

รายงานวิจัยฉบับสมบูรณ์

โครงการ การสร้างพลาสมิดดีเอ็นเอให้มีการผลิตอาร์เอ็นเอสายคู่ใน

กุ้งเพื่อยับยั้งไวรัส hepatopancreatic parvovirus

DNA constructs expressing double-stranded RNA in

Shrimp for inhibition of hepatopancreatic parvovirus

โดย ดร.พงโสภี อัตศาสตร์ และคณะ

มิถุนายน 2556

Acknowledgements

This work is supported by the Thailand Research Fund (DBG 5280017 to S.P.), the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative and Mahidol University research grant and TRF-MU grant (DBG5380034). Our appreciation is expressed to Mr. Wichai Boonsai, Mr. Prasong Kasetpittaya and Mr. Banjong Nisapawanit for their kindness to provide shrimp. We are very grateful to Miss Pannee Thongboonsong and Mrs Suparp Hongthong for their technical assistance.

Pongsopee Attasart

บทคัดย่อ

รหัสโครงการ: DBG5380034

ชื่อโครงการ: การสร้างพลาสมิดดีเอ็นเอให้มีการผลิตอาร์เอ็นเอสายคู่ ในก้งเพื่อยับยั้งไวรัส

hepatopancreatic parvovirus

ชื่อนักวิจัย: ดร.พงโสภี อัตศาสตร์

สถาบันชีววิทยาศาสตร์โมเลกุล มหาวิทยาลัยมหิดล

อีเมลล์: pongsopee.att@mahidol.ac.th และ

attasart_aung@hotmail.com

ระยะเวลาโครงการ: 3 ปี

ในปัจจุบันการกระตุ้นกระบวนการ RNAi ด้วยอาร์เอ็นเอสายคู่ เป็นวิธีที่ที่ใช้ ในการป้องกันไวรัสในกุ้งอย่างมีประสิทธิภาพ เพียงแต่เสถียรภาพในการยับยั้งยีน เป้าหมายจำเป็นต้องได้รับอาร์เอ็นเอสายคู่หลายครั้ง ซึ่งทำให้สิ้นเปลืองและไม่ ดังนั้นในการศึกษานี้จึง สามารถทำได้ในอุตสาหกรรมการเลี้ยงกุ้งระดับฟาร์ม ต้องการสร้างพลาสมิดที่สามารถผลิตอาร์เอ็นเอสายคู่อย่างต่อเนื่องในเซลล์กุ้ง โดยมุ่งหวังให้มีการยับยั้งยืนที่สนใจได้ยาวนานขึ้น พลาสมิดชื่อ pGL3-ie1dsRab7 ได้ถูกสร้างขึ้นประกอบด้วยโปรโมเตอร์ของยืน ie1 จากไวรัสตัวแดงดวง ขาวและชิ้นส่วนดีเอ็นเอของยีน Rab7 ของกุ้งซึ่งโคลนในรูปแบบ repeat เพื่อให้สามารถสร้างอาร์เอ็นเอสายคู่ต่อยืน Rab7 ในเซลล์กุ้งได้ เมื่อทำ การฉีดพลาสมิดนี้เข้าสู่กุ้งแล้ว วันจึงทำการตรวจสอบด้วยเทคนิค 3 quantitative RT-PCR พบว่าอาร์เอ็นเอของยืน Rab7 มีการลดระดับลงในรูปแบบ dose-dependent และลดลงอยู่ได้นานถึง 3 อาทิตย์ นอกจากนี้พบการลดระดับ อาร์เอ็นเอของยีน Rab7 จากการกินอาหารผสมที่มีพลาสมิดนี้ด้วย แต่ไม่แตกต่าง อย่างมีนัยสำคัญเมื่อเทียบกับกลุ่มควบคุมที่กินอาหารผสมแบคทีเรียที่มีแต่พลาสมิด pGL3 สำหรับการประยุกต์ใช้เพื่อยับยั้งไวรัส hepatopancreatic parvovirus หรือ *Peneaus monodon* densovirus ได้นำกุ้งที่ตรวจสอบแล้วว่าติดไวรัสจาก ธรรมชาติมาทำการฉีดด้วยพลาสมิด pGL3-ie1-dsNS1 และ pGL3-ie1-dsVP ที่ สามารถผลิตอาร์เอ็นเอสายคู่ต่อยืน ns1 และ ยืน vp ของไวรัส *Pm*DNV ได้ ตามลำดับ พบการลดระดับของไวรัสลงในกุ้งที่ถูกฉีด พลาสมิดดังกล่าวเมื่อเทียบ กับกุ้งที่ถูกฉีดด้วย NaCl หรือ พลาสมิด pGL3 แสดงให้เห็นว่าน่าจะสามารถ นำไปใช้ยับยั้งไวรัส *Pm*DNV ในกุ้งแม่พันธุ์เพื่อให้ปราศจากไวรัสชนิดนี้ใน อนาคตได้

Abstract

Project Code: DBG5380034

Project Title: DNA constructs expressing double-stranded RNA in

shrimp for inhibition of

hepatopancreatic parvovirus

Investigator: Dr. Pongsopee Attasart

Institute of Molecular Biosciences, Mahidol University

E-mail Address: pongsopee.att@mahidol.ac.th,

attasart_aung@hotmail.com

Project Period: 3 years

The dsRNA mediated RNAi activation is currently effective strategy for anti-virus in shrimp. However, the stability of its silencing effect requires multiple administrations, which are costly and not convenient when working in the shrimp farming industries. This study, therefore, we aimed to construct a plasmid that can long lastingly suppress a particular gene of interest. This recombinant plasmid, once administered, it can continuously produce dsRNA *in vivo* (shrimp). The plasmid vector pGL3-ie1-dsRab7, which containing the white spot syndrome virus (WSSV) ie1 promoter and the inverted repeat of shrimp Rab7 gene for dsRNA-Rab7 production was constructed. The result of semi-quantitative RT-PCR showed that the injected pGL3-ie1-Rab7 could suppress the level of shrimp Rab7 transcript at 3 days post injection. Moreover, this silencing effect was detected in a dose-dependent manner and maintained in shrimp for up to three weeks. The silencing efficacy of this DNA

construct via oral route was also investigated. It showed Rab7 suppression but not significantly different when compared with the control (fed with bacteria containing pGL3). For further anti-virus application, the naturally *Peneaus monodon* densovirus (*Pm*DNV) (formerly hepatopancreatic parvovirus or HPV) pre-infected shrimp was treated only by injection with the combined plasmid vectors pGL3-ie1-dsNS1 and pGL3-ie1-dsVP that can generate dsRNAs specifically to the *Pm*DNV ns1 and vp genes, respectively. The reduction of *Pm*DNV was detected in treated shrimp when compared with the control (NaCl or pGL3). It revealed that the injected plasmids could suppress the level of viral ns1 and vp transcript during the replication process leading to the inhibition of *Pm*DNV. It can be applied for cleaning up the naturally *Pm*DNV-infected shrimp brood stock.

Keywords: Hepatopancreatic parvovirus, *Penaeus monodon* densovirus, shrimp, RNAi, plasmid expressing double-stranded RNA, ie1 promoter

Executive Summary

Penaeus monodon densovirus (PmDNV)(formerly hepatopancreatic parvovirus or HPV) is one of the major causes of stunted shrimp in Thailand and leads to considerable economic losses in overall shrimp production. The dsRNA mediated RNAi activation is currently effective strategy for anti-virus in shrimp. However, the stability of its silencing effect requires multiple administrations, which are costly and not convenient when working in the shrimp farming industries. This study, therefore, we aimed to construct a plasmid that can long lastingly suppress a particular gene of interest. This recombinant plasmid, once administered, it can continuously produce dsRNA in vivo (shrimp). The plasmid vector pGL3-ie1-dsRab7, which containing the white spot syndrome virus (WSSV) ie1 promoter and the inverted repeat of shrimp Rab7 gene for dsRNA-Rab7 production was constructed. The result of semi-quantitative RT-PCR showed that the injected pGL3-ie1-Rab7 could suppress the level of shrimp Rab7 transcript at 3 days post injection. Moreover, this silencing effect was detected in a dosedependent manner and maintained in shrimp for up to three weeks. The silencing efficacy of this DNA construct via oral route was also investigated. It showed Rab7 suppression but not significantly different when compared with the control (fed with bacteria containing pGL3). For further anti-virus application, the naturally *Pm*DNV pre-infected shrimp was treated only by injection with the combined plasmid vectors pGL3ie1-dsNS1 and pGL3-ie1-dsVP that can generate dsRNAs specifically to the *Pm*DNV ns1 and vp genes, respectively. The reduction of *Pm*DNV was detected in treated shrimp when compared with the control (NaCl or pGL3). It revealed that the injected plasmids could suppress the level of viral ns1 and vp transcript during the replication process leading to the inhibition of *Pm*DNV. Hence, it can be applied for cleaning up the naturally *Pm*DNV-infected shrimp brood stock in the future.

เนื้อหางานวิจัย

1. ที่มาของปัญหาที่ทำการวิจัย

กุ้งซึ่งจัดเป็นสัตว์น้ำเศรษฐกิจอย่างหนึ่งของประเทศไทย นำรายได้เข้า ประเทศปีละหลายหมื่นล้านบาท แต่ในสถานการณ์ปัจจุบัน การเลี้ยงกุ้งในประเทศ ต้องประสบปัญหาสำคัญได้แก่โรคระบาดรุนแรงที่เกิดจากเชื้อไวรัสเช่น โรคหัว เหลือง และโรคตัวแดงดวงขาว ซึ่งเกิดจากเชื้อไวรัส Yellow Head Virus และ White Spot Syndrome Virus ตามลำดับ ทำให้กุ้งตายทั้งบ่อและส่งผลกระทบต่อ เศรษฐกิจของประเทศ แต่มีโรคบางชนิดเช่นโรคแคระแกรนที่เกิดจากไวรัส Penaeus monodon densovirus (PmDNV) หรือHepatopancreatic parvovirus (HPV) (1) ที่ไม่ทำให้กุ้งตายทั้งบ่อ แต่ก่อให้เกิดความเสียหายโดยตรงต่อเกษตรกร ้เนื่องจากก้งมีอัตราการเจริญเติบโตที่ต่ำกว่าปกติและมีขนาดเล็กมากไม่สามารถ ขายได้ตามราคาท้องตลาด ดังนั้นนักวิจัยทั้งภายในและภายนอกประเทศต่างก็มุ่งที่ จะค้นคว้าหาวิธีการควบคุมโรคดังกล่าว เป็นที่ทราบกันดีว่าสัตว์ไม่มีกระดูกสันหลัง เช่น กุ้ง ไม่มีระบบภูมิคุ้มกันแบบจดจำ (adaptive immunity) แต่จากงานวิจัยที่ ผ่านมาพบว่าได้มีการตอบสนองของระบบภูมิคุ้มกันของกุ้งในรูปแบบที่มีความ คล้ายคลึงกับว่ามีการจดจำสิ่งกระตุ้นที่เข้าสู่ตัวกุ้ง ("vaccination") แล้วส่งผลให้มี การต้านทานต่อการติดไวรัส การทดลองดังกล่าวพบว่าเมื่อกุ้งได้รับโปรตีนเปลือก หุ้ม (vp28, vp19) ของไวรัสตัวแดงดวงขาวก่อนการได้รับไวรัส กุ้งจะมีอัตราการ รอดตายสูงกว่ากุ้งที่ไม่ได้รับโปรตีนดังกล่าว (2-4) แต่การ "vaccination" ด้วย ์ โปรตีนมีผลครอบคลุมในระยะเวลาสั้นกว่าการ "vaccination" ด้วยดีเอ็นเอที่มีการ สร้างโปรตีนในภายหลัง (5-6) นอกจากนี้ยังมีการทดลองเพื่อพัฒนาวิธีการนำ "DNA vaccine" เข้าสู่กุ้งโดยการกินเพื่อให้เหมาะสมกับการใช้ในฟาร์ม (7) และ ยังมีการใช้ attenuated Salmonella typhimurium มาใช้เป็นตัวนำดีเอ็นเอเข้าสู่ โดยการกินอีกด้วย (8) แต่ทั้งนี้ยังไม่สามารถอธิบายกลไกในการ crayfish ต้านทานต่อไวรัสที่เกิดขึ้นจากการ "vaccination" ดังกล่าวได้ชัดเจน ในช่วง 4-5 ปีที่ผ่านมาได้มีการนำเอาเทคนิค RNA (RNAi) ซึ่งอาศัย interference ความจำเพาะของลำดับนิวคลีโอไทด์ของสิ่งแปลกปลอม และทำการสลายอาร์เอ็น เอของสิ่งแปลกปลอมนั้น โดยมีอาร์เอ็นเอสายคู่เป็นตัวกระตุ้นในขบวนการ มา พัฒนาเพื่อการป้องกันรวมถึงการรักษาโรคไวรัสในกุ้ง (9-14) ได้รับอาร์เอ็นเอสายค่ที่จำเพาะต่อยีนของไวรัสนั้นๆมีอัตราการตายลดลงอย่าง

