รหัสโครงการ : DBG 5480001

ชื่อโครงการ: การเพิ่มความอุดมสมบูรณ์และการเก็บกักคาร์บอนของดินโดยปรับปรุงการจัดการ

สารอินทรีย์

ชื่อนักวิจัย: ศ.ดร. ปัทมา วิตยากร

ดร. พฤกษา หล้าวงษา

ดร. วรรณวิภา แก้วประดิษฐ์ พลพินิจ

คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น

E- mail Address : patma@kku.ac.th

ระยะเวลาโครงการ: 4 ปี (24 มิถุนายน 2554 – 24 มิถุนายน 2557 และได้รับการอนุมัติขยายเวลา

1 ปี ถึง 30 มิถุนายน 2558)

บทคัดย่อ

งานวิจัยนี้มีเป้าหมายเพื่อศึกษาวิธีการทางอินทรีย์ผ่านทางการใช้เศษซากพืชที่หาได้ใน ท้องถิ่นภาคตะวันออกเฉียงเหนือ ในการฟื้นฟูความอุดมสมบูรณ์ของดินทราย คือการสะสม อินทรียวัตถุ (SOM) หรืออินทรีย์คาร์บอน (SOC) ในดิน และผลพลอยได้ในการเก็บกักคาร์บอนไว้ใน ดิน เพื่อลดคาร์บอนในบรรยากาศ การศึกษานี้จึงมีวัตถุประสงค์เพื่อ ศึกษาเชิงกระบวนการของการ สลายตัวของสารอินทรีย์ต่างๆ ที่มีคุณภาพหรือองค์ประกอบทางเคมีต่างกัน นอกจากปัจจัยคุณภาพ ของสารอินทรีย์แล้ว ยังศึกษาปัจจัยหลักที่ควบคุมการย่อยสลายอื่นๆ ได้แก่ ปัจจัยสิ่งมีชีวิตผู้ย่อย สลาย (สัตว์และจุลินทรีย์) นอกจากนี้ยังศึกษาการใช้ถ่านเพื่อเป็นสารปรับปรุงความอุดมสมบูรณ์ของ ดิน ซึ่งการศึกษาดังกล่าวนี้ได้รับการตีพิมพ์แล้วในวารสารวิชาการนานาชาติที่เป็นที่ยอมรับ จำนวน 4 เรื่อง

การศึกษาผลการใส่สารอินทรีย์ต่างคุณภาพ ต่อการเปลี่ยนแปลงและการสะสมอินทรียวัตถุ ในดินทรายในระยะยาวนี้ มีการใส่สารอินทรีย์คุณภาพแตกต่างกัน 5 กรรมวิธีทดลอง คือ กรรมวิธี ควบคุมซึ่งไม่มีการใส่สารอินทรีย์ ซากถั่วลิสง (groundnut stover-GN) ซึ่งจัดว่ามีคุณภาพสูง กล่าวคือมีในโตรเจน (N) สูงแต่มีลิกนิน (L) และโพลีฟีนอลส์ (PP) ต่ำ ใบ(+ก้าน)มะขามร่วง (tamarind-TM) จัดว่ามีคุณภาพปานกลาง (มี N, L, และ PP ปานกลาง) ใบพลวงร่วง (dipterocarp-DP) จัดว่ามีคุณภาพต่ำ (มี N ต่ำ แต่มี Lและ PPสูง) และฟางข้าว (rice straw-RS) ซึ่งมีคุณภาพต่ำที่ แตกต่างออกไป กล่าวคือมีองค์ประกอบทั้งสามต่ำ แต่มีเซลลูโลส (CL) สูงที่สุด โดยใส่ในอัตรา 10 ตัน/เฮกตาร์ ทุกปี ปีละครั้ง เริ่มมาตั้งแต่ปี 2538 มาจนถึงปัจจุบัน

