บทคัดย่อ

ในปัจจุบันทุกภาคส่วนต่างให้ความสำคัญต่อพลังงานทางเลือกและพลังงานสะอาดเพิ่มมากขึ้น ทำให้มีความต้องการอุปกรณ์กักเก็บพลังงานที่มีประสิทธิภาพสูงมากขึ้น โดยเฉพาะอย่างยิ่งตัวเก็บประจุ ยิ่งยวดหรือซูปเปอร์คาปาซิเตอร์ ได้รับความสนใจเป็นอย่างมากจากอุตสาหกรรมหลายส่วนทั้ง อุตสาหกรรมอิเล็กทรอนิกส์สมัยใหม่และรถยนต์ไฟฟ้า ทำให้มีการพัฒนาตัวเก็บประจุยิ่งยวดที่มีความ ประสิทธิภาพที่สูงขึ้นและต้นทุนที่ต่ำลง ดังนั้นในงานวิจัยนี้จึงได้ศึกษาการสังเคราะห์วัสดุนาโนคาร์บอน ที่ตกแต่งด้วยแมงกานีสออกไซด์และการใช้งานเป็นขั้วในตัวเก็บประจุยิ่งยวด โดยได้แบ่งงานวิจัย ออกเป็น 3 ส่วน โดยส่วนแรกเป็นการศึกษาการสังเคราะห์วัสดุนาโนคาร์บอนด้วยวิธีตกสะสมไอเคมี โดยการใช้อนุภาคนาโนของนิกเกิลทำหน้าที่เป็นคะตะลีสต์ อนุภาคนาโนนิกเกิลสามารถเตรียมได้ง่าย ด้วยวิธีการชุบเคลือบด้วยไฟฟ้ากระแสตรง พบว่าแรงดันไฟฟ้ามีผลต่อขนาดและความสม่ำเสมอของ อนุภาคนาโนของนิกเกิล โดยที่แรงดันไฟฟ้า 1.5 โวลต์ แรงดันไฟฟ้า จะได้ขนาดอนุภาคนาโนของนิกเกิล เฉลี่ยประมาณ 55±3 นาโนเมตร และได้ท่อนาโนคาร์บอนที่มีผนังท่อซึ่งเป็นชั้นของกราไฟต์ขนานกับ แนวแกนยาวของท่อนาโนคาร์บอน เมื่อนำท่อนาโนคาร์บอนดังกล่าวไปศึกษาสมบัติทางไฟฟ้าเคมี พบว่า ได้ค่าความจุไฟฟ้าจำเพาะ 53 ฟารัดต่อกรัม จึงได้พัฒนาวัสดุไฮบริดท่อนาโนคาร์บอนและแมงกานีส ออกไซด์เพื่อเพิ่มประสิทธิภาพการเก็บประจุ โดยงานวิจัยส่วนที่ 2 เป็นการศึกษาการสังเคราะห์วัสดุ ไฮบริดท่อนาโนคาร์บอนและแมงกานีสออกไซด์โดยใช้แมงกานีสเป็นคะตะลีสต์ โดยเตรียมฟิล์ม แมงกานีสด้วยวิธีการชุบเคลือบด้วยไฟฟ้ากระแสตรงโดยใช้แมงกานีสซัลเฟตเป็นสารตั้งต้น พบว่า สามารถสังเคราะห์ท่อนาโนคาร์บอนโครงสร้างปล้องไม้ไผ่ได้ เส้นผ่านศูนย์กลางประมาณ 50 นาโนเมตร ได้ แต่อย่างไรก็ตามพบว่า วัสดุไฮบริดท่อนาโนคาร์บอนและแมงกานีสออกไซด์นั้น ยังมีความหนาแน่น ต่ำ จำเป็นต้องหาเงื่อนไขที่เหมาะสมเพื่อให้ได้วัสดุไฮบริดที่มีความหนาแน่นสูงต่อไป แต่ด้วยข้อจำกัด ทางเวลาของการวิจัย จึงได้ดำเนินงานวิจัยส่วนที่ 3 เป็นการศึกษาการเคลือบแมงกานีสออกไซด์ลงบน ท่อนาโนคาร์บอนเชิงพานิชย์ด้วยวิธีการชุบเคลือบด้วยไฟฟ้าโดยใช้แมงกานีสซัลเฟตเป็นสารตั้งต้น พบว่าสามารถเคลือบแมงกานีสออกไซด์ที่มีโครงสร้างแบบแผ่นลงบนท่อนาโนคาร์บอนได้ แมงกานีส ออกไซด์ดังกล่าวเป็นเฟสผสมของ lpha-MnO $_2$ และ δ -MnO $_2$ เมื่อนำวัสดุไฮบริดท่อนาโนคาร์บอนและ แมงกานีสออกไซด์ดังกล่าวไปศึกษาสมบัติทางไฟฟ้าเคมี พบว่าได้ค่าความจุไฟฟ้าจำ 144 ฟารัดต่อกรัม ค่าความหนาแน่นของพลังงาน 12.80 วัตต์ชั่วโมงต่อกิโลกรัมและค่าความหนาแน่นของกำลังไฟฟ้า 0.28 กิโลวัตต์ต่อกิโลกรัมที่ช่วงความต่างศักย์ไฟฟ้า 0.8 โวลต์ การเพิ่มขึ้นของค่าความจุไฟฟ้าจำเพาะเกิดจาก การเพิ่มขึ้นของพื้นที่ผิวของขั้วไฟฟ้าจากวัสดุไฮบริด และการเพิ่มขึ้นของปฏิกิริยาฟาราดิกจากแมงกานีส ออกไซด์นาโนชีท

