

รายงานการวิจัยฉบับสมบูรณ์

โครงการ: การรักษาโรคของผิวตาโดยการปลูกถ่ายเซลล์ epithelium ของเยื่อบุปาก โดยวิธีเลี้ยงเซลล์ในห้องปฏิบัติการ

โดย รศ. พญ. ภิญนิตา ตันธุวนิตย์ และคณะ

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การรักษาโรคของผิวตาโดยการปลูกถ่ายเซลล์ epithelium ของเยื่อบุปาก โดยวิธีเลี้ยงเซลล์ในห้องปฏิบัติการ

	คณะผู้วิจัย	สังกัด
1.	รศ. พญ. ภิญนิตา ตันธุวนิตย์	ภาควิชาจักษุวิทยา
2.	รศ. คร. ปัทมา เอกโพธิ์	ภาควิชาวิทยาภูมิคุ้มกัน
3.	รศ. นพ. มงคล อุยประเสริฐกุล	ภาควิชาพยาธิวิทยา
4.	ผศ. พญ. ณัฐพร เทศะวิบุล	ภาควิชาจักษุวิทยา
5.	ผศ. พญ. กนกรัตน์ พรพาณิชย์	ภาควิชาจักษุวิทยา
6.	อ. พญ. ปณิธี เลื่อมสำราญ	ภาควิชาจักษุวิทยา
7.	อ. พญ. สุขศรี โชติกวณิชย์	ภาควิชาจักษุวิทยา

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัยและ คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. และคณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิคล ไม่จำเป็นต้องเห็นด้วยเสมอไป

บทคัดย่อ

วัตถุประสงค์: เพื่อศึกษาการรักษาภาวะเสื่อมของเซลล์ต้นแบบของผิวกระจกตา (corneal limbal stem cell deficiency) โดยวิธี cultivated oral mucosal epithelial cell transplantation (COMET) ซึ่งใช้เซลล์ epithelium จากเยื่อบุปากของผู้ป่วยเองมาเพาะเลี้ยงบนเนื้อเยื่อรก (human anmniotic membrane) ในห้องปฏิบัติการก่อน นำกลับไปปลูกถ่ายแก่ผู้ป่วย โดยประเมินผลการเลี้ยง epithelium เซลล์เยื่อบุปากในห้องปฏิบัติการและ ประเมินผลการผ่าตัดในผู้ป่วย

วิธีการศึกษา: เป็นการศึกษาชนิด Prospective, ศึกษาผลการผ่าตัดในผู้ป่วย 20 ตา ใน 18 ราย ที่มีภาวะเสื่อมของ เซลล์ต้นแบบของผิวกระจกตา (corneal limbal stem cell deficiency) ทั้งสองตา โดยประเมิน clinical outcomes ได้แก่ corneal surface epithelialization, conjunctivalization, inflammation, visual acuity (VA), และผลแทรก ซ้อน

ผลการศึกษา: เซลล์ที่เพาะเลี้ยงได้เป็น nonkeratinized epithelial cell sheet เรียงตัวกัน 2 -4 ชั้นบนเนื้อเยื่อรก โดยย้อมพบ p63, ABCG2, CK3, และ CK13 ผู้ป่วยมีอายุเฉลี่ย 48.2 ±15.5 ปี ระยะเวลาการติดตามผลการรักษา เฉลี่ย 31.9 ± 12.1 เคือน (8-50) พบว่าผู้ป่วยส่วนใหญ่ (19 ตา, 95%) มีการหายของแผลที่ผิวกระจกตา (epithelialization) ภายใน 1 สัปดาห์หลังผ่าตัด ผลสำเร็จของการผ่าตัด (clinical success outcome) พบ 15 ตา (75%) พิจารณาจากผิวกระจกตาทรงสภาพ ไม่มีแผลและ ไม่มีลักษณะ conjunctivalization ที่ส่วนกลางของ กระจกตาหรือการอักเสบ วิเคราะห์ทางสถิติ ที่ 1 ปีมี survival 79.3% และ 4 ปี 70.9% เมื่อสิ้นสุดการศึกษา ผู้ป่วย 14 ตา (70%) มีการมองเห็นที่ดีขึ้นหลังการผ่าตัด COMET และร่วมกับการผ่าตัดเพิ่มเติมอื่นๆได้แก่การ ผ่าตัดเปลี่ยนกระจกตา (3 ตา), keratoprosthesis (1 ตา), การผ่าตัดต้อกระจก (1 ตา) การผ่าตัด COMET ร่วมกับ การผ่าตัดแก้ไขหนังตาผิดปกติสามารถช่วยกำจัด symplepharon สำเร็จ ไม่มีการเป็นซ้ำ 61.5% (8/13 ตา) ภาวะแทรกซ้อนที่พบได้แก่ กระจกตาทะลุ (1 ตา) จากขนตาครูดกระจกตา

สรุป: การรักษาโดยวิธี COMET สามารถช่วยผู้ป่วยที่เป็นโรคภาวะเสื่อมของเซลล์ต้นแบบของผิวกระจกตา ให้สภาพกระจกตาดีขึ้นและมีการมองเห็นที่ดีขึ้นได้ แม้ว่าในบางรายจะมีเส้นเลือดรุกเข้ามาที่ส่วนริมกระจกตาบ้าง

คำสำคัญ: ภาวะเสื่อมของเซลล์ตันแบบของผิวกระจกตา การปลูกถ่ายเซลล์ตันแบบของผิวกระจกตา การ เพาะเลี้ยงเซลล์ผิวเยื่อบุปาก

Abstract

Purpose: To investigate the clinical outcomes of autologous cultivated oral mucosal epithelial transplantation (COMET) on human amniotic membrane (AM) for corneal limbal stem cell deficiency (LSCD).

Methods: Prospective, non-comparative case series. Twenty eyes (18 patients) with bilateral severe ocular surface diseases were chosen to undergo COMET on human AM. The clinical outcomes included corneal surface epithelialization, conjunctivalization, inflammation, visual acuity (VA), and complication.

Results: Cultivated oral mucosal epithelium on AM (two to four layers) was positive for p63, ABCG2, CK3, and CK13. The mean patient age was 48.2 ± 15.5 years. The mean follow-up time was 31.9 ± 12.1 months (range, 8-50). All except 1 eye had complete epithelialization within the first postoperative week. A successful clinical outcome, defined as stable ocular surface without epithelial defect, clear cornea without fibrovascular tissue invasion at visual area and no or mild inflammation of ocular surface, was obtained in 15 eyes (75%). Survival analysis showed that the clinical success rates at 1 year were 79.3% and at 4 year of the end follow-up were 70.5%. Fourteen of 20 (70.0%) eyes had VA improvements after COMET and 5 eyes had subsequent cataract surgery (1 eye), penetrating keratoplasty (3 eyes), keratoprosthesis (1 eye). Preoperative symblepharon was eliminated in most eyes (8 of 13 eyes, 61.5%) after COMET and combined with eye-lid reconstruction when needed. Complication was corneal perforation (1 eye), induced by severe eyelid abnormality, which was stabilized after tectonic corneal graft.

Conclusions: COMET can successfully restore ocular surface damage in most cases with corneal LSCD.

Key words: limbal deficiency, limbal transplantation, corneal epithelial stem cell transplantation, cultivated oral mucosal epithelial transplantation

Executive summary

วัตถุประสงค์ เพื่อศึกษาการรักษาภาวะเสื่อมของเซลล์ดันแบบของผิวกระจกตา (corneal limbal stem cell deficiency) โดยวิธี cultured oral mucosal epithelial cell transplantation (COMET) ซึ่งใช้เซลล์ epithelium จาก เยื่อบุปากของผู้ป่วยเองมาเพาะเลี้ยงบนเนื้อเยื่อรกในห้องปฏิบัติการก่อนนำกลับไปปลูกถ่ายแก่ผู้ป่วยการ คำเนินงานและสิ่งที่พบ

- 1.1 ได้สภาวะที่เหมาะสมสำหรับการเพาะเลี้ยง oral mucosal epithelial cell ใช้ตัวอย่าง oral mucosal tissue ขนาดชิ้นเล็ก 2 มม.ย่อยด้วย enzyme เพื่อแยก epithelial cells เพาะเลี้ยงเซลล์ในอาหารเลี้ยงเซลล์บนแผ่น human amniotic membrane (HAM) ได้เซลล์เจริญเติบโตเป็นขนาดประมาณ 2-3 ซม.ในเวลา 2-3 สัปดาห์
- 1.2 ตรวจ marker ของ oral mucosal epithelial cell เซลล์ที่เพาะเลี้ยง ตรวจ marker ของเซลล์ที่เพาะเลี้ยง โดยวิธี immunostaining และตรวจ mRNAของเซลล์ที่เพาะเลี้ยง โดยวิธี RT-PCR พบลักษณะคล้าย epithelium ของกระจกตา โดยพบ nonkeratinized corneal epithelial differentiation markers (CK3, CK13) และ ลักษณะ ของ stem cell markers (ABCG2, P63) เป็นการพิสูจน์ว่าเซลล์ที่เพาะเลี้ยง ได้มีคุณสมบัติเหมาะสมที่จะปลูกถ่าย กลับ ไปยังกระจกตาผู้ป่วย
- 1.3 ผ่าตัดและผลการผ่าตัดปลูกถ่ายเซลล์เยื่อบุปากในผู้ป่วย ได้คัดเลือกและผ่าตัดผู้ป่วย จำนวน 18 ราย (20 ตา) ที่มีภาวะเสื่อมของเซลล์ต้นแบบของผิวกระจกตาจาก chemical burn, Steven Johnson's Syndrome, multiple ocular surgeries และ advanced pterygium และอุบัติเหตุ โดยได้เก็บเซลล์เยื่อบุปากของผู้ป่วยนำไปเพาะเลี้ยงใน ห้องห้องปฏิบัติการภายใต้ภาวะที่เหมาะสม นาน 2-3 สัปดาห์ แล้วนำกลับไปปลูกถ่ายให้แก่ผู้ป่วย อายุเฉลี่ย 48.2+15.5 ปี

ติดตามผลการรักษานานเฉลี่ย 31.9 ± 12.1 เดือน (8-50 เดือน) ผลการผ่าตัดพบว่า 19 ตา (95%) สามารถมีผิว กระจกตาปิดอย่างสมบูรณ์ได้ในสัปดาห์แรก มีผลความสำเร็จ วิเคราะห์ clinical success outcome พบ 15 ใน 20 ตา (75%) มี survival 79% ที่ 1 ปี และ 70.5% เมื่อสิ้นสุดการศึกษา คือ 4 ปี นอกจากนี้ หลังผ่าตัดมี ocular surface inflammation, symblepharon และ เส้นเลือดในกระจกตาลดลง พบอาจมีเส้นเลือดที่ริมขอบกระจกตา เท่านั้น ส่วนกลางกระจกตายังใส่ไม่มีเส้นเลือด นอกจากนี้ 16 ตา (80%) มีการมองเห็นที่ดีขึ้นหลังการผ่าตัด COMET และร่วมกับการผ่าตัดเปลี่ยนกระจกตาชนิดต่างๆ และผ่าตัดต้อกระจก อย่างมีนัยสำคัญทางสถิติ จาก เดิมก่อนผ่าตัด COMET มีระดับสายตาวัดโดยวิธี LogMar 2.05±0.09 ดีขึ้นเป็น 1.25±0.95 ส่วนในกลุ่มผู้ป่วยที่ มี clinical failure outcome นั้น มีจำนวน 5 ตา (25%) โดยส่วนใหญ่ (4 ตา, 80%) เกิดในช่วง 1 ปีแรกหลังผ่าตัด COMET

สรุป ผลการรักษาเป็นที่น่าพอใจ สามารถช่วยผู้ป่วยที่แต่เดิมไม่มีวิธีรักษาที่ดี ให้สามารถมองเห็นดีขึ้นได้ แม้ว่า จะมีเส้นเลือดรุกเข้ามาที่ส่วนริมกระจกตาบ้าง แต่ยังทรงสภาพอยู่ได้ รายงานผลการดำเนินงานโครงการ "การรักษาโรคของผิวตาโดยการปลูกถ่ายเซลล์ epithelium ของเยื่อบุปาก โดยวิธีเลี้ยงเซลล์ในห้องปฏิบัติการ"

ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

โรคของ ocular surface เช่น โรคแพ้ยาอย่างรุนแรง (Steven Johnson's syndrome) และสารเคมีหรือ ความร้อนลวกตา (chemical, thermal burn) ในรายที่รุนแรงจะมีผลต่อตาอย่างมาก1 เกิดภาวะเสื่อมของเซลล์ ต้นแบบของผิวกระจกตา (corneal limbal stem cell deficiency) ทำให้มีเส้นเลือดงอกใหม่เข้ามาในกระจกตา เกิด พังผืดที่เยื่อบุตาและกระจกตา เกิดตามัวลงอย่างมากจนถึงขั้นสูญเสียการมองเห็น ทางเลือกหนึ่งในการรักษา ภาวะนี้ คือการผ่าตัดปลูกถ่าย limbal stem cell ให้แก่ผู้ป่วยทดแทนเซลล์เดิม

อย่างไรก็ตามในกรณีที่ผู้ป่วยมีพยาธิสภาพทั้ง 2 ตา จะไม่สามารถใช้ limbal stem cell ของผู้ป่วยเองมา ทำการปลูกถ่าย ทำให้ต้องใช้ limbal stem cell จากผู้อื่นมาปลูกถ่ายแทน เรียกว่า allograft limbal stem cell transplantation นั้น มักพบปัญหาเป็นจำนวนมาก เนื่องจากมีโอกาสเกิดปฏิกิริยาต่อด้านเนื้อเยื่อ (graft rejection) สูงและจำเป็นต้องใช้ยากดภูมิคุ้มกันเป็นจำนวนมากและระยะเวลานาน อาจเกิดผลแทรกซ้อนจากยาต่อ ตับ ไต และเพิ่มความเสี่ยงต่อการติดเชื้อ รวมทั้งสิ้นเปลืองค่าใช้จ่ายเป็นอย่างมาก ทำให้การทำ allograft limbal stem cell transplantation ไม่ได้ผลดีเท่าที่ควรโดยมีโอกาสที่จะประสบความสำเร็จเพียง 54.4%, 33.3% และ 27.3% ในปีที่ 1, 2 และ 3 ตามลำดับ โดยเฉพาะในโรค Steven Johnson ยังปัญหาในการรักษาอยู่มาก

