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ABSTRACT

Research output no. 1
Title : Scalar Multiplicativity Factors for Near Quasi-Norms

Abslract : In this note a near quasi-nom q s defined on a real of complex
veclor space X . We use the notion of boundedness as in a genaral
topological vector space 1o study boundedness of sets in a near qQuasi-
nommed space and we study scalar multiplicative factorsfor q |, e,
constant A >0 forwhich g(Ax)<A|a | q(x) forsome r>0 and forall
scalars « andall xeX. The hecessary and sufficient conditions for a near
Quasi-norm q to have multiplicative factors are given. We further show that
under what conditions the natural near quask-nomm on the sequence spaces
of Maddox £_(p) and £(p) have scalar multiplicative lactors,

Keywords : Near quasi-norms, Scalar Multiplicative factors




Research output no. 2

Title : Multiplicativity Factors for p-Seminoms

Abstract : Let § be a p-seminomm on an algebra A. In this paper we study
multiplicativity and quadrativity Tactors for S  i.8., constants p>0 and
A>0 forwhich S(xy) <pS(x)S(y) and §(x*) SAS(x)* forall x,ye A
We begin with charactenzing these factors in terms of the kemel of S and
we also show that p-norms on finite dimensional algebras always have
multiplicative factors. Wa then provide under what conditions does § have
multiplicative factors if it has Quadrative factors. Finally, we show that if A
is commutative then Quadrativity factors imply mudtiplicativity factors.

Keywords : Multiplicative factors, p-seminomms

Research output no. 3
Title : Matrix Transformations on Some Vector-Valued Sequence Spaces
Abstract : In this paper, we give the matrix characterizations from vector-
valuad sequence spaces of Maddox Co (X, p).e(X, p), £ (X, p) and
(X, p) into scalar-valued sequence spaces of Maddox  ¢,(q),c(q) and

f.(@) where p=(p,) and g= (9 ) are bounded sequences of positive roal

numbers.

Keywords @ Matrix Translormations, Vector-Valued sequance spaces




Research output no. 4

Title : Matrix Transformalions from Vector-Valusd Sequence Spaces of
Maddox into the Nakano Sequence Spaca

Abstract : In this paper, we give the matrix charactarizations from vactor-
valued sequence spaces of Maddax o (X, Pl e, p) and £.(X,p) into
the Nakano sequence spacs £(q) where p=(p,) and q=(q,) are
bounded sequsnces of positive real numbers,

Keywords : Matrix Transformations, Vector-valued sequence spaces
of Maddox, Nakano sequence space.

Research output no. 5.

Title = On Matrix Transformations Concaming tha Nakano Vector-Valued
Sequence Space

Abstract : In this paper, we give the matrix characterizations from Nakang
vector-valued sequence spaces #(X,p) and F,(X.p) into E, andwa
olxain the matirk characterizations from E(X.p) and FE(X.p) Intothe
bounded sequence space {£_ as corollaries, where P={(p,) is a bounciad

sequence of positive real numbers such that P >lforall keNand r20.

Keywords : Matrix Transfonmations, Nakano vector-valued Sequence space.




Research output na. B
Title : On Matrix Transformations Related to Naksno Vector-Valued
Sequence Space
Abstract : In this paper, we give necessary and sufficient conditions for
infinite matrices mapping from Nakano vector-valued séquence spaces
{(X,p) into the serquence spaces £_ and £.(q) and we also give the
matrix characterizations from M, (X, p) into the space £_(q) where

p=(p.) and q=(qg,) am bounded sequences of positive real numbers
suchthat p, <1 foral keN,

Kaywords : Matrix Transformations, Nakao vector-valued sequence space.

Rassarch output no. 7

Title : Matrix Transformations on Nakano Vector-Valued Sequence Space

Abstract : In this paper, we give the matrix charactonizations from Nakano
vector-valued sequence space £(X,p) into £_ £.(q). bs and cs whers

P=(p.) and q=(g,) are bounded sequences of positive real numbers
suchthat p, >1forall keN.

Keywords : Matrix Transformations, Nakao vector-valusd Sequence space.

R —




Research outpid no. 8

Title :  Matrix Transformations Batween Some Veclor-Valued
Sequence Spaca

Abstract : In this paper, we give hecessary and sufficient conditions for

infinite matrices mapping from Makano vecior-valued sequence spaces

£X.p) Into any BK-spacs and by using this results we obtain the matrix

charactarizations from 40X, p)into the sequence spaces £,(Y),c,(Y,q)

‘{n*f-{ﬂ- E’r[ﬂ and 'FI(Y] where p={Pt} and q“fql'.] re

boundad sequences of positive real numbers such that P =1 for all
keN, rz0,and 521,

Keywords : Matrix Transformations, Vectorvalyed soquence spaces.

Research oulput no. 8

Title : Matrix Transformations of Some Vector-
Abslract :

Valued Sequenca Spaces
In this paper, we give tha matrix characterizations from vector-

valued sequence spaces £_(X,p) . and a(X,p) into the Orlicz sequence

space £y, whers p=(p,) is a bounded sequences of positive real

numbers.

Keywords : Malrix Transformations, Vector-valued sequence spaces .




Research output no. 10

Title : Superposition Oparators on the Sequence Space {(p)

Abstract : In this paper, wa giva a characterization of supemosition

Gperator acting from a sequence space of Maddax #(p) Into the
sequence spacae ¢, .

Keywords : Superposition operators, Sequence space.,
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Scalar Multiplicativity Factors for Near Quasi-Norms

SUTHEPF SUANTAL

.ﬁmhmm-mmmqhﬁa-mﬂm:hw

pace X Wa mmm—thﬂm-hlmﬂwmwhm
mﬂmhnmmmmﬂ-ﬂn-mm matipliestive faetar

Hg.u,ml}ﬂhﬂhhq[ﬂ:]5A}n¥'ﬂ:}hmr}ﬂmhaum
o and &l 3 & X, ‘l‘hm-hﬂtﬂﬂhlmhlmmmmqu Bnvm
mulilllcative fuclar ars ghven. “thﬁwtm-dnﬂ#mthmwm

quash-uorm en the sequance spaces of Muddex L,(p) sod #(p) have scalar multiplicative
factorm

[1001]) AMS Matbeomation Bublert (Hus|Bestios: QAN BE, AL SR 4N

L. INTRODUCTION
LﬂIhnw“m:MthnFuﬁurtcm:!}ﬂ. As ususl, we call o
function 5: X — R a pseminorm f for all 2,y € X and a £ F:
S(z)z0
S(az) = [af"S(z)
Slz+y) £ 5(z) + Sl

¥, in addition S(x) # 0 for all z # 0 thm § iz & p-norm. IS is & peeminom on X we oall (X, 5) n

Typaset by ApsSTEX



Aguasi-norm sn X is defined in [5], page 13, to be & bmetion g: X — R satisfying
{i} ql0) =0
(i) gl—=)=glz) frall == X
(i) of=+y) < ofz) + 4ly) for sl 2,y € X
(w) iflog, ae P, loa—aj —0andz, ze X, 4(zx — £} — 0, then gloyz, —arz) — 0,

It follows from (i) — (1) that o{z} > 0 foc all z £ X I the quasi-norm g satisfies gf) = 0 if mnd
only il 2 = 0, then it is s2id to be fatal

K g is & quasi-norm en X, then d(z,¥) = g{z — ) defines & semi-metric on A which is & metric
if and only if ¢ is total A quasi-normed space (QNLS) Is & pair (X, ) where ¢ is & quas-noem oo X,
Hﬂ-thunquubnma&wh-hpﬂnﬁnim[‘n'ﬁl under the metric topology Indmesd by the
-

Wnnﬂlhmnﬁnng:x—ﬂtmﬂui-mmifq-ﬁ:ﬁummﬂﬂmﬁ}. (#) mnct (i) abowe.
Amemﬂm&h;m{I.q}Mq h-.-rmni—nmumx.ﬁnuhum
semincrmed spaces, QNLS-spaces and priormed epaces e NQNLS-space, A near quasi-norm g s sald
to be total if g{z) = 0 mplies = = 0. Fram (i) — ({i{), we cbtals that giz) 2 0forull x € X. U g is & pear
lil:l-ll-mmI,.lhlﬁmcﬂmi:Ixxﬂﬂdﬂnldhrﬂl.pj-ﬂ:-u}hlmm
:ﬁmﬁmﬁwﬁh:mﬁHﬂﬂ;thm Wlnlithlll:ﬁ:-mu:hhdmdlqr-l. We
lhnmwnlwﬂﬂmdmwﬂuthlﬂnmﬁﬂmﬂ by d. Wa shall see in
Euﬁm!lhuanui-mﬁmhnﬁ nocamarily 8 TVE snd will see in Soction 3 that under
-ﬂmﬂﬁwtmmmhtm

m:mwm[&q}nndﬂﬂd‘xiuuhhmuneﬂmdmeF.
@y =0, then ayxy — 0. U B C B(x,r) {thq:mhlmnxmdnﬁurjhm
= € X and for some r > 0, then J i sald to be metrizally bounded We show in Section 1 that & & ear
qﬂmmnﬂﬁﬂhmﬁhhﬂﬂﬁﬁmhmhﬂdhmﬂ
ﬁﬁﬁnuhﬁuﬁmlﬁum&:mwﬂm;mhmﬁdmhﬂhm

Arena and Coldberg 1, 2] defined multiplicative factors for & sesninorm on an algsbra A as follows
For & seminom & on an slgebes A, we call ) }ﬂhthﬁﬁrSEﬂw}SAﬁ'{:ﬁ[y}
faxallz, ye A hhuq'hl—ﬂﬂf.ﬁ‘hulﬂﬂlﬂpluﬂﬂﬁﬂ.lhu.l is 8 TVE, They also gave
muﬁmﬂiﬁnﬂnﬂﬂuh-%ﬂh“ihhﬂhhﬂnﬂuﬂ:ﬂﬂﬁm

Lﬂghnmqﬂmunmmx. Th-{'-lthhmullﬂhrﬂm
foctor for g If there are A > 0 wnd r > D such that

qlex) < Mafgiz) (L1}

fxrallaeF,zeX.

mﬂﬂlh{i,ﬂ,nrﬂhnﬂiﬁpﬁﬂuﬁ:ﬁwﬁr!. If A s an r-scalar multiplicative factor for
gihensoisp if p> A MMmmmmﬂw’hﬂmmﬂﬁpﬁnﬁn
rtors.
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Let p = (pa) be & bounded sequenice of positive mumbers. Maddox [] introduced the sequence
spaces £,..(p) and f(p) us fallows
Laalp) = {{me): (=2) b = real sequence such t-hatmiplr;!il"" < wal,

8(p) = {{za): () is & real soquence such that .i:a:.p'«- % a)
Grosso-Erdmann |3 studied same elructures of thess sequence spaces in [3). Let gy : L(p) = B
snd g/ : #(p) — R be defined by

(=) = npl® o g(tnl)= (3o kmp)
=

where M = mu{l,n:p_nl, B is easy to sos that g, bs near quasi-norm on £ (p). We shall show in
.."-n-u.i:nﬂ'l.huthuuinniqmp*[n}mdlthuth:fuiﬁmq,:ﬁ.{ﬂ—ﬂhnu & Guss.-norm
Maddax [4] showed that g i & quasi-norm on {(p) and In Section 4 we show that under whit eonditions
% 204 g, have scalur maltiplicative factors,

L. Near Quisl-Normed Spaces

Brudnuﬂummﬂuhmﬁupnﬂﬁm%wlﬂdml,pmlh the following
propositon s obtainod:

