

รายงานสรุปผลการวิจัยฉบับสมบูรณ์
ทุนวิจัยหลังปริญญาเอกในต่างประเทศ
สัญญาเลขที่ IPD4680004

เรื่อง

“The molecular genetics of mammary carcinogenesis in the rat”

โดย นายปีติ ฐานจิตต์

ปฏิบัติงานวิจัยที่

Professor Micheal N. Gould's lab

McArdle Laboratory for Cancer Research,

University of Wisconsin-Madison

Madison, Wisconsin, USA

ระหว่างวันที่

30 เมษายน พ.ศ. 2546 ถึง 29 เมษายน พ.ศ. 2547

คำนำ

การทำงานวิจัยเป็นแนวทางสำคัญสำหรับการสร้างองค์ความรู้ใหม่ เพื่อนำไปใช้ในการพัฒนาประเทศ และเป็นประโยชน์ต่อมนุษยชาติโดยทั่วไป การไปศึกษาวิจัยในประเทศไทยยังนี้ ข้อจำกัดอีกมากในปัจจัยต่างๆ ทั้งทางทุนทรัพย์และเครื่องมือที่ใช้ การเพิ่มพูนทักษะความรู้ทางการวิจัยทางหลังปริญญานอกในต่างประเทศที่มีการพัฒนามากกว่าประเทศไทยจึงมีความสำคัญ นอกจากการเพิ่มโอกาสที่ศึกษาต่อในต่างประเทศแล้ว ยังเป็นโอกาสให้ผู้วิจัยได้ติดต่อและเชื่อมโยงงานวิจัยที่ทำกับสถาบันวิจัยที่มีศักยภาพสูง ดังนั้น ผู้วิจัยถือว่าเป็นโอกาสอันดีอย่างยิ่ง ที่ได้รับทุนวิจัยหลังปริญญานอกในต่างประเทศ จากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ภายใต้การสนับสนุนจากมูลนิธิอิริยาสันแห่งประเทศไทย ให้ไปปฏิบัติงานศึกษาวิจัยที่ McArdle laboratory for cancer research, มหาวิทยาลัยวิสคอนซิน-เมดิสัน, เมืองแมดิสัน, รัฐวิสคอนซิน, ประเทศสหรัฐอเมริกา ในหัวข้อเรื่อง “กลไกทางอณูพันธุศาสตร์ของการเกิดมะเร็งเต้านมในหนู rat” (The molecular genetics of mammary carcinogenesis in the rat) เป็นเวลา 1 ปี เมื่อว่าผู้วิจัยจะไม่ได้ทำงานวิจัยในหัวข้อที่ได้ทำในประเทศไทย คือ การศึกษาในมะเร็งท่อน้ำดี แต่ผู้วิจัยก็ได้รับความรู้และทักษะของการทำวิจัยเกี่ยวกับมะเร็ง ซึ่งสามารถนำมาประยุกต์กับการศึกษาวิจัยในประเทศไทย ต่อไปได้

งานที่ผู้วิจัยได้ทำที่สหรัฐอเมริกานั้น สินเนื่องจากที่แลนที่ผู้วิจัยได้ไปทำงานนั้น เป็นแลนแรกในโลกนี้ที่ได้ทำการผลิตหนู rat ที่มีการกลายพันธุ์แบบขั้นยั่งการสร้างโปรตีน (Knockout rat) ของจีน brca2 ซึ่งเป็นจีนที่เกี่ยวข้องกับการเกิดมะเร็งเต้านม จีน brca2 นี้ปกติจะเป็นจีนต่อต้านมะเร็ง (Tumor suppressor gene) ซึ่งเมื่อมีการขั้นยั่งการสร้างโปรตีน BRCA2 ทำให้หนู rat ชนิดนี้มีโอกาสเกิดมะเร็งเต้านมได้มากกว่าหนู rat ปกติ โดยที่หนู rat มีความใกล้เคียงนุ่มนากกว่าหนู mouse การศึกษาในหนู knockout rat นี้จึงถือเป็นการพัฒนาการศึกษามะเร็งในสัตว์ทดลองที่ก้าวหน้าอีกขั้นหนึ่ง ผู้วิจัยได้มีโอกาสศึกษาการกลายพันธุ์นี้ (ซึ่งมีการเปลี่ยนสัญญาณการสร้างจากกรดอะมิโน tyrosine ที่ตำแหน่ง 1418 ไปเป็นสัญญาณหดสร้าง ทำให้ขนาดของโปรตีนขนาด 150 กิโลคาลตันหรือไม่แสดงออกเลขหรือมีการข้ามตำแหน่งนี้และแสดงออกอย่างปกติ (380 กิโลคาลตัน) ซึ่งผลการวิจัยพบว่ามีการแสดงออกของโปรตีน BRCA2 ขนาด 150 กิโลคาลตันในหนู rat ที่มีการกลายพันธุ์ของจีน brca2 ทั้งบนโครโน่ไซม์ข้างเดียว (heterozygous mutation) หรือทั้งสองข้าง (homozygous mutation) ขณะที่โปรตีน BRCA2 ขนาดปกติจะไม่มีการแสดงออกในหนู rat ที่มีการกลายพันธุ์นน โครโน่ไซม์สองข้างเลย