การสะสม SOC ในดินปีที่ 13 มีสูงมาก เมื่อใส่สารอินทรีย์ที่มีคุณภาพปานกลาง อย่าง ต่อเนื่องเป็นเวลาหลายปี โดยเม็ดดินขนาดเล็ก (microaggregates: Mi) เป็นแหล่งหลักของการเก็บ กักคาร์บอน (C) ในดินทราย โดยเก็บกัก C ในปริมาณสูงที่สุดในสารอินทรีย์ทุกชนิด สารอินทรีย์ต่าง คุณภาพมีอิทธิพลต่อแหล่งและเสถียรภาพของ C ที่เก็บกักอยู่ใน Mi องค์ประกอบคาร์บอนที่

ต้านทานการย่อยสลาย (ได้แก่ L และ PP) ส่งเสริมการสร้างเม็ดดินขนาดใหญ่ (macroaggregates: Ma) ในขณะที่ส่วนที่ไม่ต้านทานต่อการย่อยสลายอย่าง CL และสารประกอบ N เช่น โปรตีน เพิ่ม กิจกรรมของจุลินทรีย์ที่สังเคราะห์สารผลิตภัณฑ์ที่ทำหน้าที่เป็นสารเชื่อม เช่น โพลีแซคคาไรด์ ในการ สร้าง Mi นอกจากนี้สารประกอบ C (ทั้งที่ต้านทานและที่ย่อยสลายง่าย) มีปฏิสัมพันธ์กับ N ในการ ส่งผลต่อความมีเสถียรภาพของ C ใน Mi ถึงแม้ว่า CL ดูเหมือนจะช่วยเร่งกระบวนการผลิตสาร เชื่อมสำหรับการสร้าง Mi ผลการศึกษาปริมาณและตำแหน่งการสะสม SOC ในตัวกลางดิน (soil matrix) ข้างต้นนี้ ได้รับการสนับสนุนจากการศึกษาต่อมาด้านโครงสร้างระดับโมเลกุลของ SOC ที่ใช้ เทคนิคสเปคโทรสโกปีที่ก้าวหน้าในการศึกษาคือ diffuse reflectance Fourier transform midinfrared spectroscopy (midDRIFTS) ที่นำไปสู่การเสนอกลไกการย่อยสลายสารอินทรีย์ต่าง คุณภาพและการสะสม SOC 4 กลไกด้วยกัน คือ 1) การที่เซลลูโลสได้รับการป้องกันจากลิกนินใน สารอินทรีย์ปจำกัดการเข้าย่อยสลายของจุลินทรีย์, 2) การสูญเสีย C ในสารอินทรีย์ จากการที่ จุลินทรีย์ย่อยสลายเซลลูโลสที่ไม่ได้รับการป้องกัน, 3) ผลจากการควบคุมของ N จากสารอินทรีย์, และ 4) การเกิดเสถียรภาพของ SOC

สารอินทรีย์ที่มีคุณภาพต่างกันมีผลต่อกระบวนการสลายตัว ที่ส่งผลถึงการผลิตอินทรียวัตถุ หรืออินทรีย์คาร์บอนส่วนที่ละลายน้ำ (dissolved organic C; DOC) โดยการศึกษา DOC ส่วนต่างๆ ที่มีน้ำหนักโมเลกุลต่างกัน ซึ่งแสดงให้เห็นว่า ทั้ง TM GN และ DP มีปริมาณ N และสารต้านทาน การย่อยสลายในปริมาณต่ำถึงสูง แต่มีปริมาณ CL ต่ำกว่า RS ทำให้มีการผลิต DOC ส่วนที่มีน้ำหนัก โมเลกุลสูง (high molecular weight; HMW) ในปริมาณสูง HMW DOC นี้ สามารถอยู่ได้อย่าง เสถียรในดิน โดยถูกดูดยึดไว้กับอนุภาคดินขนาดละเอียดได้แก่ silt และ clay การศึกษานี้ได้เสนอ กลไกเพิ่มเติมนับเป็นกลไกขั้นที่สองที่เกิดหลังจากกลไกการดูดยึด นั่นคือ กลไกการสร้างเม็ดดินขนาด เล็ก (microaggregates) ในดินทรายที่ศึกษา ซึ่งแสดงถึงบทบาทของ DOC ในการสะสมอินทรีย์ คาร์บอนในดิน ในกรณีนี้เป็นการสะสม HMW DOC ที่สูงที่ดินชั้นบนภายใต้กรรมวิธี TM GN และ DP ที่ใส่อย่างต่อเนื่อง 13 ปี

