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ABSTRACT

Research output no. 1
Title : Scalar Multiplicativity Factors for Near Quasi-Norms

Abslract : In this note a near quasi-nom q s defined on a real of complex
veclor space X . We use the notion of boundedness as in a genaral
topological vector space 1o study boundedness of sets in a near qQuasi-
nommed space and we study scalar multiplicative factorsfor q |, e,
constant A >0 forwhich g(Ax)<A|a | q(x) forsome r>0 and forall
scalars « andall xeX. The hecessary and sufficient conditions for a near
Quasi-norm q to have multiplicative factors are given. We further show that
under what conditions the natural near quask-nomm on the sequence spaces
of Maddox £_(p) and £(p) have scalar multiplicative lactors,

Keywords : Near quasi-norms, Scalar Multiplicative factors




Research output no. 2

Title : Multiplicativity Factors for p-Seminoms

Abstract : Let § be a p-seminomm on an algebra A. In this paper we study
multiplicativity and quadrativity Tactors for S  i.8., constants p>0 and
A>0 forwhich S(xy) <pS(x)S(y) and §(x*) SAS(x)* forall x,ye A
We begin with charactenzing these factors in terms of the kemel of S and
we also show that p-norms on finite dimensional algebras always have
multiplicative factors. Wa then provide under what conditions does § have
multiplicative factors if it has Quadrative factors. Finally, we show that if A
is commutative then Quadrativity factors imply mudtiplicativity factors.

Keywords : Multiplicative factors, p-seminomms

Research output no. 3
Title : Matrix Transformations on Some Vector-Valued Sequence Spaces
Abstract : In this paper, we give the matrix characterizations from vector-
valuad sequence spaces of Maddox Co (X, p).e(X, p), £ (X, p) and
(X, p) into scalar-valued sequence spaces of Maddox  ¢,(q),c(q) and

f.(@) where p=(p,) and g= (9 ) are bounded sequences of positive roal

numbers.

Keywords @ Matrix Translormations, Vector-Valued sequance spaces




Research output no. 4

Title : Matrix Transformalions from Vector-Valusd Sequence Spaces of
Maddox into the Nakano Sequence Spaca

Abstract : In this paper, we give the matrix charactarizations from vactor-
valued sequence spaces of Maddax o (X, Pl e, p) and £.(X,p) into
the Nakano sequence spacs £(q) where p=(p,) and q=(q,) are
bounded sequsnces of positive real numbers,

Keywords : Matrix Transformations, Vector-valued sequence spaces
of Maddox, Nakano sequence space.

Research output no. 5.

Title = On Matrix Transformations Concaming tha Nakano Vector-Valued
Sequence Space

Abstract : In this paper, we give the matrix characterizations from Nakang
vector-valued sequence spaces #(X,p) and F,(X.p) into E, andwa
olxain the matirk characterizations from E(X.p) and FE(X.p) Intothe
bounded sequence space {£_ as corollaries, where P={(p,) is a bounciad

sequence of positive real numbers such that P >lforall keNand r20.

Keywords : Matrix Transfonmations, Nakano vector-valued Sequence space.




Research output na. B
Title : On Matrix Transformations Related to Naksno Vector-Valued
Sequence Space
Abstract : In this paper, we give necessary and sufficient conditions for
infinite matrices mapping from Nakano vector-valued séquence spaces
{(X,p) into the serquence spaces £_ and £.(q) and we also give the
matrix characterizations from M, (X, p) into the space £_(q) where

p=(p.) and q=(qg,) am bounded sequences of positive real numbers
suchthat p, <1 foral keN,

Kaywords : Matrix Transformations, Nakao vector-valued sequence space.

Rassarch output no. 7

Title : Matrix Transformations on Nakano Vector-Valued Sequence Space

Abstract : In this paper, we give the matrix charactonizations from Nakano
vector-valued sequence space £(X,p) into £_ £.(q). bs and cs whers

P=(p.) and q=(g,) are bounded sequences of positive real numbers
suchthat p, >1forall keN.

Keywords : Matrix Transformations, Nakao vector-valusd Sequence space.
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Research outpid no. 8

Title :  Matrix Transformations Batween Some Veclor-Valued
Sequence Spaca

Abstract : In this paper, we give hecessary and sufficient conditions for

infinite matrices mapping from Makano vecior-valued sequence spaces

£X.p) Into any BK-spacs and by using this results we obtain the matrix

charactarizations from 40X, p)into the sequence spaces £,(Y),c,(Y,q)

‘{n*f-{ﬂ- E’r[ﬂ and 'FI(Y] where p={Pt} and q“fql'.] re

boundad sequences of positive real numbers such that P =1 for all
keN, rz0,and 521,

Keywords : Matrix Transformations, Vectorvalyed soquence spaces.

Research oulput no. 8

Title : Matrix Transformations of Some Vector-
Abslract :

Valued Sequenca Spaces
In this paper, we give tha matrix characterizations from vector-

valued sequence spaces £_(X,p) . and a(X,p) into the Orlicz sequence

space £y, whers p=(p,) is a bounded sequences of positive real

numbers.

Keywords : Malrix Transformations, Vector-valued sequence spaces .




Research output no. 10

Title : Superposition Oparators on the Sequence Space {(p)

Abstract : In this paper, wa giva a characterization of supemosition

Gperator acting from a sequence space of Maddax #(p) Into the
sequence spacae ¢, .

Keywords : Superposition operators, Sequence space.,
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Scalar Multiplicativity Factors for Near Quasi-Norms

SUTHEPF SUANTAL

.ﬁmhmm-mmmqhﬁa-mﬂm:hw

pace X Wa mmm—thﬂm-hlmﬂwmwhm
mﬂmhnmmmmﬂ-ﬂn-mm matipliestive faetar

Hg.u,ml}ﬂhﬂhhq[ﬂ:]5A}n¥'ﬂ:}hmr}ﬂmhaum
o and &l 3 & X, ‘l‘hm-hﬂtﬂﬂhlmhlmmmmqu Bnvm
mulilllcative fuclar ars ghven. “thﬁwtm-dnﬂ#mthmwm

quash-uorm en the sequance spaces of Muddex L,(p) sod #(p) have scalar multiplicative
factorm

[1001]) AMS Matbeomation Bublert (Hus|Bestios: QAN BE, AL SR 4N

L. INTRODUCTION
LﬂIhnw“m:MthnFuﬁurtcm:!}ﬂ. As ususl, we call o
function 5: X — R a pseminorm f for all 2,y € X and a £ F:
S(z)z0
S(az) = [af"S(z)
Slz+y) £ 5(z) + Sl

¥, in addition S(x) # 0 for all z # 0 thm § iz & p-norm. IS is & peeminom on X we oall (X, 5) n

Typaset by ApsSTEX



Aguasi-norm sn X is defined in [5], page 13, to be & bmetion g: X — R satisfying
{i} ql0) =0
(i) gl—=)=glz) frall == X
(i) of=+y) < ofz) + 4ly) for sl 2,y € X
(w) iflog, ae P, loa—aj —0andz, ze X, 4(zx — £} — 0, then gloyz, —arz) — 0,

It follows from (i) — (1) that o{z} > 0 foc all z £ X I the quasi-norm g satisfies gf) = 0 if mnd
only il 2 = 0, then it is s2id to be fatal

K g is & quasi-norm en X, then d(z,¥) = g{z — ) defines & semi-metric on A which is & metric
if and only if ¢ is total A quasi-normed space (QNLS) Is & pair (X, ) where ¢ is & quas-noem oo X,
Hﬂ-thunquubnma&wh-hpﬂnﬁnim[‘n'ﬁl under the metric topology Indmesd by the
-

Wnnﬂlhmnﬁnng:x—ﬂtmﬂui-mmifq-ﬁ:ﬁummﬂﬂmﬁ}. (#) mnct (i) abowe.
Amemﬂm&h;m{I.q}Mq h-.-rmni—nmumx.ﬁnuhum
semincrmed spaces, QNLS-spaces and priormed epaces e NQNLS-space, A near quasi-norm g s sald
to be total if g{z) = 0 mplies = = 0. Fram (i) — ({i{), we cbtals that giz) 2 0forull x € X. U g is & pear
lil:l-ll-mmI,.lhlﬁmcﬂmi:Ixxﬂﬂdﬂnldhrﬂl.pj-ﬂ:-u}hlmm
:ﬁmﬁmﬁwﬁh:mﬁHﬂﬂ;thm Wlnlithlll:ﬁ:-mu:hhdmdlqr-l. We
lhnmwnlwﬂﬂmdmwﬂuthlﬂnmﬁﬂmﬂ by d. Wa shall see in
Euﬁm!lhuanui-mﬁmhnﬁ nocamarily 8 TVE snd will see in Soction 3 that under
-ﬂmﬂﬁwtmmmhtm

m:mwm[&q}nndﬂﬂd‘xiuuhhmuneﬂmdmeF.
@y =0, then ayxy — 0. U B C B(x,r) {thq:mhlmnxmdnﬁurjhm
= € X and for some r > 0, then J i sald to be metrizally bounded We show in Section 1 that & & ear
qﬂmmnﬂﬁﬂhmﬁhhﬂﬂﬁﬁmhmhﬂdhmﬂ
ﬁﬁﬁnuhﬁuﬁmlﬁum&:mwﬂm;mhmﬁdmhﬂhm

Arena and Coldberg 1, 2] defined multiplicative factors for & sesninorm on an algsbra A as follows
For & seminom & on an slgebes A, we call ) }ﬂhthﬁﬁrSEﬂw}SAﬁ'{:ﬁ[y}
faxallz, ye A hhuq'hl—ﬂﬂf.ﬁ‘hulﬂﬂlﬂpluﬂﬂﬁﬂ.lhu.l is 8 TVE, They also gave
muﬁmﬂiﬁnﬂnﬂﬂuh-%ﬂh“ihhﬂhhﬂnﬂuﬂ:ﬂﬂﬁm

Lﬂghnmqﬂmunmmx. Th-{'-lthhmullﬂhrﬂm
foctor for g If there are A > 0 wnd r > D such that

qlex) < Mafgiz) (L1}

fxrallaeF,zeX.

mﬂﬂlh{i,ﬂ,nrﬂhnﬂiﬁpﬁﬂuﬁ:ﬁwﬁr!. If A s an r-scalar multiplicative factor for
gihensoisp if p> A MMmmmmﬂw’hﬂmmﬂﬁpﬁnﬁn
rtors.
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Let p = (pa) be & bounded sequenice of positive mumbers. Maddox [] introduced the sequence
spaces £,..(p) and f(p) us fallows
Laalp) = {{me): (=2) b = real sequence such t-hatmiplr;!il"" < wal,

8(p) = {{za): () is & real soquence such that .i:a:.p'«- % a)
Grosso-Erdmann |3 studied same elructures of thess sequence spaces in [3). Let gy : L(p) = B
snd g/ : #(p) — R be defined by

(=) = npl® o g(tnl)= (3o kmp)
=

where M = mu{l,n:p_nl, B is easy to sos that g, bs near quasi-norm on £ (p). We shall show in
.."-n-u.i:nﬂ'l.huthuuinniqmp*[n}mdlthuth:fuiﬁmq,:ﬁ.{ﬂ—ﬂhnu & Guss.-norm
Maddax [4] showed that g i & quasi-norm on {(p) and In Section 4 we show that under whit eonditions
% 204 g, have scalur maltiplicative factors,

L. Near Quisl-Normed Spaces

Brudnuﬂummﬂuhmﬁupnﬂﬁm%wlﬂdml,pmlh the following
propositon s obtainod:

Propoaitten 2.1 .l:q:r{.lr*q]iunnrmui-mm Then
(1) The map (x,y) ++ 2 4y from X % X = X {5 continuons.
(2) The map gz X — K is continous.
(%) If U in a neighborhood base ot 0 and U & U, then there exits V € 14 such that V4 V € 17,
(4) WU is (open) neighborhood base at ) in X and = € X, ezt U={p+ Vel isa
(epen) meighborhood base ot =g,

Example 2.2 Let p = (}) snd consider the sequence space £ou(p), Wa know that the map
5-=fc-twi—*ﬂ.d-ﬂmdhn({n}}=-r:ﬂ=.[*h-uurqmﬁ-mu Lo(p). For sach k € N, ket
::Wn{!.l.l..-]'ln&t.-ihnﬂnEN.Tl'm::"-"*-—*[1,1*1.._}“:;-—*!:!. But we seo that

Bltaz'™) = ﬂy{%}*ﬂ
hﬂﬂEN—“ﬂlﬁ“f-ﬂ, m‘m“ntullmlpthlimuﬁmﬂxxﬁxhnmm
md*hmthtuﬂ-ﬁmmmfmfj},

hlmmmmwmﬂumwuhﬁ,ﬂmﬂﬂ,miﬁnﬂ
hnuth.umunﬁtn-imﬁrm“h-mui-mumdm

Fropositlon 2.3 A4 wmmm{xﬁ]ﬁmfmmmmgm
series in X i conpergent



The following propasition gives soma ctiteria far bnmdui:mhmquaai-mmdm

Froposition 2.4 M{Lq}knmrmﬁ.mnﬂmmﬁﬂ € X. The followsing are
eguitalent-
{2} B is bounded,

(3} for each neighborhosd I of D in X, there erists o positive peal number ty such that if jt| > 1,
implies B C LT,

Proof. (1) = (2) Assume that B is bounded. Let U be & neighborhood of 0 in X. Suppose that (2}
does ol hold. Then there is & neighborhioad U/ of 0 i X end o sepueme of scolar (1) such thare. — 0
and (. B T U7, a0 thai there 3 8 soquence (x,) in B such thet b=, & [T, Hence (tux,) does not converge,
so I do nod bounded ]

In the next proposition, we give o mmmmmumh.
near quar-normed space.

there exists n € IV such that 5 § nB{0, 1), ﬂnun.sm.l};ﬂm.n}.uhmﬂ:ﬂ{ﬂ,n}. Hemee B @
melrically bounded,

Mmuidwﬂumw Ealp) ui'm;p—( o H'thwmtt_,{p},ﬁ]uuw
suasi-normed space. MB-{-—: €N} wheree = (1,1,1,...). ﬁiﬂ‘{,{"-ﬂ-ﬁlﬂp{ =1 for alf

neEN, wmnuwm For sachm € N, Jﬂn:!-wn.n-llneﬂ b aee that

i-(hh}ﬂm[;;ﬁ'=-1 Hemes oz, /440, a0 that B hmh-ﬂ mwfhmmm o

In a general TVS, we hove that crery canvergent soquence by bosmded, but it ds ol trur fn @ nesr
- Mmﬂr%hw{%]h{&&ht}qmﬂﬂfl}mﬂﬂuﬂﬂ 1,1,...)
for alln € N, is convergent, but not bouaded becanse teldz.) =1 forallne N.

Wemmhm{uﬁmmmﬂumﬂm&unumﬁwﬁw
nwna:,undwm&mmmm

Theorem 2.6 h:wmm[x,ﬂ. ﬂ'g#utnhrnwtﬂpﬂmﬁ-fdﬁw,ﬁm
B L X is bounded if and only f B iz metrically bounded,

Prool Fct A >0 and > 0 b= such that

glax) < Malglz) foroll ae Fandz e X (LI}
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By proposition £.4, f B is boended, them B is metrically bownded
Conpersely, assmeme thet B is metrically boundsd. [Lef = ERBandty, €EF, Iy = D. Them there
emials K> 0 such g2} < K for ollz € B. By (2.1}, we houve

ltere) £ Mfal"glze) £ AR
Consequently, g{tyzi) — 0, s0 B is bounded. O

Corallary 2.7 Let (X, q) b2 & newr guast-normed space. ¥ q hes a scolor multiplicetive fector,
then every convergent sequence in (X, g) i bounded.

3. Sealar Multiplicative Factors and Kernels

We begin usth the following proposition:

FPropoaltion 3.1 Let (X, q) be & near quasi-normed spoce. I/ ¢ has @ scalar multipbicative focter,
then g b & guast-norm.

Prool. Suppose that g has a scalar multiplicative factor. Then thers are A > 0 and v > 0 such

that
glos) <Alaf"glz) forallog F endz e X {&1)
Letto, LEF, by~ 1 ond my, = € X, gzy — 2) = 0. By the triangle dnequality of g and (3.1), we Aave
altuza ~t2) < A ["ala — 2) 4 Aty — 1) g(z) {3.3)

nmmmjm.{uﬁ—m—mu;mrﬁ; Henoe ¢ is 0 quasi-norm on X,

il ¢ is & near quasi-norm o X, the kammed of g, denoted by Ker g, ds the set of all = € X much

i that g(x) =0, Eqﬁ#ﬁﬂh,f!mﬂmml}ﬂhnrﬂrmhﬁﬂﬁrqﬁrlﬂ
| r>0. PFora near quasi-norn ¢ and for r > 0, define

1 _fez)
Nt = L Telre@

w:mawnmmmmmmmdmmmm
ﬂlhztnnﬂ#fqundiﬂ,

Theorem 3.2 M{I,ﬂhlmﬂmmmudrhnm
1) .mmmmqmquagﬁgmmujxuu] - *k[:]_lr <



(2} If q has r-scalar multéplicative factors, then A7), is the bestfleast) r-scelar multiplicatine factor for
a.

Prool (1) Suppase that A &3 an receler multiplicative factsr for 5. Then
glar) = Mo|"g(z) {23)

forallze X andac F. 1t follows from (3.3) that A} < A, 30 A%} < oo, Since ¢ is non-triveil, there
exists = € X such that g(3) # 0. ma‘:}gﬁ#ﬁi,wmmﬂ 2 1. Sinee Ker g= ¢~ '{{0})
anad ¢ & condinuous, we have Fer g is elosed, Now, we show that Ker ¢ 40 0 subspace 6f X. To show ihis
H:.;rﬁxﬂqmduEEﬁmﬁmhhwwﬂwffMMJJ*wMﬂ#Hr}Eq{:}H{w}-
0+0="0 and g{ax) £ Aol giz) = 0. HM:+ymdn:rEthmnlhiﬂ'mqhnanj'..‘.'.
Comueracly, asmume that Ker q is ¢ closed subsapee of X and 1 € M) < oo, We shall showw that

aloz) < Aol glz) (24)
Jorallze X andax & F.
E:EKH'EMHEF.uhuzuEHaquwK#qhiqu. hence 0 = glar) =
Aol ele). Letx ¢ Kerq. lfa =0, then 0 = glax) = Alof"g{z). If o 0, then 1;‘]{,—;"%‘]'— <t

Y L
that gfcer) < Malglx), so (8.4) ds obtained, that s, 3T, ds en r-scoler multiphicative factor for ¢. The
proof i now complele

(2) Assums that ¢ Aas r-sealsr multiplicative factors. By (1), we have Mrl <00, IfA> 0 is an
rescaler multiplicative factor for g, we hase

qlaz) < Alof"g(=) (15)
frallze X andae F.
. ) _ ok
W ﬂhh_&mfﬂ}ﬂuahr :{?ﬁ Fﬁ% < A, so (2] iy obtsined, (8]

We show in next preposition thal thers Mﬂjnmmmmmm
Mﬂﬂw”hﬁumﬁiﬁﬁmﬁﬁhﬂﬂﬁrﬂrmﬂtrgl.

Fropaoaltion 3.3 Let X be o finite dimensional vactor spoce and 0 < r < |, Then there i o
Proper wear quari-narm g on X hering rescalor maultiplicative factors.

Proof. &Jﬁﬂﬂﬁliﬁnx#ﬂﬂiﬂ{:.,q,.--,h}hlhﬂhx. Foreachi=1,2,....n
sdefine @ : X — B or follons: ﬁr:EI,Hmeﬁm-n#uw:nl,m.....n.mw
t=£“&=h Mﬁ{:}nhr.ﬂﬁ lﬂ[ﬁlﬂﬂmm h'wmﬂrﬁﬂﬁ{mﬂ=“m{=’;
« ¥ that g; has scelor mulifplicative factors. By the definition of g we have Rer g = { ‘;: asxir ay €

F=laf
P,fg‘i,u.‘fﬂrq#{ﬂ}ﬂdﬁ:rqiﬁx,ﬁmg if proper. This compiete the proof. O
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4. Sealar Multiplicatlve Factors on £.o(p) and I{p).
We start with the following theorem.

