size, they were further raised in sea pens (0.05-0.20 hectare), built in the shallow sea area at Jam Island, Krabi Province. The area is one of very few places in the country where natural habitat of *H. scabra* is still found. The sea cucumber grew well in the sea pens and reached marketing size within one year, with higher production per area, compared to the inland-based growout. By using this co-culturing method during nursery phase, farmers could make profits of selling both sea cucumber and red tilapia with the same amount of investment in raising one species.

During these culturing trials, in-depth researches on other aspects of sea cucumber was performed. These included the studies on its reproductive function, nutrition for larvae, defense mechanism, nervous system and extraction of anti-cancer from the sea cucumber. Most of these studies are in progress and would likely be of academic interest, while some could have commercial applications in the future.

Keywords: sea cucumber; polyculture; red tilapia; growth rate; survival; nursery