

รายงานวิจัยฉบับสมบูรณ์

โครงการ การใช้ความรู้ทางสภาวะเหนื่อยอพัฒนาระบบที่เพื่อพัฒนาต้นแบบการรักษา
ความชราโดยอาศัยเทคโนโลยีและมะเร็ง และเป็นแนวทางในการใช้ตรวจ
คัดกรองมะเร็ง

Epigenetic therapy prototypes for senescence, SLE and
cancer and epigenetic knowledge guided cancer screening

โดย ศาสตราจารย์ ดร. นายแพทย์อภิวัฒน์ มุทิรางกุร

สิงหาคม ๒๕๖๒

ฝ่ายวิชาการ
โทรศัพท์ 0-2278-8253
e-mail: chonnapa@trf.or.th

รายงานวิจัยฉบับสมบูรณ์

โครงการ การใช้ความรู้ทางสภาวะเหนือพันธุกรรมเพื่อพัฒนาต้นแบบการรักษาความชรา¹
โรคเอดส์และมะเร็ง และเป็นแนวทางในการใช้ตรวจคัดกรองมะเร็ง
Epigenetic therapy prototypes for senescence, SLE and cancer
and epigenetic knowledge guided cancer screening

ผู้วิจัย สังกัด ภาควิชาการวิภาคศาสตร์ คณะแพทยศาสตร์

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

กิตติกรรมประกาศ

ข้าพเจ้า ศาสตราจารย์ ดร. นายแพทย์อภิวัฒน์ มุทิรังกุร ได้รับทุน สกว ฝ่ายวิชาการอย่างต่อเนื่องนับแต่ทุน เมธีวิจัย รุ่นที่ ๑ จนถึง ทุนศาสตราจารย์วิจัยดีเด่นทุนนี้ ทุนจาก สกว เหล่านี้ มีส่วนสำคัญอย่างมากที่ทำให้ข้าพเจ้าได้ทำวิจัยทางชีววิทยาทางการแพทย์ที่เป็นการค้นพบ ความรู้และแนวทางในการตรวจนิจฉัย การรักษาโรค รวมถึงการป้องกันโรค ซึ่งเป็นผลงานที่มีประโยชน์อย่างยิ่งต่อสังคม งานวิจัยของข้าพเจ้าเป็นการศึกษาเรื่องเกี่ยวกับพันธุกรรมระดับโมเลกุล หรือ ดีเอ็นเอ (DNA) มีผลงานวิจัย ๓ ด้าน ดังนี้

- ๑ ทางด้านการศึกษาอณูพันธุศาสตร์ของโรคมะเร็งหลังโพรงจมูก
- ๒ แนวทางใหม่ในวิธีการตรวจกรองมะเร็งจากการตรวจเลือดที่มีความไวและความจำเพาะสูง และ

๓ สภาวะเหนือพันธุกรรม (Epigenetic) อันเป็นกลไกสำคัญของการเกิดโรคในมนุษย์ ซึ่ง งานวิจัยสภาวะเหนือพันธุกรรมเรื่องแรกที่ได้รับการตีพิมพ์ในปี พ.ศ. ๒๕๕๗ และเป็นรายงานที่ได้รับการอ้างอิงมากกว่า ๓๘๒ ครั้งนับถึง ๒ กันยาฯ ๒๕๖๑ ต่อมา ก็ได้ค้นพบสภาวะเหนือพันธุกรรม หรือดีเอ็นเอ (DNA) ตัวใหม่ที่เป็นต้นตอสำคัญของการเกิดกลุ่มโรคไม่ติดต่อเรื้อรัง (Non-Communicable Diseases – NCDs) ได้แก่ โรคหัวใจ เบาหวาน ความดันโลหิตสูง คลอเลสเตรออลสูง ความจำเสื่อม ความดันลูกตาสูง เป็นต้น ซึ่งการค้นพบในครั้งนี้ก็อเป็นการค้นพบกลไกของโรคที่เป็นปัญหาสำคัญของมนุษยชาติในปัจจุบัน และสามารถนำองค์ความรู้ดังกล่าวไปต่อยอดในการศึกษาต่อไปเพื่อสร้างยาอายุวัฒนะมีแดง (Rejuvenating DNA by Genomic Stability Molecules – REDGEMs) ซึ่งจะทำหน้าที่ช่วยลดการถูกทำลายของ DNA และช่วยให้เซลล์มีสุขภาพดีขึ้น ส่งผลให้ร่างกายเกิดการซ่อมแซมให้กลับมาเป็นปกติ หวังว่าในอนาคตจะสามารถใช้มนีแดงรักษาผู้ป่วยกลุ่มโรคไม่ติดต่อเรื้อรัง (NCDs) ให้หายขาดได้ ส่งผลให้ความดันโลหิต คลอเลสเตรออล สมอง หัวใจ เส้นเลือดและกระดูกปกติ รวมถึงสามารถป้องกันมะเร็งได้อีกด้วย ด้วยผลงานวิจัยนี้ทำให้ข้าพเจ้า ได้รับ รางวัลสำคัญของประเทศ ได้แก่

1. นักวิจัยดีเด่นแห่งชาติประจำปี ๒๕๕๙ ของสภาวิจัยแห่งชาติ
2. นักวิทยาศาสตร์ดีเด่นประจำปี ๒๕๕๑ มูลนิธิส่งเสริมวิทยาศาสตร์และเทคโนโลยีในพระบรมราชูปถัมภ์
3. เหรียญดุษฎีมาลา เย็มศิลปวิทยา ประจำปี ๒๕๖๑

ความสำเร็จทั้งหมดนี้จะเกิดขึ้นไม่ได้เลยหากไม่ได้รับการสนับสนุนและความช่วยเหลือจากเหล่าทุนวิจัย โดยเฉพาะอย่างยิ่ง สกว และเจ้าหน้าที่ของ สกว ข้าพเจ้าขอเป็นตัวแทนผู้ร่วมวิจัยทุกท่าน กราบขอบพระคุณมานะที่นี้ด้วย

ขอแสดงความนับถือ

ศาสตราจารย์ ดร. นายแพทย์อภิวัฒน์ มุทิรังกุร

ฝ่ายวิชาการ

โทรศัพท์ ๐-๒๒๗๘-๘๒๕๓

e-mail: chonnapa@trf.or.th

Project Code : สัญญาเลขที่ DPG5980005

Project Title : การใช้ความรู้ทางสภาวะหนีอพันธุกรรมเพื่อพัฒนาต้นแบบการรักษาความชรา โรคเอดส์แอลอี และมะเร็ง และเป็นแนวทางในการใช้ตราชดกรองมะเร็ง

Investigator : ชื่อนักวิจัย ศาสตราจารย์ อภิวัฒน์ มุกิรังกูร และสถาบัน จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address : mapiwat@chula.ac.th

Project Period : ๑ สิงหาคม ๒๕๕๙ ถึงวันที่ ๓๑ กรกฎาคม ๒๕๖๒

บทคัดย่อภาษาไทย

งานวิจัยนี้เป็นการศึกษาต่อเนื่องของคณะผู้วิจัย โดยแบ่งเป็นหัวข้อ ๔ หัวข้อ ได้แก่ ๑ การศึกษาสภาวะเหนือพันธุกรรมของจีโนมที่เกี่ยวข้องกับการแก่ของเซลล์ ๒ การหาตัวบ่งชี้มะเร็งที่เกิดจากการเปลี่ยนแปลงของสภาวะเหนือพันธุกรรมในเซลล์เม็ดเลือดขาวของผู้ป่วยมะเร็ง ๓ การพัฒนาเทคโนโลยีตัดแต่งสภาวะเหนือพันธุกรรม และ ๔ การศึกษาเซลล์อณูชีววิทยาทั่วไป

๑ ในการศึกษาสภาวะเหนือพันธุกรรมของจีโนมที่เกี่ยวข้องกับการแก่ของเซลล์ผู้วิจัยได้ศึกษาการลดลงของสภาวะเหนือพันธุกรรมของจีโนมแบบ Alu methylation ในผู้ป่วยเบาหวาน เพื่อยืนยันว่า การลดลงของ Alu methylation น่าจะส่งผลให้มีการเสื่อมสภาพของร่างกาย หลังจากนั้น คณะผู้วิจัยได้พัฒนาการเติม Alu methylation ในเซลล์ที่เลี้ยงในหลอดทดลองด้วย Alu siRNA พบว่า เซลล์ที่ได้รับการเพิ่ม Alu methylation มี DNA damage น้อยลง การศึกษานี้เป็นการศึกษาแรกที่ทำให้ทราบว่า การลดลงของ DNA methylation ทำให้มี DNA damage ส่งผลทำให้เซลล์เสื่อมสภาพและทำให้เซลล์ชรา และการศึกษานี้ยังให้ความหวังที่จะสามารถแก้ไขความชราของเซลล์ได้อีกด้วย เพื่อค้นหาภัยทางการเพิ่ม DNA damage ในเซลล์ที่มี DNA methylation ลดลง คณะผู้วิจัยได้พิสูจน์ว่ารอยดีเอ็นเอชี RIND-EDSBs ที่คณะผู้วิจัยรายงานในปี ค.ศ. 2008 แห่งจริง แล้วเป็นสภาวะเหนือพันธุกรรมที่ปกป้องความเสถียรของจีโนมในเซลล์หนุ่มสาว การศึกษาทั้งหมดนี้เปิดประตูใหม่ของความรู้และความเข้าใจถึงการเสื่อมสภาพของเซลล์ที่ชรา การเกิดพยาธิสภาพของโรคไม่ติดต่อในคนชราหรือ NCDs และเป็นความหวังในการผลิตยาอายุวัฒนะเพื่อแก้ไขการเสื่อมสภาพของร่างกายในผู้สูงอายุในอนาคต