Propoaitten 2.1 .l:q:r{.lr*q]iunnrmui-mm Then
(1) The map (x,y) ++ 2 4y from X % X = X {5 continuons.
(2) The map gz X — K is continous.
(%) If U in a neighborhood base ot 0 and U & U, then there exits V € 14 such that V4 V € 17,
(4) WU is (open) neighborhood base at ) in X and = € X, ezt U={p+ Vel isa
(epen) meighborhood base ot =g,

Example 2.2 Let p = (}) snd consider the sequence space £ou(p), Wa know that the map
5-=fc-twi—*ﬂ.d-ﬂmdhn({n}}=-r:ﬂ=.[*h-uurqmﬁ-mu Lo(p). For sach k € N, ket
::Wn{!.l.l..-]'ln&t.-ihnﬂnEN.Tl'm::"-"*-—*[1,1*1.._}“:;-—*!:!. But we seo that

Bltaz'™) = ﬂy{%}*ﬂ
hﬂﬂEN—“ﬂlﬁ“f-ﬂ, m‘m“ntullmlpthlimuﬁmﬂxxﬁxhnmm
md*hmthtuﬂ-ﬁmmmfmfj},

hlmmmmwmﬂumwuhﬁ,ﬂmﬂﬂ,miﬁnﬂ
hnuth.umunﬁtn-imﬁrm“h-mui-mumdm

Fropositlon 2.3 A4 wmmm{xﬁ]ﬁmfmmmmgm
series in X i conpergent



The following propasition gives soma ctiteria far bnmdui:mhmquaai-mmdm

Froposition 2.4 M{Lq}knmrmﬁ.mnﬂmmﬁﬂ € X. The followsing are
eguitalent-
{2} B is bounded,

(3} for each neighborhosd I of D in X, there erists o positive peal number ty such that if jt| > 1,
implies B C LT,

Proof. (1) = (2) Assume that B is bounded. Let U be & neighborhood of 0 in X. Suppose that (2}
does ol hold. Then there is & neighborhioad U/ of 0 i X end o sepueme of scolar (1) such thare. — 0
and (. B T U7, a0 thai there 3 8 soquence (x,) in B such thet b=, & [T, Hence (tux,) does not converge,
so I do nod bounded ]

In the next proposition, we give o mmmmmumh.
near quar-normed space.

there exists n € IV such that 5 § nB{0, 1), ﬂnun.sm.l};ﬂm.n}.uhmﬂ:ﬂ{ﬂ,n}. Hemee B @
melrically bounded,

Mmuidwﬂumw Ealp) ui'm;p—( o H'thwmtt_,{p},ﬁ]uuw
suasi-normed space. MB-{-—: €N} wheree = (1,1,1,...). ﬁiﬂ‘{,{"-ﬂ-ﬁlﬂp{ =1 for alf

neEN, wmnuwm For sachm € N, Jﬂn:!-wn.n-llneﬂ b aee that

i-(hh}ﬂm[;;ﬁ'=-1 Hemes oz, /440, a0 that B hmh-ﬂ mwfhmmm o

In a general TVS, we hove that crery canvergent soquence by bosmded, but it ds ol trur fn @ nesr
- Mmﬂr%hw{%]h{&&ht}qmﬂﬂfl}mﬂﬂuﬂﬂ 1,1,...)
for alln € N, is convergent, but not bouaded becanse teldz.) =1 forallne N.

Wemmhm{uﬁmmmﬂumﬂm&unumﬁwﬁw
nwna:,undwm&mmmm

Theorem 2.6 h:wmm[x,ﬂ. ﬂ'g#utnhrnwtﬂpﬂmﬁ-fdﬁw,ﬁm
B L X is bounded if and only f B iz metrically bounded,

Prool Fct A >0 and > 0 b= such that

glax) < Malglz) foroll ae Fandz e X (LI}
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By proposition £.4, f B is boended, them B is metrically bownded
Conpersely, assmeme thet B is metrically boundsd. [Lef = ERBandty, €EF, Iy = D. Them there
emials K> 0 such g2} < K for ollz € B. By (2.1}, we houve

ltere) £ Mfal"glze) £ AR
Consequently, g{tyzi) — 0, s0 B is bounded. O

Corallary 2.7 Let (X, q) b2 & newr guast-normed space. ¥ q hes a scolor multiplicetive fector,
then every convergent sequence in (X, g) i bounded.

3. Sealar Multiplicative Factors and Kernels

We begin usth the following proposition:

FPropoaltion 3.1 Let (X, q) be & near quasi-normed spoce. I/ ¢ has @ scalar multipbicative focter,
then g b & guast-norm.

Prool. Suppose that g has a scalar multiplicative factor. Then thers are A > 0 and v > 0 such

that
glos) <Alaf"glz) forallog F endz e X {&1)
Letto, LEF, by~ 1 ond my, = € X, gzy — 2) = 0. By the triangle dnequality of g and (3.1), we Aave
altuza ~t2) < A ["ala — 2) 4 Aty — 1) g(z) {3.3)

nmmmjm.{uﬁ—m—mu;mrﬁ; Henoe ¢ is 0 quasi-norm on X,

il ¢ is & near quasi-norm o X, the kammed of g, denoted by Ker g, ds the set of all = € X much

i that g(x) =0, Eqﬁ#ﬁﬂh,f!mﬂmml}ﬂhnrﬂrmhﬁﬂﬁrqﬁrlﬂ
| r>0. PFora near quasi-norn ¢ and for r > 0, define

1 _fez)
Nt = L Telre@

w:mawnmmmmmmmdmmmm
ﬂlhztnnﬂ#fqundiﬂ,

Theorem 3.2 M{I,ﬂhlmﬂmmmudrhnm
1) .mmmmqmquagﬁgmmujxuu] - *k[:]_lr <



(2} If q has r-scalar multéplicative factors, then A7), is the bestfleast) r-scelar multiplicatine factor for
a.

Prool (1) Suppase that A &3 an receler multiplicative factsr for 5. Then
glar) = Mo|"g(z) {23)

forallze X andac F. 1t follows from (3.3) that A} < A, 30 A%} < oo, Since ¢ is non-triveil, there
exists = € X such that g(3) # 0. ma‘:}gﬁ#ﬁi,wmmﬂ 2 1. Sinee Ker g= ¢~ '{{0})
anad ¢ & condinuous, we have Fer g is elosed, Now, we show that Ker ¢ 40 0 subspace 6f X. To show ihis
H:.;rﬁxﬂqmduEEﬁmﬁmhhwwﬂwffMMJJ*wMﬂ#Hr}Eq{:}H{w}-
0+0="0 and g{ax) £ Aol giz) = 0. HM:+ymdn:rEthmnlhiﬂ'mqhnanj'..‘.'.
Comueracly, asmume that Ker q is ¢ closed subsapee of X and 1 € M) < oo, We shall showw that

aloz) < Aol glz) (24)
Jorallze X andax & F.
E:EKH'EMHEF.uhuzuEHaquwK#qhiqu. hence 0 = glar) =
Aol ele). Letx ¢ Kerq. lfa =0, then 0 = glax) = Alof"g{z). If o 0, then 1;‘]{,—;"%‘]'— <t

Y L
that gfcer) < Malglx), so (8.4) ds obtained, that s, 3T, ds en r-scoler multiphicative factor for ¢. The
proof i now complele

(2) Assums that ¢ Aas r-sealsr multiplicative factors. By (1), we have Mrl <00, IfA> 0 is an
rescaler multiplicative factor for g, we hase

qlaz) < Alof"g(=) (15)
frallze X andae F.
. ) _ ok
W ﬂhh_&mfﬂ}ﬂuahr :{?ﬁ Fﬁ% < A, so (2] iy obtsined, (8]

We show in next preposition thal thers Mﬂjnmmmmmm
Mﬂﬂw”hﬁumﬁiﬁﬁmﬁﬁhﬂﬂﬁrﬂrmﬂtrgl.

Fropaoaltion 3.3 Let X be o finite dimensional vactor spoce and 0 < r < |, Then there i o
Proper wear quari-narm g on X hering rescalor maultiplicative factors.

Proof. &Jﬁﬂﬂﬁliﬁnx#ﬂﬂiﬂ{:.,q,.--,h}hlhﬂhx. Foreachi=1,2,....n
sdefine @ : X — B or follons: ﬁr:EI,Hmeﬁm-n#uw:nl,m.....n.mw
t=£“&=h Mﬁ{:}nhr.ﬂﬁ lﬂ[ﬁlﬂﬂmm h'wmﬂrﬁﬂﬁ{mﬂ=“m{=’;
« ¥ that g; has scelor mulifplicative factors. By the definition of g we have Rer g = { ‘;: asxir ay €

F=laf
P,fg‘i,u.‘fﬂrq#{ﬂ}ﬂdﬁ:rqiﬁx,ﬁmg if proper. This compiete the proof. O
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4. Sealar Multiplicatlve Factors on £.o(p) and I{p).
We start with the following theorem.

Thoerem 4.1 Mp:h}hnhmddmmdpﬁumm Then g, has sonlar
mulimlismtive factors if and ondy if pu =pyyy forallk e N

-

Prool. Ifr = gy = gy forgllk € N, then for = = (z2) € Lolp) ond & € F, me hape
Gpleex) = hl'&{:},uﬂﬂmhmﬁrmﬁpﬁmﬂum
Suppose, conversely, ﬂﬂﬁﬁﬂﬂkﬂ'ﬂﬂwm By Theorem 2.1 (o), there sxists

2= 0 such that fexz)
v = o
-"u.,f zﬁﬁ?#mﬁﬂv (¢1)

MI-ﬂ:pn, b—iﬁfp. ende=(L1,...). ;’,‘frqﬁ—. then for a € F, |aj 2 1, we hove

ﬁh:nﬂ,wﬁ".ﬁt—*_

= _ ox R
5:.1.,_, IAEE'#]%&-&L};EH# 00 which contradicts o ({.1), Hencar > 4.
[fr>f then fora € F, |a] <1, e hare

(. IR, e,
ﬁ?&- #p fo jof#=r,

i} ini o i“'u d
£ i%ﬁFhﬁE:?ﬁH =
which is a contradiction, Thes, wegetr=f. Then fora € F, o] < 1, we have

e wup ol = o

;ﬁ};mld‘i‘-m

which again mnhuﬁmrhﬂ,u,lmlw-,mﬂhn=mlﬁrmkeﬁ. This complete the proof
of the theorem. O

Hemen, we gat

0 if b < a, we get

Theorem 4.20 Let p= (p,) be a bounded sequence of positive real nambers, Then ¢, has sealer
multiplicative factors if and enly if py = pyyy for altk € N,



Proof. Ifr=p =, forallke N, thes for = = [z} € i(p) and a € F, we have

ghlez)= @hrht’]i = |a|& @h.r) gl i g (),

It follous that q, has scaler muliipblicative fastors,

Suppose, conversely, that g has scalar multiplicative foctors. By Theorem 2§ fa), thex isr >0
such that
Fale=]

)
Ant = _e® . rgE < (3

P

Lchl=ﬂ:p?.|.,bn=lll1ifn and el be the sequence whose the B position &5 1 and 0 piheruise. Ifr < ﬁ-,

g oz} (act®)) - 5 :
e -:-E:E?ﬁ gl Eﬂiﬁh ﬁ’mnf ) -l'..iEil el I r:ilzpl I B~ = oo, which

¥,

consraibicts to Hencer > —, =, then (o) RO
(4.8). rE" Hr:r” “hm#ﬁ %Eﬂjﬁmﬂﬁqﬂq
mhia*'*-mlni**-m.iﬁchthwmmﬂmhﬁ.lj.ﬂuuhw r-%. b <e, then

a0 bul1

aer) aslth o =
SRy PG 23, PHE 2 g b - b et et
lﬂhn-m;ﬁrﬂkeﬁ.mrﬂfﬂmmmﬂﬂg (n ]
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Multiplicativity Factors for p-Seminorms

SUTHEP SuamTal

ABSTRACT. Let 5 be & p-seminerm on an algeben AL In ihis paper we study mul
memm%hﬁ.hﬂmp:ﬁﬂmhbumm
5(xv) S pS(z)S(y) asa S(=7) < AS(2)? for ati 2,y € A We begln wilh charecierising
lhmhm-h-ﬂhhﬂﬂﬂlﬂu-hﬂmimmmm
shonal sigebras alweys have mullipllcailve faciors. W then previde undar what censditions
mﬂmmmnuhmm Floally, we show that if A is
mmmmmmumm

(1901} AMB Mathemstion Subject Clasbileation 17, ITC0, &TI06, W10, 45008, 4TAX0.

