

รายงานวิจัยฉบับสมบูรณ์

โครงการ ชีวภัณฑ์ป้องกันโรคผลเน่าราเขียวเพนนิซิลเลียม สำหรับเก็บรักษาผล ส้มโชกุนหลังเก็บเกี่ยว

Biological Control Agents for Postharvest Protection of Citrus Fruit from Penicillium Rot Disease

โดย ผศ.ดร.วิจิตรา ลีละศุภกุล และคณะ

มหาวิทยาสงขลานครินทร์ วิทยาเขตหาดใหญ่

กรกฎาคม พ.ศ. 2557

สัญญาเลขที่ DBG5380015

รายงานวิจัยฉบับสมบูรณ์

โครงการ

ชีวภัณฑ์ป้องกันโรคผลเน่าราเขียวเพนนิซิลเลียม สำหรับเก็บรักษาผล ส้มโชกุนหลังเก็บเกี่ยว

Biological Control Agents for Postharvest Protection of Citrus Fruit from Penicillium Rot Disease

คณะผู้วิจัย	สังกัด
1. ผศ.ดร.วิจิตรา ลีละศุภกุล	ภาควิชาชีวเคมี คณะวิทยาศาสตร์
	มหาวิทยาลัยสงขลานครินทร์ อ.หาดใหญ่ จ.สงขลา
2. รศ.ดร.สมศิริ แสงโชติ	ภาควิชาโรคพืช คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์
	บางเขน กรุงเทพมหานคร
3. นางสาว สุมิตรา แสงวนิชย์	สาขาวิทยาศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยี
	มหาวิทยาลัยอิสลามยะลา วิทยาเขตปัตตานี อ.ยะรัง
	จ.ปัตตานี

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัยและมหาวิทยาลัยสงขลานครินทร์

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.และมหาวิทยาลัยสงขลานครินทร์ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

เชื้อรา Penicillium digitatum เป็นเชื้อราสาเหตุโรคผลเน่าราเขียวของผลสัม พบหลังการเก็บเกี่ยว ของผลสัมตั้งแต่ในสวนจนถึงโรงบรรจุ การวิจัยเพื่อใช้การควบคุมแบบชีววิธีร่วมกันระหว่าง เชื้อจุลินทรีย์ปฏิปักษ์ยีสต์ และแบคทีเรีย และสารเคมีที่ใช้ในชีวิตประจำวันโซเดียมไบคาร์บอเนต หลัง การคัดเลือกพบว่า Bacillus subtilis ABS-S14 และโซเดียมใบคาร์บอเนตที่ความเข้มข้น 1-2% (w/v) สามารถยับยั้งการเจริญเส้นใยและการงอกสปอร์ของเชื้อรา P. digitatum ได้ 100% ขณะที่ Pichia guilliermondii BCC5389 ที่ 10 ็ถึง 10 ็เซลล์/มิลลิลิตร ยับยั้งได้ 93.89% และ 100% ตามลำดับ สำหรับการทดลองบนผลสัม เมื่อใช้เชื้อจุลินทรีย์ปฏิปักษ์ทั้งสองชนิดร่วมกันพบว่าสามารถยับยั้งโรคได้ จากการตรวจสอบการเจริญครอบครองพื้นที่ของเชื้อจุลินทรีย์ปฏิปักษ์บนบาดแผล อย่างสมบูรณ์ ระหว่างวันแรกจนกระทั่งวันที่ 6 พบว่า ปริมาณเชื้อยีสต์ *P. guilliermondii* เพิ่มขึ้นอย่างรวดเร็ว ในขณะที่เชื้อแบคทีเรีย B. subtilis มีการเพิ่มขึ้นเล็กน้อยใน 3 วันหลังการทำบาดแผลและปริมาณเชื้อ จะยังคงที่ในช่วงการบ่มเชื้อ การใช้เชื้อจุลินทรีย์ปฏิปักษ์ร่วมกันไม่ส่งผลต่อคุณภาพของผลสัมเมื่อบ่ม ส้มที่อุณหภูมิ 25 องศาเซลเซียส นาน 7 วัน เชื้อจุลินทรีย์ปฏิปักษ์ผสมสามารถชักนำเอนไซม์ใคติเนส และเบต้า-1,3-กลูคาเนสบนผลสัมได้ที่ 24 ชั่วโมงแรก และ ระดับเอนไซม์เบต้า-1,3-กลูคาเนสในส่วน เนื้อเยื่อผิวสัมที่ปลูกเชื้อร่วมกันระหว่าง P. guilliermondii BCC 5389 และ B. subtilis ABS-S14, และ P. digitatum ให้ผลเช่นเดียวกันกับที่มี P. digitatum เพียงอย่างเดียว ซึ่งมีการสร้างเอนไซม์ใคติเนสสูง สุดที่ 12 ถึง 48 ชั่วโมง การแสดงออกของยีนด้วยการวัดปริมาณการสังเคราะห์อาร์เอนเอของยีนไค ์ติเนส (CHI) และเบต้า-1,3-กลูคาเนส (GLU) จากเปลือกผลสัม การแสดงออกของยีน GLU ชักนำโดย P. digitatum หรือเชื้อยีสต์และแบคทีเรีย เพิ่มขึ้นอย่างรวดเร็วที่ 3 ชั่วโมงหลังปลูกเชื้อราเช่นเดียวกับที่ พบในระดับการสังเคราะห์ยืน CHI ในผิวสัม

คำสำคัญ: Penicillium digitatum, Bacillus subtilisม จุลินทรีย์ปฏิปักษ์ โซเดียมไบคาร์บอเนต ผลสัม เอนไซม์ใค ติเนส เบต้า-1,3-กลูคาเนส

Abstract

Penicillium digitatum, a postharvest pathogen of green mold rot of citrus fruit generally contaminates in orchard through packing house. This study aims to use mixtures of antagonistic yeast and bacteria in combination with baking soda (sodium bicarbonate) as a biological control product to control fruit rot pathogen in citrus during postharvest storage. After screening for the antifungal activity P. guilliermondii BCC5389 and Bacillus subtilis ABS-S14 showed strong antagonistic activity toward the fungus pathogen in vitro and in vivo. B. subtilis ABS-S14 and 1-2% NaHCO₃ (w/v) completely inhibited mycelial growth and spore germination of *P. digitatum*. At 10⁶ to 10⁸ cell/ml of *P. guilliermondii* BCC5389 inhibited fungal mycelium growth and spore germination of 93.89% and 100%, respectively. A sodium bicarbonate solution has no effect on growth of both antagonistic microorganisms. The potential of using P. guilliermondii BCC 5389 or B. subtilis ABS-S14 by themselves or in combination for the control P. digitatum in citrus, and their effects on postharvest quality of fruit were investigated. . Fruit efficacy test revealed that the percentage of disease incidence on fruits treated with the combined antagonists was remarkedly reduced. Rapid colonization of P. guilliermondii was observed in the wounds during the first day to 6 days at 25°C, whereas B. subtilis increased marginally over 3 days. The populations then stabilized for the remaining incubation period. The combination did not impair any of the quality parameters of fruit after storage at 25°C for 7 days. The mixtures of antagonist were clearly induced activity of chitinase and β-1,3-glucanase enzymes in the citrus rind within 24 h. Interestingly, inoculation with P. digitatum alone also induced the elicitation of both enzyme activities in the citrus flavedo tissues during 12-48 h. In parallel, the expression of genes that coded for glucanases as well as chitinase, were enhanced by the antagonists in the citrus rind during the first 3 h following pathogen inoculation.

Keywords: *Penicillium digitatum*, *Bacillus subtilis*, Antagonistic microorganism, Sodium bicarbonate, chitinase, β -1,3-qlucanase

1. ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

สัมจัดเป็นผลไม้เศรษฐกิจของประเทศไทยที่มีมูลค่าการส่งออกมากในรูปของผลไม้สดและแปร รูป คิดเป็นมูลค่าประมาณ 1,988.9 ล้านบาท (สำนักงานเศรษฐกิจการเกษตร, 2552) ผลสัมจะมีอัตรา การเสื่อมสภาพเร็ว ซึ่งเกิดจากการเข้าทำลายของเชื้อจุลินทรีย์ต่างๆ ในระหว่างกระบวนการเก็บรักษา และขนส่ง ดังนั้น โรคหลังการเก็บเกี่ยวของผลสัมจึงเป็นข้อจำกัดต่อระยะเวลาการเก็บรักษาในตลาด ซึ่ง จำเป็นต้องควบคุมโรคโดยการใช้สารเคมี โรคราสีเขียวเกิดจากเชื้อ Penicillium digitatum ซึ่งเป็นหนึ่ง ในโรคหลังการเก็บเกี่ยวของผลสัม ที่เกิดในแหล่งปลูกและจำหน่าย ในระยะขนส่ง ซึ่งในการควบคุมและ ป้องกันโรคส่วนใหญ่เกษตรกรผู้ปลูกนิยมใช้สารเคมีกำจัดเชื้อราที่ใช้นั้นต้องมีการสั่งซื้อมาจาก ต่างประเทศ มีราคาแพงแล้วยังเกิดอันตรายต่อสุขภาพของเกษตรกรและผู้บริโภค และยังก่อให้เกิดเชื้อ ราดื้อยาด้วย การปนเปื้อนของสารเคมีต่อสภาพแวดล้อมและสุขภาพของผู้บริโภค การควบคุมและการ ป้องกันกำจัดโรคพืชภายหลังการเก็บเกี่ยวจะต้องกระทำต่อเนื่องกับการป้องกันในระยะก่อนเก็บเกี่ยว และถูกใช้เป็นข้อกีดกันทางการค้าหากผู้ประกอบการเคลือบผิวผลสัมด้วย wax และยาฆ่าเชื้อราชนิด ้ต่างๆแล้วก็ตาม นักวิจัยจึงได้พยายามหาวิธีการควบคุมโรคหลังการเก็บเกี่ยวของสัมนี้โดยวิธีที่ ปลอดภัย ซึ่งปัจจุบันการควบคุมโดยชีววิธีเป็นวิธีการที่ถูกนำมาใช้และมีการศึกษาหาจุลินทรีย์ปฏิปักษ์ มาเพื่อใช้ควบคุมโรคมากยิ่งขึ้น เพื่อแก้ปัญหาดังกล่าวการควบคุมโรคพืชโดยชีววิธีซึ่งศึกษาอย่าง แพร่หลายในพืชหลายชนิดและสามารถนำจุลินทรีย์เชื้อราและแบคทีเรียที่ไม่ก่อให้เกิดโรคต่อคนและสัตว์ มาพัฒนาและใช้ประโยชน์ในการควบคุมโรคที่มีสาเหตุมาจากทั้งเชื้อราและแบคทีเรีย โดยเฉพาะอย่างยิ่ง การประยุกต์ใช้กับการเก็บรักษาหรือควบคุมโรคระยะการเก็บเกี่ยวและหลังการเก็บเกี่ยว ช่วยลด ค่าใช้จ่ายของเกษตรกรแล้วยังช่วยลดปัญหาทางสิ่งแวดล้อมเนื่องมาจากการใช้สารเคมี และลดการ ตกค้างในผลผลิต เพิ่มความปลอดภัยแก่ผู้บริโภค จุลินทรีย์ปฏิปักษ์ที่นิยมใช้กันมากคือ B. subtilis และ yeastควบคุมโรคพืชได้หลายชนิดในสิ่งแวดล้อมต่างกัน ปัจจุบันมีการพัฒนาอยู่ในรูปของผลิตภัณฑ์ทาง การค้า เช่น Epic, Kodial, System3, รูปแบบของผลิตภัณฑ์มีหลากหลายแบบ เช่น เป็นผง หรือใช้เป็น สารเคลือบผิว แต่ละผลิตภัณฑ์สามารถใช้ควบคุมโรคได้แตกต่างกัน กลไกการต้านทานโรคโดยเร่งการ เติบโตของพืช จึงจัดอยู่ในกลุ่มแบคทีเรียที่ส่งเสริมการเจริญของพืช Plant Rhizosphere (PGPR) สร้างสารปฏิชีวนะ กระตุ้นให้พืชสร้างภูมิคุ้มกัน (systemic resistance) สร้างสาร ยับยั้งเชื้อก่อโรค การผลิตสารทั้งทางตรงและทางอ้อมล้วนส่งผลให้พืชเกิดกระบวนการต้านทานโรค โดย กระตุ้นให้เกิดการสร้าง Pathogenesis-related protein (PR-protein) เป็นกลุ่มเอนไซม์ที่เกี่ยวข้องกับ การเหนี่ยวนำการต้านทานโรคเช่น Peroxidase, Phenylalanine ammonia Iyase, Chitinase, eta-1,3-Glucanase นำมาใช้ในการควบคุมโรคหลังการเก็บเกี่ยว

2. วัตถุประสงค์ของโครงการ

- 1. คัดเลือกสายพันธุ์ yeast และ Bacillus ที่มีศักยภาพในการควบคุมโรคผลเน่าของสัมบนจาน อาหารเลี้ยงเชื้อ
- 2. ตรวจวัดศักยภาพการควบคุมโรคผลเน่าของจุลินทรีย์ปฏิปักษ์บนผลสัม
- 3. ตรวจวัดคุณภาพผลสัมภายใต้สภาวะการเก็บในเชิงการค้าเมื่อใช้จุลินทรีย์ปฏิปักษ์ควบคุมโรค ผลเน่า
- 4. ศึกษาการเหนี่ยวนำความต้านทานของผลสัมในการตอบสนองต่อเชื้อโรค
- 5. ศึกษาการกระตุ้นการแสดงออกของยืนที่เกี่ยวข้องกับการตอบสนองการป้องกันโรคในผลสัม
- 6.พัฒนาสูตรชีวภัณฑ์จากเอนโดสปอร์ของแบคทีเรีย B. subtilis และยีสต์

