รหัสโครงการ DBG5580004

ชื่อโครงการ การพัฒนาวัสดุฟังก์ชันนัลที่มีปูนซีเมนต์เป็นฐานขั้นสูงสำหรับ

ประยุกต์ใช้ทางอุตสาหกรรมในอนาคต

ชื่อนักวิจัย และสถาบัน ผศ.คร. อานนท์ ชัยพานิช มหาวิทยาลัยเชียงใหม่

E-mail Address arnon.chaipanich@cmu.ac.th

ระยะเวลาโครงการ 3 ปี

บทคัดย่อ

งานวิจัยนี้ได้มีการพัฒนาและทำการศึกษาสมบัติของวัสดุฟังก์ชันนัลที่มีปูนซีเมนต์เป็นฐาน ขั้นสูง ในระดับแรกได้ทำการพัฒนาวัสดุผสมเพียโซอิเล็กทริกไร้สารตะกั่ว-ปูนซีเมนต์ ในระบบ 0-3, 1-3 และ 2-2 เพิ่มเติม เพื่อก่อให้เกิดผลการทดลองใหม่ ซึ่งเซรามิกเพียโซอิเล็กทริกไร้สารตะกั่วที่ นำมาใช้ได้แก่ แบเรียมไทเทเนต (Barium titanate; BT), แบเรียมเซอร์โคเนตไทเทเนต (Barium zirconate titanate; BZT) และบิสมัสโซเดียมไทเทเนต (Bismuth sodium titanate; BNT) ได้ ทำการศึกษาค่าความต้านทานเสียงเชิงซ้อน, สมบัติโดอิเล็กทริก, สมบัติเพียโซอิเล็กทริก และค่าสัมประสิทธิ์คู่ควบไฟฟ้าเชิงกล ของวัสดุผสมผสมเพียโซอิเล็กทริกไร้ สารตะกั่ว-ปูนซีเมนต์ จากผลการศึกษาพบว่าวัสดุผสมมีค่าสัมประสิทธิ์แรงดันเพียโซอิเล็กทริกสูง กว่าเซรามิกเพียโซอิเล็กทริก และมีค่าความต้านทานเสียงเชิงซ้อนที่ต่ำกว่าเซรามิกเพียโซอิเล็กทริก ซึ่งแสดงให้เห็นว่าความความด้านทานเสียงเชิงซ้อนของวัสดุผสมสามารถเข้ากันได้กับโครงสร้าง คอนกรีต และเหมาะสมที่จะนำไปประยกต์ใช้เป็นเซ็นเซอร์ในโครงสร้างคอนกรีตลลาดได้

นอกจากงานวิจัยทางด้านวัสดุผสมเพียโซอิเล็กทริก-ปูนซีเมนต์แล้ว งานวิจัยนี้ยังได้มีการ พัฒนาและศึกษาวัสดุที่มีปูนซีเมนต์เป็นฐานขั้นสูงที่เติมด้วยสารเติมแต่งขนาดเล็กกว่าระดับ ใมครอนและขนาดนาโน ต่อระยะเวลาการก่อตัว, ค่ากำลังอัด และความพรุนของมอร์ตาร์ นอกจากนี้ยังได้ทำการศึกษาผลของการใช้เถ้าลอยแคลเซียมสูงร่วมกับหินปูนบดละเอียดเป็นส่วน ทดแทนปูนซีเมนต์ต่อการเกิดความร้อนจากปฏิกิริยาไฮเดรชันของปูนซีเมนต์ นอกจากนั้นยังได้ ทำการศึกษาผลของเถ้าลอยแคลเซียมสูงและซิลิกาฟูมในระบบทวิภาค และไตรภาค ต่อค่ากำลังอัด และความด้านทานคลอไรด์ของคอนกรีตอัดแน่นด้วยตัวเอง

คำหลัก: ซีเมนต์, วัสคุผสม, เซรามิกเพียโซอิเล็กทริก, เถ้าลอย, สารเติมแต่งขนาดเล็กกว่าระดับ ใมครอนและขนาดนาโน Project Code DBG5580004

Project Title DEVELOPMENT OF ADVANCED FUNCTIONAL

CEMENT BASED MATERIALS FOR FUTURE

INDUSTRIAL APPLICATIONS

Investigator Assistant Professor Dr. Arnon Chaipanich

E-mail Address arnon.chaipanich@cmu.ac.th

Project Period 3 years

ABSTRACT

The project was based on the research works aimed to develop advanced functional cement based materials and test their properties. Further developments of 0-3, 1-3 and 2-2 lead free piezoelectric ceramic- cement based composites were carried out and new data were generated. Lead free piezoelectric ceramics used are barium titanate (BT), barium zirconate titanate (BZT) and bismuth sodium titanate (BNT). Acoustic impedance, dielectric, ferroelectric hysteresis, piezoelectric and electromechanical coupling coefficient of the lead free piezoelectric ceramic- cement based composites were investigated. These composites were found to have higher piezoelectric voltage coefficient and lower acoustic impedance value than pure ceramic. The results show that the acoustic impedance of the composites can be tailored to match that of the host structure concrete and are ideal for use as sensors in smart concrete structures application.

In addition to the work on piezoelectric ceramic-cement composites, advanced cement based materials with sub-micron and nano size additives were developed and investigated. Effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based material on setting time, compressive strength and porosity of mortars were investigated. The effect of limestone powder on the heat of hydration of Portland cement and high-calcium fly ash FA systems were also investigated. Effects of high-calcium fly ash and silica fume as a binary and ternary blended cement on compressive strength and chloride resistance of self-compacting concrete were investigated.

Keywords: Cement; Composites; Piezoelectric ceramic; Fly ash, Sub-micron and nano size additives