Thoerem 4.1 Mp:h}hnhmddmmdpﬁumm Then g, has sonlar
mulimlismtive factors if and ondy if pu =pyyy forallk e N

-

Prool. Ifr = gy = gy forgllk € N, then for = = (z2) € Lolp) ond & € F, me hape
Gpleex) = hl'&{:},uﬂﬂmhmﬁrmﬁpﬁmﬂum
Suppose, conversely, ﬂﬂﬁﬁﬂﬂkﬂ'ﬂﬂwm By Theorem 2.1 (o), there sxists

2= 0 such that fexz)
v = o
-"u.,f zﬁﬁ?#mﬁﬂv (¢1)

MI-ﬂ:pn, b—iﬁfp. ende=(L1,...). ;’,‘frqﬁ—. then for a € F, |aj 2 1, we hove

ﬁh:nﬂ,wﬁ".ﬁt—*_

= _ ox R
5:.1.,_, IAEE'#]%&-&L};EH# 00 which contradicts o ({.1), Hencar > 4.
[fr>f then fora € F, |a] <1, e hare

(. IR, e,
ﬁ?&- #p fo jof#=r,

i} ini o i“'u d
£ i%ﬁFhﬁE:?ﬁH =
which is a contradiction, Thes, wegetr=f. Then fora € F, o] < 1, we have

e wup ol = o

;ﬁ};mld‘i‘-m

which again mnhuﬁmrhﬂ,u,lmlw-,mﬂhn=mlﬁrmkeﬁ. This complete the proof
of the theorem. O

Hemen, we gat

0 if b < a, we get

Theorem 4.20 Let p= (p,) be a bounded sequence of positive real nambers, Then ¢, has sealer
multiplicative factors if and enly if py = pyyy for altk € N,



Proof. Ifr=p =, forallke N, thes for = = [z} € i(p) and a € F, we have

ghlez)= @hrht’]i = |a|& @h.r) gl i g (),

It follous that q, has scaler muliipblicative fastors,

Suppose, conversely, that g has scalar multiplicative foctors. By Theorem 2§ fa), thex isr >0
such that
Fale=]

)
Ant = _e® . rgE < (3

P

Lchl=ﬂ:p?.|.,bn=lll1ifn and el be the sequence whose the B position &5 1 and 0 piheruise. Ifr < ﬁ-,

g oz} (act®)) - 5 :
e -:-E:E?ﬁ gl Eﬂiﬁh ﬁ’mnf ) -l'..iEil el I r:ilzpl I B~ = oo, which

¥,

consraibicts to Hencer > —, =, then (o) RO
(4.8). rE" Hr:r” “hm#ﬁ %Eﬂjﬁmﬂﬁqﬂq
mhia*'*-mlni**-m.iﬁchthwmmﬂmhﬁ.lj.ﬂuuhw r-%. b <e, then

a0 bul1

aer) aslth o =
SRy PG 23, PHE 2 g b - b et et
lﬂhn-m;ﬁrﬂkeﬁ.mrﬂfﬂmmmﬂﬂg (n ]
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Multiplicativity Factors for p-Seminorms

SUTHEP SuamTal

ABSTRACT. Let 5 be & p-seminerm on an algeben AL In ihis paper we study mul
memm%hﬁ.hﬂmp:ﬁﬂmhbumm
5(xv) S pS(z)S(y) asa S(=7) < AS(2)? for ati 2,y € A We begln wilh charecierising
lhmhm-h-ﬂhhﬂﬂﬂlﬂu-hﬂmimmmm
shonal sigebras alweys have mullipllcailve faciors. W then previde undar what censditions
mﬂmmmnuhmm Floally, we show that if A is
mmmmmmumm

(1901} AMB Mathemstion Subject Clasbileation 17, ITC0, &TI06, W10, 45008, 4TAX0.

1. INTRODUCTION

Let X be n voctor space over & field F' where F'= Rar F = O
Aquasi-form oo X ls defined in [3), Pago 13, to be a function ¢: X — R aatisfying
(i) of0) =0
(B) gl=z)=gl{z) forall z e X
{5} olz+v) < qlz) + ols) for all z,y€ X
{iv] if oy, n:EF,lm,.—nt-—-ﬂ-nd:;,:E.T,q{:.,—:]-—-!,thmq{m-n::]ﬁn.
Tt Follows from (i) ~ (#54) that ¢f=) 2 0 for all # € X., If the quasi-norm g satisfies g(z) = 0 if and
only if 2 =0, then it is said to be (otal
If g is & quasi-norm on X, then diz,y) = g{x — y) defines n semi-metric on X which is 8 metric
if and only if g is total A quas-narmed space (QNLS) is » psic (X, q) where ¢ i & quasi-nem on X.

Typemet by A5 TEX
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MM;@&MM%IWWM}MMWEWI{?M by the
AR FCTL

W&mllufumﬁmq:l—*ﬂnmrqum&-mifqnﬁﬁuthtmﬂiﬁuu{ﬂ‘ (¥} mmed fi6d]) abowve,
A near quasi-norm space (NQNLS) is & pair (X, g) where ¢ ks  near quasi-norm on X. Note that every
seauinormed spaces, QNLS-spaces and p-normed spaces wre NONLS-space. A near quasi-norm g is ssid
hhh&dll’q{ﬂ=-ﬁimpliu.t=ﬂ.!‘rnm{i}—ﬁﬁj,ﬂnllﬁ tha g{z) > Oforall x € X, I g s = near
quasi-noem on X, the function d - X *x X — R defined by dix,y) = ¢fz — 3) is & translasion jnvarsint
semo-metric on X uﬂiilmhﬂmdmhrﬁfhm We call d the semi-metric induced by g. We
alwsys aeme that & newr qoesi-normed space carries the metric topology induced by 4.

Let ¢ be o near quasi-norm on & vector space X, Then g is said to have & scalor multiplcatine
focter for g if thers are A > 0 and £ > 0 such that

tlex) < Mal"q(=) (11}

fwrallae F,ze X,

Euﬂunmﬂfﬁjmmmwhdndqmulmwﬁ-umﬁmhmmﬁynm
hmihhulmlumﬁpﬁmdnfﬂu,thnhhﬂ:nlhfﬂﬂu“hnm It is obvious that every
p-eeminorm oo an algelrs is & moar quasi-norm having = scalar multipliestive factor, so it s a TVS.

For p> 0, we eall a function §: X — R a p-seminorm if for sll 2,y € X ond o & F-

S(E)z0
S{ax) = |afS(z)
Slz+y) < 5(=) + S(y)

IF, in addition 5(x) # 0 for oll = # 0 then S is & p-norm. IT'S is & p-seminorm on X we call (X, 5)
& p-seminormed lincar spoce (p-sernd-NLS)

I 5 is & p-seminorm thas § s necestarily positive Le, S(=) 2 0 for all x € A It s obvious that
for & p-somminorm § the kerned of S, denoted by Ker S, is & vector subspace of A We call & p-senginorm
S proper if § does not vanish identically and 5{x) = 0 for some = + 0, Let 5 be a p-scmineem on A
Then § is said to be submultiphicative (or simply, multiplicative) if

S(xy) < 5(z)S(1) foe all s,y A;
and mbquadrative (or simply, quadrotive) if
5(x7) € 5(z)° forallze A,

H.Ammdﬂ.ﬂdkﬂl.ﬂm:ﬁudrmlﬂpliﬁﬁtyhﬂmﬁrnmﬁnmmhm-l.l;ahn_
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Exmaple 1.1 Let 5{H) be the algehra nfbmmdndﬁnm-npuﬂm:mamlbutmpmﬂ'mq
C. P pe R, 0 <p< 1, lot vy : B{H) — R be defined by

rp{d)= sup I":Aﬂ-‘a:}f‘=
s

himymmthur,hlpmmﬂfﬂ]. Irp=1.thmr,iikumum:numﬂ-hﬂnﬁun_fﬁ
Indhkﬁbknmthuniluﬂmllﬂiﬁi:ﬂiwmmﬂﬂ}.[nﬁ}. 16} Since r{A) = (r(A)P
hﬂdeﬂ{ﬂ},hmw.tr,kmnnmmnlﬂplhﬁup-mnuﬂ{ﬁl,

hipﬁﬁwm;hmﬂmm&nﬁhmm%mﬁp & mediiplion-
ﬁuhﬁrwnﬁmp&mﬁf—ﬁd&rﬁrﬂ&&hmﬂﬂhﬂmEﬂmﬂﬂaﬁﬁhmmd
for A >0, wecall A lmﬁmrurﬂ-fuwfar&hhvhﬁﬁuﬁmthduﬁrﬂﬂnmihup}ﬂh
um-mmsmsiw}ﬂ-ﬁ'{:wmhm:,ue-imnuh.q-mfnrsmsrﬁsmm’
frallze A

EHMMMEIPMSMH-fMMhhﬂ-ﬁmhmmmhM
falae as we will aee in the following example :

Example 1.2 Let Clxn be the sigebea of n x n complex matrices Farpe Nwith <p <1,
'H’ﬂr'?l':n;n-"-ﬂh"
rpld)= sup |<Az,z>f,
T el

m{:,y:--ﬁ):nﬁ. Wrw (- zad ¥ = (..., 50) € C~ It is ensy to see that r, bs
;p-wmmﬂ..,r hhhun-mhﬁrh-tnhlqmdr-ﬁw,hnmuﬁpﬂnuqummﬂ....&u
r,{d}-(n{d}) hr-ﬂdﬂﬂ.“.hhlwﬂulr,h:hn:mamdﬂpnuﬂwp-mm
G-llm

The purpose of this paper is to discuss M- atidd Q-factors for pnorma and proper pseminerm o
arbitrary algobeas. We bogin in Section 2, by studying the multipliestivity of & p-seminomm $§ in tem of
WHSMWMMMMHMMWMMMJM In section
!uﬂmﬂjﬂm&tﬁpﬂhﬁﬂhﬂuuﬂ we give that under what conditions
does & p-seminorm § have M-factors if it has Q-factors.

2. MultlpBeativity Factors and Kernels

mﬁ:ﬂnwh;ﬂrmmjnmyndmﬂdmtmﬂinmhlpaﬂnthhhuu
factors.

Theorem 2.1 Let § be a pseminorm on on alyebra A. Then
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(1) § has M-foctors if and enly if Ker S i ¢ two-sided ideal in A and
bany = sup{S{zy): oy € A, 5(x)=1,8y) =1} < eo (21)

(2) IS has M-Jactors and piiup > 0, then pyuy s the bestiloast) M-factor for S,
{3} If § has M-factors and piay =0, then p is en M-facter if and enly if p>0.

Prool. {:}ll’;::a-ﬂH-all-ﬁmﬂzS.whm.ﬂxy}gﬁ{:}sty}=nhmtejm
¥ € Ker 5. Consequently, S{zy} =0, ie, 2y € Ker S Similarly, we have yx € Ker S, Thus Ker
i= & twosided ideal in A Since S(zy) < pS(z)S(y) rum;IEJ.nhnuS{:y}E#fwlﬂ:.yEJ
such that 5(z) = 1 and 5(y) = L. Hence sup {S(zy): z,p € A, $z) =1, S{y) =1} < oo

ﬂmﬂﬂ-ﬁy,mmlhdfﬂ‘ihlhfmﬂudhiﬂhﬁﬂm“ < oo, If.8=0, it is obvious
that every i > 0 is an M-factor for $, so § has M-[aciors Now, suppose that § % 0. Lot g > 0 and
B 2 ting. Then

S(=vl S forall xy €A S(z)=1,5(y) w1, (12)
Ltz y€A llzory € Ker 8, then oy € Ker 5 since Ker 5 is & two-sidad Ideal in A, hence
0= 5(zy) = uS(z)S(y). (23)

Hx.rfxns.mmﬂu:-ﬂ-inmmu-{E{:H mdr=-:}—jrﬁﬂﬂ-!:h5‘tw}£nﬂm

(s(
Sy
im.ﬂw}uﬂj%ﬂs .ﬁu;ﬂlﬂﬂml;ﬁ%js;a Thiid, we have

Flzv) < pS(2)S(y) for ull =,y ¢ Ker 5. (24)
By (2.3) and (2.4) we obtain
Sl=y) < pS(x)5(y) for all zye .l

Henoe jo is an M-factoe for 5, so & bas M-lactors,
i2) ItSh-H-bﬂmudM}Q.hrﬁulhmpﬂuhﬂumﬁﬁuﬁmd’mn

| obtain that ju is an M-factor for 5 and it is cloar from the definition of ie.s that if Ji > 0 i ae Mofactor

fo 5, then juny < p, 90 that juu s b the loast M-factor for 5,

S(zy) = 0 for all 7,y € A, 5(z) = 1,50) = L. (23)

Bz oryE Ker 5, then S(xy) =0 since Ker § i3 a two-gided ides] in A by (1)), Ur,yg Kee S, then

s[s{’},_]=1-s{s;},_}.h follows from (2.6) that S(zy} = 0. Therefore S{zy) =0 for sl =,y & A,
kT *

wa that if 4 > 0, we have S{zy) = 0 < xS(z}5(y) for all z, ¥ €A Hemee p > 0 is always an M-factor for

5, 50 wo obtain (3). 0




Ihmmmmmmmmﬁnmwmumﬁmm TFa
show this, we need a lemmas,

Lemma 2.2 Let 8 be @ pnorm on @ veclor space X ﬂ'{:t.zg.‘..,:,}ﬁﬁnm#ﬁdmdn:
sct of wectors in X, lﬁmh‘:ﬁﬂlﬂﬂu‘t}ﬂlﬁ:ﬁlﬁﬂt]ﬁrﬂﬂm of sealars oy, ony, , . -

heme = L
i=] L |

Prool. %ﬂ:ﬁnnhﬂu:iﬂhnpﬂmﬂnumrhiﬂadn-mmhh identicaly, than 0 < p < 1. T
sen this, let z € X, ﬂ:]#ﬂ,“hmh'[ﬂ] and (jif) that 2#5(z) = S(2r) < 25(z), 50 2° < 2. hence
O<p<lL

For oy, ..., o6, EF.W%IHEIWF. If & = 0, then all oy sre mero, so that (2.6) bolds for wny
o a0, then (16) js equivelent to the inoquality which we obtaln fram {2.6) by dividing by » =nd
-ﬂ:h;ﬂ-ﬁ‘-,thnh

- o
5@.&&)2!11*!’“' Y ar=1 (z7)
; =l
Rﬁhmhnﬁmincbﬂmm[aﬂhﬂhhm&tuﬁndw Baves ol

with 3 A = 1.
ﬁppmmnuﬁuhh Then thevs exists R seqquancs (i, ) of vectors

v--f:ﬂ"]ﬂ where f:lﬂf""l’-l
= =

s that S{y) — 0 aa m = co. mgﬁ'*r-:,nm ™ <1 Hence for ench fioed §, the
m{ﬂ.""’}hhﬁi mmmﬁmmﬁ“‘}m-mm

umwl}m“uﬂ:mmm Continuing in this way, after n stepe wo obtain a
ﬂm{y.,}-mfm.-.]d{j.}whmhmiihhm

Vo =3 0{ ™z,
das]
m&pﬁﬂpnllﬂ#_ﬁ &5 77 — oo fop ﬂl{t].g"__ ST
=k

m'=§ﬁ‘:'. ‘ﬂmh—trumqm. Emgﬁ-]r=lm‘£-]ﬂﬂl {E=111--' ;n},“

m-mgw;pﬂ.nmm.nn can be zero. Since {21,721, , =4} is linearly indepentdent, we

bave y ¢ 0. By the continuity of p-noem, i mll — [l a5 m — oo, we must have [y ol — 0. Henee
hl=ﬂ.nthutpmﬂ.11!'nMIﬁnBy#ﬂ,lndlh:milm o
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Thearem 2.3 Every p-norm on finite fmmmmmmm_ﬁﬂm

Proof. Lut.ﬂb::p—mmlﬁrﬁudimmﬂnmﬂgdrt,l Let {zy,,..,7,} be & basis for A
By Lemoma 2.2, there ia & mmber ¢ = 0 such that,

S az) 23 ja (28)
=1 K=l
for all senlars oy, ... | (. i
Let =,y € A Then we can write :.nizln,m and yng._,:ﬂ:'a for some oy, 4 € Fii =

L2... ,n), 80 2y = gé aifzazy. By (2.8), we have

Yl < 356) wad 3187 < Ls(s) (29)
=1 j=1

By tha propertios of the p-nomm S and {29}, we have

Slzw) S 303 I8P (xexy)
emf foa]

SHT Y PP, whero bt = st

=l =i

- "ighﬂfﬁ: e

J=l
Eﬁh}s{ﬂ]r where = g—-
Hmuphuu-hﬂuhs.nthﬂﬂmhpmﬁ o

Herl[l}uhth-pmthum%dh&hﬂnﬂm.hH&B

| i twosided ideal in A The following theorem ahows that this condition i & mffcient condition for &
] peeminorm § on w finite dirsengional algebes to have Mofactors.

Theorem 2.4 Let § be a p-semsinorm on o finite dimensional algebra A. Then 5§ has M-factors
if and enly if Ker § s a bvo-sided fdes! in A

Prool By Thearm 21(1), if § has M-factors, then Ker 5 s » two-sided ideal in 4.
Corversely, suppose K = Ker § is a two-sided idesl in A Consider the quotient, algebea A/K ,
and define

Nz4+K)=5(z) forall z€ A
Clessiy, N is & p-seminam on A/K. If N{x+ K} = 0, then 5lz) =0, o that = € Ker § = K, hence

z+n’=ﬂ'whid1hmin.ﬂk’,t:thmhnNisap—mmﬁ,u".ﬁ:_ Thus IV has M-factors by
Theorern 2.3, and 5 has the same M-factors on A This compiete the proof. O
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For O fpghmﬂmﬁ:mmumdmﬂnhmﬂumdapan
mﬁmn%mmmmmmnb@ﬂhm&mm

Furthermore, if &' & p-aorm on A, then 5" i squivalent to 5 fie., there ave a,b > O puch thai
eF(z) < Siz) < b5'(z) for alize A )

Proof. Let {a;.....:.}ht-hmrw‘.d. Fh-u-d::ﬁ.-t,thmuﬁduunqua,,,...n.ef'
soch thal x ean be written in the form =“_Et“‘=¢r“3{=}“zhir- It is obwious that 5§ satisfley
; i =] e =
{#}M[ﬁ]uﬂﬁ[:}::ﬂﬁ::ﬂ.hﬂnﬂﬂnﬂlﬁ-[i}.lﬂ:- oz and p = ¥ Sz, where
-
ﬂnﬁlEF{iwI,..-.n].ﬂhuh+.ﬂ-?£{m|'+|ﬁ|"hnﬁinl,...,ﬂ,“hw =

Sz+y) = f:lnwmr

=l

< Yl +3 I8P
i=l =]

= (=) + S{y).

Hence § satisfies (iif). Thus § is & p-norm an A,

Now, suppose that 57 is sew p-porm on A lndht.r-gnnwhnn;lil-" {i=l,...,n). By
trinnghe inequality of 5, we have

FEE 3 oSz
il
< ngnf'
= MS(2)  whore M= mp S'Gx). (210)

By spplying Lonma 2.2 with 57, there is ¢ > 0 such that

5(z) ns‘{‘lﬂnm} > =§ o = eS(z) (211)
=

1t fallows from (2.10) and (2.11) that

Sz} £ 5(z) < 05'(x) foralize A

m-=$ma=%,mﬂrm3mm o

Theorem 2.6 Let A be en cigebm and lef K o two-sided ideal in A such that A/ K = finite

| dimensional ThenforQ<p<] .ﬂﬂuﬁ'ﬂp-mmhﬁmd'iﬁ#ﬂﬁi{,hmﬁﬂy”—fnrhu




ProoL Let pe R O<p <l and it 5 h-panA,.FK defined 89 in Leming 25, Let
Sz} =5z 4 K) forall zc A

Ilhdmrﬂmt-&'hapa:m‘mrmmﬂvhmlmmﬂ s K. H;Thmrmﬁ.ﬂ.ﬁ“huhi-&:h:mﬂﬁ'.
ﬂm-Shuﬂmu-umuﬁdmmJ.lndtlnt-huxmiupmuud. a

By Theorem 2.8 we obtain -

Corollary 2.7 HJhlﬁﬂhEﬁﬂ:ﬂﬂdhﬂiﬂl}dﬁﬂﬁ'lMﬂHHﬂhL Then for
t<p<l, ahmﬁlpm.i’m.lui:htmﬂE',WH-hdm:.

If A is commutative and = € A, = # 0 is not invertible, we have
<zr>m{ra:ag A
is & two-gided proper jdeal in A By applying Corollary 2.7 with K = <2 > wo obtaln :

Corallary 2.8 ﬂAiamﬁwﬁnﬂlm#ﬁmdﬂiz EA = # 0 dr mot
Mgmmu.mmsmAmﬂzjnu,mMMm

For a simple algebrs, wa obtain the following theorem

Theorem 2.9 Let A be an alyebra and ) <PE L If Adia mimple, then there are no multinSeative
Froper pogemninorma on A

Proof. Lei § be & smitiphcative posminorm oo A By Theorem 21 (1), K = Ker § la s
Vwo-gided ideal in A Sinee A & simple, X = {0} or K = A In the first case 5 is a p-nonm, and in the
socated § = 0. This compiste the proof. [u]

ﬁnm.F‘.gmthtllphnd-:nmummF.imtu [4], Thetrem 10 p.d14), weo
immodistely obtain from Theorem 2.9 :

Corollary 2.10 Mnnwmmmﬂ“.

