Abstract

It is widely accepted that intestinal bacteria community in gut of an animal plays important roles on animal health whether by help digesting some nutrients, competing with pathogenic bacteria, or even generating secondary metabolites to kill harmone bacteria. Although the concept of using beneficial bacteria as a preventive medicine or health supplements has been widely executed in various organisms, the knowledge of interstinal bacteria in an economically important black tiger shrimp is still too limited to ultilize this natural and promising alternative in development of probiotics for the shrimp feed.

Therefore, the ultimate goal of this project was to identify gut bacteria in the shrimp to initiate a research program for utilizing beneficial bacteria in healthy and sustainable farming practice. To achieve the ultimate goal, it is very important to establish effective tools to study large amonths of shrimp guts. Sanger sequencing, denaturing gradient gel electrophoresis (DGGE) and next generation pyrosequencing analysis were employed to decipher 16s rRNA sequences which helped revealing the bacteria identity.

Upon a successful optimization of these aforementioned methods, they were employed to study different shrimp gut samples to provide the fundamental knowledge on the identity and dynamic of bacteria community structures as a function of *i*) farm locations for juvenile shrimp, *ii*) developmental stages (15-day post larvae, 1-, 2-, and 3-month-old juveniles), *iii*) habitats in aldult shrimp (wild and domestication). From these obtained results, we are now able to postulate a possible core intestinal bacteria community of the black tiger shrimp. For instance, bacteria in the phyla *Bacteroides*, *Firmicutes* and *Proteobacteria* were commonly found in shrimp intestines throughout all studies in this project. However, further evidence with more samples with various types of farming condition is still needed to draw a final conclusion on the core bacteria community in the shrimp gut.

Beside the shared groups of bacteria, we were also interested to bacteria found uniquely in the wild-caught shrimp as it has been known that the wild shrimp tend to be able maintain their health in very harsh condition better and their unique bacteria groups may contribute to their superior health and growth. We found 17 bacteria species unique in intestines of wild *P. monodon* group. Although the molecular mechanism of these bacterial species as whether and/or how they contribute to the better health of the wild shrimp is still unknown, some, such as *Vibrio* alginolyticus, were demonstrated in other aquatic animals for their antagonistic activity against several aquatic pathogens. These results could lead to a successful development of probiotics in the black tiger shrimp in the future.

In addition to nucleotide-based study, we employed a scanning electron microscope (SEM) to examine the physiology of the shrimp intestines. SEM images of the intestines from the adult shrimp showed bacterial colonization on the hindgut area, and only few or none were found on the midgut or stomach regions. The unique rod-shaped bacteria adhering to intestine lining resemble the

shape of the bacteria belong in *Vibrionaceae* such as *Vibrio* spp., and *Photobacterium* spp., which were the dominant bacterial group from intestinal microbiota analysis.

In summary, we have successfully established several 16s rRNA-based methods to help characterizing intestinal bacteria in the black tiger shrimp. These methods, especially pyrosequencing, have been proven to be extremely useful and instrumental in understanding the structure of bacterial community in the shrimp gut. The SEM images also help providing in situ detection of bacterial microflora resides within this environment. Moreover, the results obtained from these studies supported within this project have provide an initial insight on future probiotics application to prevent or reduce the economic loss due to disease outbreak, which in turn will sustain the important shrimp industry of our country.

Keywords: Bacteria population; *Penaeus monodon*; Black tiger shrimp; Pyrosequencing, DGGE, 16S rRNA sequencing