สำหรับสารอินทรีย์ที่มี CL สูง แต่มีปริมาณ N, L และ PP ต่ำได้แก่ RS จะสร้าง DOC ส่วนที่ มีน้ำหนักโมเลกุลต่ำ (low molecular weight; LMW) ในปริมาณสูง ในระยะแรก (2 สัปดาห์) ของ การย่อยสลาย LMW DOC ซึ่งมีความสามารถในการดูดยึดต่ำ ทำให้ถูกชะล้างสูญเสียจากชั้นดินบน สู่ชั้นดินล่าง ทำให้มีการสะสม DOC ในดินชั้นล่าง ซึ่งเผยให้เห็นว่า DOC มีบทบาทสำคัญในการสะสม C ทั้งในดินชั้นบนและดินชั้นล่างในดินทราย

การศึกษาอิทธิพลของสิ่งมีชีวิตผู้ทำการย่อยสลาย ได้แก่ จุลินทรีย์ และสัตว์ในดิน สำหรับ การศึกษาบทบาทของจุลินทรีย์ในการย่อยสลายนั้นเป็นการศึกษาจากการทดลองปีที่ 16 แสดงให้เห็น ว่า กิจกรรมจุลินทรีย์ดิน ได้รับผลจากคุณภาพสารอินทรีย์ ที่ชี้โดยกิจกรรมของเอนไซม์ที่ย่อยสลาย สารประกอบคาร์บอน โดยคุณภาพที่มีอิทธิพลโดดเด่นคือ ปริมาณ N ในซากอินทรีย์ N มีผลใน ทางบวกหรือกระตุ้นกิจกรรมของเอนไซม์บางตัวที่ย่อยสลาย C ที่ต้านทาน (เช่น ฟีนอลออกซิเดส) และเอนไซม์ที่ย่อยสลายสารประกอบ C ที่เปลี่ยนแปลงง่าย เช่น อินเวอร์เตส และเบตากลูโคซิเดส ผลการศึกษาของเราสนับสนุนประเด็นที่ยังมีการถกเถียงกันอยู่ถึงการที่ N กระตุ้นกิจกรรมของฟีนอ ลออกซิเดสในการย่อยสลายสารอินทรีย์ที่ต้านทาน

สำหรับบทบาทสัตว์ในดินผู้ย่อยสลาย ที่เป็นสัตว์ขนาดใหญ่(macrofauna) จากการทดลอง ปีที่ 17-18 พบบทบาทสำคัญในการย่อยสลายสารอินทรีย์ที่ต้านทาน ได้แก่ DP ในช่วงท้ายของการย่อย สลาย ซึ่งสารอินทรีย์ที่มีคาร์บอนมาก ไม่ว่าจะเป็น C ที่ย่อยยาก โดยเฉพาะ L หรือที่ย่อยสลายง่าย เช่น CL รวมทั้งอัตราส่วนคาร์บอนต่อในโตรเจน (C/N ratio) มีสหสัมพันธ์ทางบวกกับการเพิ่มดัชนี ความหลากหลายของสัตว์ในดิน (Shannon-Weiner index - H) สำหรับสารอินทรีย์ที่มี N สูงมีแนวโน้ม มีความสัมพันธ์ทางบวกกับความหลากหลายของสัตว์ในดิน แต่หากเป็น N ที่เป็นองค์ประกอบของสารมี ฤทธิ์เป็นสารปฏิปักษ์ (allelochemicals) ที่ยับยั้งการเจริญเติบโตของสิ่งมีชีวิต คาดว่าจะไม่ส่งเสริมให้ เกิดความหลากหลายของสัตว์ในดิน เช่น กรรมวิธี TM ที่มีองค์ประกอบมีฤทธิ์เป็นสารปฏิปักษ์ นอกจากอิทธิพลโดยตรงจากองค์ประกอบสารอินทรีย์ต่อความหลากหลายแล้ว การใส่สารอินทรีย์ยังไป เปลี่ยนแปลงคุณสมบัติของดิน ที่จะส่งผลต่อเนื่องไปยังสัตว์ในดินผู้ย่อยสลายได้ ซึ่งจัดเป็นอิทธิพลโดย อ้อม คุณสมบัติการปลดปล่อยก๊าซคาร์บอนไดออกไซด์ซึ่งแสดงถึงกิจกรรมของสัตว์ในดินด้วย และการสะสม SOC มีความสัมพันธ์ทางบวกที่สูงต่อความหลากหลายของสัตว์ในดินด้วย