3. Quadrativity Factors and Kernel

Hy nsing the same proof as in Theorem 1.2, [2) with some modifications we can essily prove the
following result :

Theorem 3.1 Let 5 be @ pseminorm on an algebra A, Then 5 has Q-factors if and ondy #f
Ker 5 is closed under squaring (ie., 2 € Ker § for allz € Ker 5} and

Mar=mp (S xe A, S(2)<1) <o fa1)




Proof Suppose that A > 0 is & Qufactar for 5. Then
S=") £18(z)* foral ze .4 {3.2)

Wz € Ker 8, we obtain from (3.2) thas S(2%) < AS(2)* =0, = that S{z?) =0, It follows from (3.2)
that 5() < A if $(x) S 1, 50 Ay < A, henoe (3.1} is satisfiod.
MM,MHESHMMWM{EJ}M K26 Ker S5 b

ssmmption, we huve =¥ € Ker 5, s0 S(z%) = A 5(=) = 0. ¥zg Ker S, then S{S—ﬁ.r}=], 5 wa
*iF

sbcia from (3.) that S S!S A bemos S(e%) < Ay S Thus Ay o Qufacter
for 5. This complete the procl. 0

Lemma 3.2 [et S be o quadrative p-asminorm ofl on alpedra 4. Then
Slew+4x) S P75(z)S(y) forsliz,ye A

Prool  Since 2ey + 2 = (z+ ) = (2 = )3, we have PSley+1m) < S((z+v) + Sz =yP) <
2(5(=)+ S))", w0 il 5(x) < 1 wad S(y) < 1, we have

Syt yz) <27, (8.3)
Now, lot £,y € A be arbitary. Then for £ > 0, we have S(2/) < 1 aad S(/) < 1 where ' s
v £ wo have {v') ere __-_;[gi:]+¢}
Mfﬂ‘—_FlT-hhM1“m

[F"I:IIH;}'
Wﬂ +¥3) = Sy +i/x) s 2%,
T +ﬂ]5¥"{s{ﬂ+‘]{'ﬂﬂ+t}hwg}m Since ¢ > 0 8 acbitary, we have
Hay+ 1) £ 2V 75(=)S50y)
= we heva the lanma. 6

For an algebra A wo recall meurdaupmdﬂuinA&ﬁulbf
rny:é{:rp-lr vr) for allz,y = A
Lat AT be the algrhra obtained by replacing the product in A by the Jordan product. We call 4%, the
special Jordan aljebra exsociated with 4
As usual, we call & set J € 4 a Jordin tdealin A zy+y= € T forall = Edsndye T,
Thnntﬂmmglmnmrymdmfﬁm‘mmmﬁﬁmnh—-pamﬂnmﬁ to bnve Q-fartors,
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Theorem 3.3 Lot 5 be o pseminarm on an algsbre A Then S Bas Q-factors if end ouly if
Ker 8 is o Jordan ideel in A end (3.1) holds,

FrooL Let A be & Q-factor for S, Then {3.1) holds by Theorem 3.1, We now shoe that Ker 5
i5 & Jordan idenl. Since AS is quadrative, by Lemma 3.2 we have

AS{zy + yx) < 27 P238(2)5(y) for allz,y € A (2.4)
It follows from (5.4) thet

S{zp+pz) =0 frallz e KerS,andyc A;

that i, zy -y € Ker 5, 50 Ker § s n Jordan jdeal.

Ehppnn,mmwndy.m.ﬁ'n'SFtlJumHulhAudh.; <o Iz e Ker 5, then
‘.h*==r*+m*"=a:=+ﬂEH‘crEhan:rEh-deuH-LnME:‘f‘]nl‘.'l, benee =¥ £ Ker §.

Thus Ker § is closed under squaring. So, by Thoorem 3.1, 5 bas Q-factors Tha proof Is pow commpleta.
n|

Using the same argument as in Corollary 2.1 in 18], we obtais :
Theorem 3.4 MnumWMunmmmM

Example 3.5 Let Coya bo the algebon of n x n matricos over O, By Theorom 10 in M), p. 414,
Cuve in simple, nﬂﬂhm&nn?hmmllthdthu-mmmmpmwm...

ﬁlfﬂhﬂmﬁm}lﬂtﬂﬂhﬂmmm:

Theorem 3.6 Iﬂ#h-mmnﬁmmwj. Then § has Q-factors
v and ondy if Ker § is a Jordan ideal in A,

Prool I § has Qfactors then Xer S ls & Jordan ideal in A by Theorem 3.1,

Converacly, lot Her § be x Jordan ideal in A Since Ker 5 is a subapace of A, we have A/Ker 5§
bs & quotient algebra. Since A i finlte , 30 s A/ Ker 5. Consider the quotient algebra A* /K er 5. Dofine
S A Ker S— Rty

5(z+Ker §)=5(z) forall x4
Clensly 5 ia & p-norm on A% [Ker §. hj}ﬁush&ﬂ-wﬂhj+fﬂ'ﬂ'$hﬁ:m

identical inear structure By Theoram 2.3, 5 has Q-factors. Let X > 0 be s Q-factor for 5. Then for
TEA

8(%) = S(3(z= + 23)) = S(z02)
=F((z+ Ker S)(z+ Ker 5))

2 A5z + Ker 5} [z + Ker 5)
= A%5(z)%.




S b = & Quloctor for 5 on A a

Y and only if S has Q-factors.

mmmwmmmnsauq,fmm,msmmm

Suppose that § hes Q-factors. Than there is s ) >0 sach that A8 is quadrative, Then by Lemms
A7, we have

Sley + yz) S PTAS()5(y) for all 2,y € 4 (15)
Sinee A ls commutative, we obiasin from (2.5) that
=) 27 %A8(2)8(y) for slzped

Hum?"hhhmld-ﬁmhﬁ.mmm-m o
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Matrix Transformations on Some Vector-Valued Sequence Spaces

SUTHER SUANTAL

m Ie dhis paper, we glva the meiris charsciesisstlons frems vesLor-valued
sequance spaces of Maddox (X, p), o X5}, LulX,p), and X, p) Into scalnrvalusd se

quence spaces of Maddex cofg)iclg), xaa £ (y) whaee p = (py) and ¢ = (gs) are beunded
asuanced of Besllive real mumbare.

(1991} AME Matbemaibs Sulijeer Classlfication: SRA LS,

L. INTRODUCTION

Lot (X, 11} be » Baznach space and p = (m) & bounded sequence of positive resl pumbers. W
write £ w () with =, ln z for all k & N, The X-valuod sequence spaces of Muddox aro defined as
el X.p) = (z= {ﬂ}?fjﬂuhll"" =0},
:{I.p}-{tﬂln]:if_tﬂuﬂti-nﬁ"nﬂ for some a € X1},
!W{I.r}nirt{n]:lgp lzalt™ < oe},

X, p)= (== (za): ) ll=al™ < o0}
E=l
When X' = Ror ﬂ1mmmﬂ¢ﬁﬁm-q{p}.dﬂ},fm[ﬁ]mdﬂﬂI"Hpmﬁ'rdrﬂhﬁ
each of thom is called & sequence space of Maddor These spaces were first introduced and studied by

Simens (6], Maddox [3, 4], and Nakano [5]. Tn [1]mmammq}{p}. cip), and £_.{p) have

Ty prees by AyS-TEX




In this paper we consider the problem: of charctarizing thoss matricss that map an X-valped
sequence spaces of Maddox inte sealar-valued scquetice spaces of Maddoy. Crosse-Frdmenn [ has given
chameterizations of matrix transformations between the scaler valued sequonce spaces of Maddax, Wu
and Lin [8] deal with some of this problem with some conditions on the sequences (p) end {ge). Their
characterizalions are derived from funclionsl analytie principles. Our approach here is different. W usa
a method of reduction introdnced by Gresse-Erdmann [2). In [1}it i pointed out that ea{p) is an schelon
spaca of order 0 nnd that £ (p) 8 & co-echelon spacs of order oo In this paper we also show that (X, p)
i an echelon space of arder 0 and £,.(X, ) is 8 co-echelon space of ceder oo, Therefors these spaces are
made up of simpler spaces. We will use certain auiliary results{Section 3} Lo reduce our problem Lo the
charcterisations of matnix mapping betwesn much simpler spaces.

Z. Motatlon and Definitions

21 Let (X, ]|.]]) be o Banach space, the space of all sequences is X is denoted by W(X) snd $(X) is
dendated for the space of el finite soquences in X. When X « R or €, the comrespending spaces are
written a8 w and &,

A sequemes gpaces in X is & linear mubspace of W(X), Let £ be any X-valued sequence space.
Foe = € F and k € N, we write 2, stands for the k™ term of 2. For k &€ N dencte by ¢, the seqrence
(0,0,...,0,1,0,...) with | in the &'* position ard by ¢ the sequance (1,1,1,...). For z € X sod k € N,
et #*(x) be the soquencs (0,0, ., 0,2,0,..) with = in the B position and let e(z) be the smoenoe
(=.2,2,...}. Fora fined scalas sequence p = (u) the scquence space B, i defined m

Eu = {x € W(X) ! (ux) € E) .

The sequenice space E & called normal if £ € £ and y € W(X) with fin || € ||z ]| for all k & N impiies
that v € E.

22 Lot A = (J}) with f7' in X', the topological dual of X. Suppose that £ b » space of Xevalued
w:ﬂF;mdwmuﬂm Then A s said to map E into F, written by

.I:E-*Fﬂl‘urnehrtt[n'.lEE.Jn{:}ﬂZH{n]whmnEN. and the sogquenen
Az = {A,(z)) € F. H(E,ﬂmrwﬂuﬂdiﬂiﬁﬂumlﬁmmppinghn Eino F. If
= (u) and v = () are sealar sequences, lot

LB Fly ={A= () (e )z € (E, F) }

Hue # 0 forall & € N, we wrile v ' = {;:-l;} In this paper we are concerned with finding conditions oa
s matrix A ={f7) thet characterise its membership Lo cortain dasses {E, F),

2.3 Buppose that the X-valued sequence space E is endowed =ith some linear topology 7. Then B s
calied & K-space if for cach n € WV the n'* cocrdinate mapping ;o - £ — X, delined by pifz) = 23,




3

ontinnous on B Ehaﬁﬁﬁm{ﬂ.f}hmﬁéﬂﬂmwﬂlﬂ-]mﬂm E bcalled an FE-
(HE-, I.FH LBK-) space. Now, ﬂ:ppwclhatﬂ'mmaiui[.t}_ﬂmEmuidmh-mmﬁjﬂi

lh!ﬂ{zﬂt{ﬂg} nEN | & baunded in E for every = [z} € E. It is zaid to heve properiy AK i
k=l

z e*(24)} — x in £ 88 n— oo for every = = {Ti) € E. K hes property AD if 9(X) is dense in E.
=i

LA
mmt{p]hummuiﬂiﬂ]{mﬂwunmﬂﬂ = (E:lnﬁ"") . Where
k=]

M= mm:{l,.nq!p.]- MWW}anﬂmmmﬂlulnFHmmwjun
mphmi.ﬂﬂ—upmwuhﬂﬂfﬂﬂ}] It s the same ss above the space #(X, p) is an FK-space with

A
AK under the paranorm gfz) = (Ei:;ﬂ") -i:musm{lmpn:- In each of the space

k=

t‘_,{..‘rp}nndsg{xp}wmdulhnlunﬂjnng[r}=npﬂnl’”’” where M = maz {1, lli;lrpqr]: Itia
knerwn Lhat ea(X, ?}hmﬂmmtbﬂmﬂuhmjﬂnﬂﬂﬂ%lﬂdfuw+!lhn
mﬂﬂalﬂﬁmﬂtﬁﬁﬂ.hﬂx,p]“mdnrﬂuﬁmhuﬂ:]nll.mﬂ::n.—uﬂ?'-'”+ﬂn|-‘hli
nhﬂnunlqluﬂ-rmhxmlht-n{u]l:qix.ﬂ hgilmmurmmnfﬁ'p]m:{.fp]hm
FH-space wuler this parancem g.

3. Somo Auxillary Resulta

Inﬂﬂlﬂdjmﬂﬁﬂhrhutmfulluulhlhﬂmhu-lhrﬂmmrﬁﬁﬂumlm“
simpler formul,

Proposition 3.1 Let E end E,(n € N) be X-vadund sequence apaces, and F and Fuln € N)
scalar sequence spaces, and let u end v be sequences of recl sumbers with uy, o 0, 1y d0forallke N,
Then we have

) (UBaP) =)
ﬁ) {Elrﬁnlpljlr;l[E-FI}
() (B +‘£=JrF}-{Ehﬂn{£ﬂlﬂ
() (E\F\ @ F3) = (B, F) ®(E. Fa) if the following two conditivns hold
(1), E, ¥y, and Fy are FK-spuces and E hoy AK and
(8). If (%a) @2 & sequence in X with %, = 0 o n — oo emplies e*{r, ) — (0.0,0,...) a3 it — 00 in

EforallkeN.
(v] (B, c{q)) = (B, eo(q)) & (E. < £ >) if E is normal containing 0(X), whers ¢ = (g) is o bounded
sequence of posifive real reembers,
(wi} (E,Fy) = (B, Fa)N(${X), F) if B is on Fi-space with AD, 3 5 an FK-space and F; ©1 @ closed
subspace of [,

{vi) {EMFU} T I{E-F}t-"-

Proof, Assertions (i}, {ii), (i), snd (vii) are irunediste.




S =

Ta show (iv), suppose that the conditions (1) and {2) hold N js clear that (E R+ (E R C

(E, Fy + F3). Moreover, if 4 € (E,F)N(E,F), then 4 & (E,F N F3) = (E,0), which implies

thet A = 0 because £ contains 9. Hence (5, F) + (E, F3) & = direct sun, Now we will show that

(ERaeaR) C(ERI+(EFR)L La A= (ff)eE(EEFfi®@F) Forx e X and k & N, we have

{fEz)) _, = Ae*(z) € Fi @ F3, 30 that there are unique sequences (57 (2)) ., € F; and (=, e R
wiLlj

(R = RN, + {2, (21)

For each w, k € N, let g7 and &7 be functionaly on X defined by
gi(z) = B{x) and h(x) = Px) for all z£ X
Clearly, of and A} are linear and by (1.1)
=9 +M foeall n kel (3.3)

Nota that Fy @ Fy is an Fi-space in its diroct sumn topalogy, By Zeller's theoten, A - E—-Fi&Fis
continuous. For each & € N, bet T 1 X — E bo dofined by Tiz = *(z). Tt [ollows from the condition
(2) that T} is continuous for all k € N Since the projection Fi ol ¥y @ Fz omto Fili = 1,2} ure continucas
snd g =paoPodely, and Al mp o ProdoT, for all n k€ N, wo huve gT' and A7 are continuons,
80 gAY € X' for all m,k € N. Let 8= (57) and C = (A2). By (3.2) we havo A= B + C and it is clear
that B € ($(X),Fy) and C € (#(X), £a). We wlll show that B € (B, Fy) and C € (E. F3). To do this,
Iﬂ-:n[ﬁ;}E.E. By the continuity of the matrix A : £ = £ & F3 and the AK propocty for E we find

that J{Zu"[n}} = AT a8 1 — oc. Since the projection P of F; & F; onto Fi{f = 1,2) are continnous,

B |
B3 e) = A(AGS ) ~ Atk € i and
1

W hEvg
k=]

c(ge‘m}) - ﬁ(ai{g e*{n]:l) — Bifdz) € Fy

Henee B € LE.F;}MGE{E.H].M;,wM-AE{E,P.}i{E,ﬂj,udﬂimi.

To show (v), supposs E is normal containing $(X). Since dg) = calg) @ < ¢ >, wsing the same
proof s in (iv) we have (B, es(9))+ (B, < e 3) S {E, ool) @ <€ >) = (B, clq)) and (E, eslq)) + (5, <
€ > is o direct sum. T A = (f7) € (5, clq)) = (E, als) @ < & ), the asme 85 in (iv) we can write
A= B+C with B = () € (#(X),c0(g)) and & = (k) € (#{X), < e >). Let = € £ Then for
a = (o) € £, we have

lowzsll = foxlllesll < [Mzi]] , whes Af = i g lexaf .

Dy the normality of £ implics that {ay2,) € E, it follows that ({7 {ze})as € (fee. colg)id < & >} Sinco £,
& pormal, it fullows form 2, Proposition 3.1 (vi) | that (g7 (ze)les € (fee. enlg)) and (A0 {2}z € (£, <




F

3

€ >]. This implies that Br € apfg) and Cr € < € >, 50w buve B = (E.co(9)) and € £ (E. < & =),
hence A & (B, enlg)) @ (E. < £ >}, 50 we obtain (v].

1t vemains to show [vi). Assume that B is an Fi-space with AD, Fy is an FH-spsee snd Fy i
& closed subspace of Fa. Clearly, (E, F)) C (E, F) M {${X), F1) is always the case. Now essume that
A= (ff) € (B F)N(#{X).Fi} and z € E. By Zeller theorem, A: E — F; [ contimous. Since £ has
AD, there is a soquance (g™} with ™! € $(X) for alln £ N such that p!*) w2 in Easn — oo, By the
continuity of A, we have A% — Az i Fy as n—+ 0o, Since Ay!™ € Fy for all n € N and F, i 2 closed
subspace of Fy, we obtain thet Ar € Fj. H:nde{E.F,I.mthu[.ﬂ.ﬁ]ﬁ[qﬁ{}f],ﬁj-;[.E.F‘.}. This
compleie the proof. o

Propesition 3.2 Let p = (p) b o bounded sequenices of positive real numbers, Then
(i} e[ X,p) = colX.p) + {el=h -z e X ).
(1) eolX,p) = MCLiGal X Yy Hence o X, p) is an echelow space of order 0.
(L) Laal X p) = T banl X Y- 1ina ) Hence 2, (X, p) s @ co-echelon space of arder eo.

Prool  Asertion (i) s bumediate. To show (i}, ket = € (X, p). Then |naf™ — 0 w
k— oo Foreachn & N, et & = fzufPo.n for all k & N, We huve that &, — 0 a3 k — ¢ : henos
[ENTLE -6‘}:‘""‘ = 0 & k — 2o (because p € £.), 50 we have = Eq{.:l'.'}i.m.:,. Conversely, assume
that £ & Mi@(X)purtrnyr Then lim |lzelln'/® =0 for overy 1t € M. Then for n & N we bave

P < for lage k, hewce = € co( X, ).

It remains to show (iil). If = € £.(X, p), then there s some 1 & ¥ with [z, [|*> < n for all k & N, Henos
fraffn~Yre < forpll ke N, sothat z & Lol X ) -100 e On the other hand, if £ € lﬂ.‘ufﬁ{ﬂ{.-lrﬁh
thea there are sma n € N and A > | such that fzyfn=" < A for every & € N. Then we have
hl"ﬂﬂ.H"ﬂnﬂ‘ﬁ:dlkEN.whmn-ﬂ:p fr- Heace x € £,,(X, p) = |

4. Mnln Results

We now turn to our main objective, the dharacterisatlons of matrix transformastions from the
vectar-valued sequence spaces of Maddax (X, p), o{ X, p), Lo (X, p), mnd HX,p) into scalar sequence

spaces ca(q), e{g), and £uu(g). Some results gumoralize scene in [2, 6, 7, 8. Wa begin with the following
theorem which ganeralizes |8, Theceem 2.1].

Thoorem 4.1 Let p= {p) and ¢ = () be bounded saquences of pasitive real Tmbers and
A=(fF) an infinite matrix Then A € (@l X, p), to(q)) il and oniy if
{1} m‘-'""-j';' ﬂﬂuu—-mhﬂu}rrﬂ. ke N and
{2} Emu"ﬁﬂ’ﬂr‘”"" —Dasn, r— o for ovory fixed m g V.

=l




FProof. By Propesition 3.2 (i) we have ca(g) = Moy~ It follows from Proposition 3.1
{if) end (vii) that A € (eo( X, ), ao{q}) if and only if (4% ) s € (e X, p), ) Tor all m € & By {8,
Theorem 2.4 |, we have (m*% 121, ¢ € {ey(X, p), en) if and ealy if 1) and {2} hold. 0

The next theor=m gives & charscteriztion of infinite matroc A such that 4 € {eo(X, p). 2(g)). To
do this we need s lemma

Lemma 4.2 Let (fi) be & sequence of continuons knear functional on X, Then i_ﬁ,{:‘}

E=f

conizerged for all ¢ = (=) € al X, p} {f and only iff: LAl < 5o far some M & N,

Bl

Pruof. Suppose that Eﬂ_ﬁ.l[H'”’* < oo for some M € N. Lt ¢ = (2,) € ol X,p). Then
-

Ih-hlpmihi\'nhlwifaﬂlhﬂh.ﬂ?'f%iﬂrﬂt_}_ﬂ‘hﬂnﬂmﬂ{ﬂ#’_”ﬁh.ﬂtgﬁ.
The= we hava

i Hafzall < 3 WAl £ 37 WARA Y9 < oo,
b= =g f-—r

hd
It fallows that ) fu(zs) comverges.
bisl

ﬂnthnﬂhuhﬁ.mhtiﬁ{:ﬂmhrlﬂzEq.{.!'.p]. For esch = = (1.} €

=]

(X, p), choose scalar sequence (1] with |6] :I such that fi(tuzs) = [fu(za)| for all k € N, Sinoe
{tazs) € 0o( X, p). by our sssumption, wo have 3 fu(tama]) comverges, 50 that
Ees |

2 Uizl < oo for all 5 € a(X,p) . (4.1)
km]

[l
Now, suppose that Eﬂfhllﬂi""r"' =10 for oll mi € N. Chooe my, k; € N such that

=1

2 Welimg ™ >,
Lk,

and chooss my > m; and by > &y such that
2 Ufifmztr 2.

