บทคัดย่อ

โจ๊กเป็นอาหารชนิดหนึ่งที่นิยมบริโภคกันอย่างแพร่หลาย ปัจจุบันมีการแปรรูป โจ๊กให้เป็นผลิตภัณฑ์อบแห้งเพื่อยืดอายุการเก็บรักษาและให้สะดวกต่อการบริโภคมาก ้ยิ่งขึ้น สมบัติเชิงวิทยากระแสของโจ๊กเป็นปัจจัยหนึ่งที่สำคัญและส่งผลต่อกระบวนการ แปรรูป ตลอดจนลักษณะโครงสร้างและสมบัติเชิงกายภาพของผลิตภัณฑ์อบแห้ง ซึ่ง ส่งผลต่อไปยังคุณภาพของโจ๊กอบแห้งหลังการคืนรูป งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อ ศึกษาความสัมพันธ์ต่าง ๆ ดังกล่าวข้างต้น โดยเตรียมโจ๊กจากข้าวฮาง ซึ่งเป็น ผลิตภัณฑ์สุขภาพที่มีศักยภาพในการแปรรูปไปเป็นโจ๊ก เนื่องจากเป็นข้าวที่เก็บเกี่ยวใน ขณะที่ยังไม่แก่จัด บ่มไว้เพื่อให้เปลือกอ่อนตัว นึ่ง และอบแห้ง ก่อนนำมาขัดสีเพียง เพื่อให้เปลือกหุ้มเมล็ดข้าวหลุดออก คุณค่าทางโภชนาการจึงยังคงอยู่ในเมล็ดข้าวใน ลักษณะเดียวกับข้าวนึ่ง ทั้งนี้เตรียมข้าวฮางขนาด 0.5 และ 2.0 มิลลิเมตร และใช้ อัตราส่วนของข้าวฮางต่อน้ำเป็น 1:4, 1:6, 1:8, 1:10, 1:12 และ 1:14 น้ำหนักต่อน้ำหนัก จากนั้นอบแห้งโจ๊กข้าวฮางโดยใช้เครื่องอบแห้งแบบลูกกลิ้งทรงกระบอกคู่ที่อุณหภูมิ 125, 130 และ 135°C และทำการคืนรูปโจ๊กข้าวฮางอบแห้ง โดยใช้อัตราส่วนโจ๊กข้าว ฮางอบแห้งต่อน้ำเท่ากันกับกรณีการเตรียมโจ๊กข้าวฮางก่อนการอบแห้ง จากผล การศึกษาพบว่าขนาดของข้าวฮางและอัตราส่วนของข้าวฮางต่อน้ำมีอิทธิพลร่วมกันต่อ ค่าความหนืด สี และการยอมรับทางประสาทสัมผัสของโจ๊กข้าวฮาง โดยพบว่าการเพิ่ม สัดส่วนปริมาณน้ำส่งผลให้โจ๊กข้าวฮางมีความหนืด ความสว่าง ความเป็นสีแดง และ ความเป็นสีเหลืองลดลงอย่างมีนัยสำคัญทางสถิติ โจ๊กข้าวฮางที่เตรียมจากข้าวฮางขนาด 2.0 มิลลิเมตร มีความหนืดสูง และมีคะแนนการยอมรับโดยรวมสูงกว่าโจ๊กที่เตรียมจาก ข้าวฮางขนาด 0.5 มิลลิเมตร สำหรับผลการศึกษาในส่วนที่สอง พบว่าสภาวะการเตรียม โจ๊ก ตลอดจนสภาวะการอบแห้งที่แตกต่างกัน ส่งผลต่อการเปลี่ยนแปลงลักษณะ โครงสร้างและความสามารถในการดูดกลืนน้ำกลับของผลิตภัณฑ์อบแห้ง โจ๊กข้าวฮางอบ แห้งมีความชื้นร้อยละ 2.6 ถึง 7.8 (d.b.) ขึ้นกับสภาวะการเตรียมและสภาวะการอบแห้ง ภาพถ่ายโครงสร้างของโจ๊กข้าวฮางอบแห้งที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่อง กราดมีความสัมพันธ์กับสมบัติเชิงวิทยากระแสของโจ๊กข้าวฮาง กล่าวคือโจ๊กข้าวฮางที่ เตรียมจากข้าวฮางขนาดเล็กมีค่าความหนืดต่ำ เมื่อนำมาอบแห้งจึงมีการหดตัวสูง นอกจากนี้ยังพบว่าภาพตัวอย่างผลิตภัณฑ์อบแห้งที่ได้จากโจ๊กที่เตรียมโดยใช้สัดส่วน ปริมาณน้ำมาก มีการหดตัวน้อยกว่า ลักษณะโครงสร้างที่สังเกตได้ส่งผลสืบเนื่องไปยัง