การศึกษานี้ได้แสดงให้เห็นว่าสัตว์ขนาดใหญ่ในดินมีอิทธิพลต่อการเปลี่ยนแปลงปริมาณ องค์ประกอบทางเคมีของสารอินทรีย์ โดยเห็นได้จากการเปลี่ยนแปลง L และ CL แต่ไม่มีอิทธิพลต่อ PP คาดว่าเนื่องจากการเปลี่ยนแปลง PP ในระยะต้นของการย่อยสลายได้รับผลจากปัจจัยทางกายภาพได้แก่ การชะล้างโดยน้ำมากกว่า สำหรับ L และ CL นั้นได้รับผลจากสัตว์ในดินขนาดใหญ่มากในช่วงกลางถึง ท้ายของการย่อยสลาย เนื่องจาก L ห่อหุ้ม CL อยู่ในผนังเซลล์พืช จึงเป็นตัวจำกัดการย่อยสลายของ CL ไปด้วย การศึกษานี้แสดงให้เห็นชัดเจนว่าสัตว์ในดินขนาดใหญ่มีผลต่อการย่อยสลายของสารอินทรีย์ที่ ย่อยสลายยาก มากกว่าสารอินทรีย์ที่ย่อยสลายง่าย โดยมี L เป็นองค์ประกอบหลักที่สัตว์ขนาดใหญ่มี อิทธิพลต่อการย่อยสลาย สำหรับโพลีฟินอลส์ได้รับอิทธิพลจากสัตว์ในดินขนาดใหญ่เฉพาะใน สารอินทรีย์ที่มีปริมาณโพลีฟินอลส์สูงเท่านั้น

ถ่านเป็นสารอินทรีย์อีกชนิดหนึ่งที่ได้มีการศึกษากันอย่างเข้มข้นในช่วงกว่า 10 ปีที่ผ่านมาใน ด้านนำไปใช้เป็นสารปรับปรุงความอุดมสมบูรณ์ของดิน โดยศึกษาบทบาทของถ่านที่ผลิตจากวัตถุดิบ เดียวกันแต่ใช้วิธีเผาต่างกันในการเป็นสารปรับปรุงดินที่มีเนื้อดินและแร่วิทยาต่างกัน ดินที่ใช้ในการ ทดลองคือ ชุดดินโคราช (Typic Kandiustult) เนื้อร่วนทราย จากขอนแก่น และชุดดินวาเฮียวา (Wahiawa soil) (Rhodic Haplustox) เนื้อร่วนเหนียว (silty clay loam) จากฮาวาย ส่วนถ่านทำ จากปลายของไม้ยูคาลิปตัส (*Eucalyptus camaldulensis*) ที่เผา (pyrolysis) ด้วยวิธีการที่แตกต่าง กันสองวิธี คือ แบบพื้นเมืองของไทย (Thai traditional kiln- TK) ซึ่งเผาที่อุณหภูมิประมาณ 350 $^{\circ}$ C และวิธี Flash Carbonization $^{\top M}$ (FC) ซึ่งเผาโดยใช้อุณหภูมิสูงสุดคือ 800 $^{\circ}$ C ทำการทดลองใน