๒ คณะผู้วิจัยเป็นหนึ่งในกลุ่มวิจัยที่ชี้ให้เห็นว่าการเปลี่ยนแปลงในระดับโมเลกุลของเม็ดเลือดขาวของผู้ป่วยมะเร็งเป็นการเปลี่ยนแปลงที่พบได้บ่อยแม้ก้อนมะเร็งจะมีขนาดเล็ก ดังนั้นการเปลี่ยนแปลงในระดับโมเลกุลของเม็ดเลือดขาวของผู้ป่วยมะเร็งน่าจะเป็นตัวบ่งชี้ความเป็นมะเร็งที่มีความไวสูง ในทุนค์คณะผู้วิจัยได้รายงานการพิสูจน์สมมุติฐานนี้ในมะเร็งลำไส้ใหญ่และมะเร็งครีบและcolon

๓ คณะผู้วิจัยได้ริเริ่มทำการวิจัยเพื่อตัดแต่งสภาวะเหนือพันธุกรรมโดยการศึกษาบทบาทของโปรตีน Argonaute1 ในการกดการทำงานของยีนที่มี mononucleotide A repeat มากซึ่งยีนกลุ่มนี้มักจะแสดงออกสูงในเซลล์มะเร็ง และบทบาทของโปรตีน Argonaute4 ในกลไกการเติม DNA methylation ด้วย small RNA ในเซลล์ของมนุษย์

Keywords : สภาวะเหนือพันธุกรรม การตัดแต่งสภาวะเหนือพันธุกรรม สภาวะพันธุกรรมไม่เสถียร ความชรา มะเร็ง ตรวจกรองมะเร็ง

English Abstract

This research is a continuing study of the research team, which is divided into 4 topics, namely, 1 studying the epigenetic of genome that are related to the aging of cells, 2 finding cancer markers caused by changes in epigenetic conditions in white blood cells of cancer patients, 3 development of genetically engineered epigenetic editing technology, and 4 cell molecular biology studies in general.

1 To study the epigenetic of genome that are related to cell aging, the researchers studied the reduction of Alu methylation in diabetic patients to confirm that the reduction of Alu methylation may result in deterioration of the body. After that, the research team increased Alu methylation in cells in vitro with Alu siRNA. The cells that were increased in Alu methylation had less DNA damage. This study was the first study to prove that the reduction of DNA methylation causes DNA damage, resulting in cell degeneration and aging cells. Moreover this study also gives hope to be able to correct the aging of cells as well. In order to find a mechanism to increase DNA damage in cells with reduced DNA methylation, the research team proved that replication independent endogenous DNA double strand breaks (RIND-EDSBs) that the research team reported in 2008 were indeed an epigenetic condition that protects the stability of genome in young cells. All these studies open a new door of knowledge and understanding of aging cells especially the pathogenesis of non-communicable diseases in older people or NCDs and is a hope for the production of elixirs to correct the deterioration of the body in the elderly in the future.

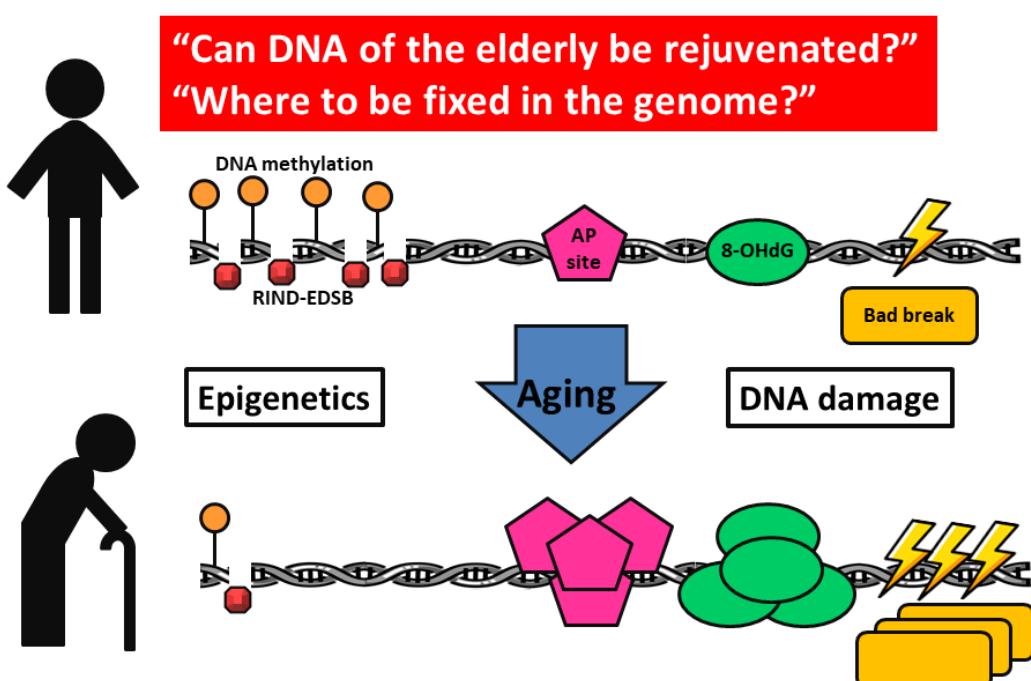
2 The research team is one of the research groups that suggested that the molecular changes of the white blood cells of cancer patients are a common change even though the tumor size is small. Therefore, the molecular changes of the white blood cells of cancer patients should be an indicator of cancer that is highly sensitive. In this grant, the research team reported this hypothesis in colon and head and neck cancers.

3 The research team initiated the technology to edit the epigenetic conditions by Argonaute proteins. We studied the role of the Argonaute1 protein in the disrupted expression of genes that contain mononucleotide A repeats, in which these groups of genes are often expressed at high level in cancer cells. Moreover, we studied the role of the Argonaute4 protein in the mechanism of DNA methylation with small RNA in human cells.

Keywords : epigenetics, epigenetic editing, genetic instability, aging, cancer and cancer screening

ฝ่ายวิชาการ

โทรศัพท์ 0-2278-8253


e-mail: chonnapa@trf.or.th

เพื่อรายงานวิจัยประกอบด้วย วัตถุประสงค์ วิธีทดลอง ผลการทดลอง สรุปและวิจารณ์ผลการทดลอง และข้อเสนอแนะสำหรับงานวิจัยในอนาคต

Epigenetics, genomic instability and aging

หัวข้อวิจัยหลักของทุนวิจัยนี้คือการศึกษาบทบาทของสภาวะเหนือพันธุกรรมในการป้องกัน ความไม่เสถียรของจีโนมเพื่อป้องกันการแก่ของเซลล์ ผลการศึกษาทั้งหมดคือคนผู้วัยจัยได้สรุป และตีพิมพ์ที่

- Mutirangura A: Is global hypomethylation a nidus for molecular pathogenesis of age-related noncommunicable diseases? *Epigenomics* 2019, 11:577-579. ดังนี้

Apiwat Mutirangura, Chulalongkorn University

Is global hypomethylation a nidus for molecular pathogenesis of age-related noncommunicable diseases?

Short running title: Global hypomethylation drives age-related NCDs.

Age is the main risk factor for many common noncommunicable diseases (NCDs), including diabetes mellitus, cancer, cardiovascular disease, osteoporosis and neurodegeneration.(1) Epigenomic modifications that are altered in the genomes of the elderly may initiate the cellular pathogenesis mechanism of NCDs.(2) Future medicine should explore whether reversal of these epigenomic changes will improve the health of those suffering from age-associated NCDs. Reduction in intersperse repetitive sequence

ฝ่ายวิชาการ

โทรศัพท์ 0-2278-8253

e-mail: chonnapa@trf.or.th

(IRS) methylation or global hypomethylation is commonly found in the elderly and NCDs, including diabetes mellitus, cancer, cardiovascular disease, osteoporosis, and glaucoma.(3-8) Therefore, exploring whether and how global hypomethylation drives NCD pathogenesis and whether adding DNA methylation to IRSs improves NCD phenotypes would be interesting.

Two decades ago, global hypomethylation was proven to facilitate genomic instability processes or increase the rate of mutation.(9) However, how DNA methylation maintains genomic stability has not been elucidated. Previously, we found that Alu element methylation helps prevent DNA damage, an abnormal chemical structure in DNA.(10) Alu elements are a type of IRS with millions of copies dispersed throughout the human genome. We found an inverse association between the Alu element methylation level and DNA damage in white blood cells. When we increased Alu methylation levels in cultured cells by Alu siRNA, the transfected cells reduced endogenous DNA damage and improved resistance to DNA damaging agents.(10) Therefore, DNA methylation plays a role in maintaining genomic stability by preventing DNA damage.

Several lines of evidence suggest that spontaneous accumulation of DNA damage drives the aging process and NCD phenotypes.(11) For example, pathologic endogenous DNA double strand breaks (Path-EDSBs) are spontaneously produced and retained in chronological aging yeast.(12) Path-EDSBs were also detected indirectly as γ H2AX foci in several organs of aging mammals, including humans.(13-16) Oxidative DNA damage refers to the oxidation of specific bases. 8-Hydroxydeoxyguanosine (8-OHdG) is increased in cardiovascular patients and patients with diabetes mellitus, chronic lung disease, osteoporosis, and neurological degeneration.(11) DNA damage may promote NCD phenotypes by promoting DNA damage repair (DDR) signal pathways. The role of DDR is to arrest cell cycle progression to allow for DNA repair and to prevent mutation due to DNA replication errors. However, too much DDR causes a number of pathogenic processes, including inflammation, metabolic rewiring, senescence, apoptosis and aging.(17) This may be the reason why the elderly have a delayed healing process. In addition to increasing Alu methylation and decreasing DNA damage, Alu siRNA-transfected cells increased cell proliferation.(10) Therefore, an increase in Alu methylation may reverse aging phenotypes and improve health conditions in NCD patients.