3. ระเบียบวิธีวิจัย

- 1. การเตรียมสัมโชกุน
- 2. การเตรียมเชื้อรา ทำการแยกเชื้อรา *P.digitatum* จากผลสัมที่เป็นโรคเน่าเขียว เตรียมสปอร์ เชื้อรา
- 3. การเตรียมเชื้อจุลินทรีย์ปฏิปักษ์ 5 สายพันธุ์ *C.guilliermondii* BCC 5389 *C. humicola* BCC 7701 *C. utilis C. tropicalis* และ *P. membranaefaciens*.และเตรียมเชื้อแบคทีเรีย *B.subtilis* สาย พันธุ์ ABS-S14 และ 155 คัดเลือกเชื้อยีสต์ปฏิปักษ์ควบคุมเชื้อรา *P.digitatum* โดยวิธี dual culture วัด%การยับยั้งการเจริญของเชื้อรา
- 4. ศึกษาเชื้อจุลินทรีย์ปฏิปักษ์ต่อการงอกสปอร์ของเชื้อรา *P.digitatum* บนผลสัม ทำแผล หยด 2 % sodium bicarbonate imazalil 500 ppm เชื้อยีสต์ *B. subtilis* และเชื้อผสม หยดสปอร์ *P. digitatum* ตรวจดูแผล
- 5. ศึกษาปริมาณและการเพิ่มจำนวนของเชื้อยีสต์บริเวณบาดแผล วัดประชากรเชื้อจุลินทรีย์ปฏิปักษ์ตั้งแต่วันแรกจนถึงวันที่ 6 โดยเจาะผลสัม บด spread บน อาหาร NYDA เวลา 2 วัน นับจำนวนโคโลนี คำนวณความหนาแน่น log₁₀ CFU/wound. วาง แผนการทดลองแบบ RCBD ทำ 3 ซ้ำ
- 6. ศึกษาผลของเชื้อจุลินทรีย์ปฏิปักษ์ที่มีต่อคุณภาพของผลสัม ประเมินคุณภาพผลสัมหลังจากการเก็บรักษา หาน้ำหนักสูญเสีย วัดสี หา% ความนิ่มเนื้อ, TSS และ TA

ศึกษาแอคติวิตี้ของเอนไซม์ใคติเนสและเบต้า 1,3 กลูคาเนส บนผลสัมโดยวิธี colorimetry และ โดยวิธี gel electrophoresis

- 7. ศึกษาการแสดงออกของยืน PR protein สกัด RNA จากเปลือกผลสัมปริมาณ 2 กรัม หา ความเข้มข้นของ total RNAที่สกัดได้ แยกสารสกัด RNA โดย agarose-formaldehyde gels และ ทำ Northern blot hybridization
- 9. . การเตรียมสูตรชีวภัณฑ์จากเชื้อแบคทีเรีย *B. subtilis* และยีสต์ เตรียมเอนโดสปอร์ *B. subtilis*และยีสต์ แบบสารเคลือบ (Emulsion) จากเอนโดสปอร์ของแบคทีเรีย *B. subtilis*และยีสต์

ทดสอบประสิทธิภาพของสูตรชีวภัณฑ์ ต่อยับยั้งการเจริญของเชื้อรา P. digitatum บนจานอาหาร บนผลสัม

4. แผนการดำเนินงานวิจัยตลอดโครงการในแต่ละช่วง 6 เดือน

กิจกรรมหรือขั้นตอนการ	ปีที่ 1		ปีที่ 2		ปีที่ 3	
ตำเนินงาน	เดือนที่	เดือน	เดือนที่	เดือนที่	เดือนที่	เดือนที่
	1-6	ที่ 7-12	1-6	7-12.	1-6	7-12
1. คัดเลือกจุลินทรีย์ปฏิปักษ์งต่อเชื้อรา <i>P. digitatum</i> (Pd) บันจานอาหาร เลี้ยงเชื้อ	-	•				
2. ทดสอบฤทธิ์ของเชื้อจุลินทรีย์						
ปฏิปักษ์ต่อการงอกของสปอร์เชื้อรา						
Pd ในอาหารเหลว						
3. ทดสอบฤทธิ์ของเชื้อจุลินทรีย์	•					
ปฏิปักษ์ต่อการงอกของสปอร์เชื้อรา						
Pd บนผลสัม						
4. ติดตามปริมาณของเชื้อยีสต์ที่ใช้		◀				
หยดบริเวณบาดแผลบนผลสัม						
5. ตรวจอาการแสดงของโรคและหา เปอร์เซ็นต์ผลเน่า						
6. ทดสอบคุณภาพผลสัม			←			
7. หาแอคติ์วิตี้ของเอนไซม์การ ตอบสนองของผลสัม					•	
8. ศึกษาการแสดงออกของยืน ตอบสนองของผลสัม					•	
9. เตรียมสูตรชีวภัณฑ์จากเอนโดสปอร์						
ของแบคทีเรีย ทดสอบประสิทธิภาพ				◀	-	
บนจานอาหารและผลสัม						
10. วิเคราะห์ประเมินผลสรุปและ						
เขียนรายงาน						

5. Output

ปีที่	ผลที่คาดว่าจะได้รับ
1	-การใช้จุลินทรีย์ปฏิปักษ์ยีสต์และแบคทีเรียเพื่อควบคุมโรคผลเน่าราเขียว (Penicillium
	digitatum)ของสัมเป็นผลงานที่สามารถนำเสนอในที่ประชุมระดับประเทศและตีพิมพ์
2	-คุณภาพและการต้านทานโรคของผลสัมหลังการใช้จุลินทรีย์ปฏิปักษ์เป็นผลงานที่สามารถ
	นำเสนอในที่ประชุมระดับนานาชาติและตีพิมพ์วารสาร Postharvest Biology Technology
	(impact factor 2.0)
3	-กลไกการต้านทานโรคของผลสัมหลังการใช้จุลินทรีย์ปฏิปักษ์และสูตรชีวภัณฑ์จาก
	จุลินทรีย์ปฏิปักษ์ยีสต์และแบคทีเรียเพื่อควบคุมโรคผลเน่าราเขียว (Penicillium digitatum
)ของสัม
	ผลงานที่สามารถนำเสนอในที่ประชุมระดับนานาชาติและตีพิมพ์วารสาร Postharvest
	Biology Technology (impact factor 2.0) และ/หรือ World Journal of Microbiology and
	Biotechnology

6. ประโยชน์ที่คาดว่าจะได้รับ

การศึกษาในครั้งนี้จะได้จุลินทรีย์ชีวภัณฑ์ที่ควบคุมคุณภาพของผลไม้และโรคผลเน่าราเขียว สามารถพัฒนาเป็นผลิตภัณฑ์ชีวภาพที่มีศักยภาพควบคุมโรคเน่าของผลสัมในระยะหลังเก็บเกี่ยว ประยุกต์เทคโนโลยีที่ได้นี้ใช้เก็บรักษาผลไม้หลังการเก็บเกี่ยวที่มีคุณภาพสูง ถ่ายทอดความรู้และ วิธีการแก่ผู้ผลิต ผู้บริโภค ผู้ประกอบการด้านอาหารและสิ่งแวดล้อมโดยสอดคล้องกับการจัดการธุรกิจ เกษตรด้านอาหารที่ทันสมัยตามมาตรฐานที่กำหนดในประเทศและสากล

เนื้อหางานวิจัย

การคัดเลือกสายพันธุ์ยีสต์และ แบคทีเรียที่มีศักยภาพในการควบคุมโรคผลเน่าของสัมบนจาน อาหารเลี้ยงเชื้อใด้เชื้อจุลินทรีย์ปฏิปักษ์ คือ Pichia guilliermondii BCC 5389 และที่ความเข้มข้น 10° cell/ml สามารถยับยั้งการงอกสปอร์ของเชื้อรา P. digitatum ได้อย่างสมบูรณ์ การทดสอบเชื้อ P. guilliermondii ต่อการยับยั้งการงอกสปอร์ของเชื้อรา P. digitatum บนอาหารเลี้ยงเชื้อ Potato dextrose broth เป็นเวลา 24 ชั่วโมง พบว่าเมื่อผสมกับเชื้อยีสต์ที่ความเข้มข้น 10° cell/ml ไม่พบการ งอกสปอร์ของเชื้อรา P. digitatum ขณะที่มีเชื้อ P. guilliermondii ความเข้มข้น 10° และ 10⁷ cell/ml มี อัตราการงอกสปอร์ของเชื้อราไม่แตกต่างกับชุดควบคุมที่มีอัตราการงอกสปอร์เป็น 100%

การทดสอบการใช้จุลินทรีย์ปฏิปักษ์ *B. subtilis* ABS-S14 *P. guilliermondii* BCC5389 โซเดียมใบคาร์บอเนต (0.5, 1.0, 1.5, 2.0% w/v) และการนำมาใช้ร่วมกันเพื่อยับยั้งการเจริญของเชื้อ รา *P. digitatum* สาเหตุโรคผลเน่าราเขียวของผลสัม พบว่า *B. subtilis* ABS-S14 และโซเดียมใบ คาร์บอเนตที่ความเข้มขัน 1-2% (w/v) สามารถยับยั้งการเจริญเส้นใยและการงอกสปอร์ของเชื้อรา *P. digitatum* ได้ 100% ขณะที่ *P. guilliermondii* BCC5389 ยับยั้งได้ 93.89% และ 100% ตามลำดับ สารละลายโซเดียมใบคาร์บอเนตที่ความเข้มขัน 1-2% (w/v) ไม่มีผลต่อการเจริญของจุลินทรีย์ปฏิปักษ์ ทั้งสองชนิดนี้ ดังนั้นจึงสามารถใช้เชื้อจุลินทรีย์ปฏิปักษ์ทั้งสองร่วมกับโซเดียมใบคาร์บอเนตในการ ควบคุมโรคเน่าราเขียวของผลสัมต่อไป

ประสิทธิภาพการควบคุมโรคของเชื้อจุลินทรีย์ปฏิปักษ์บนผลสัมศึกษาโดยทำแผลบนผลสัม หยด 2 % sodium bicarbonate สารเคมี imazalil ความเข้มขัน 500 ppm *P. guilliermondii B. subtilis* และ *P. guilliermondii* ผสมกับเชื้อแบคทีเรีย *B. subtilis* สายพันธุ์ ABS-S14 และ 155 ที่ความเข้มขัน 10 spores/ml เมื่อแห้ง หยดสปอร์ของเชื้อรา *P. digitatum* ลงบนแผลสัมเป็นเวลา 7 วัน ที่อุณหภูมิ 25 องศาเซลเซียส พบว่า *P. guilliermondii* ผสมกับ *B. subtilis* มีระดับการควบคุมโรคผลเน่าได้มากที่สุด โดยมีเปอร์เซ็นต์การเกิดโรคเท่ากับ 0% และขนาดเส้นผ่าศูนย์กลางแผลเท่ากับ 0 ซม เมื่อเทียบกับชุด การทดลองอื่น ๆ และชุดควบคุมซึ่งมีเปอร์เซ็นต์การเกิดโรคเท่ากับ 92.93 % และขนาด เส้นผ่าศูนย์กลางแผลเท่ากับ 5.57 ซม เมื่อศึกษาปริมาณและการเพิ่มจำนวนของเชื้อยีสต์ *P. guilliermondii* BCC 5389 ในบริเวณบาดแผลพบว่า ปริมาณ *P. guilliermondii* ในช่วงวันแรกมีค่า log CFU wound 18.0 และพบว่ามีการเพิ่มจำนวนในช่วงวันที่ 3 ถึง 9

ประเมินคุณภาพผลสัมทั้งก่อนและหลังจากการเก็บรักษา หาน้ำหนักสูญเสีย วัดสี หา% ความนิ่ม เนื้อ, TSS และ TA พบว่าประสิทธิภาพของเชื้อจุลินทรีย์ปฏิปักษ์ทั้งสองและ/ร่วมกับ 2 b% sodium bicarbonate พบว่าไม่มีผลต่อคุณภาพผลสัมในด้านการสูญเสียน้ำหนัก ความแน่นเนื้อ total soluble solids และ titratable acidity โดยมีปริมาณลดลงเล็กน้อยเมื่อเทียบกับชุดควบคุม

การแสดงออกของยีนไดติเนสและเบต้า-1,3-กลูดาเนสบนผลสัมเมื่อกระตุ้นด้วยจุลินทรีย์ปฏิปักษ์ โดยการเจาะทำแผล (ลึกและกว้าง 3 mm.) กลางผลสัม หยดสารละลายตะกอนของ P. guilliermondii, B. subtilis, P. guilliermondii และ B. subtilis ที่ความเข้มขัน 1 x 10 spores/ml บริเวณแผล สองชั่วโมง หลังจากนั้น หยดสารละลายตะกอนของ P. digitatum (1 x 10 spores/ml) ในแต่ละบาดแผล นำไปบ่ม โดยให้อยู่ในสภาวะที่มีความชื้นสัมพัทธ์สูง อุณหภูมิ 25องศาเซลเซียส สัม 10 ผลแทนซ้ำ 5 ซ้ำในแต่ละ ทรีทเมนต์ มีทั้งหมด 8 ทรีทเมนต์ ทำการสกัดโปรตีนโดยวิธีสกัดเป็นผงแห้งอาซีโตนวัดปริมาณโปรตีน ด้วยวิธี Bradford (1976) นำเนื้อเยื่อเปลือกสัมบดด้วยอาซิโตนปริมาณ 1 กรัมละลายในโซเดียมอะซิ เตต บัฟเฟอร์ pH 5.0 ที่ความเข้มขัน 50 mM ปริมาตร 0.5 ml นำเข้าเครื่องปั่นเหวี่ยง อุณหภูมิ 4 องศา ทั้งตะกอนไป นำสารละลายใสมาตกตะกอนด้วยเกลือแอมโมเนียมซัลเฟตอิ่มตัวที่ 70% อุณหภูมิ 4 องศา เซลเซียส นำตะกอนมาละลายกลับด้วยสารละลายโซเดียมอะซิเตท บัฟเฟอร์ที่ความเข้มขัน 100 mM pH 5.0 และเก็บไว้ที่อุณหูมิ -20 องศาเซลเซียส เพื่อใช้ในการตรวจหาแอคติวิตี้ของเอนไซม์ไคติเนส และเบต้า-1,3-กลูคาเนสบนผลสัม