By cknly

Procoeding in Lhis way, we can chogee my < mg < .., and 0 = &y < by < . such that
3o Malim P

[ S 5T



Take 7, in X with lzell =1 for all & ki_p <k < k. sach that

2 Uelsdim Y 5§ frall ic N

ey BTk

Puty = () e =my P2, for iy <k Sk, then y € (X, p), nnd we huve

S iz P felmellm P 5 eallie N

kL RgRy

Hence we have E{fl{hﬂ = oo Which contradicts with {(4.1). This comgleta tha proaf, o
k=]

Theorem 4.3 Letp = (m) and g = (q) be bounded sequences of positive real numbery and let
A& = (f7) be an infinite matriz. Then A € (eo(X, p), clg)) if and only if there ds a sequence {f;) with
flrEI*ﬁ_f!rmlrEHnuiﬂ-u

(1) 3 UANMTP < oo for some M € N,
b1

(2) M= = fu) 0 a2 — 00 for every m, & € N and
{3) Em""-llﬂ' = Jullr™"™ QG ganr = 0a for each fired m & N,
Be=}

Proof. If A € (a(X. p),clq)), we have A € (ca(X,p), colg)® < £ >) sinca clo) = aslg) & < 9 >
It foliows from Proposition L.1{v) that A = B4-C, where B € (e[ X, p), co(g)) and C & (ol X, p), <e>),
Let C = (o). Since ®(X) C (X, p), we have (b=, E<e>foarnllz € X and k € N, which
tmplies that g = g*" for all m, B € N, Forsach k € N, bt fj = gl Then wo have (fF = fulus €
(s{X, ), co(q)). Henco (2) and (3) bold by Theorom 4.1, Sitce € = (filun € (lX.p), < & ), we

havee % ° fu(24) converges for all = = {z,) € ey{.X, p), henes (1) ks obtained by Lemma 4.2
=1

wmmma-mtﬁ]mﬁex'hmkeMmmmmm
(1), (2), and (3) hoid. Let B = (f7' = faos and C = {fi)os. It is obwious that A = B 4 C. By the
conditions (2) and [Il. we cbtain by Theorem 4.1 that B € (as(X, p), co(q)). The condition (1) imples

by Iﬂnm{.‘lﬂulzﬁ{q]mp for all 2 = {z4) € a{X, ). This implics & € (el X, p), < e >).
ﬂmnhmb?ﬂnﬂhll{v}MdE{ﬂn{I.ﬂ.qq}L This completes the proof. ]

Theorem 4.4 Let p = (py) ond ¢ = (0] be boundad ssguences of positive real numbery ond
A=(f}) “Wﬂm Then A € ({x(X, 5), co(9)) f and only
£1) miis D asm— oo for every k and m e N and
H’}Iﬂruthm.HEH.jEH;Im”*-H”ﬂ—rﬂmk—-untn:f,rwmﬁrmnEN.




Proof. Since gfq) = I'lilmf_u“}, we have by Proposition 3.1{ii) and {vii) thay

A€ (fa(Xip) cole)) == A € (L X p), torsang) Bor sllm e N,
= (m'f2) € Ul X, 7). o} forall me N,
<= the conditions (1) and {2) hoid (by [, Theorem 2.9].)

Nole that Thearem 4.4 generalizes the result in [8, Theorem 23]

We now give s charectenization of an infinile matrix 4 such that A & {£eo{ X, P}, elg)) by using the
previous nuxiliary resuits and Theorens 4.4, However, in arder to get this, we need the lallowing lenma.

Lammmu 4.5 Iﬂpnh}hwmn_rmmlmmbmmmjnlm
WA o € X for allk € N. Then 3 fuze) converyes for ail £ w (2;) € bu(X,p) if and only if
k=1

iﬂ;ﬁu‘“" <ooforallne N.
=1

e
Prool I 5 /ulin'/™ < oo for alin & N, then we have that for each = = (x,) € £.(X, p), there
s}

s m & N much that lzu | < m'” for all keH‘hmmith Eiﬁfhlﬂlﬁ-ﬂﬂ < iIMM"‘"‘ < oo,
b=l = k=1
which implics Ef.{:.jmut-.
Rl

Caonversely, lﬂumlhtifq{t.}w for all z = (x,) € L,{X.p). W first note that, by
using thi same proof aa in Lamne 4.2, we hive

E!ﬁﬂh]‘lfw for all 2 = (z,) € L.(X,p) . (42)
Fyars

£

Now, supposs that E:I.ﬁlﬂ”’"=m for some n € N. Then we can chocss a sequence (&) of positive
k=1

integer with 0= kg < k; < &7 < . such that

3 IAlsY™ > frail ieN.
kg by
Taking z: in X with fr]| = 1 such that for all i € N,
3 felze)intir 5.

L




Put y = () = (n"Prm )" | Cleadly, y& Lu(X,p) und

YLl 3 Wsmdintie i feaie N

k=1 by gk

Mence %" |fu(ye)| = 26, which contradicts with {4.2). The proof is now complete. O
by
Theorem 4.6 Lol p= (p) and g = (g) be bounded sequences of positive real numbers sad let
A= (fF) be an infinite matriz Then A € (8.(X, 1), ql) of and ondy {f there is o soquence ([i) with
JEEI'“,FPMT&EHHHIHI

(1) 3 Ialin' ™ < oo for altn g N,
k=i

(2) mMon{ D — 1) % 0 as 1 — 00 for every & and m & N aad
(8] for eachm, M € N, Eﬂ?-Mh”‘*H'Mﬂﬂﬂki—ﬂMdnnE N.

Praok If A € (L (X, p), clg)), it follows that " fuf=s) converges for all 2 = (2,) € £.(X.p),

hemod (1) holds by Lemma 4.5. Since cfg) = co(g) -::?f-hnwﬁwduunu.xmma -84+
where B € (Lo(X, ). cofgl) and € € (80 (X,p), <€ >). Stnce $(X) § Loyl X, p), it implies that there
m & sequence (fy) with fi € X" forall k € N such that € = (fsdna, 50 we have (/P = filea = B €
(£ (X, P}y (). Hence we cbtain (2) and (3) by Thesrem 44,

Conversely, mssuma that there is & saquence (fu) with f4 € X' for all k & N mach that the
conditions (1), (2), and (3) bold. Let B = (f = fi)as and € = (fi}, 4. The condition (1) kmplies that
CE (lalX.p), < }j{hwqrmmﬂ]lﬂlhnﬂuu{ﬂ}md (3], by Theorem 4.4,
implies that B € (Lu(X,p). @(4)). By Propesition 3.1(v), we obtain that A € (£.(X,p), olg)). This
eamplete the proaf. @]

Theorem 4.7 Letp = [p} and g = (qu) be bornded sequences of positive real manbers and let
A =(f0) be an infinite matriz. Then A € (o(X, p), La(g)) & end only §f

(1) sup {Eﬂﬂll:ﬂ""”‘]"’ < co for some M € N end
bl hl
(2) ;Epm:.uhqm where T, € X' és defined by Tz =Y [1{x) forallz € X.

Proof. Assumethat A € (X, ), Laolq)). Since o{X,p) = ol X, p)+E whers E = {e{z) : z € X},
we have by Proposition 315} that A € (ca(X,p), fo(g)) med A = (E, Lo(g)). It follows from [4,

Theoorem 2.10] that the condition (1) holds. Since 4 € (E, E=l)), we have ) ° f7(x) oomverges for every

=1

zeXand (3 DT & Lofq). FﬂﬂﬂﬂlnEN.HT_:=iE{::]ﬁ:rnﬁ:EI. It follews by

k=4 k=]




1]

Banech-Steinhaus theorers that T. £ X7 Sinee -E'-I':p [Talz)p- = sup fz‘ﬂ'{;ﬂﬁ < oo, by |8, Theorem
1.1] we have sup [[Tyl|e < oo, 20 (2) is obtained. =

Conversely, assume that the eonditions (1] and (2} hold It fallows from 18, Theoress 2 10} that
AE ‘W[I-FJ‘- L.(q))- We have by {E} that for ench z € X,

sup |} I = sup [Tuzl™ < (1 + Bl sup [To |1 < oo
frmr A il

where o =1r:|l.p n- This bmplies that A € (E, L.{q)) wheee £ = {efz) : z & X}. By un application of
Propasition $.1(iii) we have A € (e{X, ), £ulg)). The pros! is now complete. (m}

Theorem 4.8 Letp = (pa) ond g = () be boundal sequences of positive real mimbers and let
A= (1) bé an infintie matriz Then A & (e X, p). cale)) if end ondy if
(1 n::-"""ﬂ‘ .0 asn— 00 for ererym, k € N,

(20 3mSR 0 asn, v — 00 for cvery m g N and
]

(313 I — 0 s s = oo for enery 2 € X,
[ T8

Proaof. Eilmdx.p]-q.{x.p]-hﬂwhliﬁ'-{t{.ﬂ::EI}.nl’lﬂlh:-']"mpuliﬁwl:{m.
4 {H.'I.P}-m[#}} §f wred only f A € l‘,ﬁu{xm}- cﬂ“'“ snd A € (E, ﬂl["‘-'}j'+ Cloarly, A € (E. oig))
If and only if the condition (3} bolds. By Theorem 4,1,»e have A € (cal X, p), egl)) if aod only if the
comditions (1) and (2) hold. So, we have the theorom, o

Thearem 4.9 Let p = (ps) and ¢ = {ga) be dounded sopuences of positive real mumbers snd Lt
A = (f7') be an infinite matriz. Then A € (e{X,p), c{q)) if and enly if there ir @ sequence (fy) with
REIL}WHMENH:AM

(1) SWRUM M < oo for some M € N,
kml

{2) mMe(f2 — i) S0 msm — oo for everym , k€ N,
(% Em‘-"'ﬂﬂﬂ'-ﬁﬂr'”ﬁ —0 arn, r— o for every m € N and
=1

) (3 @), & o) fratize X.
=]

Proaof. Since ofX, p) = wfX,p) + E, where & = {e{z) : € X },it follows from Proposition 3.1
iii) that A & {2(X, p),c{q)) if and only if A € {c{X.p). clg]) and A £ (E, clg)). By Theoremn 43, =
have A € [o(X, p), elg)} if and only il the conditions (1) - (3} bold, and desdy, A € (£, cq)) if and
anty if (4) holds. Hence, the theorem is proved, o
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Thoorem 410 Letp = {pe) and g = () be bounded sequences of passfrve read numbers with
Pe =1 for all b € N, and tet A = {f7) be en nfinite matrie. Then A € (8, 8, tala)) if and endy if
{1} m¥ieagn L pp—— Jor every k€ N and
(&) there emats M E N such that [fm! 9 fY|J" < M farattm k€ N

FProol  Sioce gy = r‘f:n_l':ﬂtn'-ih:l oAt follows frem Proposition 3.1 (i) and [wii) thet A &
(20X, 2], colq)) Il and only if [m"r"j:}m £ {0 X, p), o} locall mE N, By |8 Theoremn S.6], we have

fm‘-'r"‘ffj]"lh € (F{X, p). ra) i nnd only i the conditions (1) and (2) hald. The quf ismaw comgibele
C

Wit and Lin [8, Theoresn 2.7] hove given s chargeterization of w infldite matriv A sichy Lt

A& (X p) oo} whon pe > ) for ) BE N By asing application of Progeeition 80 (58] and (1] | we
oliesin Lhie llowing residli,

Theorem 411 el p o (p) ond § = (gu) be bounded sepuences af positive veal nsrnbers uaik
Pu > 1 for all k& N oand let A = (f7) te ancinfinite meateiz. Thane A € (80X, p), ral))  and ondy f
{1} mbfa=gn il agn—s 00 foratl m, k& & and

(8] Jor eaphomn & N, f}:{m'”" ||ﬁ"||]-""-““"t:'1‘""'r"" ) == ) s — oo uniformly an ¢ &
f=l

Aok nnwliibgeponts

P'ho muthor woiild ko Lo Waank the Thallsnd Hesosrcl Pand for the Hianeen Hpspport during Wan
prpmrnbion ol Yiln papees
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Matrix Transformations from Vector-Valued Sequence Spaces of Maddoy
into the Makane Sequence Space

SUTHEP SUARTAL

ABTINACT: In this paper, we give the matrlx ehiarnctarizstiong from yeetor-valisd
Enljilsniie spaoss of Mediox ﬂn{:‘ﬂ F.:h ﬂfx. F} il {fo. p} Bito U Makans s nplacs
i) wivers p = (fig) mel §f o= (v} wre bawnsdsd sedjiianres of posliive resl pumbare

(TEVR) AME Matbemntlos Higlaot Oisal fenilas: deiaqn,

L INTRODUCTION

Lt (5, |11} b & Banach apace anil = (py) » bounded scqusncn of positive tunl wumbers, W

write = = (ra) with 2y ln X for all k & N, The X-valiied moquance epaces ey (X, B), efX, p), Leal X, 1),
ﬂ-xl P.’i lﬂdi:fx.ﬂ nrn defined ws

ol Xyp) = {2 = {ry} Jim [z ™ =0},
AXip) ={z = (=) Jim |z — al™ =0 for womn o & X},
Lol X p) =z = {m) aup lxal™ < 00},

UX,) = 2= () 3 lleaf® < o0)
i

!.:fx-ﬂ={=-‘='f=-'k}!#1;ﬂ" ||§E~|]-“ < oo forsomm (£4) € o with fL +# 0 for all ke N

Whan X = Hor C the corresponding spaces are written ex oy(p), ofp), L (p) . 8p), and &, (p) respectively,
Each of the first thiee spaces are known ns the sequonee spaces of Maddee  These. spaces were first
tntpoduced aind studiod by Simons 8], Madidax i3, 4]. The space &p) was first definod Ly Mukmna (6] and

Trposed jor A eI EY



2

it i Jern ey the Nakano sequence space. In [V} tho ssructurn of the spuocs cq(p), eip), wnd £o(p) hove
been imvestiznted.

fis this paper weconsider the problein of churacterizing those mistriced that map from VRSt Ors walted
sequence spaces of Maddex ca(X,p), olX,2) and £o(X;p) inte tew Nakana sequanee spce 1(4] where
P = (ps} sl y = (gp) are bounded secuences of priitive real rumbers. By spplying ous muin resilLs,
wo Blas give & cinracterization of infinite matrix mpping from g (X, p) into &(¢). Wu and Lia [7] rhead
with tha peoblem of eharnctarization thoss lnfinte mutrices mapplog from ol X, p). snd £0(X, ) into
caolq} and £..(g). Crosse-Erdmmsn [2] has given charscterizations of muteix transforbotions hetween the
sculnp-valued sequencs spaies of Maddoc It s pointed out in (1] that e(p) is nn cchelon space of order 0
urid that £, () ia & oo-echelon space of ordes s, In this paper wo also alow that, g (X, p) aud £, (X, ) b
& co-echiolon spate of order 00, Therefore thase spaces nre mnde up of simipler spaces. 'We will use cortaln
miaxillury reults(Soction 3) to reduce our problem 1o the dunrncterisstions ol mutrix mapping between
mikich simpler spaces.

2. Mototion and Definitlons

21 Lat (X, |11} be n Banach spuce, tha space of all soguonces in X |8 denoted by W{X) mnd {X) i
domotesl for the spwe of all finite soquences ln X. When X = R or O the corrmpmding rpaces ara
written ag w and &,

A sodintien ipacs in X b & linear subspues of W{X), Lot E be an X-valued siuence space. For
TE L and k& N, wewrita 2, stands for the k* term of 2, For & € N denote by #y the soquetios
(000, s B 1,0, ) wilth 1 thes B posiitlion mnd by & tho soquence (1, 1,1,..), Mare & X and k & N,
lot e*{x) ba the sequmice (0,0, .., 0,2,0,..) with = in the & panition nod Tet e(m) be Uho mqguence
{2, ). For o fxnd sealar soquence g s (pa) the soquence space 5, §s dafined ux

By = {r € WX 2 (uuma) € E) |

E.ﬂh-t.‘.-{ﬂ‘}wilhff’mx',th-mwhﬁﬂﬂdullﬂx. Suppose thel B b n spaco of Xovalived
soquencet said F' a opace of scalnrvaluod poquences, Trumﬂhanldtumlpﬁ'lnuhwﬁumby

A E = Fil for each 2 » (n) € E, ﬂq,fs:}:Eﬂ‘{.t!.}mum_l‘wuﬂmEm and the secuonce
—1
Az = (Au(z)) € F. Let (B, F) denots for the sat of all Inflisite matrices mapping from & inte # 17
%= (ug ) inil v o= (1) wre scalar sequences, let
wE ), ={A= ()« {0z € {8, FY )
Wi 70w all ke H.mmﬂqu"={i}.

2.3 Suppise that the Xovalied mquence spaen BB endosod with some lineae topolaey 1. Then B 5
callod & Reapeeer if for sech bk & N the k25 poordinate mapging pe ¢ K — X, defined by !-f'.h'[ﬁ-'} = Tk, 1



5
continuons on E. Tf, is wddition, (B, 7) is an Fréchet (Bannch, LF-, LB} space, then E is calind an FE-
(BK-; LFK-, LBR-) mpace. Now, suppose thot B eoastrins 'I{,."l.“'} Then F is said to nave property A8 3

the et {3 eMm)on € N} i bonnded in E for every z - (zu)} € E. 1t s said to hinve property AK if
k=]

I
Zt"i:ﬁ}—arm E 56 1 — oo for every T = [2,) € £. It bos properiy AD L DX js denss in 5
k=1

a L
The space f(p) is un Fl-space with A under the prranorm gir) = (EIII}I") , where
-
M = maz{l,sup po}. In each of the spoce LX) mnd o X, 1) we uumkI.:: the lunotion gz] =
L]

,T;. =y [|'* , where Af = mor {1,.;11; Pide 1t bs knewn that X, 1) Is an Fiopaes with AK under
the poranorm gdefined s nbove il Lol X, p} I & comypilete LBK-space with AR 1n ol X, p) we consider
the lumetion 4(z) = r:p:ﬂ.n = Al o) whee o ds the origque demant fn X with = —e{n) € a{X, p).
The g 1w paranioemn on e X, p) aod o X, p) is an FRapuee under Ui [HtrBnsEm .

3. Some Auxillury Resultn

Wo begin with the Following wnedul pesults that will ba wsed to reduce our poblema bito some
akmapaler foypmn,

Propesltlon 3.1 Lot E and Evln & N) be X-valued aequence spaces, and ¥ and F(n ¢ N)

acalar sequenico apacea, and et u ard v fre scalar sequiencey with uy d 0, v, # 0 for all k€ N, Tham we
hnua

(0 (B ) = ey (B B
(i) { M ) = P (B Fa)

(i) (B 4 By ') = (8, F) 0 By, B
(iv] (B, Fy) = (B, F)ar.

Proal Al sssortlons men mmmscHately obtained by the definition. n]

Propositlon 3.2 Lat p = (py) be a bounded sequonces of posifive real numbera Then
() dXip) = ol X,p) +{ efz) : zE X}
i) X, p) = LI‘:_;:u{.th__;;.,}. Hence col X, p) & an ochelon space of order (),
(5] Ll 0) = UL Lol X ) cuimyy HEnde £, p) i s po-achelin space of order oo,

Frool, 168 cosy to sos thal assertion (i) holds, To show (i), lot & = (22} € £( X, p). Thon there

iz mmequence (6y) € o with & # Ofor all k& N sech Uist sup ]|';—'I'[|F"|I < ot Henes there oxists o > 0 wirch
L] L

that |imel] < /52 1] For all &k € V. Choose g € Nowith ng > o Then [z iy /7 < {ﬂiu}““m; < bl

which fmplics that EL:I:?{‘.-:h Il’ﬁ"“ﬂ?”n =0, hence == () € fi]t-x-.]{“'h'np Lo Ly ‘:E;{x"[n Ly Qi the
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‘other hand, suppese thut = = [x,) & L2, Eo{X )iy -1imays Then nga iy [0~ 2% =0 for serie s & N,
Let § = (£} be the sequénce definded Ty

[rrnun-'fh i flza £ 0
&y = 1

.E ot hprwise,
Cleurly (£} € & and H:-—:ltm =1 for all k£ N, henos aup "EH“ SN, B0 2= (2 € g X, p),

Mo wa show (jii). 1z e d.[X, p), then there Imnl;:mﬁ € Nwith |l | < n forall ke N. Henos
lewffr 2o < o fir wll & & &, pothan z € £l Xy, “tingys O the other hand, if = & L !ﬂ,{ﬂ.“'h“-.h.-..i,
then thera wre same 0 € N und /> | oueh that [lzall =" < F for every & € W Then we huve
leal™ < nkre <o K™ for ull ke N, whl:mM——-r:qrm. Hence 2 € £,.(X, p) Ol

Froposition 3.3 Let B C WIX) bs an FR-spce with AR property and & an FK-spooe of sealar
scquences. Then for an infinite matriz A = (1), A g (B, ) if and enly 1f
alr

(L) For mch & N, 3 " [1Mew) conutnpen for all & = {2} & B,
(2) For each k g IV, EE{:;]" € F, ond

LR |

() A (X)) — F (x continuous whien LX) i considared an o subspace of 5.
Proof Assumo Uit A 8 (B, 5, Then wa have that for & w fxa) € B, 3 fllns) sinverges
A

for all € N, so {1) holds Ehm:“"'{t]l!ﬂfnrnllkEHmdtﬂ:EI.wMthnifwmh
m& Ny (2= = Ae™x) € £ honos (2) hetds, Bince € nid 7 ure Fiapnoon, by Zelloe's thearam,
At E = F la continuoun, so that {4} s abtained.