เด่นชัดเมื่อเทียบกับกลุ่มควมคุมที่ไม่ได้รับอาร์เอ็นเอสายคู่ ทั้งนี้รวมถึงงานวิจัยที่ได้ นำเทคนิคนี้มาใช้กับโรคที่เกิดจากไวรัส PmDNV ในกุ้งกุลาดำ (โครงการวิจัย MRG4980036) ซึ่งพบว่าอาร์เอ็นเอสายคู่ที่จำเพาะต่อยืน ns1 ของไวรัสมี ประสิทธิภาพสูงทั้งในการป้องกันการติดไวรัส (protection) และการรักษากุ้งที่มี การติดไวรัสมาแล้ว (curative) แต่การทดลองดังกล่าวจำเป็นต้องทำการฉีดอาร์ เอ็นเอสายคู่เข้าสู่กุ้งซ้ำหลายครั้งเพื่อให้มีประสิทธิภาพในการยับยั้งการเพิ่ม จำนวนของไวรัสสูงสุด และวิธีการฉีดก็ไม่สามารถนำไปใช้ในฟาร์มเลี้ยงกุ้งได้ ดังนั้นเพื่อต่อยอดงานวิจัยและเพื่อให้สามารถนำไปใช้ได้จริงในระบบฟาร์ม การ พัฒนาพลาสมิดดีเอ็นเอให้สามารถผลิตอาร์เอ็นเอสายคู่ในกุ้งได้อย่างต่อเนื่อง รวมถึงการปรับปรุงวิธีการนำเข้าสู่กุ้งโดยการกินจึงน่าจะเป็นเรื่องเร่งด่วนที่จะต้อง ทำการวิจัยต่อไป

2. การดำเนินงานวิจัย

2.1 โคลนส่วนที่เป็นโปรโมเตอร์ของยืน (ie1 และ rr2) จากไวรัสตัว แดงดวงขาว เข้าสู่พลาสมิด pGL3-luc ที่ไม่มีโปรโมเตอร์

ทำการโคลนส่วนที่เป็นโปรโมเตอร์ของยีน ie1 และ rr2 จากไวรัสตัว แดงดวงขาวเข้าพลาสมิดที่มียีน luciferase (pGL3-luc) เพื่อใช้ตรวจสอบหาโปร โมเตอร์ที่ทำงานได้ในกุ้ง โดยทำการตรวจสอบความถูกต้องของการโคลนด้วย การตัดด้วย restriction enzyme และการหาลำดับเบส

2.2 ตรวจสอบการทำงานของโปรโมเตอร์และหา condition ที่ เหมาะสมในการแสดงออกของยืน

luciferase จากพลาสมิดหลังจากฉีดเข้าสู่กุ้ง

ทำการฉีดพลาสมิด pGL3-ie1 และ pGL3-rr2 ปริมาณ 2.5 ไมโครกรัมเข้าสู่กุ้งทางกล้ามเนื้อ จากนั้นเก็บ

ตัวอย่างกุ้งที่ฉีดพลาสมิดแล้วเป็นเวลา 3 วันเพื่อทำการสกัดดีเอ็นเอและอาร์เอ็นเอ จากเนื้อเยื่อบริเวณที่ทำการฉีดด้วย Tri-Reagent จากนั้นตรวจสอบปริมาณดีเอ็น เอที่กุ้งได้รับเข้าไปและการแสดงออกของยืน luciferase ภายใต้การควบคุมของ โปรโมเตอร์ ie1 และ rr2 โดยเทคนิค PCR และ RT-PCR ตามลำดับ 2.3 โคลนส่วนของยืน Rab7 ของกุ้ง ในรูปแบบ inverted repeat ภายใต้โปรโมเตอร์ ie1 เพื่อสร้าง พลาสมิด pGL3-ie1-dsRab7

ทำการตัดส่วนของยืน Rab7 ของกุ้ง ในรูปแบบ inverted repeat จากพลาสมิด pET17-dsRNA-Rab7 (ที่ได้รับการอนุเคราะห์จาก ผ.ศ.เฉลิมพร องค์วรโสภณ) เพื่อมาทำการโคลนเข้า แทนที่ส่วนของยืน luciferase ซึ่งอยู่ภายใต้การทำงานของโปรโมเตอร์ ie1 แล้ว ตรวจสอบความถูกต้องด้วยการตัดด้วย restriction enzyme เพื่อทำการฉีดเข้าสู่ กุ้งเพื่อตรวจสอบการสร้างอาร์เอ็นเอสายคู่ต่อยืน Rab7 ต่อไป

2.4 ตรวจสอบการสร้างอาร์เอ็นเอสายคู่ต่อยืน Rab7 จากพลาสมิด pGL3-ie1-dsRab7 โดยตรวจสอบจากการลดระดับของอาร์เอ็นเอของยืน Rab7 ด้วยวิธี semi-quantitative PCR

ทำการฉีดพลาสมิด pGL3-ie1-dsRab7 เข้าสู่กุ้ง แล้วหลังจากนั้น 3 วันจึงทำการสกัดอาร์เอ็นเอจากเนื้อเยื่อ gill ของกุ้งด้วย Ribozol แล้วตรวจสอบการลดระดับการแสดงออกของยืน Rab7 ด้วยเทคนิค semi-quantitative RT-PCR โดยทำการฉีดพลาสมิดที่ปริมาณต่างๆกัน (3, 10 และ 30 ไมโครกรัมต่อกุ้ง น้ำหนัก 1 กรัม) ถ้ามีการสร้างอาร์เอ็นเอสายคู่ต่อยืน Rab7 ออกมาในปริมาณที่สามารถไปกระตุ้นกระบวนการ RNAi จะส่งผลให้มีการทำลายอาร์เอ็นเอของยืน Rab7 และปริมาณ PCR ของยืน Rab7 ก็จะลดลงจากปริมาณปกติ (เปรียบเทียบกับกุ้งที่ฉีดพลาสมิด pGL3 ซึ่งไม่สามารถสร้างอาร์เอ็นเอสายคู่ของยืน Rab7 จากพลาสมิด pGL3-ie1-dsRab7 โดยการตรวจสอบการลดระดับของอาร์เอ็นเอ Rab7 หลังจากฉีดพลาสมิดแล้ว 3, 9 และ 30 วัน

2.5 โคลนส่วนของยืน ns1 และ vp (ของไวรัส *Pm*DNV) ในรูปแบบ inverted repeat แทนที่ส่วนของ inverted repeat ของยืน Rab7 เพื่อสร้างพ ลาสมิด pGL3-ie1-dsns1 และ pGL3-ie1-dsvp ตามลำดับ

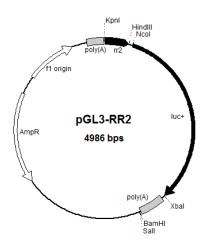
ทำการตัดส่วนของยืน ns1 และ vp (ของไวรัส *Pm*DNV) ในรูปแบบ inverted repeat จากพลาสมิด pET17b-dsRNA-ns1 และ pET17b-dsRNA-vp ตามลำดับ เพื่อนำมาโคลนเข้าพลาสมิด pGL3-ie1-dsRab7 โดยแทนที่ส่วน inverted repeat ของยืน Rab7 เพื่อนำไปใช้ในการยับยั้งไวรัส *Pm*DNV ต่อไป

2.6 ตรวจสอบประสิทธิภาพการยับยั้งไวรัส *Pm*DNV เมื่อกุ้งได้รับพ ลาสมิด pGL3-ie1-dsns1 พร้อมกับ พลาสมิด pGL3-ie1-dsvp

ทำการฉีดพลาสมิด pGL3-ie1-dsns1 พร้อมกับพลาสมิด pGL3-ie1-dsvp เข้าสู่กุ้งก่อนให้กุ้งได้รับไวรัส

PmDNV เพื่อทำการตรวจสอบการยับยั้งการเพิ่มจำนวนไวรัสดังกล่าวด้วยวิธี multiplex PCR

2.7 ทดสอบการนำพลาสมิด pGL3-ie1-dsRab7 เข้าสู่กุ้งโดยการกิน ทำการทดลองนำพลาสมิด pGL3-ie1-dsRab7 เข้าสู่กุ้งโดยการกิน ด้วยวิธีผสมกับอาหารตามสูตรในผลงาน

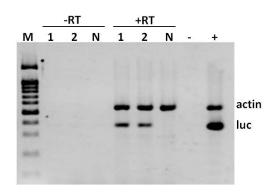

วิจัย (Attasart et al., 2013) แล้วให้กุ้งกิน แล้วจึงตรวจสอบประสิทธิภาพการนำ พลาสมิดเข้าสู่เซลล์กุ้งโดยการกินและสร้างอาร์เอ็นเอสายคู่ โดยการตรวจสอบการ ลดระดับของอาร์เอ็นเอ Rab7 ด้วยวิธี Semi-quantitative RT-PCR

3. ผลงานวิจัยที่ได้รับ

3.1 โคลนส่วนที่เป็นโปรโมเตอร์ของยืนจากไวรัสตัวแดงดวงขาว (ie1 และ rr2) เข้าสู่พลาสมิด pGL3-luc (ไม่มีโปรโมเตอร์)

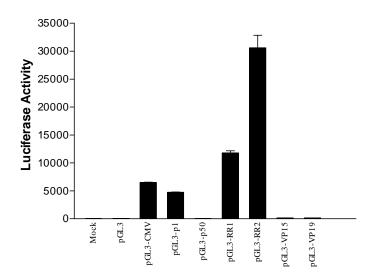
ทำการออกแบบไพร์เมอร์สำหรับ amplify ส่วนโปรโมเตอร์ของยีน ie1 และ rr2 จากจีโนมของไวรัสตัว

แดงดวงขาว ทั้งนี้อาศัยข้อมูลลำดับนิวคลิโอไทด์ที่มีอยู่แล้วใน GenBank (AF369029) จากนั้นจึงโคลนส่วนของโปรโมเตอร์ทั้ง 2 เข้าพลาสมิด pGL3-luc ที่ไม่มีโปรโมเตอร์ เพื่อให้ได้พลาสมิด pGL3-ie1 และ pGL3-rr2 (รูปที่ 1) ตามลำดับ เพื่อตรวจสอบความถูกต้องของโคลนที่ได้ จึงทำการตัดด้วยเอ็นไซม์ตัด จำเพาะ และหาลำดับนิวคลิโอไทด์ พบว่าเป็นโคลนที่ถูกต้อง พร้อมนำไปฉีดกุ้งเพื่อ ตรวจสอบว่าสามารถทำงานได้ในกุ้งหรือไม่ต่อไป



ร**ูปที่ 1** พลาสมิด pGL3-rr2 ที่ประกอบด้วยโปรโมเตอร์ rr2 ข้างหน้ายีน luciferase

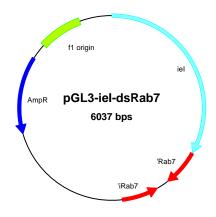
3.2 ตรวจสอบการทำงานของโปรโมเตอร์และหา condition ที่ เหมาะสมในการแสดงออกของยืนจาก พลาสมิดหลังจากฉีดเข้าสู่กุ้ง