์ ตรวจหาแอคติวิตี้ของเอนไซม์ใคติเนสดัดแปลงจากวิธีของ Wirth and Wolf (1990) [โดยใช้สับ เสตรทคือ ไคติน นำสาร สกัดเอนไซม์ที่ เตรียมไว้ ผสม กับโซเดียมอะซิเตทบัฟเฟอร์ ความเข้มข้น 100 mM pH 5.2 นำมาบุ่มที่อุณหภูมิ 37 องศาเซลเซียส นาน 2 ชั่วโมง หลังจากนั้นหยุดปฏิกิริยาโดยการ เติมกรดไฮโดรคลอริก ทำให้เย็นด้วยน้ำแข็ง และนำไปปั่นเหวี่ยงที่ 12,000 rpm นำมาวัดค่าการดูดกลืน แสงที่ 550 nm คำนวณหน่วยแอคติวิตี้ของเอนไซม์ใคติเนสต่อมิลลิกรัมโปรตีนจากกราฟไคติเนสของ Streptomyces griseus (Krainsky) ที่บริสุทธิ์ Waksman & Henrici (C6137, Sigma) โดยหนึ่งยูนิตคือ ปริมาณของเอนไซม์เปลี่ยนไป 1 nmol product per minute. พบว่ามีการชักนำเอนไซม์ใคติเนสในทุกท รีทเมนต์ ซึ่งแสดงให้เห็นว่าระดับเอนไซม์ไคติเนสในทรีทเมนต์ควบคุมที่ใช้น้ำกลั่นอย่างเดียว เพิ่มขึ้น เล็กน้อยภายหลัง ที่บ่ม 24 ชั่วโมง ขณะเดียวกันที่ 12 ชั่วโมง พบว่าเอนไซม์ใคติเนสมีระดับเพิ่มขึ้นใน ทรีทเมนต์อื่นๆ โดยแอคติวิตี้ของเอนไซม์ใคติเนสเพิ่มสูงสุดที่ 24 ชั่วโมงซึ่งพบในทรีทเมนต์ที่ใช้ P. guilliermondii BCC 5389 และปลูกเชื้อ P. digitatum และลดลงที่ 72 ชั่วโมง ในสัมที่มีการปลูกเชื้อ P. digitatum เพียงอย่างเดียวซึ่งจะมีการสร้างเอนไซม์ใคติเนสสูงสุดที่ 48 ชั่วโมง อย่างไรก็ตามทรีทเมนต์ ของ B. subtilis ABS-S14 และปลูกเชื้อ P. digitatum หรือการใช้เชื้อร่วมกันระหว่าง P. guilliermondii BCC 5389 และ B. subtilis ABS-S14 และ ปลูกเชื้อ P. digitatum มีการชักนำการสร้างเอนไซม์ใคติเนส ที่แตกต่างกัน โดยทรีทเมนต์ที่มี B. subtilis ABS-S14 และปลูกเชื้อ P. digitatum จะพบว่ามีการสร้าง เอนไซม์ใคติเนสสูงสุด ที่ 24 ชั่วโมง และลดลงที่ 48 ชั่วโมง แนวโน้มของเอนไซม์เพิ่มขึ้นอีกครั้งที่ 72 ชั่วโมง ในส่วนทรีทเมนต์ การปลูกเชื้อร่วมกันระหว่าง P. guilliermondii BCC 5389 และ B. subtilis ABS-S14, และ *P. digitatum* ให้ผลเช่นเดียวกันกับทรีทเมนต์ *P. digitatum* เพียงอย่างเดียว ซึ่งจะมีการ สร้างเอนไซม์ใคติเนสสูงสุด 2 ช่วงคือ ที่ 12 และ 48 ชั่วโมง จากนั้นจะลดลงที่ 72 ชั่วโมง

ตรวจหาแอคติวิตี้ของเอนไซม์ เบตา1,3-กลูคาเนสดัดแปลงจากวิธีของ Burner (1964) โดยนำ ตัวอย่างมาผสมกับ laminarin ใช้สับเสตรทคือ carboxymethyl chitosan-remazol brilliant violet solution (CM-Chitosan-RBV) วัดแอคติวิตี้ของเอนไซม์โดยนำตัวอย่างสารสกัดผสมกับสับเสตรท บ่มใน water bath ที่อุณหภูมิ 35 องศาเซลเซียส นาน 30 นาที จากนั้นหยุดปฏิกิริยาด้วยการตัมในน้ำเดือด หลังจากนั้นเดิมสารละลาย dinitrosalicylic acid (DNS) 0.2 ml และ อะซิเตทบัฟเฟอร์ ความเขัมขัน 0.1 M pH 5.0 ตัมในน้ำเดือด และทำให้เย็นลงที่อุณหภูมิห้อง จากนั้นเติมน้ำกลั่น นำไปวัดค่าการดูดกลืน แสงที่ 540 nm คำนวณตรวจหาแอคติวิตี้ของเอนไซม์จากกราฟมาตรฐานกลูโคส โดยหนึ่งหน่วยกิจกรรม เอนไซม์คือหนึ่งไมโครโมลของ reducing sugar ที่มาจากการย่อย laminarin ในหนึ่งนาทีพบว่า การชัก นำการสร้างเอนไซม์ เบต้า-1,3-กลูคาเนสไม่มีความแตกต่างกันในทุกทรีทเมนต์ การสร้างเอนไซม์เบต้า-1,3-กลูคาเนสพบในเนื้อเยื่อผิวสัมในทรีทเมนต์ที่ใช้ P. guilliermondii BCC 5389 S14 และ ปลูกเชื้อ P. digitatum มีปริมาณสูงกว่าทรีทเมนต์อื่นๆที่ 12 ชั่วโมง และเพิ่มขึ้นที่ 24 และ 48 ชั่วโมง จึงลดปริมาณ ลง ขณะเดียวกัน ทรีทเมนต์ที่ใช้ B. subtilis ABS-S14 และ ปลูกเชื้อ P. digitatum เนื้อเยื่อผิวสัมมี สร้างเอนไซม์ เบต้า-1,3-กลูคาเนสสูงสุด ที่เวลา 24 ชั่วโมง และสร้างได้อีก 2 ช่วง คือ และ 48 ชั่วโมง และ72 ชั่วโมง ในส่วนของทรีทเมนต์กีบคุมที่ใช้ P. guilliermondii BCC 5389 ร่วมกับ B. subtilis ABS-S14 และปลูกเชื้อด้วย P. digitatum พบว่าไม่มีความแตกต่างจากทรีทเมนต์ควบคุมที่ใช้น้ากลั่นอย่างเดียว ใน ส่วนของทรีทเมนต์ควบคุมที่ใช้ P. digitatum เพียงอย่างเดียวพบว่ามีการสร้างเอนไซม์สูงสุดที่เวลา 48 ชั่วโมงแล้วจึงลดลง

สกัด total RNA และสังเคราะห์ cDNA โดยนำเปลือกผลสัมที่เก็บมาที่เวลา 0, 3, 6, 9, 12, 24 ชั่วโมง หลังจากทำการปลูกเชื้อด้วย *P. digitatum* สกัดแยก Total RNA จากสัม 10 ผลแทนซ้ำ 5 ซ้ำใน แต่ละทรีทเมนต์ มีทั้งหมด 8 ทรีทเมนต์ โดยใช้ RNeasy plant mini kit (Qiagen US) เติม DNase I (Bio Lab) ใน 1 µg RNA ที่อุณหภูมิ 37 °C เป็นเวลา 10 min หยุดปฏิกิริยาโดยการเติม EDTA การทำ Reverse Transcriptase PCR ใช้ ImProm-II Reverse Transcription System (Promega Corp. Madison, USA.) โดยใช้ specific primer oligo dT ดังตารางข้างล่างและ GoTaq qPCR Master Mix (Qiagen, USA). ตรวจ PCR reactions ใน 96-well plates หาค่า transcript level โดยคำนวณได้จาก กราฟมาตรฐานโดยใช้ยืน citrus elongation factor 1-alpha (EF 1) AY 498567 เป็นยืนควบคุมที่มี ระดับการแสดงออกสม่ำเสมอในทุกเงื่อนไขของเซลล์เปลือกสัม (internal control) ส่วน Negative controls ไม่เติม cDNA วิเคราะห์ค่าทางสถิติจากตัวอย่างห้าผลต่อทรีทเมนต์ ซ้ำสองครั้ง ตรวจสอบระดับ การสร้างยืนโดยคำนวณจากผลที่ได้ ของ Real-Time quantitative RT-PCRและหาลำดับเบสของ PCR product ของ DNA ที่ได้ การวิเคราะห์ทางสถิติผลการทดลองทั้งหมด โดยหาค่าเฉลี่ยความแตกต่างจะ เปรียบเทียบด้วยวิธีLeast Significant Difference Test (LSD)

Table 1 Gene sequences downloaded from GenBank with accession numbers. These sequences have been used for the designing of the primers adopted in quantitative real time PCR

Gene name	Primer	GenBank accession number
Chitinase (CHI 1)	Forward	AF090336
	5'-AATGTTGCTAGCATTGTGACTCC-3'	
	Reverse	
	5'-GCAGCATTCAGAAACGCATCT-3'	
β-1,3-glucanase (GNSL)	Forward	AJ000081
	5'-TTCCGACGGATCGTTAAGTTACC-3'	
	Reverse	
	5'-CCACCCACTCTCTGATATCACG-3'	
Elongation factor	Forward	AY498567
1-alpha (EF 1)	5'-GGTCAGACTCGTGAGCATGC -3'	
	Reverse	
	5'-CATCGTACCTAGCCTTTGAGTACTTG-3'	

การแสดงออกของยืนด้วยการวัดปริมาณการสังเคราะห์ยืนไคติเนส (CHI) และเบต้า-1,3-กลูคาเนส (GLU) จากเปลือกผลสัม พบความแตกต่างในการแสดงออกของยืนไคติเนส โดยระดับการสังเคราะห์ ยืนในสัมของทรีทเมนต์ที่ปลูกเชื้อราและเชื้อยีสต์ร่วมกัน หรือ ปลูกเชื้อราเพียงอย่างเดียวพบว่ามีระดับ การ สังเคราะห์ที่เหมือนกันโดยการแสดงออกของยืน CHI เพิ่มขึ้นอย่างรวดเร็วหลังจาก 6 ชั่วโมงและ ลดลงที่ 9 ชั่วโมง ขณะที่ระดับการสังเคราะห์ยืน CHI ในสัมที่ปลูกเชื้อด้วยแบคทีเรียเพิ่มสูงที่สุดที่ 3 ชั่วโมงแรก และค่อยๆลดลงที่ 9 ชั่วโมงหลังจากการปลูกเชื้อ อย่างไรก็ตามระดับการสังเคราะห์ยืนใน ทรีทเมนต์ที่ปลูกเชื้อราและเชื้อยีสต์ร่วมกับแบคทีเรียพบว่ามีการสะสมของยีนที่ 3 ชั่วโมงภายหลังจาก การปลูกเชื้อสูงมากซึ่งเป็นที่น่าสนใจว่าทรีทเมนต์ดังกล่าวมีผลต่อการชักนำการแสดงออกของยีนไค ติเนสเมื่อเปรียบเทียบกับทรีทเมนต์อื่นๆ การแสดงออกของยีน GLU ในทรีทเมนต์ที่ปลูกเชื้อราและ ยีสต์เพียงอย่างเดียวเพิ่มขึ้นใน 6 ชั่วโมงแรกและระดับการแสดงออกของยีน GLU ในทรีทเมนต์ที่ปลูกเชื้อราและ แมตที่ที่ปลูกเชื้อราและแบคทีเรียร่วมกัน ระดับของยีน GLU เพิ่มอย่างรวดเร็วที่ 6 ชั่วโมงแรก และ ลดลง ชั่วโมงที่ 9 ในขณะที่ทรีทเมนต์ที่ปลูกเชื้อราเพียงอย่างเดียวหรือ ทรีทเมนต์ที่ผสมกันระหว่างเชื้อ ยีสต์และแบคทีเรียมีระดับการสังเคราะห์ยืน GLU เพิ่มขึ้นอย่างรวดเร็วที่ 3 ชั่วโมงแรกหลังจากทำการ ปลูกเชื้อ

คำชี้แจง

เนื่องจากการทดลองในส่วนการหาการแสดงออกของยืนในระดับ RNA transcript และ enzyme activity ของไคติเนสและเบต้า-1,3-กลูคาเนสบนผลสัมเมื่อกระตุ้นด้วยจุลินทรีย์ปฏิปักษ์และเชื้อราก่อ โรคจำนวน 8 ทรีทเมนต์ดังตารางที่ 2 ต้องใช้ผลสัมตัวอย่างในจำนวนซ้ำเป็นจำนวนมากให้ได้ปริมาณ เนื้อเยื่อที่เพียงพอต่อการสกัด ประกอบกับมีปัญหาการขาดผลผลิต และราคาสูงมาก โดยเฉพาะสัมโช กุนที่ปลูกในภาคใต้ และการวิเคราะห์แอคติวิตี้ของเอนไซม์ทั้งสองนี้และ Real-Time quantitative RT-PCR ต้องใช้ทั้งสารเคมีที่มีราคาแพงมาก ค่าใช้เครื่องมือและคิวที่ต้องรอและจำนวนซ้ำของตัวอย่างที่มี มากเพื่อความแม่นยำ และการทดลองที่ซ้ำมากกว่า 2 รอบ จึงเป็นผลหรือข้อจำกัดทั้งในด้านปริมาณ ตัวอย่างและงบประมาณที่ได้รับเป็นเหตุให้ไม่สามารถทำการทดลองเตรียมสูตรชีวภัณฑ์จากเอนโด สปอร์ของแบคทีเรีย ทดสอบประสิทธิภาพ บนจานอาหารและผลสัมในโครงการนี้ได้