บทคัดย่อ

เป็นที่ทราบกันอย่างดีว่าแบคทีเรียในลำใส้ของสิ่งมีชีวิตนั้นมีความสำคัญต่อสุขภาพของสิ่งมีชีวิต นั้นๆ โดยที่แบคทีเรียพวกนี้สามารถช่วยย่อยอาหารช่วยแย่งพื้นที่อยู่ในลำไส้จากแบคทีเรียที่ก่อโรค หรือช่วย สร้างสารที่มีฤทธิทางชีวภาพในการฆ่าหรือยับยั้งการเจริญเติบโตของแบคทีเรียที่ก่อโรคเป็นตัน ถึงแม้ว่าจะมี การนำแบคทีเรียที่ประโยชน์มาใช้เพื่อป้องกันโรคหรือเป็นอาหารเสริมมาใช้ในสิ่งมีชีวิตต่างๆแล้ว แต่ความรู้ เรื่องแบคทีเรียในลำไส้กุ้งกุลาดำนั้นยังมีจำกัดเกินกว่าที่จะนำไปสู่การประยุกต์หาแบคทีเรียที่อาจสามารถ นำไปใช้ในการทำเป็นอาหารหรืออาหารเสริมป้องกันโรคได้

ดังนั้นเป้าหมายสูงสุดของโครงการวิจัยนี้คือการศึกษาแบคทีเรียในลำไส้กุ้งกุลาดำที่จะเป็นจุดเริ่มต้น ในการแผนงานวิจัยเกี่ยวกับการนำแบคทีเรียที่ก่อประโยชน์ต่อสุขภาพกุ้งไปใช้เพื่ออุตสาหกรรมเลี้ยงกุ้งที่ ยั่งยืน การที่จะบรรลุจุดมุ่งหมายนี้ได้จำเป็นต้องจัดตั้งเครื่องมือในการวิจัยที่มีประสิทธิภาพที่จะนำไปใช้ศึกษา ลำไส้กุ้งจำนวนมาก สามวิธีที่ได้นำมาใช้คือ การทำการหาลำดับเบสแบบ Sanger การใช้denaturing gradient gel electrophoresis (DGGE) และการนำเทคโนโลยีpyrosequencing มาใช้เพื่อหาลำดับเบสของ 16s rRNA ซึ่งจะช่วยจำแนกได้ว่ามีประชากรแบคทีเรียตัวไหนบ้างในตัวอย่าง

หลังจากที่สามารถปรับปรุงวิธีการทั้งสามจนสามารถใช้งานได้อย่างมีประสิทธิภาพแล้วก็ได้นำวิธี เหล่านี้มาศึกษาแบคทีเรียในลำไส้กุ้งที่สภาวะต่างกันเพื่อสร้างองค์ความรู้พื้นฐานของชนิดและการ เปลี่ยนแปลงของแบคทีเรียที่ได้รับผลจาก i)ฟาร์มกุ้ง juvenile จากสถานที่ต่าง ๆii) ระยะการเจริญเติบโตต่าง (post larvae อายุ15 วัน, กุ้งอายุ 1เดือน 2 เดือน และ 3เดือนiii) สภาวะอยู่ตามธรรมชาติหรือจากบ่อเลี้ยงใน กุ้งเต็มวัย ซึ่งจากผลการทดลองทั้งหมดเราพอสามารถคาดได้ว่ากุ้งกุลาดำน่าจะมีแบคทีเรียที่เป็น core community คือไม่ว่าจะใช้ตัวอย่างจากสภาะเช่นไรและวัยอะไรก็จะพบแบคทีเรียพวกนี้ อาทีเช่นแบคทีเรียใน phyla Bacteroides, FirmicutesและProteobacteriaปรากฏในลำไส้กุ้งในทุกการศึกษาในโครงการนี้ ทั้งนี้ ยังคงต้องมีการศึกษาเพิ่มเติมจากตัวอย่างที่มากขึ้นและต้องใช้ตัวอย่างที่มาจากสภาวะที่ต่างกันมากขึ้นไปอีก จึงจะสรุปได้อย่างแน่นอนว่ากุ้งกุลาดำมี core bacteria community หรือไม่