ทำการฉีดพลาสมิด pGL3-ie1 และ pGL3-rr2 ปริมาณ 2.5
ไมโครกรัมเข้าสู่กุ้งขนาด 1 กรัมทางกล้ามเนื้อ
จากนั้นเก็บตัวอย่างกุ้งที่ฉีดพลาสมิดแล้วเป็นเวลา 3 วันเพื่อทำการสกัดดีเอ็นเอและ
อาร์เอ็นเอจากเนื้อเยื่อบริเวณที่ทำการฉีดด้วย Tri-Reagent จากนั้นตรวจสอบ

ปริมาณดีเอ็นเอที่กุ้งได้รับเข้าไปและการแสดงออกของยืน luciferase ภายใต้การ ควบคุมของโปรโมเตอร์ ie1 และ rr2 โดยเทคนิค PCR และ RT-PCR ตามลำดับ ผลการตรวจสอบด้วย PCR พบว่ากุ้งทุกตัวได้รับ พลาสมิดแต่ในปริมาณที่ไม่ เท่ากัน ส่วนการแสดงออกของยืน luciferase พบว่ามีเฉพาะจากการควบคุมด้วย โปรโมเตอร์ ie1 เท่านั้น (รูปที่ 2) แสดงว่าโปรโมเตอร์ ie1 สามารถทำงานได้ในกุ้ง ซึ่งเหมาะสมกับการนำไปใช้ต่อไป แต่โปรโมเตอร์ rr2 ถึงแม้จะเห็นว่าสามารถ ทำงานได้ในเซลล์แมลง (Sf9) (รูปที่ 3) แต่ในการทำงานในเซลล์กุ้งอาจต้องการ โปรตีนตัวอื่นจากไวรัสตัวแดงดวงขาวร่วมด้วย

ร**ูปที่ 2** แสดงผล Multiplex RT-PCR ของยีน actin และ ยีน luciferase ของกุ้งจำนวน 2 ตัว (1 และ 2)

ที่ทำการฉีดพลาสมิด pGL3-ie1 (2.5 ไมโครกรัม) แล้วเป็นเวลา 3 วันนับจากฉีด โดยจะเห็นว่ามีผลการ amplify ยืน luciferase (luc) จากกุ้งที่ได้รับพลาสมิดทั้ง 2 ตัว แต่ไม่พบในกุ้งที่ไม่ได้ฉีด (N) และไม่มีการ amplify จาก reaction ที่ไม่ได้ใส่ เอ็นไซม์ reverse transcriptase (-RT) แสดงว่าไม่มีการปนเปื้อนของพลาสมิดดี เอ็นเอในระหว่างการสกัดอาร์เอ็นเอ จึงสรุปได้ว่ามีการสร้าง transcript ของยืน luciferase จากโปรโมเตอร์ ie1

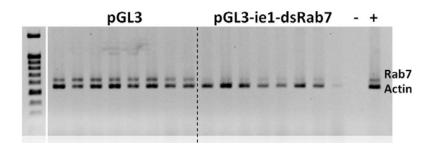

รูปที่ 3 การตรวจวัด luciferase activity ในเซลล์แมลง (Sf9) ที่ ได้รับพลาสมิดที่มีโปรโมเตอร์ต่างๆจาก

ไวรัสตัวแดงดวงขาว เช่น rr1, rr2, vp15, vp19 จากไวรัส HPV เช่น p1, p50 และจากไวรัส CMV (cmv)

3.3 โคลนส่วนของยีน Rab7 ของกุ้ง ในรูปแบบ inverted repeat ภายใต้โปรโมเตอร์ ie1

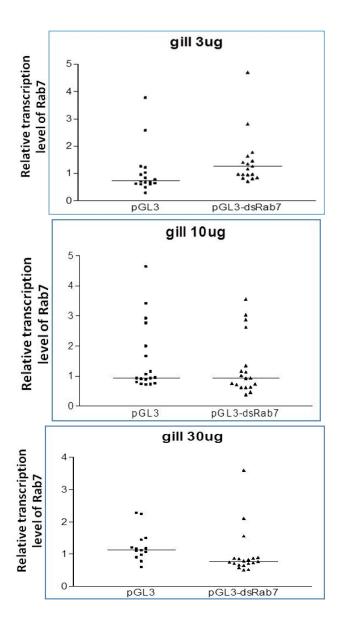
เพื่อสร้างพลาสมิดสำหรับผลิตอาร์เอ็นเอสายคู่ต่อยืน Rab7 ในกุ้ง ต่อไป จึงทำการตัดส่วนของยืน Rab7

ของกุ้ง ในรูปแบบ inverted repeat จากพลาสมิด pET17-dsRNA-Rab7 (ที่ ได้รับการอนุเคราะห์จาก ผ.ศ.เฉลิมพร องค์วร-โสภณ) ด้วยเอ็นไซม์ Xhol กับ Xbal แล้วนำมาโคลนเข้าแทนที่ส่วนของยืน luciferase ซึ่งอยู่ภายใต้การทำงาน ของโปรโมเตอร์ ie1 ของพลาสมิด pGL3-ie1 ที่ตำแหน่ง Ncol กับ Xbal ให้ได้พลาสมิด pGL3-ie1-dsRab7 (รูปที่ 4) แล้วตรวจสอบความถูกต้องด้วยการตัดด้วย restriction enzyme ก่อนนำไปฉีดเข้าสู่กุ้งเพื่อให้มีการสร้างอาร์เอ็นเอสายคู่ต่อ ยืน Rab7 และตรวจสอบจากการลดระดับของอาร์เอ็นเอของยืน Rab7 ด้วยวิธี semi-quantitative PCR ต่อไป

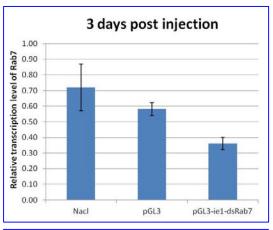


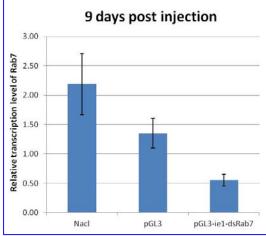
รูปที่ 4 พลาสมิด pGL3-ie1-dsRab7 ที่ประกอบด้วยโปรโมเตอร์ ie1 ข้างหน้าส่วน inverted repeat ของยืนRab7

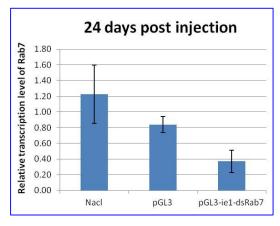
3.4 ตรวจสอบการสร้างอาร์เอ็นเอสายคู่ต่อยืน Rab7 จากพลาสมิด pGL3-ie1-dsRab7


ทำการฉีดพลาสมิด pGL3-ie1-dsRab7 เข้าสู่กล้ามเนื้อกุ้ง แล้ว หลังจากนั้น 3 วันจึงทำการเก็บตัวอย่างและทำการสกัดอาร์เอ็นเอจากเนื้อเยื่อ gill ของกุ้งด้วย Ribozol แล้วตรวจสอบการลดระดับการแสดงออกของยืน Rab7 ด้วย เทคนิค semi-quantitative RT-PCR ในการทดลองนี้ได้ทำการฉีดพลาสมิดที่ ปริมาณต่างๆกัน (3, 10 และ 30 ไมโครกรัมต่อกุ้งน้ำหนัก 1 กรัม) พบว่าสามารถ ตรวจสอบการลดลงของการแสดงออกของยืน Rab7 ได้ แสดงว่ามีการสร้างอาร์ เอ็นเอสายคู่ต่อยืน Rab7 จากพลาสมิดที่ฉีดเข้าไป และสามารถกระตุ้น กระบวนการ RNAi ซึ่งส่งผลให้มีการทำลายอาร์เอ็นเอของยืน Rab7 ทำให้มี ปริมาณลดลงเมื่อเทียบกับกลุ่มควบคุม (pGL3) (รูปที่ 5) และยังพบว่าการสร้าง อาร์เอ็นเอสายคู่ต่อยืน Rab7 เป็นแบบ dose dependent โดยเห็นการลดระดับ ของอาร์เอ็นเอ Rab7 ชัดเจนที่สุดเมื่อฉีดพลาสมิดปริมาณ 30 ไมโครกรัมต่อกุ้ง 1

กรัม (รูปที่ 6) นอกจากนี้ยังทำการตรวจสอบความต่อเนื่องในการสร้างอาร์เอ็นเอ สายคู่ของยืน Rab7 จากพลาสมิด pGL3-ie1-dsRab7 โดยการฉีดพลาสมิดที่ 30 ไมโครกรัมต่อกุ้งหนัก 1 กรัม แล้วจึงเก็บตัวอย่างกุ้งหลังจากฉีดแล้วเป็นเวลา 3, 9 และ 30 วัน เพื่อตรวจสอบการลดระดับของอาร์เอ็นเอ Rab7 เทียบกับกลุ่มควบคุม (pGL3) ผลการทดลองแสดงให้เห็นว่าอาร์เอ็นเอของ Rab7 มีระดับน้อยกว่าตัว ควบคุมทุกช่วงเวลา (รูปที่ 7) (หมายเหตุ: ไม่สามารถเก็บตัวอย่างที่เวลา 30 วันได้ ต้องเก็บที่ 24 วันแทนเนื่องจากกุ้งทยอยตาย อาจจะเนื่องด้วยการที่ Rab7 ซึ่งเป็น ยีนสำคัญของกุ้ง ถูกกดให้มีระดับต่ำเป็นเวลานานจึงส่งผลให้กุ้งอ่อนแอและตาย ในที่สุด) แสดงว่าน่าจะมีการสร้างอาร์เอ็นเอสายคู่ต่อยืน Rab7 ของกุ้ง ออกมา จากพลาสมิด pGL3-ie1-dsRab7 ที่ฉีดเข้าไปอย่างต่อเนื่อง


รูปที่ 5 แสดงผล Multiplex RT-PCR ของยีน actin และ ยีน Rab7 จากเนื่อเยื่อ gill ของกุ้ง หลังจากที่

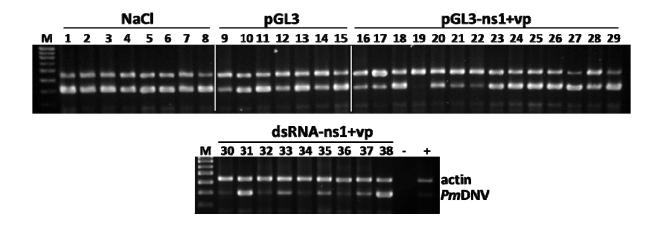

ทำการฉีดพลาสมิด pGL3-ie1-dsRab7 แล้วเป็นเวลา 3 วัน โดยจะเห็นว่ามีการ ลดระดับของอาร์เอ็นเอ Rab7 ลงเมื่อเทียบกับกุ้งในกลุ่มที่ฉีดด้วยพลาสมิด pGL3 โดยมีตัวควบคุมที่ไม่ใส่ DNA template (-) และที่ใส่ DNA ที่สกัดจากกุ้ง (+)



รูปที่ 6 แสดงผลการเปรียบเทียบระดับอาร์เอ็นเอ Rab7/ actin ของ กุ้งในกลุ่มที่ฉีดพลาสมิด pGL3-ie1-

dsRab7 ในปริมาณ 3, 10 และ 30 ไมโครกรัมต่อกุ้ง 1 กรัม กับกุ้งในกลุ่มที่ฉีดพ ลาสมิด pGL3 ในปริมาณที่เท่ากัน แล้วเป็นเวลา 3 วัน โดยจะเห็นว่ามีการลดระดับ ของอาร์เอ็นเอ Rab7 ลงเมื่อเทียบกับกุ้งในกลุ่มที่ฉีดด้วยพลาสมิด pGL3 ใน รูปแบบ dose dependent

รูปที่ 7 แสดงผลการเปรียบเทียบระดับอาร์เอ็นเอ Rab7/ actin ของ กุ้งในกลุ่มที่ฉีดพลาสมิด pGL3-ie1-