Table 2 Effect on antagonistic yeasts and bacterial on abundance of defense related transcripts and enzyme activity

Treatment	Treatment agents
T1	Sterile distilled water
T2	P. digitatum
Т3	B. subtilis ABS-S14
T4	P. guilliermondii BCC 5389
Т5	B. subtilis ABS-S14+ P. digitatum
Т6	P. guilliermondii BCC 5389+ P. digitatum
Т7	Mixture of P. guilliermondii BCC 5389 +B. subtilis ABS-S14
Т8	Mixture of P. guilliermondii BCC 5389 + B. subtilis ABS-S14 +
	P. digitatum

Output

รายชื่อบทความที่ตีพิมพ์แล้ว

1. Reprint

Sangwanich, S., Sangchote, S. and Leelasuphakul, W. (2013) Biocontrol of Citrus green mould and postharvest quality parameters. International Food Research J. 20(6), 3381-3386. Scopus

2. Manuscript

Comparative roles of antagonism and induced systemic resistance to control the growth of green mold on citrus fruit by *Bacillus subtilis* ABS-S14 endospores, its cyclic lipopeptide antibiotics and chitosan (under revision after submission to the Postharvest Biology and Technology journal)

3 International Proceeding

Sangwanich, S., Sangchote, S. and Leelasuphakul, W. (2013). Effect of *Pichia guilliermondii* on *Penicillium digitatum* and green mold rot in mandarin cv.Shogun from Thailand. Acta Hort.973, ISHS, 77-80.

4 Reprint-National Journal

Sangwanich, S., Sangchote, S. and Leelasuphakul, W. (2010). An Application of Antagonistic Microorganisms and Sodium bicarbonate to Control Green Mold Rot Disease (Penicillium digitatum) of Citrus. Agricultural. Sci. J. 41 (2) (Suppl.): 57-60.

Date: Jun 23, 2014

To: "wichitra leelasuphakul" wichitra.l@psu.ac.th

From: lan Ferguson ian.ferguson@plantandfood.co.nz

Subject: Your Submission

Ms. Ref. No.: POSTEC-D-14-00288

Title: Comparative roles of antagonism and induced systemic resistance to control the growth of green mold on citrus fruit by

Bacillus subtilis ABS-S14 endospores, its cyclic lipopeptide antibiotics and chitosan

Postharvest Biology and Technology

Dear Wichitra,

The reviewers have commented on your above paper, indicating that the topic is appropriate for publication in Postharvest Biology and Technology, but the manuscript is not acceptable for publication in its present form.

Would you be able to provide me with a revised manuscript that address all the issues raised by the reviewers? If you choose to submit a revised manuscript, please also provide a point-by-point explanation of the changes made and your response to the reviewers' and my comments, which follow.

If you wish to forward a revised manuscript for further consideration, please submit the revision along with your explanatory comments within 8 weeks.

To submit your revision, please do the following:

1. Go to: http://ees.elsevier.com/postec/

2. Enter your login details:

Your username is: ******

If you need to retrieve password details, please go to:

http://ees.elsevier.com/postec/automail_query.asp

NOTE: Upon submitting your revised manuscript, please upload the source files for your article. For additional details regarding acceptable file formats, please refer to the Guide for Authors at: http://www.elsevier.com/journals/postharvest-biology-and-technology/0925-5214/guide-for-authors

When submitting your revised paper, we ask that you include the following items:

Manuscript and Figure Source Files (mandatory)

We cannot accommodate PDF manuscript files for production purposes. We also ask that when submitting your revision you follow the journal formatting guidelines. Figures and tables may be embedded within the source file for the submission as long as they are of sufficient resolution for Production. For any figure that cannot be embedded within the source file (such as *.PSD

Photoshop files), the original figure needs to be uploaded separately. Refer to the Guide for Authors for additional information. http://www.elsevier.com/journals/postharvest-biology-and-technology/0925-5214/guide-for-authors

Highlights (mandatory)

Highlights consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). See the following website for more information http://www.elsevier.com/highlights

Graphical Abstract (optional)

Graphical Abstracts should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership online. Refer to the following website for more information: http://www.elsevier.com/graphicalabstracts

3. Click [Author Login]

This takes you to the Author Main Menu.

4. Click [Submissions Needing Revision]

Please note that this journal offers a new, free service called AudioSlides: brief, webcast-style presentations that are shown next to published articles on ScienceDirect (see also http://www.elsevier.com/audioslides). If your paper is accepted for publication, you will automatically receive an invitation to create an AudioSlides presentation.

I look forward to receiving your revised manuscript.

Yours sincerely,

Ian Ferguson

Receiving Editor

Postharvest Biology and Technology

Editor's comments:

Please note that the editorial process varies considerably from journal to journal. To view a sample editorial process, please click here:

http://ees.elsevier.com/eeshelp/sample_editorial_process.pdf

For further assistance, please visit our customer support site at http://help.elsevier.com/app/answers/list/p/7923. Here you can search for solutions on a range of topics, find answers to frequently asked questions and learn more about EES via interactive tutorials. You will also find our 24/7 support contact details should you need any further assistance from one of our customer support representatives.

Elsevier Editorial System(tm) for Postharvest Biology and Technology Manuscript Draft

Manuscript Number:

Title: Comparative roles of antagonism and induced systemic resistance to control the growth of green mold on citrus fruit by Bacillus subtilis ABS-S14 endospores, its cyclic lipopeptide antibiotics and chitosan

Article Type: Research Paper

Keywords: B. subtilis; P. digitatum; Cyclic lipopeptides; Chitosan; Peroxidase, L-Phenylalanine

ammonia-lyase

Corresponding Author: Dr. wichitra leelasuphakul, Ph.D.

Corresponding Author's Institution: Prince of Songkla University

First Author: Waewruedee Waewthongrak, B.Sc.

Order of Authors: Waewruedee Waewthongrak, B.Sc.; Supachai Pisuchpen , Ph.D.; wichitra leelasuphakul, Ph.D.

Abstract: The suppression of green mold disease caused by P. digitatum, in mandarin fruit by the antagonistic action of B. subtilis ABS-S14, a crude extract from its culture medium, cyclic lipopeptide antibiotics (CLPs) and chitosan were tested together with their abilities to elicit the accumulations of the plant defense related enzymes, Peroxidase (POX) and L-Phenylalanine ammonia-lyase (PAL). Both B. subtilis ABS-S14 endospores and a crude extract from its growth medium showed strong antagonistic activities against P. digitatum. The HPLC profiles of the crude extract indicated that the antifungal compounds produced by this strain of B. subtilis consisted of three clusters of the iturin A, fengycin and surfactin families of CLPs. The in vitro and in vivo inhibitory effects of the partially purified iturins and fengycins on the retardation of the growth of P. digitatum were demonstrated, whereas the surfactins had no direct effect. Efficacy tests, using bacterial endospores, the crude extract and chitosan showed significant reduction of fruit decay compared to those found in the presence of individual CLPs, and it was clearly demonstrated that the B. subtilis ABS-S14, itself and its crude extract and chitosan each induced the activities of POX and PAL in the infected flavedo tissues of mandarin fruit. They also co-enhanced the protection of fruit from the green mold pathogen P. digitatum.

Suggested Reviewers: Wojciech J Janisiewicz Ph.D.

Research Plant Pathologist , Biological Approaches for Managing Diseases of Temperate Fruit Crops CRIS Work U, USDA-ARS Appalachian Fruit Research Station

wojciech.janisiewicz@ars.usda.gov

His research interest and expertise in postharvest biology.

Joseph L Smilanick Ph.D.

Plant Pathologist, San Joaquin Valley Agricultural Sciences Center, USDA ARS 9611 South Riverbend AvenueParlier, California 93648-9757 joe.smilanick@ars.usda.gov

He has conducted a research on the biology and control of postharvest plant pathogens of citrus fruit, and has a deep understanding of many technical aspects of the production and handling of many tree crops.

Alejandro Pérez-García Ph.D.

Professor, Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, E-29071 Málaga, Spain aperez@uma.es

His reserach has been emphasized on the Iturin-like Lipopeptides in the biological control of Bacillus subtilis Against bacterial Diseases of Cucurbits.

Xiao Dong Zheng Ph.D.

Professor, Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310029, People's Republic of China

xdzheng@zju.edu.cn

His group has been working on the synergistic effect of chitosan and Cryptococcus laurentii on inhibition of Penicillium expansum infections.

Shiping Tian Ph.D.

Professor, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 tsp@ibcas.ac.cn

His group has conducted a research on the effects of chitosan and oligochitosan on growth of two fungal pathogens

and physiological properties in pear fruit.

Opposed Reviewers:

Cover Letter

Department of Biochemistry,

Faculty of Science,

Prince of Songkla University

P.O. Box 3, Kho Hong

Hat Yai, Songkla 90112. Thailand

May 15, 2014

Dr. I.B. Ferguson

Hortresearch

120 Mt. Albert Road, Private Bag 92 169

Mt Albert, Auckland, New Zealand

Fax: +64 9 815 4202

E-mail: iferguson@hortresearch.co.nz

Dear Editor,

Please find attached the manuscript entitled "Comparative roles of antagonism and induced systemic resistance to control the growth of green mold on citrus fruit by Bacillus

subtilis ABS-S14 endospores, its cyclic lipopeptide antibiotics and chitosan".

All authors in this paper agree to submit this work to Postharvest Biology and

Technology Journal and this work has not been published or submitted to another journal.

The novelty and significant contribution of the submitted work are briefly described and

the transfer of copyright from the author to the publisher would be made. Please let me

know if some alterations will be made before it will be accepted.

I am grateful for your kind attention and looking forward to hearing from you soon.

Yours sincerely,

Wichitra Leelasuphakul

Email: wichitra.l@psu.ac.th

*Highlights (for review)

Highlights

- Families of iturin A, fengycin and surfactin are the major CLP antibiotics present in crude extracts of *B. subtilis* ABS-S14 culture medium.
- Fengycin and iturin A were responsible for the inhibitory activity of *B. subtilis* against *P. digitatum*.
- Antibiosis is the dominant mechanism mediating the reduction of *P. digitatum* induced
 fruit decay in mandarin fruits together with elicitation of induced systemic resistance, as
 detected via increases of POX and PAL activity, after treatment by the antagonistic
 bacteria, its crude antibiotics and chitosan.

- 1 Comparative roles of antagonism and induced systemic resistance to control the
- 2 growth of green mold on citrus fruit by Bacillus subtilis ABS-S14 endospores, its
- 3 cyclic lipopeptide antibiotics and chitosan
- Waewruedee Waewthongrak ^a, Supachai Pisuchpen ^b and Wichitra Leelasuphakul ^a*
- ^a Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai,
- 6 Songkhla, Thailand, 90112
- 7 b Department of Material Product Technology, Faculty of Agro-Industry, Prince of
- 8 Songkla University, Hat Yai, Songkhla, Thailand, 90112
- 9 Corresponding Author
- 10 **Name:** Wichitra Leelasuphakul
- 11 Postal address: Department of Biochemistry, Faculty of Science, Prince of Songkla
- University, Hat Yai, Songkhla, Thailand, 90112
- 13 **Tel:** +66 74 288284**; Fax** +66 74-446656
- 14 **E-mail address:** wichitra.l@psu.ac.th
- 15 Highlights
- Families of iturin A, fengycin and surfactin are the major CLP antibiotics present in
- crude extracts of *B. subtilis* ABS-S14 culture medium.
- Fengycin and iturin A were responsible for the inhibitory activity of B. subtilis
- 19 against *P. digitatum*.
- Antibiosis is the dominant mechanism mediating the reduction of *P. digitatum*
- 21 induced fruit decay in mandarin fruits together with elicitation of induced systemic

resistance, as detected via increases of POX and PAL activity, after treatment by the antagonistic bacteria, its crude antibiotics and chitosan.

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

22

23

Abstract

The suppression of green mold disease caused by P. digitatum, in mandarin fruit by the antagonistic action of B. subtilis ABS-S14, a crude extract from its culture medium, cyclic lipopeptide antibiotics (CLPs) and chitosan were tested together with their abilities to elicit the accumulations of the plant defense related enzymes, Peroxidase (POX) and L-phenylalanine ammonia-lyase (PAL). Both B. subtilis ABS-S14 endospores and a crude extract from its growth medium showed strong antagonistic activities against P. digitatum. The HPLC profiles of the crude extract indicated that the antifungal compounds produced by this strain of B. subtilis consisted of three clusters of the iturin A, fengycin and surfactin families of CLPs. The *in vitro* and *in vivo* inhibitory effects of the partially purified iturins and fengycins on the retardation of the growth of P. digitatum were demonstrated, whereas the surfactins had no direct effect. Efficacy tests, using bacterial endospores, the crude extract and chitosan showed significant reduction of fruit decay compared to those found in the presence of individual CLPs, and it was clearly demonstrated that the B. subtilis ABS-S14, itself and its crude extract and chitosan each induced the activities of POX and PAL in the infected flavedo tissues of mandarin fruit. They also co-enhanced the protection of fruit from the green mold pathogen *P. digitatum*.