กระถาง โดยใส่ถ่านในอัตรา 0, 1, 2, และ 4 % w/w ผสมถ่านอัตราต่างๆ กับดินน้ำหนัก 2 กิโลกรัม ทำการปลูกข้าวโพดเป็นพืชทดสอบโดยปลูกต่อเนื่องกัน 2 รุ่น อายุของข้าวโพดแต่ละรุ่นคือ 39 วัน โดยใส่ถ่านเพียงครั้งเดียว คือ ก่อนเริ่มปลูกข้าวโพดรุ่นที่ 1 หลังจากเก็บเกี่ยวข้าวโพดรุ่นที่ 1 ทำการ เก็บตัวอย่างดินและพืช และนำดินส่วนที่เหลือไปปลูกข้าวโพดรุ่นที่สอง ผลการศึกษาแสดงให้เห็นว่า ถ่านสามารถช่วยปรับปรุงความอุดมสมบูรณ์ของดินได้จากคุณสมบัติของถ่านเองหลายประการ ที่ ขึ้นอยู่กับกระบวนการเผาถ่านด้วย กล่าวคือ ถ่านที่เผาที่อุณหภูมิสูง (FC) มีปริมาณเถ้า (3.9%) สูง กว่าถ่านเผาที่อุณหภูมิต่ำ (TK) (2.4%) ส่งผลให้ข้าวโพดที่ปลูกในดินทรายชุดโคราชที่ได้รับ FC ที่ อัตราสูงสุดมีน้ำหนักแห้งลดลงกว่ากรรมวิธีควบคุมอย่างมีนัยสำคัญทางสถิติ คาดว่าเนื่องจาก โพแทสเซียม (K) ในเถ้าของกรรมวิธี 4% FC ไปลดการดูดใช้แคลเซียม (Ca) และแมกนีเซียม (Mg) ของข้าวโพด เกิดปรากฏการณ์ที่ K เป็นปฏิปักษ์ต่อไอออนบวกตัวอื่น (K antagonism) นอกจากถ่าน เองแล้วประสิทธิภาพการปรับปรุงดินของถ่านยังแตกต่างกันไปขึ้นกับคุณสมบัติของดินด้วย โดยสรุป คือ ถ่านเพิ่ม pH ของดิน และลดปริมาณไอออนที่อาจเป็นพิษในดินเหล่านี้ ได้แก่ อลูมิเนียม (AI) ใน ดิน Ultisols และแมงกานีส (Mn) ในดิน Oxisols ซึ่งอาจเนื่องจากกลไกที่ถ่านเพิ่ม pH ของดินและ ลดการละลายได้ของ Al ส่วนการลด Mn อาจเกี่ยวข้องกับกลไกการคีเลต Mn โดยสารประกอบ อินทรีย์ในถ่านบางชนิด เช่น กรดอินทรีย์ จึงยังจำเป็นต้องทำการศึกษาในเชิงลึกเกี่ยวกับกลไกที่ถ่าน ช่วยลดความเป็นพิษของไอออนทั้งสองต่อไป นอกจากนี้ การเกิดปรากฏการณ์ที่ K เป็นปฏิปักษ์ต่อ Ca และ Mg เกิดในพืชที่ปลูกในดินที่มีคุณสมบัติบัฟเฟอร์ (buffering capacity) ต่ำได้แก่ ดินทราย ชุดโคราช แต่ไม่พบปรากฏการณ์นี้ในข้าวโพดที่ปลุกในดินเนื้อละเอียดชุดวาเฮียวาซึ่งมีค่า buffering capacity สูง

Project code: DBG 5480001

Project title: Enhancing soil fertility and increasing soil carbon sequestration through

improved management of organic materials

Investigators: Dr. Patma Vityakon (Project leader)

Dr. Phrueksa Lawongsa

Dr. Wanwipa Kaewpradit Polpinit

Faculty of Agriculture, KhonKaen University

Email address: patma@kku.ac.th

Project duration: 4 years (24 June 2011 – 24 June 2014 extended for 1 year to 30

June 2015)