1. INTRODUCTION

Let X be n voctor space over & field F' where F'= Rar F = O
Aquasi-form oo X ls defined in [3), Pago 13, to be a function ¢: X — R aatisfying
(i) of0) =0
(B) gl=z)=gl{z) forall z e X
{5} olz+v) < qlz) + ols) for all z,y€ X
{iv] if oy, n:EF,lm,.—nt-—-ﬂ-nd:;,:E.T,q{:.,—:]-—-!,thmq{m-n::]ﬁn.
Tt Follows from (i) ~ (#54) that ¢f=) 2 0 for all # € X., If the quasi-norm g satisfies g(z) = 0 if and
only if 2 =0, then it is said to be (otal
If g is & quasi-norm on X, then diz,y) = g{x — y) defines n semi-metric on X which is 8 metric
if and only if g is total A quas-narmed space (QNLS) is » psic (X, q) where ¢ i & quasi-nem on X.

Typemet by A5 TEX
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MM;@&MM%IWWM}MMWEWI{?M by the
AR FCTL

W&mllufumﬁmq:l—*ﬂnmrqum&-mifqnﬁﬁuthtmﬂiﬁuu{ﬂ‘ (¥} mmed fi6d]) abowve,
A near quasi-norm space (NQNLS) is & pair (X, g) where ¢ ks  near quasi-norm on X. Note that every
seauinormed spaces, QNLS-spaces and p-normed spaces wre NONLS-space. A near quasi-norm g is ssid
hhh&dll’q{ﬂ=-ﬁimpliu.t=ﬂ.!‘rnm{i}—ﬁﬁj,ﬂnllﬁ tha g{z) > Oforall x € X, I g s = near
quasi-noem on X, the function d - X *x X — R defined by dix,y) = ¢fz — 3) is & translasion jnvarsint
semo-metric on X uﬂiilmhﬂmdmhrﬁfhm We call d the semi-metric induced by g. We
alwsys aeme that & newr qoesi-normed space carries the metric topology induced by 4.

Let ¢ be o near quasi-norm on & vector space X, Then g is said to have & scalor multiplcatine
focter for g if thers are A > 0 and £ > 0 such that

tlex) < Mal"q(=) (11}

fwrallae F,ze X,

Euﬂunmﬂfﬁjmmmwhdndqmulmwﬁ-umﬁmhmmﬁynm
hmihhulmlumﬁpﬁmdnfﬂu,thnhhﬂ:nlhfﬂﬂu“hnm It is obvious that every
p-eeminorm oo an algelrs is & moar quasi-norm having = scalar multipliestive factor, so it s a TVS.

For p> 0, we eall a function §: X — R a p-seminorm if for sll 2,y € X ond o & F-

S(E)z0
S{ax) = |afS(z)
Slz+y) < 5(=) + S(y)

IF, in addition 5(x) # 0 for oll = # 0 then S is & p-norm. IT'S is & p-seminorm on X we call (X, 5)
& p-seminormed lincar spoce (p-sernd-NLS)

I 5 is & p-seminorm thas § s necestarily positive Le, S(=) 2 0 for all x € A It s obvious that
for & p-somminorm § the kerned of S, denoted by Ker S, is & vector subspace of A We call & p-senginorm
S proper if § does not vanish identically and 5{x) = 0 for some = + 0, Let 5 be a p-scmineem on A
Then § is said to be submultiphicative (or simply, multiplicative) if

S(xy) < 5(z)S(1) foe all s,y A;
and mbquadrative (or simply, quadrotive) if
5(x7) € 5(z)° forallze A,

H.Ammdﬂ.ﬂdkﬂl.ﬂm:ﬁudrmlﬂpliﬁﬁtyhﬂmﬁrnmﬁnmmhm-l.l;ahn_
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Exmaple 1.1 Let 5{H) be the algehra nfbmmdndﬁnm-npuﬂm:mamlbutmpmﬂ'mq
C. P pe R, 0 <p< 1, lot vy : B{H) — R be defined by

rp{d)= sup I":Aﬂ-‘a:}f‘=
s

himymmthur,hlpmmﬂfﬂ]. Irp=1.thmr,iikumum:numﬂ-hﬂnﬁun_fﬁ
Indhkﬁbknmthuniluﬂmllﬂiﬁi:ﬂiwmmﬂﬂ}.[nﬁ}. 16} Since r{A) = (r(A)P
hﬂdeﬂ{ﬂ},hmw.tr,kmnnmmnlﬂplhﬁup-mnuﬂ{ﬁl,

hipﬁﬁwm;hmﬂmm&nﬁhmm%mﬁp & mediiplion-
ﬁuhﬁrwnﬁmp&mﬁf—ﬁd&rﬁrﬂ&&hmﬂﬂhﬂmEﬂmﬂﬂaﬁﬁhmmd
for A >0, wecall A lmﬁmrurﬂ-fuwfar&hhvhﬁﬁuﬁmthduﬁrﬂﬂnmihup}ﬂh
um-mmsmsiw}ﬂ-ﬁ'{:wmhm:,ue-imnuh.q-mfnrsmsrﬁsmm’
frallze A

EHMMMEIPMSMH-fMMhhﬂ-ﬁmhmmmhM
falae as we will aee in the following example :

Example 1.2 Let Clxn be the sigebea of n x n complex matrices Farpe Nwith <p <1,
'H’ﬂr'?l':n;n-"-ﬂh"
rpld)= sup |<Az,z>f,
T el

m{:,y:--ﬁ):nﬁ. Wrw (- zad ¥ = (..., 50) € C~ It is ensy to see that r, bs
;p-wmmﬂ..,r hhhun-mhﬁrh-tnhlqmdr-ﬁw,hnmuﬁpﬂnuqummﬂ....&u
r,{d}-(n{d}) hr-ﬂdﬂﬂ.“.hhlwﬂulr,h:hn:mamdﬂpnuﬂwp-mm
G-llm

The purpose of this paper is to discuss M- atidd Q-factors for pnorma and proper pseminerm o
arbitrary algobeas. We bogin in Section 2, by studying the multipliestivity of & p-seminomm $§ in tem of
WHSMWMMMMHMMWMMMJM In section
!uﬂmﬂjﬂm&tﬁpﬂhﬁﬂhﬂuuﬂ we give that under what conditions
does & p-seminorm § have M-factors if it has Q-factors.

2. MultlpBeativity Factors and Kernels

mﬁ:ﬂnwh;ﬂrmmjnmyndmﬂdmtmﬂinmhlpaﬂnthhhuu
factors.

Theorem 2.1 Let § be a pseminorm on on alyebra A. Then
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(1) § has M-foctors if and enly if Ker S i ¢ two-sided ideal in A and
bany = sup{S{zy): oy € A, 5(x)=1,8y) =1} < eo (21)

(2) IS has M-Jactors and piiup > 0, then pyuy s the bestiloast) M-factor for S,
{3} If § has M-factors and piay =0, then p is en M-facter if and enly if p>0.

Prool. {:}ll’;::a-ﬂH-all-ﬁmﬂzS.whm.ﬂxy}gﬁ{:}sty}=nhmtejm
¥ € Ker 5. Consequently, S{zy} =0, ie, 2y € Ker S Similarly, we have yx € Ker S, Thus Ker
i= & twosided ideal in A Since S(zy) < pS(z)S(y) rum;IEJ.nhnuS{:y}E#fwlﬂ:.yEJ
such that 5(z) = 1 and 5(y) = L. Hence sup {S(zy): z,p € A, $z) =1, S{y) =1} < oo

ﬂmﬂﬂ-ﬁy,mmlhdfﬂ‘ihlhfmﬂudhiﬂhﬁﬂm“ < oo, If.8=0, it is obvious
that every i > 0 is an M-factor for $, so § has M-[aciors Now, suppose that § % 0. Lot g > 0 and
B 2 ting. Then

S(=vl S forall xy €A S(z)=1,5(y) w1, (12)
Ltz y€A llzory € Ker 8, then oy € Ker 5 since Ker 5 is & two-sidad Ideal in A, hence
0= 5(zy) = uS(z)S(y). (23)

Hx.rfxns.mmﬂu:-ﬂ-inmmu-{E{:H mdr=-:}—jrﬁﬂﬂ-!:h5‘tw}£nﬂm

(s(
Sy
im.ﬂw}uﬂj%ﬂs .ﬁu;ﬂlﬂﬂml;ﬁ%js;a Thiid, we have

Flzv) < pS(2)S(y) for ull =,y ¢ Ker 5. (24)
By (2.3) and (2.4) we obtain
Sl=y) < pS(x)5(y) for all zye .l

Henoe jo is an M-factoe for 5, so & bas M-lactors,
i2) ItSh-H-bﬂmudM}Q.hrﬁulhmpﬂuhﬂumﬁﬁuﬁmd’mn

| obtain that ju is an M-factor for 5 and it is cloar from the definition of ie.s that if Ji > 0 i ae Mofactor

fo 5, then juny < p, 90 that juu s b the loast M-factor for 5,

S(zy) = 0 for all 7,y € A, 5(z) = 1,50) = L. (23)

Bz oryE Ker 5, then S(xy) =0 since Ker § i3 a two-gided ides] in A by (1)), Ur,yg Kee S, then

s[s{’},_]=1-s{s;},_}.h follows from (2.6) that S(zy} = 0. Therefore S{zy) =0 for sl =,y & A,
kT *

wa that if 4 > 0, we have S{zy) = 0 < xS(z}5(y) for all z, ¥ €A Hemee p > 0 is always an M-factor for

5, 50 wo obtain (3). 0




Ihmmmmmmmmﬁnmwmumﬁmm TFa
show this, we need a lemmas,

Lemma 2.2 Let 8 be @ pnorm on @ veclor space X ﬂ'{:t.zg.‘..,:,}ﬁﬁnm#ﬁdmdn:
sct of wectors in X, lﬁmh‘:ﬁﬂlﬂﬂu‘t}ﬂlﬁ:ﬁlﬁﬂt]ﬁrﬂﬂm of sealars oy, ony, , . -

heme = L
i=] L |

Prool. %ﬂ:ﬁnnhﬂu:iﬂhnpﬂmﬂnumrhiﬂadn-mmhh identicaly, than 0 < p < 1. T
sen this, let z € X, ﬂ:]#ﬂ,“hmh'[ﬂ] and (jif) that 2#5(z) = S(2r) < 25(z), 50 2° < 2. hence
O<p<lL

For oy, ..., o6, EF.W%IHEIWF. If & = 0, then all oy sre mero, so that (2.6) bolds for wny
o a0, then (16) js equivelent to the inoquality which we obtaln fram {2.6) by dividing by » =nd
-ﬂ:h;ﬂ-ﬁ‘-,thnh