Unirverscly, sanime thnt the sondithons holdi. By {19, we have A = (37 M), & wix)

k=)
loe all x & E. It follows from (2) that Az} & F for all & € N snd sl * € X, which implies that

A X)) - F. Oy (3), wo have A : §(X]) — I s continoin, Lot o= () € B. Binoe B han the

i
AK property, o= Him S o™ e in B Then (o ez 1™ s sy msrionce in £ By the
=1 =

eantinuity and linoarity of A, we have {zﬂj Ae* )™ taw Carichy veprinnse in 7. Sice £ i complets,

¥ s
W hawn {E.{gﬁ]{ﬂ]]ﬂ; canverges in . Since F b Keapaee, it implies that {Eﬂ{ﬁ}}:, EF,
1 ) =
I’ﬂul-llri.:EEF.“'hilnhuwhhntd;ﬂ%F_ a4
4. Maln Reaults

W now turn to our main objoctive. We begin with giving charocterisntions ol matrix Lennsforim.
Hons From (X, p} into £(g), To do this we teed a Tomimia
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lemma 4.1 Lel (fi) be @ spuence of continuous Ener Junctianal on X. Then ihl{n}

=l

converges for all w = {ra) € col X, p} if and ondy if Y || fellM 4" < oo for seme M &N,

Lg

Proof Suppose thit Eu,r,,gw*lm < o0 for some M & N. Lot 2 = (zy) & el X,p). 'Then
=]

there in & positive integer A0 such that |I.:kri1“'~r.-—fur-lllraﬂ' hemee flrg || < MV for ol & > 4
Thien we have

}: Wl < 5: Ml £ 37 Al < oo

b=
It follown that E,ﬁ. (= ) converges.
L

Un the other hand, mstume that E:h{.n} corvorge foy sl 2 € (X, p). For ench = = {rs) €
rolX, p) chooun scalnr pequimes {1, ) "A'iﬁl ilh'l = 1 suwh that filluzy) = |fufz)| foo sl bk &8 V. Sinee
(tyma) € el p), by our sssumption, wo have Z.ﬁl{rm}! eanviges, o that

Y It < oo for all £ € eyl X, p) . w1y

b=1

Ll
Now, supposs Lhat Euf.llm"‘*""" w ox3 for ull m & N, Chooso my, k& & N mach Shal
=1

Z l.-l'lﬂ'ﬂ:”" =1,
By
nnd choose iz > my and by > ky woch that
3o Malmg s g,
ey ke Ay
Procooding in this way, we ean choosa m, <y < ,and 0=k < ky < .. such that
Y Ml s
ki1 <kSk,
Tk my, in X with ||z|| = | for abl &, &, < &k < &y woeh Lhat

2 ey o faedll de
by ek

Put = (g}, g =m 2y for ki i < £ <k, then ¥ € o[ X, p), and we hove

b T A8 | L Sy S poaeay
=l

by gk,



e

Heriee we hove Z | filtse)| = o8 which contradicts with {£.1). This ecimplets the prosof. O

kel

Theorem 4.2 et p = (p) and = |gy) be bounded séguences af positive real fiembers and let
A= (fT) be aninfinite mubriz. Then A £ (eal X, 1), 8q)) of nnad omly if

(1} Far eachne N , Higrm EMslE m, € N mn:hthu.tz:"'_fﬂm—l.fh oG
=i

(2 3 i)™ < oa for poery ke Y,
|
fat :ﬂﬂh iy afm, K) =0, wher the supremum i taken. suer all findte subset K of N and

a{m, K) = sup{ E[E B e e Xodna el 1 por otk e i),

il kgl

Froof. Asme that A 1 &{ X, p) — (g} By Propoaition 3.3 an Levms 4,1 v the eonlitions (1)
anul (2) mro obtuined, Now we shill show that (4] holds, Lét e > 0 be givon. Since ey{X, p) and ]

weo Fllapoos and e, p) bas the AK Property, we lve by Propesltion 2.8 that 4 ; B = 2(g) le
sestitinuous whan $(X) s considerad s 4 mibspnce of ea (X, p). Then there wdsts mg £ N such that

f}limnn'- <e (4.2)

wud ]

foe ll = (54} & LX), ] = wup 2h M < (=)™ s B v i,
Let K € N be finite and for & € I, ot 4 € X be such thut H:..]Tf. Lolatm e N, m > my
Let v be the sequence defined by g = m=lee, if k g .‘c‘mliﬂthu-rh Then y € (X)) and
Il = s fom=oszyrusié < ( Ly {;‘;]”". s by (4.2), 315" oV i)™ < v, Tnia
mal Ll

imples sup afm, &) < ¢, hesen (3) hods e

Conversaly, amme thnt the conditions (1), (2} and (3) hold. Tha condition (1) Implics, by
Laamma 4.1, that for each i € N, 3 (=) convarges for all = = () @lXp). By (2), we hove

=}

(L t)) ., & &) for ol k & M. Thais A £ (X} = {g). We shall skow that A 1 9(X) — &y) i

contimaoiss when $(X) & ecomaidered az o aisbspaco of (X, p). Tet € > 0 ba glven. By (1), there is
mg £ N such that

vup alm, K] e for all m > mg (4.3)
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Chiogetid = fm}uu where M = sy pi. Lot 3= (52) & B(X) with [ll] = supp sl < b, Then
nlﬂ.-l"J'-lr1|rk|| ElforallkeN. LaK={kcN : z; # 0§ 1t follows by (4.3) that

s

Elz,fnmu - EIE ot

w=1 ko] =l kg K

E il};‘ g i#rhﬂ{méfpuztjl

=l kL i
AL,

Henoe, we himve A ¢ $(X) — £4) is continuous, By Proposition 3.8, we obtain that A 1 g (X ) — ).
Thin completes the prool. |

Theorem 4.3 Let p = (i) and g = (qu) be bounded sequences of powittve vl numbers mnd fat
= (') be ani infinite mateiz. Then A & (e X, p), £(q)) lf,fmthtrﬂy i

f.r) For machn g N, mmmumeﬂmhm:zﬂﬂﬂm.. Wi £ o,

(8} EU"’{?}I"‘ < oo for roory k € N,
%) Jj_:::‘l:pn_{nqifj = U, where the supremem dn taken syer all finite subset K of N and

afrm, K} mlEIEm RN m e X antlnl <1 for attke i),

wel ki
(4} ilsz{:}]"‘ <ooforallz € X,

Proof Lot 5= (efz) 1 z& X } Bloee ef X, p) = X\ p) + B (Propoition 120000, 1t mplien
by Proposdtion 3.10100) thue

A el Xp) <= fy) == Az colX,p) — tlg) and A ; B — #(g)

It in eaay Lo noa thut
AL E = 8q) ==+ the condition (1) i satiafiel,
By Theatermn 4.2, we hsve

Az ey{Xip) == ty) => the conditions (1), {2) and (3) sre satisfisd.
Henoe win hisve

A elX, ) — g} = the conditions (L) (20, (8) and (1) nresatisfied.



Neart, we shall give charsctatizations of infinite wistrices mapping from .. (X, 0] into £{g). To da
this, we noed the fallowing resuls,

=
Lemma 4.4 Let (fi) be o sequence of continuous lnear Junstionals en X_ Then kaf!l.‘#!

"=}

converges far cvery == (1} € L (X} if and only if i_ﬂ,ﬁu < oo
k=i

Proal. If Ell.ﬁ-ﬂ < ooy then for each 2 = (£4] € £,(X), Em,lr:m < Zﬁﬂ-”"‘-‘ﬁ" <

k=1

e E 1fell <20, so that Eﬁ- (24) comverge,

kmy

Converslay, Asimme that }:‘ Sulmn ) vorverges for every x = {1} & Lool(X). Lot T bo o functional

h=1

ol By (X)) by T = Eh{h} lor & = (24) & &inpey (X). Clesily; T i linear. For sach 5 & N, et

P E,ﬁ, o P Then 2y s In the dual spece of X} minco £ (X) v o K-gpaon. It ls clear that
]
Malz) =« T2 02 n—e oo for all 2 € Lou(X). It follown by Banach-Steithnus thesesm tiat T s in e dual

ipac Of £ou (X ). Ilenos, there is & positive real mumber o sk that

Ii fulza)

k=]

iy (4.4)

for all @ e (o) @ & (X} with 2] < 1.

Let oy € X bo such that o] < | for ol) k € N, Thes Wie sequence 1 = (14} € £,{X) with
flll = 1, we cun chocse & acalar scquancs (t4) with [ta] = 1 el that Sultaan) = |falma)] for ol & & N,
Clositly, (1) € L4, (X) andd [{taza)l] < 1. 1 fallores by (4.4)

zmtnu - ]}:mtm!

Fosr i luqumun:::[z.',lwir.h llexll = 1 for all & £ N,
Itr:ﬂluh&nm[d..ﬁ}uutzrlﬁl]':':tl'u-dinEN m[ju_r.,nga This complote the procf. [

= =i

S (4.5)

Theorem 4.6 Let g = (qu) be o soquénce of positive real mumbers and A (T an wnfinite
matriz. Then A € (LX), q)) if and only if

(1) Eﬁﬂ,‘ﬂ < o0 for every n € N, ond

(8) lim o= nmmnm_mp{zm-”ﬂ Zr‘{nﬂ rxp e X, i<ty

=]



oy
Froof. Assume that A: £_(X) — Hg). Then we have EE{:‘-E} converges for ol m e N gnd

=1
Gl x = {r,) € £(X). By Lemma 4.4 , the conditions {1) is obiained. Nots twe shall show ehar (2)
holde, Lot = > 0 be given Sﬁut‘m{x]mdﬂq}nﬂFK—mwhmu, by Zellir's thearem, that
A (X)) — Hq) is continuous. Then there evists mg € N such that

EIE folze)|™ <e (48)

sl k=

for ali z = (23} € Loul X), H=H=liwﬂnrl£#-

Eetx, Exhﬂnﬁlﬁﬁﬂﬂnﬂglﬁrﬂﬂﬁeﬂ. fetme N, m>m,. Tﬁmﬁﬂangumy:[m' Iz, ) €
1

Lo(X) and lyfl < g il By {4.6), we have

im'hlzﬂ[rl]j" <s
=l d=l
This frripliea jar,, | Ez,u‘ill_:_r::‘n“=ﬂ.
Conversely, assume that the conditfons (1) and (£) hold Let = = (x,) € foa{ X) wiith Jizf) < 1.
Then lzuli S 1 for allk € N, The condition (1) implios, by Lemma 4.4, that for cachn € N, Y fin)
converges, hence Az € W(X). By (2), there i mo € N auch that =
Mow e -
(o LI )™ < Y w5 ftal|= <1
] =1

L b=

where M = sup py.
&

Hence 313 fo(z)]™ < mif, a0 Az € t{g). This implies that Ax.c tlq) for ali x € £.,(X). Therrfore
A€ (La(X), ta)) o

Theorem 8.8 Let p = () end ¢ = (q) be bounded sequences of pasitive real numbers and lef
A -{fflkm#ﬁﬂﬂnm Then A € (£o{X.p), L(g)) §f and only if

(1) 3 mMP ALl < 0o for every mm,n € N, and
=i

(28} For eachm € N, lim o™ =g
=g

i where af™ = sup { i,——tﬂ-iimﬂh;ﬂn}f" L EX i<t
| k=1

, Praol. Sinec 4,(X,p) = Mt fae X Y- iteny, e have by Propesition X121} that

A L= {!ﬁ'ﬂ{x1 P}! q'ﬂ'” = A E {ta-u-{x][m-lhnp f{ﬂ':} f-:rr EreErp IR & A -



10
H.ﬁﬂumiymmaiﬁmstlﬁrjmﬁwmmeﬂ,
A & (Eal X vy Hq)) = (mlPa gy, € (E1), Ha)).
it follaws by Theorem .5 that
A € (LalX,p). Hg)) +=> the condilions (1)and (2) are saiisfisd.
0O
Theorem 4.7 Lat p = {py) end ¢ = ((u) be bounded souences of positive read numbers and ket

.-l={_l’.‘}hm#ﬁﬂ!mh:= Then A € (g{ X, 1), Lq)) of and ondy if
(1) .H:rmnhmnEH.Em‘-"“IRH{m-
=1

{2} For eachm e N, i‘m"‘*"ﬂuﬂ:}r"‘ <on for cvery kE N,

{3) For mehm € mﬁ-?u{w,m-u.
where the supremum s taken over all finite subsel K of N, and

n{gmm-m{iﬁiz m”"_ﬁ"{mjl"‘ i EXendln| <1 foralike X ).
e

g N

Plroof. By Proposition 3.2(i), 1t have Go(X,p) = Ueyee(X)y-simay- Tt follors by Propasition
3.1{ijand (i) that

A€ (X, p)hflg)) == (m"/™ 1) 4 € (el X), Ea)} for every m e V.
It followa by Theoremn J. 2 thet
A€ (X p) ta)) == (1),(2), and (3) are satisfied.
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On Matrix Transformations Concerning the Nakano Vector-Valued Sequence Space

SUTHEP SUANTAI

ARSTRACT. Ilﬂhhﬂiﬂﬂ.lum_hhw_&mmm
m-ﬂuqmlq-n-f{x.p}lﬂﬂ-{x.p]mﬂm“mmmmm
satlons from £(X, 5) snd Fo{X,p) s whe bounded sequencs space £, as corollacies, whees

p-m}unmwumtmwmmmn}lhmkﬁﬁm
r=0

(1991) AMS Matiomstion Subjoct Clasalfleation: 48445,

1. INTRODUCTION

Let (X, 1N be & Banack space , r 2 0 and p = (Pa) & bounded sequence of positive real mumbers.
W write 2 = (1)) with ry ju X fesll ke V. The X-valued sequence spacen ay( X, p), (X, p), Ll X.p),
X, p), B.(X,p) and F,(X,p) sre dofined a5

ol X,p) = {= = (m) : lim lza]™ = 0},
el X,p) ={== (za} s lim [l — " =0 for some a € X},
Lo X, p) = [z= (z) : aup [lzal™ < o),
HX,p) = {==(z:): Izl < o0},
=1
%) = fr=ta)soup B o oy,

KT

FlXpl={z=(n): 3 _Klzlif* <o }.
=1

Typemet by A0S THX



When X = K, the acalar field of X, Ihumrsﬁpmuﬁ.ugﬂpimmmitmﬂm[pj. cip), Lolp) Aip),
E.p) snd F,{p), respoctively. The spaces ealp), efp) and £.(p) src known as the sequence spaces of
Mmchdiee ﬂmmmﬂﬂhﬁ@uﬂmdﬂuﬁdﬂﬁwﬂ,%lﬁ, 4]. The space #{p)
wis first defined by Nakano [5] nuihhhuwnumnﬂnh:nm:pmnndﬂmspu!h[x,p]i
Imummm—mmm When pe = 1 for all k & N, the spaces E, {p} and
E&}MMMﬁMR*mw.MmmmmMiMh%
[I}. Grosse-Erdimann 2] has gives characterisations of infinite matrices between sealarvalned sequence
spaces of Maddese, Wu sl Liu [7] gave necessary mdnﬁﬁmmﬁﬁmhillrmitlmﬂﬁmmpﬁq
from (X, p), 4uu (X, 7) ints cofg) and £.(g).

htﬁmwmmdinﬂﬁhmmﬁm X, p) nod F(X,5) into
E, and by application of these resuits umﬂudmﬂnhtﬁmhﬁn&hmtﬂnmmpﬁu&mm
sapue UK, p) and F (X, p) into € gy, when py > 1 forull k £ N,

2. Notation nnd Definitions

Lt (X, 1) be » Banach space, the space of ll sequences in X s denoted by W(X) and ${X) s
m&mmdmﬁﬁ-mlnmWlmxhﬂ',thluluﬁddﬂx.mmu‘
spaced are written as w and &,

A sequenice apace in X is & Enenr subspace of W(X), Let E ba an X-vnhuad sequencs space. For
£ € Eand k € N, wo write 2, stands for the &* term of =. For k € N danote by ey the sequencs
(0.0, ~.0,1,0,...) with 1 in the &% position and by e the sequence (1, 1,1,..), Forz € X and k & N,
I-t-‘[:',lhlﬂ-luqm{ﬂ.ﬁ.u-rﬂ.l.ﬂ,--}-ithnhﬂnl:"'pﬂdhnmdhtt{:}hmm
(=22, ). We call & soquesce spars £ normal if (tum) € Eforall 2 = (x,) € E and t;, € K with
H..,I-:IIulluﬂeﬂbhruhdnﬂump-{p.jlhmmﬁhhdﬂhﬂu

B = {z € W(X): () € B} .
Let A = (fff) with [T in X', the topological dual of X. Suppose that E s n space of X-valised
mnﬂandwqﬂpﬂ. Tlmji-idmwﬂ?intnﬂwﬂﬂnh
A:E—Fiffor each = (z3) € E, J.[:j-Zﬂ[n}mhndlnEN.uﬂthw

Az = {A,(z)) € F. Let (E,F) danote hhaﬂfﬁdlhﬁiﬂﬂﬂ_mpﬁq trom E into 7.
Suppmmmuxanhndmmﬂhnhﬂuﬂmﬁmupdm 7. Then E s
| u.l.’lulnIwﬁhﬂtEﬂﬁmeh:EHI,duﬁndhyn&]=:.‘1,, i
coatinmous on E. If, in addition, (E,7) s an Fréchet (Banach, LF-, LB.) space, then E i ealled s FE-
{BE-, LF-E'-. LEBK-) space. Now, suppose that E containe ${X). Then E ks said o have properiy AD i

theset (3 e*(21) :n € N }is bonnded in £ for ovary 2= () € £. It is said to have property AK i
=1

Y Mo s zin Ensn— oo for ey = (5} € £, It has property AD if ${X) is donse in .
=1



3

The space £[X, p) is sa Fi-space with AK under the parsnerm g{z) — (ilhrf"“)w. e
H=M{Lml:pm} o

I cach of the space {o( X, p) and co(X, p) we consider the function gfx) = wup fmefP=, whare
M = mar {I,I'I:p P} It s known that ey{X,p) is an Fi(-spsce with AK under the parsnorm g
defined as above and La(X, ) ks & complete LBK-space with AR In ofX,p) we consider the function
p[:j:r:pu:.—nhﬂ'*-‘”+ﬂnl where & is the unique element in X with T — e(a) € (X, p). Then g ia

npummmdx.pjud-u{.f.ﬂhmﬁ[munduﬂﬂamy,

3. Main Resualts

Mhmtgiwl&wmhﬁmdmjuﬁnjhmmixmniq&mlfx,ﬂ Into B, shem gy > |
fxallke N,

t Theorem 3.1 Iﬂp-{n}hwmﬂm#pﬂhtnﬂm:umh}l,raﬂm

m;+&-1,ﬁruﬂteﬂ+ For on infinite matriz A = (1) , A€ (80X, p), ;) {f and only f there is

e
Mg € N such that mpzmpn"‘“m;“"'" < oo,
L] hl

Prool. Asume that A € (§X,p), E,. ﬂ:r-d:kEH.uin-n:pn"[ﬂ[:H{mh.ﬂ

:Exm:ﬂii::}eq.t.pjhmzexmhumhruuuﬂu-hmd-lprmphmummu
My = | sl that

sup "R £ M (3.1)
Suppose that .
J:P Emr-,-mmhm-u_m fecevesy mg N (22)
=3
For n € N, wa have by (3.1) that
o iy
D e I 1 e P B T e T )
=1 =1 iy
ke s
S 3 MmO 4 3 Uyt o)
= frke

This implies by (3.2) that

sug El_fﬂ“n""'m‘“f‘" =o¢ frall EmEN (23)
L] ot



B}r{l‘.?}and (33) wecan choase D = ky < & <h< . m<ma< .., m }?‘-lnﬂn.;—-m.
such that for all § 2 1
Yo M e s
kg ity

And we choose z; € X with izl = 1 swch that for all § > |

s T P e
Eya<igky

and put y = (i} where y; = m; @ Hg=rale) [Ntz e | cigh,
Thus

2= N oM e st -t

J=1 0=l kLTl

=3 X MmN ) e
=1 by g i 4R,

<ttt T e @

LY LA
— | — 1
- —s =— I'-Fi.
Henoe y = (1) € (X, p). Emﬂx.p]hmﬂ.hrwm-mwﬂuhmmun
obtain that »
mzm;“,’—"u < o (33
el
Eﬂl+ﬂjp;nﬁ,htlﬂj£#.hhnulh”ﬂﬂﬁiﬁﬁ.

LD SRl B DI o0 L Ll ) i -
R <ty bogdjdhy b€l

"l‘.h:n;'*zl_r;‘[wﬂs E E Ay L5 (g} = oo which contradicts to (1.4), hence A 1 8(X,p)—
5 d=1 =1 by <35k

Conversoly, mmaime that the condition holds, ‘Then there are mg & N and K > 1 such that
ST Y ok b sline W (3.5)
k=3

| Ltz = () € H{X, p). Note that for &, & > 0, we have

b 6P 5% {3.6)




I follows by (3.5) and (26) that for n € I,
[ ] A
IR =Y S g Ve i)
el k=3
= 3t Ty P Pz, )
=]
I 173 Wl S TV
L k=1
=2 m O o S g
k=1 dmy
SK+mgy flzal™.
k=
Hm-:n‘t:qﬂz‘;ﬂ!ﬂqﬂqmuthuhﬁﬁ..mmmm O

Mﬂmum:nh}hqhﬂdm-jmﬂdmﬂmnﬁﬂdn}l#

sEEN, r20, 820 and et A= (1) be an infinite matris. Then A € (F(X,p), E,) if end only if
there de mg € N such that

iz f{r"-fhm:‘u“n"-n;‘""h < oo,
L] hl

Proofl. Sinee Fo X, p)m H:F]{.Llfn:- it i easy Lo sher theat »
AB(R(Xp), B) = (LM | e ((X,p) B)
By Theorom 1.1 we have
(/P12 s € (8X,5) B} +=> there is mo € I wuck that Y (kT e e e
* k=2

Thus the thetrem i proved. [

h&h&.h%hﬂhmmwhmm and Theorem 3.3,
bespectively.