Abstract

This research aimed at investigating organic methods through the use of locally available organic residues in Northeast Thailand to restore fertility of sandy soils by increasing accumulation of soil organic matter (SOM) or soil organic carbon (SOC). Additional benefit was to sequester carbon (C) in soils with a consequence of reducing atmospheric C. The objectives of this research were to conduct process-level investigations on decomposition of contrasting quality (chemical composition) organic residues which involved other factors controlling decomposition, i.e., decomposer organisms (macro and microorganisms). In addition, the use of charcoal (biochar) as a soil amendment was investigated. This research had produced four papers published in well recognized international journals.

The investigation on effects of applications of contrasting quality organic residues on soil organic matter (SOM) dynamics and accumulation in a sandy soil in the long term involve 5 treatments of organic residues including an unamended control; groundnut stover (GN) considered high quality with high nitrogen (N), but low lignin (L) and polyphenol (PP) contents; tamarind leave+petiole litter (TM) considered intermediate quality with medium contents of N, L, and PP; dipterocarp leaf litter (DP) considered low quality (low N but high L and PP contents); and rice straw (RS) which was also low quality in a different way, i.e., it had low contents of all three chemical constituents but it had the highest cellulose (CL) content. Application rate was 10 ton ha⁻¹ yearly starting from 1995 till present.

SOC accumulation was highest under the continuous application of the intermediate quality residue for many years. Microaggregates (Mi) was the main C storage location in the sandy soil which had the highest C content in all residue treatments. Contrasting quality organic residues exerted effects on locations and stability of C stored in Mi. The recalcitrant C compound constituents of the residues promoted macroaggregate formation, while labile constituents like CL and N compounds, e.g., protein, spurred microbial activities in synthesizing compound products acting as cementing agents, such as polysaccharides, for the formation of Mi. Additionally, C (both recalcitrant and labile) interacted with N in influencing stability of C in Mi. Although CL appeared to stimulate SOM decomposition and negatively affected C stability in Mi, it induced production of cementing agents for Mi formation. The results of the amounts and locations of SOC accumulation in the soil matrix above were supported by a later study on molecular structure of SOC employing an innovative spectroscopic technique, diffuse reflectance Furier transform mid-infrared spectroscopy (midDRIFTS), which led to a proposal of 4 mechanisms of decomposition of contrasting quality organic residues and resulting SOC accumulation including 1) Physico-chemical protection of CL by L in organic residues restricts microbial decomposition; 2) C loss via microbial decomposition of unprotected CL; 3) Regulatory effect of organic residue derived N; and 4) SOC stabilization.

Contrasting quality organic residuesupon decomposition produceddifferent amounts and forms of dissolved SOM or SOC (dissolved organic C – DOC). We investigated DOC fractions based on their molecular weights. It was found that DOC produced under TM, GN and DP which had low to high contents of N and resistant compounds, but lower CL contents than RS, produced high molecular weight (HMW) DOC in large amounts. The HMW DOC was stabilized in the soil by being adsorbed onto fine particles (silt and clay). This study has proposed a second mechanism which was to occur after the adsorption, i.e., microaggregation, in the studied sandy soil. This highlighted the role of DOC in SOC accumulation which in this case was accumulation in topsoils under TM, GN and DP treatments after 13 years of application.

As for the RS with high CL but low L and PP contents, it led to production of low molecular weight (LMW) DOC in high amount during the early part (first 2 weeks)

of the decomposition. LMW DOC had low adsorption capacity to fine particles and was leached to subsoils leading to its accumulation there. This study, hence, showed clearly that DOC played roles in DOC accumulation in both topsoils and subsoils in the studied sandy soil.

Studies on effects of decomposer organisms included microorganisms and soil fauna. The role of microorganisms in decomposition was taken during year 16 of the long-term experiment. It was found that microbial activities as indicated by those of C compounds degrading enzymes were influenced by quality of residues. The prominent quality parameter is residue N content. N stimulated activities of some enzyme degrading resistant C compounds, such as phenoloxidase, and some that degrades labile C compounds, such as invertase and beta-glucosidase. Our results supported the controversial positive role of N in stimulating phenoloxidase activity in degrading resistant C compounds.