- o
5@.&&)2!11*!’“' Y ar=1 (z7)
; =l
Rﬁhmhnﬁmincbﬂmm[aﬂhﬂhhm&tuﬁndw Baves ol

with 3 A = 1.
ﬁppmmnuﬁuhh Then thevs exists R seqquancs (i, ) of vectors

v--f:ﬂ"]ﬂ where f:lﬂf""l’-l
= =

s that S{y) — 0 aa m = co. mgﬁ'*r-:,nm ™ <1 Hence for ench fioed §, the
m{ﬂ.""’}hhﬁi mmmﬁmmﬁ“‘}m-mm

umwl}m“uﬂ:mmm Continuing in this way, after n stepe wo obtain a
ﬂm{y.,}-mfm.-.]d{j.}whmhmiihhm

Vo =3 0{ ™z,
das]
m&pﬁﬂpnllﬂ#_ﬁ &5 77 — oo fop ﬂl{t].g"__ ST
=k

m'=§ﬁ‘:'. ‘ﬂmh—trumqm. Emgﬁ-]r=lm‘£-]ﬂﬂl {E=111--' ;n},“

m-mgw;pﬂ.nmm.nn can be zero. Since {21,721, , =4} is linearly indepentdent, we

bave y ¢ 0. By the continuity of p-noem, i mll — [l a5 m — oo, we must have [y ol — 0. Henee
hl=ﬂ.nthutpmﬂ.11!'nMIﬁnBy#ﬂ,lndlh:milm o
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Thearem 2.3 Every p-norm on finite fmmmmmmm_ﬁﬂm

Proof. Lut.ﬂb::p—mmlﬁrﬁudimmﬂnmﬂgdrt,l Let {zy,,..,7,} be & basis for A
By Lemoma 2.2, there ia & mmber ¢ = 0 such that,

S az) 23 ja (28)
=1 K=l
for all senlars oy, ... | (. i
Let =,y € A Then we can write :.nizln,m and yng._,:ﬂ:'a for some oy, 4 € Fii =

L2... ,n), 80 2y = gé aifzazy. By (2.8), we have

Yl < 356) wad 3187 < Ls(s) (29)
=1 j=1

By tha propertios of the p-nomm S and {29}, we have

Slzw) S 303 I8P (xexy)
emf foa]

SHT Y PP, whero bt = st

=l =i

- "ighﬂfﬁ: e

J=l
Eﬁh}s{ﬂ]r where = g—-
Hmuphuu-hﬂuhs.nthﬂﬂmhpmﬁ o

Herl[l}uhth-pmthum%dh&hﬂnﬂm.hH&B

| i twosided ideal in A The following theorem ahows that this condition i & mffcient condition for &
] peeminorm § on w finite dirsengional algebes to have Mofactors.

Theorem 2.4 Let § be a p-semsinorm on o finite dimensional algebra A. Then 5§ has M-factors
if and enly if Ker § s a bvo-sided fdes! in A

Prool By Thearm 21(1), if § has M-factors, then Ker 5 s » two-sided ideal in 4.
Corversely, suppose K = Ker § is a two-sided idesl in A Consider the quotient, algebea A/K ,
and define

Nz4+K)=5(z) forall z€ A
Clessiy, N is & p-seminam on A/K. If N{x+ K} = 0, then 5lz) =0, o that = € Ker § = K, hence

z+n’=ﬂ'whid1hmin.ﬂk’,t:thmhnNisap—mmﬁ,u".ﬁ:_ Thus IV has M-factors by
Theorern 2.3, and 5 has the same M-factors on A This compiete the proof. O
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For O fpghmﬂmﬁ:mmumdmﬂnhmﬂumdapan
mﬁmn%mmmmmmnb@ﬂhm&mm

Furthermore, if &' & p-aorm on A, then 5" i squivalent to 5 fie., there ave a,b > O puch thai
eF(z) < Siz) < b5'(z) for alize A )

Proof. Let {a;.....:.}ht-hmrw‘.d. Fh-u-d::ﬁ.-t,thmuﬁduunqua,,,...n.ef'
soch thal x ean be written in the form =“_Et“‘=¢r“3{=}“zhir- It is obwious that 5§ satisfley
; i =] e =
{#}M[ﬁ]uﬂﬁ[:}::ﬂﬁ::ﬂ.hﬂnﬂﬂnﬂlﬁ-[i}.lﬂ:- oz and p = ¥ Sz, where
-
ﬂnﬁlEF{iwI,..-.n].ﬂhuh+.ﬂ-?£{m|'+|ﬁ|"hnﬁinl,...,ﬂ,“hw =

Sz+y) = f:lnwmr

=l

< Yl +3 I8P
i=l =]

= (=) + S{y).

Hence § satisfies (iif). Thus § is & p-norm an A,

Now, suppose that 57 is sew p-porm on A lndht.r-gnnwhnn;lil-" {i=l,...,n). By
trinnghe inequality of 5, we have

FEE 3 oSz
il
< ngnf'
= MS(2)  whore M= mp S'Gx). (210)

By spplying Lonma 2.2 with 57, there is ¢ > 0 such that

5(z) ns‘{‘lﬂnm} > =§ o = eS(z) (211)
=

1t fallows from (2.10) and (2.11) that

Sz} £ 5(z) < 05'(x) foralize A

m-=$ma=%,mﬂrm3mm o

Theorem 2.6 Let A be en cigebm and lef K o two-sided ideal in A such that A/ K = finite

| dimensional ThenforQ<p<] .ﬂﬂuﬁ'ﬂp-mmhﬁmd'iﬁ#ﬂﬁi{,hmﬁﬂy”—fnrhu




ProoL Let pe R O<p <l and it 5 h-panA,.FK defined 89 in Leming 25, Let
Sz} =5z 4 K) forall zc A

Ilhdmrﬂmt-&'hapa:m‘mrmmﬂvhmlmmﬂ s K. H;Thmrmﬁ.ﬂ.ﬁ“huhi-&:h:mﬂﬁ'.
ﬂm-Shuﬂmu-umuﬁdmmJ.lndtlnt-huxmiupmuud. a

By Theorem 2.8 we obtain -

Corollary 2.7 HJhlﬁﬂhEﬁﬂ:ﬂﬂdhﬂiﬂl}dﬁﬂﬁ'lMﬂHHﬂhL Then for
t<p<l, ahmﬁlpm.i’m.lui:htmﬂE',WH-hdm:.

If A is commutative and = € A, = # 0 is not invertible, we have
<zr>m{ra:ag A
is & two-gided proper jdeal in A By applying Corollary 2.7 with K = <2 > wo obtaln :

Corallary 2.8 ﬂAiamﬁwﬁnﬂlm#ﬁmdﬂiz EA = # 0 dr mot
Mgmmu.mmsmAmﬂzjnu,mMMm

For a simple algebrs, wa obtain the following theorem

Theorem 2.9 Let A be an alyebra and ) <PE L If Adia mimple, then there are no multinSeative
Froper pogemninorma on A

Proof. Lei § be & smitiphcative posminorm oo A By Theorem 21 (1), K = Ker § la s
Vwo-gided ideal in A Sinee A & simple, X = {0} or K = A In the first case 5 is a p-nonm, and in the
socated § = 0. This compiste the proof. [u]

ﬁnm.F‘.gmthtllphnd-:nmummF.imtu [4], Thetrem 10 p.d14), weo
immodistely obtain from Theorem 2.9 :

Corollary 2.10 Mnnwmmmﬂ“.

3. Quadrativity Factors and Kernel

Hy nsing the same proof as in Theorem 1.2, [2) with some modifications we can essily prove the
following result :

Theorem 3.1 Let 5 be @ pseminorm on an algebra A, Then 5 has Q-factors if and ondy #f
Ker 5 is closed under squaring (ie., 2 € Ker § for allz € Ker 5} and

Mar=mp (S xe A, S(2)<1) <o fa1)




Proof Suppose that A > 0 is & Qufactar for 5. Then
S=") £18(z)* foral ze .4 {3.2)

Wz € Ker 8, we obtain from (3.2) thas S(2%) < AS(2)* =0, = that S{z?) =0, It follows from (3.2)
that 5() < A if $(x) S 1, 50 Ay < A, henoe (3.1} is satisfiod.
MM,MHESHMMWM{EJ}M K26 Ker S5 b

ssmmption, we huve =¥ € Ker 5, s0 S(z%) = A 5(=) = 0. ¥zg Ker S, then S{S—ﬁ.r}=], 5 wa
*iF

sbcia from (3.) that S S!S A bemos S(e%) < Ay S Thus Ay o Qufacter
for 5. This complete the procl. 0

Lemma 3.2 [et S be o quadrative p-asminorm ofl on alpedra 4. Then
Slew+4x) S P75(z)S(y) forsliz,ye A

Prool  Since 2ey + 2 = (z+ ) = (2 = )3, we have PSley+1m) < S((z+v) + Sz =yP) <
2(5(=)+ S))", w0 il 5(x) < 1 wad S(y) < 1, we have

Syt yz) <27, (8.3)
Now, lot £,y € A be arbitary. Then for £ > 0, we have S(2/) < 1 aad S(/) < 1 where ' s
v £ wo have {v') ere __-_;[gi:]+¢}
Mfﬂ‘—_FlT-hhM1“m

[F"I:IIH;}'
Wﬂ +¥3) = Sy +i/x) s 2%,
T +ﬂ]5¥"{s{ﬂ+‘]{'ﬂﬂ+t}hwg}m Since ¢ > 0 8 acbitary, we have
Hay+ 1) £ 2V 75(=)S50y)
= we heva the lanma. 6

For an algebra A wo recall meurdaupmdﬂuinA&ﬁulbf
rny:é{:rp-lr vr) for allz,y = A
Lat AT be the algrhra obtained by replacing the product in A by the Jordan product. We call 4%, the
special Jordan aljebra exsociated with 4
As usual, we call & set J € 4 a Jordin tdealin A zy+y= € T forall = Edsndye T,
Thnntﬂmmglmnmrymdmfﬁm‘mmmﬁﬁmnh—-pamﬂnmﬁ to bnve Q-fartors,
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Theorem 3.3 Lot 5 be o pseminarm on an algsbre A Then S Bas Q-factors if end ouly if
Ker 8 is o Jordan ideel in A end (3.1) holds,

FrooL Let A be & Q-factor for S, Then {3.1) holds by Theorem 3.1, We now shoe that Ker 5
i5 & Jordan idenl. Since AS is quadrative, by Lemma 3.2 we have

AS{zy + yx) < 27 P238(2)5(y) for allz,y € A (2.4)
It follows from (5.4) thet

S{zp+pz) =0 frallz e KerS,andyc A;

that i, zy -y € Ker 5, 50 Ker § s n Jordan jdeal.

Ehppnn,mmwndy.m.ﬁ'n'SFtlJumHulhAudh.; <o Iz e Ker 5, then
‘.h*==r*+m*"=a:=+ﬂEH‘crEhan:rEh-deuH-LnME:‘f‘]nl‘.'l, benee =¥ £ Ker §.

Thus Ker § is closed under squaring. So, by Thoorem 3.1, 5 bas Q-factors Tha proof Is pow commpleta.
n|

Using the same argument as in Corollary 2.1 in 18], we obtais :
Theorem 3.4 MnumWMunmmmM

Example 3.5 Let Coya bo the algebon of n x n matricos over O, By Theorom 10 in M), p. 414,
Cuve in simple, nﬂﬂhm&nn?hmmllthdthu-mmmmpmwm...