ดังนั้นในต่างประเทศจึงเริ่มกิดหาเซลล์ชนิดอื่นจากเนื้อเยื่อของผู้ป่วยเองมาทดแทนเนื้อเยื่อจากตาของ ผู้อื่นเพื่อหลีกเลี่ยงการใช้ยากดภูมิ ซึ่งจากการวิจัยพบว่า การใช้เซลล์ epithelium จากเยื่อบุปากมาเพาะเลี้ยงบน เนื้อเยื่อรกในห้องปฏิบัติการจะได้เซลล์ที่มีคุณสมบัติใกล้เกียงกับเซลล์ epithelium ของกระจกตา จึงสามารถใช้ ทดแทนกันได้ และสามารถนำมาปลูกถ่ายกลับให้ผู้ป่วยที่มีปัญหา stem cell บกพร่อง ได้ ทำให้ลดการอักเสบ ของกระจกตา กระจกตาใสขึ้น การมองเห็นดีขึ้น เนื่องจากในประเทศไทยยังไม่เคยมีรายงานการทำการผ่าตัด เพื่อรักษาภาวะเสื่อมของเซลล์ต้นแบบของผิวกระจกตา (corneal limbal stem cell deficiency) โดยวิธี cultured mucosal epithelial cell transplantation ในมนุษย์มาก่อน ซึ่งการรักษาวิธีนี้เชื่อว่าจะเป็นประโยชน์ต่อผู้ป่วยเป็น อย่างมาก และข้อมูลที่ได้จากการศึกษานี้จะนำมาเป็นประโยชน์ เพื่อผลักดันให้มีการพัฒนาความรู้ หรือปรับปรุง แนวทางการรักษาภาวะเสื่อมของเซลล์ต้นแบบของผิวกระจกตา ให้เหมาะสมในทางปฏิบัติมากขึ้นต่อไป

วัตถุประสงค์ เพื่อศึกษาการรักษาภาวะเสื่อมของเซลล์ดันแบบของผิวกระจกตา (corneal limbal stem cell deficiency) โดยวิธี cultured oral mucosal epithelial cell transplantation (COMET) ซึ่งใช้เซลล์ epithelium จาก เยื่อบุปากของผู้ป่วยเองมาเพาะเลี้ยงบนเนื้อเยื่อรกในห้องปฏิบัติการก่อนนำกลับไปปลูกถ่ายแก่ผู้ป่วย เพื่อลด ความเสี่ยงต่อการเกิดปฏิกิริยาต่อต้านเนื้อเยื่อ (graft rejection) ของการผ่าตัด allograft limbal stem cell

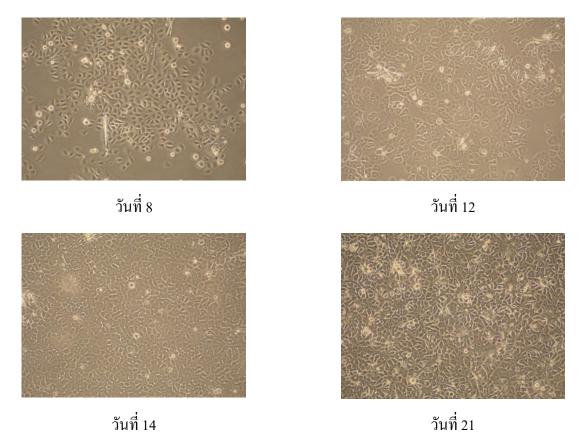
transplantation ซึ่งนำเซลล์จากผู้อื่นมาปลูกถ่าย และลดความจำเป็นในการใช้ยากดภูมิคุ้มกัน เพื่อให้ได้มาซึ่ง วัตถุประสงค์หลัก จึงมีวัตถุประสงค์ย่อยดังนี้

- 1. เพื่อประเมินผลการเลี้ยง epithelium เซลล์เยื่อบุปากในห้องปฏิบัติการ
- 2. เพื่อประเมินผลของรักษาด้วยการผ่าตัดปลูกถ่าย epithelium เซลล์ของเยื่อบุปากที่ได้จากการเพาะเลี้ยง ในห้องปฏิบัติการให้แก่ผู้ป่วยที่มีภาวะเสื่อมของเซลล์ต้นแบบของผิวกระจกตา
- 3. เพื่อเป็นฐานข้อมูลความรู้สำหรับพัฒนาการรักษาภาวะเสื่อมของเซลล์ต้นแบบของผิวกระจกตาใน อนาคต

การดำเนินงาน

1. หาสภาวะที่เหมาะสมสำหรับการเพาะเลี้ยง oral mucosal epithelial cell

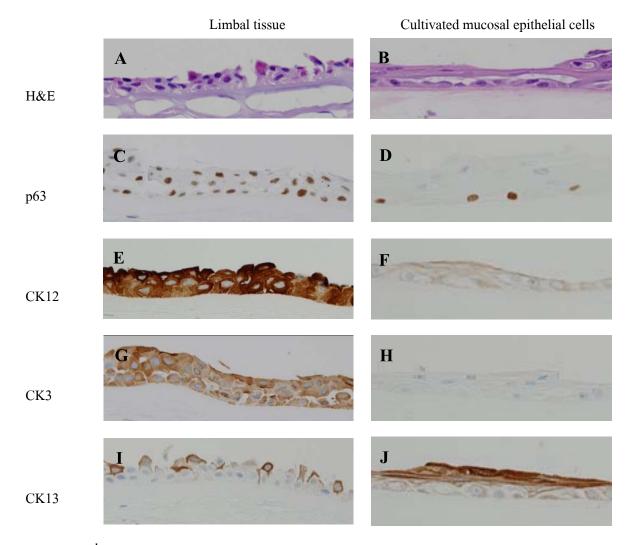
ผลการวิจัยพัฒนาหาสภาวะที่เหมาะสมในการเพาะเลี้ยง oral mucosal epithelial cell ของผู้ป่วย ได้สภาวะที่ เหมาะสมซึ่งมีขั้นตอนดังนี้


- 1) ย่อยตัวอย่าง oral mucosal tissue ขนาดประมาณ 0.5 x 0.5 ซ.ม. ด้วย dispase ความเข้มข้น 2 U/ml ปริมาณ 15 ม.ล. ที่อุณหภูมิ 4°ซ. ข้ามคืน
- 2) แยกชั้น epithelial cell ออกจากชั้น connective tissue
- 3) หั่นชิ้น epithelial cell ให้เป็นชิ้นเล็กๆ ขนาดประมาณ 1 x 1 มม.
- 4) ย่อยด้วย 0.25% trypsin ที่อุณหภูมิ 37°ซ. นาน 5 นาที
- 5) เพาะเลี้ยงเซลล์ในอาหารเลี้ยงเซลล์ชนิด Keratinocyte growth medium (KGM) นาน 2-3 สัปดาห์ โดยเปลี่ยนอาหารทุก 2 วัน

การเพาะเลี้ยงเซลล์ทำการเพาะเลี้ยงบนแผ่น human amniotic membrane (HAM) ซึ่งตรึงอยู่บนผิวล่างของ insert dish หรือเพาะเลี้ยงบนจานอาหารเลี้ยงเซลล์ หรือบน cover slip

ผลการเพาะเลี้ยงเซลล์ภายใต้สภาวะที่เหมาะสม จากภาพที่ 1 และ 2 จะเห็นว่าเซลล์ที่เพาะเลี้ยงภายใต้สภาวะ นี้ (ซึ่งไม่มี feeder cell และ serum) เซลล์สามารถจะเติบโตได้ดีโดยใช้เวลาประมาณ 2-3 สัปดาห์ จะได้เซลล์ เจริญเติบโตมาบรรจบกัน

ภาพที่ 1 แสดง oral mucosal epithelial cell หลังจากที่เพาะเลี้ยงบนจานอาหารเลี้ยงเซลล์ เป็นเวลา


8, 12, 14 และ 21 วัน

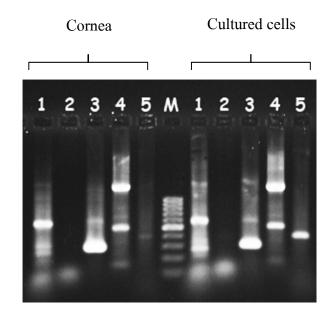
- 2. การตรวจหา marker ของ oral mucosal epithelial cell เพื่อพิสูจน์คุณสมบัติของเซลล์ที่เพาะเลี้ยงได้
 การตรวจหาลักษณะทาง histology และ marker ของ oral mucosal epithelial cell
 - 1) ย้อมเซลล์์ที่เพาะเลี้ยงบน HAM โดยวิธี immunohistochemistry

ใช้เซลล์ที่เพาะเลี้ยงบน HAM นาน 2-3 สัปดาห์ หรือจนปริมาณเซลล์เจริญครอบคลุม 90% ของ พื้นที่ผิว นำส่งเซลล์ให้ห้องปฏิบัติการภาควิชาพยาชิวิทยา

ตรวจหา differentiation marker และ stem cell marker ผลการข้อม H&E พบ nonkeratinized epithelial cell sheet โดย cell เรียงตัวกัน 2 -4 ชั้น บน amniotic membrane ข้อม immunohistochemistry พบว่า p63 positive แสดงถึงว่า cell เหล่านี้มีสักขภาพ ในการแบ่งตัว CK13 positive แสดงลักษณะของ mucosal epithelium ที่เป็น nonkeratinized epithelium, CK 3 weakly positive ใน immunohistochemistry และ positive จากเซลล์ที่เพาะเลี้ยงบน cover slip CK 12 weakly positive ใน immunohistochemistry positive แสดงถึงการที่ cultivated oral mucosal epithelium มีคุณสมบัติบางประการที่คล้ายคลึงกับ corneal epithelium

ภาพที่ 2 แสดงผลการย้อม marker โดยวิธี immunohistochemistry ของเซลล์ตั้นแบบของผิวกระจกตา (corneal limbal stem cell) (column ซ้าย) เปรียบเทียบกับ oral mucosal epithelial cell ที่เพาะเลี้ยงบน human aminiotic membrane (HAM) (column ขวา)

H&E พบ nonkeratinized epithelial cell sheet โดย cell เรียงตัวกัน 2 -4 ชั้น ทั้ง limbal tissue (A) และ cultivated oral mucosal epithelial cells (B). P63 positive ทั้ง limbal tissue (C) และ cultivated oral mucosal epithelial cells (D). CK3 และ CK12 positive ทั้ง limbal tissue (E, G) และ cultivated oral mucosal epithelial cells (F, H). CK13 positive ทั้ง limbal tissue (I) และ cultivated oral mucosal epithelial cells (J)


p63, transformation-related protein 63; cytokeratin 3; CK12, cytokeratin 12; CK13, cytokeratin 13; H & E, hematoxylin and eosin.

2) ตรวจหา mRNA ของเซลล์ที่เพาะเลี้ยงบนจานอาหารเลี้ยงเซลล์ โดยวิธี Reverse transcription– polymerase chain reaction (RT-PCR)

ตรวจหา mRNAของเซลล์ที่เพาะเลี้ยงบนจานอาหารเลี้ยงเซลล์ โดยวิธี Reverse transcriptionpolymerase chain reaction (RT-PCR)

- 2.1) RNA extraction
 - นำเซลล์ที่เพาะเลี้ยงบนจานอาหารเลี้ยงเซลล์มาสกัด RNA และ ตรวจหาปริมาณ RNA โดย วัด OD ที่ 260 nm. โดยเทียบสัดส่วน A260/A280 เพื่อคูกวามบริสุทธิ์ของ RNA ที่สกัดโดย ค่าที่ยอมรับได้อยู่ในช่วง 1.9-2.1
- 2.2) เปลี่ยน mRNA เป็น cDNA แล้วเพิ่มปริมาณ target DNA ของ differentiation marker (CK3, CK12, CK13) และ stem cell marker (ABCG2 และ p63) โดยวิธี RT-PCR ใช้ GAPDH เป็น internal control
- 2.3) ตรวจหา target DNA ที่เพิ่มขึ้น โดยวิธี agarose gel electrophoresis และย้อมด้วย ethidium bromide เปรียบเทียบขนาดของ band กับ 100 base pair DNA marker

ผลการตรวจหา mRNA โดยวิธี RT-PCR สามารถตรวจพบ differentiation marker (CK3, CK13, CK19) และ stem cell marker (ABCG2, P63) ได้แต่ตรวจไม่พบ mRNA จำเพาะของ CK12 จากผลที่ได้จากห้องปฏิบัติการ สรุปว่าคณะผู้วิจัยสามารถทำการเพาะเลี้ยงเซลล์ที่เยื่อบุปากบน amniotic membrane ได้ โดยเซลล์ที่เพาะเลี้ยงได้มีคุณสมบัติเป็น nonkeratinization (CK13 +ve) มี ลักษณะเซลล์บางประการที่ใกล้เคียงกับเซลล์ของ corneal epithelial cell (CK3 +ve, CK12 +ve ใน immunohistochemistry) และมีคุณสมบัติที่มีสักยภาพที่จะแบ่งตัวต่อไปได้ มีคุณสมบัติของ stem cell แม้จะไม่ใช่ corneal epithelium จริงๆก็ตาม ใกล้เคียงกับการวิจัยอื่นที่ได้ทำมาก่อนนี้ ดังได้ รายงานรายละเอียดไปแล้ว

M = 100 bp markers

1= CK3

2 = CK12

3 = CK13

4 = p63

5 = ABCG2

ภาพที่ 3 Agarose gel electrophoresis แสดงแถบ mRNA ของ CK3 (lane 1), CK13 (lane 3), p63 (lane 4), ABCG2 (lane 5) แต่ไม่พบ mRNA ของ CK12 (lane 2), (lane M = 100 bp marker)
CK3, cytokeratin 3; CK12, cytokeratin 12; CK13, cytokeratin 13; p63, transformation-related protein 63; ABCG2, ATP-binding cassette subfamily G member 2; Bp, base pair.