- 43 Keywords: B. subtilis; P. digitatum; Cyclic lipopeptides; Chitosan; Peroxidase, L-
- 44 Phenylalanine ammonia-lyase

45

46

1. Introduction

47 The use of biocontrol agents classified as GRAS (Generally Regarded as Safe) can include antagonistic organisms like B. subtilis, their metabolites and chitosan to control 48 postharvest decay of citrus fruits caused by green and blue molds (P. digitatum and P. 49 expansum), respectively has been extensively studied (reviewed in Palou et al., 2008). 50 51 Numerous strains of B. subtilis have been grouped with the plant growth promoting 52 rhizobacteria each of which can increase the growth of host plants and also elicit plant defense mechanisms (Haas and Défago, 2005). Some B. subtilis strains that can inhibit 53 fungal pathogens (antagonists) and/or elicit defense responses (elicitors) in plant tissues 54 55 have been considered to be promising biocontrol agents for postharvest diseases of fruits and vegetables. The in vitro and in vivo inhibitory effects of B. subtilis against different 56 57 types of pathogenic fungi in fruits have been demonstrated for P. digitatum 58 (Leelasuphakul et al., 2008), Gaeumannomyces graminis var. tritici (Ggt) (Liu et al., 2009), Fusarium verticillioides (Cavaglieri et al., 2005), Botrytis cinerea, Monilinia laxa 59 60 and M. fructicola (Yánez-Mendizábal et al., 2011). It is also well known that the efficiency of B. subtilis to control pathogenic microorganisms in plants results from their 61 62 abilities to produce several kinds of extracellular enzymes, e.g. β-1,3-glucanase 63 (Leelasuphakul et al., 2006), cyclic lipopeptide antibiotics (CLPs) (reviewed in Ongena 64 and Jacques, 2008) and volatile organic compounds (Chaurasia et al., 2005, Arrobela et

al., 2010). Many of these compounds are commonly reported to have powerful antimicrobial activity and/or act as signaling molecules to induce plant immune systems that include several kinds of defense related enzymes (reviewed in Raaijmakers et al., 2010). An alternative method to control postharvest disease is to use chitosan, a derivative of chitin which is one of the most abundant biopolymer sources in nature. Chitosan when applied to fruits or vegetables has been shown to have antimicrobial activity and can also activate the induced systemic resistance (ISR) phenomenon in various plants including citrus (Chien et al., 2006, reviewed in Zhang et al., 2011).

Plant defense related enzymes associated with ISR include peroxidase (POX) and L-phenylalanine ammonia-lyase (PAL) both of which are involved in the production of key components of plant disease resistance mechanism such as secondary metabolites of the phenylpropanoid metabolic pathways including lignin, suberin and phytoalexins. All of them play important roles in the defense mechanisms of plants during pathogen infections (Arfuaoi et al., 2007). Changes in POX activity are generally used as markers for ISR and it has been identified as a pathogenesis-related (PR) protein after pathogen infection or induction by an elicitor (Reuveni et al., 1990, Xue et al., 1998). Thus, prior to developing an antagonistic *B. subtilis* as an efficient biocontrol agent against postharvest green mold disease of mandarin using chitosan as a wettable coating agent, the following objectives of the present study were 1) to monitor the *in vitro* and *in vivo* inhibitory effects of *B. subtilis*, its crude extract, and CLPs against green mold disease and 2) to compare this with the ability of chitosan to suppress green mold disease caused by *P. digitatum*, and 3)

to monitor the elicitation of the accumulations of POX and PAL activities in wounded flavedo tissues of mandarin after challenge with *P. digitatum*.

2. Materials and Methods

2.1. Microorganisms

Antagonistic *B. subtilis* ABS-S14 used in this investigation was isolated from soil collected from citrus groves around the south of Thailand and its antifungal activity was screened on potato dextrose agar (PDA) plates (Sangwanich et al., 2013). *B. subtilis* was streaked on nutrient agar plate and incubated at 37°C for 18 h before starting experiments.

P. digitatum was isolated from decayed mandarin fruit and identified. It was maintained on PDA plates with periodic transfers through mandarin fruit to maintain its pathogenicity (Leelasuphakul et al., 2008). Prior to conducting the experiment the fungus was transferred to infect sterilized mandarin fruit to maintain its aggressiveness as a pathogen and reisolated. A suspension of *P. digitatum* conidial was prepared from a 7 day-old culture. The spore concentration was determined with a hemocytometer using a compound light microscope (40X), and adjusted to 10⁴ spores mL⁻¹ by dilution with sterile distilled water.

2.2. *In vitro* assay of antagonistic activity of *B. subtilis* endospores and its cell-free culture supernatant

The ability of *B. subtilis* endospores and its sterilized cell-free culture supernatant to inhibit the growth of *P. digitatum* was explored using the dual-culture and agar well diffusion assays (Perez et al., 1990), respectively. The *B. subtilis* cells were harvested from overnight bacterial cultures in Luria-Bertani broth (LB) by centrifugation at 8,000 rpm, and were streaked approximately 1 cm away from the growing edge of 2 day-old fungal colony. Cell-free supernatant was collected by centrifugation of a 3 day-old bacterial culture in LB, and sterilized by autoclaving at 121°C for 15 min. Two cavities (0.5 cm diameter) were made at approximately 1 cm away from the edge of a 2 day-old fungal colony. Aliquots of 45 µL of sterilized supernatant were added to the cavities, and further incubated at 25°C. The percentage of mycelial growth inhibition was calculated using the formula of Gamliel et al. (1989) after being incubated at 25°C for 5 days.

2.3. HPLC analysis of *B. subtilis* crude extract and CLP isolation

B. subtilis crude extract was prepared from a 3 day-shaken LB culture at 35°C. The cell-free culture supernatant was collected and a crude extract was conducted following Leelasuphakul et al. (2006). CLPs present in the crude extract were first separated using preparative thin-layer chromatography (PTLC; Silica gel 60 F₂₅₄ 1 mm thickness, 20x20 cm, Merck, Germany) with the mobile phase of chloroform-methanol-water (v/v, 65:25:4). One mL of crude extract (30 mg mL⁻¹) was spotted onto the PTLC plate. The CLPs bands were visualized by exposure to UV light and subsequently sprayed with water. The R_f values of the compounds were compared to those of the pure lipopeptides, surfactin, and iturin A obtained from *B. subtilis* (Sigma). Each 1 cm wide horizontal band

was removed from the TLC plate, and the compounds were extracted from silica gel twice with five times 80% ethanol. The combined extracts were dried at 65°C, weighed and re-dissolved in 80% ethanol. The CLP antibiotics obtained from *B. subtilis* crude extract were separated and identified by reverse phase high performance liquid chromatography (RP-HPLC) on a Chromolith® 100 RP-18e column (dimensions 4.6x100 mm, particle size 5 μm, Merck, Germany) using an Agilent 1200 HPLC system (Agilent, California, USA) consisting of quaternary pumps and photodiode array detector. The mobile phase consisted of 0.1% trifluoroacetic acid in MiliQ water and acetonitrile. The gradient elution solvent system was programmed as follows: 35% acetonitrile at 0 min to 80% acetonitrile at 60 min at a flow rate of 1.0 mL min⁻¹. The peaks in the effluent were detected at 210 nm.

2.4. *In vitro* antifungal activity of *B. subtilis* crude extract and CLPs

The antifungal activity of the *B. subtilis* crude extract and CLPs was tested using a disc diffusion assay (Leelasuphakul et al., 2008). The 20 µL of the test antibiotics (1 and 5 mg mL⁻¹) was dropped onto paper disc (0.6 cm diameter), and placed approximately 1 cm away from the edge of a 2 day-old fungal colony growing on a PDA plate, and further incubated at 25°C for 5 days.

- 2.5. Inhibitory effect of chitosan on growth of *P. digitatum*
- 149 2.5.1. *In vitro* test

The 2 g of chitosan (95% deacetylated, Food grade) was dissolved in 2% glacial acetic acid, adjusted to pH 5.6 with 2 M NaOH, and sterilized by autoclaving at 121°C for 15 min. Chitosan solutions (0, 0.1, 0.5, 1, 5 mg mL⁻¹) were mixed with the prewarmed PDA, and the mixtures were poured into the Petri dishes. Actively growing mycelia plugs (0.1 cm diameter) were placed onto the center of each PDA plate supplemented with chitosan and incubated at 25°C for 5 days.

2.5.2 *In vivo* test

Shogun mandarin oranges (*Citrus reticulate* Blanco cv. Shogun) of uniform maturity, and size were selected, and washed with tap water, then immersed in 1% sodium hypochlorite for 5 min, and finally rinsed with sterile distilled water. After air drying at room temperature, the surfaces were cleaned with 70% ethanol, and then a 0.5 cm circle of five wounds (3 mm depth) were made on the fruit equator by puncturing with a sterile needle. Chitosan solutions of 1, 5 and 10 mg mL⁻¹ in sterile distilled water were prepared. The fruits were coated by swirling in 1 mL solution of chitosan, and air-dried at room temperature for 2 h prior to adding aliquots (20 μ L) of *P. digitatum* conidial suspension (10⁴ spores mL⁻¹) onto the wound. The individual treatments were placed and sealed in a plastic box containing a cup of water to maintain a high humidity and all boxes were incubated at 25°C. The fruit was checked for disease incidence on the visible signs of a lesion with a diameter \geq 0.5 cm at the inoculation point. The percent decay was calculated by summing the number of fruits with an average lesion of \geq 5.0 cm diameter wound×100/total number of inoculated wounded fruit (Leelasuphakul et al., 2008). There

were three replicate trials of 5 fruits per treatment with complete randomization. All the fruit experiments were performed twice.

2.6. Efficacy test for *B. subtilis*, its crude extract, purified CLPs and chitosan as biocontrol agents against *P. digitatum*

Based on the *in vitro* antifungal activity, *B. subtilis* endospores, crude extract and purified CLPs, and chitosan were further investigated with regard to their efficiencies to control the growth of *P. digitatum* on mandarin fruit. The endospore suspension of *B. subtilis* was prepared from a 3 day-old bacterial culture, and the vegetative cells were heat-killed by incubation at 80°C for 30 min. The endospores were harvested by centrifugation at 8,000 rpm for 30 min and washed 3 times with sterile distilled water. The endospore suspension of *B. subtilis* was adjusted to 10⁸ CFU mL⁻¹ by comparing with the absorbance of a McFarland No 0.5 filter.

Efficacy tests were conducted as previously described. The 20 μL aliquots of the solution was dropped into the artificial wound and allowed to dry for 2 h prior to adding 20 μL of the *P. digitatum* conidial suspension. The first experiment set (T1-T4) was the co-application of *P. digitatum* with *B. subtilis* endospores (T2), crude extract (10 mg mL⁻¹) (T2), fruits were coated with chitosan (10 mg mL⁻¹) (T3), and Imazalil, (500 ppm) (T4). Sterilized water was used as a healthy control (T5), and only *P. digitatum* was applied as a pathogen inoculated control (T6). The second experiment for the efficacy test for the *B. subtilis* CLPs on *P. digitatum* co-inoculated fruits including addition of: 1 mg mL⁻¹ of iturin A, fengycin, and surfactin solutions onto the wound followed by the

addition of *P. digitatum* conidial suspension. Healthy and pathogen inoculated control treatments were included. Disease incidence and percent decay were measured as previously described.

2.7. Enzyme activity assay

Following treatments from the fruit efficacy assay, flavedo tissues obtained from circle 1 cm away for the site of inoculation of the mandarin peel were collected at 0, 24, 48 and 72 h of incubation time. Acetone powders (AP) were prepared (Ballester et al., 2006) from flavedo tissues. The 5 g of flavedo tissues were ground to a fine powder under liquid nitrogen, and then transferred to 50 mL of cold acetone. The homogenate were filtered though a Whatman No.1 filter paper using vacuum suction pump and the sample residues were washed once with cold acetone. The resulting AP was air-dried at room temperature overnight and kept at -20°C.

AP (50 mg) was extracted with 1.5 mL of the supernatant (100 mM phosphate buffer, pH 6.0). The plant supernatant was collected by centrifugation at 12,000 rpm at 4 °C for 15 min. Protein concentration in the supernatant was determined according to Bradford (1976). For the peroxidase assay, a mixture of 200 μ L of supernatant, 1,774 μ L of extraction buffer and 6 μ L of 20 mM guaiacol (Merck, Germany) were used as a blank for the spectrophotometer prior to adding 20 μ L of H₂O₂ The absorbance at 470 nm was recorded every 15 sec for 2 min. The maximum slope of the curve (Δ A470/ Δ Time) was used to calculate units of enzyme activity, which was expressed in Units mg protein⁻¹.

PAL activity was determined by measuring the conversion rate of L-phenylalanine to trans-cinnamic acid at 37°C. PAL protein was extracted from 50 mg of AP with 1.0 mL of Tris-HCl buffer (100 mM, pH 8.5) containing 20 mM β -mercaptoethanol. The assay mixture containing 20 μ L of enzyme extract and 500 μ L of 0.1 M L-phenylalanine (Sigma-Aldrich®, Missouri, USA) in a total volume of 2 mL was incubated at 37°C. After 1 h of incubation, the enzyme reaction was stopped by adding 100 μ L of 1 N HCl. The absorbance of the reaction mixture was detected at 290 nm. PAL activities were determined from a cinnamic acid standard curve (Silva et al., 2004). Units of enzyme activity were expressed as nmole of trans- cinnamic acid h⁻¹ g AP⁻¹.

2.8. Statistics analytical

The statistical analysis of variance of percent infection data and differences among treatments was carried out using Duncan's new multiple range test (P= 0.05).