ﬁlfﬂhﬂmﬁm}lﬂtﬂﬂhﬂmmm:

Theorem 3.6 Iﬂ#h-mmnﬁmmwj. Then § has Q-factors
v and ondy if Ker § is a Jordan ideal in A,

Prool I § has Qfactors then Xer S ls & Jordan ideal in A by Theorem 3.1,

Converacly, lot Her § be x Jordan ideal in A Since Ker 5 is a subapace of A, we have A/Ker 5§
bs & quotient algebra. Since A i finlte , 30 s A/ Ker 5. Consider the quotient algebra A* /K er 5. Dofine
S A Ker S— Rty

5(z+Ker §)=5(z) forall x4
Clensly 5 ia & p-norm on A% [Ker §. hj}ﬁush&ﬂ-wﬂhj+fﬂ'ﬂ'$hﬁ:m

identical inear structure By Theoram 2.3, 5 has Q-factors. Let X > 0 be s Q-factor for 5. Then for
TEA

8(%) = S(3(z= + 23)) = S(z02)
=F((z+ Ker S)(z+ Ker 5))

2 A5z + Ker 5} [z + Ker 5)
= A%5(z)%.




S b = & Quloctor for 5 on A a

Y and only if S has Q-factors.

mmmwmmmnsauq,fmm,msmmm

Suppose that § hes Q-factors. Than there is s ) >0 sach that A8 is quadrative, Then by Lemms
A7, we have

Sley + yz) S PTAS()5(y) for all 2,y € 4 (15)
Sinee A ls commutative, we obiasin from (2.5) that
=) 27 %A8(2)8(y) for slzped

Hum?"hhhmld-ﬁmhﬁ.mmm-m o
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Matrix Transformations on Some Vector-Valued Sequence Spaces

SUTHER SUANTAL

m Ie dhis paper, we glva the meiris charsciesisstlons frems vesLor-valued
sequance spaces of Maddox (X, p), o X5}, LulX,p), and X, p) Into scalnrvalusd se

quence spaces of Maddex cofg)iclg), xaa £ (y) whaee p = (py) and ¢ = (gs) are beunded
asuanced of Besllive real mumbare.

(1991} AME Matbemaibs Sulijeer Classlfication: SRA LS,

L. INTRODUCTION

Lot (X, 11} be » Baznach space and p = (m) & bounded sequence of positive resl pumbers. W
write £ w () with =, ln z for all k & N, The X-valuod sequence spaces of Muddox aro defined as
el X.p) = (z= {ﬂ}?fjﬂuhll"" =0},
:{I.p}-{tﬂln]:if_tﬂuﬂti-nﬁ"nﬂ for some a € X1},
!W{I.r}nirt{n]:lgp lzalt™ < oe},

X, p)= (== (za): ) ll=al™ < o0}
E=l
When X' = Ror ﬂ1mmmﬂ¢ﬁﬁm-q{p}.dﬂ},fm[ﬁ]mdﬂﬂI"Hpmﬁ'rdrﬂhﬁ
each of thom is called & sequence space of Maddor These spaces were first introduced and studied by

Simens (6], Maddox [3, 4], and Nakano [5]. Tn [1]mmammq}{p}. cip), and £_.{p) have

Ty prees by AyS-TEX




In this paper we consider the problem: of charctarizing thoss matricss that map an X-valped
sequence spaces of Maddox inte sealar-valued scquetice spaces of Maddoy. Crosse-Frdmenn [ has given
chameterizations of matrix transformations between the scaler valued sequonce spaces of Maddax, Wu
and Lin [8] deal with some of this problem with some conditions on the sequences (p) end {ge). Their
characterizalions are derived from funclionsl analytie principles. Our approach here is different. W usa
a method of reduction introdnced by Gresse-Erdmann [2). In [1}it i pointed out that ea{p) is an schelon
spaca of order 0 nnd that £ (p) 8 & co-echelon spacs of order oo In this paper we also show that (X, p)
i an echelon space of arder 0 and £,.(X, ) is 8 co-echelon space of ceder oo, Therefors these spaces are
made up of simpler spaces. We will use certain auiliary results{Section 3} Lo reduce our problem Lo the
charcterisations of matnix mapping betwesn much simpler spaces.

Z. Motatlon and Definitions

21 Let (X, ]|.]]) be o Banach space, the space of all sequences is X is denoted by W(X) snd $(X) is
dendated for the space of el finite soquences in X. When X « R or €, the comrespending spaces are
written a8 w and &,

A sequemes gpaces in X is & linear mubspace of W(X), Let £ be any X-valued sequence space.
Foe = € F and k € N, we write 2, stands for the k™ term of 2. For k &€ N dencte by ¢, the seqrence
(0,0,...,0,1,0,...) with | in the &'* position ard by ¢ the sequance (1,1,1,...). For z € X sod k € N,
et #*(x) be the soquencs (0,0, ., 0,2,0,..) with = in the B position and let e(z) be the smoenoe
(=.2,2,...}. Fora fined scalas sequence p = (u) the scquence space B, i defined m

Eu = {x € W(X) ! (ux) € E) .

The sequenice space E & called normal if £ € £ and y € W(X) with fin || € ||z ]| for all k & N impiies
that v € E.

22 Lot A = (J}) with f7' in X', the topological dual of X. Suppose that £ b » space of Xevalued
w:ﬂF;mdwmuﬂm Then A s said to map E into F, written by

.I:E-*Fﬂl‘urnehrtt[n'.lEE.Jn{:}ﬂZH{n]whmnEN. and the sogquenen
Az = {A,(z)) € F. H(E,ﬂmrwﬂuﬂdiﬂiﬁﬂumlﬁmmppinghn Eino F. If
= (u) and v = () are sealar sequences, lot

LB Fly ={A= () (e )z € (E, F) }

Hue # 0 forall & € N, we wrile v ' = {;:-l;} In this paper we are concerned with finding conditions oa
s matrix A ={f7) thet characterise its membership Lo cortain dasses {E, F),

2.3 Buppose that the X-valued sequence space E is endowed =ith some linear topology 7. Then B s
calied & K-space if for cach n € WV the n'* cocrdinate mapping ;o - £ — X, delined by pifz) = 23,




3

ontinnous on B Ehaﬁﬁﬁm{ﬂ.f}hmﬁéﬂﬂmwﬂlﬂ-]mﬂm E bcalled an FE-
(HE-, I.FH LBK-) space. Now, ﬂ:ppwclhatﬂ'mmaiui[.t}_ﬂmEmuidmh-mmﬁjﬂi

lh!ﬂ{zﬂt{ﬂg} nEN | & baunded in E for every = [z} € E. It is zaid to heve properiy AK i
k=l

z e*(24)} — x in £ 88 n— oo for every = = {Ti) € E. K hes property AD if 9(X) is dense in E.
=i

LA
mmt{p]hummuiﬂiﬂ]{mﬂwunmﬂﬂ = (E:lnﬁ"") . Where
k=]

M= mm:{l,.nq!p.]- MWW}anﬂmmmﬂlulnFHmmwjun
mphmi.ﬂﬂ—upmwuhﬂﬂfﬂﬂ}] It s the same ss above the space #(X, p) is an FK-space with

A
AK under the paranorm gfz) = (Ei:;ﬂ") -i:musm{lmpn:- In each of the space

k=

t‘_,{..‘rp}nndsg{xp}wmdulhnlunﬂjnng[r}=npﬂnl’”’” where M = maz {1, lli;lrpqr]: Itia
knerwn Lhat ea(X, ?}hmﬂmmtbﬂmﬂuhmjﬂnﬂﬂﬂ%lﬂdfuw+!lhn
mﬂﬂalﬂﬁmﬂtﬁﬁﬂ.hﬂx,p]“mdnrﬂuﬁmhuﬂ:]nll.mﬂ::n.—uﬂ?'-'”+ﬂn|-‘hli
nhﬂnunlqluﬂ-rmhxmlht-n{u]l:qix.ﬂ hgilmmurmmnfﬁ'p]m:{.fp]hm
FH-space wuler this parancem g.

3. Somo Auxillary Resulta

Inﬂﬂlﬂdjmﬂﬁﬂhrhutmfulluulhlhﬂmhu-lhrﬂmmrﬁﬁﬂumlm“
simpler formul,

Proposition 3.1 Let E end E,(n € N) be X-vadund sequence apaces, and F and Fuln € N)
scalar sequence spaces, and let u end v be sequences of recl sumbers with uy, o 0, 1y d0forallke N,
Then we have

) (UBaP) =)
ﬁ) {Elrﬁnlpljlr;l[E-FI}
() (B +‘£=JrF}-{Ehﬂn{£ﬂlﬂ
() (E\F\ @ F3) = (B, F) ®(E. Fa) if the following two conditivns hold
(1), E, ¥y, and Fy are FK-spuces and E hoy AK and
(8). If (%a) @2 & sequence in X with %, = 0 o n — oo emplies e*{r, ) — (0.0,0,...) a3 it — 00 in

EforallkeN.
(v] (B, c{q)) = (B, eo(q)) & (E. < £ >) if E is normal containing 0(X), whers ¢ = (g) is o bounded
sequence of posifive real reembers,
(wi} (E,Fy) = (B, Fa)N(${X), F) if B is on Fi-space with AD, 3 5 an FK-space and F; ©1 @ closed
subspace of [,

{vi) {EMFU} T I{E-F}t-"-

Proof, Assertions (i}, {ii), (i), snd (vii) are irunediste.




S =

Ta show (iv), suppose that the conditions (1) and {2) hold N js clear that (E R+ (E R C

(E, Fy + F3). Moreover, if 4 € (E,F)N(E,F), then 4 & (E,F N F3) = (E,0), which implies

thet A = 0 because £ contains 9. Hence (5, F) + (E, F3) & = direct sun, Now we will show that

(ERaeaR) C(ERI+(EFR)L La A= (ff)eE(EEFfi®@F) Forx e X and k & N, we have

{fEz)) _, = Ae*(z) € Fi @ F3, 30 that there are unique sequences (57 (2)) ., € F; and (=, e R
wiLlj

(R = RN, + {2, (21)

For each w, k € N, let g7 and &7 be functionaly on X defined by
gi(z) = B{x) and h(x) = Px) for all z£ X
Clearly, of and A} are linear and by (1.1)
=9 +M foeall n kel (3.3)

Nota that Fy @ Fy is an Fi-space in its diroct sumn topalogy, By Zeller's theoten, A - E—-Fi&Fis
continuous. For each & € N, bet T 1 X — E bo dofined by Tiz = *(z). Tt [ollows from the condition
(2) that T} is continuous for all k € N Since the projection Fi ol ¥y @ Fz omto Fili = 1,2} ure continucas
snd g =paoPodely, and Al mp o ProdoT, for all n k€ N, wo huve gT' and A7 are continuons,
80 gAY € X' for all m,k € N. Let 8= (57) and C = (A2). By (3.2) we havo A= B + C and it is clear
that B € ($(X),Fy) and C € (#(X), £a). We wlll show that B € (B, Fy) and C € (E. F3). To do this,
Iﬂ-:n[ﬁ;}E.E. By the continuity of the matrix A : £ = £ & F3 and the AK propocty for E we find

that J{Zu"[n}} = AT a8 1 — oc. Since the projection P of F; & F; onto Fi{f = 1,2) are continnous,

B |
B3 e) = A(AGS ) ~ Atk € i and
1

W hEvg
k=]

c(ge‘m}) - ﬁ(ai{g e*{n]:l) — Bifdz) € Fy

Henee B € LE.F;}MGE{E.H].M;,wM-AE{E,P.}i{E,ﬂj,udﬂimi.