The molecular mechanism by which DNA methylation decreases DNA damage remains to be elucidated. Notably, the Alu siRNA experiment suggests that DNA methylation

ฝ่ายวิชาการ

โทรศัพท์ 0-2278-8253

e-mail: chonnapa@trf.or.th

stabilizes the human genome in a long distance from the methylated sequence. While Alu siRNA increased Alu methylation levels by only 10%, three-quarters of the endogenous 8-OHdG disappeared.(10) By rough estimation, DNA methylation of an Alu locus protected 30 Kb of the human genome. Because this spreading effect does not harm cells, this modification should not directly interfere with gene expression. I propose a hypothesis that instead of spreading epigenomic modification or proteins and DNA interaction, DNA methylation relieves DNA tension and consequently stabilizes the genome in cis-acting up to several ten thousand base pairs of the genome.(2)

Within the methylated genome, there is a type of lesser-known epigenetic marker that can relieve DNA tension.(18) These epigenetic markers are physiologic replication independent endogenous DNA double strand breaks (Phy-RIND-EDSBs).(18-20) Because Phy-RIND-EDSBs are localized within the hypermethylated genome, global hypomethylated genomes possessed low levels of Phy-RIND-EDSBs.(18) Even though Phy-RIND-EDSBs are DSBs, Phy-RIND-EDSBs are epigenetic markers and not DNA damage lesions. Phy-RIND-EDSBs are found ubiquitously in all cells from yeast to humans.(18, 19) Phy-RIND-EDSBs are reduced in cells lacking high-mobility group box (HMGB) proteins and Sir2.(19) This means eukaryotic cells have proteins that produce or maintain Phy-RIND-EDSBs. Interestingly, in yeast, cell viability correlated very strongly with Phy-RIND-EDSB levels ($r=0.94$, $p<0.0001$).(20) When Phy-RIND-EDSBs levels decreased, Path-EDSBs were augmented.(20) Therefore, Phy-RIND-EDSBs possess a physiologic function in maintaining genomic stability of the cells.(20) The role of Phy-RIND-EDSBs is similar to topoisomerase in that it relieves DNA torsion via physiologic EDSBs.(19) I hypothesized that Phy-RIND-EDSBs stabilize the genome by relieving DNA tension similar to tension reduction by gaps left in between rails of a railway track. Interestingly, Phy-RIND-EDSBs are reduced convincingly with age in chronological aging yeast.(20) Thus, Phy-RIND-EDSBs can be designated as youth-associated genomic stabilizing DNA gaps.(2)

In conclusion, the genome of the elderly is hypomethylated. Global hypomethylation increases genomic instability by increasing DNA damage. Too much DDR will halt the cell cycle and drive NCD pathogenesis. The increase in Alu methylation by Alu siRNA resulted in a reduction in DNA damage. Therefore, a technique adding IRS methylation, such as Alu siRNA transfection, may be useful for treating aging and DNA damage-associated disease conditions in the future.

References

1. Licher S, Heshmatollah A, van der Willik KD, Stricker BHC, Ruiter R, de Roos EW, et al. Lifetime risk and multimorbidity of non-communicable diseases and disease-free life expectancy in the general population: A population-based cohort study. *PLoS Med.* 2019;16(2):e1002741.
2. Mutirangura A. A Hypothesis to Explain How the DNA of Elderly People Is Prone to Damage: Genome-Wide Hypomethylation Drives Genomic Instability in the Elderly by Reducing Youth-Associated Genome-Stabilizing DNA Gaps 2018.
3. Jintaridh P, Tungtrongchitr R, Preutthipan S, Mutirangura A. Hypomethylation of Alu elements in post-menopausal women with osteoporosis. *PLoS One.* 2013;8(8):e70386.
4. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. *Cancer Res.* 2007;67(3):876-80.
5. Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, et al. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. *Oncogene.* 2004;23(54):8841-6.
6. Wei L, Liu S, Su Z, Cheng R, Bai X, Li X. LINE-1 hypomethylation is associated with the risk of coronary heart disease in Chinese population. *Arq Bras Cardiol.* 2014;102(5):481-8.
7. Jintaridh P, Mutirangura A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. *Physiol Genomics.* 2010;41(2):194-200.
8. Chansangpetch S, Prombhul S, Tantisevi V, Sodsai P, Manassakorn A, Hirankarn N, et al. DNA Methylation Status of the Interspersed Repetitive Sequences for LINE-1, Alu, HERV-E, and HERV-K in Trabeculectomy Specimens from Glaucoma Eyes. *J Ophthalmol.* 2018;2018:9171536.
9. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. *Nature.* 1998;395(6697):89-93.
10. Patchsung M, Settayanon S, Pongpanich M, Mutirangura D, Jintarith P, Mutirangura A. Alu siRNA to increase Alu element methylation and prevent DNA damage. *Epigenomics.* 2018;10(2):175-85.

11. Milic M, Frustaci A, Del Bufalo A, Sanchez-Alarcon J, Valencia-Quintana R, Russo P, et al. DNA damage in non-communicable diseases: A clinical and epidemiological perspective. *Mutat Res.* 2015;776:118-27.
12. Pongpanich M, Patchsung M, Mutirangura A. Pathologic Replication-Independent Endogenous DNA Double-Strand Breaks Repair Defect in Chronological Aging Yeast. *Front Genet.* 2018;9:501.
13. Siddiqui MS, Francois M, Fenech MF, Leifert WR. Persistent gammaH2AX: A promising molecular marker of DNA damage and aging. *Mutat Res Rev Mutat Res.* 2015;766:1-19.
14. Voss P, Siems W. Clinical oxidation parameters of aging. *Free Radic Res.* 2006;40(12):1339-49.
15. Poljsak B, Dahmane R. Free radicals and extrinsic skin aging. *Dermatol Res Pract.* 2012;2012:135206.
16. Al-Mashhadi S, Simpson JE, Heath PR, Dickman M, Forster G, Matthews FE, et al. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain. *Brain Pathol.* 2015;25(5):565-74.
17. Ou HL, Schumacher B. DNA damage responses and p53 in the aging process. *Blood.* 2018;131(5):488-95.
18. Pornthanakasem W, Kongruttanachok N, Phuangphairoj C, Suyarnsestakorn C, Sanghangthum T, Oonsiri S, et al. LINE-1 methylation status of endogenous DNA double-strand breaks. *Nucleic Acids Res.* 2008;36(11):3667-75.
19. Thongsroy J, Matangkasombut O, Thongnak A, Rattanatanyong P, Jirawatnotai S, Mutirangura A. Replication-independent endogenous DNA double-strand breaks in *Saccharomyces cerevisiae* model. *PLoS One.* 2013;8(8):e72706.
20. Thongsroy J, Patchsung M, Pongpanich M, Settayanon S, Mutirangura A. Reduction in replication-independent endogenous DNA double-strand breaks promotes genomic instability during chronological aging in yeast. *FASEB J.* 2018;fj201800218RR.

โดยงานวิจัยแรกในทุนนี้เป็นการศึกษาพิสูจน์ว่า Alu methylation จะมีค่าลดลงในผู้ป่วยเบาหวานและลดลงมากในผู้ป่วยเบาหวานที่มีอาการมาก เช่น มีความดันสูงร่วมด้วย งานวิจัยนี้ตีพิมพ์ที่

- Thongsroy J, Patchsung M, Mutirangura A. The association between Alu hypomethylation and severity of type 2 diabetes mellitus. *Clin Epigenetics*. 2017;9:93.

และสรุปผลงานวิจัยได้ดังนี้

BACKGROUND: Cellular senescence due to genomic instability is believed to be one of the mechanisms causing health problems in diabetes mellitus (DM). Low methylation levels of Alu elements or Alu hypomethylation, an epigenomic event causing genomic instability, were commonly found in aging people and patients with aging phenotypes, such as osteoporosis.

RESULTS: We investigate Alu methylation levels of white blood cells of type 2 DM, pre-DM, and control. The DM group possess the lowest Alu methylation ($P < 0.001$, $P < 0.0001$ adjusted age). In the DM group, Alu hypomethylation is directly correlated with high fasting blood sugar, HbA1C, and blood pressure.

CONCLUSION: Genome-wide hypomethylation may be one of the underlining mechanisms causing genomic instability in type 2 DM. Moreover, Alu methylation levels may be a useful biomarker for monitoring cellular senescence in type 2 DM patients.

ต่อมากันะผู้วิจัยได้ทดสอบเดิมหมู่เมททิลในจีโนมของเซลล์ด้วย Alu siRNA และสามารถเพิ่มความเสถียรของจีโนมโดยการลดรอยโรคของ DNA หรือ endogenous DNA damage ลง การศึกษานี้มีความสำคัญในการบ่งชี้ว่า การลดลงของหมู่เมททิลทำให้เซลล์แก่โดยการเพิ่ม รอยโรคของ DNA และชี้นำว่าความชราซ้อมได้ การศึกษานี้ตีพิมพ์ที่

- Patchsung M, Settayanon S, Pongpanich M, Mutirangura D, Jintarith P, Mutirangura A. Alu siRNA to increase Alu element methylation and prevent DNA damage. *Epigenomics*. 2018;10(2):175-85.

และสรุปผลงานวิจัยได้ดังนี้

Global DNA hypomethylation promoting genomic instability leads to cancer and deterioration of human health with age.

AIM: To invent a biotechnology that can reprogram this process.

METHODS: We used Alu siRNA to direct Alu interspersed repetitive sequences methylation in human cells. We evaluated the correlation between DNA damage and Alu methylation levels.