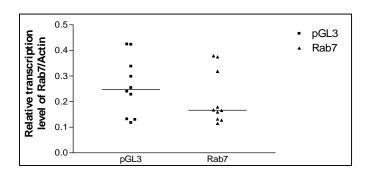

dsRab7 ในปริมาณ 30 ไมโครกรัมต่อกุ้ง 1 กรัม กับกุ้งในกลุ่มที่ฉีดพลาสมิด pGL3 ในปริมาณ 30 ไมโครกรัมเท่ากัน หรือกุ้งที่ฉีด NaCl แล้วเป็นเวลา 3, 9 และ 24 วัน โดยจะเห็นว่าการลดระดับของอาร์เอ็นเอ Rab7 สามารถตรวจได้ จนถึงวันที่ 24 หลังจากฉีดแสดงให้เห็นว่ามีการสร้างอาร์เอ็นเอสายคู่ออกมาอย่าง ต่อเนื่อง

3.5 โคลนส่วนของยืน ns1 และ vp (ของไวรัส *Pm*DNV) ในรูปแบบ inverted repeat แทนที่ส่วนของ inverted repeat ของยืน Rab7 เพื่อสร้างพ ลาสมิด pGL3-ie1-dsns1 และ pGL3-ie1-dsvp ตามลำดับ

เนื่องจากข้อมูลก่อนหน้านี้ (Attasart et al., 2011) แสดงให้เห็นว่า การยับยั้งไวรัส *Pm*DNV อย่างมีประสิทธิภาพสูงสุดนั้น ต้องกดการแสดงออกของ ยีนไวรัส ns1 และ vp ไปพร้อมๆกัน ดังนั้นจึงจำเป็นต้องสร้างพลาสมิดที่ผลิตอาร์ เอ็นเอสายคู่ต่อยีนทั้งสอง โดยทำการตัดส่วนของยีน ns1 และ vp (ของไวรัส *Pm*DNV) ในรูปแบบ inverted repeat จากพลาสมิด pET17b-dsRNA-ns1 และ pET17b-dsRNA-vp ตามลำดับ เพื่อนำมาโคลนเข้าพลาสมิด pGL3-ie1-dsRab7 โดยแทนที่ส่วน inverted repeat ของยีน Rab7 แล้วตรวจสอบความถูกต้องด้วย การทำ PCR และตัดด้วย restriction enzyme พบว่าได้พลาสมิด pGL3-ie1-dsns1 (สำหรับผลิตอาร์เอ็นเอสายคู่ต่อยีน ns1) และ pGL3-ie1-dsvp (สำหรับ ผลิตอาร์เอ็นเอสายคู่ต่อยีน vp) เรียบร้อยแล้ว เพื่อนำไปใช้ในการยับยั้งไวรัส *Pm*DNV ต่อไป

3.6 ตรวจสอบประสิทธิภาพการยับยั้งไวรัส *Pm*DNV เมื่อกุ้งได้รับพ ลาสมิด pGL3-ie1-dsns1 พร้อมกับ พลาสมิด pGL3-ie1-dsvp

ได้ทำการเตรียมพลาสมิด pGL3-ie1-dsns1, pGL3-ie1-dsvp และ pGL3 ในปริมาณมากเพื่อนำไปฉีดกุ้ง โดยทำการฉีดกุ้งเพื่อยับยั้งไวรัส HPV ใน รูปแบบของการรักษา โดยได้นำกุ้งกุลาดำที่ตรวจด้วย PCR แล้วพบว่ามีการติด ไวรัส HPV จากธรรมชาติ (ไม่ได้แสดงผลในรายงาน) แล้วฉีดพลาสมิดผสมระหว่าง pGL3-ie1-dsns1 และ pGL3-ie1-dsvp (อย่างละ 5 ไมโครกรัมต่อกุ้ง 1 กรัม) หลังจากนั้น สัปดาห์ จึงทำการตรวจสอบปริมาณไวรัสที่เหลืออยู่ในกุ้งกลุ่ม ้ดังกล่าว เทียบกับกลุ่มควบคุม ซึ่งฉีด NaCl หรือ ฉีด pGL3 (ปริมาณ 10 ไมโครกรัม ต่อกุ้ง 1 กรัม) จากผลการทำ semi-quantitative PCR พบว่ากุ้งในกลุ่มที่ได้รับ พลาสมิด pGL3-ie1-dsns1+pGL3-ie1-dsvp มีปริมาณไวรัสลดลงจากกลุ่มควบคุม อย่างชัดเจน 8 ตัวจาก 14 ตัว (รูปที่ 8) แสดงให้เห็นว่าพลาสมิดที่ฉีดเข้าไปสามารถ สร้างอาร์เอ็นเอสายคู่ต่อยืน ns1 และยืน vp ของไวรัส ทำให้การเพิ่มจำนวนของ ้ไวรัสในกุ้งกลุ่มนี้ถูกยับยั้ง ส่งผลให้มีปริมาณเหลืออยู่น้อยกว่ากลุ่มควบคุมที่ไม่มีการ ยับยั้ง เมื่อเทียบกับกลุ่มที่ได้รับอาร์เอ็นเอสายคู่โดยตรงพบว่ากลุ่มที่ได้รับอาร์เอ็นเอ สายคู่โดยตรงมีการลดระดับของไวรัสลงมากกว่ากลุ่มที่ฉีดพลาสมิด pGL3-ie1dsns1 +pGL3-ie1-dsvp แต่ทั้งนี้การฉีดอาร์เอ็นเอสายคู่โดยตรงต้องทำการฉีดถึง 2 ครั้ง (อาทิตย์ละ 1 ครั้ง)


รูปที่ 8 แสดงผล Multiplex RT-PCR ของยีน actin และ ยีน Rab7 จากเนื้อเยื่อ hepatopancreas ของ

กุ้งที่ฉีดพลาสมิดผสมระหว่าง pGL3-ie1-dsns1 และ pGL3-ie1-dsvp (อย่างละ 5 ไมโครกรัมต่อกุ้ง 1 กรัม) โดยจะเห็นว่ามีการลดระดับของอาร์เอ็นเอ Rab7 ลงเมื่อ เทียบกับกุ้งในกลุ่มที่ฉีดด้วยพลาสมิด pGL3 หรือฉีด NaCl แต่ยังลดน้อยกว่ากลุ่ม ที่ฉีดอาร์เอ็นเอสายคู่โดยตรงซึ่งต้องฉีดมากกว่า 1 ครั้ง

3.7 ทดสอบการนำพลาสมิด pGL3-ie1-dsRab7 เข้าสู่กุ้งโดยการกิน

ในส่วนของการผสมอาหารได้ทำการทดลองผสมแบคทีเรียที่มีพ
ลาสมิด pGL3-ie1-dsRab7 กับอาหารกุ้งบดตามสูตรการเตรียมอาหารผสมที่ได้
ตีพิมพ์ไปแล้ว (Attasart et al., 2013) จากนั้นนำไปให้กุ้งกุ้งขาวกินในปริมาณ
10% ของน้ำหนักกุ้งเป็นเวลา 5 วัน หลังจากนั้น 2 วันจึงทำการตรวจสอบการลดลง
ของ Rab7 transcript ในกุ้งกลุ่มนี้เทียบกับกุ้งที่กินอาหารผสมแบคทีเรียที่มีพ
ลาสมิด pGL3 พบว่า มีการลดลงของ Rab7 transcript เฉพาะในเนื้อเยื่อตับ
(hepatopancreas) และลดลงน้อยกว่าเมื่อได้จากการฉีดพลาสมิด (รูปที่ 9) แต่ไม่
เห็นการลดลงของ Rab7 transcript ในส่วนเหงือก (gill) อาจเนื่องมาจากการนำ
พลาสมิดจากอาหารผสม (หลังการย่อย) เข้าเซลล์กุ้งแล้วส่งผ่านเข้านิวเคลียสเพื่อ

ไปทำการสร้างอาร์เอ็นเอสายคู่ต่อยืน Rab7 มีประสิทธิภาพต่ำกว่าการฉีดหรือการ กินอาหารผสมที่มีอาร์เอ็นเอสายคู่ ดังนั้นจึงสรุปได้ว่าพลาสมิด pGL3-ie1-dsns1, pGL3-ie1-dsvp ที่สร้างขึ้นเหมาะจะนำไปใช้ในการยับยั้งไวรัส HPV ในกุ้งแม่พันธุ์ มากกว่าการนำไปใช้กับกุ้งในฟาร์ม

ร**ูปที่ 9** แสดงผลการเปรียบเทียบระดับอาร์เอ็นเอ Rab7/ actin ของ กุ้งในกลุ่มที่กินอาหารผสมแบคทีเรีย

ที่มีพลาสมิด pGL3-ie1-dsRab7 ในปริมาณมื้อละ 10% ของน้ำหนักกุ้ง เป็นเวลา 5 มื้อ (3 วัน) กับกุ้งในกลุ่มที่กินแบคทีเรียที่มีพลาสมิด pGL3 (ควบคุม) ในปริมาณ ที่เท่ากัน โดยจะเห็นว่าระดับของอาร์เอ็นเอ Rab7 ของกุ้งกลุ่มที่กินอาหารผสมที่มี pGL3-ie1-dsRab7 มีแนวโน้มลดลง แต่ไม่แตกต่างกับกลุ่มควบคุมอย่างมี นัยสำคัญ

4. เอกสารอ้างอิง

- 4.1 Flegel, T.W., Thamavit, V., Pasharawipas, T. and Alday-Sanz, V. 1999. Statistical correlation between severity of hepatopancreatic parvovirus infection and stunting of farmed black tiger shrimp (*Penaeus monodon*). *Aquaculture* 174: 197-206.
- 4.2 Witteveldt J, Cifuentes CC, Vlak JM, van Hulten MC. 2004. Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J Virol. 78(4):2057-61.
- 4.3 Witteveldt J, Vlak JM, van Hulten MC. 2004. Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish Shellfish Immunol. 16(5):571-9.
- 4.4 Satoh J, Nishizawa T, Yoshimizu M. 2008. Protection against white spot syndrome virus (WSSV) infection in kuruma shrimp orally vaccinated with WSSV rVP26 and rVP28. Dis Aquat Organ. 82(2):89-96.
- 4.5 Rout N, Kumar S, Jaganmohan S, Murugan V. 2007. DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine. 25(15):2778-86.
- 4.6 Rajesh Kumar S, Ishaq Ahamed VP, Sarathi M, Nazeer Basha A, Sahul Hameed AS. 2008. Immunological responses of Penaeus monodon to DNA vaccine and its efficacy to protect shrimp against white spot syndrome virus (WSSV). Fish Shellfish Immunol. 24(4):467-78.
- 4.7 Rajeshkumar S, Venkatesan C, Sarathi M, Sarathbabu V, Thomas J, Anver Basha K, Sahul Hameed AS. 2009. Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from

- white spot syndrome virus (WSSV). Fish Shellfish Immunol. 26(3):429-37.
- 4.8 Ning JF, Zhu W, Xu JP, Zheng CY, Meng XL. 2009. Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuated Salmonella typhimurium. Vaccine. 27(7):1127-35.
- 4.9 Robalino, J., Browdy, C.L., Prior, S., Metz, A., Parnell, P., Gross, P., Warr, G., 2004. Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J. Virol. 78, 10442-10448.
- 4.10 Robalino, J., Bartlett, T., Shepard, E., Prior, S., Jaramillo, G., Scura, E., Chapman, R.W., Gross, P.S., Browdy, C.L., Warr, G.W., 2005. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J. Virol. 79, 13561-13571.
- 4.11 Kim, C.S., Kosuke, Z., Nam, Y.K., Kim, S.K., Kim, K.H., 2006. Protection of shrimp (*Penaeus chinensis*) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol. 23, 242-246.
- 4.12 Yodmuang, S., Tirasophon, W., Roshorm, Y., Chinnirunvong, W., Panyim, S., 2006. YHV-protease dsRNA inhibits YHV replication in *Penaeus monodon* and prevents mortality. Biochem Biophys Res Commun. 341, 351-356.
- 4.13 Tirasophon, W., Yodmuang, S., Chinnirunvong, W., Plongthongkum, N., Panyim, S., 2007. Therapeutic inhibition of yellow

head virus multiplication in infected shrimps by YHV-protease dsRNA. Antiviral Res. 74, 150-155.

4.14 Ongvarrasopone, C., Chanasakulniyom, M., Sritunyalucksana, K., Panyim, S., 2008. Suppression of PmRab7 by dsRNA inhibits WSSV or YHV infection in shrimp. Mar. Biotechnol. 10, 374-381.