To show (v), supposs E is normal containing $(X). Since dg) = calg) @ < ¢ >, wsing the same
proof s in (iv) we have (B, es(9))+ (B, < e 3) S {E, ool) @ <€ >) = (B, clq)) and (E, eslq)) + (5, <
€ > is o direct sum. T A = (f7) € (5, clq)) = (E, als) @ < & ), the asme 85 in (iv) we can write
A= B+C with B = () € (#(X),c0(g)) and & = (k) € (#{X), < e >). Let = € £ Then for
a = (o) € £, we have

lowzsll = foxlllesll < [Mzi]] , whes Af = i g lexaf .

Dy the normality of £ implics that {ay2,) € E, it follows that ({7 {ze})as € (fee. colg)id < & >} Sinco £,
& pormal, it fullows form 2, Proposition 3.1 (vi) | that (g7 (ze)les € (fee. enlg)) and (A0 {2}z € (£, <




F

3

€ >]. This implies that Br € apfg) and Cr € < € >, 50w buve B = (E.co(9)) and € £ (E. < & =),
hence A & (B, enlg)) @ (E. < £ >}, 50 we obtain (v].

1t vemains to show [vi). Assume that B is an Fi-space with AD, Fy is an FH-spsee snd Fy i
& closed subspace of Fa. Clearly, (E, F)) C (E, F) M {${X), F1) is always the case. Now essume that
A= (ff) € (B F)N(#{X).Fi} and z € E. By Zeller theorem, A: E — F; [ contimous. Since £ has
AD, there is a soquance (g™} with ™! € $(X) for alln £ N such that p!*) w2 in Easn — oo, By the
continuity of A, we have A% — Az i Fy as n—+ 0o, Since Ay!™ € Fy for all n € N and F, i 2 closed
subspace of Fy, we obtain thet Ar € Fj. H:nde{E.F,I.mthu[.ﬂ.ﬁ]ﬁ[qﬁ{}f],ﬁj-;[.E.F‘.}. This
compleie the proof. o

Propesition 3.2 Let p = (p) b o bounded sequenices of positive real numbers, Then
(i} e[ X,p) = colX.p) + {el=h -z e X ).
(1) eolX,p) = MCLiGal X Yy Hence o X, p) is an echelow space of order 0.
(L) Laal X p) = T banl X Y- 1ina ) Hence 2, (X, p) s @ co-echelon space of arder eo.

Prool  Asertion (i) s bumediate. To show (i}, ket = € (X, p). Then |naf™ — 0 w
k— oo Foreachn & N, et & = fzufPo.n for all k & N, We huve that &, — 0 a3 k — ¢ : henos
[ENTLE -6‘}:‘""‘ = 0 & k — 2o (because p € £.), 50 we have = Eq{.:l'.'}i.m.:,. Conversely, assume
that £ & Mi@(X)purtrnyr Then lim |lzelln'/® =0 for overy 1t € M. Then for n & N we bave

P < for lage k, hewce = € co( X, ).

It remains to show (iil). If = € £.(X, p), then there s some 1 & ¥ with [z, [|*> < n for all k & N, Henos
fraffn~Yre < forpll ke N, sothat z & Lol X ) -100 e On the other hand, if £ € lﬂ.‘ufﬁ{ﬂ{.-lrﬁh
thea there are sma n € N and A > | such that fzyfn=" < A for every & € N. Then we have
hl"ﬂﬂ.H"ﬂnﬂ‘ﬁ:dlkEN.whmn-ﬂ:p fr- Heace x € £,,(X, p) = |

4. Mnln Results

We now turn to our main objective, the dharacterisatlons of matrix transformastions from the
vectar-valued sequence spaces of Maddax (X, p), o{ X, p), Lo (X, p), mnd HX,p) into scalar sequence

spaces ca(q), e{g), and £uu(g). Some results gumoralize scene in [2, 6, 7, 8. Wa begin with the following
theorem which ganeralizes |8, Theceem 2.1].

Thoorem 4.1 Let p= {p) and ¢ = () be bounded saquences of pasitive real Tmbers and
A=(fF) an infinite matrix Then A € (@l X, p), to(q)) il and oniy if
{1} m‘-'""-j';' ﬂﬂuu—-mhﬂu}rrﬂ. ke N and
{2} Emu"ﬁﬂ’ﬂr‘”"" —Dasn, r— o for ovory fixed m g V.

=l




FProof. By Propesition 3.2 (i) we have ca(g) = Moy~ It follows from Proposition 3.1
{if) end (vii) that A € (eo( X, ), ao{q}) if and only if (4% ) s € (e X, p), ) Tor all m € & By {8,
Theorem 2.4 |, we have (m*% 121, ¢ € {ey(X, p), en) if and ealy if 1) and {2} hold. 0

The next theor=m gives & charscteriztion of infinite matroc A such that 4 € {eo(X, p). 2(g)). To
do this we need s lemma

Lemma 4.2 Let (fi) be & sequence of continuons knear functional on X, Then i_ﬁ,{:‘}

E=f

conizerged for all ¢ = (=) € al X, p} {f and only iff: LAl < 5o far some M & N,

Bl

Pruof. Suppose that Eﬂ_ﬁ.l[H'”’* < oo for some M € N. Lt ¢ = (2,) € ol X,p). Then
-

Ih-hlpmihi\'nhlwifaﬂlhﬂh.ﬂ?'f%iﬂrﬂt_}_ﬂ‘hﬂnﬂmﬂ{ﬂ#’_”ﬁh.ﬂtgﬁ.
The= we hava

i Hafzall < 3 WAl £ 37 WARA Y9 < oo,
b= =g f-—r

hd
It fallows that ) fu(zs) comverges.
bisl

ﬂnthnﬂhuhﬁ.mhtiﬁ{:ﬂmhrlﬂzEq.{.!'.p]. For esch = = (1.} €

=]

(X, p), choose scalar sequence (1] with |6] :I such that fi(tuzs) = [fu(za)| for all k € N, Sinoe
{tazs) € 0o( X, p). by our sssumption, wo have 3 fu(tama]) comverges, 50 that
Ees |

2 Uizl < oo for all 5 € a(X,p) . (4.1)
km]

[l
Now, suppose that Eﬂfhllﬂi""r"' =10 for oll mi € N. Chooe my, k; € N such that

=1

2 Welimg ™ >,
Lk,

and chooss my > m; and by > &y such that
2 Ufifmztr 2.

By cknly

Procoeding in Lhis way, we can chogee my < mg < .., and 0 = &y < by < . such that
3o Malim P

[ S 5T



Take 7, in X with lzell =1 for all & ki_p <k < k. sach that

2 Uelsdim Y 5§ frall ic N

ey BTk

Puty = () e =my P2, for iy <k Sk, then y € (X, p), nnd we huve

S iz P felmellm P 5 eallie N

kL RgRy

Hence we have E{fl{hﬂ = oo Which contradicts with {(4.1). This comgleta tha proaf, o
k=]

Theorem 4.3 Letp = (m) and g = (q) be bounded sequences of positive real numbery and let
A& = (f7) be an infinite matriz. Then A € (eo(X, p), clg)) if and only if there ds a sequence {f;) with
flrEI*ﬁ_f!rmlrEHnuiﬂ-u

(1) 3 UANMTP < oo for some M € N,
b1

(2) M= = fu) 0 a2 — 00 for every m, & € N and
{3) Em""-llﬂ' = Jullr™"™ QG ganr = 0a for each fired m & N,
Be=}

Proof. If A € (a(X. p),clq)), we have A € (ca(X,p), colg)® < £ >) sinca clo) = aslg) & < 9 >
It foliows from Proposition L.1{v) that A = B4-C, where B € (e[ X, p), co(g)) and C & (ol X, p), <e>),
Let C = (o). Since ®(X) C (X, p), we have (b=, E<e>foarnllz € X and k € N, which
tmplies that g = g*" for all m, B € N, Forsach k € N, bt fj = gl Then wo have (fF = fulus €
(s{X, ), co(q)). Henco (2) and (3) bold by Theorom 4.1, Sitce € = (filun € (lX.p), < & ), we

havee % ° fu(24) converges for all = = {z,) € ey{.X, p), henes (1) ks obtained by Lemma 4.2
=1

wmmma-mtﬁ]mﬁex'hmkeMmmmmm
(1), (2), and (3) hoid. Let B = (f7' = faos and C = {fi)os. It is obwious that A = B 4 C. By the
conditions (2) and [Il. we cbtain by Theorem 4.1 that B € (as(X, p), co(q)). The condition (1) imples

by Iﬂnm{.‘lﬂulzﬁ{q]mp for all 2 = {z4) € a{X, ). This implics & € (el X, p), < e >).
ﬂmnhmb?ﬂnﬂhll{v}MdE{ﬂn{I.ﬂ.qq}L This completes the proof. ]

Theorem 4.4 Let p = (py) ond ¢ = (0] be boundad ssguences of positive real numbery ond
A=(f}) “Wﬂm Then A € ({x(X, 5), co(9)) f and only
£1) miis D asm— oo for every k and m e N and
H’}Iﬂruthm.HEH.jEH;Im”*-H”ﬂ—rﬂmk—-untn:f,rwmﬁrmnEN.




Proof. Since gfq) = I'lilmf_u“}, we have by Proposition 3.1{ii) and {vii) thay

A€ (fa(Xip) cole)) == A € (L X p), torsang) Bor sllm e N,
= (m'f2) € Ul X, 7). o} forall me N,
<= the conditions (1) and {2) hoid (by [, Theorem 2.9].)

Nole that Thearem 4.4 generalizes the result in [8, Theorem 23]

We now give s charectenization of an infinile matrix 4 such that A & {£eo{ X, P}, elg)) by using the
previous nuxiliary resuits and Theorens 4.4, However, in arder to get this, we need the lallowing lenma.

Lammmu 4.5 Iﬂpnh}hwmn_rmmlmmbmmmjnlm
WA o € X for allk € N. Then 3 fuze) converyes for ail £ w (2;) € bu(X,p) if and only if
k=1

iﬂ;ﬁu‘“" <ooforallne N.
=1

e
Prool I 5 /ulin'/™ < oo for alin & N, then we have that for each = = (x,) € £.(X, p), there
s}

s m & N much that lzu | < m'” for all keH‘hmmith Eiﬁfhlﬂlﬁ-ﬂﬂ < iIMM"‘"‘ < oo,
b=l = k=1
which implics Ef.{:.jmut-.
Rl

Caonversely, lﬂumlhtifq{t.}w for all z = (x,) € L,{X.p). W first note that, by
using thi same proof aa in Lamne 4.2, we hive

E!ﬁﬂh]‘lfw for all 2 = (z,) € L.(X,p) . (42)
Fyars

£

Now, supposs that E:I.ﬁlﬂ”’"=m for some n € N. Then we can chocss a sequence (&) of positive
k=1

integer with 0= kg < k; < &7 < . such that

3 IAlsY™ > frail ieN.
kg by
Taking z: in X with fr]| = 1 such that for all i € N,
3 felze)intir 5.

L




Put y = () = (n"Prm )" | Cleadly, y& Lu(X,p) und

YLl 3 Wsmdintie i feaie N

k=1 by gk

Mence %" |fu(ye)| = 26, which contradicts with {4.2). The proof is now complete. O
by
Theorem 4.6 Lol p= (p) and g = (g) be bounded sequences of positive real numbers sad let
A= (fF) be an infinite matriz Then A € (8.(X, 1), ql) of and ondy {f there is o soquence ([i) with
JEEI'“,FPMT&EHHHIHI

(1) 3 Ialin' ™ < oo for altn g N,
k=i

(2) mMon{ D — 1) % 0 as 1 — 00 for every & and m & N aad
(8] for eachm, M € N, Eﬂ?-Mh”‘*H'Mﬂﬂﬂki—ﬂMdnnE N.