ผลการฝาตัด Cultivated oral mucosal epithelial transplantation (COMET) ในผู้ป่วย

1) การคัดเลือกผู้ป่วยเพื่อเตรียมผ่าตัดปลูกถ่ายเซลล์ epithelium ของเยื่อบุปาก

การคัดเลือกผู้ป่วย ได้แก่ผู้ป่วยที่มีภาวะเสื่อมของเซลล์ต้นแบบของผิวกระจกตาในตา 2 ข้าง ผู้ป่วยได้รับการตรวจตาอย่างละเอียด ได้แก่ การวัดสายตา การตรวจด้วย slit lamp biomicroscopy ถึง รอยโรคในตาทั้ง 2 ข้าง การตรวจระดับน้ำตาโดยการทำ Schirmer I การตรวจ impression cytology

ได้ผู้ป่วยจำนวน 18 ราย 20 ตา เพศหญิง 11 ราย เพศชาย 7 ราย อายุเฉลี่ย 48.2 ±15.5 ปี, โดย ผู้ป่วยมีภาวะเสื่อมของเซลล์ต้นแบบของผิวกระจกตาชนิด partial limbal stem cell deficiency 10 ราย, ชนิด total limbal stem cell deficiency 10 ราย, ผลของการตรวจ impression cytology บ่งชี้ว่าเป็นภาวะ เสื่อมของเซลล์ต้นแบบของผิวกระจกตาจริง, สาเหตุของ limbal stem cell deficiency จาก chemical burn 7 ตา, Steven Johnson's Syndrome 10 ตา, multiple ocular surgeries 1 ตา, advanced pterygium 1 ตา, และ ocular trauma 1 ตา

ตารางที่ 1 แสดงรายละเอียดของผู้ป่วยที่ได้รับการผ่าตัด COMET

No. of Eyes	Age (years)	Gender	Disease	Eye	Extent of limbal deficiency	Symblepharon
1	45	Male	Burn	OD	Partial (5 clock hours)	No
2	27	Male	Burn	OD	Total	No
3*	44	Male	Burn	OD	Partial (8 clock hours)	Yes
4	35	Female	Steven Johnson's Syndrome	OD	Total	Yes
5	42	Female	Burn	OS	Partial (10 clock hours)	Yes
6	57	Female	Steven Johnson's Syndrome	OD	Total	Yes
7	56	Female	Steven Johnson's Syndrome	OS	Partial (8 clock hour)	Yes
8*	44	Male	Burn	OS	Partial (6 clock hour)	No
9	53	Female	Steven Johnson's Syndrome	OD	Total	Yes
10	73	Female	Multiple Surgeries	OD	Partial (10 clock hour)	Yes

Patient	Age (years)	Gender	Disease	Eye	Extent of limbal deficiency	Symblepharon
11	57	Female	Steven Johnson's Syndrome	OD	Partial (4 clock hour)	No
12	62	Male	Advanced pterygium	OS	Partial (6 clock hour)	No
13**	54	Female	Steven Johnson's Syndrome	OS	Total	Yes
14	32	Female	Steven Johnson's Syndrome	OD	Total	Yes
15	60	Male	Steven Johnson's Syndrome	OD	Partial (7 clock hour)	Yes
16	77	Female	Trauma	OD	Total	Yes
17	49	Male	Burn	os	Total	No
18**	54	Female	Steven Johnson's Syndrome	OD	Partial (9 clock hour)	Yes
19	18	Female	Steven Johnson's Syndrome	OS	Total	Yes
20	24	Male	Burn	OD	Total	No

^{*} No. 3 และ No. 8 เป็นผู้ป่วยรายเคียวกัน

$$OD =$$
ตาขวา, $OS =$ ตาซ้าย

^{**} No. 13 และ No. 18 เป็นผู้ป่วยรายเดียวกัน

2) การเก็บเซลล์เยื่อบุปากและการติดตามผลการเพาะเลี้ยงเซลล์เยื่อบุปาก

เก็บเซลล์เยื่อบุปากของผู้ป่วยในผู้ป่วยที่คัดเลือกไว้แล้ว 20 ตา

การเก็บเซลล์เยื่อบุปาก

ก่อนเข้าห้องผ่าตัดให้ผู้ป่วยบ้วนปากด้วย spectial mouth wash 3 ครั้ง การเก็บเนื้อเยื่อจะทำใน ห้องผ่าตัดโดยทำกวามสะอาดเยื่อบุปากด้วย 10% betadine solution ฉีดยาชาเฉพาะที่ที่เยื่อบุตา บริเวณริมฝีปากด้านในตัดเยื่อบุปากส่วนผิวขนาด 5 X 5 มม. 1 ชิ้น โดยเยื่อบุปากที่ตัดออกนั้นบาง มาก จึงไม่ทำให้ปากเสียรูปหรือเป็นแผลเป็นแต่ประการใดเย็บแผลด้วย vicrly 8.0 หลังผ่าตัดผู้ป่วย จะได้รับน้ำยาบ้วนปาก 3 ครั้ง/วันเป็นเวลา 7 วัน ร่วมกับยาปฏิชีวนะรับประทาน แผลที่เกิดขึ้นจะ ทำให้เกิดการเจ็บปากอยู่บ้าง แต่จะหายเป็นปกติในเวลา 1 สัปดาห์

ส่งชิ้นเนื้อแช่น้ำยานำไปเพาะเลี้ยงบน amniotic membrane ที่ตรึงบน insert dish เป็นเวลา 2-3 สัปดาห์ ในห้องปฏิบัติการตามวิธีข้างต้น เมื่อได้เซลล์โตเต็ม amniotic membrane ซึ่งประมาณ 2 x 2 ซม. จะนำไปปลูกถ่ายกลับคืนแก่ผู้ป่วย

เนื้อเยื่อรก (preserved amniotic membrane) ได้จากศูนย์เนื้อเยื่อชีวภาพ โรงพยาบาลศิริราชใน ขั้นตอนนี้จะไม่เกี่ยวข้องกับผู้ป่วย โดยใช้เนื้อเยื่อรกขนาด 3 X 3 ซม. เก็บในอุณหภูมิ -70°C ระยะเวลาการเก็บไม่เกิน 6 เดือน ซึ่งขั้นตอนการเตรียมและเก็บเนื้อเยื่อรกเป็นไปตามมาตรฐาน ของการเก็บเนื้อเยื่อรกของศูนย์เนื้อเยื่อซึ่งเหมือนกับมาตรฐานการเก็บเนื้อเยื่อรกทั่วโลก โดย เนื้อเยื่อรก ได้มาจากรกของผู้บริจาคที่คลอดโดยการผ่าท้องที่ไม่มีความผิดปกติใดๆ และเป็นผู้ที่ไม่ มีการติดเชื้อ HIV ตับอักเสบ ซิฟิลิส ผลเพาะเชื้อราและแบคทีเรียไม่มีเชื้อขึ้น และมีการตรวจสอบ ว่าไม่มีการติดเชื้อแบคทีเรียและเชื้อรา

การเพาะเลี้ยงเซลล์เยื่อบุปากในห้องทดลองและการย้อมทางพยาธิวิทยา

การเพาะเลี้ยงเซลล์เยื่อบุปาก (cultivated mucosal epithelium) โดยการนำเซลล์มาเลี้ยงบน amniotic membrane ที่ตรึงบน insert dish เป็นเวลา 2 สัปดาห์ และนำไปปลูกถ่ายกลับคืนแก่ผู้ป่วย โดยเซลล์ที่เลี้ยงได้นำไปย้อมด้วยแอนติบอดีที่จำเพาะต่อ marker บนผิวเซลล์ โดยภาควิชาพยาชิ วิทยา เพื่อพิสูจน์ว่าเซลล์ที่เลี้ยงได้เป็นเซลล์ epithelium ที่ไม่มี keratin

3) การผ่าตัดปลูกถ่ายเซลล์เยื่อบุปากให้กับผู้ป่วยภาวะเลื่อมของเซลล์ต้นแบบของผิวกระจกตา

หลังการเพาะเลี้ยงเซลล์เยื่อบุปาก (cultivated mucosal epithelium) โดยการนำเซลล์มาเลี้ยงบน เนื้อเยื่อรกที่ตรึงบน insert dish เป็นเวลา 2-3 สัปดาห์ เซลล์ที่เลี้ยงได้ จะนำไปปลูกถ่ายกลับคืนแก่ ผู้ป่วยโดยมีขั้นตอนในการการผ่าตัดปลูกถ่ายเซลล์เยื่อบุปากดังนี้

- 1) ทำในห้องผ่าตัด โดยการคมยาสลบ
- 2) ในกรณีที่เซลล์ต้นแบบของกระจกตาเสื่อมไปทั้งหมด (total limbal stem cell deficiency)
 - a) ตัดเยื่อบุตา ห่างจาก limbus ประมาณ 1-2 มม. โดยรอบกระจกตา ลอกผิวกระจกตาส่วนที่ผิดปกติออกจากกระจกตาผู้ป่วย
 - b) นำเนื้อเยื่อรกที่มีเซลล์ต้นแบบอยู่ออกจากที่เลี้ยงเซลล์ซึ่งอยู่ในภาชนะ sterile นำมาวาง กลุมกระจกตาและ limbus ห่างจาก limbus ออกไปประมาณ 1-2 มม. ซึ่งจะพอดีกับ บริเวณที่ลอกผิวตาที่ผิดปกติออกไปตามข้อ (a)
- 3) ในกรณีมีภาวะเซลล์ต้นแบบของกระจกตาเสื่อมเป็นบางส่วน (partial limbal stem cell deficiency) วิธีการทำผ่าตัดใกล้เคียงกัน เพียงแต่จะเลาะเฉพาะบริเวณที่มีเซลล์ต้นแบบของ กระจกตาเสื่อม และวางเนื้อเยื่อรกที่มีเซลล์เพาะเลี้ยงอยู่ เฉพาะในบริเวณที่เลาะออก
- 4) ทำการเย็บด้วยในลอน 10.0 ตามเทคนิคปกติของการทำผ่าตัด ocular surface reconstruction ที่ ทำเป็นประจำ โดยพยายามแตะเนื้อเยื่อรกให้น้อยที่สุดเพื่อไม่ให้มีการทำลายเซลล์ที่เพาะอยู่บน เยื่อรก

4) การดูแลหลังผ่าตัดและการติดตามผลการผ่าตัดปลูกถ่ายเซลล์เยื่อบุปาก การดูแลหลังผ่าตัดปลูกถ่าย เซลล์เยื่อบุปาก

- 1) หลังผ่าตัดผู้ป่วยทุกรายจะใด้รับยาหยอดตา
 - a) 1% methyl prednisolone eye drops ซึ่งเป็น ยาหยอด non-preservative steroid หยอดทุก 1 ชม.ในขณะตื่น เป็นเวลา 7 วัน หลังจากนั้นลดลงเป็นทุก 2 ชั่วโมง และลดลงเป็น 4 เวลาตามลำดับของการอักเสบในตา
 - ь) ยาหยอดตาปฏิชีวนะเพื่อป้องกันการติดเชื้อ วันละ 4 เวลาเป็นเวลา 2 สัปดาห์
 - c) ยาหยอดตาน้ำตาเทียม non-preservative และหยอด autologous serum ในระยะแรกให้ ทุก 1 ชั่วโมง จากนั้นปรับลดตามความเหมาะสม
 - d) ยาป้ายตาปฏิชีวนะผสม steroid วันละ 1 ครั้ง ก่อนนอน ให้เป็นเวลา 3 สัปดาห์โดยยา ทั้งหมดนี้จะเลือกชนิดที่ผู้ป่วยไม่มีการแพ้
- 2) นอกจากนี้อาจมียาที่เหมาะสมในแต่ละบุคคลที่ผู้ป่วยเคยได้รับมาแล้วก่อนผ่าตัด
- 3) การตรวจโดยกล้อง slit lamp biomicroscopy จะทำทุกวันในช่วงที่ผู้ป่วยอยู่โรงพยาบาลโดย ระยะเวลาพักรักษาตัวในโรงพยาบาลประมาณ 1 สัปดาห์ จากนั้นจะนัดผู้ป่วยมาเมื่อ 2 สัปดาห์

และทุก 1 เคือนใน 6 เคือนแรก หลังจากนั้นทุก 2 เคือนใน 6 เคือนหลัง หรือขึ้นกับอาการและ ความสะดวกของผู้ป่วยเพื่อทำการตรวจประเมินผล

การติดตามผลการผ่าตัดปลูกถ่ายเซลล์เยื่อบุปาก

การศึกษาผลการผ่าตัด (Clinical outcome) พิจาณาจาก post-operative clinical findings โดยมีการ แบ่งกลุ่มและใช้เกณฑ์ตัดสินผลการผ่าตัดดังนี้ (ตารางที่ 2)

Success: stable ocular surface without epithelial defect, clear cornea at visual area without fibrovascular tissue invasion and severe inflammation of ocular surface

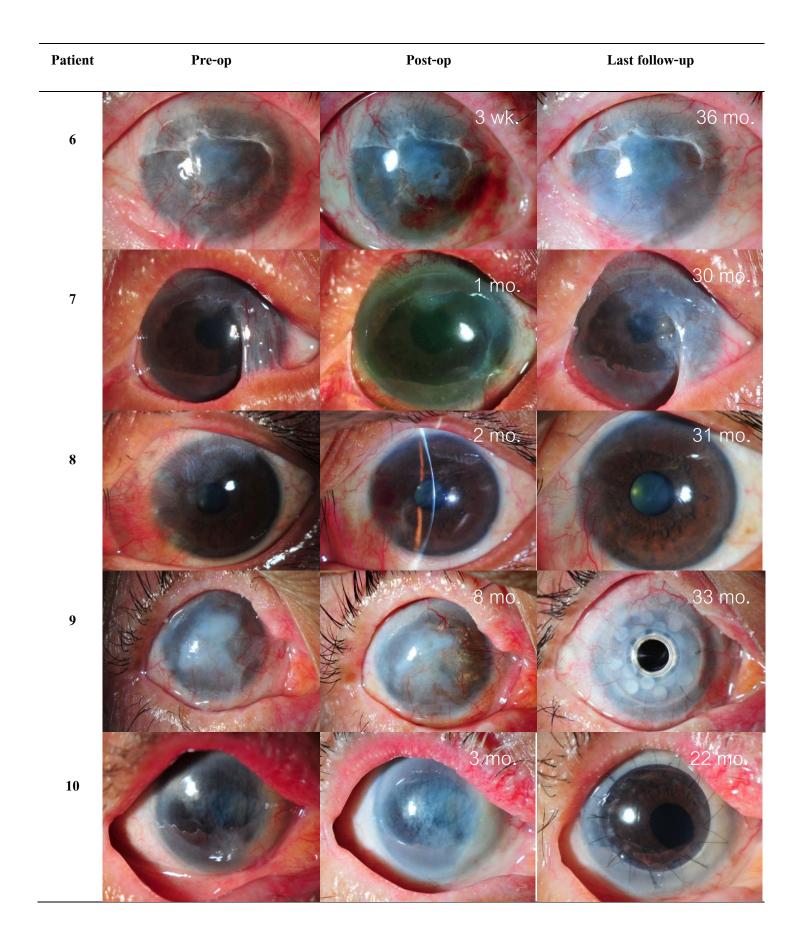
Failure: instability of the corneal surface, such as a recurrent or persistent epithelial defect refractory to all treatments or severe ocular surface inflammation with total fibrovascular tissue invasion of the visual axis.