นอกจากงานวิจัยนี้แล้ว ผู้วิจัยยังได้ทำงานวิจัยชิ้นที่สอง คือการผลิตเซลล์เพาะเลี้ยงปฐมภูมิไฟฟ์บอร์บลัสท์จากตัวอ่อนหนู rat (Primary culture of rat embryonic fibroblast) ที่มีการกลายพันธุ์

ของจีน *brca2* นี้เพื่อพัฒนาให้เป็นเซลล์เพาะเลี้ยงที่คงทน (immortal cell line) และทดสอบความไวต่อการฉายรังสี ซึ่งผลงานนี้ที่ได้คือ ได้เซลล์เพาะเลี้ยง 2 ชนิดที่มีการกลาหยั่งยืนของจีน *brca2* บนโครโนไซมทั้งสองข้าง และได้เซลล์เพาะเลี้ยง 17 ชนิดที่มีการกลาหยั่งยืนของจีน *brca2* บนโครโนไซมทั้งสองข้างเดียว โดยเซลล์ทั้งสองกลุ่มนี้มีความไวต่อการฉายรังสีไม่แตกต่างอย่างมีนัยสำคัญกับเซลล์เพาะเลี้ยงที่ไม่มีการกลาหยั่งยืนของจีน *brca2*

สำหรับงานวิจัยขั้นที่ 3 ซึ่งต้องการศึกษาส่วนควบคุมการทำงาน (promoter) และการแสดงออก (expression) ของจีนควบคุมการสร้างโปรตีน methylguanine methyltransferase ซึ่งเป็นเอนไซม์ซึ่งทำหน้าที่ในการซ่อมแซมความผิดปกติของดีเอ็นเอ (DNA repairing enzyme) โดยจะมีการแสดงออกต่างในหนู rat ที่ซึ่งไม่ได้เติมที่ ซึ่งมีโอกาสเกิดความเริงเต้านมากกว่าหนู rat ที่ได้เติมที่แล้ว ถึงขณะนี้ผู้วิจัยได้แยกสัดส่วนของดีเอ็นเอออกจากเซลล์ต่อมน้ำนมของหนูอายุ 3 สัปดาห์ และ 8 สัปดาห์โดยยังไม่ได้ทำงานวิจัยใดๆ ยังไม่อาจทราบว่าที่จำัดซึ่งไม่สามารถทำต่อได้ แต่ยังไงไรก็ตาม งานวิจัยทั้งหมดนี้ทางແแลบจะได้ทำต่อไปจนเสร็จ ส่วนผู้วิจัยก็ได้รับทราบแนวคิดของการสร้างงานวิจัยนี้ ซึ่งเป็นประโยชน์อย่างมากสำหรับการสร้างงานวิจัยในประเทศไทยต่อไป