คำสำคัญ: ท่อนาโนคาร์บอน แมงกานีสออกไซด์ การชุบเคลือบด้วยไฟฟ้า ตัวเก็บประจุยิ่งยวด

ABSTRACT

Nowadays, alternative energy and clean energy have received much recent attention, leading to a need for highly efficient energy storage devices. Especially, supercapacitors have been intensively focused on many industries, including modern electronics and electric vehicles. This has led to the development of supercapacitors with higher efficiency and lower costs. Therefore, in this research project, the synthesis of manganese oxide (MnO_x)-functionalized carbon nanomaterials (CNMs) and its applications as electrodes in supercapacitors were studied. The research was divided into 3 parts. The first part was to study the synthesis of CNMs by chemical vapor deposition method using nickel nanoparticles (Ni NPs) to act as catalysts. Ni NPs can be easily prepared by the DC electroplating method. It was found that the applied voltage affects the size and uniformity of Ni NPs. At 1.5 V, an average size of Ni NPs was approximately 55±3 nm and carbon nanotubes (CNTs), a layer of graphite paralleling to the axis of CNTs, were obtained. After investigation of the electrochemical properties of the resultant CNTs, the specific capacitance was approximately 53 Fg⁻¹, which is relatively low value compared to previous studies. Thus, a hybrid CNMs and MnO_x were further studied to increase capacitance efficiency. The second part of the study was to study the synthesis of CNMs and MnO_x hybrid materials using manganese as a catalyst. The manganese film was prepared by the DC electroplating method using manganese sulfate as a precursor. It was found that the bamboo-like CNTs with a diameter of approximately 50 nm could be synthesized. However, the synthesized CNTs and MnO_x hybrid materials were low density. The optimum conditions need to be investigated to obtain highdensity hybrid materials. But with limitations of the research period, the third part of the research was to study the decoration of MnO_x on commercial CNTs with electroplating using manganese sulfate as a precursor. It was found that MnO_x nanosheet could be decorated on CNTs. The phase of MnO_x is the mixed phases of α -MnO₂ and δ -MnO₂. After investigation of the electrochemical properties of the resultant hybrid materials, the specific capacitance, energy density and power density were approximately 144 Fg⁻ ¹, 12.80 Whkg⁻¹ and 0.28 kWkg⁻¹ at the voltage range of 0.8 V. The increase in the specific capacitance is due to the increase in the surface area of electrode from the hybrid material, and the increase in faradaic reactions from manganese oxide nanosheets.

Keywords: Carbon nanotubes, Manganese oxide, Electroplating, Supercapacitors