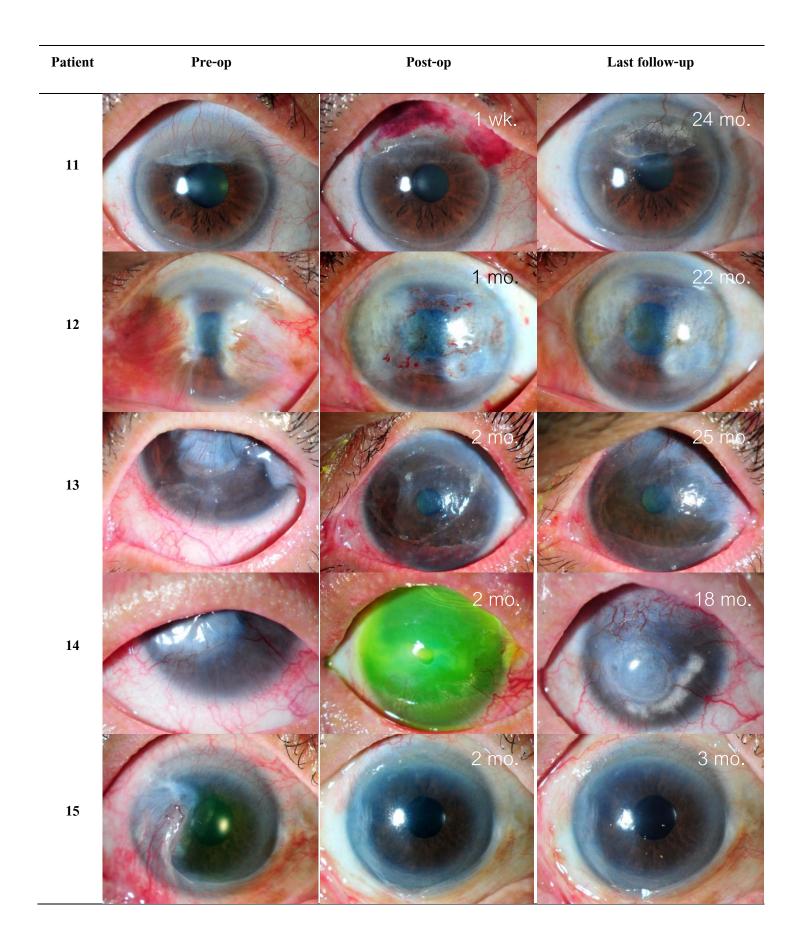
ตารางที่ 2 แสดงเกณฑ์การตัดสินผลของการผ่าตัด COMET

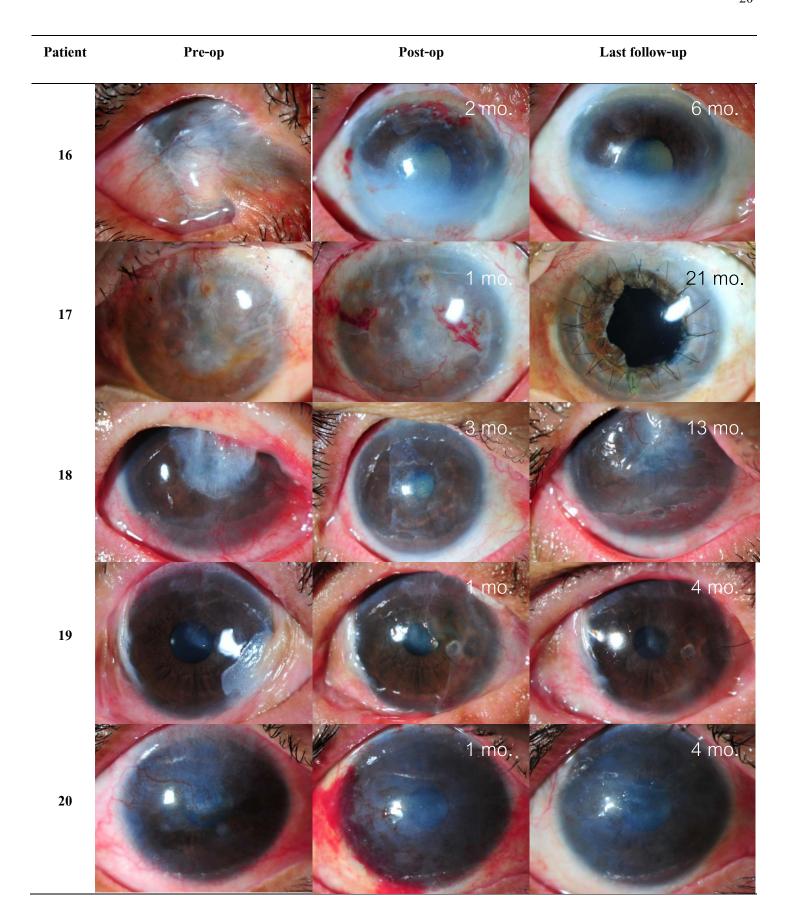
Clinical findings	Clinical grading	Clinical outcome
Peripheral corneal vascularization < 2 mm.	Grading 1	
Peripheral corneal vascularization ≥ 2 mm. but sparing central cornea	Grading 2	Success
Corneal vascularization involving central cornea	Grading 3	
Corneal vascularization with involving central cornea fibrosis	Grading 4	Failure

ผลการผ่าตัดปลูกถ่ายเซลล์เยื่อบุปาก ในผู้ป่วย 20 ตา ดังตารางที่ 3 แสดงรายละเอียดการมองเห็น เปรียบเทียบก่อนและหลังผ่าตัด, clinical outcome grading และภาพที่ 3 แสดงรูปเปรียบเทียบก่อนผ่าตัด (column ที่ 1) และหลังผ่าตัด (column ที่ 2, 3)

ตารางที่ 3 แสดงลักษณะและผลหลังการผ่าตัดของผู้ป่วย COMET

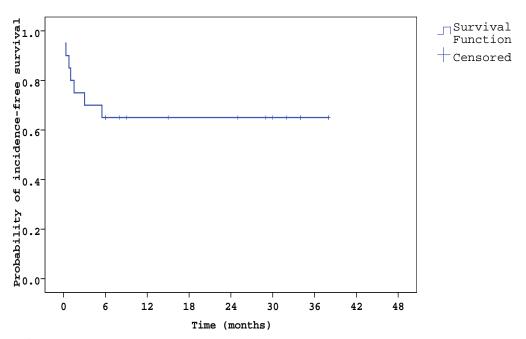

No.	Vi	sual acuity (LogMAR)		Epithelialization	D			Follow up
of	Pre-op	Post-	Post following	Procedure		Recurrent	Clinical outcome	Outcome grading	time
eyes		COMET	procedure		(days)	symblepharon	outcome	9 9	(mo)
1	6/36	6/60	-	-	1	No	Success	1	50
	(0.8)	(1.0)							
2	Fc ½'	Fc ½'	6/48	PKP	60	No	Failure	3	47
	(2.6)	(2.6)	(0.9)				at 32 mo		
3	1.5/60	6/48	-	-	1	No	Success	2	45
	(1.6)	(0.9)							
4	Hm	6/30	-	-	1	No	Failure	3	42
	(3.0)	(0.7)					at 8 mo		
5	Fc 1/4'	Fc 1'	6/38	Phaco c	7	No	Success	2	41
	(2.6)	(2.3)	(0.8)	IOL					
6	Fc 1/4'	Hm	-	-	1	Yes	Failure	3	40
	(2.6)	(3.0)					at 6 mo		
7	6/15	6/48	-	-	3	Yes	Failure	3	38
	(0.4)	(0.9)					at 5 mo		
8	6/24	6/19	-	-	9	No	Success	1	38
	(0.6)	(0.5)							
9	Hm	Pj	6/30	K Pro c	3	No	Success	1	37
	(3.0)	(3.0)	(0.7)	ECCE IOL					
10	Fc 2'	Fc 1'	6/15	PKP	1	No	Success	1	34
	(2.0)	(2.3)	(0.4)						


No.	Vi	sual acuity (LogMAR)		Epithelialization	Recurrent			Follow up
of eyes	Pre-op	Post-	Post following procedure	Procedure		symblepharon	Clinical outcome	Outcome grading	time (mo)
11	6/75	6/15	-	-	1	No	Success	2	34
	(1.1)	(0.4)							
12	6/120	6/19	-	-	1	No	Success	1	32
	(1.3)	(0.5)							
13	Fc 1'	6/48	-	-	1	No	Success	1	30
	(2.3)	(0.9)							
14	Fc 1/4'	Hm	-	-	1	No	Success	2	29
	(2.6)	(3.0)							
15	Hm	Hm	-	-	1	Yes	Success	1	16
	(3.0)	(3.0)							
16	Pj	6/48	-	-	1	No	Success	1	28
	(3.0)	(0.9)							
17	Hm	Hm	6/240	PKP	1	No	Success	1	25
	(3.0)	(3.0)	(1.6)						
18	Fc 1'	Hm	-	-	7	Yes	Failure	4	15
	(2.3)	(3.0)					at 12 mo		
19	6/48	6/15	-	-	1	Yes	Success	2	9
	(0.9)	(0.4)							
20	Fc 1'	6/152	-	-	1	No	Success	1	8
	(2.3)	(1.4)							


PKP = penetrating keratoplasty, KPro = keratoprosthesis,

ภาพที่ 4 แสดงภาพผู้ป่วยเปรียบเทียบก่อนและหลังการผ่าตัดโดยวิธี cultured oral mucosal epithelial cell transplantation (COMET)

Patient	Pre-op	Post-op	Last follow-up
1		4 moly	11 mo.
2		n mo.	38 mo.
3		5 mo.	39 mo.
4		3 mo.	35-mo.
5		5 mo.	37 mo.



การติดตามผลการผ่าตัดในผู้ป่วย 20 ตา (ครบตามแผนการดำเนินงานวิจัย) ระยะเวลาการติดตามผลการรักษา เฉลี่ย 31.9 \pm 12.1 เดือน (8-50) ผู้ป่วยมารับการตรวจติดตามอย่างน้อย 6 เดือนตามแผนงาน มีผู้ป่วยหนึ่งคน (ผู้ป่วยตาที่15) ไม่มาติดตามผลหลัง 16 เดือน จากการติดตามผลการผ่าตัดทั้งหมดพบว่า

การหายของเซลล์ผิวกระจกตา (Epithelization) หลังได้รับการฝาตัด COMET

หลังผ่าตัดผู้ป่วยส่วนใหญ่ (19 ใน 20 ตา, 95%) มีการหายของแผลที่ผิวกระจกตา
 (epithelialization) ภายใน 1 สัปดาห์ (1-7 วัน) แสดงถึงว่างานวิจัยนี้สามารถเลี้ยงเซลล์เยื่อบุปากให้ ติดแน่นได้กับ amniotic membrane ทำให้มีเซลล์อยู่ได้ครบ, สำหรับผู้ป่วย 1 ตา (ผู้ป่วยตาที่ 2) ที่มี แผลที่ผิวกระจกตาหลุดลอกในช่วง 60 วันแรก (recurrent corneal epithelial defect) คาดว่า เนื่องจากผู้ป่วยมีการทำลายของกระจกตาอย่างรุนแรงจากโรคเดิม มีเปลือกตาที่ผิดปกติ และมี ภาวะตาแห้งอย่างรุนแรง (severe dry eye, Shirmer test = 0 mm.) สุดท้ายได้รับการผ่าตัด amniotic membrane patching และ tarsorrhaphy เพิ่มเติม และมี complete epithelialization ได้

ภาพที่ 5 แสดง survival of the first complete epithelialization หลังการผ่าตัด โดยวิธี cultured oral mucosal epithelial cell transplantation (COMET)

จากกราฟพบมีการลคลงของ survival ในช่วงแรก แสดงถึงการเกิด recurrence of corneal epithelial defect ซึ่งพบใน 6 เคือนแรกหลังผ่าตัด

ระดับการมองเห็นหลังการผ่าตัด (Visual outcome)

• ผู้ป่วย 14 ตา (70%) มีการมองเห็นที่ดีขึ้นหลังการผ่าตัด COMET ร่วมกับการผ่าตัดเพิ่มเติมอื่นๆ ต่อมา ได้แก่ penetrating keratoplasty (3 ตา), keratoprosthesis (1 ตา), phacoemulsification with intraocular lens insertion (1 ตา), ผู้ป่วย 5 ตา (25%) มีการมองเห็นเท่าเดิม จากมี dense stromal scar เดิม (ผู้ป่วยตาที่ 1, 6, 14, 15, 18) นอกจากนี้ในผู้ป่วยตาที่ 14 ซึ่งมี severe lid abnormality หลังผ่าตัด eye lid reconstruction with mucosal graft ร่วมกับ COMET ยังเกิดมี recurrent central corneal epithelial defect, subsequent central corneal perforation จึงได้รับการผ่าตัด tectonic corneal graft บริเวณ central cornea ในเวลาต่อมาและทำให้มี dense central stromal scar ขุ่นมาก ขึ้น อย่างไรก็ตามหลังจากนั้น ocular surface ดีขึ้น การอักเสบลดลง จนถึงการติดตามการรักษา ครั้งล่าสุด, ผู้ป่วย 1 ตา (5%) มีการมองเห็นลดลง (ผู้ป่วยตาที่ 7) ซึ่งมี clinical outcome failure, grading 3 เพราะมีเส้นเลือดลุกลามเข้ามาที่ central cornea มากขึ้น

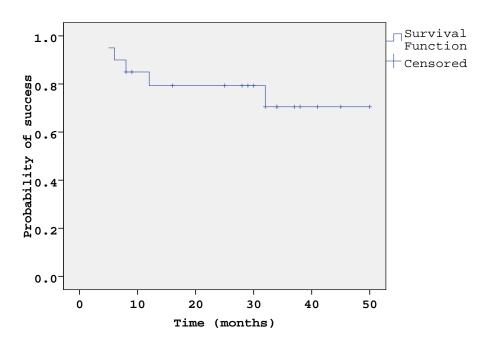
ผลการฝ่าตัด COMET (Clinical outcome)

- ที่การตรวจติดตามครั้งถ่าสุด พบว่ามี clinical success outcome 15 ตา (75%) clinical failure outcome 5 ตา (25%). [ตารางที่ 3]
- ในกลุ่มที่มี clinical success outcome [ตารางที่ 3, ภาพที่ 4, ผู้ป่วยตาที่ 1, 3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 17, 19, 20] หลังผ่าตัดพบว่ากระจกตาใสขึ้น เส้นเลือดที่กระจกตาลดลง ตา อักเสบลดลง โดยที่ผู้ป่วยส่วนใหญ่มีลักษณะมีเส้นเลือดเล็กเข้ามาบริเวณ periphery ของกระจกตา บ้าง แต่ไม่ถึงส่วนกลางของกระจกตา เนื่องจากเซลล์ที่ปลูกถ่ายไม่ใช่ corneal limbal stem cell จริงๆ อย่างไร ก็ตามเส้นเลือดดังกล่าวมีปริมาณลดลงมากจากก่อนผ่าตัด
- ในกลุ่มผู้ป่วยที่มี clinical failure outcome นั้น ส่วนใหญ่ (4 ใน 5 ตา, 80%) เกิดในกรณี limbal stem cell deficiency จาก Steven Johnson Syndrome (SJS) ดังการศึกษาต่างๆที่ได้รายงานมาก่อน นี้พบว่า SJS เป็น โรคที่มี severe ocular surface damage มีการอักเสบรุนแรงและต่อเนื่องได้ตลอด ชีวิต มีการพยาการณ์โรคหลังผ่าตัดไม่ดี, นอกจากนี้ผู้ป่วยกลุ่ม failure ส่วนใหญ่ (3 ตา, 60%) มี total limbal deficiency, ส่วนใหญ่ (4 ตา, 80%, ผู้ป่วยตาที่ 2, 6, 7, 18) มี lid abnormality และ ส่วนใหญ่ (4 ตา, 80%, ผู้ป่วยตาที่ 6, 7 มี

- symblepharon ปริมาณมากก่อนผ่าตัด เคยได้รับการ lysis symblepharon มาแล้วก่อนหน้านี้ 2 ครั้ง ยังคงมี recurrent symblepharon และหลังผ่าตัด COMET ครั้งนี้มี recurrent symblepharon กลับมาเหมือนเดิมอีก
- ผู้ป่วยส่วนใหญ่ (4 ใน 5 ตา, 80%)ได้รับการตรวจพบ sign ของ clinical failure ภายใน 1 ปีแรก หลังผ่าตัด COMET, มีเพียง 1 ตา (20%) ที่มี clinical failure หลัง 1 ปีไปแล้วที่ 32 เดือน