Praok If A € (L (X, p), clg)), it follows that " fuf=s) converges for all 2 = (2,) € £.(X.p),

hemod (1) holds by Lemma 4.5. Since cfg) = co(g) -::?f-hnwﬁwduunu.xmma -84+
where B € (Lo(X, ). cofgl) and € € (80 (X,p), <€ >). Stnce $(X) § Loyl X, p), it implies that there
m & sequence (fy) with fi € X" forall k € N such that € = (fsdna, 50 we have (/P = filea = B €
(£ (X, P}y (). Hence we cbtain (2) and (3) by Thesrem 44,

Conversely, mssuma that there is & saquence (fu) with f4 € X' for all k & N mach that the
conditions (1), (2), and (3) bold. Let B = (f = fi)as and € = (fi}, 4. The condition (1) kmplies that
CE (lalX.p), < }j{hwqrmmﬂ]lﬂlhnﬂuu{ﬂ}md (3], by Theorem 4.4,
implies that B € (Lu(X,p). @(4)). By Propesition 3.1(v), we obtain that A € (£.(X,p), olg)). This
eamplete the proaf. @]

Theorem 4.7 Letp = [p} and g = (qu) be bornded sequences of positive real manbers and let
A =(f0) be an infinite matriz. Then A € (o(X, p), La(g)) & end only §f

(1) sup {Eﬂﬂll:ﬂ""”‘]"’ < co for some M € N end
bl hl
(2) ;Epm:.uhqm where T, € X' és defined by Tz =Y [1{x) forallz € X.

Proof. Assumethat A € (X, ), Laolq)). Since o{X,p) = ol X, p)+E whers E = {e{z) : z € X},
we have by Proposition 315} that A € (ca(X,p), fo(g)) med A = (E, Lo(g)). It follows from [4,

Theoorem 2.10] that the condition (1) holds. Since 4 € (E, E=l)), we have ) ° f7(x) oomverges for every

=1

zeXand (3 DT & Lofq). FﬂﬂﬂﬂlnEN.HT_:=iE{::]ﬁ:rnﬁ:EI. It follews by

k=4 k=]




1]

Banech-Steinhaus theorers that T. £ X7 Sinee -E'-I':p [Talz)p- = sup fz‘ﬂ'{;ﬂﬁ < oo, by |8, Theorem
1.1] we have sup [[Tyl|e < oo, 20 (2) is obtained. =

Conversely, assume that the eonditions (1] and (2} hold It fallows from 18, Theoress 2 10} that
AE ‘W[I-FJ‘- L.(q))- We have by {E} that for ench z € X,

sup |} I = sup [Tuzl™ < (1 + Bl sup [To |1 < oo
frmr A il

where o =1r:|l.p n- This bmplies that A € (E, L.{q)) wheee £ = {efz) : z & X}. By un application of
Propasition $.1(iii) we have A € (e{X, ), £ulg)). The pros! is now complete. (m}

Theorem 4.8 Letp = (pa) ond g = () be boundal sequences of positive real mimbers and let
A= (1) bé an infintie matriz Then A & (e X, p). cale)) if end ondy if
(1 n::-"""ﬂ‘ .0 asn— 00 for ererym, k € N,

(20 3mSR 0 asn, v — 00 for cvery m g N and
]

(313 I — 0 s s = oo for enery 2 € X,
[ T8

Proaof. Eilmdx.p]-q.{x.p]-hﬂwhliﬁ'-{t{.ﬂ::EI}.nl’lﬂlh:-']"mpuliﬁwl:{m.
4 {H.'I.P}-m[#}} §f wred only f A € l‘,ﬁu{xm}- cﬂ“'“ snd A € (E, ﬂl["‘-'}j'+ Cloarly, A € (E. oig))
If and only if the condition (3} bolds. By Theorem 4,1,»e have A € (cal X, p), egl)) if aod only if the
comditions (1) and (2) hold. So, we have the theorom, o

Thearem 4.9 Let p = (ps) and ¢ = {ga) be dounded sopuences of positive real mumbers snd Lt
A = (f7') be an infinite matriz. Then A € (e{X,p), c{q)) if and enly if there ir @ sequence (fy) with
REIL}WHMENH:AM

(1) SWRUM M < oo for some M € N,
kml

{2) mMe(f2 — i) S0 msm — oo for everym , k€ N,
(% Em‘-"'ﬂﬂﬂ'-ﬁﬂr'”ﬁ —0 arn, r— o for every m € N and
=1

) (3 @), & o) fratize X.
=]

Proaof. Since ofX, p) = wfX,p) + E, where & = {e{z) : € X },it follows from Proposition 3.1
iii) that A & {2(X, p),c{q)) if and only if A € {c{X.p). clg]) and A £ (E, clg)). By Theoremn 43, =
have A € [o(X, p), elg)} if and only il the conditions (1) - (3} bold, and desdy, A € (£, cq)) if and
anty if (4) holds. Hence, the theorem is proved, o
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Thoorem 410 Letp = {pe) and g = () be bounded sequences of passfrve read numbers with
Pe =1 for all b € N, and tet A = {f7) be en nfinite matrie. Then A € (8, 8, tala)) if and endy if
{1} m¥ieagn L pp—— Jor every k€ N and
(&) there emats M E N such that [fm! 9 fY|J" < M farattm k€ N

FProol  Sioce gy = r‘f:n_l':ﬂtn'-ih:l oAt follows frem Proposition 3.1 (i) and [wii) thet A &
(20X, 2], colq)) Il and only if [m"r"j:}m £ {0 X, p), o} locall mE N, By |8 Theoremn S.6], we have

fm‘-'r"‘ffj]"lh € (F{X, p). ra) i nnd only i the conditions (1) and (2) hald. The quf ismaw comgibele
C

Wit and Lin [8, Theoresn 2.7] hove given s chargeterization of w infldite matriv A sichy Lt

A& (X p) oo} whon pe > ) for ) BE N By asing application of Progeeition 80 (58] and (1] | we
oliesin Lhie llowing residli,

Theorem 411 el p o (p) ond § = (gu) be bounded sepuences af positive veal nsrnbers uaik
Pu > 1 for all k& N oand let A = (f7) te ancinfinite meateiz. Thane A € (80X, p), ral))  and ondy f
{1} mbfa=gn il agn—s 00 foratl m, k& & and

(8] Jor eaphomn & N, f}:{m'”" ||ﬁ"||]-""-““"t:'1‘""'r"" ) == ) s — oo uniformly an ¢ &
f=l

Aok nnwliibgeponts

P'ho muthor woiild ko Lo Waank the Thallsnd Hesosrcl Pand for the Hianeen Hpspport during Wan
prpmrnbion ol Yiln papees
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Matrix Transformations from Vector-Valued Sequence Spaces of Maddoy
into the Makane Sequence Space

SUTHEP SUARTAL

ABTINACT: In this paper, we give the matrlx ehiarnctarizstiong from yeetor-valisd
Enljilsniie spaoss of Mediox ﬂn{:‘ﬂ F.:h ﬂfx. F} il {fo. p} Bito U Makans s nplacs
i) wivers p = (fig) mel §f o= (v} wre bawnsdsd sedjiianres of posliive resl pumbare

(TEVR) AME Matbemntlos Higlaot Oisal fenilas: deiaqn,

L INTRODUCTION

Lt (5, |11} b & Banach apace anil = (py) » bounded scqusncn of positive tunl wumbers, W

write = = (ra) with 2y ln X for all k & N, The X-valiied moquance epaces ey (X, B), efX, p), Leal X, 1),
ﬂ-xl P.’i lﬂdi:fx.ﬂ nrn defined ws

ol Xyp) = {2 = {ry} Jim [z ™ =0},
AXip) ={z = (=) Jim |z — al™ =0 for womn o & X},
Lol X p) =z = {m) aup lxal™ < 00},

UX,) = 2= () 3 lleaf® < o0)
i

!.:fx-ﬂ={=-‘='f=-'k}!#1;ﬂ" ||§E~|]-“ < oo forsomm (£4) € o with fL +# 0 for all ke N

Whan X = Hor C the corresponding spaces are written ex oy(p), ofp), L (p) . 8p), and &, (p) respectively,
Each of the first thiee spaces are known ns the sequonee spaces of Maddee  These. spaces were first
tntpoduced aind studiod by Simons 8], Madidax i3, 4]. The space &p) was first definod Ly Mukmna (6] and

Trposed jor A eI EY
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it i Jern ey the Nakano sequence space. In [V} tho ssructurn of the spuocs cq(p), eip), wnd £o(p) hove
been imvestiznted.

fis this paper weconsider the problein of churacterizing those mistriced that map from VRSt Ors walted
sequence spaces of Maddex ca(X,p), olX,2) and £o(X;p) inte tew Nakana sequanee spce 1(4] where
P = (ps} sl y = (gp) are bounded secuences of priitive real rumbers. By spplying ous muin resilLs,
wo Blas give & cinracterization of infinite matrix mpping from g (X, p) into &(¢). Wu and Lia [7] rhead
with tha peoblem of eharnctarization thoss lnfinte mutrices mapplog from ol X, p). snd £0(X, ) into
caolq} and £..(g). Crosse-Erdmmsn [2] has given charscterizations of muteix transforbotions hetween the
sculnp-valued sequencs spaies of Maddoc It s pointed out in (1] that e(p) is nn cchelon space of order 0
urid that £, () ia & oo-echelon space of ordes s, In this paper wo also alow that, g (X, p) aud £, (X, ) b
& co-echiolon spate of order 00, Therefore thase spaces nre mnde up of simipler spaces. 'We will use cortaln
miaxillury reults(Soction 3) to reduce our problem 1o the dunrncterisstions ol mutrix mapping between
mikich simpler spaces.

2. Mototion and Definitlons

21 Lat (X, |11} be n Banach spuce, tha space of all soguonces in X |8 denoted by W{X) mnd {X) i
domotesl for the spwe of all finite soquences ln X. When X = R or O the corrmpmding rpaces ara
written ag w and &,

A sodintien ipacs in X b & linear subspues of W{X), Lot E be an X-valued siuence space. For
TE L and k& N, wewrita 2, stands for the k* term of 2, For & € N denote by #y the soquetios
(000, s B 1,0, ) wilth 1 thes B posiitlion mnd by & tho soquence (1, 1,1,..), Mare & X and k & N,
lot e*{x) ba the sequmice (0,0, .., 0,2,0,..) with = in the & panition nod Tet e(m) be Uho mqguence
{2, ). For o fxnd sealar soquence g s (pa) the soquence space 5, §s dafined ux

By = {r € WX 2 (uuma) € E) |

E.ﬂh-t.‘.-{ﬂ‘}wilhff’mx',th-mwhﬁﬂﬂdullﬂx. Suppose thel B b n spaco of Xovalived
soquencet said F' a opace of scalnrvaluod poquences, Trumﬂhanldtumlpﬁ'lnuhwﬁumby

A E = Fil for each 2 » (n) € E, ﬂq,fs:}:Eﬂ‘{.t!.}mum_l‘wuﬂmEm and the secuonce
—1
Az = (Au(z)) € F. Let (B, F) denots for the sat of all Inflisite matrices mapping from & inte # 17
%= (ug ) inil v o= (1) wre scalar sequences, let
wE ), ={A= ()« {0z € {8, FY )
Wi 70w all ke H.mmﬂqu"={i}.