ฝ่ายวิชาการ

โทรศัพท์ 0-2278-8253

e-mail: chonnapa@trf.or.th

RESULTS: We observed an inverse correlation between Alu element methylation and endogenous DNA damage in white blood cells. Cells transfected with Alu siRNA exhibited high Alu methylation levels, increased proliferation, reduced endogenous DNA damage and improved resistance to DNA damaging agents.

CONCLUSION: Alu methylation stabilizes the genome by preventing accumulation of DNA damage. Alu siRNA could be useful for evaluating reprogramming of the global hypomethylation phenotype in cancer and aging cells.

งานวิจัยนี้ได้จดสิทธิบัตรแล้วที่

ผลิตภัณฑ์ อาร์เอ็นเอสายสั้นที่ลดความไม่เสถียรของจีโนมโดยการเติมหมู่เมทิลเลชั่นของไซน์
เลขที่คำขอ 1801002509 วันรับคำขอ/วันยื่นคำขอ 27 เมย. 2561

งานวิจัยนี้เป็นที่สนใจของสังคมไทย

นักวิจัยสก. แพทย์จุพายา สารพันคนไม่อยากแก้

การพิสูจน์ ปรากฏการณ์ไม่เคยมีคำวินิจฉัย

ศศิธร (๖๐๐) วันที่ > สื่อข่าวสารศึกษา : ๑๙ ม.ค. ๒๕๖๑

นักวิจัย สก. แพทย์จุพายา สารพันคนไม่อยากแก้ คิดค้นยาลดความชรา "อาคูเอสโว" ที่ทำให้หลอกคนต่อสารกำลังต้านอีดีโอ

ศาสตราจารย์ ดร. น.พ. อภิวัฒน์ มุทิรากุรุ ศาสตราจารย์วิจัยเด่น สก. จากคณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เปิดเผยว่า ในอนาคตวิทยาศาสตร์อาจต้องให้ผู้เชี่ยวชาญทุกคนเป็นเจ้าของนิสัย គรรณา ชา เพชรลักษ์ นิสิตศูนย์เทคโนโลยีคิดสร้างสรรค์ จุฬาลงกรณ์มหาวิทยาลัย (คป.) ของ สก. ให้ติดพัฒนาการวิจัยเชิงค้น ที่ลึกซึ้ง นิสิตศูนย์เทคโนโลยีคิดสร้างสรรค์ จุฬาลงกรณ์มหาวิทยาลัย หลังจากที่การวิจัยเรื่อง "การสร้างเสริมสุขภาพเด็กนิสิตโดยใช้อาคูเอสโว (Acu-Esso) ให้เด็กนิสิตที่มีสุขภาพดี" และ "ใช้ชีวิตดีในการติดต่อสารที่สามารถครอบใจเด็กที่เดินทางของเชลล์ส์ทูชูล ยังคงเรียกว่าให้เด็กนิสิตที่มีสุขภาพดี (Healthy DNA)" และ "การพัฒนาชีวิตดีในเด็ก" ของ ศศิธร น.พ. อภิวัฒน์ มุทิรากุรุ ศาสตราจารย์วิจัยเด่น สก. กล่าว

“สังคมโลกกำลังก้าวสู่สังคมคนชรา นั่นหมายความว่าจะมีผู้คนมากมายป่วยด้วยความเสื่อมของอวัยวะต่าง ๆ จากความชรา ทั้งแพล็ปิดชา หลอดเลือดหัวใจแข็งและอุดตัน กระดูกบางและผุ และการสูญเสียความสมรรถภาพทางร่างกาย และสติปัญญา หากสามารถป้องกันหรือแก้ไขความเสื่อมของสารพันธุกรรมได้อาจจะเป็นแนวทางสำคัญในการทำให้คุณภาพชีวิตของผู้คนในสังคมอยู่ได้อย่างมีความสุข ที่สำคัญการศึกษานี้ยังเป็นตัวอย่างหนึ่งที่บ่งชี้ว่าการศึกษาวิจัยเพื่อสร้างองค์ความรู้พื้นฐานมีความสำคัญต่อการกิดนวัตกรรมแบบก้าวกระโดด ซึ่งจะเห็นได้ว่าคุณเมวิจัยของตนได้ใช้เวลาศึกษาองค์ความรู้พื้นฐานนานกว่า 10 ปี ลึกลับสามารถสร้างตัวแบบบยารายุร่วมจะที่ทำให้เชลล์ส์ได้อีนเอสโวสิ่งที่ได้รับการจดสิทธิบัตรแล้วที่

ศาสตราจารย์ ดร. น.พ. อภิวัฒน์ มุทิรากุรุ

ฝ่ายวิชาการ

โทรศัพท์ 0-2278-8253

e-mail: chonnapa@trf.or.th

และเป็นที่สนใจของนักวิทยาศาสตร์ทั่วโลก

Welcome to the 11th volume of *Epigenomics*

Lucy Chard^{*,†}
†Future Medicine, Future Science Group Ltd, London, UK
*Author for correspondence: l.chard@futuremedicine.com

Foreword by Lucy Chard: Welcome to the 11th volume of *Epigenomics*. I would like to take this opportunity to wish all of our readers a Happy New Year. In this Foreword, I shall be taking a look back at some of the journal highlights of 2018.

Over the past year, we have seen some great strides in the development of epigenetics for medical applications. However, this advancing field, while *niche*, still needs to overcome a number of obstacles before we see a more widespread application of this technology. It has been a privilege for *Epigenomics* to publish work in this fascinating field, which continues to be of the highest quality.

Article highlights

We have published a number of outstanding Research Articles in the journal this year. Therefore, I would like to draw your attention to some of the particular highlights of 2018.

At the time of writing our most read article from 2018 was a Research Article entitled 'A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix' by Andrew F. Teschendorff and Shijie C. Zheng from the Department of Women's Cancer, University College London and the University of Chinese Academy of Sciences, respectively [1]. The research paper was dedicated to developing and validating a new DNA methylation reference and algorithm to be used in complex tissues containing different types of cell epithelial cells as well as immune and nonimmune stromal cells. Using the reference, Zheng *et al.* were able to confirm that each of the cervical, saliva and buccal tissues exhibit substantial variation in the total immune cell (IC) fraction, with a large proportion of the samples containing more than 70% ICs [1].

This article is closely followed by another research paper: 'Exercise training alters the genomic response to acute exercise in human adipose tissue' by Fabre *et al.* [2], from the University of Copenhagen, published online in April 2018. This study showed that significant epigenetic changes occur in adipose tissue after exercise, tested using nucleases and DNA-modifying enzymes to target exercise responsive genes. This has laid the groundwork for further study in this area to establish entire causality and physiological relevance [2].

Researchers from Chulalongkorn University published the paper: 'Alu sRNA to increase Alu element methylation and prevent DNA damage' [3]. This research aimed to develop a technology to allow DNA methylation at *Arthrobacter luteus* (Alu) restriction endonuclease elements to increase genomic stability by reducing endogenous DNA damage. This research could have implications in the prevention of cancer and aging.

Another of the most highly read articles of 2018 entitled 'Stability of global methylation profiles of whole blood and extracted DNA under different storage durations and conditions' was authored by Li *et al.* The researchers from the Medical College of Wisconsin, USA used blood and DNA samples stored from 1996 at 4°C to produce libraries in 2016. The results from this Research Article support the idea that DNA samples can still be viable after many years of storage under the right conditions [4].

Epigenomics publishes a range of article types meaning that we are able to highlight some particularly interesting and novel topics, such as in this Editorial: 'Folate and epigenetics: why we should not forget bacterial biosynthesis' by Dieuwertje E. Kooi, Wilma T. Steegenga and Jill A. McKay from Wageningen University and Research in the Netherlands [5]. This editorial article was published in the September issue and has already received a high number of downloads. They propose that bacterial folate synthesis provides an additional source of folate, this brings important impacts for the field [5]. This piece explores the role of folate in epigenetic regulation and possible disease outcomes, posing many important questions for future research.

Another study in this area to establish entire causality and physiological relevance [6]. Researchers from Chulalongkorn University published the paper: 'A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix' [1]. This research aimed to develop a technology to allow DNA methylation at *Arthrobacter luteus* (Alu) restriction endonuclease elements to increase genomic stability by reducing endogenous DNA damage. This research could have implications in the prevention of cancer and aging [3]. Another of the most highly read articles of 2018 entitled 'Stability of global methylation profiles of whole blood and extracted DNA under different storage durations and conditions' was authored by Li *et al.* [4].