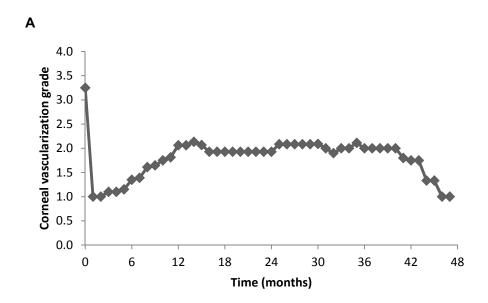
ประสิทธิภาพของการทำผ่าตัด COMET (Efficacy of COMET)

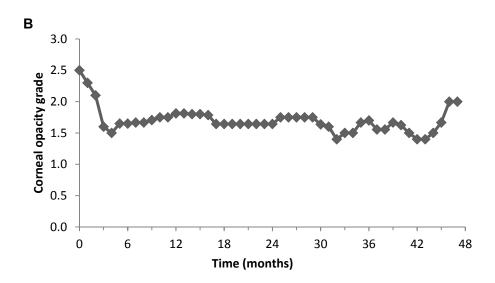
- 1) การทำผ่าตัด COMET สามารถลดเส้นเลือดและพังพืดบริเวณผิวกระจกตาส่วนกลาง จึงช่วยให้ การ มองเห็นดีขึ้น โดยเฉพาะในกลุ่ม success ซึ่งไม่มีเส้นเลือดลุกเข้ามาบริเวณ central ของ กระจกตาหลังผ่าตัดเลย หรือแม้ในกลุ่ม failure ดังเช่นผู้ป่วยตาที่ 4 (ไม่มี lid abnormality แต่ มี severe dry eye (Shirmer = 1) ซึ่งผู้ป่วยตานี้หลังผ่าตัดถึงแม้จะอยู่ในกลุ่ม failure เนื่องจากมี corneal vascularization เข้ามาถึงบริเวณ central cornea แต่การทำ COMET ทำให้กระจกตา ใสขึ้น ผู้ป่วยมีการมองเห็นที่ดีขึ้นมากจากก่อนผ่าตัดจนถึง last follow up (จาก Hand movement เป็น 6/30)
- 2) เนื่องจากการทำผ่าตัด COMET สามารถลดเส้นเลือดและพังพืดบริเวณผิวกระจกตา จะยังช่วยเปิดทางให้การผ่าตัดขั้นตอนอื่นๆสะควกมากขึ้น และเพิ่มความสำเร็จของการทำ ผ่าตัดอื่นๆต่อไป ได้แก่ กรณีเมื่อผู้ป่วยมีความจำเป็นที่จะต้องได้รับการผ่าตัด penetrating keratoplasty ต่อไป จะมีอัตราเสี่ยงการเกิด corneal graft rejection ลดลง กระจกตาที่ได้รับการปลูกถ่ายจะคงมีความใส และมีการมองเห็นที่ดีขึ้น ได้แก่ ผู้ป่วยตาที่ 10 ซึ่งมีการ มองเห็นดีขึ้นมาก จาก Counting finger at 2 ' เป็น 6/19, ผู้ป่วยตาที่ 17 จาก Hand movement เป็น 6/240 (ระดับการมองเห็นไม่ดีจาก optic neuropathy ร่วมด้วย) และผู้ป่วยตาที่ 2 ซึ่งตานี้หลังผ่าตัดถึงแม้จะอยู่ในกลุ่ม failure เนื่องจากมี corneal vascularization เข้ามาถึงบริเวณ central cornea แต่เส้นเลือดดังกล่าวมีปริมาณลดลงมาก จากก่อนผ่าตัด เมื่อผู้ป่วยมีความจำเป็นที่จะต้องได้รับการผ่าตัด penetrating keratoplasty ต่อไป จะมีอัตราเสี่ยงการเกิด corneal graft rejection ลดลง กระจกตาที่ได้รับการปลูกถ่ายจะ คงมีความใสและมีการมองเห็นที่ดีขึ้นมาก จาก Counting finger at ½ ' เป็น 6/48 นอกจากนี้กรณีเมื่อผู้ป่วยมีความจำเป็นที่จะต้องได้รับการผ่าตัด keratoprosthesis (Kpro)


ต่อไป ผู้ป่วยตาที่ 9 ซึ่งการทำ COMET ทำให้แส้นเลือดและพังพืดบริเวณผิวกระจกตา ลดลง แต่ยังมีเส้นเลือดในเนื้อกระจกตาส่วนลึกอยู่พอสมควร จึงพิจารณาผ่าตัด keratoprosthesis (Kpro) เพื่อช่วยให้การมองเห็นดีขึ้น แทนการทำ corneal transplantation ตามปกติ เนื่องจากการมีเส้นเลือด ในกระจกตาจะมีความ เสี่ยงของการเกิด corneal graft rejection สูงมาก หลังผ่าตัด Kpro ผู้ป่วยตานี้ มีการ มองเห็นดีขึ้นมาก จาก Hand movement เป็น 6/15

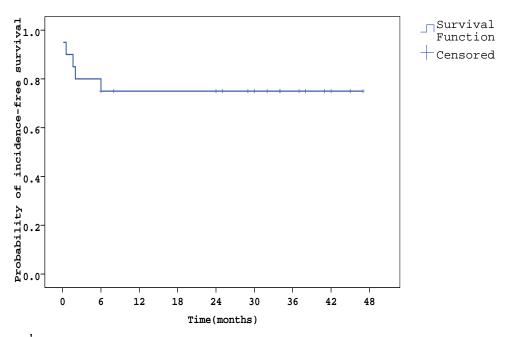
- 3) ผู้ป่วย 13 ตา ที่มี symplepharon ก่อนผ่าตัด (ตาที่ 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 18, 19, ผู้ป่วยตาที่ 10 มี symplepharon ทาง nasal ก่อนผ่าตัด เห็นได้ไม่ชัดเจนจากในรูป), การผ่าตัด COMET ช่วยกำจัด symplepharon ออกไปทั้งหมด โดยไม่เกิดซ้ำในผู้ป่วยส่วนใหญ่ (8 ตา, 61.5%) โดยในผู้ป่วยที่มี severe lid abnormality, severe symplepharon (ผู้ป่วยตาที่ 13, 14, 16, 18,19) ต้องได้รับการทำผ่าตัด eye lid reconstruction with mucosal graft โดย oculoplastic specialist ร่วมด้วย จึงเพิ่มผลความสำเร็จของการผ่าตัด COMET
- 4) ผลการผ่าตัด COMET ในผู้ป่วยกลุ่ม Steven Johnson Syndrome (SJS) พบมี clinical success outcome มากกว่าครึ่งหนึ่งของจำนวนทั้งหมด (6 ตา, 60%) ซึ่ง SJS เป็นโรค autoimmune ที่ โดยทั่วไปมีการพยาการณ์โรคหลังผ่าตัดไม่ดี เพราะมีการอักเสบรุนแรงและต่อเนื่องได้ตลอดชีวิต และมักมี severe dry eye และ severe lid abnormality ร่วมด้วย เป็นปัญหาของการทำผ่าตัด conventional penetrating keratoplasty และ keratoprosthesis ที่จะเกิด failure rate สูง อย่างไรก็ ตามพบว่ามี clinical success outcome ของการผ่าตัด COMET สูง เนื่องจากการผ่าตัด COMET เอง ช่วยลดการอักเสบของ ocular surface, เพิ่ม tear stability นอกจากนี้ ผู้ป่วย SJS 4 ตา (40%) ยังมีระดับการมองเห็นที่ดีขึ้นหลังผ่าตัด COMET (และร่วมกับการผ่าตัด Kpro ต่อมา ในผู้ป่วยตา ที่ 9)

การติดตามผลระยะยาวของการผ่าตัด COMET (Long term follow up)


• การติดตามผลระยะยาวของการผ่าตัด COMET วิเคราะห์โดย Kaplan-Meier survival พบ 1 year survival ของ COMET สูง 79.3%, 4 year survival (การตรวจติดตามล่าสุด) ของ COMET สูง 70.5%. คังแสดงในรูปที่ 7


การศึกษาการเปลี่ยนแปลงผิวตา (ocular surface) หลังผ่าตัดพบว่า การลดลงของเส้นเลือดและพัง พืดบริเวณผิวกระจกตาส่วนกลางหลังการทำผ่าตัด COMET มีแนวโน้มคงที่ไม่เปลี่ยนแปลงหลัง 1 ปี และความขุ่นของกระจกตาลดลงใน 3 เดือนแรกก่อนความขุ่นจะคงที่ไม่เปลี่ยนแปลง ดัง แสดงในรูปที่ 7 การเกิดซ้ำของ symplepharon จะพบใน 6 เดือนหลังผ่าตัด ดังแสดงในรูปที่ 8

ภาพที่ 6 แสดง survival of the clinical outcome ของการผ่าตัด โดยวิธี cultured oral mucosal epithelial cell transplantation (COMET)


จากกราฟพบ 1 year survival ของ COMET สูง 79.3%, 4 year survival (การตรวจติดตามล่าสุด) ของ COMET สูง 70.5%

ภาพที่ 7 แสดง Time course ของ corneal vascularization and corneal opacity grading หลังการฝ่าตัดโดยวิธี cultured oral mucosal epithelial cell transplantation (COMET)

จากกราฟพบ corneal neovascularization (A) พบว่าเส้นเลือดจะเพิ่มขึ้นใน 12 เดือนแรกหลังผ่าตัดก่อนจะ คงที่ และมีแนวโน้มลดลงในตอนท้ายของการตรวจติดตาม. Corneal opacity (B) พบว่าความขุ่นของกระจก ตาลดลงใน 3 เดือนแรกหลังผ่าตัดก่อนความขุ่นจะคงที่

ภาพที่ 8 แสดง survival of the symblepharon-free หลังการผ่าตัด โดยวิธี cultured oral mucosal epithelial cell transplantation (COMET)

จากกราฟพบว่า recurrence of symblepharon จะพบใน 6 เดือนหลังผ่าตัด

ผลแทรกซ้อน

ในตาที่ 14 ผู้ป่วยเป็น SJS หลังทำ COMET มีกระจกตาทะลุเกิดขึ้นในเดือนที่ 7 หลังผ่าตัด เนื่องจากในช่วง น้ำท่วมใหญ่ประเทศไทย ผู้ป่วยไม่สามารถมารับการรักษาต่อเนื่องได้ ผู้ป่วยขาดยาและประกอบกับมีขนตา และเปลือกตาผิดปกติครูดกระจกตาทำให้เกิดเป็นแผล กระจกตาบางลงและทะลุ ได้รับการผ่าตัด tectonic corneal graft แผลหายดี ผิวกระจกตาไม่มีแผลอีก แต่ทำให้มีกระจกตาขุ่นและสายตามัวลง

Output ที่ได้จากโครงการ

Period	Activity	Output
month 1-6	-พัฒนาหาสภาวะที่เหมาะสำหรับการ เพาะเลี้ยงเซลล์ต้นแบบจาก epithelial เซลล์ ของเยื่อบุปาก ของผู้ป่วย -เพาะเลี้ยงเซลล์ต้นแบบเพื่อนำไป พิสูจน์ทาง imunohistrochemistry และนำไปปลูกถ่ายให้กับผู้ป่วย	-สามารถหาสภาวะที่เหมาะสมในการ เพาะเลี้ยง oral mucosal epithelial cell ของ ผู้ป่วย ได้บน human amniotic membrane (HAM) โดยวิธี explant, airlift technique โดย ไม่ได้ใช้ 3T3 feeder เซลล์สามารถจะเติบโต ได้ดีในเวลาประมาณ 2-3 สัปดาห์ดังได้ รายงานรายละเอียดไปแล้ว
	-พิสูจน์ว่าเซลล์ที่ได้เป็นเซลล์ epithelium ของเยื่อบุปากโดย การประเมินลักษณะทางพยาธิและ ทาง immunohistochemistry ได้ผล ตรงกับเป้าหมาย	-เซลล์ที่เลี้ยงมีลักษณะตรงกับลักษณะทาง พยาธิและทาง immunohistochemistry ตรงกับ เป้าหมาย ดังได้รายงานรายละเอียดไปแล้ว
month 7-12	-กัดกรองและผ่าตัดผู้ป่วยด้วยการ ปลูกถ่ายเซลล์ epithelial ของเยื่อบุ ปาก -ติดตามลักษณะทางคลินิกดู ประสิทธิภาพของเซลล์เพาะเลี้ยงที่ กลุมกระจกตา	-ได้ผู้ป่วยที่เข้าโครงการวิจัย ได้รับการผ่าตัด เบื้องต้น 5 ตา พบว่าเซลล์ที่คลุมผิวกระจกตา ยังมีประสิทธิภาพดี ดังได้รายงานรายละเอียด ไปแล้ว

month 13-18	-คัดกรอง และผ่าตัดผู้ป่วยด้วยการ ปลูกถ่ายเซลล์ epithelial ของเยื่อบุ ปากจำนวนเพิ่มขึ้น -ติดตามลักษณะทางคลินิกดู ประสิทธิภาพของเซลล์เพาะเลี้ยงที่ คลุมกระจกตาในผู้ป่วยทั้งหมด	- ได้ทำการติดตามผู้ป่วยที่ทำผ่าตัดไปแล้ว ต่อเนื่อง, ทำการคัดกรองและผ่าตัดเพิ่ม -รวมจำนวนผู้ป่วยที่ติดตามต่อเนื่องและที่ ได้รับการผ่าตัดเพิ่มเติมทั้งหมด 10 ตา พบว่าเซลล์ที่คลุมผิวกระจกตายังมี
	Tigatise titii i sagi a sottatian	ประสิทธิภาพดี ดังได้รายงานรายละเอียดไป แล้ว
month 18-24	 -กัดกรอง และผ่าตัดผู้ป่วยด้วยการ ปลูกถ่ายเซลล์ epithelial ของเยื่อบุ ปากจำนวนเพิ่มขึ้น -ติดตามลักษณะทางกลินิกดู ประสิทธิภาพของเซลล์เพาะเลี้ยงที่ กลุมกระจกตาในผู้ป่วยทั้งหมด 	-ได้ทำการติดตามผู้ป่วยที่ทำผ่าตัดไปแล้ว ต่อเนื่อง, ทำการกัดกรองและผ่าตัดเพิ่ม -รวมจำนวนผู้ป่วยที่ติดตามต่อเนื่องและที่ ได้รับการผ่าตัดเพิ่มเติมทั้งหมด 15 ตา โดยเป็นผู้ป่วยที่มีภาวะเสื่อมของเซลล์ต้นแบบ ของผิวกระจกตาจาก Chemical Burn 5 ตา Steven Johnson's Syndrome 8 ตา และ Multiple ocular surgeries 1 ตา และ advanced pterygium 1 ตา -ผลการผ่าตัดในผู้ป่วยทั้งหมดพบว่ามี ประสิทธิภาพดี ผู้ป่วยส่วนใหญ่มีการมองเห็น ดีขึ้นหลังผ่าตัด ถึงแม้จะพบ peripheral corneal vascularization เกิดขึ้นหลังผ่าตัด แต่ ส่วนกลางของกระจกตายังคือผู่ ดังรายละเอียด ไปแล้ว