สุดท้ายนี้ผู้วิจัยต้องขอขอบคุณทางศูนย์สังกัดของผู้วิจัย คือ ภาควิชาชีวเคมี คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น ที่ได้ให้โอกาสแก่ผู้วิจัยในการรับทุน และไปปฏิบัติงานวิจัยทางสำนักงานกองทุนสนับสนุนการวิจัย และบูรณาธิชีวิตริกสัน ประเทศไทย ที่ได้สนับสนุนทุนให้ไปปฏิบัติงานวิจัย และทาง Professor Micheal Gould เจ้าของແแลบ และ Professor Norman Drinkwater ผู้อำนวยการ McArdle laboratory for cancer research, มหาวิทยาลัยวิสคอนซิน-แมดิสัน ที่ได้ให้โอกาสในการทำงานวิจัยนี้พร้อมทั้งทุนบางส่วนให้ผู้วิจัย ผู้วิจัยจะได้ใช้ความรู้และทักษะการทำงานวิจัยที่ได้มาในการสร้างงานวิจัยที่ดีในประเทศไทยต่อไป

ปีเตอร์ ชูวิชิต
ผู้วิจัย

สารบัญ

	หน้า
ค่าเนื้า	ก
บทคัดย่อ	ก
Abstract	2
Introduction	3
Project 1	5
“Assay of truncated BRCA2 protein expression and its interaction with RAD51 protein in knockout BRCA2 rat”	
● Objectives	5
● Study design	5
● Materials and Methods	5
● Results and Discussions	8
● Further works	8
Project 2	9
“Radio sensitivity test of primary culture embryonic fibroblast comparing between BRCA2 knockout homozygote, heterozygote and wild type rats”	
● Objectives	9
● Study design	9
● Materials and Methods	9
● Results and Discussions	18
● Further works	19
Project 3	20
Analysis of methylguanine methyltransferase expression comparing between immature and mature rats	
● Objectives	20
● Study design	20
● Materials and Methods	20
● Results and Discussions	21

● Further works	21
Summaries	22
The applicable advantages	23
Acknowledgements	23
References	23
របៀបរាយការង់រៀន	24

List of Figures

	ໜ້າ
<u>Figure 1</u> Standard curve of MTS assay	15
<u>Figure 2</u> Growth curve of 3 genotypes PREF in irradiation assay	18

List of Tables

	ໜ້າ
<u>Table 1</u> Genotype of primary rat embryonic fibroblast (PREF)	14
<u>Table 2</u> Genotype and number of passage of PREF in irradiation assay	16
<u>Table 3</u> OD490 from MTS assay of PREF in irradiation assay	17

รายงานสรุปผลการวิจัยฉบับสมบูรณ์
ทุนวิจัยหลังปริญญาเอกในต่างประเทศ สัญญาเลขที่ IPD4680004
เรื่อง “The molecular genetics of mammary carcinogenesis in the rat”

บทคัดย่อ

มะเร็งเต้านมเป็นมะเร็งที่มีความสำคัญ เนื่องจากพบมากทั่วโลก รวมถึงในประเทศไทย สหราชอาณาจักรและในประเทศไทยด้วย การศึกษากระบวนการเกิดมะเร็งเต้านมสามารถศึกษาในสัตว์ทดลอง แต่เดิมจะศึกษากันมากในหนู mouse แต่ในปัจจุบันการศึกษาได้ก้าวหน้าขึ้นโดยได้มีการศึกษาในหนู rat ซึ่งมีความใกล้เคียงกันนุյมมากกว่าหนู mouse กระบวนการเกิดมะเร็งเต้านมนั้นมีความเกี่ยวพันกับจีนทางยานมิค ทั้งจีนที่พิสูจน์แล้วว่าเกี่ยวพันกับกระบวนการเกิดมะเร็งเต้านม ได้แก่ จีนควบคุมการสร้าง BRCA2 และจีนที่แสดงว่าจะเกี่ยวข้องกับกระบวนการเกิดมะเร็งเต้านม ได้แก่ จีนควบคุมการสร้าง methylguanine methyltransferase โดยที่ BRCA2 เป็นโปรตีนกลุ่มยังการเกิดมะเร็ง (tumor suppressor protein) หากเกิดการกลายพันธุ์อันทำให้มีการแสดงออกของจีนควบคุมการสร้าง BRCA2 ลดลง พบว่าจะเพิ่มโอกาสในการเกิดมะเร็งเต้านมมากขึ้นในทั้งมนุษย์และสัตว์ทดลอง การศึกษาใน Y1418- BRCA2-knockout rat ซึ่งเป็น knockout rat สายพันธุ์แรกในโลกซึ่งพัฒนาโดย Professor Micheal Gould's Lab, McArdle laboratory for cancer research, UW-Madison พบว่าหนู rat ที่มีการกลายพันธุ์ของจีน BRCA2 มีโอกาสที่จะเกิดมะเร็งเต้านมได้มากกว่าหนูปกติ จากการศึกษาของผู้วิจัยพบว่า แม้ว่าจะมีการกลายพันธุ์แบบ nonsense mutation ของจีน BRCA2 ที่ตำแหน่ง 1418 แต่ก็มีการแสดงออกของโปรตีนขนาดสั้นแทน ไม่ได้หมายความว่าจะแสดงออกโดยสิ้นเชิง นอกจากนี้ primary cultural embryonic fibroblast ซึ่งแยกได้จาก embryo ของ heterozygous Y1418- BRCA2 rat parents ทั้งที่มีการกลายพันธุ์แบบ homozygous, heterozygous และแบบที่ไม่มีการกลายพันธุ์ พบว่าทั้ง 3 ชนิดชอบทนต่อการฉายรังสีที่ 4, 8 และ 12 Gy ไม่แตกต่างกันซักเท่าไร