5. ผลงานวิจัยที่ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

- Attasart, P., Kaewkhaw, R., Chimwai, C., Kongphom, U., Panyim, S. 2011. Clearance of *Penaeus monodon* densovirus in naturally pre-infected shrimp by combined ns1 and vp dsRNAs. Virus Res. 159: 79-82. (Impact factor = 2.941)
- Attasart, P., Namramoon, O., Kongphom, U., Chimwai, C., Panyim, S. 2013. Ingestion of bacteria expressing dsRNA triggers specific RNA silencing in shrimp.
 Virus Res. 171: 252-256. (Impact factor = 2.941)
 - 3. Chaimongkon, D., Chimwai, C., Namramoon, O., Phromma-in, N., Panyim, S., **Attasart, P**. 2013.

Gene silencing induced by a DNA vector *in vivo*-expressing double-stranded RNA can inhibit *Pm*DNV in shrimp. (manuscript in preparation)

ผลงานวิจัยอื่นๆ

1. Attasart, P., Kaewkhaw, R., Chimwai, C., Kongphom, U., Namramoon, O., Panyim, S., 2010.

RNAi for inhibition of Penaeus monodon densovirus (PmDNV) replication in shrimp. The 7th National Symposium on Marine Shrimp, Twin lotus hotel, Nakhon Si Thammarat, Thailand (September 7-8).

Chaimongkon, D., Chimwai, C., Panyim, S., Attasart, P., 2010.
 Investigation of luciferase gene

expression from a plasmid injected into shrimp. The 36th Congress on Science and Technology of Thailand, Bangkok International Trade and Exhobition Centre (BITEC), Thailand (October 26-28).

- Namramoon, O., Tongboonsong, P., Kongphom, U., Attasart, P., 2012. DsRNA mediated
 silencing of shrimp gene by oral feeding. The 38th Congress on Science and Technology of Thailand, The Empress Convention Centre, Chiang Mai, Thailand (October 17-19).
- Chimwai, C., Tongboonsong, P., Maruekawong, K., Attasart, P. 2012. Ingestion of bacteria
 expressing dsRNA inhibits HPV replication in tiger shrimp. The 38th Congress on Science and Technology of Thailand, The Empress Convention Centre, Chiang Mai, Thailand (October 17-19).
 - 5. Attasart, P., Chaimongkon, D., Namramoon, O., Phromma-in, N., Chimwai, C., Panyim, S. 2013.

Silencing of Rab7 by *in vivo* expressed dsRNA-Rab7 increases shrimp survival from WSSV infection. Strike a Chord for Sustainable Aquaculture. Nashville, Tennessee, U.S.A. (February 21-25).

6. ภาคผนวก

ELSEVIER

Contents lists available at ScienceDirect

Virus Research

journal homepage: www.elsevier.com/locate/virusres

Short communication

Clearance of *Penaeus monodon* densovirus in naturally pre-infected shrimp by combined ns1 and vp dsRNAs

Pongsopee Attasart^{a,*}, Rossukon Kaewkhaw^a, Chaweewan Chimwai^a, Ukrit Kongphom^a, Sakol Panyim^{a,b}

- ^a Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- ^b Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

ARTICLE INFO

Article history: Received 20 March 2011 Received in revised form 1 May 2011 Accepted 2 May 2011 Available online 7 May 2011

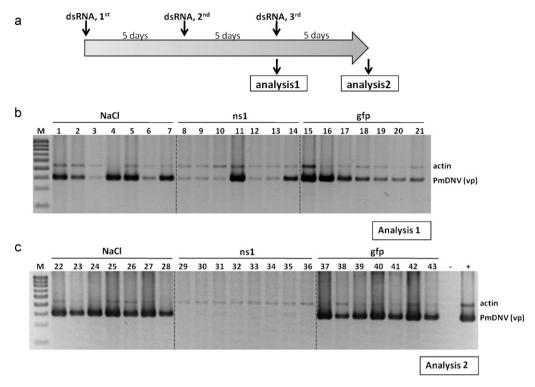
Keywords:
Hepatopancreatic parvovirus
Penaeus monodon densovirus
Shrimp
RNAi
Double-stranded RNA
Therapeutic

ABSTRACT

Penaeus monodon densovirus (PmDNV) is one of the major causes of stunted shrimp in Thailand and leads to considerable economic losses in overall shrimp production. Present study shows that the double-stranded RNA corresponding to the non-structural protein gene (ns1) and structural protein gene (vp) of PmDNV effectively inhibit viral propagation in naturally pre-infected shrimp. Multiple application of dsRNA was performed by injection into the haemolymph. The total amount of virus in the hepatopancreas of treated shrimp was measured by semi-quantitative PCR and histological methods. Observations indicated that PmDNV was almost eradicated in comparison to the high viral propagation in the control groups (no dsRNA and non-related dsRNA-gfp). For heavily infected shrimp, simultaneously knock down of ns1 and vp genes exhibited greater potency for viral depletion than dsRNA-ns1 alone. Furthermore, typical hypertrophic nuclei were also reduced in treated shrimp. This study therefore demonstrates the first result of an effective anti-PmDNV therapy in naturally pre-infected shrimp.

© 2011 Elsevier B.V. All rights reserved.

At present, shrimp with a slow growth rate and stunted appearance is one of the main problems of the shrimp culturing industry in Thailand. Several tons of shrimp production has been lost due to improper farm management and severe infection from causative pathogenic agents. One such pathogen is *Penaeus monodon* densovirus (PmDNV) (formerly hepatopancreatic parvovirus or HPV). Although, many intensive studies have developed a sensitive and efficient method for diagnosis (Rukpratanporn et al., 2005; Khawsak et al., 2008; Nimitphak et al., 2008), this disease pandemic is still seriously found. Therefore, the development of an efficient approach for PmDNV treatment is needed.


RNA interference (RNAi) is a powerful technique that requires the activation of the exogenous dsRNA for the degradation of its complementary viral RNA (Hannon, 2002). By its sequence specificity, it has been widely applied to inhibit shrimp viruses such as white spot syndrome virus (WSSV) (Robalino et al., 2005; Kim et al., 2006; Attasart et al., 2009), and yellow head virus (YHV) (Yodmuang et al., 2006; Tirasophon et al., 2007).

PmDNV is a single-stranded DNA non-enveloped virus (Lightner and Redman, 1985; Bonami et al., 1995). Its genome composes three large open reading frames (ORFs); two of which are non-structural

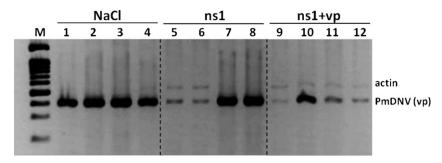
protein genes (ns1 and ns2) and one which is a structural protein gene (vp) (Sukhumsirichart et al., 2006). In our previous study, we have determined the effectiveness of viral specific double-stranded RNA (dsRNA) for the inhibition of PmDNV in shrimp (*P. monodon*) (Attasart et al., 2010). It demonstrated that both of dsRNA corresponding to the ns1 (dsRNA-ns1) or vp gene (dsRNA-vp) effectively inhibited PmDNV replication in which the dsRNA-ns1 was more effective than the dsRNA-vp. However, the therapeutic effect of these dsRNAs against this disease in shrimp is still not known. Hence, in this work, treatment of the infected-shrimp by dsRNA-ns1 alone alongside a combined dsRNA-ns1 and dsRNA-vp was evaluated under low and high levels of pre-existing PmDNV.

Naturally PmDNV infected-shrimp (*P. monodon*) having a body weight of 300–400 mg were obtained from a hatchery farm since they were at the post-larval stage (P15–20) and reared in a tank until they reached the appropriate size. They were maintained in artificial sea water (10 parts per thousand (ppt)) supplied with oxygen, and fed daily with a commercial shrimp food pellet. Prior to testing the curative effect of dsRNA-ns1, the shrimp were sampled randomly for PmDNV infection by PCR. The total DNA of the hepatopancreatic tissue was isolated using TRI reagent (Molecular Research Center). After grinding 50–100 mg of tissue in 1 ml TRI reagent, the DNA in the inter-phase and organic phase was precipitated by adding absolute ethanol and washed with 0.1 M Tri-sodium citrate and 75% ethanol. The DNA pellet was finally resuspended in sterile distilled water at 60 °C. The 200 ng of

^{*} Corresponding author. Tel.: +66 2 800 3624 8x1259; fax: +66 2 441 9906. E-mail addresses: mbpas@mahidol.ac.th, attasart_aung@hotmail.com (P. Attasart).

Fig. 1. Treatment of naturally PmDNV-infected shrimp by dsRNA-ns1. The 300–400 mg PmDNV-infected shrimp were injected with 800 ng dsRNA specific to viral ns1 gene (dsRNA-ns1) three times by 5 days intervals. Instead of dsRNA-ns1, shrimp were treated with NaCl in the control group or with dsRNA specific to gfp (dsRNA-gfp) in order to determine the non-specific effect. Shrimp were randomly selected for analysis 1 and 2 after the second and third administration, respectively. The hepatopancreas of each shrimp was collected for DNA extraction and further PCR analysis was performed. (a) Diagram represents the experimental condition. Semi-quantitative PCR is shown in b (analysis 2). The amount of PmDNV in the individual shrimp was determined by multiplex PCR using the viral specific primers (vp) together with the host control gene (actin) primers for normalization (0.2 μM each). Lanes 1–7 (b), 22–28 (c) represent individual shrimp receiving NaCl; 8–14 (b), 29–36 (c) dsRNA-ns1; 15–21 (b), 37–43 (c) dsRNA-gfp. Negative (–) and positive (+) control of the reaction are included with the 100 bp DNA marker in lane M.

total extracted DNA, estimated by the measurement of UV light absorption, was used as a template for vp amplification using vp-s (5' AATCTGCAGGGTACGGAAAAAAC 3') and vp-a (5' TGTG-GAACCATCTCAAATGCC 3') primers. In the reaction, the shrimp actin primers; F (5' GACTCGTACGTCGGGCGACGAGG 3') and R (5' AGCAGCGGTGGTCATCACCTGCTC 3'), were also added for normalization between each sample. The PCR amplification procedure was carried out as follows; 94 °C for 2 min, denaturation at 94 °C for 10 s, annealing at 55 °C for 30 s, and extension at 72 °C for 1 min. After 20 cycles, the reaction was held at 72 °C for another 5 min. The PCR product was analyzed by agarose gel electrophoresis. As a result, the PmDNV DNA was detected in every shrimp, indicating that they were already infected (data not shown).


Double-stranded RNA was produced in bacterial cells according to the protocol of Ongvarrasopone et al. (2007). The stem-loop RNA expression plasmid containing the inverted repeat of the DNA region corresponding to the ns1 or vp gene (Attasart et al., 2010) was transformed into Escherichia coli HT115. The overnight culture was diluted 100-fold and grown at 37 °C until OD₆₀₀ reached 0.4. After activation with isopropyl- β -D-thiogalactopyranoside (IPTG) for 4h, the bacterial cells were then centrifuged at $6000 \times g$ for 5 min at 4 °C. The cell pellet was resuspended in phosphate buffer saline (PBS) containing 0.1% sodium dodecyl sulphate (SDS) and the cell suspension was boiled for 2 min to lyse the cells. After treatment with RNaseA to destroy the bacterial single-stranded RNAs (ssRNAs) and the loop region of the expressed RNA, the remaining dsRNA (400 bp) was purified by using TRI reagent. The integrity and yield of dsRNA were then determined and compared with a standard DNA marker by agarose gel electrophoresis.

Two different batches of shrimp, with mild or severe levels of PmDNV infection, were tested in this study. In the case of low PmDNV, the pre-infected shrimp were randomly divided into three

groups. Each group was separately treated with buffer (NaCl), viral specific dsRNA-ns1 or non-related dsRNA (dsRNA corresponding to green fluorescence protein gene, gfp). The shrimp were placed in individual cages and reared in 10 ppt artificial sea water during the experiment. Multiple injections of 800 ng dsRNA into the haemolymph circulation occurred every 5 days. According to the diagram presented in Fig. 1a, 7-8 shrimp of each group were randomly selected for analysis 1 (10 days post the first injection, dpi) and analysis 2 (15 dpi) after the second and third dsRNA administration, respectively. The total DNA was extracted from the hepatopancreas of the shrimp and semi-quantitative PCR was employed to determine PmDNV reduction in dsRNA-ns1 treated shrimp compared with the control (NaCl and dsRNA-gfp). The amount of DNA and conditions used for the PCR analysis were the same as described before for PmDNV detection. The experiment was performed twice, showing a similar trend. Hence, the results provided here are from only one set of data.

