าเทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาหาสาเหตุการคืนรูปช้าของเส้นก๋วยเตี๋ยวอบแห้ง ศึกษาผลของกระบวนการแปรรูปต่อการคืนรูปของเส้นก๋วยเตี๋ยวอบแห้ง โดยแบ่งงานวิจัยเป็นสอง ส่วนดังนี้ ส่วนแรกทำการศึกษาลักษณะโครงสร้าง และการเปลี่ยนแปลงโครงสร้างของเส้น รวมถึงการแพร่ของน้ำในเส้นก๋วยเตี๋ยวทาง ก๋วยเตี๋ยวอบแห้งทางการค้าในระหว่างการคืนรูป การค้า เพื่อหาสาเหตุการคืนรูปซ้า ซึ่งภาพจากกล้องจุลทรรศน์แบบส่องกราด (Scanning Electron microsope) แสดงให้เห็นว่าลักษณะเส้นก๋วยเตี๋ยวอบแห้งทั่วไปในท้องตลาดมีลักษณะโครงสร้างที่ คล้ายคลึงกันคือ ลักษณะพื้นผิวมีรูพรุนตื้นๆ กระจายทั้งสองด้านไม่เท่ากัน และโครงสร้างภายในมี ลักษณะที่แน่น ทึบ ซึ่งโครงสร้างที่แน่นทึบนั้นเป็นอุปสรรคในการแพร่ของน้ำ และเป็นสาเหตุทำให้ ดังนั้นในส่วนที่สองจึงทำการศึกษาผลของ เวลาในการคืนรูปของเส้นก๋วยเตี๋ยวอบแห้งนาน กระบวนการในการผลิตเส้นก๋วยเตี๋ยวอบแห้ง ต่อลักษณะโครงสร้างของเส้นก๋วยเตี๋ยวอบแห้ง และ การแพร่ของน้ำในเส้นก๋วยเตี๋ยวอบแห้ง โดยทำการศึกษาผลของอุณหภูมิการนึ่งที่ 90, 95 และ 100 องศาเซลเซียส พบว่า โครงสร้างของเส้นก๋วยเตี๋ยวนั้นมีรูพรุนน้อยหลังการนึ่ง และไม่มีความ แตกต่างกันที่ทุกอุณหภูมินึ่ง นอกจากนี้ขั้นตอนการบ่มในกระบวนการผลิตเส้นก๋วยเตี๋ยวอบแห้ง นั้นยังส่งผลให้โครงสร้างของเส้นก๋วยเตี๋ยวมีลักษณะที่แน่น ทึบขึ้น อุณหภูมินึ่งที่แตกต่างกันไม่มี ผลต่ออัตราการคืนรูปของเส้นก๋วยเตี๋ยวอบแห้ง ในการศึกษาถึงผลของอุณหภูมิการอบแห้งขั้นต้น (40, 60, 80 และ 100 องศาเซลเซียส) และอุณหภูมิการอบแห้งขั้นสุดท้าย (45, 65, และ 85 องศา เซลเซียส) พบว่า การใช้อุณหภูมิการอบแห้งขั้นต้นและขั้นสุดท้ายที่สูง จะส่งผลให้จำนวนรูพรุนที่ ผิวหน้าของเส้นก๋วยเตี๋ยวอบแห้งเพิ่มขึ้น ซึ่งส่งผลทำให้การแพร่ของน้ำในเส้นก๋วยเตี๋ยวเร็วขึ้น การ ใช้สภาวะสูญญากาศ (70 cmHg) ร่วมในการอบแห้งพบว่า จะช่วยเพิ่มรูพรุนภายในโครงสร้างของ ้ เส้นก๋วยเตี๋ยวอบแห้งทำให้การแพร่ของน้ำในเส้นก๋วยเตี๋ยวเกิดได้เร็วขึ้น นอกจากนี้การแพร่ของน้ำ ในเส้นก๋วยเตี๋ยวอบแห้งจะเร็วยิ่งขึ้นหากทำการอบแห้งที่อุณหภูมิสูง (85 องศาเซลเซียส) ร่วมกับ สภาวะที่เป็นสูญญากาศ

คำสำคัญ เส้นก๋วยเตี๋ยวอบแห้ง, การคืนรูป, โครงสร้าง, การอบแห้ง, การนึ่ง

Abstract

The objective of this work was to investigate the cause of long rehydration time of the

dried rice noodle from the physicochemical viewpoint. The change in microstructure of

commercial dried rice noodle during rehydration was observed under SEM. It was found that

there were many shallow pores on both noodle surfaces. The inner structure of noodle was dense

and had no pore. The dense structure may cause the slow water migration inside the dried noodle

resulting in long rehydration time. The other objective was to investigate the effect of steps in

noodle making process (steaming and drying) on the microstructure and rehydration time of the

dried rice noodle. It was found that the structure of fresh noodles steamed at 90, 95 and 100°C

were similar, namely small pores occurred at the noodle surface and dense inner structure. The

steaming temperature had no effect on the water uptake of dried noodle. The effects of pre-drying

temperature (40, 60, 80 and 100°C) and final-drying temperature (45, 65 and 85°C) on the

microstructure and rehydration time of the dried rice noodle were studied. Number and size of

pore at the noodle surface increased with the increase of pre-drying temperature and final-drying

temperature, but the inner structure of all noodle samples were dense. Water migrated inside the

noodles which were pre-dried and final-dried at high temperature faster than thus were dried at

lower temperature. This may be attributed to the high numbers of pore in high temperature dried

the noodle. The effect of vacuum condition (70 cmHg) during drying at 45 and 85 °C was also

investigated. It was found that there were many pores inside the vacuum dried noodle. Water

migrated inside the vacuum dried noodle faster than the air dried noodle. The use of high drying

temperature (85 °C) with the vacuum condition enhanced the formation of pores inside the noodle,

resulting in fast rehydration time.

Keywords: dried rice noodle, rehydration, microstructure, drying, steaming