ขณะที่ methylguanine methyltransferase เป็นเอนไซม์ซึ่งทำหน้าที่ในการซ่อมแซมความผิดปกติของดีเอ็นเอ (DNA repairing enzyme) ซึ่งจีนควบคุมการสร้าง methylguanine methyltransferase นั้นมีการแสดงออกต่ำในหนู rat ที่บังไม่ได้เดิมที่ ซึ่งมีโอกาสเกิดมะเร็งเต้านมมากกว่าหนู rat ที่ได้เดิมที่แล้ว ถึงจะนี้ผู้วิจัยได้แยกสกัดดีเอ็นเอออกจากเซลล์ต่อมน้ำนมของหนู อายุ 3 สัปดาห์ และ 8 สัปดาห์ ซึ่งจะต้องทำการวิเคราะห์เพื่อเปรียบเทียบโครงสร้างบริเวณ promoter ของจีนควบคุมการสร้างเอนไซม์ methylguanine methyltransferase ในด้าน methylation ต่อไป

Final report

TRF-UW Postdoctoral Research Scholar : IPD4680004

“The molecular genetics of mammary carcinogenesis in the rat”

Abstract

Breast cancer is an important disease in both Thailand and USA. Breast carcinogenesis study is now in advance, progress from mouse to rat which is the more related specie to human. Breast cancer is a disease caused from abnormal genes, for example, BRCA2 gene which is a tumor suppressor gene, and methylguanine methyltransferase gene which is a DNA repair gene. For BRCA2 gene, previous studies showed that nonsense mutation of this gene leading to more breast cancer susceptibility in both human and animal models. Study in Y1418- BRCA2-knockout rat that is the first knockout rat in the world, developed by Professor Micheal Gould's Lab, McArdle laboratory for cancer research, UW-Madison, found that mutant rats have more chance to be mammary cancer. My finding is that the truncated protein is still expressed. And all 3 genotypes of primary cultural embryonic fibroblast from heterozygous Y1418- BRCA2-knockout rat parents (homozygous mutant, heterozygous mutant and wild type) showed the similar pattern in response to 4, 8 and 12 Gy radiation.

While methylguanine methyltransferase is a DNA repairing enzyme. Its deficiencies in immature rat results in the increase of breast cancer risk when expose to carcinogen. Now a day, my work finished the extraction of genomic DNA from mammary gland of 3-week-old rat and 8-week-old rat. Further work is the comparison of DNA methylation in promoter region of methylguanine methyltransferase gene.

Introduction

Breast cancer is a high incident cancer among worldwide. In Thailand the incident rate is about 20 per 100,000 people and it is higher in USA as about 80 per 100,000 people. So the study of breast carcinogenesis is very important for the better treatment and control of breast cancer. As breast cancer is a genetic related disease, for breast carcinogenesis study, genetic manipulated animal model is a powerful tool for searching the carcinogenesis mechanism pathway. Rat is an animal model that close to human than mouse and also can be manipulated its genetic material. BRCA2 knockout rat, firstly introduced by our lab, is a very useful model in breast carcinogenesis study (1). BRCA2 gene, a tumor suppressor gene, is a well known breast cancer associated gene. Previous studies showed that nonsense mutation of this gene leading to more breast cancer susceptibility in both human and animal models (2). BRCA2 knockout rat in our lab has a T4254A transversion leading to Y(TAT)1418-(TAA) nonsense mutation. The properties of this BRCA2 knockout rat have not been identified yet. In this study, we aim to characterize some properties of this rat as following:

1. Does truncated BRCA2 express in this BRCA2 knockout rat?
2. If it expresses, does it contain regular properties of normal BRCA2, eg. the interaction with RAD51 protein?
3. Does this mutated BRCA2 gene alter growth property of cells containing it?