We observed a significant decrease in virus production after the second and third injection of dsRNA-ns1 as shown in Fig. 1b and c. In contrast, neither the buffer nor dsRNA-gfp suppressed viral propagation indicating that the effect is sequence-specific. Notable results indicated that exogenous viral specific dsRNAns1 can potently suppress PmDNV replication in a curative mode whereas the non-related dsRNA cannot. Tirasophon et al. (2007) have also reported this phenomenon, stating that there was no curative effect against YHV infection in black tiger shrimp by nonrelated dsRNA-gfp.

To test the curative efficacy of the dsRNA-ns1 in heavily PmDNV-infected shrimp, shrimp were treated with dsRNA-ns1 three times for every 5 days. Under the same experimental conditions as previously mentioned, the reduction of PmDNV in treated shrimp was only 50% in comparison to the control (NaCl) (data not shown).

Fig. 2. Treatment of heavily PmDNV-infected shrimp by dsRNAs. The 300–400 mg strong PmDNV-infected shrimp were separately injected with 800 ng dsRNA-ns1 alone or combined ns1 and vp dsRNAs (800 ng each) or NaCl every 5 days. After 4 injections, shrimp were collected for semi-quantitative PCR analysis. Multiplex PCR using vp primers and host actin primers, at final concentration of 0.1 μM and 0.2 μM, respectively, was used. Lanes 1–4 represent individual shrimp receiving NaCl; 5–8 dsRNA-ns1; 9–12 ns1+vp dsRNAs. M is a 100 bp DNA marker.

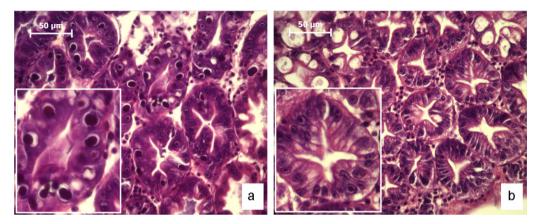


Fig. 3. H&E stained section of hepatopancreas from PmDNV-infected shrimp treated with NaCl (a) or with combined ns1 and vp dsRNAs (b). Relating to the result in Fig. 2, only H&E stained section of hepatopancreas from shrimp treated with NaCl (no. 3) and with ns1 + vp dsRNAs (no. 9) are present. Many large densely purple stained intranulear inclusions in nuclei of epithelial hepatopancreatic cells are clearly detected in the control PmDNV-infected shrimp (a). In contrast, the typical character of PmDNV infected hepatopancreatic cells is disappeared in the dsRNA-treated shrimp. Enlargement is shown in a small box.

Therefore, an improvement of the anti-PmDNV effect by simultaneous silencing of the ns1 and vp gene expression was performed. A mixture of dsRNA-ns1 and dsRNA-vp (800 ng each) or dsRNAns1 alone (800 ng) was injected into the heavily infected shrimp for 5 day intervals. After four injections (20 dpi), the remaining PmDNV in individual shrimp was evaluated by semi-quantitative PCR and histological analysis. The hepatopancreas of each shrimp was separately divided into two parts; one for DNA extraction and another for Hematoxylin and Eosin (H&E) stained paraffin sections. PCR analysis illustrated a significant reduction of PmDNV in dsRNAtreated shrimp in which the combined dsRNA (ns1+vp) was more effective than dsRNA-ns1 alone (Fig. 2). Moreover, clearance of PmDNV was also confirmed by normal histology. The hepatopancreas tissue was fixed in Davidson's solution for 18 h before being dehydrated and embedded in paraffin using standard histological methods (Lightner, 1996). The sections were then cut and stained with hematoxylin and eosin solution. Analysis by light microscopy illustrated numerous enlarged nuclei containing typical basophilic parvovirus inclusions in the control whereas normal nuclei character was observed in dsRNA-treated shrimp (Fig. 3). It indicated that shrimp suffering from PmDNV infection may be cured by this treatment.

Although there have been reports about the curative effect of dsRNA against other shrimp viruses but this effect was effective only if shrimp received dsRNA within 24 h after experimental infection (Tirasophon et al., 2007; Ongvarrasopone et al., 2010; Ho et al., 2011). Therefore, the present study reports the first results of the ability of combined ns1 and vp dsRNAs for the effective clearance of PmDNV from shrimp that were already infected from naturally cultured pond. In the future, the promising ability of these com-

bined dsRNAs may be utilized as a tool for anti-PmDNV therapy in shrimp and could be especially useful when applied to cleaning-up high value shrimp brood stock after being infected by the virus.

Acknowledgements

We thank Andrew Hopper for his grammatical correction. Our appreciation is expressed to Mr. Banjong Nisapawanit and Mr. Chalerm Sakdee for their kindness to provide shrimp (post-larva). We are very grateful to Mr. Sitichai Urtgam and Miss Pornapa Kinoon for their assistance in histological data. This work is supported by Thailand Research Fund (DBG 5280017 to S.P.), the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative and Mahidol University research grant. P.A. was supported by TRF-CHE grant (MRG4980036) and TRF-MU grant (DBG5380034).

References

Attasart, P., Kaewkhaw, R., Chimwai, C., Kongphom, U., Namramoon, O., Panyim, S., 2009. Inhibition of white spot syndrome virus replication in *Penaeus monodon* by combined silencing of viral rr2 and shrimp PmRab7. Virus Res. 145, 127–133.

Attasart, P., Kaewkhaw, R., Chimwai, C., Kongphom, U., Namramoon, O., Panyim, S., 2010. Inhibition of *Penaeus monodon* densovirus (PmDNV) replication in shrimp by double-stranded RNA. Arch. Virol. 155, 825–832.

Bonami, J.R., Mari, J., Poulos, B.T., Lightner, D.V., 1995. Characterization of hepatopancreatic parvo-like virus, a second unusual parvovirus pathogenic for penaeid shrimps. J. Gen. Virol. 76, 813–817.

Hannon, G.J., 2002. RNA interference. Nature 418, 244-251.

Ho, T., Yasri, P., Panyim, S., Udomkit, A., 2011. Double-stranded RNA confers both preventive and therapeutic effects against *Penaeus stylirostris* densovirus (*Pst*DNV) in *Litopenaeus vannamei*. Virus Res. 155, 131–136.

- Khawsak, P., Deesukon, W., Chaivisuthangkura, P., Sukhumsirichart, W., 2008. Multiplex RT-PCR assay for simultaneous detection of six viruses of penaeid shrimp. Mol. Cell Probes 22, 177–183.
- Kim, C.S., Kosuke, Z., Nam, Y.K., Kim, S.K., Kim, K.H., 2006. Protection of shrimp (*Penaeus chinensis*) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol. 23, 242–246.
- Lightner, D.V., 1996. A Handbook of Pathology and Diagnostic Procedures for Diseases of Penaeid Shrimp. World Aquaculture Society, Baton Rouge, LA.
- Lightner, D.V., Redman, R.M., 1985. A provo-like virus disease of penaeid shrimp. J. Invertebr. Pathol. 45, 47–53.
- Nimitphak, T., Kiatpathomchai, W., Flegel, T.W., 2008. Shrimp hepatopancreatic parvovirus detection by combining loop-mediated isothermal amplification with a lateral flow dipstick. J. Virol. Methods 154, 56–60.
- Ongvarrasopone, C., Roshorm, Y., Panyim, S., 2007. A simple and cost effective method to generate dsRNA for RNAi studies in invertebrates. Science Asia 33, 35–39.
- Ongvarrasopone, C., Chomchay, E., Panyim, S., 2010. Antiviral effect of PmRab7 knock-down on inhibition of Laem-Singh virus replication in black tiger shrimp. Antiviral Res. 88, 116–118.

- Robalino, J., Bartlett, T., Shepard, E., Prior, S., Jaramillo, G., Scura, E., Chapman, R.W., Gross, P.S., Browdy, C.L., Warr, G.W., 2005. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J. Virol. 79, 13561–13571.
- Rukpratanporn, S., Sukhumsirichart, W., Chaivisuthangkura, P., Longyant, S., Sithigorngul, W., Menasveta, P., Sithigorngul, P., 2005. Generation of monoclonal antibodies specific to Hepatopancreatic parvovirus (HPV) from *Penaeus monodon*. Dis. Aquat Org. 65, 85–89.
- Sukhumsirichart, W., Attasart, P., Boonsaeng, V., Panyim, S., 2006. Complete nucleotide sequence and genomic organization of hepatopancreatic parvovirus (HPV) of *Penaeus monodon*. Virology 346, 266–277.
- Tirasophon, W., Yodmuang, S., Chinnirunvong, W., Plongthongkum, N., Panyim, S., 2007. Therapeutic inhibition of yellow head virus multiplication in infected shrimps by YHV-protease dsRNA. Antiviral Res. 74, 150–155.
- Yodmuang, S., Tirasophon, W., Roshorm, Y., Chinnirunvong, W., Panyim, S., 2006. YHV-protease dsRNA inhibits YHV replication in *Penaeus monodon* and prevents mortality. Biochem. Biophys. Res. Commun. 341, 351–356.

ELSEVIER

Contents lists available at SciVerse ScienceDirect

Virus Research

journal homepage: www.elsevier.com/locate/virusres

Short communication

Ingestion of bacteria expressing dsRNA triggers specific RNA silencing in shrimp

Pongsopee Attasart^{a,*}, Orathai Namramoon^a, Ukrit Kongphom^a, Chaweewan Chimwai^a, Sakol Panyim^{a,b}

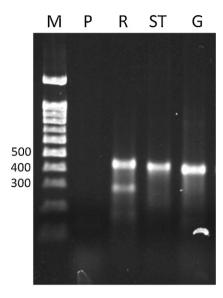
- ^a Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- ^b Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

ARTICLE INFO

Article history:
Received 1 October 2012
Received in revised form
19 November 2012
Accepted 19 November 2012
Available online 29 November 2012

Keywords: Shrimp RNAi Double-stranded RNA Oral feeding Rab7 STAT

ABSTRACT


RNAi activation in shrimp through dsRNA injection has been well demonstrated but oral delivery of dsRNA remains controversial. Therefore, this study was conducted to determine whether RNAi was induced in shrimp by ingestion of bacteria expressing dsRNA. We fed shrimp, *Penaeus monodon* and *Litopenaeus vannamei*, with inactivated bacteria expressing dsRNA specific to the shrimp genes (Rab7 and STAT). Forty-eight hours after 6 day-continuous feeding, the level of the targeted gene transcript was measured by semi-quantitative RT-PCR. Significant reduction of Rab7 as well as STAT transcript was observed when compared to that of control shrimp fed with bacteria containing the empty vector or bacteria expressing non-related dsRNA (GFP). Moreover, the suppression was detected not only in the hepatopancreas but also in the gills indicating the successful systemic induction of RNAi via oral delivery of dsRNA. Our results suggested that RNAi in shrimp could be triggered by ingestion of dsRNA expressing bacteria. Therefore, oral feeding is a practical approach which can be used to deliver dsRNA for further viral inhibition in farmed shrimp.

© 2012 Elsevier B.V. All rights reserved.

