Abstract

This project involved the development of new advanced functional organic materials based on π -conjugated molecules for optoelectronic applications. In the course of the development, a series of carbazole dendrimers and pyrene, porhyrin and benzothiadiazole derivatives that achieve excellent overall performance in optical, thermal and electrochemical properties, devices efficiency and durability were designed, synthesized and chemically characterized. Their photophysical and physical properties were examined. The structure-physical property relationship in these materials were evaluated and discussed. The state-of-the-art theoretical calculations were also used to analyze the energy levels, photoabsorption energies of the molecules, with performing the molecular design with theoretical screening. The applications of these materials as active layers in optoelectronic devices were investigated including as dyesensitizers for dye-sensitized solar cell (DSSC), and as light-emitting/hole-transporting materials for organic light-emitting diode (OLED).

Keywords: π -Conjugated molecule; Organic material; Dendrimer; Organic electronic; Dyesensitized solar cell; Organic light-emitting diode

บทคัดย่อ

โครงการวิจัยนี้เกี่ยวข้องกับการพัฒนาวัสดุสารอินทรีย์หน้าที่ขั้นสูงชนิดใหม่ ที่มีโครงสร้างเป็นโมเลกุลสารคอนจุเกต สำหรับการประยุกต์ใช้ในอุปกรณ์ออปโตอิเล็กทรอนิกส์ ในการศึกษาได้ทำการออกแบบ สังเคราะห์ และทำการพิสูจน์ เอกลักษณ์ทางเคมีของสารที่โครงสร้างเป็น carbazole dendrimers และอนุพันธ์ของไพรีน พอร์ไพรอน และเบนโซไทเอ ไดเอโซล เพื่อให้ได้สารอินทรีย์ชนิดใหม่ที่มีคุณสมบัติโดยรวมที่ดีเยี่ยม ได้แก่ สมบัติทางแสง ความร้อน ไฟฟ้าเคมี และ ประสิทธิภาพและอายุการใช้งานของอุปกรณ์ สมบัติทางกายภาพต่างๆ ของสารเหล่านี้ก็ได้ถูกทำการศึกษาและ วิเคราะห์ ความสัมพันธ์ของคุณสมบัติทางกายภาพและโครงสร้างของสารเหล่านี้ได้ถูกทำการวิเคราะห์และประเมิน เท คทางเคมีคำนวณขั้นสูงได้ถูกใช้ในการวิเคราะห์และศึกษาสารเหลานี้ในระดับโมเลกุล เพื่อการเข้าใจถึงระดับพลังงาน ซึ่งนำไปสู่การออกแบบโมเลกุลชนิดใหม่ การประยุกต์ใช้ของสารเหล่านี้เป็นชั้นสารกึ่งตัวนำในอุปกรณ์ออปโต อิเล็กทรอนิกส์ต่างๆ ได้ถูกทำการศึกษาและเปรียบเทียบ อาธิเช่น เป็นชั้นสารเรื่องแสงหรือสารส่งผ่านประจุบวก ใน อุปกรณ์โดโอดเปล่งแสงอินทรีย์ หรือเป็นโมเลกุลสารสีย้อมไวแสง ในอุปกรณ์เซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง เป็นต้น