Moreover than BRCA2, methylguanine methyltransferase gene is also breast cancer related gene. Methylguanine methyltransferase gene is a DNA repair gene. This gene is a prognostic marker using in clinical practice of breast cancer management (3, 4). From our previous study, methylguanine methyltransferase expression is deficient in immature rat and resulting to the increase of breast carcinogenesis when expose to carcinogen. In this study, we design to study methylguanine methyltransferase gene in aspect of its regulation of gene expression at 2 levels. Firstly, at gene or DNA level, we will study the cytosine methylation in the promoter region of this gene. And, secondly, we will study the mRNA expression of methylguanine methyltransferase gene comparing between immature and mature female rats.

Because of my lab is a big one that has a lot of interest in "The molecular genetics of mammary carcinogenesis in the rat", so I had research topic of "Analysis of two breast carcinogenesis related genes, BRCA2 and methylguanine methyltransferase in rat" that composed of 3 projects,

1. Assay of truncated BRCA2 protein expression and its interaction with RAD51 protein in knockout BRCA2 rat
2. Radio sensitivity test of primary culture embryonic fibroblast comparing between BRCA2 knockout homozygote, heterozygote and wild type rats
3. Analysis of methylguanine methyltransferase expression comparing between immature and mature rats

For my own condition, it was hardly to finish all 3 projects within 1 year. So I just only involve in the setting up of the lab methods and prepare cell line then the rest of the work will be continued by my colleague in Gould's lab. I would like to present the whole research aspects but only my own results in the next parts.

Project 1

Assay of truncated BRCA2 protein expression and its interaction with RAD51 protein in knockout BRCA2 rat

Objectives

1. To study truncated BRCA2 protein expression in BRCA2 knockout rat organ.
2. To study the interaction between truncated BRCA2 and RAD51 proteins in knockout BRCA2 rat.

Study design

We propose to extract crude protein from various tissues from 3 genotypes of Sprague Dawley rat; wild type, heterozygous Y1418- BRCA2, and homozygous Y1418- BRCA2 rat. The tissues used in this experiment are testis, spleen, mammary gland, and kidney for male rat and spleen, mammary gland, and kidney for female rat. Testis, spleen, and mammary gland are reported as positive for BRCA2 expression and kidney is the negative organ. The crude extracts will be separated using standard sodium dodecylsulfate-polyacrylamide electrophoresis (SDS-PAGE) and then the protein will be transferred to nitrocellulose membrane using standard Tawbin's method. The proteins will be analyzed with anti-mouse BRCA2a antibody (5) using standard immunodetection method. The crude extracts will be also precipitated using anti-RAD51 antibody and then performed standard immunoblotting using anti-mouse BRCA2a antibody.

Materials and Methods

1. Samples preparation

Rats

1. One male of wild type Sprague Dawley rat
2. Two male of heterozygous Y1418- BRCA2 male Sprague Dawley rats
3. Two male of homozygous Y1418- BRCA2 male Sprague Dawley rats

Reagents

Total protein lysis buffer : 50 mM HEPES, 150 mM NaCl, 10% (v/v) Glycerol, 1% (v/v) Triton X-100, 15 mM MgCl₂, 10 mM Na₄P₂O₇, 1 mM DTT, 80 mM β -glycerophosphate, 10 mM EGTA, 100 mM NaF, 1 mM Na₃VO₄ pH 7.9 + protease inhibitor

2X sample buffer : (0.25 M) Tris, 20% (v/v) Glycerol, 4% SDS 10% (v/v) β -mercaptoethanol, 0.001% (w/v) bromophenol blue pH 6.8

Methods

1. Rats were killed using euthanasia with CO₂ inhalation and testes, spleens and mammary glands were collected.
2. Crude proteins from each organ were extracted separately.
3. Tissues size ~200 mg with 1 ml of total protein lysis buffer were homogenized with tissue homogenizer.
4. The suspensions were centrifuged at 10,000 rpm for 5 min and keep supernatant.
5. Proteins were aliquot and diluted 1:100 then determined amount using Bradford reagent and microplate (300 μ l reagent and 10 μ l diluted sample).
6. Protein solutions were mixed with 2X sample buffer.
7. Keep protein solutions at -80°C and protein solutions with sample buffer at -20°C.
8. Mouse testis was used as positive control.