The role of soil fauna in decomposition was focused on that of macrofauna during the year 17-18 of the long-term experiment. We found an important role of macrofauna in decomposing recalcitrant organic residue including DP during the latter part of the decomposition. Residue C contents, whether resistant, notably L, or labile, notably CL, C compounds as well as C-to-N ratio showed positive correlation with diversity index of macrofauna (Shannon-Weiner index – H[′]). As for residue N content, there was no significant correlation with the diversity index. It is possible that N had positive relationship with the diversity index of macrofauna but some N compounds, which were allelochemicals that could deter growth of organisms, was not to promote soil faunal diversity. For example, TM contained allelochemicals which could have had negative effects on soil faunal diversity. In addition to the direct effect of residue quality on soil faunal diversity, residue application could modify soil properties,in turn, affecting soil fauna decomposers. This was indirect effects. Carbon dioxide release signifying activities of soil fauna and microorganisms and SOC accumulation showed high positive correlations with soil faunal diversity.

This study also showed that macrofauna had influence on changes in contents of chemical constituents of residues as shown by changes in L and CL contents. However, it did not have effects on PP. This might have been due to an overriding physical factor controlling PP contents in the decomposing residues, i.e., leaching. As for L and CL, they were both heavily affected by macrofauna during the

middle and latter part of decomposition. L provided a shield to CL in plant cell wall, and therefore limit CL microbial degradation. This study showed clearly that macrofauna had more profound effect on decomposition of resistant than easily decomposable residues. Lignin was the main component most affected by macrofauna. Meanwhile, PP was affected by macrofauna only in those residues containing high content of this compound.

Biochar is another organic material intensively studied for its role in amending soil fertility worldwide for the past 10 years. The objective of our research was to investigate the roles of biochars, produced from the same feedstock but different pyrolysis techniques, as soil fertility amendments in two soils contrasting in texture and mineralogy. The soils used included loamy sand textured Khorat soil series (TypicKandiustult) from KhonKaen province, Thailand, and silty clay loam textured Wahiawa soil series (RhodicHaplustox) from Hawaii. Biochars were obtained from eucalyptus (Eucalyptus camaldulensis) wood undergoing two different pyrolysis techniques, i.e., Thai traditional kiln (TK) which used the temperature of 350 °C and Flash Carbonization™ (FC) which used the highest temperature of 800 °C. A pot experiment which the biochars were incorporated into the 2-kg soil in a pot at the rate of 0, 1, 2 and 4% w/w was conducted. Corn, the test plant, was grown in two consecutive crops, each of which lasted 39 days to harvest. Biochar application was done only once at the beginning of the first crop. After harvesting, the remaining soils were used for the second crop. The results showed that the biochars could improve soil fertility which resulted from various biochar properties related to the pyrolysis conditions. The FC (high temperature) biochar had higher content of ash (3.9%) than the TK (low temperature) biochar (2.4%). This resulted in a significant depression of corn biomass compared to the control in the Khorat soil treated with the FC at the highest rate (4%). This was a consequence of high K content in FC which reduced Ca and Mg uptake by corn, a phenomenon known as K antagonism. Not only biochar properties that influenced their effectiveness as a soil amendment, but also soil properties. In brief, biochars increased soil pH and reduced soil contents of phytotoxic ions including Al in the Ultisols and Mn in the Oxisols. This was attributable to higher pH which reduced Al solubility in soil solution. Meanwhile, Mn content was probably reduced by a chelation process provided by some organic compounds pertaining to the biochars, such as organic acids. However, more indepth studies are required to determine exact mechanisms responsible for biochars' detoxification of these ions. In addition, high soil buffering capacity could mitigate the negative effect of K antagonism on plant caused by application of high rate of biochar. The K antagonism effect only occurred in corn grown in the low buffering capacity Khorat soil, but not in the high buffering capacity Wahiawa soil.