Future Medicine

10.22117/epi.2018.0198 © 2018 Future Medicine Ltd

Epigenomics (2018) 11(1), 1–4

ISSN 1750-1911

ศาสตราจารย์ ดร.นพ. อรุณรัตน์ มุทิรังคุร

การศึกษาต่อมาเป็นการพิสูจน์ว่า replication independent endogenous DNA double strand breaks หรือ RIND-EDSBs ที่คณะผู้วิจัยค้นพบและรายงานครั้งแรกในปี 2008 ที่ Nucleic Acids Res. 2008;36(11):3667-75. แท้ที่จริงแล้วเป็น epigenetic marks ที่สำคัญสำหรับป้องกันความไม่เสถียรของจีโนมเพื่อป้องกันความชราของเซลล์ งานวิจัยนี้ตีพิมพ์ที่ Thongsroy J, Patchsung M, Pongpanich M, Settayanon S, Mutirangura A. Reduction in replication-independent endogenous DNA double-strand breaks promotes genomic instability during chronological aging in yeast. FASEB J. 2018:fj201800218RR. โดยที่ The FASEB Journal เป็นวารสารสำคัญในระดับ Tier 1. สรุปผลงานวิจัยได้ดังนี้

The mechanism that causes genomic instability in nondividing aging cells is unknown. Our previous study of mutant yeast suggested that 2 types of replication-independent endogenous DNA double-strand breaks (RIND-EDSBs) exist and that they play opposing roles. The first type, known as physiologic RIND-EDSBs, were ubiquitous in the G0 phase of both yeast and human cells in certain genomic locations and may act as epigenetic markers. Low RIND-EDSB levels were found in mutants that lacked chromatin-condensing proteins, such as the high-mobility group box (HMGB) proteins

ฝ่ายวิชาการ

โทรศัพท์ 0-2278-8253

e-mail: chonnapa@trf.or.th

and Sir2. The second type is referred to as pathologic RIND-EDSBs. High pathological RIND-EDSB levels were found in DSB repair mutants. Under normal physiologic conditions, these excess RIND-EDSBs are repaired in much the same way as DNA lesions. Here, chronological aging in yeast reduced physiological RIND-EDSBs and cell viability. A strong correlation was observed between the reduction in RIND-EDSBs and viability in aging yeast cells ($r = 0.94$, $P < 0.0001$). We used galactose-inducible HO endonuclease (HO) and nhp6a, an HMGB protein mutant, to evaluate the consequences of reduced physiological RIND-EDSB levels. The HO-induced cells exhibited a sustained reduction in RIND-EDSBs at various levels for several days. Interestingly, we found that lower physiologic RIND-EDSB levels resulted in decreased cell viability ($r = 0.69$, $P < 0.0001$). Treatment with caffeine, a DSB repair inhibitor, increased pathological RIND-EDSBs, which were distinguished from physiologic RIND-EDSBs by their lack of sequences prior to DSB in untreated cells [odds ratio (OR) $</=1$]. Caffeine treatment in both the HO-induced and nhp6a cells markedly increased OR $</=1$ breaks. Therefore, physiological RIND-EDSBs play an epigenetic role in preventing pathological RIND-EDSBs, a type of DNA damage. In summary, the reduction of physiological RIND-EDSB level is a genomic instability mechanism in chronologically aging cells.-Thongsroy, J., Patchsung, M., Pongpanich, M., Settayanon, S., Mutirangura, A. Reduction in replication-independent endogenous DNA double-strand breaks promotes genomic instability during chronological aging in yeast.

คณะผู้วิจัยยังได้ทำการศึกษากลไกความชราและพบว่าความไม่เสถียรของจีโนมในเซลล์ที่ชรา แล้วจะพบร่วมกับประสิทธิภาพการซ่อมแซมดีเอ็นเอที่ลดลง งานวิจัยนี้ตีพิมพ์ที่

- Pongpanich M, Patchsung M, Mutirangura A. Pathologic Replication-Independent Endogenous DNA Double-Strand Breaks Repair Defect in Chronological Aging Yeast. *Front Genet.* 2018;9:501. และสรุปผลงานวิจัยได้ดังนี้

Reduction of physiologic replication-independent endogenous DNA double strand breaks (Phy-RIND-EDSBs) in chronological aging yeast increases pathologic RIND-EDSBs (Path-RIND-EDSBs). Path-RIND-EDSBs can occur spontaneously in non-dividing cells without any inductive agents, and they must be repaired immediately otherwise their accumulation can lead to senescence. If yeasts have DSB repair defect, retention of Path-RIND-EDSBs can be found. Previously, we found that Path-RIND-EDSBs are not only produced but also retained in chronological aging yeast. Here, we evaluated if chronological aging yeasts have a DSB repair defect. We found a significant accumulation of Path-RIND-EDSBs around the same level in aging cells and caffeine

ฝ่ายวิชาการ

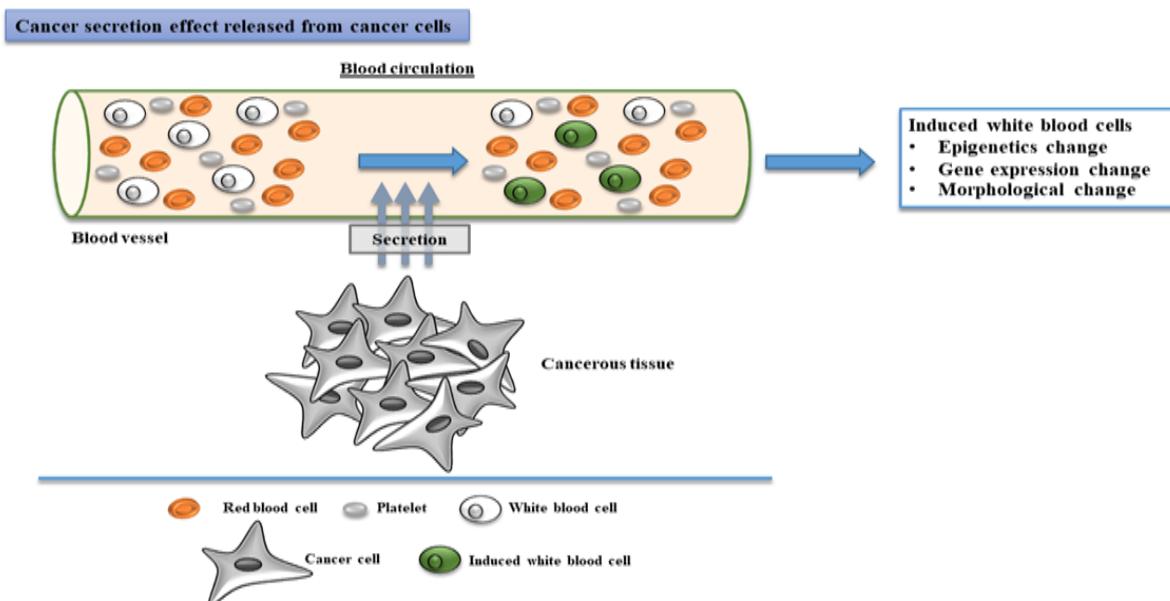
โทรศัพท์ 0-2278-8253

e-mail: chonnapa@trf.or.th

treated cells and at a much higher level in the DSB repair mutant cells. Especially in the mutant, some unknown sequence was found inserted at the breaks. In addition, % difference of cell viability between HO induced and non-induced cells was significantly greater in aging cells. Our results suggested that RIND-EDSBs repair efficiency declines, but is not absent, in chronological aging yeast which might promote senescence phenotype. When a repair protein is deficient, an alternative pathway might be employed or an end modification process might occur as inserted sequences at the breaks were observed. Restoring repair defects might slow down the deterioration of cells from chronological aging.

งานวิจัยทั้งหมดได้สรุปและเขียนเป็น Textbook ที่ Epigenetics

- A Hypothesis to Explain How the DNA of Elderly People Is Prone to Damage: Genome-Wide Hypomethylation Drives Genomic Instability in the Elderly by Reducing Youth-Associated Genome-Stabilizing DNA Gaps By Apiwat Mutirangura Submitted: September 20th 2018 Reviewed: December 7th 2018 Published: December 31st 2018 DOI: 10.5772/intechopen.83372


Epigenetic changes are how the DNA of elderly people is prone to damage. One role of DNA methylation is to prevent DNA damage. In the elderly and those with aging-associated noncommunicable diseases (NCDs), DNA shows reduced methylation; consequently, the aging genome is unstable and accumulates DNA damage. While the DNA damage response (DDR) of the direct intracellular machinery repairs DNA lesions, too much DDR halts cell proliferation, and promotes senescence. Therefore, genome-wide hypomethylation drives genomic instability, causing aging-associated disease phenotypes. However, the mechanism is unknown. Independent of DNA replication, the eukaryotic genome retains a certain amount of endogenous DNA double-strand breaks (EDSBs), called physiologic replication-independent EDSBs (Phy-RIND-EDSBs), that possess physiological function. Phy-RIND-EDSBs are reduced in aging yeast, and low levels of Phy-RIND-EDSBs decrease cell viability and increase DNA damage. Thus, Phy-RIND-EDSBs have a biological role as youth-associated genomic-stabilizing DNA gaps. In humans, Phy-RIND-EDSBs are located in the hypermethylated genome. Because the genomes of aging people are hypomethylated, the elderly should also have a low level of Phy-RIND-EDSBs. Based on this evidence, I hypothesize that in the human Phy-RIND-EDSBs, reduction is a molecular process that mediates the genome-wide hypomethylation driving genomic instability, which is a nidus pathogenesis mechanism of human body deterioration in aging-associated NCDs.

ฝ่ายวิชาการ

โทรศัพท์ 0-2278-8253

e-mail: chonnapa@trf.or.th

WBC tumor marker

การตรวจมะเร็งจากโปรตีนหรือโปรตีนในเม็ดเลือดขาว เชลล์มะเร็งจะหลังสาร ทำให้เม็ดเลือดขาวจำนวนมากในกระแสโลหิต มีสภาวะเหนือพันธุกรรม อาร์เอ็นเอ และโปรตีนเปลี่ยนไป พบว่าโปรตีน BrCAinWBC (นามสมมุติ) ในเม็ดเลือดขาวของผู้ป่วยมะเร็งเต้านมในความไวและความจำเพาะสูงถึงร้อยละ 95 (กำลังจะตีพิมพ์เผยแพร่ผลงาน) โดยสรุป มีความไวสูง non-invasive, สามารถใช้เทคโนโลยีจีโนมมา tumor marker สำหรับทุกมะเร็ง หากได้รับการสนับสนุนให้ตรวจมะเร็ง ผู้ป่วยมะเร็งจะพบแต่ระยะต้น ๆ ทำให้อัตราการตายจากมะเร็งจะลดลงอย่างมาก ปัจจุบันได้เก็บตัวอย่างสำหรับทำ cross sectional study ที่น่าเชื่อถือคือ มะเร็งเต้านม มะเร็งลำไส้ใหญ่ และมี tumor marker ที่มีความไว >90% สำหรับมะเร็งเต้านม มะเร็งลำไส้ใหญ่ และมะเร็งศีรษะและคอ ด้วยทุน สถาบัน นี้ ขณะนี้ได้ตีพิมพ์ผลงานทั้งสิ้น ๒ เรื่องและจะตีพิมพ์อีก ๒ เรื่อง ได้แก่ ผลงานตีพิมพ์เรื่องที่ ๑

- Arayataweegool A, Srisuttee R, Mahattanasakul P, Tangjaturonsasme N, Kerekhanjanarong V, Kitkumthorn N, et al. Head and neck squamous cell carcinoma drives line-1 hypomethylation in the peripheral blood mononuclear cells. *Oral Dis* 2019, 25:64-72.