2.3 Suppise that the Xovalied mquence spaen BB endosod with some lineae topolaey 1. Then B 5
callod & Reapeeer if for sech bk & N the k25 poordinate mapging pe ¢ K — X, defined by !-f'.h'[ﬁ-'} = Tk, 1



5
continuons on E. Tf, is wddition, (B, 7) is an Fréchet (Bannch, LF-, LB} space, then E is calind an FE-
(BK-; LFK-, LBR-) mpace. Now, suppose thot B eoastrins 'I{,."l.“'} Then F is said to nave property A8 3

the et {3 eMm)on € N} i bonnded in E for every z - (zu)} € E. 1t s said to hinve property AK if
k=]

I
Zt"i:ﬁ}—arm E 56 1 — oo for every T = [2,) € £. It bos properiy AD L DX js denss in 5
k=1

a L
The space f(p) is un Fl-space with A under the prranorm gir) = (EIII}I") , where
-
M = maz{l,sup po}. In each of the spoce LX) mnd o X, 1) we uumkI.:: the lunotion gz] =
L]

,T;. =y [|'* , where Af = mor {1,.;11; Pide 1t bs knewn that X, 1) Is an Fiopaes with AK under
the poranorm gdefined s nbove il Lol X, p} I & comypilete LBK-space with AR 1n ol X, p) we consider
the lumetion 4(z) = r:p:ﬂ.n = Al o) whee o ds the origque demant fn X with = —e{n) € a{X, p).
The g 1w paranioemn on e X, p) aod o X, p) is an FRapuee under Ui [HtrBnsEm .

3. Some Auxillury Resultn

Wo begin with the Following wnedul pesults that will ba wsed to reduce our poblema bito some
akmapaler foypmn,

Propesltlon 3.1 Lot E and Evln & N) be X-valued aequence spaces, and ¥ and F(n ¢ N)

acalar sequenico apacea, and et u ard v fre scalar sequiencey with uy d 0, v, # 0 for all k€ N, Tham we
hnua

(0 (B ) = ey (B B
(i) { M ) = P (B Fa)

(i) (B 4 By ') = (8, F) 0 By, B
(iv] (B, Fy) = (B, F)ar.

Proal Al sssortlons men mmmscHately obtained by the definition. n]

Propositlon 3.2 Lat p = (py) be a bounded sequonces of posifive real numbera Then
() dXip) = ol X,p) +{ efz) : zE X}
i) X, p) = LI‘:_;:u{.th__;;.,}. Hence col X, p) & an ochelon space of order (),
(5] Ll 0) = UL Lol X ) cuimyy HEnde £, p) i s po-achelin space of order oo,

Frool, 168 cosy to sos thal assertion (i) holds, To show (i), lot & = (22} € £( X, p). Thon there

iz mmequence (6y) € o with & # Ofor all k& N sech Uist sup ]|';—'I'[|F"|I < ot Henes there oxists o > 0 wirch
L] L

that |imel] < /52 1] For all &k € V. Choose g € Nowith ng > o Then [z iy /7 < {ﬂiu}““m; < bl

which fmplics that EL:I:?{‘.-:h Il’ﬁ"“ﬂ?”n =0, hence == () € fi]t-x-.]{“'h'np Lo Ly ‘:E;{x"[n Ly Qi the
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‘other hand, suppese thut = = [x,) & L2, Eo{X )iy -1imays Then nga iy [0~ 2% =0 for serie s & N,
Let § = (£} be the sequénce definded Ty

[rrnun-'fh i flza £ 0
&y = 1

.E ot hprwise,
Cleurly (£} € & and H:-—:ltm =1 for all k£ N, henos aup "EH“ SN, B0 2= (2 € g X, p),

Mo wa show (jii). 1z e d.[X, p), then there Imnl;:mﬁ € Nwith |l | < n forall ke N. Henos
lewffr 2o < o fir wll & & &, pothan z € £l Xy, “tingys O the other hand, if = & L !ﬂ,{ﬂ.“'h“-.h.-..i,
then thera wre same 0 € N und /> | oueh that [lzall =" < F for every & € W Then we huve
leal™ < nkre <o K™ for ull ke N, whl:mM——-r:qrm. Hence 2 € £,.(X, p) Ol

Froposition 3.3 Let B C WIX) bs an FR-spce with AR property and & an FK-spooe of sealar
scquences. Then for an infinite matriz A = (1), A g (B, ) if and enly 1f
alr

(L) For mch & N, 3 " [1Mew) conutnpen for all & = {2} & B,
(2) For each k g IV, EE{:;]" € F, ond

LR |

() A (X)) — F (x continuous whien LX) i considared an o subspace of 5.
Proof Assumo Uit A 8 (B, 5, Then wa have that for & w fxa) € B, 3 fllns) sinverges
A

for all € N, so {1) holds Ehm:“"'{t]l!ﬂfnrnllkEHmdtﬂ:EI.wMthnifwmh
m& Ny (2= = Ae™x) € £ honos (2) hetds, Bince € nid 7 ure Fiapnoon, by Zelloe's thearam,
At E = F la continuoun, so that {4} s abtained.

Unirverscly, sanime thnt the sondithons holdi. By {19, we have A = (37 M), & wix)

k=)
loe all x & E. It follows from (2) that Az} & F for all & € N snd sl * € X, which implies that

A X)) - F. Oy (3), wo have A : §(X]) — I s continoin, Lot o= () € B. Binoe B han the

i
AK property, o= Him S o™ e in B Then (o ez 1™ s sy msrionce in £ By the
=1 =

eantinuity and linoarity of A, we have {zﬂj Ae* )™ taw Carichy veprinnse in 7. Sice £ i complets,

¥ s
W hawn {E.{gﬁ]{ﬂ]]ﬂ; canverges in . Since F b Keapaee, it implies that {Eﬂ{ﬁ}}:, EF,
1 ) =
I’ﬂul-llri.:EEF.“'hilnhuwhhntd;ﬂ%F_ a4
4. Maln Reaults

W now turn to our main objoctive. We begin with giving charocterisntions ol matrix Lennsforim.
Hons From (X, p} into £(g), To do this we teed a Tomimia
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lemma 4.1 Lel (fi) be @ spuence of continuous Ener Junctianal on X. Then ihl{n}

=l

converges for all w = {ra) € col X, p} if and ondy if Y || fellM 4" < oo for seme M &N,

Lg

Proof Suppose thit Eu,r,,gw*lm < o0 for some M & N. Lot 2 = (zy) & el X,p). 'Then
=]

there in & positive integer A0 such that |I.:kri1“'~r.-—fur-lllraﬂ' hemee flrg || < MV for ol & > 4
Thien we have

}: Wl < 5: Ml £ 37 Al < oo

b=
It follown that E,ﬁ. (= ) converges.
L

Un the other hand, mstume that E:h{.n} corvorge foy sl 2 € (X, p). For ench = = {rs) €
rolX, p) chooun scalnr pequimes {1, ) "A'iﬁl ilh'l = 1 suwh that filluzy) = |fufz)| foo sl bk &8 V. Sinee
(tyma) € el p), by our sssumption, wo have Z.ﬁl{rm}! eanviges, o that

Y It < oo for all £ € eyl X, p) . w1y

b=1

Ll
Now, supposs Lhat Euf.llm"‘*""" w ox3 for ull m & N, Chooso my, k& & N mach Shal
=1

Z l.-l'lﬂ'ﬂ:”" =1,
By
nnd choose iz > my and by > ky woch that
3o Malmg s g,
ey ke Ay
Procooding in this way, we ean choosa m, <y < ,and 0=k < ky < .. such that
Y Ml s
ki1 <kSk,
Tk my, in X with ||z|| = | for abl &, &, < &k < &y woeh Lhat

2 ey o faedll de
by ek

Put = (g}, g =m 2y for ki i < £ <k, then ¥ € o[ X, p), and we hove

b T A8 | L Sy S poaeay
=l

by gk,
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Heriee we hove Z | filtse)| = o8 which contradicts with {£.1). This ecimplets the prosof. O

kel

Theorem 4.2 et p = (p) and = |gy) be bounded séguences af positive real fiembers and let
A= (fT) be aninfinite mubriz. Then A £ (eal X, 1), 8q)) of nnad omly if

(1} Far eachne N , Higrm EMslE m, € N mn:hthu.tz:"'_fﬂm—l.fh oG
=i

(2 3 i)™ < oa for poery ke Y,
|
fat :ﬂﬂh iy afm, K) =0, wher the supremum i taken. suer all findte subset K of N and

a{m, K) = sup{ E[E B e e Xodna el 1 por otk e i),

il kgl

Froof. Asme that A 1 &{ X, p) — (g} By Propoaition 3.3 an Levms 4,1 v the eonlitions (1)
anul (2) mro obtuined, Now we shill show that (4] holds, Lét e > 0 be givon. Since ey{X, p) and ]

weo Fllapoos and e, p) bas the AK Property, we lve by Propesltion 2.8 that 4 ; B = 2(g) le
sestitinuous whan $(X) s considerad s 4 mibspnce of ea (X, p). Then there wdsts mg £ N such that

f}limnn'- <e (4.2)

wud ]

foe ll = (54} & LX), ] = wup 2h M < (=)™ s B v i,
Let K € N be finite and for & € I, ot 4 € X be such thut H:..]Tf. Lolatm e N, m > my
Let v be the sequence defined by g = m=lee, if k g .‘c‘mliﬂthu-rh Then y € (X)) and
Il = s fom=oszyrusié < ( Ly {;‘;]”". s by (4.2), 315" oV i)™ < v, Tnia
mal Ll

imples sup afm, &) < ¢, hesen (3) hods e

Conversaly, amme thnt the conditions (1), (2} and (3) hold. Tha condition (1) Implics, by
Laamma 4.1, that for each i € N, 3 (=) convarges for all = = () @lXp). By (2), we hove

=}

(L t)) ., & &) for ol k & M. Thais A £ (X} = {g). We shall skow that A 1 9(X) — &y) i

contimaoiss when $(X) & ecomaidered az o aisbspaco of (X, p). Tet € > 0 ba glven. By (1), there is
mg £ N such that

vup alm, K] e for all m > mg (4.3)



T

Chiogetid = fm}uu where M = sy pi. Lot 3= (52) & B(X) with [ll] = supp sl < b, Then
nlﬂ.-l"J'-lr1|rk|| ElforallkeN. LaK={kcN : z; # 0§ 1t follows by (4.3) that

s

Elz,fnmu - EIE ot

w=1 ko] =l kg K

E il};‘ g i#rhﬂ{méfpuztjl

=l kL i
AL,

Henoe, we himve A ¢ $(X) — £4) is continuous, By Proposition 3.8, we obtain that A 1 g (X ) — ).
Thin completes the prool. |

Theorem 4.3 Let p = (i) and g = (qu) be bounded sequences of powittve vl numbers mnd fat
= (') be ani infinite mateiz. Then A & (e X, p), £(q)) lf,fmthtrﬂy i

f.r) For machn g N, mmmumeﬂmhm:zﬂﬂﬂm.. Wi £ o,

(8} EU"’{?}I"‘ < oo for roory k € N,
%) Jj_:::‘l:pn_{nqifj = U, where the supremem dn taken syer all finite subset K of N and

afrm, K} mlEIEm RN m e X antlnl <1 for attke i),

wel ki
(4} ilsz{:}]"‘ <ooforallz € X,

Proof Lot 5= (efz) 1 z& X } Bloee ef X, p) = X\ p) + B (Propoition 120000, 1t mplien
by Proposdtion 3.10100) thue

A el Xp) <= fy) == Az colX,p) — tlg) and A ; B — #(g)

It in eaay Lo noa thut
AL E = 8q) ==+ the condition (1) i satiafiel,
By Theatermn 4.2, we hsve

Az ey{Xip) == ty) => the conditions (1), {2) and (3) sre satisfisd.
Henoe win hisve

A elX, ) — g} = the conditions (L) (20, (8) and (1) nresatisfied.