Intensive studies which have investigated various anti-viral approaches in shrimp have concluded that RNA interference (RNAi) is probably the most effective technique (Robalino et al., 2005; Yodmuang et al., 2006; Attasart et al., 2011; Mai and Wang, 2010; Syed and Kwang, 2011; Lin et al., 2011; Yogeeswaran et al., 2012). To inhibit viruses in shrimp, the introduction of double-stranded RNA (dsRNA) that corresponds to viral replication gene is a prerequisite. The specific mRNA of that gene is eventually degraded leading to the disruption of the viral replication process (Attasart et al., 2009). Even though, in the laboratory, the protection of shrimp against viral diseases has been demonstrated with high efficacy, dsRNA administration by injection is not a practical procedure when working on a farm. Therefore, an oral delivery of dsRNA through feeding into shrimp needs to be explored. Recently, two research groups have developed an oral delivery approach. Sarathi et al. (2008) reported that shrimp fed with food pellets coated with bacteria containing dsRNA, specific to the viral vp28 gene, were protected from white spot syndrome virus (WSSV) infection (68% survival) while the control shrimp were all dead. On the contrary, Sellars and colleagues (2011) could not silence either the Gill-associated virus (GAV) gene or the endogenous actin gene of black tiger shrimp via oral feeding of bacterially expressed dsRNA but injection with dsRNA of the same genes was effective. This was despite a 400–600 fold increase in the number of bacteria being administered compared to Sarathi's method. Therefore, whether the RNAi can be induced in shrimp by ingestion of bacteria expressing dsRNA still remains to be clarified. Hence, this study was conducted to determine whether RNAi was induced in shrimp by ingestion of bacteria expressing dsRNA. To determine the silencing effect of fed dsRNA, two housekeeping genes of shrimp, Rab7 and STAT (signal transducers and activators of transcription), were targeted. The relative levels of their transcripts compared to the control actin transcript were monitored by semi-quantitative RT-PCR. In addition, dsRNA corresponding to the non-related green fluorescent protein gene (GFP) was included in this study for observation of the silencing specificity.

The plasmid constructs containing the cassette for expression of dsRNA specific to shrimp Rab7 gene (dsRNA-Rab7) and non-related GFP gene (dsRNA-GFP) were kindly provided by Dr. Chalermporn Ongvarasopone (2011) and Dr. Witoon Tirasophon (2005), respectively, while the plasmid for dsRNA-STAT production was constructed based on the same strategy as described earlier (Attasart et al., 2010). To amplify 600bp and 400bp fragments for cloning, two sets of primers; F1:5′ CCGTCTAGAGCAGCTTCCCGCAGATGACC 3′ and R1:5′ CCCCCCGATATCCGTCTCCGAAGGCTCTGTTC 3′, F2:5′ CCGCTCGAGGCAGCTTCCCGCAGATGACC 3′ and R2:5′ GTTTGTTGCATGTGAAACACCTCC 3′, were designed from the STAT sequence of *Penaeus monodon* (GenBank accession no. AY327491). These two fragments were then cloned into the pET17b vector (under the T7 promoter) in an inverted direction. The production of each dsRNA was conducted in RNaselII deficient

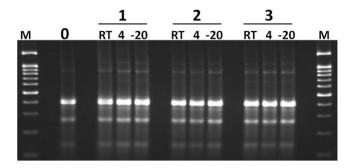

^{*} Corresponding author. Tel.: +662 441 9003 7x1259; fax: +662 441 9906. E-mail addresses: pongsopee.att@mahidol.ac.th, attasart.aung@hotmail.com (P. Attasart).

Fig. 1. The integrity of dsRNAs in the formulated diet. Total RNA was extracted from diet containing bacteria expressing either dsRNA-Rab7 (R) or dsRNA-STAT (ST) or dsRNA-GFP (G) or bacteria with empty plasmid pET17b (P) by tri-reagent. After RNaseA treatment, the integrity of each dsRNA was visualized by 1.5% agarose gel electrophoresis. The expected bands of dsRNA-Rab7 or dsRNA-STAT or dsRNA-GFP are shown in lane R, ST or G, respectively but not in the control (P). M: 100-bp ladder.

bacteria HT115 according to the protocol of Ongvarrasopone et al. (2007). The overnight culture was diluted and grown at $37\,^{\circ}\text{C}$ until OD600 reached 0.4 before activation with isopropyl- β -d-thiogalactopyranoside (IPTG) for 4 h. The bacterial cells were then centrifuged at $6000\times g$ for 5 min at $4\,^{\circ}\text{C}$. For environmental safety, the bacterial cells were inactivated in 75% ethanol and kept at $-20\,^{\circ}\text{C}$ until used. To test their viability, the inactivated bacteria were streaked on an antibiotic-free LB agar plate. No live bacteria were detected (data not shown).

The diet was formulated using either bacteria expressing dsRNA-Rab7 (diet-Rab7) or bacteria expressing dsRNA-STAT (diet-STAT) or bacteria expressing dsRNA-GFP (diet-GFP) or bacteria containing the empty plasmid pET17b (diet-pET17b). Each inactivated bacterial cell pellet (after centrifugation) was separately mixed with ground commercial shrimp food (CP, Thailand) and pellet binder (fresh ripe banana (Nam-wa variety); the middle part was removed before using) at 1:1:1 weight ratio before being extruded through a syringe and air-dried overnight at room temperature. The dry spaghetti-like strings were then broken into small pieces same size as a commercial shrimp food pellet. To ensure the integrity of dsRNA during the preparation of the shrimp's diet, the total amount of RNA from each diet source was extracted from 10 milligrams (mg) of dry pellets which contained approximately $2.6-3 \times 10^9$ bacterial cells. The pellets were ground in 250 µl of 0.1% sodium dodecyl sulfate (SDS) in phosphate buffer saline (PBS) and the homogenate was boiled for 2 min and quick cooled on ice. The RNA was treated with RNaseA (1 μ g) in the presence of 1× RNase buffer (300 mM Sodium acetate, 10 mM Tris-Cl pH7.5) to degrade unwanted single-stranded RNAs for 30 min before extraction using TRI reagent (Molecular Research Center). The extracted dsRNAs were dissolved in 150 mM NaCl. Agarose gel electrophoresis (1.5%) presented the expected bands about 400 bp of dsRNA-Rab7 or dsRNA-STAT or dsRNA-GFP from diet-Rab7, diet-STAT and diet-GFP samples, respectively, but not in the control (diet-pET17b) (Fig. 1). The extra two bands of dsRNA-Rab7 at 250 and 150 bp were due to the mismatched nucleotides within 400 bp of dsRNA region (Ongvarrasopone et al., 2011). By comparison with DNA markers, the amount of extracted dsRNA-Rab7, dsRNA-STAT or dsRNA-GFP

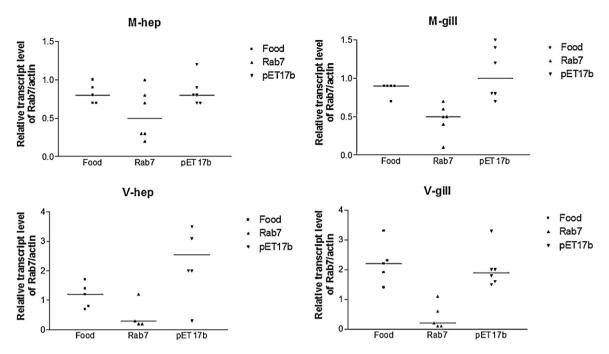


Fig. 2. The stability of dsRNA-Rab7 in the dry formulated diet. The dsRNA was extracted once a month from approximately $10 \, \text{mg}$ of dry pellets at different temperatures; room temperature (RT), $4 \, ^{\circ}\text{C}$ (4) and $-20 \, ^{\circ}\text{C}$ (-20), for up to 3 months. After RNaseA treatment, the dsRNA-Rab7 was visualized by 2% agarose gel electrophoresis. No significant difference of dsRNA-Rab7 was observed among three diets after long time storage (one month (1), two months (2), three months (3)) when compared to the extracted dsRNA-Rab7 at the beginning of the experiment (0). M: 100-bp ladder.

was approximately 7.5 micrograms (μg) per milligram dry weight of diets

For practical use on a farm, the stability of dsRNA within dry food pellets has to be ascertained. In this case, the diet-Rab7 was kept in a dry sealed bag and stored at different temperatures; room temperature (RT), $4\,^{\circ}$ C (4) and $-20\,^{\circ}$ C (-20), for up to 3 months. The dsRNA-Rab7 was extracted once a month from approximately 10 mg of the dietary material that was kept separately at different temperatures. There were insignificant differences of dsRNA integrity between extracted dsRNA-Rab7 from all dietary samples after long term storage (one month (1), two months (2), three months (3)) and the extracted dsRNA-Rab7 at the beginning of the experiment (0) (Fig. 2). This indicated that dsRNA produced by bacteria in dry food pellets was stable up to 3 months even when stored at room temperature.

To determine whether dsRNA delivery via ingestion of inactivated bacteria that produced dsRNA can trigger RNAi in shrimp, we fed juvenile shrimp (200-400 mg), Penaeus monodon (M) and Litopenaeus vannamei (V), with 30 mg of either diet-Rab7 (Rab7), diet-pET17b (pET) or commercial food (food) once a day for 6 days. Two days after the final feeding, all shrimp were sacrificed and the total RNA was extracted from the shrimp tissue by TRI reagent for further semi-quantitative RT-PCR analysis. Furthermore, to evaluate the possibility of systemic RNAi induction in fed shrimp, two different tissues, the hepatopancreas (hep) (ingestion site) and gills (non-ingestion site) were collected. Two micrograms of total extracted RNA, estimated by measurement of UV light absorption, were subjected to cDNA synthesis by random hexamer and ImProm-IITM Reverse transcriptase (Promega) following the manufacturer's instructions. Two microlitres of synthesized cDNA were used as a template for the PCR reaction containing two pairs of primers corresponding to shrimp Rab7 (F: 5' ATGGCATCTCGCAA-GAAGATT 3' and R: 5' TTAGCAAGAGCAT GCATCCTG 3') and the actin gene (F: 5' GACTCGTACGTCGGGCGACGAGG 3' and R: 5' AGCAGCG GTGGTCATCACCTGCTC 3'). The ratio of Rab7/actin primers in each reaction was 4:1. The PCR amplification procedure was carried out as follows; 94 °C for 2 min, denaturation at 94 °C for 10 s, annealing at 55 °C for 30 s, and extension at 72 °C for 1 min. After 30 cycles, the reaction was held at 72 °C for another 5 min. The RT-PCR products were analyzed by 2% agarose gel electrophoresis. The relative amount of Rab7/actin transcript from individual shrimp fed with diet-Rab7 (Rab7) was measured by an intensity scanning program (Scion image) and compared to that of the control shrimp fed with either diet-pET17b (pET) or commercial food (food) (Fig. 3). All of them are significantly different (One-way ANOVA, P<0.05) except M-hep (P = 0.089). This group showed some fed shrimp did not seem

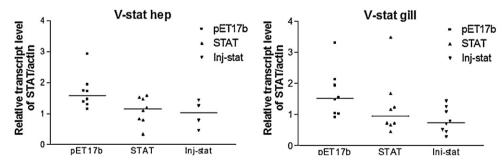
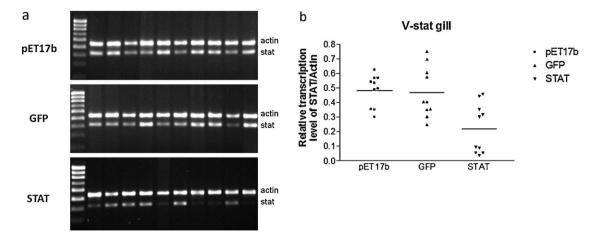


Fig. 3. Effect of ingested bacteria expressing dsRNA-Rab7 on the transcriptional level of Rab7. Shrimp, *Penaeus monodo* (M) (300–400 mg) and *Litopenaeus vannamei* (V) (200–250 mg), were kept in individual cage and fed with 30 mg of either diet-Rab7 (Rab7), diet-pET17b (pET) or commercial food (food) once a day for 6 days. Two days after the last feeding, shrimp were sacrificed and total RNA was extracted from hepatopancreas (hep) or gills (gill) for further semi-quantitative RT-PCR. The RT-PCR products were analyzed by 2% agarose gel electrophoresis. The relative amount of Rab7 normalized with actin of individual shrimp is demonstrated by dot plot with median line. Only one from three independent experiments (n=5-10/group/experiment) is presented. The one-way ANOVA *P* values are 0.089, 0.003, 0.018, 0.001 for M-hep, M-gill, V-hep, and V-gill, respectively.


to be different from the control. It might be due to they ate less the formulated diet than the others during the experimental period. The less they ate, the less they received the dsRNA (less response). Nevertheless, reduction of the Rab7 gene transcript suggesting that the dsRNA-Rab7 produced in the inactivated bacteria can be orally delivered into shrimp cells and, thus successfully silenced Rab7 gene expression.