3. Results and discussion

3.1. Antifungal activity of *B. subtilis* and its cell free culture supernatant on *P. digitatum*Strong antagonistic activities were obtained by *B. subtilis* strain ABS-S14 and its cell
free culture supernatants against the mycelial growth of *P. digitatum*. Growth of *P. digitatum* on culture medium was reduced by 96.2 and 90.9 percent after exposure to *B. subtilis* and cell-free culture supernatant, respectively. The growth of *P. digitatum*mycelium was limited and it did not spread through the plate or grow across *B. subtilis*

colonies or the wells containing the bacterial cell-free culture supernatants. The findings of this study were consistent with those of various other strains of *B. subtilis* and their cell free culture supernatants that showed strong antifungal properties and completely inhibited growth of different types of plant pathogenic fungi including *P. digitatum* (Palou et al., 2008, reviewed in Droby et al., 2009). One possible explanation for this phenomenon is the ability of *B. subtilis* strain ABS-S14 to produce a broad spectrum of cyclic lipopeptide antibiotics and release them into the culture medium as shown by a number of other workers (Asaka and Shoda, 1996, Lee et al., 2012).

3.2. The antagonistic role of *B. subtilis* crude extract and CLP antibiotics in inhibiting *P. digitatum* growth on agar plate

The antifungal activity of the antibiotic compounds produced from a *B. subtilis* crude extract obtained from a cell-free supernatant during the lag phase growth of the bacteria at 72 h were confirmed. Upon RP-HPLC, it was evident that there were three main groups of peaks of the crude extract obtained from the *B. subtilis* ABS-S14 (displayed in Fig. 1). This confirmed the existence of the CLP families; iturin A (A), fengycin (B) and surfactin (C) at Retention time of 7.4 to 14.6 min, 23.2 to 39.1 min and 45.4 to 51.5 min, respectively. This finding of the RP-HPLC profile of CLPs corresponded to those derived from the methanolic extract of *B. subtilis* strains UMAF6614 and UMAF6639 (Romero et al., 2007a) and a butanolic extract from *B. subtilis* strains PCL1608 and PCL1612 (Cazorla et al., 2007). In addition, the high effectiveness of the crude extract from *B. subtilis* strain ABS-S14 at 5 and 10 mg mL⁻¹ to suppress *P. digitatum* growth with

inhibitions of 81.6% and 94.1%, respectively was demonstrated (Fig. 2). Furthermore, both the hyphae and the conidia of *P. digitatum* exhibited abnormal structures during the development of mycelia, including mycelium swelling and conidial germination after exposure to the crude extract, while only normal structures of the mycelia, hyphae and conidia were observed in the control treatment (data not shown). It has been reported that the swelling and morphological damage of conidia was detected in the presence of antibiotics such as iturin, fengycin and surfactin (Romero et al., 2007b, Ruangwong et al., 2012). The strong antagonistic effect of the purified CLP was considered to be associated with iturin A and fengycin. This work has shown that P. digitatum, a green mold was most sensitive to the iturin A and fengycin from B. subtilis ABS-S14 at 1 mg mL⁻¹ 91.8 and 72.6 % fungal inhibition, respectively. In contrast, surfactin had no inhibitory effect on the growth of P. digitatum. The presence of a major protective role for fengycin and iturin A purified from B. subtilis ABS-S14 as demonstrated in this study confirmed the results from previous work (Hu et al., 2007), whereas surfactin purified from B. subtilis ABS-S14 showed no inhibitory effect against *P. digitatum*. This was a similar result to the work reviewed by Ongena and Jacques (2008) although they reported that surfactin did inhibit *Rhizoctonia solani* (Asaka and Makoto 1996). Hence, the antifungal activity of the crude extract was attributed to the iturin A and fengycin families. The strong evidence from observations with a light microscope indicated that fengycin and iturin A acted on cell membranes as exhibited by the formation of pores in the fungal mycelia and their disrupted walls. Fengycin action may be based on the transition state as proposed by Deleu et al. (2008). Meanwhile, iturin A produced by B. subtilis ABS-S14 did pass

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

through the fungal cell wall and induced the formation of ion conducting pores as reviewed by Ongena and Jacques (2008).

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

280

281

3.3. In vivo and in vitro inhibitory effects of chitosan on the growth of P. digitatum

A concentration dependent inhibition of the mycelial growth of P. digitatum by chitosan was demonstrated. The chitosan 1 and 5 mg mL⁻¹ gave 100% fungal inhibition. An approximately 96% and 31% fungal inhibition were demonstrated in plate containing 0.5 and 0.1 mg mL⁻¹ chitosan, respectively (Fig. 3). The diameter of the fungal colony of the control plate was 20.5 mm, while its size was reduced to 4.8 mm with 0.5 mg mL⁻¹ chitosan, and 16.8 mm with 0.1 mg mL⁻¹ chitosan. P. digitatum did not grow at all on the plate supplemented with either chitosan at 1.0 or 5.0 mg mL⁻¹. Such a result was consistent with the observation of Rappussi et al. (2009), who found that 1% chitosan completely inhibited the growth of Guignardia citricarpa in vitro. The strong evidence provided in this experiment confirmed that chitosan can exert a strong inhibitory effect on fungal growth by damaging the plasma membranes of the mycelia and spores (Liu et al., 2007). This effect may be related to chitosan having polycationic charges that enabling it to interact with negative charges in the fungal cell wall that cause a leakage of cell components and subsequently lead to cell death (Bautista-Banos et al., 2006, Gracia-Rincoń et al., 2010). Further investigation of the development of disease in chitosan coated mandarin fruits with respect to retardation of fungal growth on the inoculated fruits revealed a significant reduction of decay after treatment with chitosan. However, protection was not as complete as seen with fruits treated with imazalil. The symptoms of

green mold infection that appeared on the fruits treated with P. digitatum alone gradually increased and showed 80% decay at day 6. An almost equal disease incidence (26%) and percent decay (26 and 20%) was achieved in the treatments with coatings of 5 and 10 mg mL⁻¹ chitosan, respectively. Meanwhile, disease symptoms were still detected on 46% fruits coated with chitosan at lower concentration (1 mg mL⁻¹). This result indicated that an effective inhibitory concentration of chitosan was 5-10 mg mL⁻¹ for a fruit coating that would control green mold decay of postharvest mandarin fruit. However, a lower concentration of chitosan such as 1 mg mL⁻¹ showed complete inhibition only on the in vitro antifungal activity. The present findings seem to be consistent with other research where 1% (w/v) chitosan was shown to control postharvest disease in many kinds of crops, including Botrytis cinerea in table grapes (Romanazzi et al., 2002) and Monilinia fructicola in peaches (Casals et al., 2012). The antifungal activity of chitosan on mandarin fruit may be attributed to a layer of chitosan forming a surface film in this experiment, since it was reported that a 3 µM thick layer of chitosan was used in apple to act as a barrier between the crop surface and the pathogen, and subsequently decreased the chance for the pathogen to penetrate (Du et al., 1998; Romanazzi et al., 2002).

318

319

320

321

322

323

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

3.4. Effect of *B. subtilis* and its crude extract on fruit decay compared to that by chitosan

An *in vivo* antifungal assay was performed to compare the abilities of *B. subtilis* endospores, crude extracts, chitosan and a chemical fungicide (Imazalil 500 ppm) to reduce the symptoms and development of green mold disease in fruits inoculated with *P. digitatum*. One week following application the *B. subtilis* endospores (10^8 CFU mL⁻¹) and

its crude extract (10 mg mL⁻¹) showed equal effectiveness in controlling disease by approximately 70%. As shown in Fig. 4, the disease incidence and percent decay in the chitosan (10 mg mL⁻¹) treatment was similar to that of the bacterial endospores. There was no disease incidence or decay found in healthy control and infected fruit treated with imazalil. Also the antifungal effects of the CLPs produced by the B. subtilis were confirmed by this in vivo experiment. When fengycin and iturin A were applied separately to the P. digitatum inoculated fruit with, the reduction in decay of the mandarin fruits was 60 to 65% on day 5. On day 6, decay was detected in the fruits treated with the B. subtilis endospores or crude extract. These experiments provided additional evidence for the key roles of the two CLPs purified from the B. subtilis crude extract as did previous previous findings that the antagonistic activity of B. subtilis and B. amyloliquefaciens toward the fungal pathogens was associated with both the iturins and fengycins (Romero et al., 2007b, Liu et al., 2011). It was also shown that on day 4, the fungal inoculated mandarin fruit treated with surfactin developed decay symptoms as quickly as those found in the P. digitatum inoculated mandarin fruits. Hence the endospores from the antagonistic B. subtilis ABS-S14, and its crude extract were highly effective in suppressing P. digitatum growth not only on the normal growth medium, but also their ability to suppress disease symptoms in the inoculated fruit. The results presented here indicate the potential to use B. subtilis endospores, crude extract and chitosan for the biocontrol of postharvest disease caused by P. digitatum on mandarin fruit.

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

3.5 Induced defense-related enzyme activity

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

To assess if the development of resistance was associated with the induction of the disease resistance enzymes, PAL and POX enzyme assays were carried out after infection by the pathogen. The roles of PAL and POX proteins in plant tissues associated with disease resistance were verified in this experiment. Treatments of mandarin fruits with B. subtilis ABS-S14, its crude extract and chitosan to enhance regulation of antifungal compound production such as phenolic metabolic products (lignin), and phytoalexins during infections by pathogens as previously mentioned (Cai et al., 2008) were carried on. It was a surprise to find that the crude extract obtained from B. subtilis ABS-14 had the most potent inducing effect on these key enzymes (POX and PAL) that are associated with the ISR in flavedo tissues of mandarin after attack by P. digitatum (Fig. 5). It was also of interest that the observed changes in the activities of the two enzymes with different inducers were different. Among the various treatments not only was the highest activity of PAL found in fruits treated with crude extract, but the increase began within 48 h and reached its highest level (261.6 mmole h⁻¹g AP⁻¹) at 72 h. The greatest increase in the POX activity was also observed (389.9 Units mg protein⁻¹) at 72 h after treatment with the crude extract. It was also remarkable that, the POX activity detected in the flavedo tissues induced by the crude extract of B. subtilis was about 8.6 and 4.7 fold higher than occurred in the treatments with its endospores and chitosan, respectively. This was 9.1 fold higher than that found in the sterile water control treatment at 72 h. Only a slight increase of POX activity was found in mandarin fruit treated with P. digitatum alone after 48 h. Apart from the interesting finding on the enzyme induction by

the bacterial crude extract alone, POX activity increased markedly starting from 48 h in the fruits treated with the bacterial endospores and chitosan, then showed a rapid decline of enzyme activity at 72 h. POX activity in fruits treated with chitosan also reached a maximum at 48 h. PAL induction with chitosan was maximum at 48 h, then declined. Only a reasonable induction of PAL activity was observed in treatments with B. subtilis endospores, its crude extract and pathogen alone. The elicitation of PAL and POX activities in flavedo tissues by the antagonist B. subtilis ABS-14 and its metabolites obtained from this study was in agreement with several other studies. It has been shown that the activities of the defense related enzymes are enhanced in plants upon treatment with B. subtilis in a similar way to the POX and PAL in cucumber plants (Chen et al., 2010), hot pepper (Nakkeeran et al., 2006) rice (Jayaraj et al., 2005), and in tomato (Recently, Li et al., 2008). Nevertheless, results from this study have indicated that infection of P. digitatum was able to induce activity of POX and PAL in agreement with the report of Ballester et al. (2006). However, we have demonstrated that there was a higher activity of the POX and PAL in pathogen infected mandarin flavedo tissues induced by B. subtilis and its active antifungal product and this may be attributed to it being more resistant to P. digitatum development. Several studies have indicated that B. subtilis can act as an elicitor to trigger plant defense mechanism. It has been shown that induction of ISR by B. cereus in pigeon pea, produced defense related enzymes such as PAL, POX and polyphenol oxidase (Dutta et al., 2008). In addition to its antifungal activity, chitosan is involved in activating the ISR immune

system in plants as we have now shown that it can increase the activity of defense related

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

enzymes PAL and POX in flavedo tissues and also protect against *P. digitatum* infections, (Fig. 5). This finding is consistent with other research work i.e., a significant increase of PAL activity in table grapes was shown when treated with 1% chitosan (Romanazzi et al., 2002). Induction of POX activity in flavedo tissues by chitosan could help to control *P. digitatum* infections (Meng et al., 2010). Rappussi et al. (2009) have also demonstrated that CHI, GLU, POX and PPO activity was induced by chitosan in "Valencia" oranges that resulted in an increase of resistance against *Guignardia citricarpa*. The ability of both *B. subtilis* ABS-14 its antibiotics and chitosan to inhibit fungal growth and disease caused by *P. digitatum* indicates that both could be developed as agents to protect mandarins from postharvest green mold disease in a similar way to the use of *Cryptococcus laurentii* and chitosan to efficiently inhibit *P. expansum* in apple fruits (Yu et al., 2007).

4. Conclusions

Results of this study have indicated that not only did *B. subtilis* strain ABS-S14 and its antibiotics exhibit a strong antagonistic property to *P. digitatum* growth, but chitosan also greatly inhibited the growth of *P. digitatum* both *in vitro* and *in vivo*. Microscopic examination of the morphology of treated fungi showed that the bacterial crude extract caused severe damage to the cell walls of the mycelia and conidia. The efficiency of *B. subtilis* ABS-S14, and its crude extract produced a reasonable disease reduction and enhanced mandarin POX and PAL enzyme levels in response to pathogen attack have been intensively discussed. The antagonistic ability of bacteria *B. subtilis* ABS-S14 to

prevent fruit decay definitely related to its ability to produce CLPs and stimulating defense mechanism in mandarin fruit. Finally, the results from this study have confirmed that *B. subtilis* ABS-S14, its CLPs and chitosan can control green mold fruit decay of mandarin fruit. Further investigation on *in vivo* antibiotic synthesis of *B. subtilis* ABS-S14 after application on the pathogen inoculated fruit and the environmental conditions for the antagonist microorganism to produce antibiotic CLPs and act as an elicitor of defense related gene expression would offer further insights into the molecular events of elicitation of plant disease resistance against pathogen attack.