Caorollary 3.3 Ldpn{n}h-hmddmpfﬁ.ﬁtrmlmﬂﬂﬁmm}l ansd let
;1.--!'-& =] forallke N, Hrminﬁﬂ:mbﬁ'.{=fﬂ}.ﬁE{ﬂX,p‘}, £.) if and enly if therw fa

=}
mg € N such that sup 3 [fpgemy ™1 ooy
N et




i Corollary 3.4 Idp:[ﬁ]h:hmdm;wafﬂaﬂﬁxmlnmnbaﬂumm}lmm

E+£:]_ﬁ:rﬂ]‘ke N. For on infinite matriz A= (7). A€ (FAX,p). £} if and only if there s

-]
g & N such thal sup 3 (ETR IR s o) oop
" k=1
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On Matrix Transformations Related to Nakano Vector-Valued Sequence Space

SuTREr SUANTAL

ABETRACT, Ia bl papar, we glye nocossary and suffidem cendllloss for infinils
—m-m#-mﬂmmmqux.p]mmm#
loo smit £ (1) snit wm stas give Ui matrix charsstorfiiations fom My X, p) =te 15 spese

lu{ﬂ'h-?‘hl'"'ﬂ'{iﬁ}lﬂwm_ﬂ#ﬂmrﬂm“ﬂ
thaipy € Il festik &N,

(L) AL Mstbmmaioy Subipcs Dlesbfeadlon 4646

L INTRODUCTION

Lat [I,"}h;ﬂ-m:hmmip-{m}:hwmh!_mdrﬂnrﬂ mumbern. We
write = = (23] with 2, In X for all k € . The X-valued mequence spacm (X, p), &X, ), Ll Xop)
HX,p), L 1X,5) , nad Mo(X, p) ase defined aa

lXop) = (== (m) © fim iz |["™ =0},
dX.pl= {:-{:h]f-.rimulﬁ,-—nlhuﬂ losr menne & € X},
Lol X.p) = [z =(z.}: " lf=slf™ < o2},
UX,5) = == (21) - T Il < oo}
k=l

Ll Xip)= (= = (ea) 1 m [asal® =0 fox smih () €2
M) = U X )

Trpeset I AU TEK




=

Whee X = K, the scaler Beld of X the conrspording spacss. are writtes as sip), op), £ _{p} Ain),
£.(p), and Afy(p), rpoctively. Each of the firt three spaces are known s the sqmence spaces of
Maddom, These spaces were fiss Introduced and studied by Simens (1863), Maddox (1967, 1965). The
spece () wus first defined by Nakuono (1951 and it i known es the Nekeno sequence space and the space
LA X, p) = dnown =5 the Nalann vectar-valued sequence spoce. The spaces £ (0} sod Mo(p) were first
introduced by Grosse-Erdmann (1067) and he has investigated the structive of the spaces i), elp),
Coelp) mesd £ (g). In [1], b mlso showed thae £ (p) = M2, L,y Grosss Erdmaon (1993} gave the
T charsctenimtions betwesn scalarvilued sequence spaes of Madde Wi sd Liu (1999) desi wdth
the probiem of charncicrizations those infiits matsices magping from a2, p), £.1(7, p) Into ay(g) and
Foc(tf) whese p = [pa) =nif g = {ga) are Boouded sequenices of positive res) mimbers S Suanial (1569)
gave the matrix characterizations from (X, p) into the vectar-valual soquenoe spaces e[V, g), Y], =nd
L(¥) where g = {gu] b8 & sequence of paitive real mumbers, ¥ 8 lansch mace asd 4 > |,

2. Motatlon and Deflnltlsns

Lea (X, 1) be & Banach space, the space of all sequerios in X s demoted by W{X]) and $(X) &
densted for the guce of all Enlte mousnoss in X, Wheat X s K, the scalar fidd of X | the coxresponding
Mo kT wTillon &2 w mnd &

A soquence specs in X s o near mibapnce of W{X). Lot F bo wa Xovaloed seequence space. For
= € Ewnd k € N, we write 73 stanls for the A term of = For &k € N denote by e the sequence
(0,0, -0, 1,0,...) with | in the &** pasition and by e the soquensos (1,1,), ) Foez e X snd k @ N,
bt e"(z) be the sequemen (0,0, 0,2,0,..) with = In the #** pasition sod ket cf=) be the saquence
{r,z,x, ..} For u fixed scalar sequencs p = (ji,) the sequence space E, & defined s

E, = =@ W{X) ! (jyiry) € E} .
Lot A = (f7) with /3 in X', the topologienl dus! of X, Suppose Uit £ b s space of X-valied

mﬂf:mﬂmwmﬁ:ﬂ Then A is ssid to map £ isto F, written by

A E— Filoroachz={z) € E, J..I:=J'=Eﬂ'in]nnwl;uﬁr-:h 0 € N, and the sequenies

ket

Az » (As(z)) € F. Let (E, F) denote for the set of all infinite metrice mapping from £ inta F,
Suppone thet the X-wlued sequence spuce B is endowed with some linees topology v Then E s

cafled & K-apace if for each & £ N the &% coordinate mapping pu : E — X, defined by pylz] = =, i

oantinuous an E. 11, in sdditlen, (E, r) is an Fréchet (Banach, LF-, LB-) gpace, then F s called an FE-
(BE-, LF.E'F..LHE-J-M Now, suppose that E contoins $(X). Then £ is said o have property A5 if

theset {3 effn)ne N | & bounded In B for overy 2 = (2} € B b be sl 10 have property ARl
=1

Y eml =z B wn— o for omy o= (25) € E. 1 has property AD i 9(X) i= demse in E

k=i




3

The space £(X, p) i an FE-spece with AK ender the parsniem g{z) = (ihf‘)uuuﬂﬂﬂ
M =maxr {], iuppy] i even o BK-space fpy > | rnrnﬂhEH,tit.'u.lm‘:‘ﬁuh

=il =inflp>0: ihﬁ'ﬂﬂ"ﬂ 1]
kL)

In esch of the space (X, 2) and &5(X, p} we consider the Tunction gf=} = sip B P where A =
L {]..nlg P} It b doownthat es{ X, p) is an PiCspace with ﬁlunduilhmg thefined
&4 above and Lo(X,p) b & complete LBE-sace with AR, Tn (X, 5) we comsider iha function giz} =
::pl-r.—lﬂl‘"’"+|ﬁ| whers @ le the unlque element in X with 3 — «le) € (X, 5} Then g s u
parmacem on oY, pf asd of X, 5) in an FE-space under this paranoem g.

J. Main Results
We begin with giving the matrix charactarizations froen 80X, p) inta £
mum;-hjuuwwﬁmmm.ﬂnstpm

E€ N and bt A = ([T} be on infindte matriz. Then A € (8(X. p), L) if and enly if there (s miy & N
nﬂlhlnq: m;“"ml-: i
-,

Prool. Asecee that A € ({(X,p). L), In 8X,p), wo consider it as & parsormed space with the

parsnc § defined a8 above and sinos py < | for all k € N, we have M = maz [l np ] = 1. Now,

wo write [|.]| stznds for the paranorm g mmmma:ﬂ,ﬂ—ghmﬂ:ﬂu Thews Lheyn
b wng & N mach that

wop [ A0 €1 for all 2 € X3 with Bl < (1)
- ] L]

umtﬂﬂhﬁnitmdﬂtj € X bo woch that fnyll < L Thes e®mg ™) € 200, 0) winl
I il < = By (11), wo have

me Rl < o 7lmg 1Py = A g Pz gp <1

This implias that r&n{”"ﬂfzﬂ{m

Corrrosely, ssngne that the eondition halds l.u_ut.lr=[#.|.]E.I‘{I.p}. By ssumption, there ks
C = 0 ek thad

mg "M <C fralinke N, {22y
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En:hz:m:tﬂ—-ﬂni—*m.lhﬁéintkg € N much that [|mi ™l < 1 for all & > iy, Ficica
D<p <) bwall k2 N, we have

fimg ™ | < ™y [P for el k> ks, (a3)
It feillomes: by {312) weed [3.5) thas

E[Imi""":.-lhzll gl 4 E g™z,

=k i

£Eilmu""“:nll-? E limig' ™ =0
k=1 g =

=¥y 4 my E | ™

kemkgi 1
< &y b omall=fl [k4)

wheee K ‘ih}"‘hl-
Form Eﬂ,bl;-{'l'.ﬂ]ind (3.4) we have

jAaz] = IE,EII‘{NE”’*M”":HH
b=

(R0
s:gma”’*nr:l-uma""m
1

5¢§Iim¥"nl
< C{K) + mafiz]).
[
whers &} —EH""’nl
*l‘hhhﬂ-th:ir:pm#{m.mﬂud:ilu.mmm“ml o

When pu= 1 foc ull k € ¥, we obtain the Iollowing result directly from Thasssm 3.1

Corollary 3.2 For an mfinite matrir A = {f7), A & (#{(X), L) {I'-inﬂfw 721 < co.

Theorem 3.3 Let p = (py) anid g = () be bounded sequences af rod members with py < 1 for

Sll k€ N. Then for an infinite matriz A = (f7), A € (X, p), £.15)) & and only 7 for oxch e W,
there fsr, £ N mﬂﬂum T M | ] < o0

Prool Since £ (g = f'}:.fm'f#u.,,-ﬂ follows that

A AL L lgl) = Ae (it p), fepiing) b allme W




For cach m £ N, we can easily show that
ASX.D), bapniony) = (V5 Rhos & (60X, ), L)
By Theor=m 31 we abtsin that for cach mg N,
(% fhea € (X3, Lo) == Wb € N s that sup o Mentil T < oo

This ecmpletos the preal’ a

Theorem 3.4 Let g = h]hlmmﬂ of peaitive real sumbers and ket A= (f7) be om
énfinile matre. Then A € (Ap(X, p), £ (¢)) f ondd anly f for cack wd1EN, np iendinifeg) <

Prool Sees MalX, p) = U2 80X ) jn-viny, e e

A (MIXp) Lalal) s== A€ HX) 0y Lolg)) forall v £ &

wod snos £ {g) = ML fagaisenys it follonin that foe ¥ & N,
AC[HUXYpmsimn e Laldl) == A& LX) m1imuys Loagyiinny) Tt ol 2 N,

Fox r,a € N, we can exsily show that

A€ (BX ) evimayy bwgirry) 4= (oMierlim ) e (00X, E2).
For r,4 € N, wo obtain by Comblary 3.9

(aMrtis 1) | € (HX), ) = np SR < oo

Thus the theneem is proved, u|
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Matrix Transformations on Nakano Vector-Valued Sequence Spsace

‘SUTIHER SUANTAL

ASSTRACT, 1n ihis puper, = give Lha mairic chirsclerantlome from Nakans werton
radiand sacmence spmce (X,p) tnto b, £,() + bt wndt o whirs p = () aid § = (1) are
s o o o T R numbers such that p, > 1 far alt k& N

(U1} AMS Mlatbemestion Bulijecs (lassificatin $0A495.

L INTRODUCTION

Lot (X, 1) be s Banach space and p o= () & bounded sequcnos of pesitive rel numisas, We
wiite = o (=) with =3 & X fr all k £ N, The X-vnlied soquenos specs @i X.pl, o{X.p), LL[X.p),
HX, ). i (X, p) airw defirind as

el X, p) = {= = (xa) :.E':Hh ™ = b},
SXph = (== (=)= lim oy = gl =0 for wame s € X},
r...{-tmlrfarnhlm:w f=ali™ < oo},

X, ) === (=) 3 eall® < 00)
] :
LalXop) = (== () s lim [lfzel™ =0 forench [Gi) € )

Whea X = K, tho scalar fiedd of X, the corvespondinig spoces are written as aulp), elp), £u(p) Lip),
nﬂﬂ_fﬂirmﬂﬂﬂvﬂpmmm{p}icﬁi}indlul[;r_:]iitkm'unulhemmﬂ'hhddm
These spaces w=re first introdussd and studied by Simons (6], Madday 3, 4] The spece fp) was frst
defined by Nadouno [5] and jt &= known =3 the Nakane sequence space end the space 0L.Y, p) = kiowy as

Trreset by ALad THX
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the Nekano vector-valned sequence spece. The spaces £_(p) wes first intridused by Crosse-Erdrmann |||
and hhw'hm&ﬂn;m.m[}j. elp) Lalp) and £_{p) In [I), be s shovnd
taat £ (8} = " b puuim - Grosse-Erdtmunn (2] hos given charscterizations of infinis matrices hetwren
scelar-walued soquecce spaces of Maddos mmmmmwmmmh
infleifle matrices mapping from el X, 5}, £ lX. 5! iteo sofq) end £.lq)

2. Notatlon and Definitions

bt X, L [} be & Bansch space, the space of wll sejummb in X i dessctad by WEX) kndt #{ X is
dmud_hthlp-mdlﬂﬁummminx-WthHK.m-ﬂh:ﬂeﬂdx.Ihm-rnpmﬂn:
e e Wrilen ke mnd &,

Ammmx'hlﬂm“mhup-mﬂh'{xi, Let E be an Xoviloed soquenee space, Fur
:Eﬂmkeﬂ.nmnm{mmummﬂ; For k. € N deote by oy the: segjuence
(0,6, ...0,1,0, ) with | b the k™ pesition apd by e Lhe sequence (1,1, 1,..) Forz€ X and & € N,
urmhmmmu.m.u,m.*lﬂih:hmﬂ*mﬁuwhq:]hm-qm
(222 ). We call & soquence spacs & normal If (fy33) € 5 for &1l = = (=) € B and t, € K with
[t] == 1 for all & & N. Foe s lod seala: sequenioe 1 = (1) the sequence space £, s definad as

By =z e W(X): ()€ £
Let A w () with [T In X", the vopological dunl of X. Suppose that F s & spece of Xovaluad
WMF-WHWW *nmihnhumlhnl’.w&umhr
AL E— Filfor ench == (1,) € E, &H}'Eﬁfﬁlwhﬂnﬁﬂ.ﬂmm

A= = (Aut=)) € F. Lat (5. F) daote for tha set of all inflsite marices mapping from & into &
Stippose that the X-valied sequance space £ |s exidownd with some finear topolagy 7. Then £ s
th.[nHmiIhru:hiEHME‘WM'WH:H—-I.HWHﬁ]-ﬂ.H
comtimauy on E. If, in sddition, (E, ) s an Préchat (Bensch, LF-, LB-) space, thent & ls called an FX-
fM-*LFFq LEK-) speee. New, supposs that £ containe $(X}. Then 5 & said to kave property A if

the pet {zi‘[n]:nEH}ihﬁmﬂuﬂh Efor evay 2= () € B. It is sl to have pruperty AK I
=]

Ea‘(nl—fm Eesm—s oo forevary £ ={5,) € E. It hna property AD U &{X] in dense in £,

fuard

) [PV
T s 13, i P wih NG e o prsscemste) = (3 i) . wioce
=
H:nm:{l.l:pn}
Inun;l:.:f'lhqﬂ{,{.‘i'.::]Mmfx.p}m_mﬁdmﬂtfm:ﬁmjhii?hlhm,-m
M=m:|:l.'|.nllpn}.Ehhﬂnﬁum[x’,p}lrwﬁ{mﬂhmmdq-hmn
duﬁnqdulhﬂwmd!_ﬂ.p]inmﬂﬁqﬂi{{-q:huﬁimﬁﬂ_rua{x*p}-mﬁslhuﬁnmﬁm
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g{:}:::qp”m,,-_qp'if" + ol where o i5 the unigue element in X with z = e{a) € e{ X, p). Then gis
& paranorm on &f X, p) and e{X, p) i3 an FK-space under this parenorm g.
The sequence spacses ¢ and ba are also mentionsd in this paper where

ea= {z=(m) 1 } = conveges. ), with jizl| = sup I- zals
1

=1 " =

m o L]
ba= {z=(z) : sup [} =|<oo} with |z =sup |} =
k=l B

These two spaces ere botl BK-spaces, oo hes the AK property and it is n closed subspace of ba.

d. Maln Reanilts

We first give 8 charscterization of sn infinite matric mapping froam 0.X,p) into £, when pe > 1
for all k € N,

: Theorem 3.1 Let p = (p]} be bounded sequences of positive real mumbers with py 5 | and let

;"‘%“lfﬂrdftt‘iﬁ. For an infinits matriz A = (f7) , A € (L{X,p), £.) {f and sndy if there @

o
g & N such that sup Em"‘"m,;{“"”-:m.
i =r

Prool Assums that A € (£(X, p),£..). For each k€ I, wr have sup [f2(z)| <ccofarnll =z 8 X
since e!*(z) € (X, p) for all 2 € X, It follows by the uniform bounded principle that there is an My > 1
moch that oup Il € My Supfiome that

5=
sup 3 IR m ) w s for overy m€ N (3.1)
=i
First, we show that
rup 3 Ifm N < oo for all k,m € N (32)

Fork

For this, if not, then there are kg, mg € N and K > | such that
w3 G < K
A T

Fox i & N, wo have

)
2o ey 7 = 3 I R 4 3 7 e e

=} F=1 ixkg

ky
¢S a
=1
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Thiaimplimthuqz;lﬂf'"ﬂmn {m,ihd:mtra.m[llj s {3.2) holds,

Hy{:i_l]m.d[ii}nmdmmn =k <k <hky <., vy Cmy <m0 and ny — oo,
such that forall i > 1
2 Wpem e
ki—g <yl
And we chonse =4 € X with [iz;|| = I such that for all i > 1

Y Urdmm s

By_1igi
and put y = (yj} where gy =m0 e te ey ik <k
Thua
E:hl':lli"‘ o5 z ..—r..m';!:h.r" HIJT [1_1]1'"{"_'"
J=1 =1y g g iy
=3 X &m0 e
el by i Sy
Fm £ U
by i

I
- —— = = 1,
s
Henao g = () € 80X, p). Since 81X, p) is normal, it follows by 7], Theoram 1.3
n2 3 IR < o (33)
b=l

But we hove for sach § £ N,

2 = T ettt oy

ey Ty By it

mzwmyu‘z E h[f;-{w].l.wmmuhuh{u}.m A: H{X,p) = beo-
F=al il ey
wmﬁmmmm Then thera are mg € N and K > | much that

Euﬂu sl e K fecallne N, (1.4)

Let z = (xy) € U X, p). Naote that for a, b > 0, wo have

ch<a™ 4 v, [3.5)



Tt follows by (3.4) and {3.5) that forn e N,
(32| = |3 2 img ) ang 7oz
F =5 ] k=1

< 2SR 4 3 Imy e
k=l e |

=S LI 4 mo 3 i
k=]

e

SK+ma) fleaf.
k=]

==
Emmr:piz:ﬂ‘in}l-:m.nmndrelh.mm:hum n]

A=l

Theorem 3.2 Let p = (p,) and g« (qu) be bosmdad sequences of positive real numbers sk that

Pu> 1 forallk € N and let A = (') be an infinite matriz, Then A € (8(X,p) L(0)) f and only if for
ﬂthrdndlEH.ﬂT #ip=im| ) < oo
i,

Frool. Since £.,(p) = "Gy le iy, it follows that,
ACBX P Lale)) == A€ (UX,P), boogeisny) fx sl re N
It ia enaily to show that for r € N,
A€ (X2 boperrny) == (/e ) | €(tiX,p), ).
Foe r € N, we oblain by Theorem 3.1

(FY912),.4 € (6(X,P), L) o= thors is m. & N ssch that aup if“""lml"m:“-““ —
T

Thus the thoorem i proved. (]

) il'hlnrlmu mp-h]hwmﬂpﬂmHMﬂHmblﬂh

;4.;*,1_&““53. For an infinite matrie A = (f7) , A € (€{X, p), 84) if and only if there is

o ]
mo € N such that sup Y R g,

o ]

Prool. For an infinite matrix A = (7). = can eaally show that

AS(Uxp), b) = (311),, €UlXp), ).




This implies by Theorem 3.1 that 4 € [{{X, ), &) if and only if there is mg € N such that

sun Elz_ﬂ-ﬁ"‘m;m_n < og.

k=l =l

8]

;Itmml.-l m;-@.]ummujpmmmmhm}lmu

1
oo For =1 jorall k€ N. For on infinite matriz A = (f7) , A€ (4(X,p), e2) f and only if

(1) there ismg € N such that sup 3~ [T £l my '™ < co,
" k=] =1

{8} For eachkE N andz € X, f:,ﬂ'{:_l COTPenyEL,

Prool 'Ihnu-*urhnulhmil:u'?hmnmﬂ.lmdbythlild.lﬁdd“[:}tsﬁx,p}hm
KENmdzEX.