To confirm that not only Rab7 gene can be silenced by oral feeding, the different shrimp endogenous gene; STAT was targeted. The pacific white shrimp (n = 8/group) of 200 mg body weight were fed with 30 mg of either diet-STAT (STAT) or diet-pET17b (pET) once a day for 6 days. As a positive control group, the dsRNA-STAT (500 ng) extracted from bacteria expressing dsRNA-STAT was injected into un-treated shrimp 48 h before analysis. Two days after the final feeding with the formulated diets, all shrimp were sacrificed and the total RNA was extracted from hepatopancreas or gills for further semi-quantitative RT-PCR. The RT-PCR products were amplified under the same PCR condition of Rab7/actin by two sets of primers

corresponding to shrimp STAT gene (F: 5' ATGTCGTTGTGGAACA-GAGC 3' and R: 5' GTTTGTTGCATGTGAAACACCTCC 3') and actin gene. The ratio of STAT/actin primers in each reaction was 4:1. The RT-PCR products were analyzed by 2% agarose gel electrophoresis. The relative amount of STAT normalized with actin of individual shrimp was determined by an intensity scanning program (Scion image) and compared to that of the control shrimp fed with dietpET17b (pET) or injected with the dsRNA-STAT (inj-stat) (Fig. 4). The relative level of STAT transcript of shrimp fed with diet-STAT was significantly reduced (P = 0.035 (hep) and P = 0.050 (gill)) when compared to the control shrimp fed with diet-pET17b. This level was comparable to that of shrimp injected with the dsRNA-STAT indicating that orally delivered dsRNA-STAT to trigger the RNAi pathway was efficient as injected one. Taken the result of Rab7 and STAT together, it was confirmed that dsRNA can be applied into shrimp via oral feeding bacteria being expressed dsRNA and thus eventually knocked down the corresponding gene target. Moreover, the reduction of the Rab7 and STAT transcripts were detected

Fig. 4. Effect of ingested bacteria expressing dsRNA-STAT on the transcriptional level of STAT. Shrimp, *Litopenaeus vannamei* (V) (200–250 mg), were kept in individual cage and fed with 30 mg of either diet-STAT (STAT), diet-pET17b (pET17b) once a day for 6 days. The dsRNA-STAT (500 ng) was injected into un-treated shrimp control (inj-stat) and shrimp were sacrificed for analysis at 48 h after injection. Two days after the last feeding, fed shrimp were sacrificed and total RNA was extracted from hepatopancreas (hep) or gills (gill) for semi-quantitative RT-PCR. The RT-PCR products were analyzed by agarose gel electrophoresis. The relative amount of STAT normalized with actin of individual shrimp is demonstrated by dot plot with median line. The *P* values are 0.035 and 0.050 for hep and gill, respectively.

Fig. 5. Sequence specific silencing of STAT by feeding dsRNA-STAT. Shrimp, *Litopenaeus vannamei* (V) (200–250 mg), were kept in individual cage and fed with 30 mg of either diet-STAT (STAT), diet-pET17b (pET17b) or diet-GFP (GFP) once a day for 6 days. Two days after the last feeding, shrimp were sacrificed and total RNA was extracted from gills (gill) for semi-quantitative RT-PCR. The RT-PCR products were analyzed by 2% agarose gel electrophoresis (a). Lanes 1–10 represent individual shrimp fed with diet-pET17b, 11–20 fed with diet-GFP, 21–30 fed with diet-STAT. M: 100-bp ladder. The relative amount of STAT normalized with actin of individual shrimp is demonstrated by dot plot with median line (b). The *P* value is 0.006.

not only in the hepatopancreas but also in the gills of both tested shrimp species indicating that RNAi triggered by oral feeding of dsRNA was systemically induced in shrimp.

To determine the specificity of silencing effect in this study, a group of shrimp (n=10) fed with diet-GFP was included. Under the similar experimental condition of STAT suppression, the relative amount of STAT normalized with actin of the individual treated shrimp was determined and compared to that of the control shrimp fed with diet-pET17b (pET) or fed with the dsRNA-GFP (GFP). The relative STAT transcript was significantly decreased (P=0.006) only in the group of shrimp fed with diet-STAT whereas it was not affected by feeding with diet-GFP when compared to the control (fed with diet-pET17b) (Fig. 5) indicating that the observed silencing effect by feeding bacterially expressed dsRNA was sequence specific.

Our results suggested RNAi in shrimp can be induced effectively to silence specific gene expression through ingestion of bacteria producing the corresponding dsRNA. Interestingly, systemic induction of RNAi through oral feeding of dsRNA in shrimp has been demonstrated for the first time. Our finding was consistent with previous research using oral delivery of dsRNA via bacterial vehicle to knock down the specific gene in insect (Tian et al., 2009; Li et al., 2011). They found that the gene suppression has not been found only in the gut but also in other tissues especially the specific tissue of that particular gene target. As SID-1, a dsRNA signal channel required for systemic RNAi in Caenorhabditis elegan (C. elegan) (Winston et al., 2002), has been identified in pacific white shrimp recently (Labreuche et al., 2010), it may account for the systemic RNAi effect in shrimp after feeding of dsRNA. However, the mechanism mediating this effect still needs to be further elucidated.

With regard to the high amount of bacteria $(2-3 \times 10^{11} \text{ cells per}$ gram of shrimp) used for RNAi activation in our feeding experiment; this indicated that the efficacy of dsRNA uptake into shrimp cells through oral administration was low when compared to the injection method. It may result from several factors such as eating behavior of an individual shrimp, dsRNA degradation during ingestion process and efficiency of bacteria taken up into shrimp cells. As reported earlier by Tian and colleagues (2009), the sufficient amount of ingested dsRNA was required for RNAi induction in the larvae of insect *Spodoptera exigua*. They varied amount of dsRNA in the formulated diets and fed larvae for 3, 5, 7 and 9 days. The target mRNA (*SeCHSA*) was decreased only on days 7 and 9 in the larvae that fed high dose dsRNA. Therefore, to effectively silence

the target gene by feeding, yield of dsRNA per milligram of the formulated diet as well as an accumulation of ingested dsRNA should be taken into account. This could be used to explain the failure of actin gene suppression in black tiger shrimp by ingestion of insufficient bacterially expressed dsRNA-actin reported by the group of Sellars et al. (2011). They formulated the diet using a quantity of bacteria approximately 20 times lower than ours. Nevertheless, we used fresh bacterial cell pellet for diet preparation while they used the freeze-dried bacterial cells. Concerning with this difference, it might affect the potency of gene silencing by oral feeding

This study confirmed that the oral delivery of dsRNA via bacteria vehicle is possible. And it is, therefore, a practical approach to induce RNAi when working in the farmed shrimp. For further anti-virus application, the viral genes (non-structural or structural protein genes) in the single or combination formula would be targeted.

Acknowledgements

We thank Andrew Hopper for his grammatical correction, Assistant Professor Chalermporn Ongvarasopone for providing the pET17b-dsRab7 construct and Assistant Professor Witoon Tirasophon for providing the *E. coli* strain HT115. Our appreciation is expressed to Mr. Wichai Boonsai for his kindness in providing shrimp. We are very grateful to Mrs. Suparp Hongthong and Miss Pannee Thongboonsong for their technical assistance. This work is supported by Thailand Research Fund (DBG 5280017 to S.P.), the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative and Mahidol University research grant. P.A. was supported by TRF-MU grant (DBG5380034).

References

Attasart, P., Kaewkhaw, R., Chimwai, C., Kongphom, U., Namramoon, O., Panyim, S., 2009. Inhibition of white spot syndrome virus replication in *Penaeus monodon* by combined silencing of viral rr2 and shrimp PmRab7. Virus Research 145, 127-133

Attasart, P., Kaewkhaw, R., Chimwai, C., Kongphom, U., Namramoon, O., Panyim, S., 2010. Inhibition of *Penaeus monodon* densovirus (PmDNV) replication in shrimp by double-stranded RNA. Archives of Virology 155, 825–832.

Attasart, P., Kaewkhaw, R., Chimwai, C., Kongphom, U., Panyim, S., 2011. Clearance of *Penaeus monodon* densovirus in naturally pre-infected shrimp by combined ns1 and vp dsRNAs. Virus Research 159, 79–82.

- Labreuche, Y., Veloso, A., de la Vega, E., Gross, P.S., Chapman, R.W., Browdy, C.L., Warr, G.W., 2010. Non-specific activation of antiviral immunity and induction of RNA interference may engage the same pathway in the Pacific white leg shrimp *Litopenaeus vannamei*. Developmental and Comparative Immunology 34, 1209–1218.
- Li, X., Zhang, M., Zhang, H., 2011. RNA interference of four genes in adult *Batrocera dorsalis* by feeding their dsRNAs. PLoS ONE 6 (3), e17788.
- Lin, Y.C., Yeh, S.T., Li, C.C., Chen, L.L., Cheng, A.C., Chen, J.C., 2011. An immersion of *Gracilaria Tenuistipitata* extract improves the immunity and survival of white shrimp *Litopenaeus vannamei* challenged with white spot syndrome virus. Fish & Shellfish Immunology 31 (6), 1239–1246.
- Mai, W.J., Wang, W.N., 2010. Protection of blue shrimp (*Litopenaeus stylirostris*) against the white spot syndrome virus (WSSV) when injected with shrimp lysozyme. Fish & Shellfish Immunology 28 (4), 727–733.
- Ongvarrasopone, C., Saejia, P., Chanasakulniyom, M., Panyim, S., 2011. Inhibition of Taura syndrome virus replication in *Litopenaeus vannamei* through silencing the LvRab7 gene using double-stranded RNA. Archives of Virology 156, 1117–1123.
- Ongvarrasopone, C., Roshorm, Y., Panyim, S., 2007. A simple and cost effective method to generate dsRNA for RNAi studies in invertebrates. Science Asia 33, 35–39
- Robalino, J., Bartlett, T., Shepard, E., Prior, S., Jaramillo, G., Scura, E., Chapman, R.W., Gross, P.S., Browdy, C.L., Warr, G.W., 2005. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? Journal of Virology 79, 13561–13571.

- Sarathi, M., Simon, M.C., Venkatesan, C., Hameed, A.S.S., 2008. Oral administration of bacterially expressed vp28dsRNA to protect *Penaeus monodon* from white spot syndrome virus. Marine Biotechnology 10, 242–249.
- Sellars, M.J., Rao, M., Arnold, S.J., Wade, N.M., Cowley, J.A., 2011. *Penaeus monodon* is protected against gill-associated virus by muscle injection but not oral delivery of bacterially expressed dsRNAs. Diseases of Aquatic Organisms 95, 19–30.
- Syed, M.S., Kwang, J., 2011. Oral vaccination of baculovirus-expressed vp28 displays enhanced protection against white spot syndrome virus in *Penaeus monodon*. PLoS ONE 6 (11), e26428.
- Tian, H., Peng, H., Yao, Q., Chen, H., Xie, Q., Tang, B., Zhang, W., 2009. Developmental control of a lepidopteran pest *Spodoptera exigua* by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS ONE 4 (7), e6225.
- Tirasophon, W., Roshorm, Y., Panyim, S., 2005. Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA. Biochemical and Biophysical Research Communications 334, 102–107.
- Winston, W.M., Molodowitch, C., Hunter, C.P., 2002. Systemic RNAi in *C. elegans* requires the putative transmembrane protein *sid-1*. Science 295, 2456–2459.
- Yodmuang, S., Tirasophon, W., Roshorm, Y., Chinnirunvong, W., Panyim, S., 2006. YHV-protease dsRNA inhibits YHV replication in *Penaeus monodon* and prevents mortality. Biochemical and Biophysical Research Communications 341, 351-356
- Yogeeswaran, A., Velmurugan, S., Punitha, S.M.J., Babu, M.M., Selvaraj, T., Kumaran, T., Citarasu, T., 2012. Protection of *Penaeus monodon* against white spot syndrome virus by inactivated vaccine with herbal immunostimulants. Fish & Shellfish Immunology 32 (6), 1058–1067.