	0, 1,0,01,01	
month 24-30	-คัดกรอง และผ่าตัดผู้ป่วยด้วยการ	-ได้ทำการติดตามผู้ป่วยที่ทำผ่าตัดไปแล้ว
	ปลูกถ่ายเซลล์ epithelial ของเยื่อบุ	ต่อเนื่อง, ทำการคัดกรองและผ่าตัดเพิ่ม
	ปากจำนวนเพิ่มขึ้น	-รวมจำนวนผู้ป่วยที่ติดตามต่อเนื่องและที่
	-ติดตามลักษณะทางคลินิกดู	ใค้รับการผ่าตัดเพิ่มเติมทั้งหมค 20 ตา
	ประสิทธิภาพของเซลล์เพาะเลี้ยงที่	โคยเป็นผู้ป่วยที่มีภาวะเสื่อมของเซลล์ต้นแบบ
	กลุมกระจกตาในผู้ป่วยทั้งหมด	ของผิวกระจกตาจาก chemical burn 7 ตา,
		Steven Johnson's Syndrome 10 ตา, multiple
		ocular surgeries 1 ตา, advanced pterygium 1
		ตา, และ ocular trauma 1 ตา
		-ผลการผ่าตัดในผู้ป่วยทั้งหมดพบว่ามี
		ประสิทธิภาพดี ผู้ป่วยส่วนใหญ่มีการมองเห็น
		คีขึ้นหลังผ่าตัด ถึงแม้จะพบ peripheral corneal
		vascularization เกิดขึ้นหลังผ่าตัด แต่
		ส่วนกลางของกระจกตายังคือยู่ คั้งรายละเอียด
		ไปแล้ว
month 30-36	-ติดตามผลระยะยาวของการผ่าตัด, คู	-ได้ทำการติดตามผู้ป่วยที่ทำผ่าตัดไปแล้ว
	ประสิทธิภาพของเซลล์เพาะเลี้ยงที่	ต่อเนื่อง ในจำนวนผู้ป่วยที่ได้รับการผ่าตัดเทั้ง
	กลุมกระจกตาในผู้ป่วยทั้งหมด 	หมด 20 ตา
	สรุปและวิเคราะห์ผลที่ได้ทางสถิติ	-สรุปผลการผ่าตัดในผู้ป่วยทั้งหมด พบว่ายังมี
	และเขียน manuscript	ประสิทธิภาพดีในระยะยาว วิเคราะห์ 1 year
		survival ของการผ่าตัด สูง 79.3%, และ 4 year
		survival survival (การตรวจติคตามถ่าสุค) สูง
		70.5%
		ผู้ป่วยส่วนใหญ่มีการมองเห็นดีขึ้นหลังผ่าตัด
		และหากร่วมกับการผ่าตัดเพื่อการมองเห็น

	อย่างอื่นเช่นเปลี่ยนกระจกตา ต้อกระจก ผู้ป่วยมีการมองเห็นดีขึ้นอย่างมีนัยสำคัญทาง สถิติ (P < 0.05)
	-เขียน manuscript สมบูรณ์สำหรับเตรียมส่ง วารสารต่างประเทศ

กิจกรรมที่เกี่ยวข้องกับการนำผลจากโครงการไปใช้ประโยชน์

Period	Activity	Output
หลังเสร็จสิ้น	-เผยแพร่บทความงานวิจัยลงตีพิมพ์	-มีความรู้ที่สามารถนำไปใช้ได้จริงในการให้
โครงการวิจัย	ในวารสารต่างประเทศ	การรักษาแก่ผู้ป่วย ทั้งในแง่ของการบริการ
	-เผยแพร่งานวิจัยในงานประชุมราช	ทางการแพทย์และการศึกษาอย่างต่อเนื่อง
	วิทยาลัยจักษุแพทย์แห่งประเทศไทย	-เป็นแหล่งความรู้ให้แก่จักษุแพทย์ของไทย
	-เผยแพร่งานวิจัยในงานประชุม วิชาการระดับนานาชาติ	และต่างประเทศ

Efficacy of Autologous Cultivated Oral Mucosal Epithelial Transplantation for Ocular Surface Reconstruction

Pinnita Prabhasawat, MD¹

Pattama Ekpo, PhD²

Mongkol Uiprasertkul, MD³

Suksri Chotikavanich, MD¹

Nattaporn Tesavibul, MD¹

Kanograt Pornpanich, MD¹

Panitee Luemsamran, MD¹

¹Department of Ophthalmology, ²Department of Immunology, and ³Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

Correspondence: Pinnita Prabhasawat, MD, Department of Ophthalmology, Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkoknoi District, Bangkok 10700, Thailand

Tel: +66 2 411 2006

Fax: +66 2 411 1906

Email: pinnita.t@gmail.com

Key words: limbal deficiency, limbal transplantation, corneal epithelial stem cell transplantation, cultivated oral mucosal epithelial transplantation

Abstract

Purpose: To investigate the clinical outcomes of autologous cultivated oral mucosal epithelial transplantation (COMET) on human amniotic membrane (AM) for corneal limbal stem cell deficiency (LSCD).

Methods: Prospective, non-comparative case series. Twenty eyes (18 patients) with bilateral severe ocular surface diseases were chosen to undergo COMET on human AM. The clinical outcomes included clinical success define as stable ocular surface without epithelial defect, clear cornea at visual area without fibrovascular tissue invasion and severe inflammation of ocular surface, visual acuity (VA), and complication.

Results: Cultivated oral mucosal epithelium on AM (two to four layers) was positive for p63, ABCG2, CK3, and CK13. The mean patient age was 48.2 ± 15.5 years. The mean follow-up time was 31.9 ± 12.1 months (range, 8-50). All except 1 eye had complete epithelialization within the first postoperative week. A successful clinical outcome, defined as stable ocular surface without epithelial defect, clear cornea without fibrovascular tissue invasion at visual area and no or mild inflammation of ocular surface, was obtained in 16 (80%) of 20 eyes. Survival analysis showed that the clinical success rates at 1 year were 79.3% and at 4 year of the end follow-up were 70.5%. Fourteen of 20 (70.0%) eyes had VA improvements after COMET and some cases with subsequent cataract surgery (1 eye), penetrating keratoplasty (3 eyes), or keratoprosthesis (1 eye). Preoperative symblepharon was eliminated in most eyes (8 of 13 eyes, 61.5%) after COMET and combined with eyelid reconstruction when needed. Complication was corneal perforation (1 eye), induced by severe eyelid abnormality, which was stabilized after tectonic corneal graft.

Conclusions: COMET can successfully restore ocular surface damage in most cases with corneal LSCD.

Introduction

Severe ocular surface diseases, such as Stevens-Johnson syndrome (SJS), thermal and chemical injury, and ocular cicatricial pemphigoid can cause corneal limbal stem cell deficiency (LSCD) resulting in poor corneal epithelial integrity, corneal vascularization, conjunctivalization, corneal fibrous ingrowth and lead to chronic ocular surface inflammation and permanent severe visual loss¹⁻⁴. Because of the absence of limbal stem cells in the donor corneal button, conventional penetrating keratoplasty (PK) has unfavorable outcome in these patients. In vivo limbal transplantation, however, has exceptional problems of donor size inadequacy in autograft and high incidence of graft rejection in allograft requiring lifelong systemic immunosuppressions which that involves high risks of serious eye and systemic complications⁵. Encouragingly, cultivated corneal limbal epithelial transplantation (CLET) has been reported to get more epithelial donor cell and have favorable outcome with less exposure to donor immunity compared to conventional keratolimbal allograft⁶⁻⁹. Nonetheless, the transplant cells of the allograft were allogenous and immunosuppressant medications were still required.

Recently, oral epithelial cell has been shown to be able to differentiate to cornea epithelium and autologous cultivated oral mucosal epithelial transplantation (COMET) has been studied demonstrating promising outcomes ^{10, 11}As a result of variability in surgical techniques and follow up time of the surgery among series and to the best of our knowledge no previous report in Thailand regarding COMET as the treatment of LSCD. In the current study, we evaluated efficacy of COMET and its long-term outcome using cultivated oral mucosal epithelium on human amniotic membrane (AM) for treatment of severe bilateral ocular surface diseases.

Materials and Methods

Subjects

The study was conducted in accordance with the principles of the Declaration of Helsinki; The Committee for the Protection of Human Participants in Research at the Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand (Siriraj ethics committee number 639/2551(EC2) approved the study). Adults with LSCD who were willing to comply with the protocol provided written informed consent before enrollment.

Inclusion criteria were the patients who had bilateral corneal LSCD from any causes. The diagnosis of LSCD was based on the absence of the limbal palisades of Vogt and the presence of conjunctival epithelial ingrowth onto the cornea (conjunctivalization) by the slit-lamp finding and subsequently confirmed by impression cytology that showed goblet cells on the corneal surface. Parameters included degree of conjunctival inflammation, conjunctival scaring, corneal opacification and corneal neovacularization were judged by the principle investigator (PP) in all cases. The conjunctival inflammation was graded into absent, mild (slight hyperemia), moderate (diffuse hyperemia), and severe (episcleral or scleral hyperemia). The conjunctival scarring was ranged from reticular subepithelial fibrosis to extensive symblepharon. The corneal opacification was graded from 0 through 3, where 0 = clear corneawith iris details clearly visualized, 1 = partial obscuration of the iris details, 2 = iris details poorly seen with pupil margin just visible, and 3 = complete obscuration of iris and pupil details. The corneal neovascularization was graded from 1 through 4, where 1 = clear cornea with peripheral corneal vascularization less than 2 mm., 2 = peripheral corneal vascularization more than 2 mm, but sparing central cornea, 3 = corneal vascularization involving central cornea, and 4 = corneal vascularization with involving central cornea with fibrosis. Impression cytology was performed by applying nitrocellulose filter paper on the central, superior, inferior,

nasal and temporal corneal surface followed by processing and staining with modified Periodic acid-Schiff reagent and a modified Harris hematoxylin-eosin stain. Exclusion criteria were patients who had severe dry eye with total keratinization, patients unwilling to undergo surgery, or patients who could not comply with the follow-up schedule. Twenty eyes of 18 patients with LSCD from chemical burns, SJS, multiple eye surgeries, advanced pterygium, and ocular trauma causes were recruited.

Cultivation of limbal epithelial stem cells

After oral cavity sterilization, under local anesthesia, very thin buccal mucosal biopsy specimens each approximately 10×10 mm. were obtained 2 to 3 weeks before the planned COMET. The obtained oral mucosal tissue was washed in sterile calcium and magnesiumfree phosphate-buffered saline. The explants were treated with 2 IU/ml dispase (GIBCO, Invitrogen, NY, USA) at 37°C for 20 minutes. The mucosal epithelium was separated from submucosal connective tissue and cut into small pieces and digested with 0.25% trypsin at 37°C for 5 minutes. Enzymatic activity was stopped by washing with culture medium containing 10% bovine serum. The denuded AM was carefully separated from its nitrocellulose membrane carrier and pulled down to adhere to the side of the bottom of the insert disc of which membrane was previously removed. The oral mucosal epithelium was seeded onto the prepared denuded AM fixed on the culture insert disc which was put on a sterile culture plate. The AM was obtained during elective cesarean sections with negative tests for infectious diseases and kept at -70°C before use. The culture was submerged in keratinocyte growth medium for 2 to 3 weeks and then exposed to air by lowering the level of the medium (air lifting) for 1 to 2 days. Cultures were incubated at 37°C in a 5% carbon dioxide-95% air incubator, and the medium was changed on alternate days.

Histologic analysis and immunohistochemical study

Hematoxylin-eosin staining and immunohistochemical staining for stem cell markers (p63) and differentiation markers (cytokeratin 3 [CK3], cytokeratin 12 [CK12], cytokeratin 13 [CK13]) were performed to evaluate the epithelial characteristics of the cultivated oral mucosal epithelial cells. All immunohistochemical studies were stained with the autostainer Ventana XT (Ventana Medical Services, Inc., Tucson, AZ); 3,3'-Diaminobenzidine (Ventana Medical Systems) was used as a chromogen.

Reverse transcription-polymerase chain reaction (RT-PCR)

Gene expression in the cultivated oral mucosal epithelium was evaluated. The RNA was quantified by its absorption at 260 nm. Using a housekeeping gene, *glyceraldehyde-3-phosphate dehydrogenase* (*GAPDH*) as an internal control, mRNA expression of different molecular markers (p63, ABCG2, CK3, CK12, and CK13) was analyzed by semi-quantitative RT-PCR. The resultant PCR product was analyzed by 1.5% agarose gel electrophoresis. The fidelity of the RT-PCR products was verified by comparing their sizes to the expected cDNA bands and by sequencing the PCR products.

Surgical procedures

The procedures were performed under general anesthesia. After conjunctival peritomy (360 degrees for total limbal deficiency or less for partial limbal deficiency), all abnormal fibrovascular tissue that invaded the corneal surface and symblepharon were completely removed. The spare clear cornea and intact limbal area was left untouched for partial limbal deficiency cases. Mitomycin C 0.02% (Daehan NewPharm, Seoul, Korea) was applied to the subconjunctival space for 3 minutes followed by vigorous washing with balanced salt solution. The cultivated oral mucosal epithelial sheet with an AM carrier then was removed from the culture disc, transferred onto the corneal surface, and sutured with 10-0 nylon and tissue adhesive glue. The tissue adhesive glue (Thai Red Cross National

Blood Center, Bangkok, Thailand) composed of 1 mL of the solution containing 250 IU human thrombin, 2 mg gentamycin, 40 mM calcium chloride and the other 1 mL of the solution containing cryoprecipitate with 10-12 mg fibrinogen and 12.5 mg transamine. A bandage contact lens was placed at the end of the surgery.

Postoperative management

Postoperatively, preservative-free methylprednisolone eye drops 1% were prescribed hourly during week 1, every 2 hours during week 2, 4 times daily during week 3,and then gradually tapered depending on the degree of ocular surface inflammation. Levofloxacin eye drops (Cravit[®], Santen Noto Factory, Ishikawa, Japan) were used 4 times daily for 2 weeks. Preservative-free artificial tears and 20% autologous serum eye drops were used frequently to promote epithelial healing. Tobramycin/dexamethasone (Tobradex[®], Alcon Inc., Puurs, Belgium) eye ointment was used at bedtime. The patients were examined daily during week 1, at week 2, every month for the first 6 months, and then every 2 months.

Secondary keratoplasty

A secondary PK was performed after COMET in patients who still had a dense corneal scar involving the visual axis. The full-thickness central cornea was excised using a Hessburg-Barron trephine with a diameter of 7.5 to 8 mm. A 0.5-mm oversized graft was secured by 10-0 nylon interrupted sutures or continuous sutures. Systemic cyclosporine 2 to 5 mg/kg/day to reduce the risk of corneal graft rejection was prescribed postoperatively for high risk cases.

Boston Keratoprosthesis

A keratoprosthesis was performed after COMET in patients who still had a dense corneal scar involving the visual axis and had marked deep corneal stroma neovascularization carrying high risk of PK graft rejection. The full-thickness central cornea was excised using a Hessburg-Barron trephine with a diameter of 8 to 8.5 mm.

Boston Keratoprosthesis type 1[®] (Boston, USA) which was integrated with 0.5-mm oversized donor cornea carrier with 3.0 mm punch at central hole for the front plate optic was secured by 10-0 nylon interrupted sutures or continuous sutures. Bandage contact lens and moxifloxacin eye drops (Vigamox[®], Texas, USA) combined with fortified vancomycin eye drops to prevent endophthalmitis were prescribed lifelong.