งานวิจัยนี้ได้จดสิทธิบัตรแล้วที่

- ชุดทดสอบการตรวจมะเร็งศีรษะและลำคอในเม็ดเลือดโดยวัดระดับของหมู่เมทกิลที่ LINE-1s ของเชลล์เม็ดเลือดขาว เลขที่คำขอ 1801002504 วันรับคำขอ/วันยื่นคำขอ 27 เมย. 2561

และสรุปผลงานวิจัยได้ดังนี้

OBJECTIVE: Alteration of long interspersed element-1 (LINE-1) methylation in peripheral blood mononuclear cells (PBMCs) has been simultaneously activated to breast carcinogenesis due to its secretion. To evaluate the effect in head and neck squamous cell carcinoma (HNSCC), LINE-1 methylation levels and patterns have been measured both in vitro and in vivo.

METHODS: Analysis of LINE-1 methylation in cocultured models between HNSCC cell lines and normal PBMCs was performed. The observation of PBMCs of HNSCC patients compared to PBMCs of normal controls was performed using the semiquantitative combined bisulfite restriction analysis technique.

RESULTS: Downregulation of LINE-1 methylation was significantly found in the PBMCs cocultured with all HNSCC cell lines compared to normal PBMCs. Likewise, a reduction in LINE-1 methylation levels was observed in PBMCs of HNSCC compared to normal PBMCs ($p < 0.0001$). Receiver operating characteristic analysis demonstrated the potential of the unmethylated alleles ((u) C(u) C) of LINE-1 for distinguishing the PBMCs of HNSCC patients from normal controls with 100% sensitivity and specificity.

CONCLUSION: Our data supported that the alteration of LINE-1 methylation levels in PBMCs was influenced by HNSCC secretions. Moreover, the unmethylated LINE-1 allele of PBMCs was proved to be an effective tumor marker and possesses a potential as HNSCC diagnostic tool.

ผลงานตีพิมพ์เรื่องที่ ๒ งานวิจัยนี้ตีพิมพ์ที่

- Boonsongserm P, Angsuwatcharakon P, Puttipanyalears C, Aporntewan C, Kongruttanachok N, Aksornkitti V, Kitkumthorn N, Mutirangura A:

Tumor-induced DNA methylation in the white blood cells of patients with colorectal cancer. Oncology Letters <https://doi.org/10.3892/ol.2019.10638>

และสรุปผลงานวิจัยได้ดังนี้

The secretions of cancer cells alter epigenetic regulation in cancer stromal cells. The present study investigated the methylation changes in white blood cells (WBCs) caused by the secretions of colorectal cancer (CRC) cells. Changes in the DNA methylation of peripheral blood mononuclear cells (PBMCs) from normal individuals co-cultured with CRC cells were estimated using a methylation microarray. These changes were then compared against the DNA methylation changes and mRNA levels observed in the WBCs of patients with CRC. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) and matrix metalloproteinase 9 (MMP9) were selected to assess the DNA

ฝ่ายวิชาการ

โทรศัพท์ ๐-๒๒๗๘-๘๒๕๓

e-mail: chonnapa@trf.or.th

methylation of the WBCs from CRC patients using real-time methylation-specific PCR. The majority of the genes analyzed presented high levels of mRNA in the WBCs of the patients with CRC and DNA methylation in the co-cultured PBMCs. Intragenic methylation revealed the strongest association ($P=8.52\times 10^{-21}$). For validation, MMP9 and PLOD1 were selected and used to test WBCs from 32 patients with CRC and 57 normal controls. The intragenic MMP9 methylation was commonly found ($P<0.0001$) with high sensitivity (90.63%) and high specificity (96.49%), and a positive predictive value of 93.33% and a negative predictive value of 93.22%. PLOD1 methylation was revealed to have lower sensitivity (30.00%) but higher specificity (97.92%). In addition to circulating WBCs, MMP9 protein expression was observed in infiltrating WBCs and the metastatic lymph nodes of patients with CRC. In conclusion, CRC cells secrete factors that induce genome wide DNA methylation changes in the WBCs of patients with CRC. These changes, including intragenic MMP9 methylation in WBCs, are promising CRC biomarkers to be tested in future CRC screening studies.

นอกจากนี้งานวิจัยในหัวข้อนี้มีสิทธิบัตรอีก ๑ เรื่องได้แก่

- ชุดทดสอบการตรวจมะเร็งรังไข่ชนิดเยื่อบุผิวจากเซลล์เม็ดเลือดขาว โดยวิเคราะห์การแสดงออกของยีนจีเมบแปด (GIMAP8) เลขที่คำขอ 1801002508 วันรับคำขอ/วันยื่นคำขอ 27 เมย. 2561

Epigenomic editing

คณะผู้วิจัยได้เริ่มทำการวิจัยเพื่อตอกแต่งสภาวะเหนือพันธุกรรมโดยการศึกษาบทบาทของโปรตีน Argonaute1 ในการกดการทำงานของยีนที่มี mononucleotide A repeat มากซึ่งยีนกลุ่มนี้มักจะแสดงออกสูงในเซลล์มะเร็ง และบทบาทของโปรตีน Argonaute4 ในกลไกการเติม DNA methylation ด้วย small RNA ในเซลล์ของมนุษย์

การศึกษาบทบาทของโปรตีน Argonaute1 ในการกดการทำงานของยีนที่มี mononucleotide A repeat มากซึ่งยีนกลุ่มนี้มักจะแสดงออกสูงในเซลล์มะเร็ง งานวิจัยนี้ตีพิมพ์ที่

- Pin-On P, Aporntewan C, Siriluksana J, Bhummaphan N, Chanvorachote P, Mutirangura A: Targeting high transcriptional control activity of long mononucleotide A-T repeats in cancer by Argonaute 1. *Gene* 2019, 699:54-61.

งานวิจัยนี้ได้จัดสิทธิบัตรแล้วที่

- การพัฒนาแนวทางใหม่ในการตอกแต่งสภาวะเหนือพันธุกรรมของจีโนมเพื่อสร้างต้นแบบยารักษาโรคมะเร็งด้วยวิธี CPP-AGO1-U21 และสรุปผลงานวิจัยได้ดังนี้

Epigenetic regulatory changes alter the gene regulation function of DNA repeat elements in cancer and consequently promote malignant phenotypes. Some short tandem repeat sequences, distributed throughout the human genome, can play a role as cis-regulatory elements of the genes. Distributions of tandem long ($>/=10$) and short (<10) A-T repeats in the genome are different depending on gene functions. Long repeats are more commonly found in housekeeping genes and may regulate genes in harmonious fashion. Mononucleotide A-repeats around transcription start sites interact with Argonaute proteins (AGO) to regulate gene expression. miRNA-bound AGO alterations in cancer have been reported; consequently, these changes would affect genes containing mononucleotide A- and T-repeats. Here, we showed an unprecedented hallmark of gene regulation in cancer. We evaluated the gene expression profiles reported in the Gene Expression Omnibus and found a high density of 13-27 A-T repeats in the up-regulated genes in malignancies derived from the bladder, cervix, head and neck, ovary, vulva, breast, colon, liver, lung, prostate, kidney, thyroid, adrenal gland, bone, blood cells, muscle and brain. Transfection of cell-penetrating protein tag AGO1 containing poly uracils (CPP-AGO1-polyUs) to the lung cancer cell lines altered gene regulation depending on the presence of long A-T repeats. CPP-AGO1-polyUs limited cell proliferation and the ability of a cancer cell to grow into a colony in lung cancer cell lines. In conclusion, long A-T repeats up-regulated

ฝ่ายวิชาการ

โทรศัพท์ 0-2278-8253

e-mail: chonnapa@trf.or.th

many genes in cancer that can be targeted by AGO1 to change the expression of many genes and limited cancer growth.