นอกจากการเจอแบคทีเรียมีอยู่ในทุกตัวอย่างแล้ว เรายังสนใจที่แบคทีเรียที่เจอเฉพาะในกุ้ง ธรรมชาติเพราะเป็นที่รู้กันดีอยู่ว่ากุ้งธรรมชาติสามารถอยู่รอดในสภาวะแวดล้อมที่เปลี่ยนแปลงและรุนแรงใน ธรรมชาติได้ดีกว่ากุ้งเลี้ยง ดังนั้นจึงเป็นไปได้ที่แบคทีเรียในลำไส้ของกุ้งธรรมชาตินั้นมีส่วนช่วยกับในสุขภาพ ที่ดีกว่าและการเจริญเติบโตที่ดีกว่า เราพบว่ามีแบคทีเรีย 17 species ที่เจอแค่ในกุ้งธรรมชาติและไม่เจอใน กุ้งเลี้ยงเลย ถึงแม้ว่าที่ผ่านมายังไม่มีการศึกษาว่าแบคทีเรียเหล่านี้มีผลต่อสุขภาพที่ดีกว่าของกุ้งธรรมชาติ หรือไม่อย่างไร แต่แบคทีเรียบางกลุ่มนี้บางตัวเช่นVibrio alginolyticus ได้มีรายงานว่าสามารถออกฤทธิ์ ต่อต้านเชื้อก่อโรคในทะเลได้ ซึ่งผลการวิจัยนี้อาจสามารถนำไปสู่การพัฒนาอาหารเสริม probiotics ให้กุ้ง กุลาดำในอนาคตได้

นอกจากการใช้เทคนิคที่อาศัยลำดับนิวคลีโอไทด์ดังกล่าวแล้ว เรายังใช้เทคนิค a scanning electron microscope (SEM) มาศึกษาลักษณะแบคทีเรียที่อาศัยของลำใส้กุ้ง โดยจากการวิเคราะห์ผลจาก SEM ของ กุ้งตัวเต็มวัย จะเห็นได้ว่าผนังลำใส้มีส่วนท้าย (hindgut) จะมีแบคทีเรียพบอยู่มากกว่า ผนังลำใส้ส่วนกลาง นอกจากนี้มีแบคทีเรียอยู่น้อยมากที่ผนังของกระเพาะอาหาร แสดงให้เห็นว่าประชากรแบคทีเรียในลำใส้มักจะ colonize มากที่ลำใส้ส่วนปลาย และส่วนใหญ่มีลักษณะเป็นแท่ง (rod-shape) ซึ่งจากลักษณะรูปร่างของ แบคทีเรียนั้นน่าจะเป็นกลุ่ม Vibrionaceae เช่น Vibrio spp. และ Photobacterium spp. ที่ว่าเป็นแบคทีเรีย กลุ่มหลักจากผลของการศึกษาชนิดประชากรของแบคทีเรียในลำใส้กุ้ง จากผลของการศึกโดยสรุป เราได้ พัฒนาและนำเทคนิคที่อาศัยการหาลำดับเบสของ16s rRNA มาใช้ในการหาแบคทีเรียในลำไส้กุ้งกุลาได้สำเร็จ โดยทั้งสามวิธีนี้ โดยเฉพาะวิธี pyrosequencing ได้ถูกวิสูจน์แล้ว่ามีประโยชน์และใช้งานได้เป็นอย่างดีต่อการ นำมาเพิ่มความรู้ความเข้าใจของแบคทีเรียในลำใส้กุ้งกุลาดำ มากไปกว่านั้น

ผลการทดลองที่ได้จากการศึกษาภายในโครงการนี้จะเป็นจุดเริ่มต้นในการสร้างความเข้าใจอย่าง ท่องแท้เพื่องานเชิงประยุกต์ของการพัฒนาผลิตอาหารแบบ probiotics เพื่อช่วยป้องกันการสูนเสียทาง เศรษฐกิจที่มีผลมาจากโรคระบาด ซึ่งก็จะทำให้อุตสาหกรรมการเลี้ยงกุ้งกุลาดำในประเทศของเรานั้นยั่งยืน

คำสำคัญ:ประชากรแบคที่เรีย;*Penaeus monodon*; กุ้งกุลาดำ; Pyrosequencing, DGGE, การถอดลำดับ เบสของ 16S rRNA