Clinical outcome evaluation

The postoperative visual acuity (VA) was recorded and ocular surface manifestations were examined under a slit-lamp biomicroscope. Clinical success was defined stable ocular surface without epithelial defect, clear cornea without fibrovascular tissue invasion at visual area and no or mild ocular surface inflammation Clinical failure was defined as instability of the corneal surface, such as a recurrent or persistent epithelial defect refractory to all treatments or severe ocular surface inflammation with total fibrovascular tissue invasion of the visual axis.

Statistical analysis

Statistical analyses were performed with SPSS 15.0 software (IBM, Armonk, NY, USA). Kaplan-Meier analysis was performed to determine survival of the first complete epithelization, the clinical outcome of COMET and the postoperative symblepharon free condition. Wilcoxon signed-rank test or paired Student's t-test was used to compare the mean ranks differ of VA, corneal vascularization grading and cornea opacity grading before and after the surgeries. P < 0.05 was considered statistically significant.

Results

Histopathologic and immunohistochemistry results

Multiple layers of oral mucosal epithelial cells were grown on AM from the donor tissue to approximately 2 x 2 cm in 2 to 3 weeks. The average time of cultivation was 16.0

days (range, 7-22). This technique yielded two to four layers of epithelial cells seen with hematoxylin and eosin staining (**Figure 1**). Immunohistochemistry study of these cultivated cells detected the presence of cornea-specific keratins (CK 3, CK12). There was also positive staining for CK13 which demonstrated the non-keratinized epithelial property and positive staining for p63 which indicated the stem cell property. RT-PCR was positive for differentiation markers (CK3, CK13) and stem cell markers (ABCG2, p63) (**Figure 2**).

Demographic and baseline Data

Twenty eyes of 18 patients (7 men, 11 women) with bilateral LSCD were enrolled in this study (**Table 1**). The mean patient age was 48.2 ± 15.5 years (range, 18-62). Diagnosis included chemical burn (7 eyes, 35%), SJS (10 eye, 50%), multiple surgeries (1 eye, 5%), advanced pterygium (1 eye, 5%), and ocular trauma (1 eye, 5%). All cases were in scar phase with the mean duration of the limbal deficiency of 7.2 ± 5.5 years. Ten (50%) of 20 eyes were diagnosed with total LSCD, and the other eyes were affected partially. The mean severity of limbal deficiency was 9.7 ± 2.8 clock hours. The mean Schirmer test was 13.3 ± 11.3 mm. At baseline, the mean corneal opacity grading was 2.5 ± 0.7 , the mean corneal vascularization grading was 3.3 ± 1.0 . Sixteen (80%) eyes had lid abnormalities and 13 (65%) eyes had symblepharon. The mean follow-up period was 31.9 ± 12.1 months (range, 8-50).

Epithelialization

The mean time to complete epithelialization after COMET was 5.2 ± 13.1 days. Most eyes (19 eyes, 95.0%) had complete epithelialization within the first postoperative week (**Table 2**). Only one eye (Eye 2) with severe chemical burns who had severe ocular surface damage with lid abnormality and severe dry eye (Shirmer test = 0 mm.) achieved complete epithelialization at 60 days after COMET and subsequent amniotic membrane patching and

tarsorrhaphy. The epithelial defect occurred in 7 eyes (35%) at 1.8 ± 1.9 months (range, 0.2-5.5), however the break later completely healed and stable epithelialization in all eyes. The survival of the first complete epithelialization was shown in **Figure 3** describing early decline when the recurrent epithelial defect developed in the first 6 months.

Visual outcome

The mean visual acuity (log MAR) before COMET was 2.05 ± 0.09 . After COMET, the mean visual acuity (log MAR) which was 1.69 ± 1.08 improved (p = 0.078). After COMET or COMET combined with another surgeries; PK (3 eyes), keratoprosthesis (1 eye), and cataract surgery (1 eye) (**Table 2**), the mean visual acuity (log MAR) which was 1.25 ± 0.95 improved significantly compared with the preoperative visual acuity (p = 0.004). Although 14 eyes (70%) had VA improvements after those surgeries, five cases had unchanged VA caused by many associated diseases including remained corneal stromal scar, lipid keratopathy, central retinal vein occlusion and advanced glaucoma (**Table 3**). One eye (Eye 7) had worse VA because the corneal vascularization approached more toward central cornea.

Clinical Outcomes

Clinical success was achieved in 15 (75.0%) of 20 eyes with decreased conjunctival inflammation and discomfort. Clinical failure occurred in five (25.0%) of 20 eyes. **Figure 4** shows the manifestations of representative cases comparing the preoperative and postoperative findings. Abnormal fibrovascular tissue markedly decreased in the clinical success group, most eyes (8 of 15 eyes, 53.3%) had peripheral corneal vascularization invasion less than 2 mm. from limbus, whereas the others had more than 2 mm. but sparing visual axis. In the clinical failure group (5 eyes), most eyes (4 of 5 eyes, 80%, Eye 4, 6, 7, 18) had lid abnormality and

marked symblepharon preoperatively. Clinical finding of the failure appeared in the first year postoperatively in all except one eye which appeared at 32 months.

Kaplan-Meier survival analysis showed clinical success survival at 1 year was 79.3%, at 2 year was 79.3%, at 3 year was 70.5%, and at 4 year (the end of study) was 70.5% (**Figure 5**). The mean corneal opacity grading after COMET which was 1.7 ± 0.7 and the mean corneal neovascularization grading after COMET which was 2.0 ± 0.9 improved significantly compared with the preoperative grading (p < 0.05) **Figure 6** showed the time course of the corneal vascularization that gradually progressed in the first year before stabilized after 12 months and trended to regress after 36 months. The corneal opacity improved and stabilized after 3 months postoperatively.

Among 13 eyes (Eye 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19) who had symblepharon preoperatively, almost half of them (5 eyes, Eye 13, 14, 16, 18, 19) had severe symblepharon together with severe lid abnormality needed eye-lid reconstruction with mucosal graft by oculoplastic specialist as an accompanying surgery of the COMET. After the surgeries two third of these eyes (8 of 13 eyes, 61.5%, Eye 9, 10, 12, 13, 14, 16, 17) had no recurrence of the symblepharon. Interestingly, the recurrent symblepharon developed within 6 months postoperatively and stable thereafter (**Figure 7**).

The secondary PK was performed in three eyes at 9.3 ± 4.0 months (range, 5-13) after COMET. All grafts remained clear at 29.7 ± 12.2 month (range, 19-43) follow-up. The secondary keratoprosthesis was performed in one eye at 4 months after COMET and the optic remained cleat at 37 months follow-up.

Complication

In this study, corneal perforation occurred in Eye 14 who was SJS with severe eyelid and eyelash abnormalities induced corneal epithelial defect. She lost follow-up during that

Afterwards, the cornea surface was stable with peripheral corneal vascularization up to the last follow-up. Ocular surface infection or secondary glaucoma did not observed in any eye.

No complication was observed at the wound of the donor site in the oral cavity.

Discussion

COMET which is the autologous transplantation of stem-cell source of non-ocular surface origin has been shown to be an alternative to allograft transplantation of cadaveric keratolimbal graft or CLET to treat severe ocular surface diseases with limbal stem cell deficiency.

The procedure to generate cultivated oral mucosal epithelial sheets was similar to our previous report of CLET¹². The oral mucosal epithelial cells were cultivated using AM as a substrate without 3T3 feeder or fetal bovine serum, which differed from previous COMET reports^{10, 11, 13-15}. The benefit of not using the 3T3 feeder is a lower chance of contamination by oncogenic cells and animal products. This technique yielded two to four layers of epithelial cells. Moreover, the cultivated cells in the current study were positive for p63and ABCG2, which represented a progenitor cell characteristic and stained positive for CK3 which could be found in differentiated corneal epithelial cells and CK13 specific for non-keratinized cells¹⁶. The average time of cultivation was 16.0 days (range, 7-22) which was faster than that of CLET with the same culture protocol in our previous report¹².

In the current study, COMET was performed in 20 eyes with LSCD resulting from several conditions. This procedure improved the ocular surface condition, decreased inflammation, and reduced corneal neovascularization and fibrous invasion. Based on the current results, corneal re-epithelilization occurred in all cases. All except one eye (95.0%) had complete epithelialization within the first postoperative week. One third of the eyes

had recurrence of the epithelial defect happened in the first 6 months postoperatively as the survival of the first complete epithelialization showed the early decline before the stability of the epthelialization thereafter. The clinical success of the corneal reconstruction was achieved in 79.3% of the eyes at 1 year and 70.5% at 4 years (the end of the study). Without using 3T3 feeder in this current study, the result was comparable to those of Satake et al¹¹ who recently reported success rates of 64.8% at 1 year and 53.1% at 3 years and comparable cultivated limbal epithelial transplantation (CLET) of our previous report which demonstrated one year success rates of 77.9%¹².

Corneal peripheral neovascularization occurred slowly in most cases, usually during the first 12 months postoperatively. The finding was previously reports by most COMET studies ^{10, 11, 13-15}. Different from CLET, this inferior antiangiogenic activity after COMET previously described by recent studies which showed a lack of the antiangiogenic factors of fms-like tyrosine kinase-1 (sFlt-1), tissue inhibitor of metalloproteinase-3 (TIMP-3), and thrombospondin-1 (TSP-1) in cornea after COMET¹⁷⁻¹⁹. In addition, the increased secretion of fibroblast growth factor-2 (FGF-2) was also demonstrated²⁰. This may explain the reason why in most cases, even in the success group, peripheral corneal vascularization were found but interestingly sparing central cornea. However after one year, the vessels ceased to progress, and remained the same thereafter.

Corneal opacity gradually improved in 3 months postoperatively to be more transparent and stabilized thereafter. This early cornea opacity could be explained by the AM carrier was gradually dissolved and disappeared in a few months and the COMET could maintain clarity afterward. In fact, the AM was helpful for promote epithelialization and reduce inflammation²¹⁻²³.

Beside elimination of fibrovascular tissue from the corneal surface, COMET achieved symblepharon removal in most cases (61.5%). This may be due to the effect of

that intact corneal epithelial surface in the early postoperative period could prevent the invasion of fibrovascular tissue from the conjunctival fornix over the graft²⁴. Subconjunctival tissue treatment with 0.04% mitomycin C for 5 minutes has been described in some previous studies to treat residual subconjunctival fibroblast and prevent conjunctival ingrowth following COMET^{10, 11}. Even though the lower concentration of 0.02% mitomycin C for 3 minutes was used in this study in order to reduce ocular surface toxicity, the favorable effect was similarly observed.

As a result of marked decrease of corneal vascularization and fibrous ingrowth, the mean vision improved after COMET. Moreover, because COMET was beneficial to improve ocular surface environment, inflammation, lid and tear condition, the corneal graft and the keratoprosthesis survival were better, subsequently resultant improved the mean vision significantly.

The surgical results usually depended mostly on the preoperative condition of the ocular surface. SJS which is the autoimmune disease mostly accompanying with lifelong chronic ocular surface inflammation²⁵, severe dry eye and lid abnormality usually has poor prognosis after surgery. In the current study, all cases in the clinical failure group were SJS. However, among 10 cases of SJS, more than half of them (6 cases, 60%) were in the success group. This was probably caused by the advantages of COMET which reduced ocular surface inflammation and improved tear stability.

In summary, COMET with the technique of cultivated oral mucosal epithelium on AM without 3T3 and fetal bovine serum provided healthy epithelial sheets and were effective for reconstructing the ocular surface and restoring vision in patients with bilateral stem-cell deficiencies that are resistant to standard approaches. This procedure relieved symptoms, reduced inflammation, promoted corneal re-epithelization, eliminated conjunctivalization and increased vision. Moreover, it provided a better environment for a

subsequent keratoplasty or keratoprosthesis. The ocular surface condition trended to stable after one year with the stabilty of postoperative corneal vascularization, corneal epithelization, corneal vascularization and any recurrence of symblepharon.

Acknowledgements/Disclosures

This study was supported by Mahidol University. The authors have no proprietary or commercial interest in any materials or products discussed in this article. We were grateful to Assistance Professor Chulaluk Komoltri, DrPH (Biostatistics), and Pimrapat Tengtrakulcharoen, MBH, from the Office for Research and Developmentfor their assistance with statistical analysis and to Mathuwan Srikong and Kritphol Rattanawarinchai from the Medical Education Technology Center, Faculty of Medicine Siriraj Hospital, Mahidol University, for preparing the figures.

References

- 1. Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol 2000;44(5):415-25.
- 2. Dua HS, Saini JS, Azuara-Blanco A, Gupta P. Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol 2000;48(2):83-92.
- 3. Prabhasawat P. Corneal Limbal Stem Cells. Siriraj Med J 2006;58(March 2006):728-9.
- 4. Tseng SCG, Sun TT. Stem cells: ocular surface maintenance. In: Brightbill FS, ed. Corneal Surgery: Theory, Technique, and Tissue, 3rd ed. St. Louis: Mosby, 1999.
- 5. Tsubota K, Toda I, Saito H, et al. Reconstruction of the corneal epithelium by limbal allograft transplantation for severe ocular surface disorders. Ophthalmology 1995;102(10):1486-96.
- 6. Koizumi N, Inatomi T, Suzuki T, et al. Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology 2001;108(9):1569-74.
- 7. Shimazaki J, Aiba M, Goto E, et al. Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders.

 Ophthalmology 2002;109(7):1285-90.
- 8. Pauklin M, Fuchsluger TA, Westekemper H, et al. Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Dev Ophthalmol 2010;45:57-70.
- 9. Sangwan VS, Matalia HP, Vemuganti GK, et al. Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian J Ophthalmol 2006;54(1):29-34.
- 10. Nakamura T, Takeda K, Inatomi T, et al. Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol;95(7):942-6.

- 11. Satake Y, Higa K, Tsubota K, Shimazaki J. Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology 2011;118(8):1524-30.
- 12. Prabhasawat P, Ekpo P, Uiprasertkul M, et al. Efficacy of cultivated corneal epithelial stem cells for ocular surface reconstruction. Clin Ophthalmol 2012;6:1483-92.
- 13. Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 2004;351(12):1187-96.
- 14. Nakamura T, Inatomi T, Sotozono C, et al. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthalmol 2004;88(10):1280-4.
- Inatomi T, Nakamura T, Koizumi N, et al. Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am J Ophthalmol 2006;141(2):267-75.
- 16. Ilmarinen T, Laine J, Juuti-Uusitalo K, et al. Towards a defined, serum- and feeder-free culture of stratified human oral mucosal epithelium for ocular surface reconstruction. Acta Ophthalmol.
- 17. Chen HC, Yeh LK, Tsai YJ, et al. Expression of angiogenesis-related factors in human corneas after cultivated oral mucosal epithelial transplantation. Invest Ophthalmol Vis Sci;53(9):5615-23.
- 18. Sekiyama E, Nakamura T, Kawasaki S, et al. Different expression of angiogenesis-related factors between human cultivated corneal and oral epithelial sheets. Exp Eye Res 2006;83(4):741-6.

