บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของการทดแทนซูโครสบางส่วนด้วยซอร์บิทอลและกลีเซอรอล ต่อการถ่ายเทมวลสารระหว่างการออสโมซิส จลนพลศาสตร์การอบแห้ง มอยส์เจอร์ซอร์พชันใอโซเทิร์ม และ คุณภาพของมะละกอแช่อิ่มอบแห้งระหว่างการเก็บรักษา ผลการทดแทนซูโครสบางส่วนด้วยพอลิไฮดริก แอลกอฮอล์ต่อการถ่ายเทมวลสารระหว่างการออสโมซิส โดยทดแทนซโครสบางส่วนที่ระดับความเข้มข้น 60 องศาบริกซ์ด้วยซอร์บิทอล 10%, w/v (Su-Sor) กลีเซอรอล 10%, v/v (Su-Gly) เทียบกับชดเปรียบเทียบที่มี การทดแทนด้วยน้ำตาลอินเวิร์ต 10%, v/v (Su-Inv) และชุดควบคุมที่ไม่มีการทดแทนซุโครส พบว่า Su-Sor, Su-Gly และ Su-Inv มีค่าการสูญเสียน้ำ ค่าการเพิ่มขึ้นของของแข็ง และค่าการลดลงของน้ำหนักสูงกว่าชุด ควบคุมอย่างมีนัยสำคัญ ($p \le 0.05$) จากนั้นอบแห้งตัวอย่างทุกชุคการทดลองหลังการออส โมซิสด้วยตู้อบลม ร้อนที่อุณหภูมิ 60 องศาเซลเซียส จนกระทั่งน้ำหนักของตัวอย่างคงที่ พบว่าชุดควบคุมมีค่าคงที่การอบแห้ง สูงสุด รองลงมาเป็น Su-Sor, Su-Gly และ Su-Inv ตามลำดับ และพบว่าแบบจำลอง modified Henderson and Pabis มีความเหมาะสมในการทำนายพฤติกรรมการอบแห้งของตัวอย่างทุกชุคการทคลองมากกว่าแบบจำลอง Page และแบบจำลอง Henderson and Pabis การเปลี่ยนแปลงในระหว่างการอบแห้งชี้ให้เห็นว่าชุดควบคุมมี แนวโน้มการลคลงของค่าวอเตอร์แอคทิวิตีต่ำที่สุด และมีการหคตัวสูงกว่าชุคการทคลองอื่น โคยผลิตภัณฑ์หลัง การอบแห้งแต่ละชดการทดลองมีเฉดสีใกล้เคียงกันแต่มีความเข้มสีต่างกัน ค่า monolayer moisture content (M) จากมอยส์เจอร์ซอร์พชันใอโซเทิร์มที่อุณหภูมิ 30 ± 2 องศาเซลเซียสของผลิตภัณฑ์ โดยอาศัยแบบจำลอง GAB ในการคำนวณชี้ให้เห็นว่า Su-Sor และ Su-Gly มีค่า $M_{_{\! o}}$ สูงกว่าชุดควบคุม และ Su-Inv เมื่อพิจารณา ลักษณะทางสัณฐานของเซลล์มะละกอในผลิตภัณฑ์ด้วยกล้องจุลทรรศน์อิเล็กตรอนพบว่า Su-Sor และ Su-Inv หลังการอบแห้งมีลักษณะเซลล์ใกล้เคียงกัน และมีความคงรูปมากกว่าชุดควบคุม ผลการทดสอบทางประสาท สัมผัสเชิงพรรณนา พบว่า Su-Sor มีลักษณะทางประสาทสัมผัสใกล้เคียงกับ Su-Inv ขั้นตอนสุดท้ายศึกษา คณภาพของผลิตภัณฑ์ระหว่างการเก็บ 8 สัปดาห์ พบว่า Su-Sor มีค่าความแข็งและค่างานในการตัดต่ำกว่าชด ควบคุมตลอดระยะการเก็บ และมีปริมาณไล โคปืนหลังผ่านการเก็บสูงกว่าชุดควบคุมอย่างมีนัยสำคัญ ($p \le 0.05$)

คำสำคัญ: มะละกอ พอลิไฮคริกแอลกอฮอล์ ซอร์บิทอล กลีเซอรอล แช่อิ่ม อบแห้ง

Abstract

The objectives of this research were to investigate the effect of partially substituted sucrose with glycerol and sorbitol on mass transfer during osmosis, drying kinetics, moisture sorption isotherm and quality of osmosed air dried papaya during storage. Papaya slices were soaked in 40, 50 and 60 °Brix sucrose solution, respectively, for 5 hours each. In 60 °Brix solution, partial replacement of sucrose with 10% (w/v) sorbitol (Su-Sor) and 10% (w/v) glycerol (Su-Gly) were used as osmotic solution compared with the control containing only sucrose and reference with partial replacement with 10% (v/v) invert sugar (Su-Inv). Su-Gly, Su-Inv and Su-Sor presented higher water loss, solid gain and weight reduction compared to the control $(p \le 0.05)$. After osmosis, papaya slices were dried in a hot-air dryer at 60 °C until the weight of sample was constant. The drying constant showed that the values were in order as follows: control > Su-Sor > Su-Gly > Su-Inv. Among three mathematical models (Page, Henderson and Pabis and modified Henderson and Pabis), Modified Henderson and Pabis was found to be the most appropriate model to predict the drying behavior, at 60 °C, of all treatments. During drying process, the control presented the lowest a_w reduction while the shrinkage of the control was higher than other treatments. The hue angle of four samples was similar while the chroma was varied. Monolayer moisture content (M_a) of dried products was calculated by applying GAB equation to moisture sorption isotherm at 30 \pm 2 °C. Su-Sor and Su-Gly had higher M_o than the control and Su-Inv. The microstructure analysis, using scanning electron microscope, of dried products showed that the cell structure of Su-Sor and Su-Inv was similar, but less shrinkage compared to that of the control. The results from the quantitative descriptive analysis showed that sensory characteristics of Su-Sor were as good as Su-Inv. Finally, quality of dried products, during 8 weeks of storage, was determined. Su-Sor exhibited lower hardness and cutting work compared to the control. The remaining lycopene content in Su-Sor was also significant higher than that of the control ($p \le 0.05$).

KEYWORDS: Papaya, Polyhydric alcohol, Glycerol, Sorbitol, Osmotic dehydration, Air drying