บทคัดย่อ

รหัสโครงการ: DBG5380034

ชื่อโครงการ: การสร้างพลาสมิดดีเอ็นเอให้มีการผลิตอาร์เอ็นเอสายคู่ ในก้งเพื่อยับยั้งไวรัส

hepatopancreatic parvovirus

ชื่อนักวิจัย: ดร.พงโสภี อัตศาสตร์

สถาบันชีววิทยาศาสตร์โมเลกุล มหาวิทยาลัยมหิดล

อีเมลล์: pongsopee.att@mahidol.ac.th และ

attasart_aung@hotmail.com

ระยะเวลาโครงการ: 3 ปี

ในปัจจุบันการกระตุ้นกระบวนการ RNAi ด้วยอาร์เอ็นเอสายคู่ เป็นวิธีที่ที่ใช้ ในการป้องกันไวรัสในกุ้งอย่างมีประสิทธิภาพ เพียงแต่เสถียรภาพในการยับยั้งยีน เป้าหมายจำเป็นต้องได้รับอาร์เอ็นเอสายคู่หลายครั้ง ซึ่งทำให้สิ้นเปลืองและไม่ ดังนั้นในการศึกษานี้จึง สามารถทำได้ในอุตสาหกรรมการเลี้ยงกุ้งระดับฟาร์ม ต้องการสร้างพลาสมิดที่สามารถผลิตอาร์เอ็นเอสายคู่อย่างต่อเนื่องในเซลล์กุ้ง โดยมุ่งหวังให้มีการยับยั้งยืนที่สนใจได้ยาวนานขึ้น พลาสมิดชื่อ pGL3-ie1dsRab7 ได้ถูกสร้างขึ้นประกอบด้วยโปรโมเตอร์ของยืน ie1 จากไวรัสตัวแดงดวง ขาวและชิ้นส่วนดีเอ็นเอของยีน Rab7 ของกุ้งซึ่งโคลนในรูปแบบ repeat เพื่อให้สามารถสร้างอาร์เอ็นเอสายคู่ต่อยืน Rab7 ในเซลล์กุ้งได้ เมื่อทำ การฉีดพลาสมิดนี้เข้าสู่กุ้งแล้ว วันจึงทำการตรวจสอบด้วยเทคนิค 3 quantitative RT-PCR พบว่าอาร์เอ็นเอของยืน Rab7 มีการลดระดับลงในรูปแบบ dose-dependent และลดลงอยู่ได้นานถึง 3 อาทิตย์ นอกจากนี้พบการลดระดับ อาร์เอ็นเอของยีน Rab7 จากการกินอาหารผสมที่มีพลาสมิดนี้ด้วย แต่ไม่แตกต่าง อย่างมีนัยสำคัญเมื่อเทียบกับกลุ่มควบคุมที่กินอาหารผสมแบคทีเรียที่มีแต่พลาสมิด pGL3 สำหรับการประยุกต์ใช้เพื่อยับยั้งไวรัส hepatopancreatic parvovirus หรือ *Peneaus monodon* densovirus ได้นำกุ้งที่ตรวจสอบแล้วว่าติดไวรัสจาก ธรรมชาติมาทำการฉีดด้วยพลาสมิด pGL3-ie1-dsNS1 และ pGL3-ie1-dsVP ที่ สามารถผลิตอาร์เอ็นเอสายคู่ต่อยืน ns1 และ ยืน vp ของไวรัส *Pm*DNV ได้ ตามลำดับ พบการลดระดับของไวรัสลงในกุ้งที่ถูกฉีด พลาสมิดดังกล่าวเมื่อเทียบ กับกุ้งที่ถูกฉีดด้วย NaCl หรือ พลาสมิด pGL3 แสดงให้เห็นว่าน่าจะสามารถ นำไปใช้ยับยั้งไวรัส *Pm*DNV ในกุ้งแม่พันธุ์เพื่อให้ปราศจากไวรัสชนิดนี้ใน อนาคตได้

Abstract

Project Code: DBG5380034

Project Title: DNA constructs expressing double-stranded RNA in

shrimp for inhibition of

hepatopancreatic parvovirus

Investigator: Dr. Pongsopee Attasart

Institute of Molecular Biosciences, Mahidol University

E-mail Address: pongsopee.att@mahidol.ac.th,

attasart_aung@hotmail.com

Project Period: 3 years

The dsRNA mediated RNAi activation is currently effective strategy for anti-virus in shrimp. However, the stability of its silencing effect requires multiple administrations, which are costly and not convenient when working in the shrimp farming industries. This study, therefore, we aimed to construct a plasmid that can long lastingly suppress a particular gene of interest. This recombinant plasmid, once administered, it can continuously produce dsRNA *in vivo* (shrimp). The plasmid vector pGL3-ie1-dsRab7, which containing the white spot syndrome virus (WSSV) ie1 promoter and the inverted repeat of shrimp Rab7 gene for dsRNA-Rab7 production was constructed. The result of semi-quantitative RT-PCR showed that the injected pGL3-ie1-Rab7 could suppress the level of shrimp Rab7 transcript at 3 days post injection. Moreover, this silencing effect was detected in a dose-dependent manner and maintained in shrimp for up to three weeks. The silencing efficacy of this DNA

construct via oral route was also investigated. It showed Rab7 suppression but not significantly different when compared with the control (fed with bacteria containing pGL3). For further anti-virus application, the naturally *Peneaus monodon* densovirus (*Pm*DNV) (formerly hepatopancreatic parvovirus or HPV) pre-infected shrimp was treated only by injection with the combined plasmid vectors pGL3-ie1-dsNS1 and pGL3-ie1-dsVP that can generate dsRNAs specifically to the *Pm*DNV ns1 and vp genes, respectively. The reduction of *Pm*DNV was detected in treated shrimp when compared with the control (NaCl or pGL3). It revealed that the injected plasmids could suppress the level of viral ns1 and vp transcript during the replication process leading to the inhibition of *Pm*DNV. It can be applied for cleaning up the naturally *Pm*DNV-infected shrimp brood stock.

Keywords: Hepatopancreatic parvovirus, *Penaeus monodon* densovirus, shrimp, RNAi, plasmid expressing double-stranded RNA, ie1 promoter