การศึกษาบทบาทของโปรตีน Argonaute4 ในกลไกการเติม DNA methylation ด้วย small RNA ในเซลล์ของมนุษย์งานวิจัยนี้ตีพิมพ์ที่

- Chalertpet K, Pin-on P, Aporntewan C, Patchsung M, Ingrungruanglert P, Israsena N, Mutirangura A: Argonaute 4 as an Effector Protein in RNA-Directed DNA Methylation in Human Cells. *Front. Genet.*, 04 July 2019 |

<https://doi.org/10.3389/fgene.2019.00645>

และสรุปผลงานวิจัยได้ดังนี้

DNA methylation of specific genome locations contributes to the distinct functions of multicellular organisms. DNA methylation can be governed by RNA-dependent DNA methylation (RdDM). RdDM is carried out by endogenous small-RNA-guided epigenomic editing complexes that add a methyl group to a precise DNA location. In plants, the Argonaute 4 (AGO4) protein is one of the main catalytic components involved in RdDM. Although small interfering RNA or short hairpin RNA has been shown to be able to guide DNA methylation in human cells, AGO protein-regulated RdDM in humans has not yet been evaluated. This study aimed to identify a key regulatory AGO protein involved in human RdDM by bioinformatics and to explore its function in RdDM by a combination of AGO4 knockdown, Alu small interfering RNA transfection, AGO4-expressing plasmid transfection, chromatin immunoprecipitation, cell-penetrating peptide-tagged AGO4 combined Alu single-guide RNA transfection, and methylation analyses. We found that first, human AGO4 showed stronger genome-wide association with DNA methylation than AGO1–AGO3. Second, endogenous AGO4 depletion demethylated DNA of known AGO4 bound loci. Finally, exogenous AGO4 de novo methylated the bound DNA sequences. Therefore, we discovered that AGO4 plays a role in human RdDM.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

- ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า) พร้อมแจ้งสถานะของการตีพิมพ์ เช่น submitted, accepted, in press, published
ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ / หนังสือ / สิทธิบัตร
 1. Rattanatanyong P, Keelawat S, Kitkumthorn N, Mutirangura A: Epithelial-Specific SHP1-P2 Methylation - a Novel Universal Tumor Marker for Detection of Colorectal Cancer Lymph Node Metastasis. *Asian Pacific journal of cancer prevention : APJCP* 2016, 17(8):4117-4123.
 2. Thongsroy J, Patchsung M, Mutirangura A. The association between Alu hypomethylation and severity of type 2 diabetes mellitus. *Clin Epigenetics*. 2017;9:93.
 3. Jindatip D, Fujiwara K, Sarachana T, Mutirangura A, Yashiro T. Characteristics of pericytes in diethylstilbestrol (DES)-induced pituitary prolactinoma in rats. *Med Mol Morphol*. 2018.
 4. Patchsung M, Settayanon S, Pongpanich M, Mutirangura D, Jintarith P, Mutirangura A. Alu siRNA to increase Alu element methylation and prevent DNA damage. *Epigenomics*. 2018;10(2):175-85.
 5. Samsuwan J, Muangsub T, Yanatatsaneejit P, Mutirangura A, Kitkumthorn N. Combined Bisulfite Restriction Analysis for brain tissue identification. *Forensic Sci Int*. 2018;286:42-5.
 6. Thongsroy J, Patchsung M, Pongpanich M, Settayanon S, Mutirangura A. Reduction in replication-independent endogenous DNA double-strand breaks promotes genomic instability during chronological aging in yeast. *FASEB J*. 2018:fj201800218RR.
 7. Saeliw T, Tangsuwansri C, Thongkorn S, Chonchaiya W, Suphapeetiporn K, Mutirangura A, et al. Integrated genome-wide Alu methylation and transcriptome profiling analyses reveal novel epigenetic regulatory networks associated with autism spectrum disorder. *Mol Autism*. 2018;9:27.
 8. Arayataweegool A, Srisuthee R, Mahattanasakul P, Tangjaturonsasme N, Kerekhanjanarong V, Kitkumthorn N, et al. Head and neck squamous cell carcinoma drives line-1 hypomethylation in the peripheral blood mononuclear cells. *Oral Dis* 2019, 25:64-72.

9. Tangsuwansri C, Saeliw T, Thongkorn S, Chonchaiya W, Suphapeetiporn K, Mutirangura A, et al. Investigation of epigenetic regulatory networks associated with autism spectrum disorder (ASD) by integrated global LINE-1 methylation and gene expression profiling analyses. *PLoS One*. 2018;13(7):e0201071.
10. Pongpanich M, Patchsung M, Mutirangura A. Pathologic Replication-Independent Endogenous DNA Double-Strand Breaks Repair Defect in Chronological Aging Yeast. *Front Genet*. 2018;9:501.
11. Wanvimonuk S, Thitiwanichpiwong P, Keelawat S, Mutirangura A, Kitkumthorn N. Distribution of the Epstein-Barr virus in the normal stomach and gastric lesions in Thai population. *J Med Virol*. 2019;91(3):444-9.
12. Puttipanyalears C, Arayataweegool A, Chalertpet K, Rattanachayoto P, Mahattanasakul P, Tangjaturonsasme N, et al. TRH site-specific methylation in oral and oropharyngeal squamous cell carcinoma. *BMC Cancer*. 2018;18(1):786.
13. Mutirangura A: Is global hypomethylation a nidus for molecular pathogenesis of age-related noncommunicable diseases? *Epigenomics* 2019, 11:577-579.
14. Pin-On P, Aporntewan C, Siriluksana J, Bhummaphan N, Chanvorachote P, Mutirangura A: Targeting high transcriptional control activity of long mononucleotide A-T repeats in cancer by Argonaute 1. *Gene* 2019, 699:54-61.
15. Boonsongserm P, Angsuwatcharakon P, Puttipanyalears C, Aporntewan C, Kongruttanachok N, Aksornkitti V, Kitkumthorn N, Mutirangura A: Tumor-induced DNA methylation in the white blood cells of patients with colorectal cancer. *Oncology Letters* <https://doi.org/10.3892/ol.2019.10638>
16. Wanvimonuk S, Thitiwanichpiwong P, Keelawat S, Mutirangura A, Kitkumthorn N: Distribution of the Epstein-Barr virus in the normal stomach and gastric lesions in Thai population. *J Med Virol* 2019, 91:444-449.
17. Chalertpet K, Pin-on P, Aporntewan C, Patchsung M, Ingrungruenglert P, Israsena N, Mutirangura A: Argonaute 4 as an Effector Protein in RNA-Directed DNA Methylation in Human Cells. *Front. Genet.*, 04 July 2019 | <https://doi.org/10.3389/fgene.2019.00645>

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้โดยภาคธุรกิจ/บุคคลทั่วไป)
- เชิงนโยบาย (มีการกำหนดนโยบายของงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลงระเบียบข้อบังคับหรือวิธีทำงาน)
- เชิงสาธารณะ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)
- เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)

3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การจดสิทธิบัตร)

Text

1. Epigenetics

A Hypothesis to Explain How the DNA of Elderly People Is Prone to Damage: Genome-Wide Hypomethylation Drives Genomic Instability in the Elderly by Reducing Youth-Associated Genome-Stabilizing DNA Gaps By Apiwat Mutirangura Submitted: September 20th 2018 Reviewed: December 7th 2018 Published: December 31st 2018 DOI: 10.5772/intechopen.83372

สิทธิบัตร

1. ผลิตภัณฑ์อาร์เอ็นเอสายสั้นที่ลดความไม่เสถียรของจีโนมโดยการเติมหมู่เมทิล เลขชั้นของไซน์ เลขที่คำขอ 1801002509 วันรับคำขอ/วันยื่นคำขอ 27 เมย. 2561
2. ชุดทดสอบการตรวจมะเร็งรังไข่ชนิดเยื่อบุผิวจากเซลล์เม็ดเลือดขาว โดยวิเคราะห์การแสดงออกของยีนจีเมบแปด (GIMAP8) เลขที่คำขอ 1801002508 วันรับคำขอ/วันยื่นคำขอ 27 เมย. 2561
3. ชุดทดสอบมะเร็งช่องปากโดยการใช้เมทิลเลขชั้นที่ตำแหน่ง ซีจี109664 ของยีนที่ อาร์เอช (TRH) จากน้ำบ้วนปาก เลขที่คำขอ 1801002506 วันรับคำขอ/วันยื่นคำขอ 27 เมย. 2561
4. ชุดทดสอบการตรวจกรองมะเร็งศรีษะและลำคอในเลือดโดยวัดระดับของหมู่ เมทิลที่ไลน์วัน (LINE-1s) ของเซลล์เม็ดเลือดขาว เลขที่คำขอ 1801002504 วันรับคำขอ/วันยื่นคำขอ 27 เมย. 2561
- 5 ชุดทดสอบการหามะเร็งตับอ่อนในเลือดโดยใช้ดีเอ็นเอเมทิลเลขชั้นที่ตำแหน่ง ซีจี 16941656 (cg16941656) ของยีนเอฟอาร์วาย (FRY) เลขที่คำขอ 1701006966 วันที่ 24 พย. 2560
- 6 การพัฒนาแนวทางใหม่ในการตกแต่งสภาวะหนึ่งพันธุกรรมของจีโนมเพื่อสร้าง ต้นแบบยารักษาโรคมะเร็งด้วยวิธี CPP-AGO1-U21

ฝ่ายวิชาการ

โทรศัพท์ 0-2278-8253

e-mail: chonnapa@trf.or.th

การเผยแพร่/ประชาสัมพันธ์ 1. สิ่งพิมพ์ หรือสื่อทั่วไป

๑

ยายາຍຸວັດນະປະບັນດາຄວາມເສົ່າຍາຍຸໂນມ

<http://www.bangkokbiznews.com/news/detail/743276>

๒

ແພທຍົງແນະເກີບດີເອັນເອັນເປົ້າປ່າຍມະເຮົງ ໃຊ້ທໍານາຍໂຮຄຂອງຄົນໃນຄຣອບຄຣວ - Lifestyle224

<https://www.lifestyle224.com/content/12541/ແພທຍົງແນະເກີບດີເອັນເອັນເປົ້າປ່າຍມະເຮົງ-ໃຊ້ທໍານາຍໂຮຄຂອງຄົນໃນຄຣອບຄຣວ>

<http://www.komchadluek.net/news/edu-health/286715...ດີເອັນເອັນເປົ້າປ່າຍມະເຮົງທໍານາຍໂຮຄຄົນໃນຄຣອບຄຣວ>

<http://www.komchadluek.net/news/edu-health/286715>

๓ ປະກາສຄວາມສໍາເຮົງ ຍາລັດຄວາມໜາງຂອງ DNA ແລະ ປະບັນດາຄວາມເສົ່າຍາຍຸໂນມ

<https://www.dailynews.co.th/it/622321>

<http://daily.bangkokbiznews.com/detail/320796>

<https://news.mthai.com/general-news/612079.html>

<http://www.tnews.co.th/contents/403728>

<https://board.postjung.com/1064675.html>

<https://fsv.iqnewsclip.com/C->

<180127006092.pdf?transid=a57280906178485683b977294f5541b6&productname=iqnewsalert>