Now, supposs that (1) and (2} hold. By Theorem 3.3, -nhmdiﬂx.p}qu It ==
(=) € HX,p). Eﬁlﬂnﬂmlhﬂmm.hhm'nWw‘@_ ztmﬁn] in {{X,p). By
a=1

A
Zeller's theroam, A : 8{X,p) — ba in contimens, I implies that Ax = fim Emm{m. By (2),
=}

Ac*Yzy) € ca for all k £ N. Since e is & closed subspace of g, it implies that Az € es. Honos the proof
is now canplete, 0
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On Matrix Transformations between Some Vector-Valued Sequence Spaces

SUTHEP SUANTAL

\ .ﬁmuthhm“ﬂnmmmnﬂhh-hrlmm
malricss mapping from the Nakeno vecter-valusd sequance spacs [X.P) Inte any BK-space
ﬂwmmwnmumummmﬁmp}ummﬂu—n

J ' spaces Lo(¥), cal¥, a) e(VIA(Y), (V) amdt Fo(Y) whors p = (Pa) wad ¢ = (@) wre

hﬂnﬁdmﬂpﬂuﬁvpm{mmmhﬂlh-ﬂbe H.rgﬂ,m;g],
(1001} AMSE Mathesmathcn Subjoct Clutiflestian: AN AT,

1. INTRODUCTION

Let {.x,ﬂ.ﬂ]hiﬁlﬂ-;hmmdpu () & bounded saquence of positive resl mimbers. Wa
wiite 2 = () with 23 in X for all k € N. The X-valued soquence spaces (X, p), X, p)s Lol X, p),
HX,p)y Be(X,p) and Fo(X,p} ar defined &

@(X,p) = {==(zs) : lim [lz|™ =0},

c[I,p}={:u{!;};Lﬁ1ﬂ=. = =0 forsome s € X },

Lo X, p) = {z = (=) ; up izl < o),

HX,p)= {z = (=) : i‘ﬁt#ﬂ" < ool
‘.ﬂ Hara P
EEI.;-}={==Lnl-:1m <z},

11F

BAXp) = e =) = 3 Kz < o0 b,

When X = K, the scalar ﬁéldcf.f'{ H:urmpmdhgmmmwﬁﬂmum{p},c{p}, £.(p), tp),
E.(p) and F,(p), respectively and the firast thren spaces are known as the soquence spaces of Maddex
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imwmt}h&mw sequence Epaces of Maddew. Wi and Lig |
with the problem of charscterisations dhﬁﬁumimmmhgﬁmm[xip}mtufx,p}iﬂnq{q}

2. Notatlon and Definitions

Lot (X, 010) anet (¥, L)) be Banach spaces, the space of all continuons linear operators from X
into ¥ is dencted by £LX, ¥), mwm}mﬂx}mhmmummmxmm
space of all finite sequences jny X, When X = K, the scalar Med of X, the cormeponding spaces are
writton as W and &, respectively,

Ammhxhulmmﬂﬂmﬂ, IAEhtquﬂnh-;llnqnmu;m
h:EEMiEH.n!ﬂht.Mhﬂut“hﬂdI. m:exmkemuﬂ{:] be
the ssquence (0,0,..,,0,=,0, ..) with = in the K** position and Jet (=) be the sequence (z,x,2,..). For
.ﬁ::dmlummpn{m}ummmmﬁ',h&uﬂmdu

By = Az € W(X): (mzi) € B}
Lut.t-h{'l"ﬂ-ﬂhT;h-ﬁ{X,}'}. Suppose that K i an Xevalued sequence space and F an ¥-
-dudm;ﬂumm Then A hnHlnmlth:nF,Hﬁﬂml:ﬁA:E—PHhmhr-{n}E£..
A.{:].-E:‘H‘{n}mhu:h R EN, and the sequence Az = (A.(z)) & F, Let (B, F) denote
A=l

hhmﬂﬂ%%mqhﬂihﬂ LR (T B (#5) nrn sealar soguenoes,
let

B, F), = '["‘-“U:J'T{HHTITLI.H €(E.FR)
i ,&n-hmkeﬁ,n-m.w-f;}}.
&whhh@dmmﬂhmmmﬂwWﬂ Then E s
called o K-spoce if for each ik £ Hmtﬁmmnm-ﬂmmwn{:}nu.h
continuous on E. Ehmm.r}hnﬂﬂﬂmwn LB-} space, then F s callod an FE-
(BR-, LF_‘H*,LBE-}M Now, suppose that E contains ¢{X), Then E is said to have property AR i

the sct {E:"{:ﬂ.]:nfﬂ]ibﬂnﬁaﬂh.ﬁhml={ﬂ}r£ﬂ. T i said to have property AK i
o]

E:”{zn]—-:hﬁﬂ m— 00 for every z = (1) € E. It has properiy AD Il $(X) is dense jn E.

k=1

e 1088
mmﬂp]hmmwﬂmﬁﬁmth:mmg{:]= EI:.F") y Where
M= mn:{i,#;zpm}{uefﬁﬂ. The space cy{p) i= an FK-space with AK, elp) is an FK-space and £__{p)




iz & complete LBK space with AB (ses |2, ﬁj‘_i,”l‘l;h'hmnthat the space 0[X, p} i an FK-space with
AK under the perancem gfz) = (Zunﬂ) . whunH:m{L:?pg}. In each of the space
k=1

Lo (X, p) and ol X, p) we consider tha function g(z) = sup [lze P/, where M = maz Lowpp) s
kenown that op(X, p) is an FH-space with AK under the paranorm g defined as above and £_{X,p} is s
complete LBK-space with AB. In c(X, p) we consider the function g{z) = sup fze —alf/M 4 [la]] whee
@ bs the unique element in X with x —efa) € &(X,p). Then g is & parsnorm on o X, p) and e X, g is an
FE-space under this paranceen.

1. Boma Auxillary Results

In this soction wo give some useful resulis that can be used to reduce our problems into some
simpler forms.

Propoeltion 3.1 Let E ond E,(n € N) de X-valued sequence spoaces, and F and Fa(n € N)
¥ -valued scquence spaces, and let u and v be sequences of real numbers with uy ¥ 0, vy, 4 0 forall kg N.
Then we have
) (U B, F) = 1 (Bu, )
(i) {'Elrﬁ::lpﬁ} = e B Fa)
ﬁ'ﬂil [-EulFH} o o B, Fly-r.

Prool. Amertiona (i), (i) and (lil} are immodistoly obtained directly by the dofinitions.

FProposition 3.3 Let p= () be o bounded sequence of positive real numbers and r > 0. Thes
(1) Fe(X.p) qurp']{ﬂ]-
(8} (X, p) = Pﬂ;nnl-t}{,m.r

FProol. Assertions (i) ia otwiously obtsined by the definition.
To shew (i), Iot = € oy(X, p). Then [jzafP* — 0 8s bk — oo, For each n € N, lot & = [Jz3 I 5 for
all ke N, %hﬂtﬂﬁynnutum;huuhl.nﬂhuﬁ”"anul—mﬂhuumpiu.

»a we have = € ql_'I],:_m.-r Conversely, assune that = € M, (X)(14m)- Then If_l'_ﬂ:;.dr llzgllntir =0
h-umnE."-'.'I'hmfun.ﬁﬂfwhnmu:.?‘s%hh::ek.hm:ﬁﬁ{.’.‘.p]. o
d. Main Resulis

Wa begin with giving the matrix charscterizations mapping from X, p) into & BK-spase where
pe<lforallke N.




Theorem 4.1 Letp = (p:) be o bovnded sequence of positive real numbers such that ;e < 1
forallk € N and [et E be a Y-valued sequenes space which 14 0 BK-spoce. Then for on infindis matriz
A=(T7), A€ (UX,p), E} if and only if

(1) For each k € N, {Tp{z)j25, € E for allx € X and
(2} There exists mo € N such that

sup sup BAmg P eH(z)| <1
k =izl

Prool. Suppoes thet A € (H{X,p), E). Since e*{z) e (X, p)fc sl e X and all k € N, we
have Ae*{x) € E, so (1) is oblained. Now, we shall show that the condition (2) ls satisfied. By Zelle's
théorem, we have that A : §X, p) — E iz continuoes. Then there exdsts mg € & such that

== (x,) € H{X,p), HE% = JlA=|| £1. (a1}

Let = € X with iz < 1 and k € N. We have m /™ (2) € (X, p) and fimg V"> (2)] =%, By
(4.1) wo have ||A{mg T e* ()| € 1. This implies that

sup sup fA(mg M) < 1.

LI [ g
Comversely, sssuma that the conditions (1) and (2) hold. By (2), there Is my € N stech that
o flA(mg e (2)]) £ 1 (3
for all x & X with =l < L.
Thin implies by (4.2) that :
sup A (mg ™ e )} < (42)

for all z & X,
Let z = (x3) € £{X,p). For cach k € N, we have by (4.3) that

llAe* (za)l| = BA(mg ™ (mg VP e (=)}
= g T B (g ™ e ()]
< mg/ ™kl {4.4)

Sinoe (mpy ™z, ) € X, p), 50 (mi ™ x,) € (X, p) C cul X), henos there in s ks € N such that mgfiza ) <
1 for sll k > k. Since 0 € pg < 1 for all k € N, we have

g ™zl € (my ™ Eeal)™ = malla (&5)
fear &1 b = k.



It follows by (4.4) and (4.5) Lhat

2% =
2o e el < 5 mig ™ |z |
Jp] el
L =1 (==
" B e
domg P b 5wy
haal Wiy i)
-"-u.ﬁ : aca
S PN TR S
k=) e ]
L )

i e
Henee E.‘it"{tﬂ vonverges absolutely wn &, Binca £ u Banach, E-"""kfﬂ] convorges [n 8 Let,

(=T k=1
L
¥ = (i) & E be the s of EJ‘I:J'{I;,} dince £ s n Keapace, we hove that for each i & N, p,
b=}

conLinwous, sa Ul

Voo = Punl0) = lim 3 Cpm{Aet ) < fim 300
ey k-1

Thin implies that Az existi and (Az), - E'I;‘{:n.,} o Yy, hemco Ax & F,
k=
Thin campletes tho prodal (B}

Whiam gy = | loc sl k & N, the following result, age obtalned divectly from Thesrem 4.1

Thooram 4.2 Lot E be o ¥ ovalued soquence space which 6 o BK-space and A - CTT') e infinate
wmatree Then A & (E(X), B {f and onlp if
(1) For each k& N, (IP{z))n, € B for allx € X and
(&) wup sup ||Ac*(z)|] < oo .
Ul B R

Thaorem 4.3 Lol p = (py) ba o bounded snquence of poritive real numbders such that e <] far
all k& N and let A = (17') be an infinite matrir. Then A € (X, p), £ (Y)) if and only if
(1) For cach ke N, sup |117]] < oo and
2] There exists myg & N much that
sup g T S 1

Proof. By Theorem 4.1, to prove this theerein wo only shiow that Lhe the conditions {1) amd (2)
are equivalent to the conditions (1°) and [2'), repectively, where
{1'} For each k€ N, Ae*(x) € €_{V) for all 2 £ X arul



{2') Thers exiata my £ N zuch then

sup sup [l A{n, et el = 1
E E=j=i
The conditions {1) amd {1'} sre equivalent by the uniform bownded pringiple:
1f (2) holds, far &,n & N and 2 € X with Jlzfl <1, we have mg "™ |12z < mg 1z =l <
wg TN < 1, which bmplies

sup sup [|Almg P (z)) = sup oup swp g IR €1,
ki1 b Jlal€l m

a0 (') in obtained
Now, supposs thit (2) holds, Then there exisis mo € ¥ such that
sup g P TT ) = A lmg et (=) < 1 (4.6)
for all k& N und oll 2 € N with ||z < L.
1t follows by (4.6) thut for each n,k € N, mg " JIT| < 1, so (2) is obtained. 0
By wiing the same prool as in Thesrem 4.3 we shtain

Theorem 4.4 Lt gr= (i) be a bovndad siyuence of poritive real sumidera auch hal py <1 for
all k& N and let A w (T7) be on infindte matrie Then A € (8(X,p), ealY) {f and only {f
(1) For each k € N, TT(x) = 0 aan = 60 forall z € X and
{8) Tharn exsats mog € N wmch that

ey mg " TT < 1
n,

Theorem 4.5 Letpo=(py) and = (gu) be bounded sequences of pasitive real nurmbara such that
peSt forallk e N and let A= (T}') hnl'l.lfﬂ‘l'lﬂﬂnﬂmﬂ‘&_ Then A € (60X, p) el q)) o ard only &
{1} For cach k& N and m € N, mY# 77 {2) — 0 an v == 00 for all z € X and
{#) For cach m & N, there exdats v, € N much that

Eﬂf r;lrnml!r- <
LY

Proof. By Proposition 3.1 (i) and 3.2 (ii), we heve
A€ (HX,p) aolYiq)) = A (X, p) @Y Nmiiny) forsllme N
Ty fullows by Propesition 3.1 (1ii) that fer sach m & N,

A€ (0X ) el ¥ ing) == [mMIR) € (X p) wilY]) -



By Thootem 4.4, we obtain that
{mt=T0), B (A p) a1} = (1) and {Z) are setisfed
1
By spplyimg Theoran 4.1 and wing the same proof as in Theorem 43 we obialn |

Theorew 4.8 Let p= {py) be o lunded sequence of positive real mumbers such that py < 1 for
oll k€ N and (et A= (T) be an infinite matrie. Then A € (80X, p), (¥} {f and oniy if
(1) EhrmmtEN..f_ITr;t:“'}:!,:] exista for all x € X and
(8) Thers exists mo € N much that

-]
oup g )< |

Hy mpplying Theorem 4.1 we alss have the following remult.

Theorem 4.7 Lat p = [py) be a bounded soquence of poritive real numbers suah that py, < | for
otk €N, a2 1 and let A w (T3') be an infinite matriz. Then A € (08X, p), L.(¥)) {f and oniy {f
(1) For each k & N, {T7(2))2%, & L{Y) Jor all = € X and
{8) There exists mg € N such that

aup pup a{pu z* < 1.
~ glhin A E"‘u N

Since B (V) = ,.[}’}t*_..],. the fallowing result is obtainod by Proposition 3.1 (i) and Theorem
4.3

Theorem 4.8 Let p = (pu) be o bounded sequence of positive real nntibare much that py < 1 for
allk € N, r=0 ond et A= (I7') be an infinite matric. Then A € {8X, p), Fo(¥)) if and only
(1) For each k€ N, sup [|n="T0|| < oo and
TR | T, T

=k i
rup ey Mt < 3
T

Simee Fo(¥) = &F) ey, by spplying Proposithon 3.1 (i) sod Thoorem 4.1 we abitain ;

Theorem 4.9 Lot p={py) be a bounded seguence of positive real numbers such that g, < 1 for
allk € N, r 20 and let A= (T7) be an infinite matriz. Thes A € (20X, 5), F.0¥)) if and anly 3
(1) For nchk € N, (w7 (x)}2; € €[Y) for allz e X and



(%) There esists mg € N such that
e

sup sup Emé—l.l'n“rlmtiﬂ <4,

U P Bt

melﬂdmmmr._-
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Malrix Transformations of Same Vector-Valued Sequence Spaces

BUTHER SUANTAL

ADITRATT, In ihis puper, we give Lhe matrls characterizallons from veesomvalied

saquance spaces Lo (X p), and g (X p) tnle the Oclles soquance space Ly whars i = () be
& brisunded sequancos of posllive resl weepbera

(1) AME Matlsmation Sabiect ClnssiRendioan 40443,

1. INTRODUCTION

Let (X, L) be n real Banach spoce and p e () & bounded soquemos of pesitive rel mimbers.
We write @ = () with x4 In X for oll & € N, The Xovalued soquinon apsces s{X, p, o[X, 9], LX),
X ph, onal o[ X, ) nre dofined sn
(X p) = o () 1 it [l ™ = 0},
elX, }t{:u[ﬂ}:htﬂllr;-u"“ =10 lor somo a € X'},
bl Xy p) = (=m0} : "y llzsll™ < oo,

(X ={z= (=) : ¥ llzli™ < 00)
Rsal
ﬁ;{I.p}:{:={£ﬂ:n‘fp|E%uﬂ < ooy Mor sume (8,) € oo with £, #0 forall ke & )

When X = R, the corresponding #pnces nre writben as oy(p), elp), £ao(p) Ap), and 2, (p) respectively,
Each of the first four spnces aro known a3 the sequence spoocs of Maddox. These spaces were ficst
nbroduced and studied by Simons [7], Maddue [4, 5], and Nalawno (8], In [2] the structire of the spnces
calp), elp), and £u.(p) hnve been investiguted

Tyimeet by L4 THE



Led M : R~ |U oo} be conver, even, comtimwous aml M{u) =0 = u = 0. For a given real
SO 0= {In]} tlefinie
par(e) = 3 Mz},
H=1
far = [z = {z4) s pa{Ax) < ool somed > 0}, wad
Jiel] = inffa > 0: g () < 1) for € L.

The sequence spacea (L, || [} is known a3 the Orfiek ssquencs spnoe el i i 5 BK-spaca.

In this paper we conshler the problem of characterizing those matrices thet map an Xovaloed
sequencs spaces Lo (X, p) and g X, p) into the Orfice soquenee spaces. Wi wnd Lin [8] deal with the
problem of charnclerizstion these inlinite motrices mapping from en( X, p), ol X, p), £o(X, p) and £(X, p)
inte the senlprsequonce spaces of Maddoe with some eonilitions on Uhe T T IFI} and {gh" Creumse-
Erdmnnn 3] hus given characterizationn of motrie transformations between tse scalar-ynlued sequanes
wpaces of Maoddox, Thelr chasocterizations wre derived Fom functionsl annlytic prindples Our sppesach
haiw b dilfevent. We s b mathod of reduction Inteodiead iy Grose Erdmann 3], In [2] 5t s polotod
out that aplp) be an echielon spoce of onler O and thst £.(p) Is & co-echelon sptce of ardér oo, In thia
paper wa also show thed g,( X, p) and £,(X, p) 10 & co-achelon space of arder oo, Therslore these spmces

are il ap of smpler specm. We will wse oortaln suxilinry reanlts{Section 3) to reducn our problem ta
the chumterimtions of matrix mapping botwesn much simplor spuces,

2, MNotatlon and Dolindlionm

2.1 Lat (X, ]|} o & real Bansch apoes, tin spaoe of sll sequenens in X i denoted by WX and 2(X)
Wi dhemtedd for the space of all finits sequences in X, When X = R, the corrssponding sfacon ara written
o maned o,

A soguimen spoce in X In o linoar subspoce of WX). Lot F be sy Xembuod sogquenon opece.
For o & £ and k € N, we write 2y standa for the ¥ term of 2. For k € N denotes by ey the sequence
(0,0, 0, 1,0,..) with | ko the & position mmd by e the sequence (1, 1,1, ), Farz € X and & € N,
let, e*(x) L the sequenes (0,0, 0,2,0,...) with 2 ln the & position und let efz) be the soquoce
(==, ), Forsfived scalar sequence o = (g ) the sequenca space B, is defined as

B, = {z e WX} (pemy) & £} .

‘I'he secmience space. 1 s ealled normal il = € F and y € W{X) with ] £ x| Tor all & € & implics
that £ .

23 Let A = [2) with /2 in X', the wpological dusl of X. Suppose that E s & spece of X-valued
sequences and F s space of scalnr-vaiuod sequences. Then A i sabd to rop E mto B, written by

A1 B = Fif for each r = (2] € E, Aq(z) =Eﬂ;‘{:|:'k} converges for coch n g IV, nd the segienee
W=l



&

A = (ALf)) € F. Lk (5, F) daniota for the sct of all infinite mattives mapping fom B ko 5. 1f
== (uy) end v = (vg) are scalar seqences, fot

sl Fh={A= U::' 4 [“-r:'-'ﬁfﬁrl.l_: £ {E- F) ]'

[Fae 20 for el & £ N, wewnleony ! = [&:I

23 Suppose that the X-valuad séquence space B is endowed with some linesr topology v, Then £ Js
called & Fespace if fue ench n € N the n™* eocrdinate mapping ps : £ — X, defiried by palx) = 2y, i
continuons on B, 1l in addition, (E, 7) is en Frécher (Bannch, LF-, LB-) spoce, then & i ealled an FE-
(BK-, I-Ff-. LK) space. Now, suppess thet £ contains $X). Then F s sld to bave progerty A8 if

theset {5 eMan) n g N ) s bounded tn B for avery 7= (24) & £ 1t bs wadd Lo have property AR if

L]

Z::"[n:l—':hnﬁuﬂ—'mﬁwmn'#-{n]l{-ﬁ. It has property ALE S(X) in donse in K,
ke

i Soma Auxillary Hesills

In this seatlon we glve various welil results that ean be used to reduce our probiles linto sorme
simpler forme.