สมบัติเชิงกายภาพของผลิตภัณฑ์อบแห้ง โดยโจ๊กอบแห้งมีความสามารถในการดูดกลืน น้ำกลับ 4.7 ถึง 8.9 เท่า ขึ้นกับสภาวะการเตรียม การอบแห้ง และอุณหภูมิที่ใช้ในการ ดูดกลืนน้ำกลับของผลิตภัณฑ์ เมื่อนำโจ๊กที่เตรียมจากข้าวฮางขนาดเล็กอบแห้งจะมีการ เปลี่ยนแปลงโครงสร้าง และการหดตัวสูง ส่งผลให้ความสามารถในการดูดกลืนน้ำกลับมี ค่าต่ำ การใช้สัดส่วนปริมาณน้ำในการเตรียมโจ๊กน้อย ส่งผลให้ผลิตภัณฑ์อบแห้งมีการ หดตัวสูง และมีความสามารถในการดูดกลืนน้ำกลับต่ำเช่นเดียวกัน สำหรับการศึกษาใน ส่วนสุดท้ายพบว่า ลักษณะโครงสร้างของผลิตภัณฑ์อบแห้งมีความสัมพันธ์กับสมบัติเชิง กายภาพของโจ๊กข้าวฮางอบแห้งหลังการคืนรูป โดยพบว่าโจ๊กข้าวฮางอบแห้งหลังการ คืนรูปมีความสว่าง ความเป็นสีแดง ความเป็นสีเหลือง และความหนืดที่น้อยกว่าโจ๊กข้าว ฮางก่อนการอบแห้งอย่างมีนัยสำคัญทางสถิติ

คำสำคัญ: การอบแห้ง; ข้าวฮาง; ความหนืด; โจ๊ก; โครงสร้าง; สมบัติเชิงกายภาพ

Abstract

Porridge is well-known as one of the traditional food products. In addition to the traditional form of porridge, instant porridge, which is a dried form of the product, has recently gained much popularity due to its longer shelf-life and convenience. Rheological property of porridge is one of the factors affecting the processing as well as the structural and physical properties of the dried product, which in turn affect the quality of the rehydrated dried porridge. The purpose of this research was to therefore to study the relationships of the above-mentioned properties. Porridge was prepared from Hang rice, which was selected due to its highly nutritious nature. Since Hang rice is obtained by harvesting paddy during its immature stage prior to being subjected to aging, streaming, drying and partially polishing, Hang rice possesses high nutritional value in the same way as parboiled rice. Porridge was prepared using the Hang rice sizes of 0.5 and 2.0 mm and the Hang rice to water ratios of 1:4, 1:6, 1:8, 1:10, 1:12 and 1:14 (w/w). Subsequently, Hang rice porridge was dried using a double-drum dryer at temperatures of 125, 130 and 135°C. The dried porridge was rehydrated using the same dried porridge to water ratios as those used to prepare the porridge prior to drying. The results indicated that the Hang rice size and Hang rice to water ratio had an interactive effect on the viscosity, color and sensorial acceptance of the Hang rice porridge. Increased water ratio resulted in porridge with decreased viscosity, lightness, redness and yellowness. Hang rice porridge prepared from the rice with 2.0-mm size had higher viscosity and overall acceptance score than that prepared from the rice with 0.5-mm size. Hang rice porridge preparation methods and drying conditions affected the structure and rehydration ratio of the dried porridge. Dried Hang rice porridge had moisture content in the range of 2.6-7.8% (db), depending on the porridge preparation methods and drying conditions. SEM images of the dried porridge indicated that the dried porridge structure correlated well with the rheological property of the Hang rice porridge. Hang rice porridge prepared from small size rice had lower viscosity, leading to dried Hang rice porridge with more extensive shrinkage.

SEM images also revealed that dried porridge obtained from porridge prepared by using higher rice to water ratios had less shrinkage. This structural observation correlated well with the physical property of the dried product. Dried porridge had a rehydration ratio in the range of 4.7-8.9, depending on the porridge preparation methods, drying conditions and rehydration temperature. Using small-size rice to prepare the porridge resulted in more structural changes, shrinkage and decreased rehydration ratio of the dried porridge. Using less water also led to similar results. The structural property of the dried porridge also correlated well with the physical property of the rehydrated dried porridge. Rehydrated Hang rice porridge had lightness, redness, yellowness and viscosity less than those of Hang rice porridge prior to drying.

Keywords: Drying; Parboiled rice (Hang rice); Physical property; Structural property; Viscosity;