<https://www.youtube.com/watch?v=j-KRkmLutW0&feature=youtu.be>

6. ภาคผนวก ประกอบด้วย reprint หรือ manuscript และบทความสำหรับการเผยแพร่

1. สิ่งพิมพ์ หรือสื่อทั่วไป

หนังสือพิมพ์ วารสาร โทรทัศน์ วิทยุ เว็บไซต์ คู่มือ/แผ่นพับ จัดการประชุม/อบรม อื่นๆ

๑

ยาอายุวัฒนะปรับความเสถียรของจีโนม

<http://www.bangkokbiznews.com/news/detail/743276>

๒

แพทย์แนะเก็บดีเอ็นเอผู้ป่วยมะเร็ง ใช้ทำนายโรคของคนในครอบครัว - Lifestyle224

<https://www.lifestyle224.com/content/12541/แพทย์แนะเก็บดีเอ็นเอผู้ป่วยมะเร็ง-ใช้ทำนายโรคของคนในครอบครัว>

<http://www.komchadluek.net/news/edu-health/286715...ดีเอ็นเอผู้ป่วยมะเร็งทำนายโรคคนในครอบครัว>

<http://www.komchadluek.net/news/edu-health/286715>

๓ ประกาศความสำเร็จ ยາลดความชราของ DNA และ ปรับความเสถียรของจีโนม

<https://www.dailynews.co.th/it/622321>

<http://daily.bangkokbiznews.com/detail/320796>

<https://news.mthai.com/general-news/612079.html>

<http://www.tnews.co.th/contents/403728>

<https://board.postjung.com/1064675.html>

<https://fsv.iqnewsclip.com/C->

<180127006092.pdf?transid=a57280906178485683b977294f5541b6&productname=inqnewsalert>

<https://www.youtube.com/watch?v=j-KRkmLutW0&feature=youtu.be>

2. สิ่งพิมพ์ทางวิชาการ (วารสาร, การประชุม ให้ระบุรายละเอียดแบบการเขียนเอกสารอ้างอิงเพื่อการค้นหาชื่อครรภ์ประกอบด้วย

ชื่อผู้แต่ง ชื่อเรื่อง แหล่งพิมพ์ ปี พ.ศ. (ค.ศ.) ฉบับที่ หน้า)

ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ / หนังสือ / สิทธิบัตร

1. Rattanatanyong P, Keelawat S, Kitkumthorn N, Mutirangura A: Epithelial-Specific SHP1-P2 Methylation - a Novel Universal Tumor Marker for Detection of Colorectal Cancer Lymph Node Metastasis. Asian Pacific journal of cancer prevention : APJCP 2016, 17(8):4117-4123.

ฝ่ายวิชาการ

โทรศัพท์ 0-2278-8253

e-mail: chonnapa@trf.or.th

2. Thongsroy J, Patchsung M, Mutirangura A. The association between Alu hypomethylation and severity of type 2 diabetes mellitus. *Clin Epigenetics*. 2017;9:93.
3. Jindatip D, Fujiwara K, Sarachana T, Mutirangura A, Yashiro T. Characteristics of pericytes in diethylstilbestrol (DES)-induced pituitary prolactinoma in rats. *Med Mol Morphol*. 2018.
4. Patchsung M, Settayanon S, Pongpanich M, Mutirangura D, Jintarith P, Mutirangura A. Alu siRNA to increase Alu element methylation and prevent DNA damage. *Epigenomics*. 2018;10(2):175-85.
5. Samsuwan J, Muangsub T, Yanatatsaneejit P, Mutirangura A, Kitkumthorn N. Combined Bisulfite Restriction Analysis for brain tissue identification. *Forensic Sci Int*. 2018;286:42-5.
6. Thongsroy J, Patchsung M, Pongpanich M, Settayanon S, Mutirangura A. Reduction in replication-independent endogenous DNA double-strand breaks promotes genomic instability during chronological aging in yeast. *FASEB J*. 2018;fj201800218RR.
7. Saeliw T, Tangsuwansri C, Thongkorn S, Chonchaiya W, Suphapeetiporn K, Mutirangura A, et al. Integrated genome-wide Alu methylation and transcriptome profiling analyses reveal novel epigenetic regulatory networks associated with autism spectrum disorder. *Mol Autism*. 2018;9:27.
8. Arayataweegool A, Srisuttee R, Mahattanasakul P, Tangjaturonsasme N, Kerekhanjanarong V, Kitkumthorn N, et al. Head and neck squamous cell carcinoma drives line-1 hypomethylation in the peripheral blood mononuclear cells. *Oral Dis* 2019, 25:64-72.
9. Tangsuwansri C, Saeliw T, Thongkorn S, Chonchaiya W, Suphapeetiporn K, Mutirangura A, et al. Investigation of epigenetic regulatory networks associated with autism spectrum disorder (ASD) by integrated global LINE-1 methylation and gene expression profiling analyses. *PLoS One*. 2018;13(7):e0201071.
10. Pongpanich M, Patchsung M, Mutirangura A. Pathologic Replication-Independent Endogenous DNA Double-Strand Breaks Repair Defect in Chronological Aging Yeast. *Front Genet*. 2018;9:501.
11. Wanvimonsuk S, Thitiwanichpiwong P, Keelawat S, Mutirangura A, Kitkumthorn N. Distribution of the Epstein-Barr virus in the normal stomach and gastric lesions in Thai population. *J Med Virol*. 2019;91(3):444-9.

12. Puttipanyalears C, Arayataweegool A, Chalertpet K, Rattanachayoto P, Mahattanasakul P, Tangjaturonsasme N, et al. TRH site-specific methylation in oral and oropharyngeal squamous cell carcinoma. *BMC Cancer*. 2018;18(1):786.
13. Mutirangura A: Is global hypomethylation a nidus for molecular pathogenesis of age-related noncommunicable diseases? *Epigenomics* 2019, 11:577-579.
14. Pin-On P, Aporntewan C, Siriluksana J, Bhummaphan N, Chanvorachote P, Mutirangura A: Targeting high transcriptional control activity of long mononucleotide A-T repeats in cancer by Argonaute 1. *Gene* 2019, 699:54-61.
15. Boonsongserm P, Angsuwatcharakon P, Puttipanyalears C, Aporntewan C, Kongruttanachok N, Aksornkitti V, Kitkumthorn N, Mutirangura A: Tumor-induced DNA methylation in the white blood cells of patients with colorectal cancer. *Oncology Letters* <https://doi.org/10.3892/ol.2019.10638>
16. Wanvimonsuk S, Thitiwanichpiwong P, Keelawat S, Mutirangura A, Kitkumthorn N: Distribution of the Epstein-Barr virus in the normal stomach and gastric lesions in Thai population. *J Med Virol* 2019, 91:444-449.
17. Chalertpet K, Pin-on P, Aporntewan C, Patchsung M, Ingrungruanglert P, Israsena N, Mutirangura A: Argonaute 4 as an Effector Protein in RNA-Directed DNA Methylation in Human Cells. *Front. Genet.*, 04 July 2019 | <https://doi.org/10.3389/fgene.2019.00645>

Text

1. Epigenetics

A Hypothesis to Explain How the DNA of Elderly People Is Prone to Damage: Genome-Wide Hypomethylation Drives Genomic Instability in the Elderly by Reducing Youth-Associated Gnome-Stabilizing DNA Gaps By Apiwat Mutirangura Submitted: September 20th 2018 Reviewed: December 7th 2018 Published: December 31st 2018 DOI: 10.5772/intechopen.83372

ສຶກສົນໃບຕ່າງ

- ผลิตภัณฑ์อาร์เจ็นเอสายสันที่ลดความไม่เสถียรของจีโนมโดยการเติมหมู่เมทิลเลชั่นของไซน์เลขที่คำขอ 1801002509 วันรับคำขอ/วันยื่นคำขอ 27 เมย. 2561
- ชุดทดสอบการตรวจมะเร็งรังไข่ชนิดเยื่อบุผิวจากเซลล์เม็ดเลือดขาว โดยวิเคราะห์การแสดงออกของยีนจีเมบแปด (GIMAP8) เลขที่คำขอ 1801002508 วันรับคำขอ/วันยื่นคำขอ 27 เมย. 2561

3. ชุดทดสอบมะเร็งช่องปากโดยการใช้เมทิลเลชั่นที่ตำแหน่ง ซีจี109664 ของยีนทีอาร์เอช (TRH) จากน้ำบ้วนปาก เลขที่คำขอ 1801002506 วันรับคำขอ/วันยืนคำขอ 27 เมย. 2561
4. ชุดทดสอบการตรวจร่องมะเร็งศีรษะและลำคอในเลือดโดยวัดระดับของหมู่เมทิลทีไลน์วัน (LINE-1s) ของเซลล์เม็ดเลือดขาว เลขที่คำขอ 1801002504 วันรับคำขอ/วันยืนคำขอ 27 เมย. 2561
- 5 ชุดทดสอบการหามะเร็งตับอ่อนในเลือดโดยใช้ดีเอ็นเอเมทิเลชั่นที่ตำแหน่ง ซีจี 16941656 (cg16941656) ของยีนเอฟอาร์วาย (FRY) เลขที่คำขอ 1701006966 วันที่ขอ 24 พย. 2560
- 6 การพัฒนาแนวทางใหม่ในการตกลั่งสภาวะเหนื่อยอพันธุกรรมของจีโนมเพื่อสร้างต้นแบบยา รักษาโรคมะเร็งด้วยวิธี CPP-AGO1-U21