Proposition 3.1 Let & and Eq(n € N) be Xovabied sequence maces, and F and Fy(n & N)
noalur anquence spaces, and let u and u be sequznices of real nunbers witl we o 0, vy 0 for all k € N.
Then we have

0 (Ui F) =By )

() (8, PG ) = e (8, )

(i) (B -+ B ) = (B, ) 1 (B, 1)

(i) {E,F1) = (B, F)0{®(X), Fi) i E is an FK-space with AD, Fs fs on FK-space and Fy i a closed
subspace af Iy,

{".-J {H... F'u]': v{E'-F}u““

Frool  Assertions (i), (i}, (i), and (v) nve brmediate To show (iv), msume that 5 s an
Fli-apnoa with AD, Iy is an FiGspace and Fy i & closed subapnes of Fy. Cloacly, (£, Ky} C (&, Fa)n
(B(X), Fi) s aleays the case. Now, nsoume that 4 = (/) & (B, Fa) O {¢(X], Fi} and * £ E. By Zclla's
theorem, A ! E— Fy s enntimious. Since i has AD, there is a sequenes (™) with 4 € $(X) for
all m & N sach that 3! — zin £ as n — oo By the contlnnity of A, wo have Ay'™ — Ax in Fy as
n— oo. Since Ay™ € F for all n & N snd F} is n closed subapaee of 7, we obtan that Az € F.
Hence A € (£, Fy), o that (B, /) 0 {#(X), Fi) © (B, Fi). This complete the prook. o

Proposition 3.2 Lef p={pe] be a bounded sequences of positive real neombers. Then
(t) X9 =1:'I:—]':'1{ﬂ4n-'-htp Hienee (X, 0]} 5 an echelon spuce of erder (.



(i) .‘.‘WEI.‘F}=U:"_:5={JI:']{..-="::|- Henez £,( X, p) i3 0 eo-scholon swice-of order oo,

FProol (i) Let = = {5 € (X7}, Then thereis & sequence (8] & gy with & & 0 for
all & & W such that .mp HE—I|F'* < o Henor thore exists o > 0 such thar el = o¥P 8] for all
k€ N, Choose ny £ .i'.l'w:r.h fg = o Then faeyling /™ < {._}“-*‘]5.| <[] which impdies that
Ifm lzafing Y = =0, hones 2 = (2} & ol X )=ty -:_:Ll:,iq[x}h, uewye U the ather hand, supposs
thu * = (o) € UlaaalX ) -iimy- Then JHim [peafin= P = 0 for somen & N Let 8 = (6] be the
negrenoe defindsd by

g [ Il
- erbheroise

&
Clearly (§1) & oy und |5 '”"‘-’ﬂﬁ:rﬂlkEN Ilunm-"r?" *"“hﬂ,m:={mﬁ]£,¢{1p}

Mo we show I:In.]I II': & £ou (X, p), thoi thére s some 1 £ N with Nyl < nlor allk & N, Hetwe
s =% < 1 for all k€ ¥, po thst 2 € !,.,[x}{ﬂ.u,., On the other hayd, if = € St S E & P
then thece aro soma n & N and A > Lauch et JJoy om0 < Af for every & € N, Then we have
Nomi [ =5 ro ™ < v 6™ fiore Wl e 2 N, ‘Hmﬂma?pp. Hunea o € £,,( X, p) =l

3. Mnls Resulty

Wi o turn o our main olijective. We bigln with wiving charactoriaations of matrbx teaaform-
tiann Trom £, (X) amd eg{ X inte 5y, “To do this we neod  lamma,

:L-mmu 4.1 Let &€ {£,0X), el X)) and (fi) & mqm of contimous linesr funetionals on X,
Then E Sulma) vonvergan for every & = (74) € B il und ondy i Zﬂ_ﬂ.u <o
Froof. n‘}:‘,uf-u < o, then for cach 2 = () '€ B, 3 [fules)] < 2 Isalihenl <
Beadh k=1
2l 57 1all < o0, 50 that Emm converges,
M=) b= L
Cunversley, nssume that E,ﬂ.fn‘}umm;;u for every = = [z4) € B, Defino T : B — R by

Tr= z,f.{n} Clearly, T s linenr. For ench 11 € N, let », = erﬁﬂppm.lhf.h‘limﬂ'hl

f\.-lp'li:l.-_ hndm:mut..[ﬂ—-ﬁunumrnmhze E. IL Fn]lmhyﬂmnch-s-bunlmm theoram
that T'€ E'. Henoe thern i3 & pesitive real momber o such that

3 fitis)
k=1

<@ (4.1}

for all x = (#4) € B with [ls)| <1.



For each = = [z} € E withi ||z]| < 1, we can choose s real sequence (1) with [ty = T forall ke N
mwch that fitery) = |fidea)] for all & £ V. Cleadly, {tezs) € B and ||{taey )]} < 1. 1t follows by (4.1}

5_}‘ [Falze)l = [E filtez)

<a (12)

for all = = (=) € F with jjef] < 1-
It implics by (4.2) thee

Y =l < a {4.9)

kel
for all W& N and al) 24 € X with [ < 1.

It Follosen fream (4.3) that E!j_ﬁ.ﬂ <o foral nE N, hmnez:lr_ﬁ.ﬂ < o This eomplote the proaf. 0

[T k=1

Theorem 4.2 Leb A= (7'} be an infinite matriz wnt B & [4a{X) (X)), Then A € (B, )
|;|’ dbed md]r if

() E:mu < 0o for every n @ N, anl

(8) There uuux:-ummgugﬁ Eﬂ"fﬂ}'i < 1 for every (za) & E with ||g4)| < 1 for ali
ke N.

Prool  Assume that A € (B L), Then Eﬁ[‘:ﬂ canverge for all ® = (z4) € B Fenee (1)
holds by Lonmn 4.1, Sk B and & aro BK:apaces, by Zallae's theorom, A is coutlmsous. 1t follons
thist Lhere codats T > 0 such Lhnt

HA=z)| < K (4.4)

futwm—i:miﬂ‘wml laahl < 1 for sl k& V.
Than wo have ||A[i+::} £l forallz= () € B with || <1 for all k& N, By [I, Thoorom 1.38(1) |,
werd vl

e g

EJH{E ?:fa.{n}]l sl

i a
fior overy = = () € B with |Jry | < 1 for all & € N. Henoe (%) holda,

Canversely, ssmume that (1) and (2) hold, By Lemmn 4.1 , wa have E:_m’n} converges for every
bt

r={ry) € E. Lel K > 0 boauch that EM[I Ej’f{:;.:l-} = 1 for every = (5.} € E with Hzefl €1

for ol k£ N, Then for 2= {:k}EEmdr‘#ﬂu“lmH

> Mg S ) = S w3 R () <1

which implies that Ax € By, hence we have A € (£, £ur). o



Corollary 4.3 Ler 4 = U‘}bcmmﬁ:u!:ﬂmm ;f{i‘umu__l::., then A € (Lo(X), Lar).

Proof. Asume that {E ¥
k=1

EM{-’*EHHJH <o Let = (2) € Lo[X) and ||z] < 1. Then |inif] = 1 for all £ & N, 0
LT =1
\fotzedl < 0] for alt n k & N. Putting X = ‘:— Since M is convex, even, and increasing on [0, 09), it

follows that

5—LM(A|§II{':J )
L ZM(Af: R

k=1

€ fy. Then there cdsls A > 0 and o > 1 such that

S MY il = E_‘M( |Er{m

Ll e

nl.-

i M{AS L

k=1

1A
= DI—

It follows by Thoorem 4.2 that A € (£ X), L) (n]

Thoorem 4.4 Let A« (') be en infinils matriz and lef p = (pa) be o bounded sequence ef
wn'Hu:mJ numbers, Then A € (£,(X,p), i) of and only if

{1 Em"‘"’“ﬂﬂ"" < oo for allm,n € N, ond
)
(2) There exisis K > 0 ruch that

EHE Em‘f’-rﬂmn <1

w1

for every sequence (za) with nul| S 1 forall k€N,

Prool. By Proposition 3.2(ii), we have X 2)=LE", ﬂW{x]{“_‘h}_ It implies by Proposition
3.1{i) that
A {La(X,p) Lyl = AE u.ul:x]{mu.rnp by foralime N

By Proposition 3.1(¥), we have
A € (Eal X)pumerirays e} = (mVP 1) 4 € (£ (X, L)
We heve by Theorem 4.2 that

(mb/P =), 4 € (E(X), €u) === the conditions (1) and (2} hold.



Hemee the theorom is pooved. o

Thoorem 4.5 Let A = ([} be en infmile malris and let p = (pi) be 2 bounded sequence of
jn:umrmlmﬁut Thea A € (g X.p), L) &f and ondy if

1) Emmtu'n-:w,rwmm,neh and
f2) T.'lcr: exists K > 0 such that

g Mz E mes i) <1
Jor every sequence (23) € ap{X) with ||z,|| €1 ferall k€ N.
Prool Sinee go{X, 2} = UG5 60X )y -10eay, e have by Propesitios 3 1{1) that
A€ {g{X,p), tu) = A € (@(X)(p-1100p far) fox allm e N
By Proposition 3.1(v), we have
A€ (e X ) -rpmays bar) == (/P[00 € (XD, Lur)
It follows by Theorem 4.2 that
(P (T u € [La(X), ) eme  the conditions (1) and (2) hold.

Homen wo liave the Uheoeemi o

Acknowlod gemonts

The author would like to thank the Thailand Research Fund for the financial support diring the
preparation of this paper.

REFERENCES

(feometry of Orfict spaces, the Institute of Mathematics, Polith Acadessy of Bcienos, Warszann, 1908,
GooeerErdenatm, The sirichine of he souenot spaced of Maddos, Casad. J. Math 44 (1593), 788-307,
Crosse Erdeass, Welrts frenaformations briseen e sequence spaces of Waddee, J. of Math, Anal. Appl 188
epd), JE-TEA.

Maddox, Spaces of sreagly summabiz sepurnces, QuartJ. Math. Oxford Ser, (3} 18 [196T), 345 355,

Muilelom, Parenermal sppence spaces prasrelnd by &inils olrices, Proc. Camicidge Phils, Soc. 84 (1958], 235

R

Nekans, Modwlersd stqsenes fpaced, Proc. Jepas. Sceal. 27 (1951), 508-512.
Simons, The speces pel and mi{py ), Proc. Londen Maith Soc 18 (1065), $22-£55
WuMmewwwnmmmm rpaces, SEA. Bull Math. 17,1 (7950,

EAE BE PEE




Department of Mathenstins, Freulty of Science,
Chisng Med University, ey Mai S0200, Thetlaend.
Email : Seewt|NGBchinngmuni ar th



HATIUIRY 10

o184 Superposition Operators on the Sequence Space

doqideu  ua. sz qum i
Suthep Suantai

usanidldtisueluilsspnaueineadinanans AaTu T
TAWANA RAMADA niaivms TnomadtiadiadAnani ansinanamans
ginnenhminede  swinedud 8- 10 funan 2540

-a. =i = L5
AT ARLTLY Proceedings seemintdssgy wiln 172-175




Superposition Operators on  the Sequence Space #(p)

Suthep Suanic
Departrent of Matkematics, Facuilty of Science, Chiomg Mai Unrversine Chiane 3ai, Thailand.

ABSTRACT

In this paper, we give a characterzation of superposition  oparstor acting from a
sequence space of maddon £(p) into the sequence space £,
INTRODUCTION

Let v bethe sex of all real numbers, N the sot of all patural mombers and S the set of
all real sequences. For n € 1, we denode the nth term of sequence x by x, 2nd write x =
().

Let £, = eS| Yjry] <o} cqippod withtho nom ||, deid by

el =§1r.| for cvery € ¢,

Let p=(py) bea bounded sequence of positive numbers. The sequenco space of
Maddox {(p) is defined as

ip) =~ fxeS| i <w).
=1

This space was mtroduced by Maddox [2] and it is a paranormed soquence space with the
paranorm ||.[| defined a5

- L
IH#JI:{‘FE_I:xﬂ“}“ whore M =max {1, sup py |

For r>=10, et
E=f{xes| ﬂp%}i < @ | equipped with the norm ||, [l defined by
Hlﬂs,=ﬁ°ﬁ:p ’%}i for every x € E,.

Fi={x€8§| ik'lxd < @ } equipped with the norm || [f; defined by
k=1

il = Sk revery x € R,

Let f:NxR —» Rand P;:5 — 8 be definded a5
Pe(x) =(flkx)) forevery x €8,
The operator Py iscalled s superposition aperator. The superposion operator B,
i5 said to act from 3 sequance space X it 3 sequence space Y if Pym e Y forall
x€ X Characterizshon of Py an Orlice sequence spaces was given by 1. Robert and 1V,




Iud

Shragin [3], [4] . Chew Tuan Seng [1] has geven 2 characterization of P, on wy S
Suantai [5] has gives a charactenization of Py on the sequence spaces E, and .. In this
note, we nse the sams technics as m [5] to characterize P on the sequence space £(p)

MATERIALS AND METHODS

The main parpose of this paper i the followmg theorem
Theorem 1. Let §: 8XR R besuchthet foresch k & N, fk. ) 15 boundad Of EVEry
bounded subset of ® . A superposition operstor acts from £(p) mto /, ifand cnly if
there are & > 0, > Oand 3 sequence (o) € £, soch that forcach k = ™, [fikt)| < o
+ et whenewer 12 < B

Proof For the proof of sufficiency suppesa that there are @ > 0, B > 0 and a sequence (o)
& ) suchthat foreach k € N, |flt) = o+ @t whenever [1f* 5 B Lac x = (x)
€ #p). Smoo x;, =0, thervisani € Nsochthat [x, " <P forall k2 i. Then
[k, %y} = ¢ +ajx, [ forall kzi. Heoce

glf{k,xtjj 4 g:ta +l:.5:ixkt"t <m. Therefore Pr(x)=(flkx)) e £,.

k=1
Suppose, conversely, that pp acts from #(p) mto 4,, Foreach &, >0 andforeachk
e N, wo define
1£(k, )|

Aka f) = {ter | [tf*<min(p, o 11 md
B (oat.f) = sup ( k0| | te Adka.B) ).
Then we have
) <Bleep) + ajif™ whemover [tf* < . ()

W shall show that there are some ¢, § > 0 such that (B (kot.B)) & £, To prove this

1
suppose that (B (ko.f)) # £, forall ¢, >0, Then iﬂ{k.l'.—g*}:wiunﬂ ienN
k=l
. Then there cxsty a sequence of integers (o)) with
m=0 <my<m<.  <m<...suchthat n,isthe least positive imteger so that

1]
i'ﬂfk,u} > 1. Forgachj € N, we can choose € »0 such that
e el

Y0y — (oy=ny e > @

ket 41
Foreach j€ ¥ and forall k€ N with 0+ 1 5 k <ny, thereexists g & ﬁ{ﬁ,ij,‘;ﬂ
such that
Hkx) = Bq::,zi.zij} -g; (3)




1
Smea x, & Ak2Y, —] we et that

f
|x,,?'*£ and |x tj"'_l “"““H (4)

Smee 2 Bk 2 i} < Vand |F{kx, ¥<B(k2', —"} it follows from (4) that

.".-:I1|

Y iftkx +—
h-a__,ﬂ

k=n - g+l
i =1 ==
“ 2 zﬂﬂﬂﬂ.}:hg} Y
|
=5 _2";]_
Then )’JFILF‘ )ﬂ.‘. ﬁixhl" = =2 sothat (u) € &(p). By assumption, we

hmﬂu: P,{:J“[ﬂk.'h}}ﬁ ¢y Mmhnﬁmﬂjmﬂﬁ]ﬁuﬁtnﬂjEH.
Eirtk:.hz- )f B(k2!, 3- Y s

.lrl" "I'F" huuHﬂ

i B{kﬂj-iﬂ = (nj=np e,

fe=ii i1

« 1,
Hence i:lﬂ',k X ) = g e Zlf{k Xy N =<0 which isa contradiction becatsa

{M}Eh hhﬂﬂﬂrﬁh‘ﬂﬂh {B{I'I;E.EHEE; Pummg & = Bk
a.p) forall ke ¥, so{ay) & £, and we have from (1) that for esch

ke, ki) < o+ aftf* whenever |tf*< §.4

If Rk, . } 15 comtinuous for every k € N, the following result is obtained dirsctly
from Theorem 1,

Corollary 2 Let f-™XR —R besochthat foreach k € W, fik, ) is contimuous oo R . A
superposition opesstor Py acts from #(p) mte £, ifand enly iftherzarecx > 0, B> 0O and
a sequence (o) € £; such that forcach k& W,

Mkl < o + aftf* wheever 1P < B



Examiple 3 Lt §-WxX# — R be defined by
1
k) = -.E{-E;Hﬁh sinkt)
Lt ¢ =3andfi=| Thenfor te r (' =B=|, wehave |k, U = oy, +oxftf™

2
where ¢ =F forall k € ™. b follows from Corollary 2 that the superposition operator
Py acts from #(p) mte £, ,

|
Example 4. Let p =(py) be a sequence with P forall k € ~ andlet £ NXR <R
]
bedefined by f(k.t) = t¥ . Let o, fi>0 and (o) € £, . Choose ks € N be such
] | 1 1
that ch"’“‘iﬂ" < ‘--m&?: 5ﬂ.h:tt=-1ﬁ-.

¥4
Then we have
1 1
ikl = 3 > 6y, rasic = o, +afy™
It follows from Corollary 2 that P does net acts from £(p) into L,

RESULTS AND DISCUSSION

We give the main results of this papes in Theorem | and Corollary 2. In Theorem 1
necessary and sufficient conditions for superposition oparators acting from f(p) oo £,
mmﬂmﬂh.}ﬁhﬂuhmﬁuhihhﬁwﬂﬁrmw“hlﬂl
but i Corollary 2 such conditions are given whea flk, ) is cootinuous on R for each k € N,
The Last two examples give us the fimctions ik, t) for which for each k & N, fil, ) iz
continuous and Pr acts from #(p) into £, m Example 3, but docs not act from £{p) ioto
£, in Example 4,

For solid sequence spaces, we can use tho same technics as m Theorem | to
characterize superposition operators acting from those spaces into ¢,
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Editorial Qffice @ Professor K. P. Shum
Department of Mathematics
The Chinese University of Hong Kong
Shatin, N.T,, Hong Kong.

Tel: {852) 2600 7988

E-mail address: EF'&hEEEﬁmh.mll*:h.cdu.hk ' _ Fax: {852) 2603 5154 -
Ref no: 3617 Snuﬂlmtrﬁman
Mathematics.
Professor Suthep Suwntm Springer-Verlag
Depl. of Math.
Faculty of Science,

Chiang Mai Umversity
Chiang Mai, Thailand
(50200)

27 November, 1998
Dear Prodemssor Suantai

I am pleased 1o mform you thal your paper “Matrix trensformations between some
vector-valucd sequence spaces” had been recommended to publish in our joumal for
publication. Please revise your paper according to the referee report.  Please sent 1 1o us
with the diskette and sign your ficc/e-muil sddress in the copyright form and sent it to us a3
well

Yours mncerely,

e

Professor K_P. Shum

Editor

C/O Dept of Math-

Chinese University of Hong Kong,
Hong Kang, Shatin, N.T.



Referee’s report on
Matrix transformations between some vector-valued sequence spaces
By Suthep Suantaj

The paper provides an interesting extension of Zeller theory to the vector-valued
sequence spaces.. The mam result i$ Theorem 4.1, and the proof is comect. There ae
two typing errors in the proof. In the line after eq (4.1 8., i=1/m_D should read
il...MNeg L/m_0. Also m the line after eq (4.4) m_Qilx_kil<] should read

m_("| Wp_k Jix_kli<]. Other thecrems are consequences of Theorem 4.1.

The anthor should check other typing emors, For example, p.2 line 3 defindzd should
read defined: line 21 denote for the set should read denote the set; and line 23
A=(T_k*n) should read A=(T_k*n):

Page 3 line 5 glxy=sup...-+all is not a paranonm. A paranorm musg satisfy Bi=(
whercas gla)=0 snd not necessarily g(0).

I recommend the paper for publication in the Bulletin.
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CALCUTTA MATHEMATICAL SOCIETY
AE 374, SECTOR 1. SALT LAKE CITY. CALCUTTA-700 064 (INDIA}

Dept. of Hathamatics
(hi=zng Hal University
Tnailand

Retorence : Paper No. 2 LB Y.. a8 -.21= 1318

Title of the papm...snalnn.mum?ﬂin_fﬂﬁtﬂﬂ
for nean. uasiriormas

HT. 'EE' m .-“m-ﬂr’#.."-.-&tmepqpsuﬁm-n-m----nl-hr:q---r
Dear SirfMadatn, .
= [ Recsived with thanks the above mentioned paper Ho o e

Furthor Information will faliow In due course. Plosss quote your sbove paper
Mo, in funsre communication.

[] Plesse send First copy. The paper will ba processed only after the
recipt of the fimr copy. .

[7 Pleuse sond the duplicats ¢opy of the paper and the diagrams ( duly
traced by 8 draughtsman ) in Chinese ink il they are not already sent Plesse
note thet suthour is charged the cost of printing the peper, if sccepied. ot the
rote of Re. 60 or § 16 par printed page, The suthor is also cherged for cost o
preparing the blocks of his or har paper.

] The above paperis with the miores, You will be informed of the
position as s0on a8 the comments of the referee will be recedved,

[0 The above paper has besn fomelly sccepted for reading in & general
moeting of the socioty and will apear In the Bulletin only i it is spproved in
the s3id mbating.

pyzﬁ-mmhumm lly sccoptod for publication sad will
P in the Bullethn In due coures, + mnwm
[T Thae ahove paper has nol been recommended by our refefes for
publication In cur Bulletin, It is returned with the referee’s comments.
[T The peperinthe present form has not been recormmended by the
referes for publication in the Bulletine The paper is retumed with the reforee’s
comments by sepavate post.  The referes’s comments |s sent o you. | you
egres with the comments, piease modify the above paper In the light of referse’s
comments and ssnd the modified peper with @ copy of the previous version of
your papers n duplicate for further consideranon.
Thank you for your interest in cur Bulletin.
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