Acknowledgments

This research was financially supported by grants no. DBG5380015 from the Thailand Research Fund (TRF) and the National Research University Project of Thailand's Office of Higher Education Commission (Grant no. SCI540530S). W. Waewthongrak would like to thank a Royal Golden Jubilee Ph.D. student scholarship from the TRF, the Excellent Scholarship in Biochemistry department, Prince of Songkla University (PSU), the PSU Graduate Fund, and the Postharvest Technology Innovation Center. We also thank Dr. Brian Hodgson, Dr. Greg McCollum and Katrina Maffey for their suggestions and assistances with the English.

References

- 432 Arfaoui, A., El Hadrami, A., Mabrouk, Y., Sifi, B., Boudabous, A., El Hadrami, I.,
- Daayf, F., Chérif, M., 2007. Treatment of chickpea with *Rhizobium* isolates enhances

- the expression of phenylpropanoid defense-related genes in response to infection by
- Fusarium oxysporum f. sp. ciceris. Plant Physiol Biochem 45, 470–479.
- 436 doi:10.1016/j.plaphy.2007.04.004
- 437 Arrebola, E., Sivakumar, D., Korsten, L., 2010. Effect of volatile compounds produced
- by *Bacillus* strains on postharvest decay in citrus. Biol Control 53, 122–128.
- 439 doi:10.1016/j.biocontrol.2009.11.010
- 440 Asaka, O., Shoda, M., 1996. Biocontrol of Rhizoctonia solani damping-off of tomato
- with *Bacillus subtilis* RB14. Appl Environ Microbiol 62, 4081–4085.
- 442 Ballester, A.R., Lafuente, M.T., González-Candelas, L., 2006. Spatial study of
- antioxidant enzymes, peroxidase and phenylalanine ammonia-lyase in the citrus fruit—
- 444 Penicillium digitatum interaction. Postharvest Biol Technol 39, 115-124
- 445 doi:10.1016/j.postharvbio.2005.10.002
- 446 Bautista-Baños, S., Hernández-Lauzardo, A.N., Velázquez-del Valle, M.G., Hernández-
- López, M., Ait Barka, E., Bosquez-Molina, E., Wilson, C.L., 2006. Chitosan as a
- 448 potential natural compound to control pre and postharvest diseases of horticultural
- commodities. Crop Prot 25, 108–118. doi:10.1016/j.cropro.2005.03.010
- 450 Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram
- quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72,
- 452 248–254. doi:10.1016/0003-2697(76)90527-3
- 453 Cai, K., Gao, D., Luo, S., Zeng, R., Yang, J., Zhu, X., 2008. Physiological and
- 454 cytological mechanisms of silicon-induced resistance in rice against blast disease.
- 455 Physiol Plant 134, 324–333. doi:10.1111/j.1399-3054.2008.01140.x

- 456 Casals, C., Elmer, P.A.G., Viñas, I., Teixidó, N., Sisquella, M., Usall, J., 2012. The
- combination of curing with either chitosan or *Bacillus subtilis* CPA-8 to control
- brown rot infections caused by *Monilinia fructicola*. Postharvest Biol Technol 64,
- 459 126–132. doi:10.1016/j.postharvbio.2011.06.004
- 460 Cavaglieri, L., Orlando, J., Rodríguez, M.I., Chulze, S., Etcheverry, M., 2005. Biocontrol
- of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root
- level. Res Microbiol 156, 748–754. doi:10.1016/j.resmic.2005.03.001
- 463 Cazorla, F.M., Romero, D., Pérez-García, A., Lugtenberg, B.J.J., de Vicente, A.,
- Bloemberg, G., 2007. Isolation and characterization of antagonistic *Bacillus subtilis*
- strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol
- 466 103, 1950–1959. doi:10.1111/j.1365-2672.2007.03433.x
- 467 Chaurasia, B., Pandey, A., Palni, L.M.S., Trivedi, P., Kumar, B., Colvin, N., 2005.
- 468 Diffusible and volatile compounds produced by an antagonistic *Bacillus subtilis* strain
- cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160, 75–81.
- 470 doi:10.1016/j.micres.2004.09.013
- Chen, F., Wang, M., Zheng, Y., Luo, J., Yang, X., Wang, X., 2010. Quantitative changes
- of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt
- by Bacillus subtilis B579. World J Microbiol Biotechnol 26, 675-684.
- 474 doi:10.1007/s11274-009-0222-0
- 475 Chien, P., Chou, C., 2006. Antifungal activity of chitosan and its application to control
- post-harvest quality and fungal rotting of Tankan citrus fruit (*Citrus tankan Hayata*).
- 477 J Sci Food Agric86, 1964–1969. doi:10.1002/jsfa.2570

- Deleu, M., Paquot, M., Nylander, T., 2008. Effect of fengycin, a lipopeptide produced by
- 479 Bacillus subtilis, on model biomembranes. Biophys J 94, 2667–2679.
- 480 doi:10.1529/biophysj.107.114090
- Droby, S., Wisniewski, M., Macarisin, D., Wilson, C., 2009. Twenty years of postharvest
- biocontrol research: Is it time for a new paradigm? Postharvest Biol Technol 52, 137–
- 483 145. doi:10.1016/j.postharvbio.2008.11.009
- Du, J., Gemma, H., Iwahori, S., 1998. Effects of chitosan coating on the storability and
- on the ultrastructural changes of "Jonagold" apple fruit in storage. Food Preserv Sci
- 486 Science (Japan).
- Dutta, S., Mishra, A.K., Kumar, B.S.D., 2008. Induction of systemic resistance
- against fusarial wilt in pigeon pea through interaction of plant growth
- promoting rhizobacteria and rhizobia. Soil Biol Biochem 40, 452–461.
- 490 doi:10.1016/j.soilbio.2007.09.009
- 491 Gamliel, A., Katan, J., Cohen, E., 1989. Toxicity of chloronitrobenzenes to Fusarium
- 492 oxysporum and rhizoctonia solani as related to their structure. Phytoparasitica 17,
- 493 101–106. doi:10.1007/BF02979517
- 494 García-Rincón, J., Vega-Pérez, J., Guerra-Sánchez, M.G., Hernández-Lauzardo, A.N.,
- 495 Peña-Díaz, A., Velázquez-Del Valle, M.G., 2010. Effect of chitosan on growth and
- 496 plasma membrane properties of *Rhizopus stolonifer* (Ehrenb.:Fr.) Vuill. Pestic
- 497 Biochem Physiol 97, 275–278. doi:10.1016/j.pestbp.2010.03.008
- 498 Haas, D., Défago, G., 2005. Biological control of soil-borne pathogens by fluorescent
- pseudomonads. Nat Rev Microbiol 3, 307–319. doi:10.1038/nrmicro1129

- Hu, L.B., Shi, Z.Q., Zhang, T., Yang, Z.M., 2007. Fengycin antibiotics isolated from B-
- FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932.
- FEMS Microbiol Lett 272, 91–98. doi:10.1111/j.1574-6968.2007.00743.x
- Jayaraj, J., Radhakrishnan, N.V., Kannan, R., Sakthivel, K., Suganya, D., Venkatesan, S.,
- Velazhahan, R., 2005. Development of new formulations of Bacillus subtilis for
- management of tomato damping-off caused by *Pythium aphanidermatum*. Biocontrol
- 506 Sci Technol 15, 55–65. doi:10.1080/09583150400015920
- Lee, G., Ko, J., Oh, B., Choi, J., Lee, K., Chae, J., Kamala-Kannan, S., 2012. Biological
- control of postharvest diseases of apples, peaches, and nectarines by *Bacillus subtilis*
- 509 S16 isolated from halophytes rhizosphere. Biocontrol Sci Technol 22, 351–361.
- 510 doi:10.1080/09583157.2012.658553
- Leelasuphakul, W., Hemmanee, P., Chuenchitt, S., 2008. Growth inhibitory properties of
- 512 Bacillus subtilis strains and their metabolites against the green mold pathogen
- 513 (*Penicillium digitatum* Sacc.) of citrus fruit. Postharvest Biol Technol 48, 113–121.
- 514 doi:10.1016/j.postharvbio.2007.09.024
- 515 Leelasuphakul, W., Sivanunsakul, P., Phongpaichit, S., 2006. Purification,
- 516 characterization and synergistic activity of β -1,3-glucanase and antibiotic extract from
- an antagonistic *Bacillus subtilis* NSRS 89-24 against rice blast and sheath blight.
- 518 Enzyme Microb Technol 38, 990–997. doi:10.1016/j.enzmictec.2005.08.030
- Li, S.M., Hua, G.G., Liu, H.X., Guo, J.H., 2008. Analysis of defence enzymes induced by
- antagonistic bacterium *Bacillus subtilis* strain AR12 towards *Ralstonia solanacearum*
- in tomato. Ann Microbiol 58, 573–578. doi:10.1007/BF03175560

- 522 Liu, B., Qiao, H., Huang, L., Buchenauer, H., Han, Q., Kang, Z., Gong, Y.,
- 523 2009. Biological control of take-all in wheat by endophytic *Bacillus subtilis*
- E1R-j and potential mode of action. Biol Control 49, 277-285.
- 525 doi:10.1016/j.biocontrol.2009.02.007
- Liu, J., Tian, S., Meng, X., Xu, Y., 2007. Effects of chitosan on control of postharvest
- diseases and physiological responses of tomato fruit. Postharvest Biol Technol 44,
- 528 300–306. doi:10.1016/j.postharvbio.2006.12.019
- 529 Liu, J., Zhou, T., He, D., Li, X., Wu, H., Liu, W., Gao, X., 2011. Functions of
- lipopeptides bacillomycin D and fengycin in antagonism of Bacillus
- 531 amyloliquefaciens C06 towards Monilinia fructicola. J Mol Microbiol Biotechnol 20,
- 532 43–52. doi:10.1159/000323501
- Meng, X., Yang, L., Kennedy, J.F., Tian, S., 2010. Effects of chitosan and oligochitosan
- on growth of two fungal pathogens and physiological properties in pear fruit.
- 535 Carbohydr Polym 81, 70–75. doi:10.1016/j.carbpol.2010.01.057
- Nakkeeran, S., Kavitha, K., Chandrasekar, G., Renukadevi, P., Fernando, W.G.D., 2006.
- Induction of plant defence compounds by *Pseudomonas chlororaphis* PA23 and
- Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by
- 539 Pythium aphanidermatum. Biocontrol Sci Technol 16, 403–416.
- 540 doi:10.1080/09583150500532196
- Ongena, M., Jacques, P., 2008. Bacillus lipopeptides: versatile weapons for plant disease
- 542 biocontrol. Trends Microbiol 16, 115–125. doi:10.1016/j.tim.2007.12.009

- Palou, L., Smilanick, J.L., Droby, S., 2008. Alternatives to conventional fungicides for
- the control of citrus postharvest green and blue moulds. Stewart Postharvest Review
- 545 4, 1–16. doi:10.2212/spr.2008.2.2
- Perez, C., Paul, M., Bazerque, P., 1990. An antibiotic assay by the agar-well diffusion
- method. Acta Biol. Med. Exp., 15, 113–115.
- Raaijmakers, J.M., De Bruijn, I., Nybroe, O., Ongena, M., 2010. Natural functions of
- lipopeptides from *Bacillus* and *Pseudomonas*: more than surfactants and antibiotics.
- FEMS Microbiol Rev 34, 1037–1062. doi:10.1111/j.1574-6976.2010.00221.x
- Rappussi, M.C.C., Pascholati, S.F., Benato, E.A., Cia, P., 2009. Chitosan reduces
- infection by *Guignardia citricarpa* in postharvest "Valencia" oranges. Braz Arch Biol
- Technol 52, 513–521. doi:10.1590/S1516-89132009000300001
- Reuveni, R., Shimoni, M., Karchi, Z., 1990. A rapid assay for monitoring peroxidase
- activity in melon as a marker for resistance to Pseudoperonospora cubensis. J
- Phytopathol 129, 333–338. doi:10.1111/j.1439-0434.1990.tb04310.x
- Romanazzi, G., Nigro, F., Ippolito, A., DiVenere, D., Salerno, M., 2002. Effects of pre-
- and postharvest chitosan treatments to control storage grey mold of table grapes. J
- Food Sci 67, 1862–1867. doi:10.1111/j.1365-2621.2002.tb08737.x
- Romero, D., de Vicente, A., Olmos, J. l., Dávila, J. c., Pérez-García, A., 2007a. Effect of
- lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and
- ultrastructure of the cucurbit fungal pathogen *Podosphaera fusca*. J. Appl. Microbiol.
- 563 103, 969–976. doi:10.1111/j.1365-2672.2007.03323.x