2. SDS-PAGE

Use 4-8 % Discontinuous polyacrylamide gel

Reagents

Gel solutions

1. 1.5 M Tris-HCl (121.1) pH 8.8
2. 1.0 M Tris-HCl, pH 6.8
3. 10% SDS
4. Acrylamide/Bis (30/0.8)
5. 10% Ammonium persulfate

SDS-PAGE running buffer

0.3% (w/v) Tris Base, 1.5% (w/v) Glycine, 1 % (v/v) SDS , pH 8.3 (no pH adjustable need)

Gel running condition

120 V, room temperature, 90 minutes

3. Western blot analysis

Reagents

Modified Towbin Running Buffer

25 mM Tris, 192 mM Glycine, 0.05% SDS, pH 8.5, 10% Methanol.

Methods

1. Stacking gels were removed.
2. Membranes were nitrocellulose membrane (PROTRAN®, Schleicher & Shuell).
3. Protein transfer condition was modified standard Towbin's method with 40 mA constant current for 24 hr in cold room with ice.
4. Optional : Gels were stain with rapid Coomassie blue staining and membranes were stain with fast green staining. Membrane staining will inhibit peroxidase signal from molecular weight marker.
5. Membranes were washed with TBST 3x5 min and kept in 5 ml of 5% skim milk in TBST at -20°C.

4. Immunodetection

Reagents

10x TBS = 87.6 g NaCl (58.44) + 7.33 g Tris (121.1) + DW to 1 l pH 7.4

20x Tween 20 = Tween 20 20 ml + DW to 1 l

TBST = 10x TBS 100 ml + 20x Tween 50 ml + DW to 1 l

Skim milk

Immunodetection

1. Separate membrane at below 80 kDa marker band.
2. Wash both membranes with TBST 5 min X 3.
3. The upper part was incubated with ~2 ml of new 2 μ g/ml anti mouse BRCA2 A polyclonal Ab (gift from Chodosh's lab, Department of Molecular and Cellular Engineering, University of Pennsylvania School of Medicine; reference No. 5) in 5% skim milk TBST at room temperature for 60 min.
4. The lower part was incubated with 1 ml of new 1:1000 anti α -tubulin monoclonal Ab in 5% skim milk TBST at room temperature for 60 min.
5. Both parts were washed with TBST for 5 min x 3.

6. Upper part membrane was incubated with new 1:1000 ImmunoPure Goat Anti-Rabbit IgG, peroxidase conjugated Ab (Pierce # 31460) in 5% skim milk TBST 3 ml at room temperature for 60 min.
7. Lower part membrane was incubated with new 1:1000 goat anti-mouse IgG, peroxidase conjugated Ab in 5% skim milk TBST 1 ml at room temperature for 60 min.
8. Membranes were washed with TBST for 5 min x 3.
9. Membranes were incubated with chemiluminescent substrate 1:1 for 1-2 min.
10. Signal was detected with autoradiography (1 min).

Results and Discussions

1. Only rat testis was detected the positive band. Mammary gland and spleen are negative.
2. Truncated protein (~150 kDa) can be detected in heterozygous and homozygous rat testes.
3. Full length rat BRCA2 is difficult to be detected by anti mouse BRCA2 A antibody.

Further works

We proposed to do the immunoprecipitation using anti-RAD51 antibody followed by western blot analysis to detect truncated BRCA2 protein in testis to determine the interaction between truncated BRCA2 protein and RAD51 protein.

For the detection of truncated BRCA2 in other organs and in female rat, it is not necessary to do because the western blot analysis method is not sensitive enough. The more sensitive method is RT-PCR may be done but only my results can demonstrated that truncated BRCA2 can be expressed.