- 19. Kanayama S, Nishida K, Yamato M, et al. Analysis of soluble vascular endothelial growth factor receptor-1 secreted from cultured corneal and oral mucosal epithelial cell sheets in vitro. Br J Ophthalmol 2009;93(2):263-7.
- 20. Kanayama S, Nishida K, Yamato M, et al. Analysis of angiogenesis induced by cultured corneal and oral mucosal epithelial cell sheets in vitro. Exp Eye Res 2007;85(6):772-81.
- 21. Koizumi NJ, Inatomi TJ, Sotozono CJ, et al. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 2000;20(3):173-7.
- 22. Prabhasawat P, Kosrirukvongs P, Booranapong W, Vajaradul Y. Application of Preserved Human Amniotic Membrane for Corneal Surface Reconstruction. Cell Tissue Bank 2000;1(3):213-22.
- 23. Prabhasawat P, Tesavibul N, Komolsuradej W. Single and multilayer amniotic membrane transplantation for persistent corneal epithelial defect with and without stromal thinning and perforation. Br J Ophthalmol 2001;85(12):1455-63.
- 24. Shortt AJ, Secker GA, Notara MD, et al. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol 2007;52(5):483-502.
- 25. Scully C, Bagan J. Oral mucosal diseases: erythema multiforme. Br J Oral Maxillofac Surg 2008;46(2):90-5.

 Table 1 Patient characteristic of cultivated oral mucosal epithelial transplantation

No. Age of Eyes (years)		Gender Disease		Eye	Extent of limbal deficiency (clock hours)	Symblepharon	
1	45	Male	Burn	OD	5	No	
2	27	Male	Burn	OD	Total	No	
3*	44	Male	Burn	OD	8	Yes	
4	35	Female	SJS	OD	Total	Yes	
5	42	Female	Burn	OS	10	Yes	
6	57	Female	SJS	OD	Total	Yes	
7	56	Female	SJS	OS	8	Yes	
8^*	44	Male	Burn	OS	6	No	
9	53	Female	SJS	OD	Total	Yes	
10	73	Female	Multiple Surgeries	OD	10	Yes	
11	57	Female	SJS	OD	4	No	
12	62	Male	Advanced pterygium	OS	6	No	
13**	54	Female	SJS	OS	Total	Yes	
14	32	Female	SJS	OD	Total	Yes	
15	60	Male	SJS	OD	7	Yes	
16	77	Female	Trauma	OD	Total	Yes	
17	49	Male	Burn	OS	Total	No	
18**	54	Female	SJS	OD	9	Yes	
19	18	Female	SJS	OS	Total	Yes	
20	24	Male	Burn	OD	Total	No	

*No. 3 and No. 8 was the same patient.
** No. 13 and No. 18 was the same patient.
SJS, Steven Johnson's Syndrome; OD, right eye; OS, left eye

Table 2 Results of cultivated oral mucosal epithelial transplantation including visual outcomes, clinical outcomes, epithelialization, and duration of follow-up

No. of Eyes	Visual acuity (LogMAR)				T 44 11 11 41	G11 1 1	Time	.	Follow up	
	Pre-op	Post- COMET	Post following procedure	Procedure	Epithelialization (days)	Clinical outcome	to failure (months)	Recurrent Symblepharon	time (months)	Associated diseases
1	6/36	6/60	-	-	1	Success	-	No	50	Remained corneal scar
	(0.8)	(1.0)								
2	Fc ½'	Fc ½'	6/48	PK	60	Failure	32	No	47	-
	(2.6)	(2.6)	(0.9)							
3	1.5/60	6/48	-	-	1	Success	-	No	45	-
	(1.6)	(0.9)								
4	Hm	6/30	-	-	1	Failure	8	No	42	-
	(3.0)	(0.7)								
5	Fc 1/4'	Fc 1'	6/38	Phaco c IOL	7	Success	-	No	41	Lipid keratopathy
	(2.6)	(2.3)	(0.8)							
6	Fc 1/4'	Hm	-	-	1	Failure	6	Yes	40	-
	(2.6)	(3.0)								
7	6/15	6/48	-	-	3	Failure	5	Yes	38	-
	(0.4)	(0.9)								
8	6/24	6/19	-	-	9	Success	-	No	38	-
	(0.6)	(0.5)								
9	Hm	Pj	6/30	KPro c	3	Success	-	No	37	-
	(3.0)	(3.0)	(0.7)	ECCE c IOL						
10	Fc 2'	Fc 1'	6/19	PK	1	Success	-	No	34	-
	(2.0)	(2.3)	(0.5)							
11	6/75	6/15	-	-	1	Success	-	No	34	-
	(1.1)	(0.4)								
12	6/120	6/19	=	-	1	Success	-	No	32	Remained corneal scar,
	(1.3)	(0.5)								Cataract
13	Fc 1'	6/48	-	-	1	Success	-	No	30	-
	(2.3)	(0.9)								
14	Fc 1/4'	Hm	-	-	1	Success	-	No	29	Remained corneal scar
	(2.6)	(3.0)								

No. of Eyes	Visual acuity (LogMAR)			Epithelialization	Clinical	Time	Dogwood	Follow up		
	Pre-op	Post- COMET	Post following procedure	Procedure	(days)	outcome	to failure (months)	Recurrent Symblepharon	time (months)	Associated diseases
15	Hm	Hm	-	-	1	Success	-	Yes	16	CRVO
	(3.0)	(3.0)								
16	Pj	6/48	-	-	1	Success	-	No	28	Remained corneal scar
	(3.0)	(0.9)								
17	Hm	Hm	6/240	PK	1	Success	_	No	25	Advanced glaucoma
	(3.0)	(3.0)	(1.6)							C
18	Fc 1'	Hm	· -	_	7	Failure	12	Yes	15	-
-	(2.3)	(3.0)								
19	6/48	6/15	-	_	1	Success	_	Yes	9	-
-	(0.9)	(0.4)							-	
20	Fc 1'	Fc 1'	-	_	1	Success	_	No	8	Remained corneal scar
-0	(2.3)	(2.3)			-	2.2.2.00		0	3	

COMET, cultivated oral mucosal epithelial transplantation; CRVO, central retinal vein occlusion; Fc, finger count; HM, hand movement; KPro c ECCE c IOL, keratoprosthesis with extracapsular cataract extraction with intraocular lens implantation; LogMAR, logarithm of the minimum angle of resolution; Phaco c IOL, phacoemulsification with intraocular lens implantation; PK, penetrating keratoplasty.

Limbal tissue

Cultivated cells

H&E

A

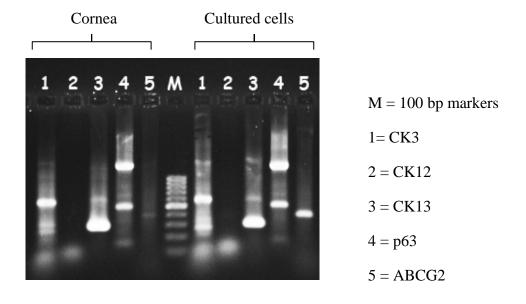
B

D

CK12

F

CK12


CK3

J

CK13

Figure 1. Histopathologic analysis of limbal tissue (left column) compares with cultivated oral mucosal epithelial cells (right column).

Hematoxylin-eosin staining of the limbal tissue (**A**) and cultivated oral mucosal epithelial cells (**B**) shows a stratified epithelium consisting of two to four layers resting on an AM. Expression of p63 is positive based on immunostaining of limbal tissue (**C**) and cultivated oral mucosal epithelial cells (**D**), which indicate the corneal epithelial stem cellular property of the cultivated epithelial sheet. CK3 and CK12 indicate the corneal epithelial phenotype is in the limbal tissue (**E** and **G**) and cultivated oral mucosal epithelial (**F** and **H**) cells. CK13 is in both limbal tissue (**I**) and cultivated epithelial cells (**J**), indicating a non-keratinized epithelial characteristic. AM, amniotic membrane; p63, transformation-related protein 63; CK3, cytokeratin 3; CK12, cytokeratin 12; CK13, cytokeratin 13; H&E, hematoxylin and eosin.

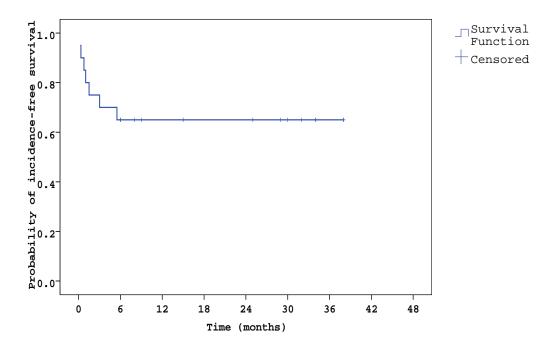
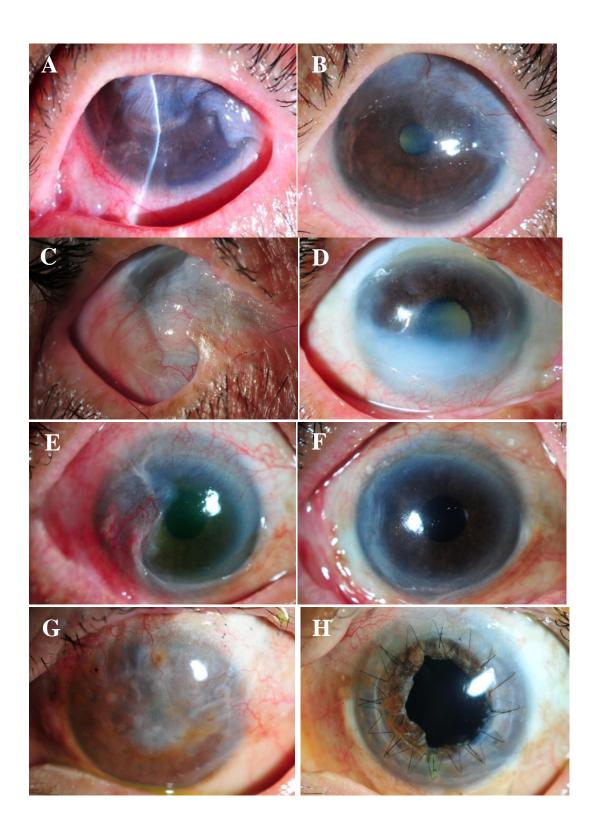
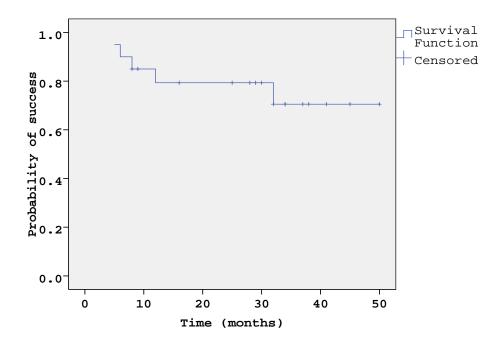


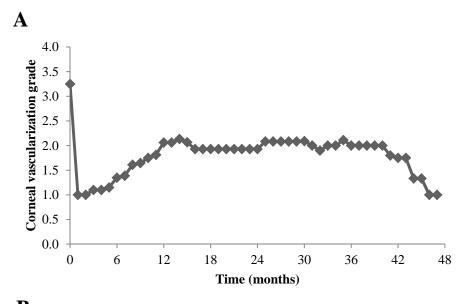
Figure 2. RT-PCR study shows expression of

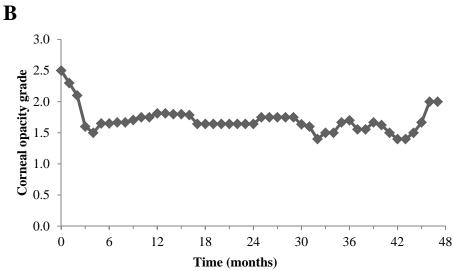

differentiation and stem cell markers (CK3, CK12, CK13, ABCG2, and p63).

The presence of CK3 and CK13 indicates the non-keratinized corneal epithelial cell property, and ABCG2 and p63 indicate the stem cell property of the limbal cultivated cells. The findings are identical to that of the immunohistochemistry study. However, the appearance CK12 was not found.

RT-PCR, reverse-transcription polymerase chain reaction; CK3, cytokeratin 3; CK12, cytokeratin 12; CK13, cytokeratin 13; ABCG2, ATP-binding cassette subfamily G member 2; p63, transformation-related protein 63; Bp, base pair.


Figure 3. The survival of the first complete epithelialization after cultivated oral mucosal epithelial transplantation (COMET). The decline of the survival represents the recurrence of corneal epithelial defect occurrs in the first 6 months postoperatively.


Figure 4. Representative slit-lamp photographs show a comparison of the eyes before (left column) and after (right column) COMET.


Patient 6 with SJS caused severe dry eye (Schirmer=0), severe symblepharon and lid abnormality (A) which markedly improve after COMET up to 24 months postoperatively (B). Patient 16 with total limbal stem cell deficiency with corneal fibrovascular tissue invasion with keratinization, severe symblepharon and lid abonormality secondary to ocular trauma (C) undergoes lid reconstruction with mucosal graft and COMET and has resultant markedly improved lid and ocular surface condition up to 21 months postoperatively. Patient 15 has partial LSCD from SJS with corneal conjunctivalization and symblepharon nasally (D) which is completely removed after COMET (E). Patient 17 who has chemical burn caused corneal conjunctivalization and corneal opacity grade 3 (F), undergoes PK at 13 months after COMET. The corneal graft remains clear 12 months after keratoplasty (G)

COMET, cultivated oral mucosal epithelial transplantation; SJS, Stevens-Johnson syndrome; LSCD, corneal limbal stem cell deficiency; PK, penetrating keratoplasty

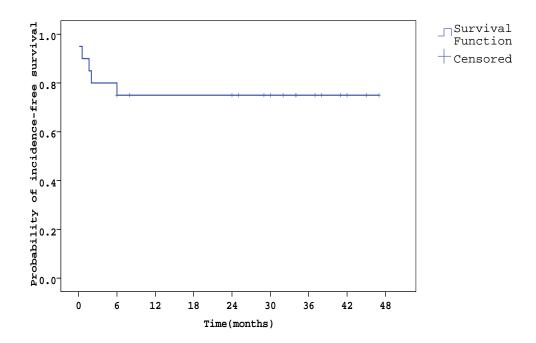

Figure 5. Kaplan-Meier survival analysis showed clinical success survival of cultivated oral mucosal epithelial transplantation (COMET) at 1 year was 79.3%, at 2 year was 79.3%, at 3 year was 70.5%, and at 4 year (the end of study) was 70.5% respectively.

Figure 6. Time course of corneal vascularization and corneal opacity grading after cultivated oral mucosal epithelial transplantation (COMET).

Corneal neovascularization (**A**) gradually occurs in 12 months postoperatively before stable thereafter and trend to decrease by the end of the follow-up. Corneal opacity (**B**) gradually improves in 3 months postoperatively then stable thereafter.

Figure 7. Survival analysis of the symblepharon-free after cultivated oral mucosal epithelial transplantation (COMET). The decline of the survival represents the recurrence of symblepharon occurrs in the first 6 months postoperatively.