- Romero, D., de Vicente, A., Rakotoaly, R.H., Dufour, S.E., Veening, J.W., Arrebola, E.,
- Cazorla, F.M., Kuipers, O.P., Paquot, M., Pérez-García, A., 2007b. The iturin and
- fengycin families of lipopeptides are key factors in antagonism of *Bacillus subtilis*
- toward *Podosphaera fusca*. Mol. Plant Microbe Interact 20, 430–440.
- doi:10.1094/MPMI-20-4-0430
- Ruangwong, O., Liang, W., 2012. Effect of crude extract from Bacillus subtilis LB5
- cultivated broth on conidial germination of *Colletotrichum Gloeosporioides*. World
- 571 Acad Sci Eng Technol 72, 567-571.
- 572 Sangwanich, S., Sangchote, S., Leelasuphakul, W. 2013. Biocontrol of citrus green
- mould and postharvest quality parameters. Int Food Res J 20(6): 3381-3386.
- 574 Silva, H.S.A., da Silva. R.R., Macagnan, D., de Almeida H.V. B., Pereira, M.C.B.,
- Mounteer, A., 2004. Rhizobacterial induction of systemic resistance in tomato plants:
- 576 non-specific protection and increase in enzyme activities. Biol Control 29, 288–295.
- 577 doi:10.1016/S1049-9644(03)00163-4
- Xue, L., Charest, P.M., Jabaji-Hare, S.H., 1998. Systemic induction of peroxidases, 1,3-
- β-glucanases, chitinases, and resistance in bean plants by *Binucleate Rhizoctonia*
- 580 species. Phytopathology 88, 359–365. doi:10.1094/PHYTO.1998.88.4.359
- Yánez-Mendizábal, V., Usall, J., Viñas, I., Casals, C., Marín, S., Solsona, C., Teixidó, N.,
- 582 2011. Potential of a new strain of *Bacillus subtilis* CPA-8 to control the major
- postharvest diseases of fruit. Biocontrol Sci Technol 21, 409–426.
- 584 doi:10.1080/09583157.2010.541554

585	Yu, T., Li, H.Y., Zheng, X.D., 2007. Synergistic effect of chitosan and Cryptococcus
586	laurentii on inhibition of Penicillium expansum infections. Int. J Food Microbiol.
587	114, 261–266. doi:10.1016/j.ijfoodmicro.2006.09.008
588	Zhang, H., Li, R., Liu, W., 2011. Effects of chitin and its derivative chitosan on
589	postharvest decay of fruits: A review. Int J Mol Sci 12, 917-934.
590	doi:10.3390/ijms12020917
591	
592	Figure caption
593	
594	Fig. 1. HPLC chromatograms of crude extract obtained from cell-free supernatants
595	of B. subtilis ABS-S14. The 20 μg of crude extract was injected to a LiChrospher® 100
596	RP-18e column. The elution was carried out with a stepwise gradient from 35%-90% of
597	acetonitrile and 0.1% TFA at a flow rate of 1.0 ml min ⁻¹ and peaks were monitored at 210
598	nm. The type of CLP detected were identified based on their retention times (RT) and
599	corresponding peak areas comparing with commercial standards (Sigma-Aldrich).
600	
601	Fig. 2. Effect of a crude extract from B. subtilis on the growth of P. digitatum after 5
602	days incubation at 25°C. A: 80% ethanol only; B: Aliquot of 10 mg/mL bacterial crude
603	extract from a 3 day old cell free supernatant from <i>B. subtilis</i> ABS-S14.
604	
605	Fig. 3. Effect of chitosan at various concentrations on growth of <i>P. digitatum in vitro</i> .
606	In each treatment, vertical bars represent standard error from mean of three replications.

607	
608	Fig. 4. Effect of B. subtilis ABS-S14 and its crude extract on controlling green mold
609	rot disease. Disease incidence (A) and percent decay (B) in mandarin fruit were
610	determined every day after incubated at 25°C at 95% RH for 7 day.
611	
612	Fig. 5. Induction of defense related enzymes in mandarin flavedo obtained from
613	various treatments. POX (A) and PAL (B) activity in mandarin flavedo tissue at 0 to 72
614	h after inoculation with P. digitatum. In each treatment, vertical bars are the mean values
615	of three replications, vertical lines within bar = standard error

List of reviwers

1. Joseph L Smilanick

USDA-ARS <u>San Joaquin Valley Agricultural Sciences Center</u>, 9611 South Riverbend AvenueParlier, California 93648-9757

E-mail address: Joe.Smilanick@gmail.com, joe.smilanick@ars.usda.gov

2. Alejandro Pérez-García

Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, E-29071 Málaga, Spain

E-mail address: aperez@uma.es

3. Xiao Dong Zheng

Food microbiology and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China

E-mail address: xdzheng@zju.edu.cn

4. Wojciech J Janisiewicz

USDA-ARS Appalachian Fruit Research Station 2217 Wiltshire Road Kearneysville, WV 25430

E-mail address: wojciech.janisiewicz@ars.usda.gov

5. Shiping Tian

Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, PR China

E-mail address: tsp@ibcas.ac.cn (S. Tian)

Figure 1 Click here to download high resolution image

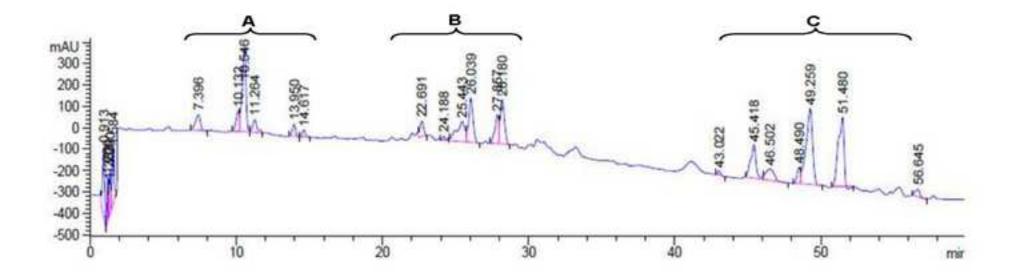


Figure 2 Click here to download high resolution image

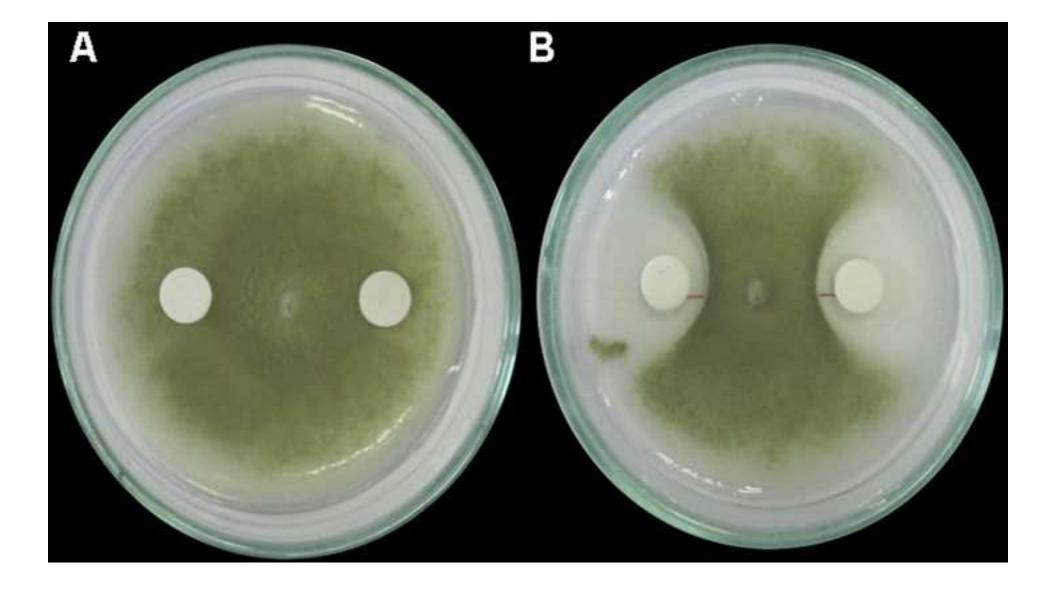


Figure 3
Click here to download high resolution image

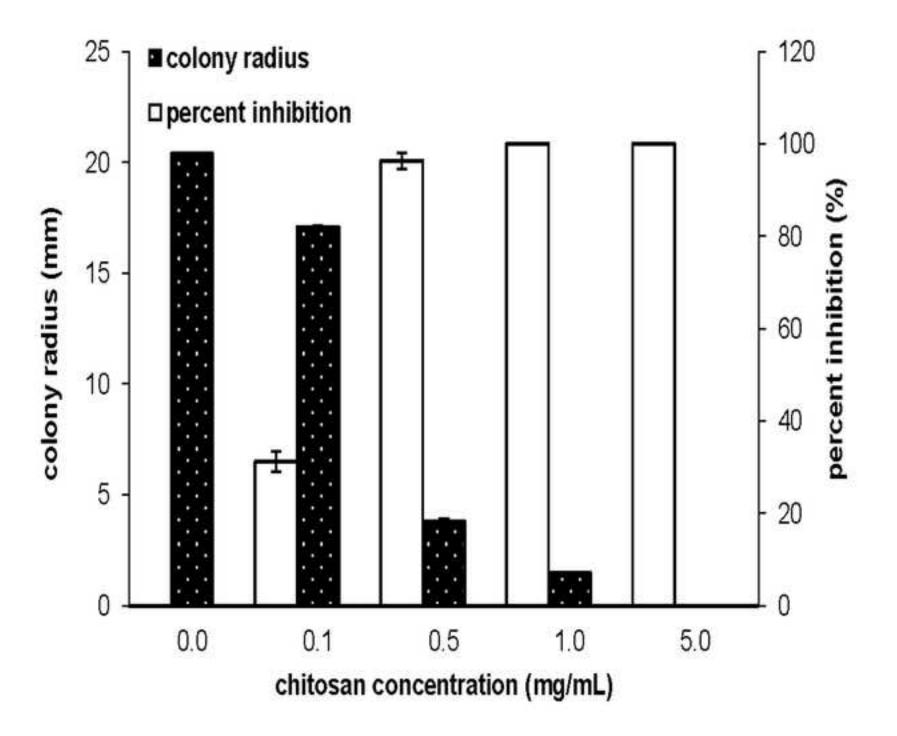
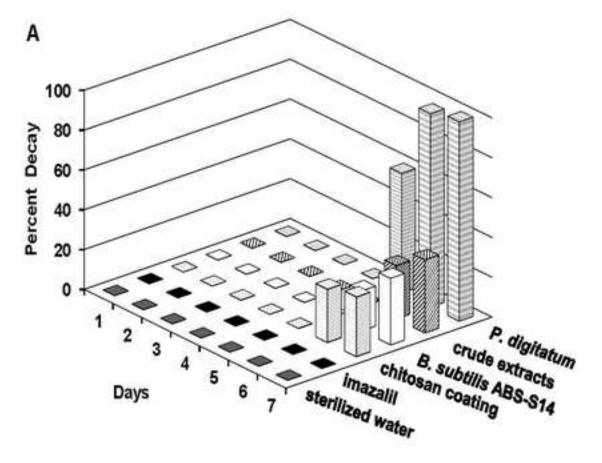



Figure 4 Click here to download high resolution image

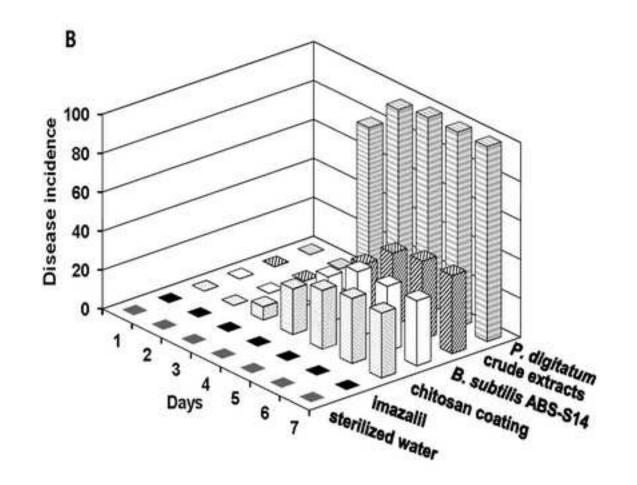
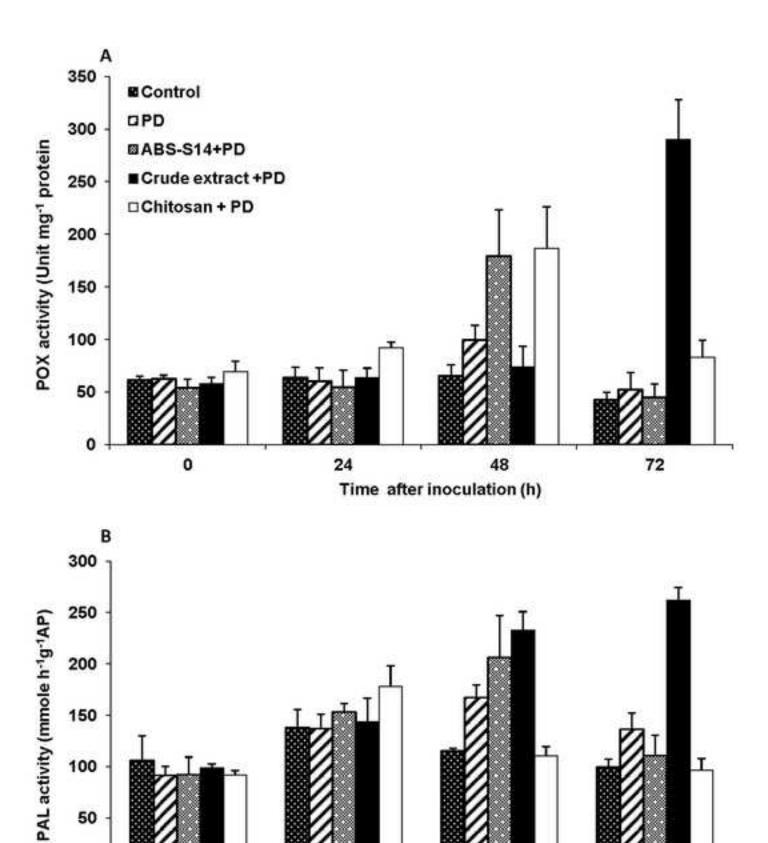



Figure 5
Click here to download high resolution image

Time after inoculation (h)