Abstract

Project Code: DBG5380031

Project Title: The activation mechanism of the prophenoloxidase system in shrimp by pattern recognition protein

Investigator: Dr. Piti Amparyup E-mail Address: piti.amp@biotec.or.th

Project Period: 31 May 2010 – 30 May 2012

The global shrimp industry still faces various serious disease related problems that are mainly caused by pathogenic bacteria and viruses. The understanding of the immune system in shrimp is necessary to provide the means to control and minimize the loss of production due to disease outbreaks. Melanization by prophenoloxidase (proPO) system is an important innate immune mechanism that plays a critical role in the defense against a wide range of pathogens in invertebrates. The activation of the proPO system, by the specific recognition of microorganisms by pattern recognition proteins (PRPs), triggers a serine proteinase cascade including a proPO-activating enzyme (PPAE), eventually leading to the cleavage of the inactive proPO to the active PO that functions to produce the melanin and toxic reactive intermediates against invading pathogens.

In this study, we focus on characterizing the role of a lipopolysaccharide and beta-1,3-glucan binding protein (*Pm*LGBP) and *Pm*PPAE2 in the proPO system of shrimp *Penaeus monodon*. Transcript expression analysis revealed that *Pm*LGBP and *Pm*PPAE2 transcripts were mainly expressed in hemocytes. Genomic organization analysis revealed that *Pm*PPAE1 gene consists of ten exons and nine introns, whilst *Pm*PPAE2 comprises of eight exons interrupted by seven introns. The ELISA binding studies indicated that recombinant (r)*Pm*LGBP binds to beta-1,3-glucan and LPS with a dissociation constant of 6.86x10⁻⁷M and 3.55x10⁻⁷M, respectively. Furthermore, r*Pm*LGBP could enhance the phenoloxidase (PO) activity of shrimp hemocyte in the presence of LPS or beta-1,3-glucan. Double-stranded RNA-mediated suppression of *Pm*LGBP and *Pm*PPAE2 transcript levels resulted in a significant decrease in the PO activity. Knockdown of *Pm*LGBP significantly decreased the *Pm*LGBP transcript level but had no effect on the expression of the other immune genes tested. However, suppression of proPO expression down-regulated *Pm*LGBP, *Pm*PPAE2 and antimicrobial peptide transcripts. It is concluded that the *Pm*PPAE2 is a shrimp PPAE and possibly mediates the activation of *Pm*proPO and *Pm*LGBP function as a pattern recognition protein for LPS and beta-1,3-glucan in the shrimp proPO activating system.

Keywords: Shrimp, Penaeus monodon, immune system, phenoloxidase, pattern recognition protein, proteinase

3

บทคัดย่อ

รหัสโครงการ: DBG5380031

ชื่อโครงการ : กลไกการกระตุ้นระบบโพรฟีนอลออกซิเคสในกุ้งโดย pattern recognition protein

หัวหน้าโครงการ : คร. ปิติ อ่ำพายัพ E-mail Address: piti.amp@biotec.or.th

ระยะเวลาโครงการ: 31 พฤษภาคม 2553 – 30 พฤษภาคม 2555

อุตสาหกรรมการเลี้ยงกุ้งทั่วโลกยังคงประสบปัญหาร้ายแรงต่างๆที่เกี่ยวข้องกับการเกิดโรคที่ส่วนใหญ่เกิดจากเชื้อ แบคทีเรียและไวรัสก่อโรค ความเข้าใจระบบภูมิคุ้มกันในกุ้งเป็นสิ่งจำเป็น เพื่อใช้หาวิธีการควบคุมและลดการสูญเสียของผลผลิต อันเนื่องมาจากการระบาดของโรค การสร้างเมลานินโดยระบบโพรฟินอลออกซิเคสเป็นกลไกที่สำคัญของภูมิคุ้มกัน ที่มีบทบาท สำคัญในการป้องกันการต่อต้านเชื้อโรคหลากหลายชนิดในสัตว์ไม่มีกระดูกสันหลัง การกระตุ้นระบบโพรฟินอลออกซิเคส เกิดขึ้นได้จากการจดจำอย่างจำเพาะต่อเชื้อจุลชีพโดย แพทเทินรีคอกนิชั่นโปรตีนทำให้เกิดการกระตุ้น ซีรีนโพรติเนสแคสเคด รวมทั้งโพรฟินอลออกซิเคสแอลติเวติงเอนไซม์ ส่งผลให้เกิดการตัดของโพรฟินอลออกซิเคส ให้เป็นฟินอลออกซิเคสเพื่อทำ หน้าที่ในการผลิตเมลานินและสารตัวกลางของปฏิกิริยาที่เป็นพิษมีผลต่อการด้านเชื้อโรคที่บุกรุก

ในการศึกษาครั้งนี้เรามุ่งเน้นศึกษาลักษณะบทบาทของโปรตีน PmLGBP และ PmPPAE2 ในระบบโพรฟินอลออกซิ เดสของกุ้งกุลาดำ จากการวิเคราะห์การแสดงออกของยืนพบว่ายืน PmLGBP และ PmPPAE2 แสดงออกมากในเม็ดเลือด เมื่อ วิเคราะห์การจัดเรียงตัวของยืนพบว่า PmPPAE1 ประกอบด้วย 10 exon และ 9 intron ขณะที่ยืน PmPPAE2 ประกอบด้วย 8 exon และแทรกโดย 7 intron จากการศึกษาการจับกันโดยเทคนิค ELISA พบว่ารีคอมบิแนนท์โปรตีน PmLGBP สามารถจับกับ beta-1,3-glucan และ LPS โดยมีค่า dissociation constant เท่ากับ 6.86x10⁻⁷ M and 3.55x10⁻⁷ M ตามลำดับ นอกจากนั้น rPmLGBP สามารถเพิ่มกิจกรรมของเอนไซม์ฟินอลออกซิเดสของเม็คเลือดกุ้งที่มี LPS หรือ beta-1,3-glucan เมื่อยับยั้งการแสดงออกของยืน PmLGBP และ PmPPAE2 พบว่ากิจกรรมของเอนไซม์ฟินอลออกซิเดสของกุ้งมีระดับการแสดงออกของยืน proPO พบว่าการแสดงออกของยืน PmLGBP, PmPPAE2 และบบภูมิกุ้มกัน อย่างไรก็ตามเมื่อยับยั้งการแสดงออกของยืน proPO พบว่าการแสดงออกของยืน PmLGBP, PmPPAE2 และเพปไทด์ด้านจุลชีพมีการแสดงออกลดลงอย่างมีนัยสำคัญ สรุปได้ว่ายืน PmPPAE2 ก็อ PPAE ในกุ้ง และอาจจะเป็นตัวกระดุ้น proPO และยืน PmLGBP ทำหน้าที่เป็น pattern recognition protein โดยจับ LPS และ beta-1,3-glucan และกระดุ้นระบบ proPO

คำหลัก : กุ้งกุลาคำ, ระบบภูมิกุ้มกัน, ฟีนอลออกซิเคส, แพทเทิน รีคอกนิชั่น โปรตีน, โพรติเนส